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Abstract
In recent years fractional operators have received considerable attention both in pure
and applied mathematics. They appear in biological observations, finance, crystal
dislocation, digital image reconstruction and minimal surfaces.
In this thesis we study nonlocal minimal surfaces which are boundaries of sets

minimizing certain integral norms and can be interpreted as a non-infinitesimal version
of classical minimal surfaces. In particular, we consider critical points, with or withouth
constraints, of suitable functionals, or approximations through diffuse models as the
Allen-Cahn’s.

In the first part of the thesis we prove an existence and multiplicity result for critical
points of the fractional analogue of the Allen-Cahn equation in bounded domains.
We bound the functional using a standard nonlocal tool: we split the domain in two
regions and we analyze the three significative interactions. Then, the proof becomes an
application of a classical Krasnoselskii’s genus result.

Then, we consider a fractional mesoscopic model of phase transition i.e. the fractional
Allen-Cahn equation with the addition of a mesoscopic term changing the ‘pure phases’
±1 in periodic functions. We investigate geometric properties of the interface of the
associated minimal solutions. Then we construct minimal interfaces lying to a strip
of prescribed direction and universal width. We provide a geometric and variational
technique adapted to deal with nonlocal interactions.

In the last part of the thesis, we study functionals involving the fractional perimeter.
In particular, first we study the localization of sets with constant nonlocal mean
curvature and small prescribed volume in an open bounded domain, proving that these
sets are ‘sufficiently close’ to critical points of a suitable potential. The proof is an
application of the Lyupanov-Schmidt reduction to the fractional perimeter.

Finally, we consider the fractional perimeter in a half-space. We prove the existence
of a minimal set with fixed volume and some of its properties as intersection with the
hyperplane {xN = 0}, symmetry, to be a graph in the xN -direction and smoothness.
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1 Introduction of the summary results
In recent years fractional operators have received a lot of attention both in pure
and applied mathematics. The motivations are multiple: they appear in biological
observations (for example when a predator decides that a nonlocal dispersive strategy
to hunt its preys is more efficient) [64], in minimal surfaces [22], in crystal dislocation
[12] and in finance [41]. In particular, from a probabilistic point of view, the fractional
Laplacian is an infinitesimal generator of Lévy processes, see [10].
Fractional operators generalize classical ones, because if their order is given by

the parameter s ∈ (0, 1), when s → 0+ we obtain the identity, while if s → 1− we
recover(after proper scaling) the classical local operator. For these reasons in the first
part of this thesis we are interested in studying an elliptic nonlinear equation with
fractional diffusion of the form

(−∆)su = W ′(u) in Ω ⊆ RN (1.0.1)

with s ∈ (0, 1), (−∆)s the fractional Laplacian (defined in (2.1.2)) andW (u) := (1−|u|2)2

4
the well known double-well potential. The interest versus this equation, known as
the fractional Allen-Cahn equation, is due to the fact that it models the process of
phase separation in iron alloys, along with order-disorder transitions, and the fractional
exponent s ∈ (0, 1) allows us to consider long-range particle interactions (producing,
depending on the value of s, local or nonlocal effect, see [82, 84]).

In the last years many aspects of the fractional Allen-Cahn equation has been studied.
As it concerns existence, uniqueness and qualitative properties of (1.0.1) we refer to
[20], where Cabré and Sire studied a more general equation of the form

(−∆)su+G′(u) = 0 in RN ,

where G denotes the potential associated to a nonlinearity f .
Then, some authors investigated multiplicity results of nontrivial solution for{

ε2s(−∆)su+ u = h(u) in λΩ,
u = 0 on ∂(λΩ),

(1.0.2)

where Ω is a bounded domain in RN , λ ∈ R+, N > 2s with s ∈ (0, 1), and h(u) has a
subcritical growth (see [48]), or for

ε2s(−∆)su+ V (z)u = f(u) in RN ,
u ∈ Hs(RN )
u(z) > 0 z ∈ RN ,

(1.0.3)
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1 Introduction of the summary results

where N > 2s, the potential V : RN → R and the nonlinearity f : R → R satisfy
suitable assumptions (see [49]).
Moreover, in [73], Passaseo studied the functional

fε(u) := ε

∫
Ω

|Du|2 dx+ 1
ε

∫
Ω

G(u) dx, (1.0.4)

where Ω ⊆ RN is a bounded domain, u ∈ H1(Ω), G ∈ C2(R;R+) with exactly two
zeros, and ε ∈ R+, showing that the number of critical points for fε goes to infinity as
ε→ 0.

