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Abstract We introduce a new class of distances between nonnegative Radon measures in
R?. They are modeled on the dynamical characterization of the Kantorovich-Rubinstein-
Wasserstein distances proposed by BENAMOU-BRENIER [7] and provide a wide family in-
terpolating between the Wasserstein and the homogeneous Wy_l’p -Sobolev distances.

From the point of view of optimal transport theory, these distances minimize a dynamical
cost to move a given initial distribution of mass to a final configuration. An important dif-
ference with the classical setting in mass transport theory is that the cost not only depends
on the velocity of the moving particles but also on the densities of the intermediate configu-
rations with respect to a given reference measure 7.

We study the topological and geometric properties of these new distances, comparing them
with the notion of weak convergence of measures and the well established Kantorovich-
Rubinstein-Wasserstein theory. An example of possible applications to the geometric theory
of gradient flows is also given.

Keywords Optimal transport - Kantorovich-Rubinstein-Wasserstein distance - Continuity
equation - Gradient flows

1 Introduction

Starting from the contributions by Y. BRENIER, R. MCCANN, W. GANGBO, L.C. EVANS,
F. OtTO, C. VILLANI [9,18,25,17,27], the theory of Optimal Transportation has received
a lot of attention and many deep applications to various mathematical fields, such as PDE’s,
Calculus of Variations, functional and geometric inequalities, geometry of metric-measure
spaces, have been found (we refer here to the monographs [28,16,30,3,31]). Among all pos-
sible transportation costs, those inducing the so-called L”-KANTOROVICH-RUBINSTEIN-
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WASSERSTEIN distances W, (Lo, U1 ), p € (1,400), between two probability measures , v €
P(RY)

1
Wy (o, 1) :—inf{ (/Rded Iy—x\”dl)] > GF(uo,ul)} (1.1)

play a distinguished role. Here I" (o, i11) is the set of all couplings between g and 1 : they
are probability measures £ on R? x R? whose first and second marginals are respectively
Uo and g, i.e. Z(B x RY) = ug(B) and X(R? x B) = u; (B) for all Borel sets B € B(R?).

It was one of the most surprising achievement of [24,25,19,26] that many evolution
partial differential equations of the form

ar
ap+V-(pl€|"%)=0, &= —V(%) inRY x (0,400), (1.2

can be, at least formally, interpreted as gradient flows of suitable integral functionals .#
with respect to W), (see also the general approach developed in [30,3,31]). In (1.2) 6.% /6p
is the Euler first variation of .#, ¢ := p/(p — 1) is the Holder’s conjugate exponent of p,
and ¢ — p; (a time dependent solution of (1.2)) can be interpreted as a flow of probability
measures i, = p, ¢ with density p, with respect to the Lebesgue measure .#¢ in R,

Besides showing deep relations with entropy estimates and functional inequalities [27],
this point of view provides a powerful variational method to prove existence of solutions to
(1.2), by the so-called Minimizing movement scheme [19,13,3]: given a time step T > 0 and
an initial datum po = p.2¢, the solution i, = p,.%“ at time ¢ ~ nt can be approximated by
the discrete solution u7 obtained by a recursive minimization of the functional

k -
”HPTP_IW;(ILNT)—FQ(M)’ k=0,1,--- (1.3)
The link between the Wasserstein distance and equations exhibiting the characteristic struc-
ture of (1.2) (in particular the presence of the diffusion coefficient p, the fact that & is a
gradient vector field, and the presence of the g-duality map & — |E|972 &), is well explained
by the dynamic characterization of W), introduced by BENAMOU-BRENIER [7]: it relies in

the minimization of the “action” integral functional

W) =it { [ [ o) ol aear

(1.4)
APV (pvi) =0in R x (0,1), po=p|_ 2%, = p|t:1,§,”d}.

Towards more general cost functionals. If one is interested to study the more general class

of diffusion equations

0F

dp+V-(h(p)|E]*7E) =0, &= fv(g) in RY x (0, +o0), (1.5)

obtained from (1.2) replacing the mobility coefficient p by an increasing nonlinear function
h(p), h: [0,400) — [0,+00) whose typical examples are the functions i(p) = p%*, o0 > 0, it
is then natural to investigate the properties of the “distance”

~ 1
W5 (oopt) =int { [ [ n(pu(0) v)|”dvar :

(1.6)
i+ V- (h(p)vi) =0inRY x (0,1), po=p|_ 24, = p|t:1,,2”d}.



In the limiting case oo = 0, h(p) = 1, one can easily recognize that (1.6) provides an equiv-
alent description of the homogeneous (dual) w-lp (Rd ) Sobolev (pseudo)-distance

110 = 11 Iy 1 e izsup{/RdCd(#O*#l) L eCRY), /]R IDg|4dx < 1}. (1.7)

Thus the distances defined by (1.6) for 0 < o < 1 (we shall see that this is the natural
range for the parameter ¢¢) can be considered as a natural “interpolating” family between
the Wasserstein and the (dual) Sobolev ones.

Notice that if one wants to keep the usual transport interpretation given by a “dynamic
cost” to be minimized along the solution of the continuity equation, one can simply introduce
the velocity vector field V, := pflh(p,)v, and minimize the cost

1 _
[ [ preimirasa, whee fip):= (1) ; (1.8)
0 Jra h(p)

Therefore, in this model the usual p-energy [pa p¢|¥;|P dx of the moving masses p; with
velocity ¥, results locally modified by a factor f(p;) depending on the local density of the

mass occupied at the time ¢. Different non-local models have been considered in [8,4].
In the present paper we try to present a systematic study of these families of intermediate
distances, in view of possible applications, e.g., to the study of evolution equations like (1.5),

the Minimizing movement approach (1.3), and functional inequalities.

Examples: PDE’s as gradient flows. Let us show a few examples evolution equations which
can be formally interpreted as gradient flows of suitable integral functionals in this setting:
the scalar conservation law

op—V-(p*VV) =0 corresponds to the linear functional .Z(p) := /d V(x)pdx,
R

for some smooth potential V : R? — R and p = 2. Choosing for m > 0

(m+1—a)m—a)’

p= 27 ﬂ(p) =Ca,m /pm+17(xdx’ Com =
one gets the porous media/fast diffusion equation
8fpfiav- (p*Vp" %) =dp—Ap" =0, (1.9)
m—

and in particular the heat equation for the entropy functional m i p?~%dx. Choosing

m+2g-3—a m(g—1)7
=Cam -1 dx7 mg = )
F(p)=ca ,q'/p ’ Coma = iy 2g—3—a)(m+q—2—a)

one obtains the doubly nonlinear equation
dp—mV-(p" '|Vp|*2Vp) =0 (1.10)

and in particular the evolution equation for the g-Laplacian when m = 1. The Dirichlet
integral for p =2

1
F(p)= E/\Vp\de yields dp+V-(p*VAp) =0, (1.11)

a thin-film like equation.



The measure-theoretic point of view: Wasserstein distance. We present now the main points
of our approach (see also, in a different context, [10]). First of all, even if the language of
densities and vector fields (as p and v,V in (1.4) or (1.6)) is simpler and suggests inter-
esting interpretations, the natural framework for considering the variational problems (1.4)
and (1.6) is provided by time dependent families of Radon measures in R?. Following this
point of view, one can replace p, by a continuous curve ¢ € [0,1] — , (4, = p,.Z¢ in the
absolutely continuous case) in the space le)c(]Rd ) of nonnegative Radon measures in R¢
endowed with the usual weak* topology induced by the duality with functions in C?(R?).
The (Borel) vector field v, in (1.4) induces a time dependent family of vector measures
V; := W, v, < L. In terms of the couple (i, V) the continuity equation (1.4) reads

Ol +V-v; =0 in the sense of distributions in Z'(R? x (0, 1)), (1.12)

and it is now a linear equation. Since v; = dv,/dy, is the density of v, w.r.t. ;, the action
functional which has to be minimized in (1.4) can be written as

p

1 .
Saluy) = [ epuuvyd @pumv)i= [ |F a3

R4

du
Notice that in the case of absolutely continuous measures with respect to %4, i.e. u = p.£¢
and v = w.%?, the functional @), 1 can also be expressed as

w P

Ba(0v)i= [ 01 (WAL, 0palpm)i=p (1.14)

Denoting by C&€(0, 1) the class of measure-valued distributional solutions i,V of the con-
tinuity equation (1.12), we end up with the equivalent characterization of the Kantorovich-
Rubinstein-Wasserstein distance

WY (o, t1) ::inf{éa,,_,l(u,v) (V) €CE0, 1), 1),y = Mo, 1,_, :ul}- (1.15)

Structural properties and convexity issues. The density function ¢ = ¢, | : (0,+00) x R —
R¢ appearing in (1.14) exhibits some crucial features

1. w— ¢(-,w) is symmetric, positive (when w # 0), and p-homogeneous with respect
to the vector variable w: this ensures that W), is symmetric and satisfies the triangular
inequality.

2. ¢ is jointly convex in (0, +o0) x R: this ensures that the functional @, ; (and therefore
also &) defined in (1.13) is lower semicontinuous with respect to the weak™ convergence
of Radon measures. It is then possible to show that the infimum in (1.15) is attained, as
soon as it is finite (i.e. when there exists at least one curve (i, v) € €€(0,1) with finite
energy &(u, V) joining o to p); in particular Wy, (o, i) = 0 yields po = . Moreover,
the distance map (o, 1) — Wy (o, 1) is lower semicontinuous with respect to the
weak™ convergence, a crucial property in many variational problems involving W, as
(1.3).

3. ¢ is jointly positively 1-homogeneous: this a distinguished feature of the Wasserstein
case, which shows that the functional &, ; depends only on i, v and not on the Lebesgue
measure .#¢, even if it can be represented as in (1.14). In other words, suppose that
i = pyand v = Wy, where ¥ is another reference (Radon, nonnegative) measure in R?.
Then

Dy 1 (1, v) = /Rd Op.1(P,W)dy. (1.16)



As we will show in this paper, the 1-homogeneity assumption yields also two “quantita-
tive” properties: if  is a probability measure, then any solution (i, V) of the continuity
equation (1.12) with finite energy &(u,Vv) < oo still preserves the mass y;(RY) = 1
for every time ¢ > 0 (and it is therefore equivalent to assume this condition in the def-
inition of C€(0, 1), see e.g. [3, Chap. 8]). Moreover, if the p-moment of 1y m, (o) :=
Jwa |X|P duo(x) is finite, then W), (o, 1) < oo if and only if mp, (1) < +eo.

