
A new class of transport distances between measures

Jean Dolbeault · Bruno Nazaret · Giuseppe Savaré
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Abstract We introduce a new class of distances between nonnegative Radon measures in
Rd . They are modeled on the dynamical characterization of the Kantorovich-Rubinstein-
Wasserstein distances proposed by BENAMOU-BRENIER [7] and provide a wide family in-
terpolating between the Wasserstein and the homogeneous W−1,p

γ -Sobolev distances.
From the point of view of optimal transport theory, these distances minimize a dynamical
cost to move a given initial distribution of mass to a final configuration. An important dif-
ference with the classical setting in mass transport theory is that the cost not only depends
on the velocity of the moving particles but also on the densities of the intermediate configu-
rations with respect to a given reference measure γ .
We study the topological and geometric properties of these new distances, comparing them
with the notion of weak convergence of measures and the well established Kantorovich-
Rubinstein-Wasserstein theory. An example of possible applications to the geometric theory
of gradient flows is also given.

Keywords Optimal transport · Kantorovich-Rubinstein-Wasserstein distance · Continuity
equation · Gradient flows

1 Introduction

Starting from the contributions by Y. BRENIER, R. MCCANN, W. GANGBO, L.C. EVANS,
F. OTTO, C. VILLANI [9,18,25,17,27], the theory of Optimal Transportation has received
a lot of attention and many deep applications to various mathematical fields, such as PDE’s,
Calculus of Variations, functional and geometric inequalities, geometry of metric-measure
spaces, have been found (we refer here to the monographs [28,16,30,3,31]). Among all pos-
sible transportation costs, those inducing the so-called Lp-KANTOROVICH-RUBINSTEIN-
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WASSERSTEIN distances Wp(µ0,µ1), p∈ (1,+∞), between two probability measures µ,ν ∈
P(Rd)

Wp(µ0,µ1) := inf

{(∫
Rd×Rd

|y− x|p dΣ

) 1
p

: Σ ∈ Γ (µ0,µ1)

}
(1.1)

play a distinguished role. Here Γ (µ0,µ1) is the set of all couplings between µ0 and µ1: they
are probability measures Σ on Rd ×Rd whose first and second marginals are respectively
µ0 and µ1, i.e. Σ(B×Rd) = µ0(B) and Σ(Rd ×B) = µ1(B) for all Borel sets B ∈B(Rd).

It was one of the most surprising achievement of [24,25,19,26] that many evolution
partial differential equations of the form

∂tρ +∇ ·
(
ρ

∣∣ξξξ ∣∣q−2
ξξξ
)

= 0, ξξξ =−∇

(
δF

δρ

)
in Rd × (0,+∞), (1.2)

can be, at least formally, interpreted as gradient flows of suitable integral functionals F
with respect to Wp (see also the general approach developed in [30,3,31]). In (1.2) δF/δρ

is the Euler first variation of F , q := p/(p− 1) is the Hölder’s conjugate exponent of p,
and t 7→ ρt (a time dependent solution of (1.2)) can be interpreted as a flow of probability
measures µt = ρt L

d with density ρt with respect to the Lebesgue measure L d in Rd .
Besides showing deep relations with entropy estimates and functional inequalities [27],

this point of view provides a powerful variational method to prove existence of solutions to
(1.2), by the so-called Minimizing movement scheme [19,13,3]: given a time step τ > 0 and
an initial datum µ0 = ρ0L

d , the solution µt = ρtL
d at time t ≈ nτ can be approximated by

the discrete solution µn
τ obtained by a recursive minimization of the functional

µ 7→ 1
pτ p−1 W p

p (µ,µ
k
τ )+F (µ), k = 0,1, · · · (1.3)

The link between the Wasserstein distance and equations exhibiting the characteristic struc-
ture of (1.2) (in particular the presence of the diffusion coefficient ρ , the fact that ξξξ is a
gradient vector field, and the presence of the q-duality map ξξξ 7→ |ξξξ |q−2 ξξξ ), is well explained
by the dynamic characterization of Wp introduced by BENAMOU-BRENIER [7]: it relies in
the minimization of the “action” integral functional

W p
p (µ0,µ1) = inf

{∫ 1

0

∫
Rd

ρt(x) |vt(x)|p dxdt :

∂tρt +∇ · (ρtvt) = 0 in Rd × (0,1), µ0 = ρ|t=0
L d , µ1 = ρ|t=1

L d
}

.

(1.4)

Towards more general cost functionals. If one is interested to study the more general class
of diffusion equations

∂tρ +∇ ·
(
h(ρ)

∣∣ξξξ ∣∣q−2
ξξξ
)

= 0, ξξξ =−∇

(
δF

δρ

)
in Rd × (0,+∞), (1.5)

obtained from (1.2) replacing the mobility coefficient ρ by an increasing nonlinear function
h(ρ), h : [0,+∞)→ [0,+∞) whose typical examples are the functions h(ρ) = ρα , α ≥ 0, it
is then natural to investigate the properties of the “distance”

W̃ p
p (µ0,µ1) = inf

{∫ 1

0

∫
Rd

h
(
ρt(x)

)
|vt(x)|p dxdt :

∂tρt +∇ · (h(ρt)vt) = 0 in Rd × (0,1), µ0 = ρ|t=0
L d , µ1 = ρ|t=1

L d
}

.

(1.6)
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In the limiting case α = 0, h(ρ)≡ 1, one can easily recognize that (1.6) provides an equiv-
alent description of the homogeneous (dual) Ẇ−1,p(Rd) Sobolev (pseudo)-distance

‖µ0−µ1‖Ẇ−1,p(Rd) := sup
{∫

Rd
ζ d(µ0−µ1) : ζ ∈C1

c (Rd),
∫

Rd
|Dζ |q dx ≤ 1

}
. (1.7)

Thus the distances defined by (1.6) for 0 ≤ α ≤ 1 (we shall see that this is the natural
range for the parameter α) can be considered as a natural “interpolating” family between
the Wasserstein and the (dual) Sobolev ones.

Notice that if one wants to keep the usual transport interpretation given by a “dynamic
cost” to be minimized along the solution of the continuity equation, one can simply introduce
the velocity vector field ṽt := ρ

−1
t h(ρt)vt and minimize the cost∫ 1

0

∫
Rd

ρ f (ρ) |ṽt |p dxdt, where f (ρ) :=
(

ρ

h(ρ)

)p−1
. (1.8)

Therefore, in this model the usual p-energy
∫
Rd ρt |ṽt |p dx of the moving masses ρt with

velocity ṽt results locally modified by a factor f (ρt) depending on the local density of the
mass occupied at the time t. Different non-local models have been considered in [8,4].

In the present paper we try to present a systematic study of these families of intermediate
distances, in view of possible applications, e.g., to the study of evolution equations like (1.5),
the Minimizing movement approach (1.3), and functional inequalities.

Examples: PDE’s as gradient flows. Let us show a few examples evolution equations which
can be formally interpreted as gradient flows of suitable integral functionals in this setting:
the scalar conservation law

∂tρ−∇ ·
(
ρ

α
∇V

)
= 0 corresponds to the linear functional F (ρ) :=

∫
Rd

V (x)ρ dx,

for some smooth potential V : Rd → R and p = 2. Choosing for m > 0

p = 2, F (ρ) = cα,m

∫
ρ

m+1−α dx, cα,m :=
m

(m+1−α)(m−α)
,

one gets the porous media/fast diffusion equation

∂tρ−
m

m−α
∇ ·

(
ρ

α
∇ρ

m−α
)

= ∂tρ−∆ρ
m = 0, (1.9)

and in particular the heat equation for the entropy functional 1
(2−α)(1−α)

∫
ρ2−α dx. Choosing

F (ρ) = cα,m,q

∫
ρ

m+2q−3−α

q−1 dx, cα,m,q :=
m(q−1)q

(m+2q−3−α)(m+q−2−α)
,

one obtains the doubly nonlinear equation

∂tρ−m∇ · (ρm−1|∇ρ|q−2
∇ρ) = 0 (1.10)

and in particular the evolution equation for the q-Laplacian when m = 1. The Dirichlet
integral for p = 2

F (ρ) =
1
2

∫
|∇ρ|2 dx yields ∂tρ +∇ ·

(
ρ

α
∇∆ρ

)
= 0, (1.11)

a thin-film like equation.
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The measure-theoretic point of view: Wasserstein distance. We present now the main points
of our approach (see also, in a different context, [10]). First of all, even if the language of
densities and vector fields (as ρ and v, ṽ in (1.4) or (1.6)) is simpler and suggests inter-
esting interpretations, the natural framework for considering the variational problems (1.4)
and (1.6) is provided by time dependent families of Radon measures in Rd . Following this
point of view, one can replace ρt by a continuous curve t ∈ [0,1] 7→ µt (µt = ρt L

d in the
absolutely continuous case) in the space M+

loc(R
d) of nonnegative Radon measures in Rd

endowed with the usual weak∗ topology induced by the duality with functions in C0
c (Rd).

The (Borel) vector field vt in (1.4) induces a time dependent family of vector measures
ννν t := µtvt � µt . In terms of the couple (µ,ννν) the continuity equation (1.4) reads

∂t µt +∇ ·ννν t = 0 in the sense of distributions in D ′(Rd × (0,1)), (1.12)

and it is now a linear equation. Since vt = dννν t/dµt is the density of ννν t w.r.t. µt , the action
functional which has to be minimized in (1.4) can be written as

Ep,1(µ,ννν) =
∫ 1

0
Φp,1(µt ,ννν t)dt, Φp,1(µ,ννν) :=

∫
Rd

∣∣∣∣ dννν

dµ

∣∣∣∣p

dµ. (1.13)

Notice that in the case of absolutely continuous measures with respect to L d , i.e. µ = ρL d

and ννν = wL d , the functional Φp,1 can also be expressed as

Φp,1(µ,ννν) :=
∫

Rd
φp,1(ρ,w)dL d(x), φp,1(ρ,w) := ρ

∣∣∣∣w
ρ

∣∣∣∣p

. (1.14)

Denoting by CE(0,1) the class of measure-valued distributional solutions µ,ννν of the con-
tinuity equation (1.12), we end up with the equivalent characterization of the Kantorovich-
Rubinstein-Wasserstein distance

W p
p (µ0,µ1) := inf

{
Ep,1(µ,ννν) : (µ,ννν) ∈ CE(0,1), µ|t=0

= µ0, µ|t=1
= µ1

}
. (1.15)

Structural properties and convexity issues. The density function φ = φp,1 : (0,+∞)×Rd →
Rd appearing in (1.14) exhibits some crucial features

1. w 7→ φ(·,w) is symmetric, positive (when w 6= 0), and p-homogeneous with respect
to the vector variable w: this ensures that Wp is symmetric and satisfies the triangular
inequality.

2. φ is jointly convex in (0,+∞)×Rd : this ensures that the functional Φp,1 (and therefore
also E ) defined in (1.13) is lower semicontinuous with respect to the weak∗ convergence
of Radon measures. It is then possible to show that the infimum in (1.15) is attained, as
soon as it is finite (i.e. when there exists at least one curve (µ,ννν) ∈ CE(0,1) with finite
energy E (µ,ννν) joining µ0 to µ1); in particular Wp(µ0,µ1) = 0 yields µ0 = µ1. Moreover,
the distance map (µ0,µ1) 7→ Wp(µ0,µ1) is lower semicontinuous with respect to the
weak∗ convergence, a crucial property in many variational problems involving Wp, as
(1.3).

3. φ is jointly positively 1-homogeneous: this a distinguished feature of the Wasserstein
case, which shows that the functional Φp,1 depends only on µ,ννν and not on the Lebesgue
measure L d , even if it can be represented as in (1.14). In other words, suppose that
µ = ρ̃γ and ννν = w̃γ , where γ is another reference (Radon, nonnegative) measure in Rd .
Then

Φp,1(µ,ννν) =
∫

Rd
φp,1(ρ̃, w̃)dγ. (1.16)
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As we will show in this paper, the 1-homogeneity assumption yields also two “quantita-
tive” properties: if µ0 is a probability measure, then any solution (µ,ννν) of the continuity
equation (1.12) with finite energy E (µ,ννν) < +∞ still preserves the mass µt(Rd) ≡ 1
for every time t ≥ 0 (and it is therefore equivalent to assume this condition in the def-
inition of CE(0,1), see e.g. [3, Chap. 8]). Moreover, if the p-moment of µ0 mp(µ0) :=∫
Rd |x|p dµ0(x) is finite, then Wp(µ0,µ1) < +∞ if and only if mp(µ1) < +∞.

Main definitions. Starting from the above remarks, it is then natural to consider the more
general case when the density functional φ : (0,+∞)×Rd → [0,+∞) still satisfies 1. (p-
homogeneity w.r.t. w) and 2. (convexity), but not 3. (1-homogeneity). Due to this last choice,
the associated integral functional Φ is no more independent of a reference measure γ and it
seems therefore too restrictive to consider only the case of the Lebesgue measure γ = L d .

In the present paper we will thus introduce a further nonnegative reference Radon mea-
sure γ ∈ M+

loc(R
d) and a general convex functional φ : (0,+∞)×Rd → [0,+∞) which is

p-homogeneous w.r.t. its second (vector) variable and non degenerate (i.e. φ(ρ,w) > 0 if
w 6= 0). Particularly interesting examples of density functionals φ , corresponding to (1.6),
are given by

φ(ρ,w) := h(ρ)
∣∣∣∣ w
h(ρ)

∣∣∣∣p

, (1.17)

where h : (0,+∞) → (0,+∞) is an increasing and concave function; the concavity of h
is a necessary and sufficient condition for the convexity of φ in (1.17) (see [29] and §3).
Choosing h(ρ) := ρα , α ∈ (0,1), one obtains

φp,α(ρ,w) := ρ
α

∣∣∣∣ w
ρα

∣∣∣∣p

= ρ
θ−p |w|p, θ := (1−α) p+α ∈ (1, p), (1.18)

which is jointly θ -homogeneous in (ρ,w).
In the case, e.g., when α < 1 in (1.18) or more generally limρ↑∞ h(ρ)/ρ = 0, the reces-

sion function of φ satisfies

φ
∞(ρ,w) = lim

λ↑+∞

λ
−1

φ(λρ,λw) = +∞ if ρ,w 6= 0, (1.19)

so that the associated integral functional reads as

Φ(µ,ννν |γ) :=
∫

Rd
φ(ρ,w)dγ µ = ργ + µ

⊥, ννν = wγ � γ, (1.20)

extended to +∞ when ννν is not absolutely continuous with respect to γ or supp(µ) 6⊂ supp(γ).
Notice that only the density ρ of the γ-absolutely continuous part of µ enters in the func-
tional, but the functional could be finite even if µ has a singular part µ⊥. This choice is
crucial in order to obtain a lower semicontinuous functional w.r.t. weak∗ convergence of
measures. The associated (φ ,γ)-Wasserstein distance is therefore

W
p
φ ,γ(µ0,µ1) := inf

{
Eφ ,γ(µ,ννν) : (µ,ννν) ∈ CE(0,1), µ|t=0

= µ0, µ|t=1
= µ1

}
, (1.21)

where the energy Eφ ,γ of a curve (µ,ννν) ∈ CE(0,1) is

Eφ ,γ(µ,ννν) :=
∫ 1

0
Φ(µt ,ννν t |γ)dt. (1.22)
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The most important case associated to the functional (1.18) deserves the distinguished nota-
tion

Wp,α;γ(·, ·) := Wφp,α ,γ(·, ·). (1.23)

The limiting case α = θ = 1 corresponds to the Lp-Wasserstein distance, the Sobolev Ẇ−1,p
γ

corresponds to α = 0, θ = p. The choice of γ allows for a great flexibility: besides the
Lebesgue measure in Rd , we quote

– γ := L d |Ω , Ω being an open subset of Rd . The measures are then supported in Ω̄ and,
with the choice (1.17) and v = w/h(ρ), (1.12) is a weak formulation of the continuity
equation (n∂Ω being the exterior unit normal to ∂Ω )

∂tρt +∇ ·
(
h(ρt)vt

)
= 0 in Ω × (0,1), vt ·n∂Ω = 0 on ∂Ω . (1.24)

This choice is useful for studying equations (1.9) (see [11]), (1.10), (1.11) in bounded
domains with Neumann boundary conditions.