Afterwards, in [57] and [63], Guaraco and Mantoulidis used a min-max approach to
study (1.0.4) as ε→ 0.
Motivated by these results, we addressed an existence and multiplicity results for

the energy

Fε(u) :=



1
2

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s dx dy + 1
ε2s

∫
Ω

W (u) dx, if s ∈ (0, 1/2),

1
2

1
|log ε|

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+1 dxdy + 1
|ε log ε|

∫
Ω

W (u) dx, if s = 1/2,

ε2s−1

2

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s dxdy + 1
ε

∫
Ω

W (u) dx, if s ∈ (1/2, 1),

(1.0.5)
that is the fractional counterpart in Ω of (1.0.4), with Ω ⊆ RN that is a bounded
domain, W is the double-well potential (see (3.0.2) for more details), u ∈ Hs(Ω) and
ε ∈ R+.

In particular, in the same spirit as [73], in Chapter 3, we consider the functional Fε
and we prove the following

Theorem 1.1. Let Ω ⊆ RN be a bounded domain. Then there exist two sequences of
positive numbers {εk}k∈N, {ck}k∈N such that for every ε ∈ (0, εk), the functional Fε
has at least k pairs

(−u1,ε, u1,ε), . . . , (−uk,ε, uk,ε)

of critical points, all of them different from the constant pair (−1, 1) satisfying

−1 ≤ ui,ε(x) ≤ 1 ∀ x ∈ Ω, ∀ ε ∈ (0, εk), i = 1, . . . k;
Fε(ui,ε) ≤ ck ∀ ε ∈ (0, εk), i = 1, . . . , k.

Moreover, for all ε ∈ (0, εk) and all i = 1, . . . , k we have

Fε(ui,ε) ≥ min
{
Fε(u) : u ∈ Hs(Ω),−1 ≤ u(x) ≤ 1 for x ∈ Ω,

∫
Ω

udx = 0
}
.

(1.0.6)

Another interesting problem related to the fractional Allen-Cahn equation concerns
plane-like minimizers, i.e. minimizers that stay at a finite distance from a plane along
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every direction. About that, in [31], Cozzi and Valdinoci studied the functional

E(u) := 1
2

∫
RN

∫
RN
|u(x)− u(y)|2K(x, y) dx dy +

∫
RN

W (x, u(x)) dx , (1.0.7)

where K is a kernel comparable to that one of the fractional laplacian and W is the
double-well potential. In particular they constructed minimizers of E with interfaces in
a slab of prescribed direction and bounded size (independently of the direction).
This type of problem was first studied by Caffarelli and De La Llave in [24] where

the authors considered an elliptic integrand I (but also functionals involving volume
terms) in RN or in suitable manifolds, periodic under integer translations, and they
proved that for any plane in RN there exists at least one minimizer of I with a bounded
distance from this plane.

The analogous result of [31] for s = 1 was proved in [86], where the first addendum
of E is replaced by ∫

〈A(x)∇u(x),∇u(x)〉dx ,

with A bounded and uniformly elliptic matrix. Some other generalizations were analyzed
in [74, 60, 13].
Then, in [69], Novaga and Valdinoci considered the Allen-Cahn energy with the

addition of a ‘mesoscopic term’ H which is ‘neutral’ in the average and at each point it
prefers one of the two phases, i.e.