Main definitions. Starting from the above remarks, it is then natural to consider the more
general case when the density functional ¢ : (0,-+o0) x RY — [0, 4-0) still satisfies 1. (p-
homogeneity w.r.t. w) and 2. (convexity), but not 3. (1-homogeneity). Due to this last choice,
the associated integral functional @ is no more independent of a reference measure Y and it
seems therefore too restrictive to consider only the case of the Lebesgue measure y = .27,
In the present paper we will thus introduce a further nonnegative reference Radon mea-
sure Y € M; (RY) and a general convex functional ¢ : (0,+c0) x R? — [0,+00) which is
p-homogeneous w.r.t. its second (vector) variable and non degenerate (i.e. ¢(p,w) > 0 if
w = 0). Particularly interesting examples of density functionals ¢, corresponding to (1.6),

are given by
p

Ml (1.17)

h(p)

where & : (0,400) — (0,4c0) is an increasing and concave function; the concavity of h
is a necessary and sufficient condition for the convexity of ¢ in (1.17) (see [29] and §3).
Choosing h(p) := p%, a € (0,1), one obtains

¢(p,w) == h(p)

p
Y =ptrwr,  0:=(1-a)ptac(l,p), (1.18)

Opa(p,w):=p* oo

which is jointly 6-homogeneous in (p,w).
In the case, e.g., when o < 1 in (1.18) or more generally lim,1.. 2(p)/p = 0, the reces-
sion function of ¢ satisfies

¢°°(p,w):ll%m A lo(Ap, AW) =40 ifp,w#£0, (1.19)
o0
so that the associated integral functional reads as

D(u,v]y) == /qu)(p,vv)dy L=py+us, v=wy<y, (1.20)
extended to +oo when V is not absolutely continuous with respect to y or supp(tt) ¢ supp(7).
Notice that only the density p of the y-absolutely continuous part of u enters in the func-
tional, but the functional could be finite even if u has a singular part ut. This choice is

crucial in order to obtain a lower semicontinuous functional w.r.t. weak* convergence of
measures. The associated (¢, y)-Wasserstein distance is therefore

Wi (Ko, pr) = inf{rﬁv,y(u,V) (1, v) € CE(0,1), 1,y = Ho, K|, =t } (1.21)

where the energy &y , of a curve (u,v) € CE(0,1) is

1
Sosv)i= [ @l viyar (1.22)



The most important case associated to the functional (1.18) deserves the distinguished nota-
tion
Wpasy(+57) =W, 4y (+57). (1.23)

The limiting case &¢ = 8 = 1 corresponds to the L”-Wasserstein distance, the Sobolev WY_ L.p
corresponds to & = 0, 6 = p. The choice of 7y allows for a great flexibility: besides the
Lebesgue measure in RY, we quote

- yi=29,,
with the choice (1.17) and v = w/h(p), (1.12) is a weak formulation of the continuity
equation (nyg being the exterior unit normal to dQ)

Q being an open subset of RY. The measures are then supported in Q and,

pr+V-(h(p)vi) =0 inQx(0,1), vi-myg=0 ondQ. (1.24)

This choice is useful for studying equations (1.9) (see [11]), (1.10), (1.11) in bounded
domains with Neumann boundary conditions.

— y:=e"V % for some C' potential V : RY — R. With the choice (1.17) and v = w/h(p)
(1.12) is a weak formulation of the equation

aipr +V - (h(p) Vi) —h(p)VV v, =0 inR?x(0,1). (1.25)

When h(p) = p%, p = 2, the gradient flow of Z(u) := m Jra p?>~%dy is the
Kolmogorov-Fokker-Planck equations [15]

U —Au—V-(uVv)=0, p—Ap+VV-Vp=0,

which in the Wasserstein framework is generated by the logarithmic entropy ([19,3,5]).
- y:= z%"k|M, M being a smooth k-dimensional manifold embedded in R? with the Rie-

mannian metric induced by the Euclidean distance; 7% denotes the k-dimensional Haus-
dorff measure. (1.12) is a weak formulation of

9pr +divig (h(p)v;) =0 onMx (0,1). (1.26)

Thanks to Nash embedding theorems [22,23], the study of the continuity equation and of
the weighted Wasserstein distances on arbitrary Riemannian manifolds can be reduced
to this case, which could be therefore applied to study equations (1.9), (1.10), (1.11) on
Riemannian manifolds.

Main results. Let us now summarize some of the main properties of W), o.(-,) we will
prove in the last section of the present paper. In order to deal with distances (instead of
pseudo-distances, possibly assuming the value +o0), for a nonnegative Radon measure &
we will denote by M, 4;y[0] the set of all measures p with W), ¢;y(1t,0) < +oc0 endowed
with the W), 4.,-distance.

M p,a:y[0] is a complete metric space (Theorem 5.7).

W), a:y induces a stronger convergence than the usual weak® one (Theorem 5.5).
Bounded sets in M, ¢;y[0] are weakly* relatively compact (Theorem 5.5).

The map (o, 1) — Wp a:y(Ho, 1) is weakly* lower semicontinuous (Theorem 5.6),
convex (Theorem 5.11), and subadditive (Theorem 5.12). It enjoys some useful mono-
tonicity properties with respect to y (Proposition 5.14) and to convolution (Theorem
5.15).

L=



5. The infimum in (1.15) is attained, M, ;y[0] is a geodesic space (Theorem 5.4), and
constant speed geodesics connecting two measures [, (1 are unique (Theorem 5.11).
6. If
/ WP/ OVdy(x) < 400 O=(1—a)p+a, —L—=-T_ (@127
Jx|>1 6-1 l-«
and o € P(RY), then M, ¢;y[0] C P(R?) (Theorem 5.8). If moreover ¥ satisfies stronger
summability assumptions, then the distances W), ., provide a control of various mo-
ments of the measures (Theorem 5.9). Comparison results with W), and WL are also
discussed in §5.4.
7. Absolutely continuous curves w.r.t. W, 4.y can be characterized in completely analogous
ways as in the Wasserstein case (§5.3).
8. In the case ¥ = .2¢ the functional

» P> %dx p=psi< (1.28)

1
Wo(uly) := [PE )

is geodesically convex w.r.t. the distance W, ;. o« and the heat equation in RY s its
gradient flow, as formally suggested by (1.9) (§5.5: we prove this property in the case
o >1—2/d, when P(R?) is complete w.r.t. W, . )

Plan of the paper. Section 2 recalls some basic notation and preliminary facts about weak*
convergence and integral functionals of Radon measures; 2.3 recalls a simple duality result
in convex analysis, which plays a crucial role in the analysis of the integrand ¢ (p,w).

The third section is devoted to the class of admissible action integral functionals & like
(1.20) and their density ¢. Starting from a few basic structural assumptions on ¢ we deduce
its main properties and we present some important examples in Section 3.2. The correspond-
ing properties of @ (in particular, lower semicontinuity and relaxation with respect to weak*
convergence, monotonicity, etc) are considered in Section 3.3.

Section 4 is devoted to the study of measure-valued solutions of the continuity equation
(1.12). It starts with some preliminary basic results, which extend the theory presented in
[3] to the case of general Radon measures: this extension is motivated by the fact that the
class of probability measures (and therefore with finite mass) is too restrictive to study the
distances W), oy, in particular when y(RY) = +oo as in the case of the Lebesgue measure.
We shall see (Remark 5.27) that P(R?) with the distance W, o.pa is not complete if d >
p/(0—1)=¢q/(1— ). We consider in Section 4.2 the class of solutions of (1.12) with finite
energy &y y (1.22), deriving all basic estimates to control their mass and momentum.

As we briefly showed, Section 5 contains all main results of the paper concerning the
modified Wasserstein distances.

2 Notation and preliminaries

Here is a list of the main notation used throughout the paper:

Bgr The open ball (in some R") of radius R centered at 0
B(R")  (resp. B.(R")) Borel subsets of R” (resp. with compact closure)
P(RM) Borel probability measures in R”

MR (resp. ML (RM) Finite (resp. Radon), nonnegative Borel measures on R”
P(R") Borel probability measures in R”



M (R R™) R"™-valued Borel measures with finite variation

Mioe (RE;R™) R"™-valued Radon measures

[leel Total variation of g € Mo (R";R™), see (2.2)
C)(RM) Continuous and bounded real functions

mp (L) p-moment [pq |x|Pdp of u € M*H(R)

/ae Recession function of y, see (2.4)

¥(uly), ®(u,v|y) Integral functionals on measures, see 2.2 and 3.3
/.L(g), <”7 C)v <#7§> the integrals fRd Cd#» fRd g -dp
CE(0,T),CE44(0,T), Classes of measure-valued solutions of the continuity
CE(0,T; o — 1) equation, see Def. 4.2 and Sec. 4.2.

2.1 Measures and weak convergence

We recall some basic notation and properties of weak convergence of (vector) radon mea-
sures (see e.g. [2]). A Radon vector measure in MIOC(R”;R’") is a R™-valued map U :
B (R") — R™ defined on the Borel sets of R" with compact closure. We identify p €
Mioe (R R™) with a vector (!, u?,- -, u™) of m measures in Mo (R"): its integral with a
continuous vector valued function with compact support § € C?(R"; R™) is given by

W)= [,cm=3 [ Cwaty e

It is well known that Mo (R";R™) can be identified with the dual of C?(R";R™) by the
above duality pairing and it is therefore endowed with the corresponding of weak™ topology.
If || - || is a norm in R? with dual | - ||+ (in particular the euclidean norm | - |) for every open
subset A C R" we have

el =sww{ [ C-au: spp@)ca, [EI<1 vxeR}) @)

(|| is in fact a Radon positive measure in M (R") and g admits the polar decomposition

1 = w||ut|| where the Borel vector field w belongs to L .(||pt||; R™). We thus have
W)= [ ¢-du=[ C-walul. 3
R R

If (1, )ren is a sequence in Mioe(R";R™) with sup,, ||ft|(Bg) < oo for every open ball
Bg, then it is possible to extract a subsequence p, weakly* convergent to y € M(RR™),

whose total variation ||, || weakly” converges to A € MH(R?) with ||| < A.

2.2 Convex functionals defined on Radon measures

Let y : R™ — [0, 4o0] be a convex and lower semicontinuous function with y(0) = 0, whose
proper domain D(y) := {x € R™: y(x) < +oo} has non empty interior. Its recession function
(see e.g. [2]) v : R™ — [0, +o0] is defined as

y=(y) = lim = sup . 2.4)



W™ is still convex, lower semicontinuous, and positively 1-homogeneous, so that its proper
domain D(y™) is a convex cone always containing 0. We say that

v has a superlinear growth if y*(y) = o for every y # 0: D(y”™) = {0}, 2.5)
y has a sublinear growth if y™(y) = 0 for every y € R™. '

Letnow y€ M (R") and gt € My, (R”; R™) with supp(i) C supp(7); the Lebesgue decom-

loc

position of gt w.r.t. yreads g = 9y-+ut, where ® = du /dy. We can introduce a nonnegative
Radon measure 6 € M, (R") such that p* = 910 < 0, e.g. 0 =|u’| and we set

vl = [ @A, R = [ v Ee)doh). 26
and finally

P(uly) :=Puly) +P=(ly); P (1|y) = +ooif supp(p) Z supp(y). (2.7

Since y* is 1-homogeneous, the definition of ¥* depends on 7y only through its support and
it is independent of the particular choice of ¢ in (2.6). When y has a superlinear growth then
the functional ¥ is finite iff g < y and P*(u|y) is finite; in this case ¥ (u|y) = ¥P*(uly).

Theorem 2.1 (L.s.c. and relaxation of integral functionals of measures [1,2]) Let us con-
sider two sequences ¥, € Mt (R"), 1, € Mioe (R"; R™) weakly* converging to y € M- (R")

loc loc

and P € Mo (R";R™) respectively. We have

liminf P, m) =Py 2.8)

Let conversely W,y be such that W (l|y) < +oo. Then there exists a sequence L, = B,y <Ky
weakly* converging to | such that

lim ¥9(p,|y) = lim [ y(8,(x))dy(x) =¥ (u]y). 2.9
nl+oo nl+o JRA

Theorem 2.2 (Montonicity w.r.t. ¥) If vi < 9 then
¥(plr) <¥mln). (2.10)

Proof Thanks to Theorem 2.1, it is sufficient to prove the above inequality for p < 7', Since
71 = 07, with density 6 < 1 p-a.e., we have 1 = ¥’y with 9> = 69", and therefore

[ w@nan=[ wesedr> [ s, @.11)

where we used the property Oy(8~'x) > y(x) for 6 < 1, being y(0) = 0. O

Theorem 2.3 (Monotonicity with respect to convolution) If k € C(R?) is a convolution
kernel satisfying k(x) >0, [pak(x)dx =1, then

P (uxk|y«k) < ¥(uly). (2.12)

The proof follows the same argument of [3, Lemma 8.1.10], by observing that the map
(x,y) — xy(y/x) is convex and positively 1-homogeneous in (0, +o0) x R,
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2.3 A duality result in convex analysis

Let X,Y be Banach spaces and let A be an open convex subset of X. We consider a convex
(and a fortiori continuous) function ¢ : A x Y — R and its partial Legendre transform

é(xvy*) = Sull/) <y*7y> —¢(X,y) € (_°°7+°°]7 Vx 6A7 y* € Y. (213)
ye

The following duality result is well known in the framework of minimax problems [29].