– γ := e−V L d for some C1 potential V : Rd →R. With the choice (1.17) and v = w/h(ρ)
(1.12) is a weak formulation of the equation

∂tρt +∇ ·
(
h(ρt)vt

)
−h(ρt)∇V ·vt = 0 in Rd × (0,1). (1.25)

When h(ρ) = ρα , p = 2, the gradient flow of F (µ) := 1
(2−α)(1−α)

∫
Rd ρ2−α dγ is the

Kolmogorov-Fokker-Planck equations [15]

∂t µ−∆ µ−∇ · (µ∇V ) = 0, ∂tρ−∆ρ +∇V ·∇ρ = 0,

which in the Wasserstein framework is generated by the logarithmic entropy ([19,3,5]).
– γ := H k|M, M being a smooth k-dimensional manifold embedded in Rd with the Rie-

mannian metric induced by the Euclidean distance; H k denotes the k-dimensional Haus-
dorff measure. (1.12) is a weak formulation of

∂tρt +divM
(
h(ρ)vt

)
= 0 on M× (0,1). (1.26)

Thanks to Nash embedding theorems [22,23], the study of the continuity equation and of
the weighted Wasserstein distances on arbitrary Riemannian manifolds can be reduced
to this case, which could be therefore applied to study equations (1.9), (1.10), (1.11) on
Riemannian manifolds.

Main results. Let us now summarize some of the main properties of Wp,α;γ(·, ·) we will
prove in the last section of the present paper. In order to deal with distances (instead of
pseudo-distances, possibly assuming the value +∞), for a nonnegative Radon measure σ

we will denote by Mp,α;γ [σ ] the set of all measures µ with Wp,α;γ(µ,σ) < +∞ endowed
with the Wp,α;γ -distance.

1. Mp,α;γ [σ ] is a complete metric space (Theorem 5.7).
2. Wp,α;γ induces a stronger convergence than the usual weak∗ one (Theorem 5.5).
3. Bounded sets in Mp,α;γ [σ ] are weakly∗ relatively compact (Theorem 5.5).
4. The map (µ0,µ1) 7→ Wp,α;γ(µ0,µ1) is weakly∗ lower semicontinuous (Theorem 5.6),

convex (Theorem 5.11), and subadditive (Theorem 5.12). It enjoys some useful mono-
tonicity properties with respect to γ (Proposition 5.14) and to convolution (Theorem
5.15).
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5. The infimum in (1.15) is attained, Mp,α;γ [σ ] is a geodesic space (Theorem 5.4), and
constant speed geodesics connecting two measures µ0,µ1 are unique (Theorem 5.11).

6. If ∫
|x|≥1

|x|−p/(θ−1) dγ(x) < +∞ θ = (1−α)p+α,
p

θ −1
=

q
1−α

, (1.27)

and σ ∈P(Rd), then Mp,α;γ [σ ]⊂P(Rd) (Theorem 5.8). If moreover γ satisfies stronger
summability assumptions, then the distances Wp,α;γ provide a control of various mo-
ments of the measures (Theorem 5.9). Comparison results with Wp and Ẇ−1,p are also
discussed in §5.4.

7. Absolutely continuous curves w.r.t. Wp,α;γ can be characterized in completely analogous
ways as in the Wasserstein case (§5.3).

8. In the case γ = L d the functional

Ψα(µ|γ) :=
1

(2−α)(1−α)

∫
Rd

ρ
2−α dx µ = ρL d �L d , (1.28)

is geodesically convex w.r.t. the distance W2,α;L d and the heat equation in Rd is its
gradient flow, as formally suggested by (1.9) (§5.5: we prove this property in the case
α > 1−2/d, when P(Rd) is complete w.r.t. W2,α;L d .)

Plan of the paper. Section 2 recalls some basic notation and preliminary facts about weak∗

convergence and integral functionals of Radon measures; 2.3 recalls a simple duality result
in convex analysis, which plays a crucial role in the analysis of the integrand φ(ρ,w).

The third section is devoted to the class of admissible action integral functionals Φ like
(1.20) and their density φ . Starting from a few basic structural assumptions on φ we deduce
its main properties and we present some important examples in Section 3.2. The correspond-
ing properties of Φ (in particular, lower semicontinuity and relaxation with respect to weak∗

convergence, monotonicity, etc) are considered in Section 3.3.
Section 4 is devoted to the study of measure-valued solutions of the continuity equation

(1.12). It starts with some preliminary basic results, which extend the theory presented in
[3] to the case of general Radon measures: this extension is motivated by the fact that the
class of probability measures (and therefore with finite mass) is too restrictive to study the
distances Wp,α;γ , in particular when γ(Rd) = +∞ as in the case of the Lebesgue measure.
We shall see (Remark 5.27) that P(Rd) with the distance Wp,α;L d is not complete if d >
p/(θ−1) = q/(1−α). We consider in Section 4.2 the class of solutions of (1.12) with finite
energy Eφ ,γ (1.22), deriving all basic estimates to control their mass and momentum.

As we briefly showed, Section 5 contains all main results of the paper concerning the
modified Wasserstein distances.

2 Notation and preliminaries

Here is a list of the main notation used throughout the paper:

BR The open ball (in some Rh) of radius R centered at 0
B(Rh) (resp. Bc(Rh)) Borel subsets of Rh (resp. with compact closure)
P(Rh) Borel probability measures in Rh

M+(Rh) (resp. M+
loc(R

h)) Finite (resp. Radon), nonnegative Borel measures on Rh

P(Rh) Borel probability measures in Rh
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M(Rh;Rm) Rm-valued Borel measures with finite variation
Mloc(Rh;Rm) Rm-valued Radon measures
‖µµµ‖ Total variation of µµµ ∈Mloc(Rh;Rm), see (2.2)
C0

b(Rh) Continuous and bounded real functions
mp(µ) p-moment

∫
Rd |x|p dµ of µ ∈M+(Rh)

ψ∞ Recession function of ψ , see (2.4)
Ψ(µµµ|γ), Φ(µ,ννν |γ) Integral functionals on measures, see 2.2 and 3.3
µ(ζ ), 〈µ,ζ 〉, 〈µµµ,ζζζ 〉 the integrals

∫
Rd ζ dµ ,

∫
Rd ζζζ ·dµµµ

CE(0,T ),CEφ ,γ(0,T ), Classes of measure-valued solutions of the continuity
CE(0,T ; µ0 → µ1) equation, see Def. 4.2 and Sec. 4.2.

2.1 Measures and weak convergence

We recall some basic notation and properties of weak convergence of (vector) radon mea-
sures (see e.g. [2]). A Radon vector measure in Mloc(Rh;Rm) is a Rm-valued map µµµ :
Bc(Rh) → Rm defined on the Borel sets of Rh with compact closure. We identify µµµ ∈
Mloc(Rh;Rm) with a vector (µµµ1,µµµ2, · · · ,µµµm) of m measures in Mloc(Rh): its integral with a
continuous vector valued function with compact support ζζζ ∈C0

c (Rh;Rm) is given by

〈µµµ,ζζζ 〉 :=
∫

Rh
ζζζ · dµµµ =

m

∑
i=1

∫
Rh

ζζζ
i(x)dµµµ

i(x). (2.1)

It is well known that Mloc(Rh;Rm) can be identified with the dual of C0
c (Rh;Rm) by the

above duality pairing and it is therefore endowed with the corresponding of weak∗ topology.
If ‖ · ‖ is a norm in Rd with dual ‖ · ‖∗ (in particular the euclidean norm | · |) for every open
subset A⊂ Rh we have

‖µµµ‖(A) = sup
{∫

Rh
ζζζ · dµµµ : supp(ζζζ )⊂ A, ‖ζζζ (x)‖∗ ≤ 1 ∀x ∈ Rh

}
. (2.2)

‖µµµ‖ is in fact a Radon positive measure in M+
loc(R

h) and µµµ admits the polar decomposition
µµµ = w‖µµµ‖ where the Borel vector field w belongs to L1

loc(‖µµµ‖;Rm). We thus have

〈µµµ,ζζζ 〉=
∫

Rh
ζζζ · dµµµ =

∫
Rh

ζζζ ·wd‖µµµ‖. (2.3)

If (µµµk)k∈N is a sequence in Mloc(Rh;Rm) with supn ‖µµµ‖(BR) < +∞ for every open ball
BR, then it is possible to extract a subsequence µµµkn

weakly∗ convergent to µµµ ∈M(Rh;Rm),
whose total variation ‖µµµkn

‖ weakly∗ converges to λ ∈M+(Rh) with ‖µµµ‖ ≤ λ .

2.2 Convex functionals defined on Radon measures

Let ψ : Rm → [0,+∞] be a convex and lower semicontinuous function with ψ(0) = 0, whose
proper domain D(ψ) := {x∈Rm : ψ(x) < +∞} has non empty interior. Its recession function
(see e.g. [2]) ψ∞ : Rm → [0,+∞] is defined as

ψ
∞(y) := lim

r→+∞

ψ(ry)
r

= sup
r>0

ψ(ry)
r

. (2.4)
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ψ∞ is still convex, lower semicontinuous, and positively 1-homogeneous, so that its proper
domain D(ψ∞) is a convex cone always containing 0. We say that

ψ has a superlinear growth if ψ
∞(y) = ∞ for every y 6= 0: D(ψ∞) = {0},

ψ has a sublinear growth if ψ
∞(y)≡ 0 for every y ∈ Rm.

(2.5)

Let now γ ∈M+
loc(R

h) and µµµ ∈Mloc(Rh;Rm) with supp(µµµ)⊂ supp(γ); the Lebesgue decom-
position of µµµ w.r.t. γ reads µµµ =ϑϑϑγ +µµµ⊥, where ϑϑϑ = dµµµ/dγ . We can introduce a nonnegative
Radon measure σ ∈M+

loc(R
h) such that µµµ⊥ = ϑϑϑ

⊥
σ � σ , e.g. σ = |µµµ⊥| and we set

Ψ
a(µµµ|γ) :=

∫
Rh

ψ(ϑϑϑ(x))dγ(x), Ψ
∞(µµµ|γ) :=

∫
Rh

ψ
∞(ϑϑϑ⊥(y))dσ(y), (2.6)

and finally

Ψ(µµµ|γ) := Ψ
a(µµµ|γ)+Ψ

∞(µµµ|γ); Ψ
∞(µµµ|γ) = +∞ if supp(µµµ) 6⊂ supp(γ). (2.7)

Since ψ∞ is 1-homogeneous, the definition of Ψ ∞ depends on γ only through its support and
it is independent of the particular choice of σ in (2.6). When ψ has a superlinear growth then
the functional Ψ is finite iff µµµ � γ and Ψ a(µµµ|γ) is finite; in this case Ψ(µ|γ) = Ψ a(µµµ|γ).

Theorem 2.1 (L.s.c. and relaxation of integral functionals of measures [1,2]) Let us con-
sider two sequences γn ∈M+

loc(R
h),µµµn ∈Mloc(Rh;Rm) weakly∗ converging to γ ∈M+

loc(R
h)

and µµµ ∈Mloc(Rh;Rm) respectively. We have

liminf
n↑+∞

Ψ(µµµn|γn)≥Ψ(µµµ|γ). (2.8)

Let conversely µµµ,γ be such that Ψ(µµµ|γ) < +∞. Then there exists a sequence µµµn = ϑϑϑ nγ � γ

weakly∗ converging to µµµ such that

lim
n↑+∞

Ψ
a(µµµn|γ) = lim

n↑+∞

∫
Rh

ψ(ϑϑϑ n(x))dγ(x) = Ψ(µµµ|γ). (2.9)

Theorem 2.2 (Montonicity w.r.t. γ) If γ1 ≤ γ2 then

Ψ(µµµ|γ2)≤Ψ(µµµ|γ1). (2.10)

Proof Thanks to Theorem 2.1, it is sufficient to prove the above inequality for µµµ � γ1. Since
γ1 = θγ2, with density θ ≤ 1 γ2-a.e., we have µµµ = ϑϑϑ

i
γ i with ϑϑϑ

2 = θ ϑϑϑ
1, and therefore∫

Rd
ψ(ϑϑϑ 1)dγ1 =

∫
Rd

ψ(θ−1
ϑϑϑ 2)θ dγ2 ≥

∫
Rd

ψ(ϑϑϑ 2)dγ2, (2.11)

where we used the property θψ(θ−1x)≥ ψ(x) for θ ≤ 1, being ψ(0) = 0. ut

Theorem 2.3 (Monotonicity with respect to convolution) If k ∈C∞
c (Rd) is a convolution

kernel satisfying k(x)≥ 0,
∫
Rd k(x)dx = 1, then

Ψ(µµµ ∗ k|γ ∗ k)≤Ψ(µµµ|γ). (2.12)

The proof follows the same argument of [3, Lemma 8.1.10], by observing that the map
(x,y) 7→ xψ(y/x) is convex and positively 1-homogeneous in (0,+∞)×Rd .
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2.3 A duality result in convex analysis

Let X ,Y be Banach spaces and let A be an open convex subset of X . We consider a convex
(and a fortiori continuous) function φ : A×Y → R and its partial Legendre transform

φ̃(x,y∗) := sup
y∈Y

〈y∗,y〉−φ(x,y) ∈ (−∞,+∞], ∀x ∈ A, y∗ ∈ Y ∗. (2.13)

The following duality result is well known in the framework of minimax problems [29].

Theorem 2.4 φ̃ is a l.s.c. function and there exists a convex set Y ∗
o ⊂ Y ∗ such that

φ̃(x,y∗) < +∞ ⇔ y∗ ∈ Y ∗
o , (2.14)

so that φ̃(·,y∗)≡+∞ for every y∗ ∈ Y ∗ \Y ∗
o and φ admits the dual representation formula

φ(x,y) = sup
y∗∈Y ∗o

〈y,y∗〉− φ̃(x,y∗) ∀x ∈ A, y ∈ Y. (2.15)

For every y∗ ∈ Y ∗
o we have

the map x 7→ φ̃(x,y∗) is concave (and continuous) in A. (2.16)

Conversely, a function φ : A×Y →R is convex if it admits the dual representation (2.15) for
a function φ̃ satisfying (2.16).

Proof Let us first show that (2.16) holds. For a fixed y∗ ∈ Y ∗, x0,x1 > 0, θ ∈ [0,1], and
arbitrary yi ∈ Y , we get

φ̃((1−ϑ)x0 +ϑx1,y∗)≥ 〈y∗,(1−ϑ)y0 +ϑy1〉−φ((1−ϑ)x0 +ϑx1,(1−ϑ)y0 +ϑy1)

≥ (1−ϑ)
(
〈y∗,y0〉−φ(x0,y0)

)
+ϑ

(
〈y∗,y1〉−φ(x1,y1)

)
.

Taking the supremum with respect to y0,y1 we eventually get

φ̃((1−ϑ)x0 +ϑx1,y∗)≥ (1−ϑ)φ̃(x0,y∗)+ϑφ̃(x1,y∗) (2.17)

and we conclude that φ̃(·,y∗) is concave. In particular, if it takes the value +∞ at some point
it should be identically +∞ so that (2.14) holds.