EΩ(u) :=
∫
Ω

(
|∇u(x)|2 +W (x, u(x)) +H(x)u(x)

)
dx , (1.0.8)

where Ω ⊆ RN is a bounded domain, N ≥ 2, u ∈ H1(Ω),W is the standard double-well
potential and H ∈ L∞(RN ).
They investigated geometric properties of the interfaces of the associated minimal

solutions and they gave density estimates for the level sets. This allowed them to
construct, in the periodic setting, minimal interfaces near a prescribed strip.

In the same spirit of [31] and [69], we studied in Chapter 4 the fractional Allen-Cahn
energy with the addition of a ‘mesoscopic term’ H, i.e.

E(u) := 1
2

∫
RN

∫
RN
|u(x)− u(y)|2K(x, y) dxdy+

∫
RN

W (x, u(x)) dx+
∫
RN

H(x)u(x) dx ,

where K is a kernel comparable to that one of the fractional laplacian, W is the
double-well potential and H ∈ L∞(RN ) (see Chapter 4 for more details).
For this functional we construct minimal interfaced near a strip of universal size:

Theorem 1.2. Let s ∈ (0, 1), δ0 ∈ (0, 1/10) and N ≥ 2. Given θ ∈ (0, 1− δ0), there
exists M0 > 0 depending only on θ and on universal quantities, such that for any
ω ∈ RN \ {0}, there is a class A-minimizer uω of E for which we have

{|uω| < θ} ⊂
{
x ∈ RN : ω

|ω|
· x ∈ [0,M0]

}
.

Moreover,
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1 Introduction of the summary results

• if ω ∈ QN \ {0}, uω is periodic with respect to ∼ω;

• if ω ∈ RN \QN , uω is the uniform limit on compact subsets of RN of a sequence
of periodic class A-minimizers.

We refer to Definition 4.4 and (4.0.2) for the notions of class A-minimizer and
function ∼ω periodic respectively.
In addition to the study of the properties which characterize the solutions of the

fractional Allen-Cahn equation (1.0.1), it is also interesting to observe that, if Ω ⊂ RN
is a bounded domain, the complete version of Fε (defined in (1.0.5)) is given by
Is,Ω,ε : Hs(Ω)→ R ∪ {+∞},

Is,Ω,ε(u) :=


K(u,Ω) + ε−2s ∫

Ω
W (u) dx if s ∈ (0, 1/2),

|ε log ε|−1(
ε2sK(u,Ω) +

∫
Ω
W (u) dx

)
if s = 1/2,

ε2s−1K(u,Ω) + 1
ε

∫
Ω
W (u) dx if s ∈ (1/2, 1),

(1.0.9)

where ε > 0, W is the double-well potential and

K(u,Ω) := 1
2

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s dxdy +
∫
Ω

∫
ΩC

|u(x)− u(y)|2

|x− y|N+2s dxdy .

(1.0.9) is the fractional counterpart of the functional studied by Modica and Mortola in
[22], where the authors proved the Γ -convergence of the energy to De Giorgi’s perimeter
(defined in [52]).

In the same way Savin and Valdinoci in [82] considered the functional Is,Ω,ε showing
that if s ∈ [1/2, 1), then Is,Ω,ε Γ -converges to the classical perimeter, while if s ∈ (0, 1/2)
and u

∣∣
Ω

= χE − χRN\E for some set E ⊂ Ω, then Is,Ω,ε Γ -converges to the fractional
perimeter (localized with respect to Ω)

Ps(E,Ω) :=
∫
E∩Ω

∫
EC

dxdy
|x− y|N+2s +

∫
E\Ω

∫
EC∩Ω

dxdy
|x− y|N+2s . (1.0.10)

Moreover, Ambrosio, De Philippis and Martinazzi analyzed in [6] the link between the
fractional perimeter and the classical De Giorgi’s perimeter, showing the equi-coercivity,
the Γ -convergence of the fractional perimeter, when s approaches 1/2, to the classical
perimeter (up to a scaling factor), and they deduced a local convergence result for
minimizers.
Therefore the fractional perimeter, defined for a measurable set E ⊂ RN , as

Ps(E) :=
∫
E

∫
EC

dxdy
|x− y|N+2s , (1.0.11)

where N > 2, s ∈ (0, 1/2) and EC that is the complement of E, is a (nonlocal)
variation of the classical notion of perimeter which takes into account also a long-range
interactions between sets, and hence it is of great interest from a mathematical point
of view. Additionaly, the fractional perimeter has a relevant role in many applications.
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1

ε

Figure 1.1: Discrepancy between classical perimeter and fractional perimeter in a bitmap.