Theorem 2.4 ¢ is a Ls.c. function and there exists a convex set Y,” C Y* such that

O(x,y") <+ & Yy eV (2.14)
so that §(-,y") = +oo for every y* € Y*\ Y and ¢ admits the dual representation formula

¢(x,y) = sup (y,y*)—d(x,y") VxecA, yeY. (2.15)
yeyYy

For every y* € Y\ we have
the map x> §(x,y*) is concave (and continuous) in A. (2.16)

Conversely, a function ¢ : A XY — R is convex if it admits the dual representation (2.15) for
a function ¢ satisfying (2.16).

Proof Let us first show that (2.16) holds. For a fixed y* € Y*, xo,x; > 0, 6 € [0,1], and
arbitrary y; € Y, we get

F((1—=0)xo+0x1,5") = (", (1= 0)yo+ Oy1) — 9 ((1 = B)xo + Bxy, (1 — )yo + Oy1)
> (1-9) ((y*7y0> - ¢(x07)’0)) +9 ((y*,y1> - ¢(X1,y1)) :
Taking the supremum with respect to yg,y; we eventually get
(1= B)xo+0x1,") > (1= 8)§ (x0,5") + 99 (x1,5") 2.17)
and we conclude that ¢ (-,y*) is concave. In particular, if it takes the value +oo at some point
it should be identically +co so that (2.14) holds.

The converse implication is even easier, since (2.15) exhibits ¢ as a supremum of con-
tinuous and convex functions (jointly inx € A,y € Y). a

3 Action functionals

The aim of this section is to study some property of integral functionals of the type

fb"(mvm::/Rd(P(p,w)d% H=pYEM(RY), v=wyeMou(RERY) G

and their relaxation, when ¢ satisfies suitable convexity and homogeneity properties.



3.1 Action density functions

Let us therefore consider a nonnegative density function ¢ : (0, 4o0) x R? — [0, +0) and an
exponent p € (1,4o0) satisfying the following assumptions

¢ is convex and (a fortiori) continuous, (3.2a)

w — ¢ (-, w) is homogeneous of degree p, i.e.

d (3.2b)
o(p,Aw) =A[P¢(p,w) Vp>0,1 R, weRS,
Jpo>0: ¢(po,-) isnon degenerate, i.e. d(po,w) >0 VYweRIN\{0}. (3.2¢)

Let ¢ = p/(p —1) € (1,+0) be the usual conjugate exponent of p. We denote by ¢ :
(0,+00) x R? — (—oo, +oo] the partial Legendre transform

1~ 1
~¢(p,2):= sup z-w——9(p,w) Vp>0,zeR (3.2d)
q weRd p

We collect some useful properties of such functions in the following result.

Theorem 3.1 Let ¢ : (0,4o0) x RY — RY satisfy (3.2a,b,c). Then

1. For every p > 0 the function w — (])(p,w)l/” is a norm of R? whose dual norm is given
byz— ¢(p,z)'/4, ie.
W-Z

~ W-Z
§(p,2)"/* = sup 9(p,w)"/? = sup

_ 7'. 3.3
o W) e O

In particular §(-,z) is g-homogeneous with respect to 1.
2. The marginal conjugate function § takes its values in [0,+00) and for every z € R?
the map p — ¢(p,z) is concave and non decreasing in (0, +oo). 3.4)
In particular, for every w € R?
the map p — ¢(p,w) is convex and non increasing in (0,4c). 3.5

3. There exist constants a,b > 0 such that
d(p,z) < (a+bp)lz|?, ¢(p,z) > (a+bp)17p|w|p Vp>0,zwcR (3.6)

4. For every closed interval [po, p1] C (0,400) there exists a constant C = Cp p, > 0 such
that for every p € [po, pi]

ClwlP <o(p,w) <Clw|’, C'z|9<d(p,z) <Clz|? Yw,zeR’ (3.7

Equivalently, a function ¢ satisfies (3.2a,b,c) if and only if it admits the dual representation

formula

1 1.
—¢(p,w)=supw-z——9(p,z) Vp>0,weR’ (3.8)
p zeRd q

where ¢ : (0,4-00) x R? — (0, +0) is a nonnegative function which is convex and g-homogeneous
w.r.t. Z and concave with respect to p.
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Proof Let us first assume that ¢ satisfies (3.2a,b,c). The function w — ¢(p,w)!/? is 1-
homogeneous and its sublevels are convex, i.e. it is the gauge function of a (symmetric)
convex set and therefore it is a (semi)-norm. The concavity of ¢ follows from Theorem
2.4; taking w = 0 in (3.2d), we easily get that ¢ is nonnegative; (3.2¢) yields, for a suitable
constant ¢y > 0,

¢ (po, W) > colw|” YweR? sothat ¢(py,z) <colz]! <+ VzeRY (3.9

Still applying Theorem 2.4, we obtain that p — ¢(p,z) is finite, strictly positive and nonde-
creasing in the interval (0, +c0). Since ¢(p,0) = 0 we easily get

$(p,2) < §(po,z) <colz]! VzeR?, p € (0,p0); (3.10)
¢(p,2z) < % #(po,z) < %p\zlq VzeR’, p € (po,+eo). (3.11)
0

Combining the last two bounds we get (3.6). (3.7) follows by homogeneity and by the fact
that the continuous map ¢ has a maximum and a strictly positive minimum on the compact
set [po,p1] x {(w e R : |w| =1}

The final assertion concerning (3.8) still follows by Theorem 2.4. a

3.2 Examples

Example 3.2 Our main example is provided by the function
¢z.,a(p,W)=;Vf, ba(p,z):=p%z?,  0<a<l. (3.12)
Observe that ¢ 4 is positively 8-homogeneous, 8 :=2 —a, i.e.
tr.a(Ap,Aw) =229 (p,w) VA,p >0, we R (3.13)

It can be considered as a family of interpolating densities between the case oo = 0, when

20(p. W) := W[, (3.14)
and o = 1, corresponding to the 1-homogeneous functional

[w?

»1(p,W) 1= —— (3.15)

Example 3.3 More generally, we introduce a concave function / : (0, 4+c0) — (0, 4-c0), which
is a fortiori continuous and nondecreasing, and we consider the density function

Iwi®
h(p)’

If 1 is of class C?, we can express the concavity condition in terms of the function g(p) :=

1/h(p) as

o(p,w):= ¢(p.z) :=h(p)|w|*. (3.16)

hisconcave < g"(p)g(p) >2(d'(p))° Vp >0, (3.17)

which is related to a condition introduced in [6, Section 2.2, (2.12¢)] to study entropy func-
tionals.



Example 3.4 We consider matrix-valued functions H, G : (0, +e0) — M¢*¢ such that
H(p),G(p) are symmetric and positive definite, H(p) = G~ !(p) Vp >0. (3.18)
They induce the action density ¢ : (0, +-00) x R? — [0, +o0) defined as
o(p,w) = (G(p)w,w) = (H' (p)w,w). (3.19)
Taking into account Theorem 3.1, ¢ satisfies conditions (3.2) if and only if the maps
p— (H(p)w,w) are concave in (0,4e0) VYweR? (3.20)
Equivalently,
H((1=9)po+9p1) > (1 —)H(po) + BH(p1) as quadratic forms. (3.21)
When G is of class C? this is also equivalent to ask that
G"(p) 22G(p)H(p)G'(p)  Vp >0, (3.22)

in the sense of the associated quadratic forms. In fact, differentiating H = G~! with respect
to p we get
H = —-HG'H, H"=-HG"H+2HG HG'H,
so that
d2
o (H(p)w,w) = — (G"W, W) +2(G'HG'W,W) where W :=Hw;
we eventually recall that H(p) is invertible for every p > 0.
Example 3.5 Let ||- || be any norm in RY with dual norm | - ||, and let /1 : (0, +o0) — (0, +-e0)
be a concave (continuous, nondecreasing) function as in Example 3.3. We can thus consider

P

. $(p.z) = h(p)]lzl|{. (3.23)

h(p)
See [20,21] for a in-depth study of this class of functions.

‘ w

¢ (p,w) = h(p)

Example 3.6 ((a-0)-homogeneous functionals) In the particular case h(p) := p® the func-
tional ¢ of the previous example is jointly positively 8-homogeneous, with 6 := o + (1 —
o) p. This is in fact the most general example of 6-homogeneous functional, since if ¢ is
6-positively homogeneous, 1 < 6 < p, then

_ p—0
o(p.w) =p°o(1,w/p) =p°"o(1.w) = p*|lw/p|", o= ey (3.24)
where ||w|| := ¢(1,w)!/? is a norm in R? by Theorem 3.1. The dual marginal density ¢ in
this case takes the form
$(p,2) =p®[z|¢ Vp>0,zeR?, (3.25)
and it is ¢ + a-homogeneous. Notice that ¢ and 0 are related by
6 + ¢ _ 1. (3.26)
P q
In the particular case when || - || = || - ||« = | -| is the Euclidean norm, we set as in (3.16)
P
¢p,(x(P,W) = pa p7 ’ d’q,a(PaZ) = pa‘zlq’ OS(XS 1. (327)
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3.3 The action functional on measures

Lower semicontinuity envelope and recession function. Thanks to the monotonicity prop-
erty (3.5), we can extend ¢ also for p = 0 by setting for every w € R?

¢(0,0) =0,

0(0,w) >0 ifw=#£0. (3.28)

¢(0,w) =supd(p,w) =1im¢(p,w); in particular {
p>0 plO

When p < 0 we simply set ¢(p,w) = oo, observing that this extension is lower semicon-
tinuous in R x R?. It is not difficult to check that ¢ (0, -) satisfies an analogous formula

$(0,z) = sup z-w—¢(0,w) = inf ¢(p,z) =lim(p,z) vz e R (3.29)
p>0 [

weRd

Observe that, as in the (a-60)-homogeneous case of Example 3.6 with a > 0,

$(0,2)=0 = ¢(o,w):{;°° i:ig (3.30)

As in (2.4), we also introduce the recession functional

67(p.w) = sup 5 6(2p,Aw) = lim —0(Ap,Aw) = lim AP o(Ap.w). (3D
A>0 Al+eo A Al-oo

¢ is still convex, p-homogeneous w.r.t. w, and L.s.c. with values in [0, +oo]; moreover, it is
1-homogeneous so that it can be expressed as

o (w) _ o0 if 0
o (p.w)—14 P71 PO (w/p)  ifp#0, (3.32)
+oo ifp=0and w#0,

where ¢ : RY — [0, +o0] is a convex and p-homogeneous function which is non degenerate,
i.e. =(w) > 0if w #£ 0. ¢* admits a dual representation, based on

RN [ P
¢”(z) := inf -9(A,2) = Aim o ¢(Ap,z). (3.33)

@™ is finite, convex, nonnegative, and g-homogeneous, so that ¢=(z) 1/4 is a seminorm,
which does not vanish at z € R? if and only if p — ¢ (p,z) has alinear growth when p T +oo.
It is easy to check that

= (w)/P = sup{w-z 197(z) < 1}. (3.34)

In the case ¢ has a sublinear growth w.r.t. p, as for (a-8)-homogeneous functionals with
a < 1 (see Example 3.6), we have in particular

oo = o0 if w=£0,
when ¢7(z) =0, o= (w) = {0 - i 0 (3.35)
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The action functional. Let v, i € M (R?) be nonnegative Radon measures and let v €

Mioe (RY; R?) be a vector Radon measure on R?. We assume that supp (), supp(v) C supp(¥),
and we write their Lebesgue decomposition with respect to the reference measure y

wi=py+upt, v:i=wy+vt (3.36)
We can always introduce a nonnegative Radon measure ¢ € M* () such that uy* = pto <«

o,V =wlo < 0,eg o:=pu’+|vt|. We can thus define the action functional

D(p,v[y) = D (1, vIy) + D7 (1, V) = /Rd ¢(p,w)d7+(/ﬂ'§d¢°°(p%wl)dc. (3.37)

Observe that, being ¢~ 1-homogeneous, this definition is independent of o. We will also
use a localized version of @: if B € B(R?) we set

S vIr.B) = [ 9(p.wdr+ [ 67(p* w)do. (338)

Lemma 3.7 Let 4 = py+ ut,v = wy+ v, be such that ®(u,v|y) is finite. Then v =
whut < pt and

oyl = [ o7 wHaut, e(uvin) = [ op.wdr+ [ om(whyaut. 339

Moreover; if ¢ has a sublinear growth with respect to p (e.g. in the (a-8)-homogeneous
case of Example 3.6, with a. < 1) then ¢~(-) =0 and

(U, V) <+ = v=w-y<Yy, @(u,v)=>ou,v)= /Rﬂ(p,vv)d% (3.40)

independently on the singular part u*.