The converse implication is even easier, since (2.15) exhibits φ as a supremum of con-
tinuous and convex functions (jointly in x ∈ A,y ∈ Y ). ut

3 Action functionals

The aim of this section is to study some property of integral functionals of the type

Φ
a(µ,ννν |γ) :=

∫
Rd

φ(ρ,w)dγ, µ = ργ ∈M+
loc(R

d), ννν = wγ ∈Mloc(Rd ;Rd) (3.1)

and their relaxation, when φ satisfies suitable convexity and homogeneity properties.
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3.1 Action density functions

Let us therefore consider a nonnegative density function φ : (0,+∞)×Rd → [0,+∞) and an
exponent p ∈ (1,+∞) satisfying the following assumptions

φ is convex and (a fortiori) continuous, (3.2a)

w 7→ φ(·,w) is homogeneous of degree p, i.e.

φ(ρ,λw) = |λ |pφ(ρ,w) ∀ρ > 0, λ ∈ R, w ∈ Rd ,
(3.2b)

∃ρ0 > 0 : φ(ρ0, ·) is non degenerate, i.e. φ(ρ0,w) > 0 ∀w ∈ Rd \{0}. (3.2c)

Let q = p/(p− 1) ∈ (1,+∞) be the usual conjugate exponent of p. We denote by φ̃ :
(0,+∞)×Rd → (−∞,+∞] the partial Legendre transform

1
q

φ̃(ρ,z) := sup
w∈Rd

z ·w− 1
p

φ(ρ,w) ∀ρ > 0,z ∈ Rd . (3.2d)

We collect some useful properties of such functions in the following result.

Theorem 3.1 Let φ : (0,+∞)×Rd → Rd satisfy (3.2a,b,c). Then

1. For every ρ > 0 the function w 7→ φ(ρ,w)1/p is a norm of Rd whose dual norm is given
by z 7→ φ̃(ρ,z)1/q, i.e.

φ̃(ρ,z)1/q = sup
w6=0

w · z
φ(ρ,w)1/p , φ(ρ,w)1/p = sup

z6=0

w · z
φ̃(ρ,z)1/q

. (3.3)

In particular φ̃(·,z) is q-homogeneous with respect to z.
2. The marginal conjugate function φ̃ takes its values in [0,+∞) and for every z ∈ Rd

the map ρ 7→ φ̃(ρ,z) is concave and non decreasing in (0,+∞). (3.4)

In particular, for every w ∈ Rd

the map ρ 7→ φ(ρ,w) is convex and non increasing in (0,+∞). (3.5)

3. There exist constants a,b≥ 0 such that

φ̃(ρ,z)≤
(
a+bρ

)
|z|q, φ(ρ,z)≥

(
a+bρ

)1−p|w|p ∀ρ > 0, z,w ∈ Rd . (3.6)

4. For every closed interval [ρ0,ρ1]⊂ (0,+∞) there exists a constant C = Cρ0,ρ1 > 0 such
that for every ρ ∈ [ρ0,ρ1]

C−1|w|p ≤ φ(ρ,w)≤C|w|p, C−1|z|q ≤ φ̃(ρ,z)≤C|z|q ∀w,z ∈ Rd . (3.7)

Equivalently, a function φ satisfies (3.2a,b,c) if and only if it admits the dual representation
formula

1
p

φ(ρ,w) = sup
z∈Rd

w · z− 1
q

φ̃(ρ,z) ∀ρ > 0,w ∈ Rd , (3.8)

where φ̃ : (0,+∞)×Rd → (0,+∞) is a nonnegative function which is convex and q-homogeneous
w.r.t. z and concave with respect to ρ .
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Proof Let us first assume that φ satisfies (3.2a,b,c). The function w 7→ φ(ρ,w)1/p is 1-
homogeneous and its sublevels are convex, i.e. it is the gauge function of a (symmetric)
convex set and therefore it is a (semi)-norm. The concavity of φ̃ follows from Theorem
2.4; taking w = 0 in (3.2d), we easily get that φ̃ is nonnegative; (3.2c) yields, for a suitable
constant c0 > 0,

φ(ρ0,w)≥ c0|w|p ∀w ∈ Rd , so that φ̃(ρ0,z)≤ c0|z|q < +∞ ∀z ∈ Rd . (3.9)

Still applying Theorem 2.4, we obtain that ρ 7→ φ̃(ρ,z) is finite, strictly positive and nonde-
creasing in the interval (0,+∞). Since φ̃(ρ,0) = 0 we easily get

φ̃(ρ,z)≤ φ̃(ρ0,z)≤ c0|z|q ∀z ∈ Rd , ρ ∈ (0,ρ0); (3.10)

φ̃(ρ,z)≤ ρ

ρ 0
φ̃(ρ0,z)≤

c0

ρ0
ρ|z|q ∀z ∈ Rd , ρ ∈ (ρ0,+∞). (3.11)

Combining the last two bounds we get (3.6). (3.7) follows by homogeneity and by the fact
that the continuous map φ has a maximum and a strictly positive minimum on the compact
set [ρ0,ρ1]×{w ∈ Rd : |w|= 1}.

The final assertion concerning (3.8) still follows by Theorem 2.4. ut

3.2 Examples

Example 3.2 Our main example is provided by the function

φ2,α(ρ,w) =
|w|2

ρα
, φ̃2,α(ρ,z) := ρ

α |z|2, 0≤ α ≤ 1. (3.12)

Observe that φ2,α is positively θ -homogeneous, θ := 2−α , i.e.

φ2,α(λρ,λw) = λ
θ

φ(ρ,w) ∀λ ,ρ > 0, w ∈ Rd . (3.13)

It can be considered as a family of interpolating densities between the case α = 0, when

φ2,0(ρ,w) := |w|2, (3.14)

and α = 1, corresponding to the 1-homogeneous functional

φ2,1(ρ,w) :=
|w|2

ρ
. (3.15)

Example 3.3 More generally, we introduce a concave function h : (0,+∞)→ (0,+∞), which
is a fortiori continuous and nondecreasing, and we consider the density function

φ(ρ,w) :=
|w|2

h(ρ)
, φ̃(ρ,z) := h(ρ)|w|2. (3.16)

If h is of class C2, we can express the concavity condition in terms of the function g(ρ) :=
1/h(ρ) as

h is concave ⇔ g′′(ρ)g(ρ)≥ 2
(
g′(ρ)

)2 ∀ρ > 0, (3.17)

which is related to a condition introduced in [6, Section 2.2, (2.12c)] to study entropy func-
tionals.
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Example 3.4 We consider matrix-valued functions H,G : (0,+∞)→Md×d such that

H(ρ),G(ρ) are symmetric and positive definite, H(ρ) = G−1(ρ) ∀ρ > 0. (3.18)

They induce the action density φ : (0,+∞)×Rd → [0,+∞) defined as

φ(ρ,w) := 〈G(ρ)w,w〉=
〈
H−1(ρ)w,w

〉
. (3.19)

Taking into account Theorem 3.1, φ satisfies conditions (3.2) if and only if the maps

ρ 7→ 〈H(ρ)w,w〉 are concave in (0,+∞) ∀w ∈ Rd . (3.20)

Equivalently,

H((1−ϑ)ρ0 +ϑρ1)≥ (1−ϑ)H(ρ0)+ϑH(ρ1) as quadratic forms. (3.21)

When G is of class C2 this is also equivalent to ask that

G′′(ρ)≥ 2G′(ρ)H(ρ)G′(ρ) ∀ρ > 0, (3.22)

in the sense of the associated quadratic forms. In fact, differentiating H = G−1 with respect
to ρ we get

H′ =−HG′H, H′′ =−HG′′H+2HG′HG′H,

so that

d2

d2ρ
〈H(ρ)w,w〉=−

〈
G′′w̃, w̃

〉
+2

〈
G′HG′w̃, w̃

〉
where w̃ := Hw;

we eventually recall that H(ρ) is invertible for every ρ > 0.

Example 3.5 Let ‖·‖ be any norm in Rd with dual norm ‖·‖∗, and let h : (0,+∞)→ (0,+∞)
be a concave (continuous, nondecreasing) function as in Example 3.3. We can thus consider

φ(ρ,w) := h(ρ)
∥∥∥∥ w

h(ρ)

∥∥∥∥p

, φ̃(ρ,z) := h(ρ)‖z‖q
∗. (3.23)

See [20,21] for a in-depth study of this class of functions.

Example 3.6 ((α-θ)-homogeneous functionals) In the particular case h(ρ) := ρα the func-
tional φ of the previous example is jointly positively θ -homogeneous, with θ := α +(1−
α)p. This is in fact the most general example of θ -homogeneous functional, since if φ is
θ -positively homogeneous, 1≤ θ ≤ p, then

φ(ρ,w) = ρ
θ

φ(1,w/ρ) = ρ
θ−p

φ(1,w) = ρ
α‖w/ρ

α‖p, α =
p−θ

p−1
, (3.24)

where ‖w‖ := φ(1,w)1/p is a norm in Rd by Theorem 3.1. The dual marginal density φ̃ in
this case takes the form

φ̃(ρ,z) = ρ
α‖z‖q

∗ ∀ρ > 0, z ∈ Rd , (3.25)

and it is q+α-homogeneous. Notice that α and θ are related by

θ

p
+

α

q
= 1. (3.26)

In the particular case when ‖ · ‖= ‖ · ‖∗ = | · | is the Euclidean norm, we set as in (3.16)

φp,α(ρ,w) := ρ
α

∣∣∣∣ w
ρα

∣∣∣∣p

, φ̃q,α(ρ,z) := ρ
α |z|q, 0≤ α ≤ 1. (3.27)
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3.3 The action functional on measures

Lower semicontinuity envelope and recession function. Thanks to the monotonicity prop-
erty (3.5), we can extend φ also for ρ = 0 by setting for every w ∈ Rd

φ(0,w) = sup
ρ>0

φ(ρ,w) = lim
ρ↓0

φ(ρ,w); in particular

{
φ(0,0) = 0,

φ(0,w) > 0 if w 6= 0.
(3.28)

When ρ < 0 we simply set φ(ρ,w) = +∞, observing that this extension is lower semicon-
tinuous in R×Rd . It is not difficult to check that φ̃(0, ·) satisfies an analogous formula

φ̃(0,z) = sup
w∈Rd

z ·w−φ(0,w) = inf
ρ>0

φ̃(ρ,z) = lim
ρ↓0

φ̃(ρ,z) ∀z ∈ Rd . (3.29)

Observe that, as in the (α-θ)-homogeneous case of Example 3.6 with α > 0,

φ̃(0,z)≡ 0 ⇒ φ(0,w) =

{
+∞ if w 6= 0
0 if w = 0.

(3.30)

As in (2.4), we also introduce the recession functional

φ
∞(ρ,w) = sup

λ>0

1
λ

φ(λρ,λw) = lim
λ↑+∞

1
λ

φ(λρ,λw) = lim
λ↑+∞

λ
p−1

φ(λρ,w). (3.31)

φ ∞ is still convex, p-homogeneous w.r.t. w, and l.s.c. with values in [0,+∞]; moreover, it is
1-homogeneous so that it can be expressed as

φ
∞(ρ,w) =

{
ϕ∞(w)
ρ p−1 = ρ ϕ∞(w/ρ) if ρ 6= 0,

+∞ if ρ = 0 and w 6= 0,
(3.32)

where ϕ∞ : Rd → [0,+∞] is a convex and p-homogeneous function which is non degenerate,
i.e. ϕ∞(w) > 0 if w 6= 0. ϕ∞ admits a dual representation, based on

ϕ̃
∞(z) := inf

λ>0

1
λ

φ̃(λ ,z) = lim
λ↑+∞

1
λ

φ̃(λρ,z). (3.33)

ϕ̃∞ is finite, convex, nonnegative, and q-homogeneous, so that ϕ̃∞(z)1/q is a seminorm,
which does not vanish at z∈Rd if and only if ρ 7→ φ̃(ρ,z) has a linear growth when ρ ↑+∞.
It is easy to check that

ϕ
∞(w)1/p = sup

{
w · z : ϕ̃

∞(z)≤ 1
}

. (3.34)

In the case φ̃ has a sublinear growth w.r.t. ρ , as for (α-θ)-homogeneous functionals with
α < 1 (see Example 3.6), we have in particular

when ϕ̃
∞(z)≡ 0, ϕ

∞(w) =

{
+∞ if w 6= 0,

0 if w = 0.
(3.35)
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The action functional. Let γ,µ ∈ M+
loc(R

d) be nonnegative Radon measures and let ννν ∈
Mloc(Rd ;Rd) be a vector Radon measure on Rd . We assume that supp(µ),supp(ννν)⊂ supp(γ),
and we write their Lebesgue decomposition with respect to the reference measure γ

µ := ργ + µ
⊥, ννν := wγ +ννν

⊥. (3.36)

We can always introduce a nonnegative Radon measure σ ∈M+(Ω) such that µ⊥ = ρ⊥σ �
σ ,ννν⊥ = w⊥σ � σ , e.g. σ := µ⊥+ |ννν⊥|. We can thus define the action functional

Φ(µ,ννν |γ) = Φ
a(µ,ννν |γ)+Φ

∞(µ,ννν |γ) :=
∫

Rd
φ(ρ,w)dγ +

∫
Rd

φ
∞(ρ⊥,w⊥)dσ . (3.37)

Observe that, being φ ∞ 1-homogeneous, this definition is independent of σ . We will also
use a localized version of Φ : if B ∈B(Rd) we set

Φ(µ,ννν |γ,B) :=
∫

B
φ(ρ,w)dγ +

∫
B

φ
∞(ρ⊥,w⊥)dσ . (3.38)

Lemma 3.7 Let µ = ργ + µ⊥,ννν = wγ +ννν⊥ be such that Φ(µ,ννν |γ) is finite. Then ννν⊥ =
w⊥µ⊥� µ⊥ and

Φ
∞(µ,ννν |γ) =

∫
Rd

ϕ
∞(w⊥)dµ

⊥, Φ(µ,ννν |γ) =
∫

Rd
φ(ρ,w)dγ +

∫
Rd

ϕ
∞(w⊥)dµ

⊥. (3.39)

Moreover, if φ̃ has a sublinear growth with respect to ρ (e.g. in the (α-θ)-homogeneous
case of Example 3.6, with α < 1) then ϕ̃∞(·)≡ 0 and

Φ(µ,ννν) < +∞ ⇒ ννν = w · γ � γ, Φ(µ,ννν) = Φ
a(µ,ννν) =

∫
Rd

φ(ρ,w)dγ, (3.40)

independently on the singular part µ⊥.

Proof Let σ̃ ∈M+
loc(R

d) any measure such that µ⊥� σ̃ , |ννν⊥| � σ̃ so that Φ∞(µ,ννν |γ) can
be represented as

Φ
∞(µ,ννν |γ) =

∫
Rd

φ
∞(ρ̃⊥, w̃⊥)dσ̃ , ρ̃

⊥ =
dµ⊥

dσ̃
, w̃⊥ =

dννν⊥

dσ̃
.

When Φ∞(µ,ννν |γ) < +∞, (3.32) yields w̃⊥(x) = 0 for σ̃ -a.e. x such that ρ̃⊥(x) = 0. It follows
that

Φ(µ,ννν) < +∞ ⇒ ννν
⊥� µ

⊥, (3.41)
so that one can always choose σ̃ = µ⊥, ρ̃⊥ = 1, and decompose ννν⊥ as w⊥µ⊥ obtaining
(3.39). (3.40) is then an immediate consequence of (3.35). ut
Remark 3.8 When φ̃(0,z) ≡ 0 (e.g. in the (α-θ)-homogeneous case of Example 3.6, with
α > 0) the density w of ννν w.r.t. γ vanishes if ρ vanishes, i.e.