For example, if we consider a bitmap, that is a digitalized image in which every pixel
can only be black or white, we can easily see that the fractional perimeter is more
accurate than the classical one to analyze digitalized images (see [39, 27]).
To observe this fact, we take a grid of square pixels of small side ε > 0 and a black

square E of side 1 rotated by 45 degrees with respect to the orientation of the pixels.
Then we digitalize the square and we see a numerical error due to the pixels intersecting
the square which become black, see Figure 1.1. Computing the (classical) perimeter of
the original square and that one of the digitalized image we notice an error of a factor√

2 since the perimeter of the first is 4 and that one of the second is 4
√

2 (independently
on ε).
If we use the fractional perimeter (for example with s = 0.48 so that it is very

close to the classical perimeter thanks to [6]), we get a much better approximation.
Indeed, in this case, the discrepancy Ds(ε) between the fractional perimeter of the
original square and that one of the digitalized image is bounded by above by the sum
of "boundary pixels", whose number is 4/ε. Moreover, the intersection of one pixel with
its complement is given, for N = 2, by the scaling factor ε2−2s (obtained by (1.0.11)).
Therefore, for C > 0, we obtain that Ds(ε) ≤ Cε1−2s → 0 as ε→ 0.

For all these reasons, in the last part of this thesis we focus on the study of some
properties holding for minimizers of the fractional perimeter, whose boundaries are
called nonlocal constant mean curvature surfaces. They appear in the study of fractals
[87], cellular automata [58, 25] and phase transitions [16, 82].
First we study fractional isoperimetric problems. Their standard version consists

in the study of least-area sets contained in a fixed region (a ball, the Euclidean space,
. . . ). More precisely, if we consider a N -dimensional manifold MN , with or without
boundary, the goal would be to find, among all the compact hypersurfaces Σ ⊂ M
which contain a region Ω of volume V (Ω) = m ∈ (0, V (M)), those of minimal area
A(Σ). Such a region Ω is called an isoperimetric region and its boundary Σ is said an
isoperimetric hypersurface.

For this problem, a first general existence and regularity result can be obtained
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1 Introduction of the summary results

combining the works of Almgren with those of Gonzalez, Massari, Tamanini and Grüter
(see [2, 52, 53]). We also refer the reader to [76], where one can find an interesting
survey about the various topologies of the minimizers.
Beyond the existence and the regularity problem, it is also interesting to study the

geometry and the topology of the solutions, and to give a qualitative description of
the isoperimetric regions. As it concerns these issues, we recall that in 2000 Morgan
and Johnson showed in [67] that a region of small prescribed volume in a smooth and
compact Riemannian manifold has asymptotically (as the volume tends to zero) at
least as much perimeter as a round ball.

Afterwards, regarding critical points of the perimeter relative to a given set, in [43],
Fall proved the existence of surfaces similar to half spheres surrounding a small volume
near nondegenerate critical points of the mean curvature of the smooth boundary of
an open set in R3. Moreover he showed that the boundary mean curvature determines
the main terms studying the problem with a Lyapunov-Schmidt reduction.
Then, in [42] he proved that isoperimetric regions with small volume in a bounded

smooth domain Ω are near global maxima of the mean curvature of Ω.
Results of the same kind were shown in [40] and [88]. The authors considered

closed manifolds, proving that isoperimetric regions with small volume located near the
maxima of scalar curvature. In [88] Ye also showed a viceversa: for every critical points
p of the scalar curvature there exists a neighborhood of p foliated by constant mean
curvature hypersurfaces. Moreover, in [85], Taylor studied the boundary regularity for
the capillarity problem.