Proof Let & € M,/ (R?) any measure such that u* < &, |v*| < & so that &> (u,Vv|y) can
be represented as
. . dut dvt
et — ozl & | d 1 _ o .
(wvln) = [ 97" w)ds, pt =T wh =T

When &> (11, V|y) < +eo, (3.32) yields W' (x) = 0 for &-a.e. x such that p- (x) = 0. It follows
that

D(U,v) <+ = viut, (3.41)
so that one can always choose & = ', p~ = 1, and decompose v+ as wr ' obtaining
(3.39). (3.40) is then an immediate consequence of (3.35). O

Remark 3.8 When ¢(0,z) = 0 (e.g. in the («-8)-homogeneous case of Example 3.6, with
a > 0) the density w of v w.r.t. ¥ vanishes if p vanishes, i.e.
D(u,v|y) < +oo =  w(x)=0if p(x) =0, for y-a.e. x € RY. (3.42)
In particular v is absolutely continuous also with respect to U.
Applying Theorem 2.1 we immediately get

Lemma 3.9 (Lower semicontinuity and approximation of the action functional) The
action functional is lower semicontinuous with respect to weak™ convergence of measures,
ie if

U=, ="y weakly” in Mfgc(Rd), Va— 'V in Mige(REGRY) as n | oo,

then
limint @(1,,v, 1) > B VIy)
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Equiintegrability estimate. We collect in this section some basic estimates on ¢ which will
turn to be useful in the sequel. Let us first introduce the notation

lzll. == ¢(1,2)9, Wl == o(Lw)' P, n7lal <zl <mld,  (B43)

Iy = {(a,b) : sup @(p,z) < a—i—bp}, h(p) ::inf{a—i—bp : (a,b) EI},}, (3.44)
ll2]l. =1

H(s,p):=sh(p/s) = inf{as—l—bp :(a,b) € F¢} (3.45)

Observe that h is a concave increasing function defined in [0, +o0), satisfying, in the homo-
geneous case h(p) = h(p) = p*. It provides the bounds

¢(p.z) <h(p)lzll?,  [Iwll <h(p)"“9(p,w)"/",

Po@ <hallt, wl < (7)1 (w) P, i = lim A7 h(A) > 0.
o0

(3.46)

Observe that when h™ = 0 then $ = 0 and ¢*(w) is given by (3.35).

Proposition 3.10 (Integrability estimates) Let { be a nonnegative Borel function such that
/ ¢9du  and y(£9): / gidy are finite,
andletZ := {x € R?: {(x) > 0}. If (1, V|y) < +oo we have

[, EAIVIe) < @7 (vl 2) BV (r(E). 1(E). (3.47)
In particular, for every Borel set A € B(Rd) we have

IvII(4) < @7 (1, v]y.A) H'//(y(A), n(4)). (3.48)

Proof 1t is sufficient to prove (3.47). Observe that if (a,b) € Iy then a > 0, and h* < b so
that by (3.46) we have

[ e@aivie < [ ciwiar+ [ giw*jan*

(Loowar)( [ emorar) " +( [o=wyau) " (v coan) "

< (0tnoir2) (o crares | cran) "

Taking the infimum of the last term over all the couples (a,b) € Iy we obtain (3.48). O



4 Measure valued solutions of the continuity equation in R¢

In this section we collect some results on the continuity equation
o +V-v,=0  inRYx(0,T), 4.1)

which we will need in the sequel. Here i, Vv, are Borel families of measures (see e.g. [3]) in
M (RY) and Myoe (R R?) respectively, defined for ¢ in the open interval (0,7, such that

loc

T T
/ W(BR)dt < 4o, Vi ::/ WV |(Br)dr < +oo YR >0, 4.2)
0 0

and we suppose that (4.1) holds in the sense of distributions, i.e.

/OT/RdatC(xJ)du,(x)dt_,_/oT/RdVXC(XJ).dvt(x)dtzo @3

for every { € C!(R? x (0,T)). Thanks to the disintegration theorem [14, 4, I[I-70], we can
identify (V;),(o,r) With the measure v = fOT v, dt € Mioe(R? x (0,T);R?) defined by the
formula

v, &) = /OT </RdC(x,t) ~dv,(x)> d V¢ eC®R?x(0,T);RY). (4.4)

4.1 Preliminaries

Let us first adapt the results of [3, Chap. 8] (concerning a family of probability measures
U;) to the more general case of Radon measures. First of all we recall some (technical)
preliminaries.

Lemma 4.1 (Continuous representative) Let L, ,V, be Borel families of measures satisfy-
ing (4.2) and (4.3). Then there exists a unique weakly* continuous curve t € [0,T] — fI; €
M (RY) such that y; = fiy for £'-a.e.t € (0,T); if § € CH(RY x [0,T]) and t; <12 € [0,T],

loc
we have

%) 1
[, Geati— [ Gy, :[l L 3,Cd,ut(x)dt+/tl [veavima, @3

and the mass of [l; can be uniformly bounded by

sup fi;(Bg) < fis(Bag) +2R o Vs €[0,T]. (4.6)
1€[0,T]

Moreover, if fig(RY) < +oo for some s € [0,T] and limg; . R~'Vg = 0, then the total mass
B (RY) is (finite and) constant.

Proof Let us take {(x,¢) = n(t)¢(x),n € C2(0,T) and € C(RY) with supp & C Bg; we

have
[ o [ ewanw)a= [ nw( [, vew-wi)a

so that the map 7 — 1, ({) = [ra € dpt; belongs to W1 (0, T') with distributional derivative

(&) Z/Rd VE(x)-dv,(x) for L'-ae.r€(0,T), 4.7
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satisfying
T
|6u(E)] < Vr(1)sup|VE|, Vk(r) := [Vi|(Br), /0 Ve(t)dr = Vg < too. 4.8)
R4

If Ly is the set of its Lebesgue points, we know that 2'((0,T)\ L¢) = 0. Let us now take
an increasing sequence R,, := 2" 1 +o0 and countable sets Z, C C¢°(Bg, ) which are dense in
Cy(Br,) :=={¢ € C'(R?) : supp({) C Bg, }, the closure of C!(Bg,) with respect the usual
C! norm ||&]|c1 = supga (||, |VE]). We also set Ly := Nnen ez, Le- The restriction of the
curve U to Lz provides a uniformly continuous family of functionals on each space Cé (Br,)s
since (4.8) shows

(OO < WKl [ Va0 Vsiels VEez,

Therefore, for every n € N it can be extended in a unique way to a continuous curve
{1} ieor) in [C{(Bg,))" which is uniformly bounded and satisfies the compatibility con-
dition

{'(8)=p"(¢) ifm<nand{ € Ci(Bg,)- (4.9)
If § € C!(R?) we can thus define

(&) :=["(§) forevery n € N such that supp({) C Bg,. (4.10)

If we show that {1 (B, ) }scz, is uniformly bounded for every n € N, the extension provides

a continuous curve in M} (R?). To this aim, let us consider nonnegative, smooth functions

& :R? —[0,1], such that & (x) := §o(x/2Y), (4.11a)
G(x)=1if [x] < 2K, G(x) =0if [x| > 2K, |VG(x)| <A27F, (4.11b)

for some constant A > 1. It is not restrictive to suppose that §; € Z;, 1. Applying the previous
formula (4.7), for ¢, s € Ly we have

T
1 (8) — 115G < g =21 /0 [V, (Bar \Br,) dr <A2 *Vag,.  (4.12)
It follows that

te(Br,) < 1 (&) < 1as(&e) +A2_kV2Rk < ug(Bag,) +A27k Var, Vt€Lz. (4.13)

Integrating with respect to s we end up with the uniform bound

T
ﬂt(BRk) SAZ_kVRHl +/() ,LLS(Bng)dS < +4oo VteLy.

Observe that the extension [, satisfies (4.13) (and therefore, in a completely analogous way,
(4.6)) and (4.12) for every s,1 € [0, T].
Now we show (4.5). Let us choose ¢ € C! (R x [0,T]) and ne € C(t1,12) such that

Oﬁne(f)ﬁla 13?01778@):%(:1,:2)@) VIG[O7T]7 lgifgné:&]_sfz



in the duality with continuous functions in [0,7]. We get
T T
o= [ [ amau@ar+ [ [ vimeg)- avia
o Jrd o Jrd

T T T
:/ ne(;)/ 8;Cdu,dt+/ Tlg(t)/ VXC«dv[dtJr/ ng(z)/ ¢ dji, dr.
0 R4 0 R4 0 R4

Passing to the limit as € vanishes and invoking the continuity of fi,, we get (4.5).
Finally, if limRHmR*lVR = 0 we can pass to the limit as Ry T 4o in the inequality
(4.12), which also holds for every ¢,s € [0, T] if we replace i by fi, by choosing s so that

m = fi(RY) = dim Ay (§) < +oe.

It follows that i, (RY) = limy e fis(§x) = m for every ¢ € [0,T]. O

Thanks to Lemma 4.1 we can introduce the following class of solutions of the continuity
equation.

Definition 4.2 (Solutions of the continuity equation) We denote by C&(0,7T) the set of
time dependent measures (L )c(o,7], (V1) (o,r) Such that

1. t — pi; is weakly* continuous in M

every R > 0),

L(R?) (in particular, sup,c[o7) & (Br) < +oo for

oc

2. (Vi)ie(o,r) is a Borel family with /O.T [V:|(Bg)dt < 4o VYR>O0;

3. (u,Vv) is a distributional solution of (4.1).

€&(0,T;0 — n) denotes the subset of (i,v) € CE(0,T) such that yy = o, u; = 1.
Solutions of the continuity equation can be rescaled in time:

Lemma 4.3 (Time rescaling) Let t : s € [0,7'] — t(s) € [0,T] be a strictly increasing ab-
solutely continuous map with absolutely continuous inverse s :==t~'. Then (U, V) is a distri-
butional solution of (4.1) if and only if

QA:=pot, v:=t (V Ot), is a distributional solution of (4.1) on (0,T").