Φ(µ,ννν |γ) < +∞ ⇒ w(x) = 0 if ρ(x) = 0, for γ-a.e. x ∈ Rd . (3.42)

In particular νννa is absolutely continuous also with respect to µ .

Applying Theorem 2.1 we immediately get

Lemma 3.9 (Lower semicontinuity and approximation of the action functional) The
action functional is lower semicontinuous with respect to weak∗ convergence of measures,
i.e. if

µn⇀
∗
µ, γn⇀

∗
γ weakly∗ in M+

loc(R
d), νννn⇀

∗
ννν in Mloc(Rd ;Rd) as n ↑+∞,

then
liminf

n↑∞

Φ(µn,νννn|γn)≥Φ(µ,ννν |γ).
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Equiintegrability estimate. We collect in this section some basic estimates on φ which will
turn to be useful in the sequel. Let us first introduce the notation

‖z‖∗ := φ̃(1,z)1/q, ‖w‖ := φ(1,w)1/p, η
−1|z| ≤ ‖z‖∗ ≤ η |z|, (3.43)

Γφ :=
{

(a,b) : sup
‖z‖∗=1

φ̃(ρ,z)≤ a+bρ

}
, h(ρ) := inf

{
a+bρ : (a,b) ∈ Γφ

}
, (3.44)

H(s,ρ) := sh(ρ/s) = inf
{

as+bρ : (a,b) ∈ Γφ

}
. (3.45)

Observe that h is a concave increasing function defined in [0,+∞), satisfying, in the homo-
geneous case h(ρ) = h(ρ) = ρα . It provides the bounds

φ̃(ρ,z)≤ h(ρ)‖z‖q
∗, ‖w‖ ≤ h(ρ)1/q

φ(ρ,w)1/p,

ϕ̃
∞(z)≤ h∞‖z‖q

∗, ‖w‖ ≤
(
h∞

)1/q
ϕ

∞(w)1/p, if h∞ := lim
λ↑+∞

λ
−1h(λ ) > 0.

(3.46)

Observe that when h∞ = 0 then ϕ̃∞ ≡ 0 and ϕ∞(w) is given by (3.35).

Proposition 3.10 (Integrability estimates) Let ζ be a nonnegative Borel function such that

µ(ζ q) :=
∫

Rd
ζ

q dµ and γ(ζ q) :=
∫

Rd
ζ

q dγ are finite,

and let Z :=
{

x ∈ Rd : ζ (x) > 0
}

. If Φ(µ,ννν |γ) < +∞ we have

∫
Rd

ζ (x)d‖ννν‖(x)≤Φ
1/p(

µ,ννν |γ,Z
)

H1/q(
γ(ζ q),µ(ζ q)

)
. (3.47)

In particular, for every Borel set A ∈B(Rd) we have

‖ννν‖(A)≤Φ
1/p(

µ,ννν |γ,A
)

H1/q(γ(A),µ(A)
)
. (3.48)

Proof It is sufficient to prove (3.47). Observe that if (a,b) ∈ Γφ then a ≥ 0, and h∞ ≤ b so
that by (3.46) we have

∫
Rd

ζ (x)d‖ννν‖(x)≤
∫

Z
ζ‖w‖dγ +

∫
Z

ζ‖w⊥‖dµ
⊥

≤
(∫

Z
φ(ρ,w)dγ

)1/p(∫
Z

ζ
qh(ρ)dγ

)1/q
+

(∫
Z

ϕ
∞(w⊥)dµ

⊥
)1/p(

h∞

∫
Z

ζ
q dµ

⊥
)1/q

≤
(

Φ(µ,ννν |γ,Z)
)1/p(

a
∫

Rd
ζ

q dγ +b
∫

Rd
ζ

q dµ

)1/q
,

Taking the infimum of the last term over all the couples (a,b) ∈ Γφ we obtain (3.48). ut
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4 Measure valued solutions of the continuity equation in Rd

In this section we collect some results on the continuity equation

∂t µt +∇ ·ννν t = 0 in Rd × (0,T ), (4.1)

which we will need in the sequel. Here µt ,ννν t are Borel families of measures (see e.g. [3]) in
M+

loc(R
d) and Mloc(Rd ;Rd) respectively, defined for t in the open interval (0,T ), such that∫ T

0
µt(BR)dt < +∞, VR :=

∫ T

0
|ννν t |(BR)dt < +∞ ∀R > 0, (4.2)

and we suppose that (4.1) holds in the sense of distributions, i.e.∫ T

0

∫
Rd

∂tζ (x, t)dµt(x)dt +
∫ T

0

∫
Rd

∇xζ (x, t) · dννν t(x)dt = 0 (4.3)

for every ζ ∈C1
c (Rd × (0,T )). Thanks to the disintegration theorem [14, 4, III-70], we can

identify (ννν t)t∈(0,T ) with the measure ννν =
∫ T

0 ννν t dt ∈ Mloc(Rd × (0,T );Rd) defined by the
formula

〈ννν ,ζζζ 〉=
∫ T

0

(∫
Rd

ζζζ (x, t) ·dννν t(x)
)

dt ∀ζζζ ∈C0
c (Rd × (0,T );Rd). (4.4)

4.1 Preliminaries

Let us first adapt the results of [3, Chap. 8] (concerning a family of probability measures
µt ) to the more general case of Radon measures. First of all we recall some (technical)
preliminaries.

Lemma 4.1 (Continuous representative) Let µt ,ννν t be Borel families of measures satisfy-
ing (4.2) and (4.3). Then there exists a unique weakly∗ continuous curve t ∈ [0,T ] 7→ µ̃t ∈
M+

loc(R
d) such that µt = µ̃t for L 1-a.e. t ∈ (0,T ); if ζ ∈C1

c (Rd× [0,T ]) and t1 ≤ t2 ∈ [0,T ],
we have∫

Rd
ζt2 dµ̃t2 −

∫
Rd

ζt1 dµ̃t1 =
∫ t2

t1

∫
Rd

∂tζ dµt(x)dt +
∫ t2

t1

∫
Rd

∇ζ · dννν t(x)dt, (4.5)

and the mass of µ̃t can be uniformly bounded by

sup
t∈[0,T ]

µ̃t(BR)≤ µ̃s(B2R)+2R−1V2R ∀s ∈ [0,T ]. (4.6)

Moreover, if µ̃s(Rd) < +∞ for some s ∈ [0,T ] and limR↑+∞ R−1VR = 0, then the total mass
µ̃t(Rd) is (finite and) constant.

Proof Let us take ζ (x, t) = η(t)ζ (x), η ∈C∞
c (0,T ) and ζ ∈C∞

c (Rd) with suppζ ⊂ BR; we
have

−
∫ T

0
η
′(t)

(∫
Rd

ζ (x)dµt(x)
)

dt =
∫ T

0
η(t)

(∫
Rd

∇ζ (x) · dννν t(x)
)

dt,

so that the map t 7→ µt(ζ ) =
∫
Rd ζ dµt belongs to W 1,1(0,T ) with distributional derivative

µ̇t(ζ ) =
∫

Rd
∇ζ (x) · dννν t(x) for L 1-a.e. t ∈ (0,T ), (4.7)
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satisfying

|µ̇t(ζ )| ≤VR(t)sup
Rd
|∇ζ |, VR(t) := |ννν t |(BR),

∫ T

0
VR(t)dt = VR < +∞. (4.8)

If Lζ is the set of its Lebesgue points, we know that L 1((0,T ) \Lζ ) = 0. Let us now take
an increasing sequence Rn := 2n ↑+∞ and countable sets Zn ⊂C∞

c (BRn) which are dense in
C1

0(BRn) := {ζ ∈ C1(Rd) : supp(ζ ) ⊂ BRn}, the closure of C1
c (BRn) with respect the usual

C1 norm ‖ζ‖C1 = supRd (|ζ |, |∇ζ |). We also set LZ := ∩n∈N,ζ∈Zn Lζ . The restriction of the
curve µ to LZ provides a uniformly continuous family of functionals on each space C1

0(BRn),
since (4.8) shows

|µt(ζ )−µs(ζ )| ≤ ‖ζ‖C1

∫ t

s
VRn(λ )dλ ∀s, t ∈ LZ ∀ζ ∈ Zn.

Therefore, for every n ∈ N it can be extended in a unique way to a continuous curve
{µ̃n

t }t∈[0,T ] in [C1
0(BRn)]

′ which is uniformly bounded and satisfies the compatibility con-
dition

µ̃
m
t (ζ ) = µ̃

n(ζ ) if m≤ n and ζ ∈C1
c (BRm). (4.9)

If ζ ∈C1
c (Rd) we can thus define

µ̃t(ζ ) := µ̃
n
t (ζ ) for every n ∈ N such that supp(ζ )⊂ BRn . (4.10)

If we show that {µt(BRn)}t∈LZ is uniformly bounded for every n∈N, the extension provides
a continuous curve in M+

loc(R
d). To this aim, let us consider nonnegative, smooth functions

ζk : Rd → [0,1], such that ζk(x) := ζ0(x/2k), (4.11a)

ζk(x) = 1 if |x| ≤ 2k, ζk(x) = 0 if |x| ≥ 2k+1, |∇ζk(x)| ≤ A2−k, (4.11b)

for some constant A > 1. It is not restrictive to suppose that ζk ∈ Zk+1. Applying the previous
formula (4.7), for t, s ∈ LZ we have

|µt(ζk)−µs(ζk)| ≤ ak := 21−k
∫ T

0
|νννr|

(
B2Rk \BRk

)
dr ≤ A2−kV2Rk . (4.12)

It follows that

µt(BRk)≤ µt(ζk)≤ µs(ζk)+A2−kV2Rk ≤ µs(B2Rk)+A2−k V2Rk ∀ t ∈ LZ . (4.13)

Integrating with respect to s we end up with the uniform bound

µt(BRk)≤ A2−k VRk+1 +
∫ T

0
µs(B2Rk)ds < +∞ ∀ t ∈ LZ .

Observe that the extension µ̃t satisfies (4.13) (and therefore, in a completely analogous way,
(4.6)) and (4.12) for every s, t ∈ [0,T ].

Now we show (4.5). Let us choose ζ ∈C1
c (Rd × [0,T ]) and ηε ∈C∞

c (t1, t2) such that

0≤ ηε(t)≤ 1, lim
ε↓0

ηε(t) = χ(t1,t2)(t) ∀ t ∈ [0,T ], lim
ε↓0

η
′
ε = δt1 −δt2
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in the duality with continuous functions in [0,T ]. We get

0 =
∫ T

0

∫
Rd

∂t(ηε ζ )dµt(x)dt +
∫ T

0

∫
Rd

∇x(ηε ζ ) · dννν t dt

=
∫ T

0
ηε(t)

∫
Rd

∂tζ dµt dt +
∫ T

0
ηε(t)

∫
Rd

∇xζ · dννν t dt +
∫ T

0
η
′
ε(t)

∫
Rd

ζ dµ̃t dt.

Passing to the limit as ε vanishes and invoking the continuity of µ̃t , we get (4.5).
Finally, if limR↑+∞ R−1VR = 0 we can pass to the limit as Rk ↑ +∞ in the inequality

(4.12), which also holds for every t,s ∈ [0,T ] if we replace µ by µ̃ , by choosing s so that

m := µ̃s(Rd) = lim
k↑+∞

µ̃s(ζk) < +∞.

It follows that µ̃t(Rd) = limk↑+∞ µ̃s(ζk) = m for every t ∈ [0,T ]. ut

Thanks to Lemma 4.1 we can introduce the following class of solutions of the continuity
equation.

Definition 4.2 (Solutions of the continuity equation) We denote by CE(0,T ) the set of
time dependent measures (µt)t∈[0,T ],(ννν t)t∈(0,T ) such that

1. t 7→ µt is weakly∗ continuous in M+
loc(R

d) (in particular, supt∈[0,T ] µt(BR) < +∞ for
every R > 0),

2. (ννν t)t∈(0,T ) is a Borel family with
∫ T

0
|ννν t |(BR)dt < +∞ ∀R > 0;

3. (µ,ννν) is a distributional solution of (4.1).

CE(0,T ;σ → η) denotes the subset of (µ,ννν) ∈ CE(0,T ) such that µ0 = σ , µ1 = η .

Solutions of the continuity equation can be rescaled in time:

Lemma 4.3 (Time rescaling) Let t : s ∈ [0,T ′]→ t(s) ∈ [0,T ] be a strictly increasing ab-
solutely continuous map with absolutely continuous inverse s := t−1. Then (µ,ννν) is a distri-
butional solution of (4.1) if and only if

µ̂ := µ ◦ t, ν̂νν := t′
(
ννν ◦ t

)
, is a distributional solution of (4.1) on (0,T ′).

We refer to [3, Lemma 8.1.3] for the proof.
The proof of the next lemma follows directly from (4.5).

Lemma 4.4 (Glueing solutions) Let (µ i,ννν i) ∈ CE(0,Ti), i = 1,2, with µ1
T1

= µ2
0 . Then the

new family (µt ,ννν t)t∈(0,T1+T2) defined as

µt :=

{
µ1

t if 0≤ t ≤ T1

µ2
t−T1

if T1 ≤ t ≤ T1 +T2
ννν t :=

{
ννν1

t if 0≤ t ≤ T1

ννν2
t−T1

if T1 ≤ t ≤ T1 +T2
(4.14)

belongs to CE(0,T1 +T2).

Lemma 4.5 (Compactness for solutions of the continuity equation (I)) Let (µn,νννn) be a
sequence in CE(0,T ) such that

1. for some s ∈ [0,T ] supn∈N µn
s (BR) < +∞ ∀R > 0;

2. the sequence of maps t 7→ |νννn
t |(BR) is equiintegrable in (0,T ), for every R > 0.
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Then there exists a subsequence (still indexed by n) and a couple (µt ,ννν t) ∈ CE(0,T ) such
that (recall (4.4))

µ
n
t ⇀∗

µt weakly∗ in M+
loc(R

d) ∀ t ∈ [0,T ],

ννν
n⇀∗

ννν weakly∗ in Mloc(Rd × (0,T );Rd).
(4.15)

(4.15) yields in particular

∫ T

0
Φ(µt ,ννν t |γ)dt ≤ liminf

n↑+∞

∫ T

0
Φ(µ

n
t ,νννn

t |γn)dt (4.16)

for every sequence of Radon measures γn⇀∗γ in M+
loc(R

d), where Φ is an integral func-
tional as in (3.37).