In the last years the increase of the interest for the fractional operator has led many
mathematicians to study isoperimetric problems even in a fractional setting.

In [46], Figalli, Fusco, Maggi, Millot and Morini generalized to the fractional setting a
well known quantitative isoperimetric inequality which holds for the classical perimeter.
Indeed, in the Euclidean framework, we know that among all sets of prescribed measure,
the balls have the least perimeter, i.e. for any E ⊂ RN borel set of finite Lebesgue
measure, it results

N |B1|
1
N |E|

N−1
N ≤ P (E), (1.0.12)

with B1 denoting the unit ball of RN with center at the origin and P (E) is the De
Giorgi’s perimeter of E. The equality in (1.0.12) holds if and only if E is a ball.

Fusco, Millot and Morini proved in [50] an analogous result for fractional perimeter
Ps (defined in (1.0.11)), then Figalli, Fusco, Maggi, Millot and Morini improved it,
showing the following result:

Theorem 1.3. [46, Theorem 1.1] For every N ≥ 2 and s0 ∈ (0, 1/2) there exists
C(N, s0) > 0 such that

Ps(E) ≥ Ps(B1)

|B1|
N−2s
N

|E|
N−2s
N

{
1 + A(E)2

C(N, s)

}
(1.0.13)

whenever s ∈ [s0, 1/2] and 0 < |E| <∞.
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As in [50],

A(E) := inf
{
|E4(BrE (x))|

|E|
: x ∈ RN

}
is the Fraenkel asymmetry of E and measures the normalized L1-distance of E from
the set of balls of volume |E|, while rE := (|E|/|B1|)1/N so that |E| = |BrE |, where
BrE is the ball of radius rE and center at the origin.

In the same spirit of extension of classical results to the fractional setting, we mention
a paper of Maggi and Valdinoci. In [61] they modify the classical Gauss free energy
functional used in capillarity theory by considering surface tension energies of nonlocal
type.
In this way, the authors analyzed a family of problems including an interesting

nonlocal isoperimetric problem. In particular, taking Ω ⊂ RN and σ ∈ (−1, 1), Maggi
and Valdinoci studied the nonlocal capillarity energy of E ⊂ Ω defined as

E(E) :=
∫
E

∫
EC∩Ω

K(x, y) dxdy + σ

∫
E

∫
ΩC

K(x, y) dxdy ,

with K : RN \ {0} → [0,+∞) that is an interaction kernel, i.e. an even function such
that

χBε(z)
λ|z|N+2s ≤ K(z) ≤ λ

|z|N+2s ∀ z ∈ RN \ {0}, (1.0.14)

where N ≥ 2, s ∈ (0, 1/2), λ ≥ 1, ε ∈ [0,∞) and Bε(x) that is the ball of center x
and radius ε. They gave existence and regularity results, density estimates and new
equilibrium conditions with respect to those of the classical Gauss free energy.
Motivated by the existence of these results, in Chapter 5, we want to study the

localization of sets with constant nonlocal mean curvature and small prescribed volume
in an open bounded domain proving this

Theorem 1.4. Let Ω ⊆ RN be a bounded open set with smooth boundary and s ∈
(0, 1/2).

For x in a given compact set Θ of Ω, set

VΩ(x) :=
∫
RN\Ω

1
|x− y|N+2s dy .

Then for every strict local extremal or non-degenerate critical point x0 of VΩ in Ω,
there exists ε > 0 such that for every 0 < ε < ε there exist spherical-shaped surfaces
with constant HΩ

s curvature and enclosing volume identically equal to ε, approaching
x0 as ε→ 0.