We refer to [3, Lemma 8.1.3] for the proof.

The proof of the next lemma follows directly from (4.5).
Lemma 4.4 (Glueing solutions) Let (u',v') € C€(0,T;), i = 1,2, with uy, = ug. Then the
new family (L, V1)ie(0,1,+15) defined as

! if0<t<T v! if0<t<T
u,::{“’ fost<T v::{’ fost<T (4.14)

uro fT<t<T+T Vi fM<t<Ti+T
belongs to CE(0, Ty + Tr).

Lemma 4.5 (Compactness for solutions of the continuity equation (I)) Let (u",v") be a
sequence in CE(0,T) such that

1. forsomes € [0,T] sup,cyMi(Br)<-+e VR>O0;
2. the sequence of maps t — |V}|(BR) is equiintegrable in (0,T), for every R > 0.
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Then there exists a subsequence (still indexed by n) and a couple (U;,v;) € C€(0,T) such
that (recall (4.4))

wr—*p;  weakly* in M;t (RY)  Vrel0,T],

loc

4 4 (4.15)
V'—=*v  weakly™ in Mo (R x (0,T);R%).
(4.15) yields in particular
T T
[ @wvilyar<timint [ e vily)a 4.16)
JOo nl+4e Jo

+

+(RY), where & is an integral func-

for every sequence of Radon measures Y'—*y in M
tional as in (3.37).

Proof Since V" := fOT v} dr and u' have total variation uniformly bounded on each com-
pact subset of R? x [0, T], we can extract a subsequence (still denoted by u/”,v") such that
U= g in Mioe (RY) and v'—*v in Myoe (R x [0, T];RY). The estimate (4.6) shows that

sup ;' (Bg) < oo Vt€[0,T], R>0. (4.17)
neN

The equiintegrability condition on V" shows that v satisfies
[v|(Br xI) = /mR(t) dr V1€ B(0,T), R>0, forsomemge L' (0,T),
1

so that by the disintegration theorem we can represent it as Vv = fOT v, for a Borel family
{Vi}ie(o,r) still satisfying (4.2). Let us now consider a function § € C!(R?) and for a given
interval I = [fy,#;] C [0,T] the time dependent function § (7, x) := X;(r)V{ (x). Since the dis-
continuity set of & is concentrated on N = R¥ x {9, } and |v|(N) = 0, general convergence
theorems (see e.g. [3, Prop. 5.1.10] yields

fim / / VE(x)-dv'(x)dr = lim ¢ dvi(1,x)
n—oo |1 JRd n—oo ]R‘IX((),T)

_ C-avie) = [ [ VEE-avioar

R4x%(0,T)

(4.18)

Applying (4.5) with {(z,x) := {(x) and fy := s and the estimate (4.17) we thus obtain the
weak convergence of 1" to a measure g, € M*(R?) for every ¢ € [0,T]. It is immediate to
check that the couple (g, V,) belongs to CE€(0,T). (4.16) follows now by the representation

T T
[ ouvina=owvin, w= [ wd, 7=ye.2 €@ x(0.1)

and the lower semicontinuity property stated in Theorem 2.1. O
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4.2 Solutions of the continuity equation with finite ®-energy

For all this section we will assume that ¢ : (0, +eo) x R? — (0, +o0) is an admissible action
density function as in (3.2a,b,c) for some p € (1,4), y € M _(R?) is a given reference
Radon measure, and @ is the corresponding integral functional as in (3.37). We want to
study the properties of measure valued solutions (1, V) of the continuity equation (4.1) with

finite P-energy
T
E::/O D, vi|y)dt < +oo. 4.19)

We denote by €€ 4(0,T) the subset of CE(0,7) whose elements (u,Vv) satisfies (4.19).
Remark 4.6 If (14;);c[0,r) is weakly” continuous in Mt (RY) and (4.19) holds, then u;,Vv;

loc

also satisfy (4.2): in fact, the weak” continuity of 1, yields for every R >0 sup, (o 71 th (Br) =
Mg < 400, and the estimate (3.48) yields (recall (3.43))

T
Ve<m / IVell(Br)dr < TV9E"P H(y(Br),Mg)"/* < +o-. (4.20)
0
Recalling that the function h is defined by (3.44), we also introduce the concave function
s , 1 .
o(s) = / b8 @0=0 W)= lmol) = e @2D)
In the homogeneous case ¢ (p,z) = p%||z||? we have
S
o(s) :/0 Fla gy = ri]as‘—a/‘f - %se/”. 4.22)

For given nonnegative { € C!(R?) and u € M} (R?) we will use the short notation

loc

Z:=supp(D{) CRY, Gp({) :=/ZC”d% D(¢) :=Sﬂgdp\|DC||*- (4.23)

Theorem 4.7 Let { € C}(R?) be a nonnegative function with Z,G({),D(&) defined as in
(4.23), and let p,v € C&€y 4(0,T). Setting

T
Eri= [ ®(uvilr.Z)d <E < 4os (4.24)
0

we have

| (E7)] < pD(E) P, vil7,2) 7 H (Gp(8), 1 (67)) 7. (4.25)
In particular, there exists a constant C; > 0 only depending (in a monotone way) on h,p, T
such that

sup (£ < €1 (WolE7)+DOGE) E +D(OE)- 426)

Moreover, if G,({) >0,

| S0 (W (5P)/Gy(8))| < (S)(Dé,(ﬁ)/pdb(uhV,MZ)l/p forae. t€(0,T). 4.27)

In particular, in the (a-0)-homogeneous case, for every 0 < s <t < T we have

12085 ) = 1€ 1Er(u

!
< 0D S5 [ PlHrvilr.2) 7 ar (4.28)
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Proof Setting m; == 1;({?), G =Gp,(§), D= D({) we easily have by (3.47)

4, 43
e ' dr

since ({P~1)7 = {P. Since H(G,m;) = Gh(m;/G), we get

/ CPdy, = p/ ¢r=IvE-dv, < pD @ (w,vi|v,Z )VPH(G m,)l/‘f

h="4(m /G) m,<pDG1/"¢(#z7Vz|% z)\r.

Recalling that £ o(r) = h=1/9(r) we get (4.27).
In order to prove (4.26) we set M := sup, (g 71/, and we choose constants (a,b) € Iy;
integrating (4.25) we get

sup [m; —mo| < pDT'4 ((aG)' " EY” + (bM)''E}"). (4.29)
1€(0,7]

By using the inequality xy < p~'x” 4+ ¢~'y¢ we obtain
1
M <mo+pD (aTG)"EY" + M+ pr~' D" (bT)""“E;, (4.30)
q

which yields (4.26) with C; := pmax (1, p(aT)"/4, pP=! (bT)P/9).
Finally, let us assume that ¢ satisfies the (a-6)-homogeneity condition, so that @(s) =
£59/P as in (4.22). It follows that

-1 _p 0 -6
(G m) = B1C18 ) IS “31)
Integrating (4.27) we conclude. ]

We extend the definition of m,(u) also for negative values of r by setting
T m +/ x| d :/ (1vI)) du(x) ¥reR. 4.32)
R4

Notice that mo (@) = 1(RY) and m,(u) < i, () < p(By) +m, (1) when r > 0.

Theorem 4.8 Let us assume that i, (y) < 4o for some r < p and let (u,V) € CE€y 4(0,T)
satisfy (4.19). For every § < 1+r/q, if mg(Uo) < +oo then also mg(Ly) < +oo and there
exists a constant Cy only depending in a monotone way on h,p,T,A, || such that

ms () < Cz(rﬁs(,uo)+rh,(y)1/qE1/”+E). (4.33)

Moreover, if r > —q and po(R?) < +oo, then u;(RY) is finite and constant for everyt € [0, T).

Proof Let us first set

Ky, :=2""y(Bani1 \ Ban) (4.34)
observing that
oo B
K, <Y K;j <2 m(y), limsupk, =0. (4.35)
j=0 nl-eo

We consider the usual cutoff functions &, € C°(R?) as in (4.11a,b) and we set

Dy = D(G,) = sup [DG[l« <A27", Gp=Gp(Gu) < V(Byner \ Bn) =27" Ky (4.36)
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By (4.26) we obtain

sup fh(Ba) < Cy (,Lto(an+| ) A2/ gl apl/a 4 ap 2’"’7E); 4.37)
1€(0,7]

in particular, if » > —¢ and po(R?) < oo, we can derive the uniform upper bound g, (R?) <
Cy uo(RY) letting n T 4-00. We can then deduce that y,(R?) is constant by applying the
estimate (4.25), which yields after an integration in time and for every (a,b) € I'y

sup |14 (C0) — mo(0)| < pATVIE P27 (a2 K, + bCy g (RY)) /7.
t€[0,T]

In order to show (4.33), we argue as before, by introducing the new family of test functions
induced by v, (x) := vy(x/2") € CT(R?)

v(x) =1 if 2" < |x| < 2mH

Du,[l, <A27". (438
V(x) =0 if x| < =1 op x| > 2n+2’ DV |« < ( )

0<v, <1, {
Observe that 1 <Y, (v, (x))p < 3 and for some constant Ag > 1

oo
At a0 < Y 29 (u,(x))” < Aglx® VxeRY, x> 2. (4.39)
n=1

As before, setting K}, := K, +1 + K,,—1, we have D(v,) < A27" and
Gyp(vn) < (2*("“)’1("“ +2*<"*1>’K,,,1) <ok, (4.40)
Applying (4.26) we get for every t € [0, 7]
20 (0f) < Cy (2o vf) + A2 (KA (EYP 1 AP 2P,

where ;
E, ::/0 ¢(/.L,,Vt|’]/,32n+1 \an)dl‘7 E,/l =E, 1 +E—. (4.41)

Since 6 < 1+r/qand 6 < p, summing up with respect to n and recalling (4.37) we get

o () < Ca (s (o) + (i, (1) IE'7 +E ). D (4.42)

In the the 6-homogeneous case we have a more refined estimate:

Theorem 4.9 Let us assume that ¢ is 0-homogeneous for some 0 € (1, p|, the measure y
satisfies the r-moment condition m.(y) < 4o, and let (u,v) € C€¢ 4(0,T) satisfy (4.19).
For every § < § := ép—i— (1— é)r7 if mg(Uo) < +oo then mg(L,) is finite and there exists a
constant C3 > 0 such that

s () < Ca (g (o) + i, () ~/OE1?). (4.43)

Moreover, if § >0 (i.e.r > —p/(0 —1)) and po(R?) < +oo then p; (R?) is finite and constant
fort€[0,T].
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Proof We argue as in the proof of Theorem (4.9), keeping the same notation and using the
crucial estimate (4.28). If §, are the test functions of (4.11a,b),

- (6-1)/p 4:36) , _nr(6— (6-1)/
HC"HZI’(;/VZW):G" )/p (4:36) 5—nr(6 1)/P(Kn) P7 (4.44)
so that, since §0/p = 1+ (6 — 1)r/p, (4.28) yields
’(.ut( I!L)))e/.l’_ (uo(g!l)))e/l” SAGZ—S@”/D (Kn)<9_l)/pEl/p~ (4.45)

Since 8 > 0, passing to the limit as n | oo and recalling (4.35), we get i, (R?) = uo(R?).
Concerning the moment estimate, we replace &, by v,, defined by in (4.38), obtaining

‘(Mr(v,',’))e/p _ (M(vf»e/p‘ < C3'12—59n/p (KIII)(G_])/p(Eﬁ)I/p: (4.46)

and therefore )
i (0]) < Caz (mo(w) +27% (k)7 () 7). (4.47)

Multiplying this inequality by 2n8, summing up w.r.t. n, and recalling (4.39), we obtain
s (i) < Cs (rﬁg(,uo) - m,(y)lfl/ﬂEl/"). 0 (4.48)

Corollary 4.10 (Compactness for solutions of the continuity equation (II)) Ler (1", v")
be a sequence in CEy y(0,T) and let Y'—*y in M} (RY) such that

T
sup iy (Bg) < +e0 VR >0, sup [ @', vi|Y')dr < oo (4.49)
neN neNJ0

Then conditions 1. and 2. of Lemma 4.5 are satisfied and therefore there exists a subsequence
(still indexed by n) and a couple (l;,v;) € €€y y(0,T) such that

W= weakly® in M5 (RY) Vi€ [0,T],

J J (4.50)
V'~ v weakly* in Mioe (R x (0,T);RY),
T T
| @vily)ar < timint [ o vily)ar. (451)
0 nitee Jo

Suppose moreover that uf(R?) — po(R?) and sup, i (y") < +oo where k = —q or k =
—p/(08 — 1) in the 8-homogeneous case, then (along the same subsequence) u'(RY) —
W (RY) for every t € [0,T].