Proof Since νννn :=
∫ T

0 νννn
t dt and µn

s have total variation uniformly bounded on each com-
pact subset of Rd × [0,T ], we can extract a subsequence (still denoted by µn

s ,νννn) such that
µn

s ⇀∗µs in Mloc(Rd) and νννn⇀∗ννν in Mloc(Rd × [0,T ];Rd). The estimate (4.6) shows that

sup
n∈N

µ
n
t (BR) < +∞ ∀ t ∈ [0,T ], R > 0. (4.17)

The equiintegrability condition on νννn shows that ννν satisfies

|ννν |(BR× I) =
∫

I
mR(t)dt ∀ I ∈B(0,T ), R > 0, for some mR ∈ L1(0,T ),

so that by the disintegration theorem we can represent it as ννν =
∫ T

0 ννν t for a Borel family
{ννν t}t∈(0,T ) still satisfying (4.2). Let us now consider a function ζ ∈C1

c (Rd) and for a given
interval I = [t0, t1]⊂ [0,T ] the time dependent function ζζζ (t,x) := χ I(t)∇ζ (x). Since the dis-
continuity set of ζζζ is concentrated on N = Rd×{t0, t1} and |ννν |(N) = 0, general convergence
theorems (see e.g. [3, Prop. 5.1.10] yields

lim
n→∞

∫
I

∫
Rd

∇ζ (x) ·dννν
n
t (x)dt = lim

n→∞

∫
Rd×(0,T )

ζζζ ·dννν
n(t,x)

=
∫

Rd×(0,T )
ζζζ ·dννν(t,x) =

∫
I

∫
Rd

∇ζ (x) ·dννν t(x)dt.
(4.18)

Applying (4.5) with ζ (t,x) := ζ (x) and t0 := s and the estimate (4.17) we thus obtain the
weak convergence of µn

t to a measure µt ∈M+(Rd) for every t ∈ [0,T ]. It is immediate to
check that the couple (µt ,ννν t) belongs to CE(0,T ). (4.16) follows now by the representation

∫ T

0
Φ(µt ,ννν t |γ)dt = Φ(µ,ννν |γ̄), µ :=

∫ T

0
µt dt, γ̄ = γ⊗L 1 ∈M+

loc(R
d × (0,T ))

and the lower semicontinuity property stated in Theorem 2.1. ut
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4.2 Solutions of the continuity equation with finite Φ-energy

For all this section we will assume that φ : (0,+∞)×Rd → (0,+∞) is an admissible action
density function as in (3.2a,b,c) for some p ∈ (1,+∞), γ ∈ M+

loc(R
d) is a given reference

Radon measure, and Φ is the corresponding integral functional as in (3.37). We want to
study the properties of measure valued solutions (µ,ννν) of the continuity equation (4.1) with
finite Φ-energy

E :=
∫ T

0
Φ(µt ,ννν t |γ)dt < +∞. (4.19)

We denote by CEφ ,γ(0,T ) the subset of CE(0,T ) whose elements (µ,ννν) satisfies (4.19).

Remark 4.6 If (µt)t∈[0,T ] is weakly∗ continuous in M+
loc(R

d) and (4.19) holds, then µt ,ννν t
also satisfy (4.2): in fact, the weak∗ continuity of µt yields for every R > 0 supt∈[0,T ] µt(BR)=
MR < +∞, and the estimate (3.48) yields (recall (3.43))

VR ≤ η

∫ T

0
‖ννν t‖(BR)dt ≤ η T 1/q E1/p H(γ(BR),MR)1/q < +∞. (4.20)

Recalling that the function h is defined by (3.44), we also introduce the concave function

ω(s) :=
∫ s

0

1
h(r)1/q dr, ω(0) = 0, ω

′(s) =
1

h(s)1/q , lim
s→∞

ω(s) = +∞. (4.21)

In the homogeneous case φ(ρ,z) = ρα‖z‖q
∗ we have

ω(s) =
∫ s

0
r−α/q dr =

q
q−α

s1−α/q =
p
θ

sθ/p. (4.22)

For given nonnegative ζ ∈C1
c (Rd) and µ ∈M+

loc(R
d) we will use the short notation

Z := supp(Dζ )⊂ Rd , Gp(ζ ) :=
∫

Z
ζ

p dγ, D(ζ ) := sup
Rd
‖Dζ‖∗. (4.23)

Theorem 4.7 Let ζ ∈ C1
c (Rd) be a nonnegative function with Z,G(ζ ),D(ζ ) defined as in

(4.23), and let µ,ννν ∈ CEφ ,γ(0,T ). Setting

EZ :=
∫ T

0
Φ(µt ,ννν t |γ,Z)dt ≤ E < +∞, (4.24)

we have ∣∣ d
dt µt(ζ p)

∣∣≤ pD(ζ )Φ(µt ,ννν t |γ,Z)1/p H
(
Gp(ζ ),µt(ζ p)

)1/q
. (4.25)

In particular, there exists a constant C1 > 0 only depending (in a monotone way) on h, p,T
such that

sup
t∈[0,T ]

µt(ζ p)≤ C1

(
µ0(ζ p)+D(ζ )Gp(ζ )1/qE1/p

Z +Dp(ζ )EZ

)
. (4.26)

Moreover, if Gp(ζ ) > 0,∣∣ d
dt ω (µt(ζ p)/Gp(ζ ))

∣∣≤ pD(ζ )
Gp(ζ )1/p Φ(µt ,ννν t |γ,Z)1/p for a.e. t ∈ (0,T ). (4.27)

In particular, in the (α-θ)-homogeneous case, for every 0≤ s≤ t ≤ T we have∣∣∣‖ζ‖θ

Lp(µt )−‖ζ‖θ

Lp(µs)

∣∣∣≤ θ D(ζ )‖ζ‖θ−1
Lp(γ,Z)

∫ t

s
Φ(µr,νννr|γ,Z)1/p dr. (4.28)
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Proof Setting mt := µt(ζ p), G = Gp(ζ ), D = D(ζ ) we easily have by (3.47)

d
dt

mt =
d
dt

∫
Rd

ζ
p dµt = p

∫
Z

ζ
p−1

∇ζ ·dννν t ≤ pDΦ(µt ,ννν t |γ,Z)1/p H
(
G,mt

)1/q
,

since (ζ p−1)q = ζ p. Since H
(
G,mt) = Gh(mt/G), we get

h−1/q(mt/G)
d
dt

mt ≤ pDG1/q
Φ(µt ,ννν t |γ,Z)1/p.

Recalling that d
dr ω(r) = h−1/q(r) we get (4.27).

In order to prove (4.26) we set M := supt∈[0,T ] mt and we choose constants (a,b) ∈ Γφ ;
integrating (4.25) we get

sup
t∈[0,T ]

∣∣mt −m0
∣∣≤ pDT 1/q

((
aG

)1/qE1/p
Z +

(
bM

)1/qE1/p
Z

)
. (4.29)

By using the inequality xy≤ p−1xp +q−1yq we obtain

M ≤ m0 + pD
(
aT G

)1/qE1/p
Z +

1
q

M + pp−1 Dp (
bT

)p/qEZ (4.30)

which yields (4.26) with C1 := pmax
(
1, p(aT )1/q, pp−1(bT )p/q

)
.

Finally, let us assume that φ satisfies the (α-θ)-homogeneity condition, so that ω(s) =
p
θ

sθ/p as in (4.22). It follows that

ω(G−1 mt) =
p
θ
‖ζ‖θ

Lp(µt )‖ζ‖−θ

Lp(γ,Z). (4.31)

Integrating (4.27) we conclude. ut

We extend the definition of mr(µ) also for negative values of r by setting

m̃r(µ) := µ(B1)+
∫

Rd\B1

|x|r dµ(x) =
∫

Rd

(
1∨|x|

)r dµ(x) ∀r ∈ R. (4.32)

Notice that m̃0(µ) = µ(Rd) and mr(µ)≤ m̃r(µ)≤ µ(B1)+mr(µ) when r > 0.

Theorem 4.8 Let us assume that m̃r(γ) < +∞ for some r ≤ p and let (µ,ννν) ∈ CEφ ,γ(0,T )
satisfy (4.19). For every δ ≤ 1 + r/q, if m̃δ (µ0) < +∞ then also m̃δ (µt) < +∞ and there
exists a constant C2 only depending in a monotone way on h, p,T,A, |δ | such that

m̃δ (µt)≤ C2

(
m̃δ (µ0)+ m̃r(γ)1/qE1/p +E

)
. (4.33)

Moreover, if r≥−q and µ0(Rd) < +∞, then µt(Rd) is finite and constant for every t ∈ [0,T ].

Proof Let us first set
Kn := 2nr

γ(B2n+1 \B2n) (4.34)

observing that

Kn ≤
+∞

∑
j=0

K j ≤ 2r− m̃r(γ), limsup
n↑+∞

Kn = 0. (4.35)

We consider the usual cutoff functions ζn ∈C∞
c (Rd) as in (4.11a,b) and we set

Dn = D(ζn) = sup‖Dζn‖∗ ≤ A2−n, Gn = Gp(ζn)≤ γ(B2n+1 \B2n) = 2−nr Kn. (4.36)
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By (4.26) we obtain

sup
t∈[0,T ]

µt(B2n)≤ C1

(
µ0(B2n+1)+A2−n(1+r/q)K1/q

n E1/q +Ap 2−npE
)

; (4.37)

in particular, if r≥−q and µ0(Rd) < +∞, we can derive the uniform upper bound µt(Rd)≤
C1 µ0(Rd) letting n ↑ +∞. We can then deduce that µt(Rd) is constant by applying the
estimate (4.25), which yields after an integration in time and for every (a,b) ∈ Γφ

sup
t∈[0,T ]

∣∣µt(ζ p
n )−µ0(ζ p

n )
∣∣≤ pAT 1/q E1/p 2−n(a2−nr Kn +bC1µ0(Rd)

)1/q
.

In order to show (4.33), we argue as before, by introducing the new family of test functions
induced by υn(x) := υ0(x/2n) ∈C∞

c (Rd)

0≤ υn ≤ 1,

{
υn(x)≡ 1 if 2n ≤ |x| ≤ 2n+1,

υn(x)≡ 0 if |x| ≤ 2n−1 or |x| ≥ 2n+2,
‖Dυn‖∗ ≤ A2−n. (4.38)

Observe that 1≤ ∑
+∞

n=1

(
υn(x)

)p ≤ 3 and for some constant Aδ > 1

A−1
δ
|x|δ ≤

+∞

∑
n=1

2δn(
υn(x)

)p ≤ Aδ |x|δ ∀x ∈ Rd , |x| ≥ 2. (4.39)

As before, setting K′
n := Kn+1 +Kn−1, we have D(υn)≤ A2−n and

Gp(υn)≤
(

2−(n+1)rKn+1 +2−(n−1)rKn−1

)
≤ 2|r| 2−nr K′

n. (4.40)

Applying (4.26) we get for every t ∈ [0,T ]

2nδ
µt(υ p

n )≤ C1

(
2nδ

µ0(υ p
n )+A2(δ−1−r/q)n(K′

n)
1/q (E ′

n)
1/p +Ap 2(δ−p)nE ′

n

)
,

where

En :=
∫ T

0
Φ(µt ,ννν t |γ,B2n+1 \B2n)dt, E ′

n := En+1 +En−1. (4.41)

Since δ ≤ 1+ r/q and δ ≤ p, summing up with respect to n and recalling (4.37) we get

m̃δ (µt)≤ C2

(
m̃δ (µ0)+(m̃r(γ))1/qE1/p +E

)
. ut (4.42)

In the the θ -homogeneous case we have a more refined estimate:

Theorem 4.9 Let us assume that φ is θ -homogeneous for some θ ∈ (1, p], the measure γ

satisfies the r-moment condition m̃r(γ) < +∞, and let (µ,ννν) ∈ CEφ ,γ(0,T ) satisfy (4.19).
For every δ ≤ δ̄ := 1

θ
p+(1− 1

θ
)r, if m̃δ (µ0) < +∞ then m̃δ (µt) is finite and there exists a

constant C3 > 0 such that

m̃δ (µt)≤ C3

(
m̃δ (µ0)+ m̃r(γ)1−1/θ E1/θ

)
. (4.43)

Moreover, if δ̄ ≥ 0 (i.e. r≥−p/(θ−1)) and µ0(Rd) < +∞ then µt(Rd) is finite and constant
for t ∈ [0,T ].
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Proof We argue as in the proof of Theorem (4.9), keeping the same notation and using the
crucial estimate (4.28). If ζn are the test functions of (4.11a,b),

‖ζn‖θ−1
Lp(γ,Zn) = G(θ−1)/p

n
(4.36)= 2−nr(θ−1)/p(Kn

)(θ−1)/p
, (4.44)

so that, since δ̄ θ/p = 1+(θ −1)r/p, (4.28) yields∣∣∣(µt(ζ p
n )

)θ/p−
(
µ0(ζ p

n )
)θ/p

∣∣∣≤ Aθ2−δ̄ θn/p (
Kn

)(θ−1)/pE1/p. (4.45)

Since δ̄ ≥ 0, passing to the limit as n ↑ ∞ and recalling (4.35), we get µt(Rd) ≡ µ0(Rd).
Concerning the moment estimate, we replace ζn by υn, defined by in (4.38), obtaining∣∣∣(µt(υ p

n )
)θ/p−

(
µ0(υ p

n )
)θ/p

∣∣∣≤ C3.12−δ̄ θn/p (
K′

n
)(θ−1)/p(E ′

n
)1/p

, (4.46)

and therefore
µt(υ p

n )≤ C3.2

(
µ0(υ p

n )+2−δ̄n(K′
n
)1−1/θ (

E ′
n
)1/θ

)
. (4.47)

Multiplying this inequality by 2nδ , summing up w.r.t. n, and recalling (4.39), we obtain

m̃δ (µt)≤ C3

(
m̃δ (µ0)+ m̃r(γ)1−1/θ E1/θ

)
. ut (4.48)

Corollary 4.10 (Compactness for solutions of the continuity equation (II)) Let (µn,νννn)
be a sequence in CEφ ,γ(0,T ) and let γn⇀∗γ in M+

loc(R
d) such that

sup
n∈N

µ
n
0 (BR) < +∞ ∀R > 0, sup

n∈N

∫ T

0
Φ(µ

n
t ,νννn

t |γn)dt < +∞. (4.49)

Then conditions 1. and 2. of Lemma 4.5 are satisfied and therefore there exists a subsequence
(still indexed by n) and a couple (µt ,ννν t) ∈ CEφ ,γ(0,T ) such that

µ
n
t ⇀∗

µt weakly∗ in M+
loc(R

d) ∀ t ∈ [0,T ],

ννν
n⇀∗

ννν weakly∗ in Mloc(Rd × (0,T );Rd),
(4.50)

∫ T

0
Φ(µt ,ννν t |γ)dt ≤ liminf

n↑+∞

∫ T

0
Φ(µ

n
t ,νννn

t |γn)dt. (4.51)

Suppose moreover that µn
0 (Rd) → µ0(Rd) and supn m̃κ(γn) < +∞ where κ = −q or κ =

−p/(θ − 1) in the θ -homogeneous case, then (along the same subsequence) µn
t (Rd) →

µt(Rd) for every t ∈ [0,T ].

Proof Since PR := supn γn(BR) < +∞ for every R > 0, the estimate (4.33) for δ = 0 and
the assumption (4.49) show that MR = supn∈N,t∈[0,T ] µn

t (BR) < +∞ for every R > 0. We can
therefore obtain a bound of ‖νννn

t ‖(BR) by (3.48), which yields

‖νννn
t ‖(BR)≤ H(PR,MR)1/q

Φ(µt ,ννν t |γ)1/p,

so that the maps t 7→ ‖νννn
t ‖(BR) are uniformly bounded by a function in Lp(0,T ). The last

assertion follows by the fact that t 7→ µn
t (Rd) is independent of time, thanks to Theorem 4.9

(in the (α-θ)-homogeneous case) or Theorem 4.8 (for general density functions φ ). ut
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5 The (φ -γ)-weighted Wasserstein distance

As we already mentioned in the Introduction, BENAMOU-BRENIER [7] showed that the
Wasserstein distance Wp (1.1) can be equivalently characterized by a “dynamic” point of
view through (1.15), involving the 1-homogeneous action functional (1.13). The same ap-
proach can be applied to arbitrary action functionals.

Definition 5.1 (Weighted Wasserstein distances) Let γ ∈ M+
loc(R

d) be a fixed reference
measure and φ : (0,+∞)×Rd → [0,+∞) a function satisfying Conditions (3.2a,b,c). The
(φ ,γ)-Wasserstein (pseudo-) distance between µ0,µ1 ∈M+

loc(R
d) is defined as

W
p
φ ,γ(µ0,µ1) := inf

{∫ 1

0
Φ(µt ,ννν t |γ)dt : (µ,ννν) ∈ CE(0,1; µ0 → µ1)

}
. (5.1)

We denote by Mφ ,γ [µ0] the set of all the measures µ ∈M+
loc(R

d) which are at finite Wφ ,γ -
distance from µ0.