We refer to Section 2.2.1 for the definition of HΩ
s , which is the fractional counterpart

of the well known mean curvature.
Moreover, knowing only the topology of the domain, we can also deduce a multiplicity

result:
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1 Introduction of the summary results

Corollary 1.5. Let Ω ⊆ RN be a bounded open set with smooth boundary. Then there
exists ε > 0 such that for every 0 < ε < ε there exist at least cat(Ω) spherical-shaped
surfaces with constant HΩ

s curvature and enclosing volume identically equal to ε.

We write cat(Ω) to denote the Lusternik-Schnirelman category of the set Ω (see [59]
and Section 2.5 for more details).
Then, in the second part of Chapter 5 we want to study the existence and some

properties of sets with fixed volume m ∈ (0,+∞) which minimize the fractional
perimeter in a half-space. We notice that, recently, in [65] Mihaila showed the axial
symmetry of smooth critical points of the fractional perimeter in an half-space, using a
variant of the moving plane method.

Our main result will be the following:

Theorem 1.6. Let s ∈ (0, 1/2). There exists a minimizer E for{
P̄s(E,RN+ ) :=

∫
E

∫
RN+ \E

dxdy
|x− y|N+2s , E measurable set with |E| = m

}
m ∈ (0,+∞), (1.0.15)

where RN+ := {x ∈ RN : xN > 0} denotes the half-space. Moreover ∂E is a radially
decreasing symmetric graph of class C∞ in the interior, intersecting orthogonally the
hyperplane {xN = 0}.

1.1 Overview of the thesis
This thesis is organized in five chapters.

In Chapter 2 we introduce some notation, the setting and some preliminary results.

In Chapter 3 (whose results are published in [70]) we consider the fractional Allen-
Cahn energy (1.0.5) in a bounded domain and we prove Theorem 1.1. To do this we
get a bound by above on Fε through a nonlocal estimate obtained splitting the domain
in two suitable regions and evaluating Fε in the three possible interactions. Then we
show the validity of Palais-Smale condition and we apply a classical Krasnoselskii’s
genus tool to prove the existence and multiplicity results for minimizers of (1.0.5).

In Chapter 4 (whose results are published in [71]) we study a fractional mesoscopic
model of phase transition in a periodic medium. We prove an important result about
the regularity of minimizers of the associated functional, an energy estimate and some
geometric properties. Then we give a proof of Theorem 1.2 (first under the additional
assumption that K has a fast decay at infinity then for general kernels) both for rational
and irrational vectors.

In Chapter 5 (whose results are published in [62]) first we study the localization of
sets with constant nonlocal mean curvature and small prescribed volume in a bounded

8



1.1 Overview of the thesis

open set with smooth boundary. We prove Theorem 1.4 as an application of Lyapunov-
Schmidt reduction and Corollary 1.5 through a result about the Lusternik-Schnirelman
category. Then, in the second part of this chapter, we consider the fractional perimeter
in a half-space, proving the existence of a minimal set with fixed volume and some of its
properties as symmetry, to be a graph in the xN -direction, smoothness and intersection
with the hyperplane {xN = 0} in Theorem 1.6.
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2 Notation and preliminary results
In this chapter we want to introduce the framework that will be used throughout this
thesis.

2.1 Functional spaces
Let Ω ⊆ RN be an open set and s ∈ (0, 1). For any p ∈ [1,+∞) we define

W s,p(Ω) :=
{
u ∈ Lp(Ω) : |u(x)− u(y)|

|x− y|N/p+s
∈ Lp(Ω ×Ω)

}
(2.1.1)

as an intermediate Banach space between Lp(Ω) and W 1,p(Ω) endowed with the norm

‖u‖W s,p(Ω) :=
(∫

Ω

|u|p dx+
∫
Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+sp dxdy
)1/p

.