Proof Since Pg := sup,, Y"(Br) < +oo for every R > 0, the estimate (4.33) for 6 = 0 and
the assumption (4.49) show that Mg = sup,,c sc(o,7] &' (Br) < +e° for every R > 0. We can
therefore obtain a bound of ||v?||(Bg) by (3.48), which yields

1V} | (Br) < H (Pr,Mg)"/*® (e, Vi 7)"/7,

so that the maps 7 — ||v}'||(Bg) are uniformly bounded by a function in LP(0,T). The last
assertion follows by the fact that ¢ — u{'(Rd) is independent of time, thanks to Theorem 4.9
(in the (a-6)-homogeneous case) or Theorem 4.8 (for general density functions ¢). a
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5 The (¢-y)-weighted Wasserstein distance

As we already mentioned in the Introduction, BENAMOU-BRENIER [7] showed that the
Wasserstein distance W), (1.1) can be equivalently characterized by a “dynamic” point of
view through (1.15), involving the 1-homogeneous action functional (1.13). The same ap-
proach can be applied to arbitrary action functionals.

Definition 5.1 (Weighted Wasserstein distances) Let ¥ € M (R9) be a fixed reference

loc

measure and ¢ : (0, +o0) x R? — [0,+0) a function satisfying Conditions (3.2a,b,c). The
(¢,7)-Wasserstein (pseudo-) distance between o, i1 € M;' (R9) is defined as

loc

1
Wh (o) i=inf{ [ d(uviipar: (wv)eee©tm—m)}. 6D

We denote by My y[tto] the set of all the measures € M,/ (R?) which are at finite Wy y-
distance from L.

Remark 5.2 Let us recall the notation W), ¢y of (1.23) in the case ¢, o (p, W) = p*|w/p%*|P.

When « = 0 we find the dual homogeneous Sobolev (pseudo-)distance (1.7) and in the case
a = 1 and supp(y) = R? we get the usual Wasserstein distance:

110 = Kally, 1.0 = Wpoiy (o, 1), Wy(Ho, 1) = W1y (Ho, t)-

Remark 5.3 Taking into account Lemma 4.3, a linear time rescaling shows that

T
W{ (o, ir) := inf { 77! /0 DoY) dr: (0,v) € CEO.Tipg > pr)f. (52)

Theorem 5.4 (Existence of minimizers) Whenever the infimum in (5.1) is a finite value
W < oo, it is attained by a curve (U, V) € €€y 4(0,1) such that

(U, vily) =W  for L'-ae.t€(0,1). (5.3)

The curve (,u,),e[o,l] associated to a minimum for (5.1) is a constant speed mimimal geodesic
for Wy y since it satisfies

W‘P,Y(“Sa.ul) = ‘t7s|w¢~,7(u0a.ul) vsat € [07 1] (54)

We have also the equivalent characterization

Wo(0,0) = inf{/OT ((D(u,7v,|y))]/pdt S (u,v) € €E(0, T 0 — n)}. (5.5)

Proof When Wy y(to, i11) < o0, Corollary 4.10 immediately yields the existence of a min-
imizing curve (u, V). Just for the proof of (5.5), let us denote by Wy ,(o,n) the infimum
of the right-hand side of (5.5). Holder inequality immediately shows that Wy ,(o,1) >
Wq,,y(oyn). In order to prove the opposite inequality, we argue as in [3, Lemma 1.1.4],
defining for (u,v) € C€(0,T;0 — 1)

' 1/
se(t) ::/0 (e+q>(u,,v,|y)) "ar, 1€0,1]; (5.6)
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se 1s strictly increasing with s, > €, s.(0,7) = (0,S¢) with S, :=s.(T), so that its inverse
map tg : [0,S¢] — [0,7] is well defined and Lipschitz continuous, with

~1
tpose = (e+D(u,v)) " ae.in(0,7). 5.7)

A

If A = pote, V¢ :=tLVot., we know that (15,V°) € €€(0,S¢;6 — 1) so that

1[5 N (T @(pf,vily) 1/p
WP <SP1/ &, Ve d:S”l/# D(1,,v dr
@V(Gan) —= Vg o (.u.m Y‘Y) S € o 8+‘P(M¢8,Vf|7’) <8+ (:uh Z)) )

the latter integral being less than S%. Passing to the limit as € | 0, we get

T
W¢,y(07n)§/0 (e, vi|y)/Pdr V(u,v) € CE0,T;0 — 1), (5.8)

and therefore Wy ,(0,1) < Wy 4(0,7m). If (11,V) € €€ 4(0, 1; o — 1) is a minimizer of
(5.1), then (5.8) yields

1/p 1
WP =W (o, 1) / D( .uthW)df :/o (Vi |)'/P dt,

so that (5.3) holds. O

5.1 Topological properties

Theorem 5.5 (Distance and weak convergence) The functional W y is a (pseudo)-distance
on J\/[ltc(Rd ) which induces a stronger topology than the weak* one. Bounded sets with re-

spect to W y are weakly* relatively compact.

Proof It is immediate to check that Wy  is symmetric (since ¢(p,—w) = ¢(p,w)) and
Wy y(0,1) =0 = o =n. The triangular inequality follows as well from the characteriza-
tion (5.5) and the gluing Lemma 4.4.

From (4.27) (keeping the same notation (4.23)) and (5.5) we immediately get for every

o, 1 € M5 (RY) and nonnegative { € C!(RY) with I1Cllr(y) >0
)

0(11(7)/Gy(£) ~ 0(10(£7)/Gy(©))| < L2104, 0,m),

1E1]r

which shows the last assertion, since @ is strictly increasing and the set

{¢r:geci®Y), £=0, [l >0}

is dense in the space of nonnegative continuous functions with compact support (endowed
with the uniform topology). ]

Theorem 5.6 (Lower semicontinuity) The map (Lo, 1) — W y(Ho, 1) is lower semi-
continuous with respect to weak® convergence in Mltc(]Rd). More generally, suppose that
Y'—*yin Mloe (Rd), ¢" is monotonically increasing w.r.t. n and pointwise converging to ¢,
and pi—* o, i —*py in Mt (RY) as n T +oo. Then

loc

hann+me¢" y(Hg, 1) = We y (Lo, ). (5.9)
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Proof It is not restrictive to assume that Wn yn (U, 1f') < S < +oo, so that we can find a
sequence (U™, V") € CEgn (0, 1; uf — i) such that

D" (W' viY')<S ae.in(0,1), Vm<neN, (5.10)

where @™ denotes the integral functional associated to ¢™. We can apply Theorem 4.10 and
we can extract a suitable subsequence (still denoted bu u”,v") and a limit curve (u,v) €
C&y.y(0,1; g — 1) such that (4.50) holds. We eventually have

1
Wi (to,) < [ @ (i vilp dr <5. G.11)

Passing to the limit w.r.t. m T 4o we conclude. a

Theorem 5.7 (Completeness) For every o € M} (R?) the space My y[o] endowed with
the distance W y is complete.

Proof Let (1y)nen be a Cauchy sequence in My y[o] w.r.t. the distance W y; in particular,
(un) is bounded so that we can extract a suitable convergence subsequence U, weakly*
converging to . in le)c(]Rd ). Thanks to Theorem 5.6 we easily get Wy y(tn, o) <
liminfi_co W,y (Hm, 1, ), and therefore, taking into account the Cauchy condition,

limsup,,, .o Wo y (i, o) <TmSUp,, ,, 0o Wo y(Hm, Un) = 0 so that 1, converges to floo. O

Let us now consider the case of measures with finite mass (just to fix the constant, probability
measures in P(R)). We introduce the parameter

p q .
—— = —— if ¢ is (@-6)-homogeneous,
e do 1 Tog ois(a-0) & (5.12)
p%] =q otherwise.
Theorem 5.8 (Distance and total mass) Let us assume that m_x(7y) < +oo and let us sup-
pose that 6 € P(R?). Then My 4[0] C P(R?), the weighted Wasserstein distance Wy y is
stronger than the narrow convergence in P(RY), and P(R?) endowed with the (pseudo-)

distance Wy y is a complete (pseudo-)metric space.

Proof If 1 € My y[o] then Theorem 4.9 (in the 6-homogeneous case) or 4.8 (in the gen-
eral case) yields n(R?) = o(R?) = 1, so that M ,[c] C P(R?). Since the narrow topology
coincide with the weak* one in P(R?), Theorem 5.5 proves the second statement. The com-
pleteness of T(Rd) with respect to the (pseudo) distance Wy y follows by Theorem 5.7. O

We can also prove some useful moment estimates.

Theorem 5.9 (Moment estimates) Ler us assume that m,(y) < +oo for some r € R and let
us set

5. {},er (1— %)r: E(1+r/x) if ¢ is 0-homogeneous, (5.13)

1+r/qg<p otherwise.

If ng(0) < oo for some 8 < 8, and n € My y[O), then fas(n) is finite and there exists a
constant C only depending on ¢, such that

s (M) < C (s (0) + M (y) + W} (o.m)) 51
ms(m) < C(s(0) + i (0!~ OWE (o,m)).

Moreover, when & > 1, the topology induced by W 5 in My 40| is stronger than the one
induced by the Wasserstein distance Wg.
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Proof Let us first consider the general case: applying (4.33) we easily obtain (5.14). In
order to prove the assertion about the convergence of the moments induced by Wy y (which
is equivalent to the convergence in W5 when 6 > 1), a simple modification of (4.42) yields

[ Pan<cs( [ dotmn Woy(om) WY om).  519)

which shows that every sequence 1, converging to ¢ has §-moments equi-integrable and
therefore it is relatively compact with respect to the 0-Wasserstein distance when 6 > 1.
The 6-homogeneous case follows by the same argument and Theorem 4.9. ]

Remark 5.10 There are interesting particular cases covered by the previous result:

1. When y(R?) < +oo then Wy y is always stronger than the 1-Wasserstein distance Wy; in
the 8-homogeneous case, W), o.y also controls the w, /6 distance.

2. When m,(y) < +-oo, then Wy y is always stronger than W),.

3. When ¢ is 8-homogeneous with 8 > 1 and 7 is a probability measure with finite mo-
ments of arbitrary orders (this is the case of a log-concave probability measure), then all
the measures 6 € My y[y] have finite moments of arbitrary orders and the convergence
with respect to W  yields the convergence in P5(R?) for every & > 0.