Remark 5.2 Let us recall the notation Wp,α;γ of (1.23) in the case φp,α(ρ,w) = ρα |w/ρα |p.
When α = 0 we find the dual homogeneous Sobolev (pseudo-)distance (1.7) and in the case
α = 1 and supp(γ) = Rd we get the usual Wasserstein distance:

‖µ0−µ1‖Ẇ−1,p
γ

= Wp,0;γ(µ0,µ1), Wp(µ0,µ1) = Wp,1;γ(µ0,µ1).

Remark 5.3 Taking into account Lemma 4.3, a linear time rescaling shows that

W p
φ ,γ(µ0,µT ) := inf

{
T p−1

∫ T

0
Φ(µt ,ννν t |γ)dt : (µ,ννν) ∈ CE(0,T ; µ0 → µT )

}
. (5.2)

Theorem 5.4 (Existence of minimizers) Whenever the infimum in (5.1) is a finite value
W < +∞, it is attained by a curve (µ,ννν) ∈ CEφ ,γ(0,1) such that

Φ(µt ,ννν t |γ) = W for L 1-a.e. t ∈ (0,1). (5.3)

The curve (µt)t∈[0,1] associated to a minimum for (5.1) is a constant speed mimimal geodesic
for Wφ ,γ since it satisfies

Wφ ,γ(µs,µt) = |t− s|Wφ ,γ(µ0,µ1) ∀s, t ∈ [0,1]. (5.4)

We have also the equivalent characterization

Wφ ,γ(σ ,η) = inf
{∫ T

0

(
Φ(µt ,ννν t |γ)

)1/p
dt : (µ,ννν) ∈ CE(0,T ;σ → η)

}
. (5.5)

Proof When Wφ ,γ(µ0,µ1) < +∞, Corollary 4.10 immediately yields the existence of a min-
imizing curve (µ,ννν). Just for the proof of (5.5), let us denote by W̄φ ,γ(σ ,η) the infimum
of the right-hand side of (5.5). Hölder inequality immediately shows that Wφ ,γ(σ ,η) ≥
W̄φ ,γ(σ ,η). In order to prove the opposite inequality, we argue as in [3, Lemma 1.1.4],
defining for (µ,ννν) ∈ CE(0,T ;σ → η)

sε(t) :=
∫ t

0

(
ε +Φ(µr,νννr|γ)

)1/p
dr, t ∈ [0,T ]; (5.6)
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sε is strictly increasing with s′ε ≥ ε , sε(0,T ) = (0,Sε) with Sε := sε(T ), so that its inverse
map tε : [0,Sε ]→ [0,T ] is well defined and Lipschitz continuous, with

t′ε ◦ sε =
(

ε +Φ(µt ,ννν t)
)−1/p

a.e. in (0,T ). (5.7)

If µ̂ε = µ ◦ tε ,ν̂νν
ε := t′ε ννν ◦ tε , we know that (µ̂ε ,ν̂ννε) ∈ CE(0,Sε ;σ → η) so that

W
p
φ ,γ(σ ,η)≤ Sp−1

ε

∫ Sε

0
Φ(µ̂

ε
s ,ν̂ννε

s |γ)ds = Sp−1
ε

∫ T

0

Φ(µε
t ,νννε

t |γ)
ε +Φ(µε

t ,νννε
t |γ)

(
ε +Φ(µt ,ννν t)

)1/p
dt,

the latter integral being less than Sp
ε . Passing to the limit as ε ↓ 0, we get

Wφ ,γ(σ ,η)≤
∫ T

0
Φ(µt ,ννν t |γ)1/p dt ∀(µ,ννν) ∈ CE(0,T ;σ → η), (5.8)

and therefore Wφ ,γ(σ ,η)≤ W̄φ ,γ(σ ,η). If (µ,ννν) ∈ CEφ ,γ(0,1; µ0 → µ1) is a minimizer of
(5.1), then (5.8) yields

W 1/p = Wφ ,γ(µ0,µ1) =
(∫ 1

0
Φ(µt ,ννν t |γ)dt

)1/p
=

∫ 1

0
Φ(µt ,ννν t |γ)1/p dt,

so that (5.3) holds. ut

5.1 Topological properties

Theorem 5.5 (Distance and weak convergence) The functional Wφ ,γ is a (pseudo)-distance
on M+

loc(R
d) which induces a stronger topology than the weak∗ one. Bounded sets with re-

spect to Wφ ,γ are weakly∗ relatively compact.

Proof It is immediate to check that Wφ ,γ is symmetric (since φ(ρ,−w) = φ(ρ,w)) and
Wφ ,γ(σ ,η) = 0 ⇒ σ ≡ η . The triangular inequality follows as well from the characteriza-
tion (5.5) and the gluing Lemma 4.4.

From (4.27) (keeping the same notation (4.23)) and (5.5) we immediately get for every
µ0,µ1 ∈M+

loc(R
d) and nonnegative ζ ∈C1

c (Rd) with ‖ζ‖Lp(γ) > 0∣∣∣ω(
µ1(ζ p)/Gp(ζ )

)
−ω

(
µ0(ζ p)/Gp(ζ )

)∣∣∣≤ pD(ζ )
‖ζ‖Lp(γ)

Wφ ,γ(σ ,η),

which shows the last assertion, since ω is strictly increasing and the set{
ζ

p : ζ ∈C1
c (Rd), ζ ≥ 0, ‖ζ‖Lp(γ) > 0

}
is dense in the space of nonnegative continuous functions with compact support (endowed
with the uniform topology). ut

Theorem 5.6 (Lower semicontinuity) The map (µ0,µ1) 7→ Wφ ,γ(µ0,µ1) is lower semi-
continuous with respect to weak∗ convergence in M+

loc(R
d). More generally, suppose that

γn⇀∗γ in M+
loc(R

d), φ n is monotonically increasing w.r.t. n and pointwise converging to φ ,
and µn

0 ⇀∗µ0,µn
1 ⇀∗µ1 in M+

loc(R
d) as n ↑+∞. Then

liminf
n↑+∞

Wφn,γn(µ
n
0 ,µ

n
1 )≥Wφ ,γ(µ0,µ1). (5.9)



27

Proof It is not restrictive to assume that Wφn,γn(µn
0 ,µn

1 ) < S < +∞, so that we can find a
sequence (µn,νννn) ∈ CEφn,γn(0,1; µn

0 → µn
1 ) such that

Φ
m(µ

n
t ,νννn

t |γn)≤ S a.e. in (0,1), ∀m≤ n ∈ N, (5.10)

where Φm denotes the integral functional associated to φ m. We can apply Theorem 4.10 and
we can extract a suitable subsequence (still denoted bu µn,νννn) and a limit curve (µ,ννν) ∈
CEφ ,γ(0,1; µ0 → µ1) such that (4.50) holds. We eventually have

W
p
φm,γ(µ0,µ1)≤

∫ 1

0
Φ

m(µt ,ννν t |γ)dt ≤ S. (5.11)

Passing to the limit w.r.t. m ↑+∞ we conclude. ut

Theorem 5.7 (Completeness) For every σ ∈ M+
loc(R

d) the space Mφ ,γ [σ ] endowed with
the distance Wφ ,γ is complete.

Proof Let (µn)n∈N be a Cauchy sequence in Mφ ,γ [σ ] w.r.t. the distance Wφ ,γ ; in particular,
(µn) is bounded so that we can extract a suitable convergence subsequence µnk weakly∗

converging to µ∞ in M+
loc(R

d). Thanks to Theorem 5.6 we easily get Wφ ,γ(µm,µ∞) ≤
liminfk→∞ Wφ ,γ(µm,µnk), and therefore, taking into account the Cauchy condition,
limsupm→∞ Wφ ,γ(µm,µ∞)≤ limsupn,m→∞ Wφ ,γ(µm,µn) = 0 so that µn converges to µ∞. ut

Let us now consider the case of measures with finite mass (just to fix the constant, probability
measures in P(Rd)). We introduce the parameter

κ :=


p

θ −1
=

q
1−α

if φ is (α-θ)-homogeneous,
p

p−1 = q otherwise.
(5.12)

Theorem 5.8 (Distance and total mass) Let us assume that m̃−κ(γ) < +∞ and let us sup-
pose that σ ∈ P(Rd). Then Mφ ,γ [σ ] ⊂ P(Rd), the weighted Wasserstein distance Wφ ,γ is
stronger than the narrow convergence in P(Rd), and P(Rd) endowed with the (pseudo-)
distance Wφ ,γ is a complete (pseudo-)metric space.

Proof If η ∈ Mφ ,γ [σ ] then Theorem 4.9 (in the θ -homogeneous case) or 4.8 (in the gen-
eral case) yields η(Rd) = σ(Rd) = 1, so that Mφ ,γ [σ ]⊂ P(Rd). Since the narrow topology
coincide with the weak∗ one in P(Rd), Theorem 5.5 proves the second statement. The com-
pleteness of P(Rd) with respect to the (pseudo) distance Wφ ,γ follows by Theorem 5.7. ut

We can also prove some useful moment estimates.

Theorem 5.9 (Moment estimates) Let us assume that m̃r(γ) < +∞ for some r ∈R and let
us set

δ̄ :=

{
1
θ

p+(1− 1
θ
)r = p

θ
(1+ r/κ) if φ is θ -homogeneous,

1+ r/q≤ p otherwise.
(5.13)

If m̃δ (σ) < +∞ for some δ ≤ δ̄ , and η ∈ Mφ ,γ [σ ], then m̃δ (η) is finite and there exists a
constant C only depending on φ ,δ such that

m̃δ (η)≤ C
(
m̃δ (σ)+ m̃r(γ)+W

p
φ ,γ(σ ,η)

)
m̃δ (η)≤ C

(
m̃δ (σ)+ m̃r(γ)1−1/θW p/θ

p,α (σ ,η)
)
.

(5.14)

Moreover, when δ ≥ 1, the topology induced by Wφ ,γ in Mφ ,γ [σ ] is stronger than the one
induced by the Wasserstein distance Wδ .
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Proof Let us first consider the general case: applying (4.33) we easily obtain (5.14). In
order to prove the assertion about the convergence of the moments induced by Wφ ,γ (which
is equivalent to the convergence in Wδ when δ ≥ 1), a simple modification of (4.42) yields∫

|x|≥2n
|x|δ dη ≤ C3

(∫
|x|≥2n−1

|x|δ dσ + m̃r(γ)1/qWφ ,γ(σ ,η)+W p
φ ,γ(σ ,η)

)
, (5.15)

which shows that every sequence ηn converging to σ has δ -moments equi-integrable and
therefore it is relatively compact with respect to the δ -Wasserstein distance when δ ≥ 1.

The θ -homogeneous case follows by the same argument and Theorem 4.9. ut

Remark 5.10 There are interesting particular cases covered by the previous result:

1. When γ(Rd) < +∞ then Wφ ,γ is always stronger than the 1-Wasserstein distance W1; in
the θ -homogeneous case, Wp,α;γ also controls the Wp/θ distance.

2. When mp(γ) < +∞, then Wφ ,γ is always stronger than Wp.
3. When φ is θ -homogeneous with θ > 1 and γ is a probability measure with finite mo-

ments of arbitrary orders (this is the case of a log-concave probability measure), then all
the measures σ ∈Mφ ,γ [γ] have finite moments of arbitrary orders and the convergence
with respect to Wφ ,γ yields the convergence in Pδ (Rd) for every δ > 0.

5.2 Geometric properties

Theorem 5.11 (Convexity of the distance and uniqueness of geodesics) W
p
φ ,γ(·, ·) is con-

vex, i.e. for every µ
j

i ∈M+
loc(R

d), i, j = 0,1, and τ ∈ [0,1], if µτ
i = (1− τ)µ0

i + τµ1
i ,

W
p
φ ,γ(µ

τ
0 ,µ

τ
1 )≤ (1− τ)Wp

φ ,γ(µ
0
0 ,µ

0
1 )+ τW

p
φ ,γ(µ

1
0 ,µ

1
1 ). (5.16)

If φ is strictly convex and φ̃ has a sublinear growth w.r.t. ρ (i.e. ϕ̃∞ ≡ 0), then for ev-
ery µ0,µ1 ∈ M+

loc(R
d) with Wφ ,γ(µ0,µ1) < +∞ there exists a unique mimimizer (µ,ννν) ∈

CEφ ,γ(0,1) of (5.1).

Proof Let (µ j,ννν j)∈ CEφ ,γ(0,1; µ
j

0 → µ
j

1) be two minimizers of (5.1), j = 0,1. For τ ∈ [0,1]
we set µτ

t := (1−τ)µ0
t +τµ1

t , ννντ
t := (1−τ)ννν0

t +τννν1
t . Since (µτ ,ννντ) ∈ CE(0,1; µτ

0 → µτ
1 ),

the convexity of φ yields

W
p
φ ,γ(µ

τ
0 ,µ

τ
1 )≤

∫ 1

0
Φ(µ

τ
t ,ννντ

t |γ)dt ≤
∫ 1

0

(
(1− τ)Φ(µ

0
t ,ννν0

t |γ)+ τΦ(µ
1
t ,ννν1

t |γ)
)

dt

= (1− τ)Wp
φ ,γ(µ

0
0 ,µ

0
1 )+ τW

p
φ ,γ(µ

1
0 ,µ

1
1 ).

Let us now suppose that φ is strictly convex and sublinear. Setting, as usual, µτ
t = ρτ

t γ +
(µτ

t )⊥, ννντ
t = wτ

t γ , we have for a.e. t ∈ (0,1)

Φ(µ
τ
t ,ννντ

t |γ)≤ (1− τ)
∫

Rd
φ(ρ0

t ,w0
t )dγ + τ

∫
Rd

φ(ρ1
t ,w1

t )dγ (5.17)

and the inequality is strict unless ρ0
t ≡ ρ1

t and w0
t ≡ w1

t for γ-a.e. x ∈ Rd . If µ0
0 = µ1

0 and
µ0

1 = µ1
1 , two minimizers should satisfy

ρ
0
t (x) = ρ

1
t (x), w0

t (x) = w1
t (x) γ-a.e., ννν

0
t = ννν

1
t for L 1-a.e. t ∈ (0,1).
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Since (µ i,ννν i) are solutions of the continuity equation, taking the difference we obtain

∂t
(
(µ

0
t )⊥− (µ

1
t )⊥

)
= ∂t(µ

0
t −µ

1
t ) =−∇ · (ννν0

t −ννν
1
t ) = 0 in Rd × (0,1).