5.2 Geometric properties

Theorem 5.11 (Convexity of the distance and uniqueness of geodesics) Wf;‘y(-, -) is con-

vex, i.e. for every uij eM} (RY),i,j=0,1,and T €[0,1], if uf = (1 — T)u? +Tp},

loc
W (1§, 15) < (1= 2)Wh (g, 1) +TWh (g, 1) (5.16)

If ¢ is strictly convex and ¢ has a sublinear growth w.rt. p (i.e. ¢ = 0), then for ev-
ery o, 1 € M5 (R?) with W (o, 1) < oo there exists a unique mimimizer (i1, V) €

€&y y(0,1) of (5.1).

Proof Let (u/,v/) € €€y 4(0, 1;/.1({ — ,ulj) be two minimizers of (5.1), j =0, 1. For 7 € [0, 1]
we set (f := (1 —1)ul + 7!, vi = (1 —1)v?+7v]. Since (1*,v7) € CE(0, 1; uf — uf),
the convexity of ¢ yields

1
0
= (1=1)Wp (10, 17) +TW5 (19, 111

1
Whugof) < [ @(uE v < [ (=0 o(ulvin + 1o vl ) a

Let us now suppose that ¢ is strictly convex and sublinear. Setting, as usual, puf = pfy+
(u)*t, vF = wry, we have fora.e. 1 € (0,1)

P(uf,vily) < (1-7) /Rd¢(pP7w§’)d~r+r/Rd¢(p,‘7w})dy (5.17)

and the inequality is strict unless p? = p;! and w? = w/ for y-a.e. x € R?. If ud = p} and
,u? = ,ull, two minimizers should satisfy

pP(x) =p(x), w(x)=wl(x) ryae, V'=v! for#'-aere(0,1).
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Since (u!,v) are solutions of the continuity equation, taking the difference we obtain
I =) =a W — ') ==V-(v/=v/)=0 inR’x(0,1).

The difference (1°)* — (w!)* is then independent of time and vanishes at # = 0, so that
u? = u! forevery ¢ € [0,1]. O

Theorem 5.12 (Subadditivity) For every u/ € M;|

loc(Rd)’ la.] = 0, 1, we have

Wo.y (g -+ o, 17+ 1) < Wo.y (G, 1) + Wo 1 (Hig, 11). (5.18)
In particular

Woy(to+ 0,11 +06) < Wy (o, 1) Vo €M, (RY). (5.19)

Proof Let (1/,v7) € €€y (0,1 ;ug — ulj) be as in the proof of the previous Theorem. Since
(u0+u! VO vl) € Ce(0, 1 u§ + ug — ) +pul), we get

! 1/p
Wou+ g+ ) < [ (@0 + v +vlin)
: 1/[’ 1/[7
< [ (oW +uvim) "+ (e +uvin)
! 1/p /p
< [ [(@tvim) " (@ vim) T ar = oo )+ Wo(ud ). 0

Proposition 5.13 (Rescaling) For every L, l; € Mfgc(Rd) and A > 0 we have

Wy 5y (Ao, Apr) = AWg . (bo, 1), (5.20)

{W;’,ywwo SAPWE (i) A1 .21

Wl (Ao, ) < AWh (mo. ) if A< 1.

Proof (5.20) follows from the corresponding property @ (A, AV|Ay) = AP (1, v|y). Anal-
ogously, the monotonicity and homogeneity properties of ¢ yield

O(Ap,Aw) < 9(p,Aw) =A"9(p,w) ifA>1;
the convexity of ¢ and the fact that ¢(0,0) = 0 yield
O(Ap,Aw) <A¢(p,w) ifA <1
(5.21) follows immediately by the previous inequalities. O

Proposition 5.14 (Monotonicity) If vi > 1> and ¢1 < @, then for every Uy, 11 € MEC(R")
we have

Wy (Hos 1) < W, 3 (Mo, 1) (5.22)

Theorem 5.15 (Convolution) Let k € CZ°(RY) be a nonnegative convolution kernel with
Jra k(x)dx = 1 and let ke(x) := €9k(x/€). For every Uy, 11 € M} (R?) we have

loc

W peke (Ho * ke, 11 ¥ke) <Wo y(Ho, 1) VE> 05 (5.23)

leiﬂ)lwq),y*kg (Mo * ke, 1 % ke) =Wy y(Ho, t1)- (5.24)
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Proof Let (11,v) € C€y 4(0,1; 4o — 1) be an optimal connecting curve as in Theorem 5.11
and let us set uf = W x ke, V¥ 1=V, xke. Since (u®,v€) € CE(0, 1;uf — uf), (5.23) then
follows by (2.12) whereas (5.24) is a consequence of Theorem 5.6 O

Remark 5.16 (Smooth approximations) For a given curve (u,v) € €€y (0, 1) the convolu-
tion technique of the previous Theorem exhibits an approximations (u®,v) in C€ (0, 1),
Y¢ := y* ke, which enjoy some useful properties:
1. ué =pe2?, vé = wé .24 with p& wé € C*(R?); if o(R?) < +oo and m_(y) < +oo
(recall Theorem 5.8), then p? is also uniformly bounded.
2. If supp(k) C By then p*,w* are supported in G := {x € R? : dist(x,G) < €}, G =

supp(y)-
3. p&,wf are classical solution of the continuity equation

APE+V-wE=0 inRYx(0,1).

4. If (u,v) is also a geodesic, /d ¢(pf,wi)dy* < @(py,vi|y) = Wy 4(Ho, ) for every
Jr '
t €[0,1].

5.3 Absolutely continuous curves and geodesics

We now study absolutely continuous curves with respect to W , and their length. Let us
first recall (see e.g. [3, Chap. 1]) that a curve ¢ — i, € Mioc(RY), t € [0,T], is absolutely
continuous w.r.t. W, , if there exists a function m € L'(0,T) such that
il
Wo v (Hsy i) g/ m(t)dt VO<tp<t <T. (5.25)

fo

The curve has finite p-energy if moreover m € LP(0,T). The metric derivative |u’| of an
absolutely continuous curve is defined as

W¢.y(ﬂt+ha M)

7 5.26
] (5.26)

/| := lim
|1 hl—>0
and it is possible to prove that || exists and satisfies |u/| < m(t) for £'-a.e.t € (0,T). The

length of i is then defined as the integral of |it’| in the interval (0,T).

Theorem 5.17 (Absolutely continuous curves and their metric velocity) A curve t — L,
t € [0,T), is absolutely continuous with respect to W y if and only if there exists a Borel
family of measures (V);c(o,r) in Mioc (R%RY) such that (11,v) € CE€y 4(0,T) and

/OT ((D(Hhvth/)) P 4t < oo, (5.27)
In this case we have
/)P < ®(u,vi|y) for L'-ae.t € (0,T), (5.28)
and there exists a unique Borel family V, such that

/)P = @(u,v,|y) for L -ae.t €(0,T). (5.29)
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Proof One implication is trivial: if (i,v) € €€4 4(0,T) and (5.27) holds, then (5.5) yields

g 1/p
Wolit i) < [ (@(uvily) " ar, (530
0

so that u is absolutely continuous and (5.28) holds.

Conversely, let us assume that ( is an absolutely continuous curve with length L. A
standard reparametrization results [3, Lemma 1.1.4] shows that it is not restrictive to assume
that u is a Lipschitz map. We fix an integer N > 0, a step size 7 := 2~V7, and a family of
geodesics (uAN vEN) € €€ ((k—1)T,kT; g1y — Mie)s k= 1,-- 2V, such that

kT
(N Vi) = T P W (e k) < /(H)T /|7 . (5.31)

Let (uV,vN) € €€ ,(0,T) be the curve obtained by gluing together all the geodesics (uXV, v&N).
Applying Corollary 4.10, we can find a subsequence (u™:,v™r) and a couple (u,v) €
CE4.4(0,T) such that p"" —~*fi, for every ¢ € [0,T] and VM —*V in Myoc (R x (0,T);RY).

It is immediate to check that i, = fi, for every ¢ € [0, 7] and

T o T Ny N T ro
| i ar = timint [ o@ ¥ par= [Covinas [,
0 hl+eo JO 0 0

which concludes the proof. O

Corollary 5.18 (Geodesics) For every it € M5 _(R?) the space M y[1t] is a geodesic space,

i.e. every couple lo, 11 € Mg y[t] can be connected by a (minimal, constant speed) geodesic
t€10,1] =t € My y[ut] such that

Wo y(fs; te) = |t — 5| W 4 (o, 1) Vs, €[0,1]. (5.32)

All the (minimal, constant speed) geodesics satisfies the continuity equation (4.1) for a Borel
family of vector valued measures (V1)c(o,1) such that

(e, Vily) =Wy (Mo, 1) fora.e.t € (0,1). (5.33)
If ¢ is strictly convex and sublinear, geodesics are unique.

Remark 5.19 (A formal differential characterization of geodesics) Arguing as in [27, Chap.
3], it would not be difficult to show that a geodesic 1, = p;.#? with respect to W, 44

should satisfy the system of nonlinear PDE’s in R? x (0, 1)
ap+V-(p*Vy) =0,
o o 2
dy+ 5P VY| =0,
for some potential y. Unlike the Wasserstein case, however, the two equations are coupled,

and it is not possible to solve the second Hamilton-Jacobi equation in y independently of
the first scalar cosnervation law. In the present paper, we do not explore this direction.
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We can give a more precise description of the vector measure v satisfying the optimality

condition (5.29). For every measure [l € Mltc(]Rd) we set
Tang (1) i= {¥ € Mioe(RGRY) : D1, v]y) < -+,

(5.34)

P(u,v|y) < @(U,v+10[y) VN € Mie(REGRY) : V-1 = 0}-

Observe that for every v € Mjo.(R?;R?) such that @ (i, v|y) < +oo there exists a unique
v :=T1(v) € Tany y(1) such that V- (v —v) = 0. In fact, the set K (V) := { V' € Mjoc(R%;R?) :
ViV —v)= 0} is weakly* closed and, by the estimate (3.47) the sublevels of the functional
V' @(u,v'|y) are weakly* relatively compact. Therefore, a minimizer ¥ exists and it is
also unique, being @ (U, -|y) strictly convex.

Corollary 5.20 Let (u,v) € C€y 4(0,T) so that i is absolutely continuous w.r.t. Wy y. The
vector measure V satisfies the optimality condition (5.29) if and only if v, € Tang ,(1;) for
Laete(0,7).

Let us consider the particular case of Example 3.5 in the case of a differentiable norm || - ||
with associated duality map j; = D|| - ||. We denote by j,(w) = ||w||”~2j;(w) the p-duality
map, i.e. the differential of %H -]|” and we suppose that the concave function 4 : [0, +o0) —
[0, +oo) satisfies
limh(r) = lim r~'h(r) =0. 5.35
rlﬂ)l (r) rTIE:or (r) (5.35)

+
loc

For every nonnegative Radon measure u € M;"_(R?) whose support is a subset of supp(y),

we define the Radon measure A(|y) by

d
h(uly) :=h(p)-y where p := d—‘;. (5.36)

Observe that A(tt|y) < yeven if u is singular w.r.t. y.
Theorem 5.21 Let u € M;" (RY) and ¢ as in (3.23) with h satisfying (5.35). A vector mea-

loc

sure V satisfies (1L, V|y) < +oo iff v = Vh(U|Y) for some vector field v € LZ(#W) (R4 RY).
Moreover, v € Tang (1) if and only if the vector field v satisfies
P Rd;Rd

Jp(V) €{VE: L eC(RY)} iy B, (5.37)

Proof Being h sublinear, the functional ¢ admits the representation
vy = [ o(p.widr= [ h(p)Iw/n(p)|7ay= [ v dhuln.  (538)
R4 Rd Rd

where £ = py+put and v =wy = h(p)v?y. The condition v = vi(u|y) € Tany (1) is then
equivalent to

L M7 aham < [ Iv+alrdniuly)  vae L (uln) : V- (zhiul) =o.