The difference (µ0
t )⊥− (µ1

t )⊥ is then independent of time and vanishes at t = 0, so that
µ0

t = µ1
t for every t ∈ [0,1]. ut

Theorem 5.12 (Subadditivity) For every µ
j

i ∈M+
loc(R

d), i, j = 0,1, we have

Wφ ,γ(µ
0
0 + µ

1
0 ,µ

0
1 + µ

1
1 )≤Wφ ,γ(µ

0
0 ,µ

0
1 )+Wφ ,γ(µ

1
0 ,µ

1
1 ). (5.18)

In particular

Wφ ,γ(µ0 +σ ,µ1 +σ)≤Wφ ,γ(µ0,µ1) ∀σ ∈M+
loc(R

d). (5.19)

Proof Let (µ j,ννν j)∈ CEφ ,γ(0,1; µ
j

0 → µ
j

1) be as in the proof of the previous Theorem. Since
(µ0 + µ1,ννν0 +ννν1) ∈ CE(0,1; µ0

0 + µ1
0 → µ0

1 + µ1
1 ), we get

Wφ ,γ(µ
0
0 + µ

1
0 ,µ

0
1 + µ

1
1 )≤

∫ 1

0

(
Φ(µ

0
t + µ

1
t ,ννν0

t +ννν
1
t |γ)

)1/p
dt

≤
∫ 1

0

[(
Φ(µ

0
t + µ

1
t ,ννν0

t |γ)
)1/p

+
(

Φ(µ
0
t + µ

1
t ,ννν1

t |γ)
)1/p]

dt

≤
∫ 1

0

[(
Φ(µ

0
t ,ννν0

t |γ)
)1/p

+
(

Φ(µ
1
t ,ννν1

t |γ)
)1/p]

dt = Wφ ,γ(µ
0
0 ,µ

0
1 )+Wφ ,γ(µ

1
0 ,µ

1
1 ). ut

Proposition 5.13 (Rescaling) For every µ0,µ1 ∈M+
loc(R

d) and λ > 0 we have

W p
φ ,λγ

(λ µ0,λ µ1) = λW
p
φ ,γ(µ0,µ1), (5.20){

W p
φ ,γ(λ µ0,λ µ1)≤ λ pW

p
φ ,γ(µ0,µ1) if λ ≥ 1

W p
φ ,γ(λ µ0,λ µ1)≤ λW

p
φ ,γ(µ0,µ1) if λ ≤ 1.

(5.21)

Proof (5.20) follows from the corresponding property Φ(λ µ,λννν |λγ) = λΦ(µ,ννν |γ). Anal-
ogously, the monotonicity and homogeneity properties of φ yield

φ(λρ,λw)≤ φ(ρ,λw) = λ
p
φ(ρ,w) if λ > 1;

the convexity of φ and the fact that φ(0,0) = 0 yield

φ(λρ,λw)≤ λφ(ρ,w) if λ < 1.

(5.21) follows immediately by the previous inequalities. ut

Proposition 5.14 (Monotonicity) If γ1 ≥ γ2 and φ1 ≤ φ2, then for every µ0,µ1 ∈M+
loc(R

d)
we have

Wφ1,γ1(µ0,µ1)≤Wφ2,γ2(µ0,µ1). (5.22)

Theorem 5.15 (Convolution) Let k ∈ C∞
c (Rd) be a nonnegative convolution kernel with∫

Rd k(x)dx = 1 and let kε(x) := ε−dk(x/ε). For every µ0,µ1 ∈M+
loc(R

d) we have

Wφ ,γ∗kε
(µ0 ∗ kε ,µ1 ∗ kε)≤Wφ ,γ(µ0,µ1) ∀ε > 0; (5.23)

lim
ε↓0

Wφ ,γ∗kε
(µ0 ∗ kε ,µ1 ∗ kε) = Wφ ,γ(µ0,µ1). (5.24)



30

Proof Let (µ,ννν)∈ CEφ ,γ(0,1; µ0 → µ1) be an optimal connecting curve as in Theorem 5.11
and let us set µε

t = µt ∗ kε ,ννν
ε
t := ννν t ∗ kε . Since (µε ,νννε) ∈ CE(0,1; µε

0 → µε
1 ), (5.23) then

follows by (2.12) whereas (5.24) is a consequence of Theorem 5.6 ut

Remark 5.16 (Smooth approximations) For a given curve (µ,ννν) ∈ CEφ ,γ(0,1) the convolu-
tion technique of the previous Theorem exhibits an approximations (µε ,νννε) in CEφ ,γε (0,1),
γε := γ ∗ kε , which enjoy some useful properties:

1. µε = ρεL d , νννε = wεL d with ρε ,wε ∈C∞(Rd); if µ0(Rd) < +∞ and m̃−κ(γ) < +∞

(recall Theorem 5.8), then ρε is also uniformly bounded.
2. If supp(k) ⊂ B1 then ρε ,wε are supported in Gε :=

{
x ∈ Rd : dist(x,G) ≤ ε

}
, G =

supp(γ).
3. ρε ,wε are classical solution of the continuity equation

∂tρ
ε +∇ ·wε = 0 in Rd × (0,1).

4. If (µ,ννν) is also a geodesic,
∫

Rd
φ(ρε

t ,wε
t )dγ

ε ≤ Φ(ρt ,ννν t |γ) = W
p
φ ,γ(µ0,µ1) for every

t ∈ [0,1].

5.3 Absolutely continuous curves and geodesics

We now study absolutely continuous curves with respect to Wφ ,γ and their length. Let us
first recall (see e.g. [3, Chap. 1]) that a curve t 7→ µt ∈ Mloc(Rd), t ∈ [0,T ], is absolutely
continuous w.r.t. Wφ ,γ if there exists a function m ∈ L1(0,T ) such that

Wφ ,γ(µt1 ,µt0)≤
∫ t1

t0
m(t)dt ∀0≤ t0 < t1 ≤ T. (5.25)

The curve has finite p-energy if moreover m ∈ Lp(0,T ). The metric derivative |µ ′| of an
absolutely continuous curve is defined as

|µ ′
t | := lim

h→0

Wφ ,γ(µt+h,µt)
|h|

, (5.26)

and it is possible to prove that |µ ′
t | exists and satisfies |µ ′

t | ≤m(t) for L 1-a.e. t ∈ (0,T ). The
length of µ is then defined as the integral of |µ ′| in the interval (0,T ).

Theorem 5.17 (Absolutely continuous curves and their metric velocity) A curve t 7→ µt ,
t ∈ [0,T ], is absolutely continuous with respect to Wφ ,γ if and only if there exists a Borel
family of measures (ννν t)t∈(0,T ) in Mloc(Rd ;Rd) such that (µ,ννν) ∈ CEφ ,γ(0,T ) and∫ T

0

(
Φ(µt ,ννν t |γ)

)1/p
dt < +∞. (5.27)

In this case we have

|µ ′
t |p ≤Φ(µt ,ννν t |γ) for L 1-a.e. t ∈ (0,T ), (5.28)

and there exists a unique Borel family ν̃νν t such that

|µ ′
t |p = Φ(µt ,ν̃νν t |γ) for L 1-a.e. t ∈ (0,T ). (5.29)
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Proof One implication is trivial: if (µ,ννν) ∈ CEφ ,γ(0,T ) and (5.27) holds, then (5.5) yields

Wφ ,γ(µt1 ,µt0)≤
∫ t1

t0

(
Φ(µt ,ννν t |γ)

)1/p
dt, (5.30)

so that µ is absolutely continuous and (5.28) holds.
Conversely, let us assume that µ is an absolutely continuous curve with length L. A

standard reparametrization results [3, Lemma 1.1.4] shows that it is not restrictive to assume
that µ is a Lipschitz map. We fix an integer N > 0, a step size τ := 2−NT , and a family of
geodesics (µk,N ,νννk,N) ∈ CEφ ,γ((k−1)τ,kτ; µ(k−1)τ → µkτ), k = 1, · · · ,2N , such that

τΦ(µ
k,N
t ,νννk,N

t |γ) = τ
1−p W p

φ ,γ(µ(k−1)τ ,µkτ)≤
∫ kτ

(k−1)τ
|µ ′

t |p dt. (5.31)

Let (µN ,νννN)∈CEφ ,γ(0,T ) be the curve obtained by gluing together all the geodesics (µk,N ,νννk,N).
Applying Corollary 4.10, we can find a subsequence (µNh ,νννNh) and a couple (µ,ννν) ∈
CEφ ,γ(0,T ) such that µ

Nh
t ⇀∗µ̃t for every t ∈ [0,T ] and νννNh⇀∗ννν in Mloc(Rd × (0,T );Rd).

It is immediate to check that µt ≡ µ̃t for every t ∈ [0,T ] and

∫ T

0
|µ ′

t |p dt ≥ liminf
h↑+∞

∫ T

0
Φ(µ

Nh
t ,ννν

Nh
t |γ)dt ≥

∫ T

0
Φ(µt ,ννν t |γ)dt ≥

∫ T

0
|µ̃ ′

t |p dt,

which concludes the proof. ut

Corollary 5.18 (Geodesics) For every µ ∈M+
loc(R

d) the space Mφ ,γ [µ] is a geodesic space,
i.e. every couple µ0,µ1 ∈Mφ ,γ [µ] can be connected by a (minimal, constant speed) geodesic
t ∈ [0,1] 7→ µt ∈Mφ ,γ [µ] such that

Wφ ,γ(µs,µt) = |t− s|Wφ ,γ(µ0,µ1) ∀s, t ∈ [0,1]. (5.32)

All the (minimal, constant speed) geodesics satisfies the continuity equation (4.1) for a Borel
family of vector valued measures (ννν t)t∈(0,1) such that

Φ(µt ,ννν t |γ) = W
p
φ ,γ(µ0,µ1) for a.e. t ∈ (0,1). (5.33)

If φ is strictly convex and sublinear, geodesics are unique.

Remark 5.19 (A formal differential characterization of geodesics) Arguing as in [27, Chap.
3], it would not be difficult to show that a geodesic µt = ρtL

d with respect to W2,α;L d

should satisfy the system of nonlinear PDE’s in Rd × (0,1) ∂tρ +∇ · (ρα
∇ψ) = 0,

∂tψ +
α

2
ρ

α−1∣∣∇ψ
∣∣2 = 0,

for some potential ψ . Unlike the Wasserstein case, however, the two equations are coupled,
and it is not possible to solve the second Hamilton-Jacobi equation in ψ independently of
the first scalar cosnervation law. In the present paper, we do not explore this direction.
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We can give a more precise description of the vector measure ν̃νν satisfying the optimality
condition (5.29). For every measure µ ∈M+

loc(R
d) we set

Tanφ ,γ(µ) :=
{

ννν ∈Mloc(Rd ;Rd) : Φ(µ,ννν |γ) < +∞,

Φ(µ,ννν |γ)≤Φ(µ,ννν +ηηη |γ) ∀ηηη ∈Mloc(Rd ;Rd) : ∇ ·ηηη = 0
}

.
(5.34)

Observe that for every ννν ∈ Mloc(Rd ;Rd) such that Φ(µ,ννν |γ) < +∞ there exists a unique
ν̃νν := Π(ννν)∈Tanφ ,γ(µ) such that ∇·(ν̃νν−ννν)= 0. In fact, the set K(ννν) :=

{
ννν ′ ∈Mloc(Rd ;Rd) :

∇(ννν ′−ννν) = 0
}

is weakly∗ closed and, by the estimate (3.47) the sublevels of the functional
ννν ′ 7→ Φ(µ,ννν ′|γ) are weakly∗ relatively compact. Therefore, a minimizer ν̃νν exists and it is
also unique, being Φ(µ, ·|γ) strictly convex.

Corollary 5.20 Let (µ,ννν) ∈ CEφ ,γ(0,T ) so that µ is absolutely continuous w.r.t. Wφ ,γ . The
vector measure ννν satisfies the optimality condition (5.29) if and only if ννν t ∈ Tanφ ,γ(µt) for
L 1-a.e. t ∈ (0,T ).

Let us consider the particular case of Example 3.5 in the case of a differentiable norm ‖ · ‖
with associated duality map j1 = D‖ · ‖. We denote by jp(w) = ‖w‖p−2 j1(w) the p-duality
map, i.e. the differential of 1

p‖ · ‖
p and we suppose that the concave function h : [0,+∞)→

[0,+∞) satisfies
lim
r↓0

h(r) = lim
r↑+∞

r−1h(r) = 0. (5.35)

For every nonnegative Radon measure µ ∈M+
loc(R

d) whose support is a subset of supp(γ),
we define the Radon measure h(µ|γ) by

h(µ|γ) := h(ρ) · γ where ρ :=
dµ

dγ
. (5.36)

Observe that h(µ|γ)� γ even if µ is singular w.r.t. γ .

Theorem 5.21 Let µ ∈M+
loc(R

d) and φ as in (3.23) with h satisfying (5.35). A vector mea-
sure ννν satisfies Φ(µ,ννν |γ) < +∞ iff ννν = vh(µ|γ) for some vector field v ∈ Lp

h(µ|γ)(R
d ;Rd).

Moreover, ννν ∈ Tanφ ,γ(µ) if and only if the vector field v satisfies

jp(v) ∈
{

∇ζ : ζ ∈C∞
c (Rd)

}Lp
h(µ|γ)(R

d ;Rd)
. (5.37)

Proof Being h sublinear, the functional Φ admits the representation

Φ(µ,ννν |γ) =
∫

Rd
φ(ρ,w)dγ =

∫
Rd

h(ρ)‖w/h(ρ)‖p dγ =
∫

Rd
‖v‖p dh(µ|γ), (5.38)

where µ = ργ + µ⊥ and ννν = wγ = h(ρ)vγ . The condition ννν = vh(µ|γ) ∈ Tanφ ,γ(µ) is then
equivalent to∫

Rd
‖v‖p dh(µ|γ)≤

∫
Rd
‖v+ z‖p dh(µ|γ) ∀z ∈ Lp(h(µ|γ)) : ∇ ·

(
zh(µ|γ)

)
= 0.

Thanks to the convexity of || · ||p, the previous condition is equivalent to∫
Rd

jp(v) · zdh(µ|γ) = 0 ∀z ∈ Lp
h(µ|γ)(R

d ;Rd) :
∫

Rd
z ·∇ζ dh(µ|γ) = 0, (5.39)

i.e. jp(v) belongs to the closure of {∇ζ : ζ ∈C∞
c (Rd)} in Lp

h(µ|γ)(R
d ;Rd). ut
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5.4 Comparison with Wasserstein and Ẇ−1,p distances.

Theorem 5.22 If γ(Rd) < +∞ then for every µ0,µ1 ∈M+
loc(R

d) and α < 1 we have

Wp/θ (µ0,µ1)≤Wp/θ ,1;γ(µ0,µ1)≤ γ(Rd)1/κWp,α;γ(µ0,µ1), (5.40)

where, as usual, θ = (1−α)p+α.

Proof Let (µ,ννν) ∈ CEφp,α ,γ(0,1; µ0 → µ1) be an optimal curve, so that

W p
p,α;γ(µ0,µ1) =

∫ 1

0
Φp,α(µt ,ννν t)dt =

∫ 1

0

∫
Rd

(ρt)θ−p |wt |p dγ dt, (5.41)

where µt := ρtγ + µ⊥
t , ννν t = wtγ � γ . Hölder inequality yields

W p/θ

p/θ ,1;γ(µ0,µ1)≤
∫ 1

0

∫
Rd

(ρt)1−p/θ |wt |p/θ dγ dt ≤ γ(Rd)1−1/θW p/θ

p,α;γ(µ0,µ1). ut

Theorem 5.23 Let us suppose that m̃−k(γ) < +∞, κ = p/(θ −1) = q/(1−α), let µ0,µ1 ∈
P(Rd), and let κ∗ = κ/(κ−1) be the Hölder’s conjugate exponent of κ . Then

‖µ0−µ1‖Ẇ−1,κ∗
γ

= Wκ∗,0;γ(µ0,µ1)≤Wp,α;γ(µ0,µ1). (5.42)

Proof We keep the same notation of the previous Theorem, setting

τ = p/r := 1+ p−θ , τ
∗ :=

τ

τ−1
= 1+

1
p−θ

, x = (τ∗)−1 =
p−θ

1+ p−θ
.