Thanks to the convexity of || - ||?, the previous condition is equivalent to
o). _ P d.mpd)y . , _
/Rd Jo(¥)-2dh(u) =0 VzeLl, (RERY): /Rdz VCdh(uly) =0,  (5.39)

i.e. j,(v) belongs to the closure of {V{ : ¢ € C2(RY)} in Ly RY;RY). O

HIY)(
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5.4 Comparison with Wasserstein and W ~'-? distances.

Theorem 5.22 [f y(RY) < oo then for every Wy, ity € M- (R?) and o < 1 we have

loc
Wy 0(Ho, 1) < Wy 9.1.5(Ho, 1) < YR YW, gy (o 1), (5.40)
where, as usual, 8 = (1 —ot)p+ .

Proof Let (U,v) € €€, , y(0,1; o — 1) be an optimal curve, so that

1 1
Whaoto,) = [ @paluviar= [ [ (o) 7w ayar, 4

where y; := p; Y+ 1, v; = w;y < 7. Holder inequality yields

1 ,
Wp//e 1y (Mo, 11) §/0 /]Rd(pt)l_p/e [w, [P/ dydr < Y(Rd)l_]/ewpp,égy(“o’“l)' o

Theorem 5.23 Let us suppose that m_i(y) < oo, Kk =p/(0 —1) =¢q/(1 — a), let po, l; €
P(RY), and let k* = k/(k — 1) be the Holder’s conjugate exponent of k. Then

10 = pually v = Wice 0y (o, p1) < Wiy (o, ). (5.42)
Proof We keep the same notation of the previous Theorem, setting

T 1
T=p/ri=14p—-06, 7:=——=1+

T p_e
T*l piev xf(f) -

1+p—06°

Observing that i, € P(RY) thanks to Theorem 4.9, we obtain

W0y (Mo, 11) // lwi|"dydr = // p:)" () " |wi|"dyds
< [F([emlran)a= ([ [ o0 riwiraya) " =w; oy, 0

Theorem 5.24 (Comparison with W,) Assume that y € M. (R?) is a bounded pertur-
bation of a log-concave measure (e.g. Y= fe™" £% where V is a convex function and f
nonnegative and bounded). If 1; = s;y € P(R?) with s; € L () and m,(1;) < L < +oo then
Wo.y(Ho, 1) < +oo and there exists a constant C only depending on L, ¢, and 'y such that

Wo.y(Ho, 1) < CW, (o, pi)- (5.43)

Proof 1Tt is not restrictive to assume that 7y is log-concave. We can then consider the optimal
plan £ € M*(R? x R?) induced by the p-Wasserstein distance (1.1) between g and g and
the interpolant i, defined as

1 (A) = Z({(x0,x1) € R xRY: (1 —t)xo+1x; €A}) VA€ B(RY). (5.44)

It is possible to prove (see e.g. [3, Theorems 7.2.2, 8.3.1, 9.4.12]) that y, is the geodesic
interpolant between g and p;, it satisfies the continuity equation

;i +V-vi=0 inR?x(0,1)
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with respect to a vector valued measure vV, = v, 1, < U, where the vector field v, satisfies

[ ontmviar= [ [ ol dmeoa = wg . m)

and finally g, = s,y with [|s;]|;=(y) < L := max (||sol|z=(y), [Is1]|z>(y)) - Observe that, being
s;(x) < L for y-a.e. x € R? and ¢(0,0) 0, Theorem 3.1 ylelds

¢(S[,S[V[) *d)(L LV[) < CLS1|V[|p Y-a.e.,

h‘

so that
D, V1) :/ O (s1,50v,)dy(x) < CL/ Vi[5 dy = CL/ Ve P dpty,
R4 R4 R4

and therefore

1 1
Wiy(uo,ul)é/ <1>(ut,vt)dt§CL// Vel dpy dt = CLWS (po, 1) O
’ 0 0 JRd

Corollary 5.25 If u; = 5,27 € T(Rd) have L”-densities with compact support (or, more
generally, finite p-momentum), then Wy cpa(Ho, 1) < +-oo.

Theorem 5.26 If u; = s;y with s; > L > 0 y-a.e. in R4, then there exists a constant C de-
pending on L and ¢ such that

Wo,r(Ho ) < CrllMo = plly1.- (5.45)

Proof Let us first observe that if ||ty — L Hwy—l,p < oo then there exists w € L) (R?%;RY)
such that

~V.v=u — Uy, V:i=wy, / (wiPdy=|to—ml” _,,- (5.46)
R4 W7

In fact, in the Banach space X := L?,(]Rd;]l%d) we can consider the linear space ¥ := {D{ :
¢ € CL(R?)} and the linear functional

(y) = /Rd Cd(uy —po) ify=D¢ forsome ¢ € CH(RY).

¢ is well defined and satisfies | (¢,y)| < [|to — milly, 1p|\y||Lq Rrd;rdy for every y € Y. Hahn-

Banach Theorem and Riesz representation Theorem yield the existence of w € L (]Rd ;RY)
such that (¢,y) = [pa W-ydy, which yields (5.46). Setting p, = (1 —1) o + ¢y, it is then
immediate to check that (u;,v) € C€(0, 1; 4o — H;); we can then compute

¢y(.u07ll1 / / ¢( 1—t)SQ+tSl7 d,}/dt </ ¢(L w dy<CL/ |w|de7

where we used the fact that (1 —t)sg + sy > L y-almost everywhere and the map p —
¢ (p,w) is nonincreasing. a
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5.5 The case y = %% and the Heat equation as gradient flow

One of the most interesting cases corresponds to the choice
yi=2 ha(p)i=p% 0<a<l,  $,alp,w):=p%w/p%P. (5.47)

In this case the expression of the weighted Wasserstein distance becomes

1,
W]‘:a;gd(uo,ul)::min{/o/deta|V,|pdxdt: U +V-(p%)=0inRY x (0,1)
We=p 2t W = Hos MY, :ul}-

The metric W, . oa testricted to P(RY) is complete if d < k = g5 = L.

Remark 5.27 (P(R?) is not complete w.r.. W, .24 if d > x) The above condition is almost
sharp; here is a simple counterexample in the case d > k. We consider an initial probability
measure with compact support g = po-2%, po € L*(R?), and, for ¢ > 0, the family

W= p L pi(x)i=e po(e'x), vy i=xu = xp,(x).24. (5.48)

Itis easy to check that (1, v) € CE(0, +e0), Ht(Rd) = 1. Evaluating the functional &; :=
Dy, o1y, Vi | L) we get

&= [ P Mlpxtrds= [ e pf (e x)lal" dx
Rd Rd

_ pd—dbrpr /

G L R ORI
R R4

so that 4
oo K
gDtl/ﬂzce(lfd/K)t7 / qul/”dt:ci <+ ifd > k.
0 d—x

If d > K we obtain a curve ¢ — g, € P(R?) of finite length w.r.t. W, q.a (in particular
(n)nen is a Cauchy sequence) such that lTim U = 0 in the weak* topology.
tT+eo

In the remaining part of this section, we want to study the properties of W, . .o« with respect
to the heat flow. We thus introduce

1 i 1 k2 _
gx)=gi1(x) = (47r)d/2e /4, g(x) = (47tt)d/26 W2/ — =26 (x /1),

and for every u € M, (R?) with ig(u) < +oo for some § < 0, we set

loc

Sl =nre =2’ w@) =SE= [ ak-ndu). 649
It is well known that u € C**(RY x (0, +o0)) and
du—Au=0 inRx (0,40),  S[ul—*u asr]O0. (5.50)

Theorem 5.28 (Contraction property) Ler u° u' € M;" (R?) with mg(u') < 400 and

loc

W¢7$¢I(IJ1 ) uz) < oo, If Ui == 8;[u’] are the corresponding solutions of the heat flow, then

W i (1 187) Wy ga(',u?) V>0, (5.51)
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Proof 1t sufficient to approximate the Gaussian kernel g by a family of C* kernels k" with
compact support and then apply Theorem 5.15, observing that k" x ¢ = 2. a

We consider now the particular case of the W, ,. .« weighted distance with o > 1—2/d.
Let us first introduce the convex density function (recall (1.9))

1 _ 1 _
Va(p) == mpz *, suchthat yg(p)= p) ~ P (5.52)
and the corresponding entropy functional
Py (1) = Vo (u|2?) = /W Va(p)dx, ifu=pz!<.2? (5.53)

We also introduce the set Q := {p € P(R?) : ¥(1u) < +oo}.

Theorem 5.29 If u € P(RY) then y, = 8,[u] = u £ € Q for every t > 0, the map t —
Yo (1) is nonincreasing, and it satisfies the energy identity

t
W (1) +/ By o (11, Vity) dr = W (1) VO < 5 < 1 < +oo; (5.54)

when W € Q then the previous identity holds even for s = 0. Moreover, I satisfies the Evo-
lution Variational Inequality

S5 Wagou(H0,0) + Yall) < ¥a(0) Vi20,VoeQ, (5:55)

Proof Since W), (u) = u~?%, a direct computation shows

d d .
o fvatwrar == [ Vi) de= [ 1P de= @ o, V).

Concerning (5.55), we use the technique introduced by [12, §2]: we consider a geodesic
(05, Vs)sefo,1] € CE(0, 150 — ), which satisfies 0s(R?) = 1 by Theorem 4.9. We set

o5 = ”itgd 1= 8t [04], Vf,r = Wﬁ,tgd = 8erw[Vs], Wi, =W, —tVug,.
It is not difficult to check that
o, +V-wE, =0 inR?x(0,1), (5.56)

so that
W2, pa(liess, ) < /0 a,ds, A, = /Rd () " IWE [ = s (02, VE,|.29).
We thus evaluate
Ait = /Rd (”it) - ( - ZIV”?J : wiz + ‘Ws,z|2 - t2|V“§J|2) dx

-a —a
S—ZI(/Rd(uir) Vu?.fwf,,dxf/R () WS, P dx

< 210, ¥(0F,) + Dr,a(05, vs|27), (5.57)
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where we used the facts

(5.56) (5.52) —-a
o[ walus)ax 2 [ vy fus,) we ar O [ (uf,) Vg, wEa,

/Rd ()~ IW5, 1P e = D2, (O # gerar, Vs * et | 27) < Pra( 05, V5|27)

thanks to the convolution contraction property of Theorem 2.3. Integrating (5.57) with
respect to s from 0 to 1 and recalling that (0y, Vy)sejo,1] is @ minimal geodesic and that
Of, = Hets and 6§, = 0, we get

1
/o AS, ds 421 Wy (pe 1) < 2t ¥y (0) +Wia;$d(u,c). (5.58)
‘We deduce that

IW3 (e s, 0) + 1P (Hets) <1P(0) + 3W5 o (11, 0). (5.59)

Passing to the limit as € | 0 and then as ¢ | 0 after dividing the inequality by  we get (5.55)
at t = 0. Recalling the semigroup property of the heat equation, we obtain (5.55) for every
time ¢ > 0. O

(5.55) is the metric formulation of the gradient flow of the (geodesically convex) functional
Wy in the metric space (Q,W, ,. o4 ), see [3, Chap. 4]. Applying [12, Theorem 3.2] we even-
tually obtain:

Corollary 5.30 (Geodesic convexity of ¥,) Let o > 1 —2/d, u; = p;. 2% € P(RY) with
W) . pd (Hos 1) < +o0 and [pa p? % dx < oo, and let py, t € [0,1), be the minimal speed
geodesic connecting o to fy w.r.t. Wy ;. pa. Then for everyt € [0,1] iy = p2? < 21

/detz’“dxg(l—t)/deg’“dx+t/del2’adx. (5.60)
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