Observing that µt ∈ P(Rd) thanks to Theorem 4.9, we obtain

W r
r,0;γ(µ0,µ1)≤

∫ 1

0

∫
Rd
|wt |r dγ dt =

∫ 1

0

∫
Rd

(
ρt

)x(
ρt

)−x|wt |r dγ dt

≤
∫ 1

0

(∫
Rd

ρ
−xτ |wt |rτ dγ

)1/τ

dt =
(∫ 1

0

∫
Rd

ρ
θ−p|wt |p dγ dt

)1/τ

= W r
p,α;γ(µ0,µ1). ut

Theorem 5.24 (Comparison with Wp) Assume that γ ∈ M+
loc(R

d) is a bounded pertur-
bation of a log-concave measure (e.g. γ = f e−V L d , where V is a convex function and f
nonnegative and bounded). If µi = siγ ∈ P(Rd) with si ∈ L∞(γ) and mp(µi)≤ L < +∞ then
Wφ ,γ(µ0,µ1) < +∞ and there exists a constant C only depending on L, φ , and γ such that

Wφ ,γ(µ0,µ1)≤ CWp(µ0,µ1). (5.43)

Proof It is not restrictive to assume that γ is log-concave. We can then consider the optimal
plan Σ ∈M+(Rd ×Rd) induced by the p-Wasserstein distance (1.1) between µ0 and µ1 and
the interpolant µt defined as

µt(A) = Σ
(
{(x0,x1) ∈ Rd ×Rd : (1− t)x0 + tx1 ∈ A}

)
∀A ∈B(Rd). (5.44)

It is possible to prove (see e.g. [3, Theorems 7.2.2, 8.3.1, 9.4.12]) that µt is the geodesic
interpolant between µ0 and µ1, it satisfies the continuity equation

∂t µt +∇ ·ννν t = 0 in Rd × (0,1)
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with respect to a vector valued measure ννν t = vt µt � µt where the vector field vt satisfies

∫ 1

0
Φp(µt ,ννν t)dt =

∫ 1

0

∫
Rd
|vt(x)|p dµt(x)dt = W p

p (µ0,µ1),

and finally µt = stγ with ‖st‖L∞(γ) ≤ L := max
(
‖s0‖L∞(γ),‖s1‖L∞(γ)

)
. Observe that, being

st(x)≤ L for γ-a.e. x ∈ Rd and φ(0,0) = 0, Theorem 3.1 yields

φ(st ,stvt)≤
st

L
φ(L,Lvt)≤ CLst |vt |p γ-a.e.,

so that

Φ(µt ,ννν t) =
∫

Rd
φ(st ,stvt)dγ(x)≤ CL

∫
Rd
|vt |pst dγ = CL

∫
Rd
|vt |p dµt ,

and therefore

W
p
φ ,γ(µ0,µ1)≤

∫ 1

0
Φ(µt ,ννν t)dt ≤ CL

∫ 1

0

∫
Rd
|vt |p dµt dt = CLW p

p (µ0,µ1). ut

Corollary 5.25 If µi = siL
d ∈ P(Rd) have L∞-densities with compact support (or, more

generally, finite p-momentum), then W
φ ,L d (µ0,µ1) < +∞.

Theorem 5.26 If µi = siγ with si ≥ L > 0 γ-a.e. in Rd , then there exists a constant C de-
pending on L and φ such that

Wφ ,γ(µ0,µ1)≤CL‖µ0−µ1‖Ẇ−1,p
γ

. (5.45)

Proof Let us first observe that if ‖µ0 − µ1‖Ẇ−1,p
γ

< +∞ then there exists w ∈ Lp
γ (Rd ;Rd)

such that

−∇ ·ννν = µ1−µ0, ννν := wγ,
∫

Rd
|w|p dγ = ‖µ0−µ1‖p

Ẇ−1,p
γ

. (5.46)

In fact, in the Banach space X := Lq
γ (Rd ;Rd) we can consider the linear space Y :=

{
Dζ :

ζ ∈C1
c (Rd)

}
and the linear functional

〈`,y〉 :=
∫

Rd
ζ d(µ1−µ0) if y = Dζ for some ζ ∈C1

c (Rd).

` is well defined and satisfies
∣∣〈`,y〉∣∣ ≤ ‖µ0−µ1‖Ẇ−1,p

γ

‖y‖Lq
γ (Rd ;Rd) for every y ∈ Y. Hahn-

Banach Theorem and Riesz representation Theorem yield the existence of w ∈ Lp(Rd ;Rd)
such that 〈`,y〉 =

∫
Rd w · ydγ, which yields (5.46). Setting µt = (1− t)µ0 + tµ1, it is then

immediate to check that (µt ,ννν) ∈ CE(0,1; µ0 → µ1); we can then compute

W
p
φ ,γ(µ0,µ1)≤

∫ 1

0

∫
Rd

φ((1− t)s0 + ts1,w)dγ dt ≤
∫

Rd
φ(L,w)dγ ≤CL

∫
Rd
|w|p dγ,

where we used the fact that (1− t)s0 + ts1 ≥ L γ-almost everywhere and the map ρ 7→
φ(ρ,w) is nonincreasing. ut
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5.5 The case γ = L d and the Heat equation as gradient flow

One of the most interesting cases corresponds to the choice

γ := L d , hα(ρ) := ρ
α , 0 < α < 1, φp,α(ρ,w) := ρ

α |w/ρ
α |p. (5.47)

In this case the expression of the weighted Wasserstein distance becomes

W p
p,α;L d (µ0,µ1) := min

{∫ 1

0

∫
Rd

ρ
α
t |vt |p dxdt : ∂t µ +∇· (ρα v) = 0 in Rd × (0,1)

µt = ρtL
d + µ

⊥
t , µ|t=0

= µ0, µ|t=1
= µ1

}
.

The metric Wp,α;L d restricted to P(Rd) is complete if d < κ = p
θ−1 = q

1−α
.

Remark 5.27 (P(Rd) is not complete w.r.t. Wp,α;L d if d > κ) The above condition is almost
sharp; here is a simple counterexample in the case d > κ . We consider an initial probability
measure with compact support µ0 = ρ0L

d , ρ0 ∈ L∞(Rd), and, for t ≥ 0, the family

µt := ρtL
d , ρt(x) := e−dt

ρ0(e−tx), ννν t := xµt = xρt(x)L d . (5.48)

It is easy to check that (µ,ννν) ∈ CE(0,+∞), µt(Rd) = 1. Evaluating the functional Φt :=
Φp,α(µt ,ννν t |L d) we get

Φt =
∫

Rd
ρ

θ−p
t |ρtx|p dx =

∫
Rd

e−dθ t
ρ

θ
0 (e−dtx)|x|p dx

= edt−dθ t+pt
∫

Rd
e−dt

ρ
θ
0 (e−dtx)|e−dtx|p dx = e(d(1−θ)+p)t

∫
Rd

ρ
θ
0 (y)|y|p dy

so that

Φ
1/p
t = ce(1−d/κ)t ,

∫ +∞

0
Φ

1/p
t dt = c

κ

d−κ
< +∞ if d > κ.

If d > κ we obtain a curve t 7→ µt ∈ P(Rd) of finite length w.r.t. Wp,α;L d (in particular
(µn)n∈N is a Cauchy sequence) such that lim

t↑+∞

µt = 0 in the weak∗ topology.

In the remaining part of this section, we want to study the properties of Wp,α;L d with respect
to the heat flow. We thus introduce

g(x) = g1(x) =
1

(4π)d/2 e−|x|
2/4, gt(x) :=

1
(4πt)d/2 e−|x|

2/4t = t−d/2g1(x/
√

t),

and for every µ ∈M+
loc(R

d) with m̃δ (µ) < +∞ for some δ ≤ 0, we set

St [µ] = µ ∗gt = utL
d , ut(x) = St [µ](x) :=

∫
Rd

gt(x− y)dµ(y). (5.49)

It is well known that u ∈C∞(Rd × (0,+∞)) and

∂tu−∆u = 0 in Rd × (0,+∞), St [µ]⇀∗
µ as t ↓ 0. (5.50)

Theorem 5.28 (Contraction property) Let µ0,µ1 ∈ M+
loc(R

d) with m̃δ (µ i) < +∞ and
W

φ ,L d (µ1,µ2) < +∞. If µ i
t := St [µ i] are the corresponding solutions of the heat flow, then

W
φ ,L d (µ

1
t ,µ

2
t )≤W

φ ,L d (µ
1,µ

2) ∀ t > 0. (5.51)
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Proof It sufficient to approximate the Gaussian kernel g by a family of C∞ kernels kn with
compact support and then apply Theorem 5.15, observing that kn ∗L d = L d . ut

We consider now the particular case of the W2,α;L d weighted distance with α > 1− 2/d.
Let us first introduce the convex density function (recall (1.9))

ψα(ρ) :=
1

(2−α)(1−α)
ρ

2−α , such that ψ
′′
α(ρ) =

1
h(ρ)

= ρ
−α , (5.52)

and the corresponding entropy functional

Ψα(µ) = Ψα(µ|L d) :=
∫

Rd
ψα(ρ)dx, if µ = ρL d �L d . (5.53)

We also introduce the set Q :=
{

µ ∈ P(Rd) : Ψ(µ) < +∞
}
.

Theorem 5.29 If µ ∈ P(Rd) then µt = St [µ] = utL
d ∈ Q for every t > 0, the map t 7→

Ψα(µt) is nonincreasing, and it satisfies the energy identity

Ψα(µt)+
∫ t

s
Φ2,α(ur,∇ur)dr = Ψα(µs) ∀0 < s≤ t < +∞; (5.54)

when µ ∈ Q then the previous identity holds even for s = 0. Moreover, µt satisfies the Evo-
lution Variational Inequality

1
2

d
dt

+
W 2

2,α;L d (µt ,σ)+Ψα(µt)≤Ψα(σ) ∀ t ≥ 0, ∀σ ∈ Q. (5.55)

Proof Since ψ ′′
α(u) = u−α , a direct computation shows

d
dt

∫
Rd

ψα(ut)dx =− d
dt

∫
Rd

∇ut ·∇ψ
′
α(ut)dx =

∫
Rd
|∇ut |2u−α

t dx = Φ2,α(ut ,∇ut).

Concerning (5.55), we use the technique introduced by [12, § 2]: we consider a geodesic
(σs,νννs)s∈[0,1] ∈ CE(0,1;σ → µ), which satisfies σs(Rd) = 1 by Theorem 4.9. We set

σ
ε
s,t = uε

s,tL
d := Sε+st [σs], ν̃νν

ε
s,t = w̃ε

s,tL
d := Sε+st [νννs], wε

s,t := w̃ε
s,t − t∇uε

s,t .

It is not difficult to check that

∂suε
s,t +∇ ·wε

s,t = 0 in Rd × (0,1), (5.56)

so that

W 2
2,α;L d (µε+t ,σ)≤

∫ 1

0
Aε

s,t ds, Aε
s,t :=

∫
Rd

(
uε

s,t
)−α |wε

s,t |2 dx = Φ2,α(σ ε
s,t ,ννν

ε
s,t |L d).

We thus evaluate

Aε
s,t =

∫
Rd

(
uε

s,t
)−α

(
−2t∇uε

s,t ·wε
s,t + |w̃ε

s,t |2− t2|∇uε
s,t |2

)
dx

≤−2t
∫

Rd

(
uε

s,t
)−α

∇uε
s,t ·wε

s,t dx+
∫

Rd

(
uε

s,t
)−α |w̃ε

s,t |2 dx

≤−2t ∂sΨ(σ ε
s,t)+Φ2,α(σs,νννs|L d), (5.57)



37

where we used the facts

∂s

∫
Rd

ψα(uε
s,t)dx

(5.56)=
∫

Rd
∇ψ

′
α(uε

s,t) ·wε
s,t dx

(5.52)=
∫

Rd

(
uε

s,t
)−α

∇uε
s,t ·wε

s,t dx,

∫
Rd

(
uε

s,t
)−α |w̃ε

s,t |2 dx = Φ2,α(σs ∗gε+st ,νννs ∗gε+st |L d)≤Φ2,α(σs,νννs|L d)

thanks to the convolution contraction property of Theorem 2.3. Integrating (5.57) with
respect to s from 0 to 1 and recalling that (σs,νννs)s∈[0,1] is a minimal geodesic and that
σ ε

1,t = µε+t and σ ε
0,t = σ , we get∫ 1

0
Aε

s,t ds+2tΨα(µε+t)≤ 2tΨα(σ)+W 2
2,α;L d (µ,σ). (5.58)

We deduce that

1
2W 2

2,α(µε+t ,σ)+ tΨ(µε+t)≤ tΨ(σ)+ 1
2W 2

2,α(µ,σ). (5.59)

Passing to the limit as ε ↓ 0 and then as t ↓ 0 after dividing the inequality by t we get (5.55)
at t = 0. Recalling the semigroup property of the heat equation, we obtain (5.55) for every
time t ≥ 0. ut

(5.55) is the metric formulation of the gradient flow of the (geodesically convex) functional
Ψα in the metric space (Q,W2,α;L d ), see [3, Chap. 4]. Applying [12, Theorem 3.2] we even-
tually obtain:

Corollary 5.30 (Geodesic convexity of Ψα ) Let α > 1− 2/d, µi = ρiL
d ∈ P(Rd) with

W2,α;L d (µ0,µ1) < +∞ and
∫
Rd ρ

2−α

i dx < +∞, and let µt , t ∈ [0,1], be the minimal speed
geodesic connecting µ0 to µ1 w.r.t. W2,α;L d . Then for every t ∈ [0,1] µt = ρtL

d �L d

∫
Rd

ρ
2−α
t dx ≤ (1− t)

∫
Rd

ρ
2−α

0 dx+ t
∫

Rd
ρ

2−α

1 dx. (5.60)
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12. S. DANERI AND G. SAVARÉ, Eulerian calculus for the displacement convexity in the Wasserstein dis-

tance, Preprint, arXiv:0801.2455v1, ((2008)).
13. E. DE GIORGI, New problems on minimizing movements, in Boundary Value Problems for PDE and

Applications, C. Baiocchi and J. L. Lions, eds., Masson, 1993, pp. 81–98.
14. C. DELLACHERIE AND P.-A. MEYER, Probabilities and potential, vol. 29 of North-Holland Mathemat-

ics Studies, North-Holland Publishing Co., Amsterdam, 1978.
15. J. DOLBEAULT, B. NAZARET, AND G. SAVARÉ, in preparation, (2008).
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20. P. MARÉCHAL, On a functional operation generating convex functions. I. Duality, J. Optim. Theory

Appl., 126 (2005), pp. 175–189.
21. , On a functional operation generating convex functions. II. Algebraic properties, J. Optim. The-

ory Appl., 126 (2005), pp. 357–366.
22. J. NASH, C1 isometric imbeddings., Ann. of Math., (1954).
23. , The imbedding problem for Riemannian manifolds., Ann. of Math., (1956).
24. F. OTTO, Doubly degenerate diffusion equations as steepest descent, Manuscript, (1996).
25. , Evolution of microstructure in unstable porous media flow: a relaxational approach, Comm.

Pure Appl. Math., 52 (1999), pp. 873–915.
26. , The geometry of dissipative evolution equations: the porous medium equation, Comm. Partial

Differential Equations, 26 (2001), pp. 101–174.
27. F. OTTO AND C. VILLANI, Generalization of an inequality by Talagrand and links with the logarithmic

Sobolev inequality, J. Funct. Anal., 173 (2000), pp. 361–400.
28. S. T. RACHEV AND L. RÜSCHENDORF, Mass transportation problems. Vol. I, Probability and its Ap-

plications, Springer-Verlag, New York, 1998. Theory.
29. R. ROCCKAFELLAR, A general correspondence between dual minimax problems and convex problems,

Pacific J. of Math., 25 (1968), pp. 597–611.
30. C. VILLANI, Topics in optimal transportation, vol. 58 of Graduate Studies in Mathematics, American

Mathematical Society, Providence, RI, 2003.
31. C. VILLANI, Optimal Transport, Old and New, Springer Verlag, To appear.