The term

[u]W s,p(Ω) :=
(∫

Ω

∫
Ω

|u(x)− u(y)|p

|x− y|N+sp dxdy
)1/p

is called the Gagliardo (semi)norm. If p = 2 we define

W s,2(Ω) := Hs(Ω)

which is a Hilbert space.
This is an important space because it is related to the fractional Laplacian operator

(−∆)s:

Definition 2.1. We consider the Schwartz space of rapidly decaying functions defined
as

S(RN ) :=
{
f ∈ C∞(RN ) : ∀ α, β ∈ NN0 , sup

x∈RN
|xαDβf(x)| <∞

}
.

Taken s ∈ (0, 1), for any u ∈ S(RN ), we define the fractional laplacian of u as

(−∆)su(x) := C(N, s)P.V.
∫
RN

u(x)− u(y)
|x− y|N+2s dy , (2.1.2)

where P.V. denotes the principal value, i.e.

(−∆)su(x) := C(N, s) lim
ε→0+

∫
RN\Bε(x)

u(x)− u(y)
|x− y|N+2s dy ,

11



2 Notation and preliminary results

where Bε(x) denotes a ball of radius ε and center x ∈ RN and C(N, s) is a dimensional
constant depending on N and s given by

C(N, s) :=
(∫

RN

1− cos(ξ1)
|ξ|N+2s dξ

)−1
. (2.1.3)

As in the classical case, if 0 < s ≤ s′ < 1, the space W s′,p is continuously embedded
into W s,p:

Proposition 2.2. [35, Proposition 2.1]. Let p ∈ [1,+∞) and 0 < s ≤ s′ < 1. Let Ω
be an open set in RN and u : Ω → R be a measurable function. Then

‖u‖W s,p(Ω) ≤ C‖u‖W s′,p(Ω)

for suitable positive constant C = C(N, s, p) ≥ 1. In particular

W s′,p(Ω) ↪→W s,p(Ω).

Moreover, the space W 1,p is continuously embedded in W s,p:

Proposition 2.3. [35, Proposition 2.2] Let p ∈ [1,+∞) and s ∈ (0, 1). Let Ω be an
open set in RN of class C0,1 and u : Ω → R be a measurable function. Then

‖u‖W s,p(Ω) ≤ C‖u‖W 1,p(Ω)

for suitable positive constant C = C(N, s, p) ≥ 1. In particular

W 1,p(Ω) ↪→W s,p(Ω).

Definition 2.4. [35, Section 5] Let s ∈ (0, 1) and p ∈ [1,+∞). We say that an open
set Ω ⊆ RN is an extension domain for W s,p if there exists C = C(N, p, s,Ω) > 0 such
that for every u ∈W s,p(Ω) there exists ũ ∈W s,p(RN ) with ũ(x) = u(x) for all x ∈ Ω
and ‖ũ‖W s,p(RN ) ≤ C‖u‖W s,p(Ω).

We point out that an arbitrary open set is not an extension domain for W s,p, but
any open set of class C0,1 with bounded boundary it is.
If we have an extension domain, we have the following continuous embeddings (see

also [35]):

Theorem 2.5. [34, Theorem 4.53]. Let s ∈ (0, 1) and let p ∈ (1,+∞). Let Ω ⊂ RN
be a C0,1 set. We have:

• if sp < N , then W s,p(Ω) ↪→ Lq(Ω) for every q ≤ Np/(N − sp);

• if sp = N , then W s,p(Ω) ↪→ Lq(Ω) for every q < +∞;

• if sp > N , then W s,p(Ω) ↪→ L∞(Ω) and, more precisely,

W s,p(Ω) ↪→ C
0,s−N/p
b (Ω),

where for λ ∈ (0, 1] we denote with C0,λ
b (Ω) the space of bounded Hölder continuous

functions of order λ on Ω.

12



2.2 Nonlocal Minimal Surfaces

As it concerns the compact embeddings we have this

Theorem 2.6. [34, Theorem 4.54]. Let s ∈ [0, 1), p > 1 and N ≥ 1. Let Ω ⊂ RN be
a C0,1 set.

• If sp < N , then the embedding of W s,p(Ω) into Lk(Ω) is compact for every
k < Np/(N − sp);

• if sp = N , then the embedding of W s,p(Ω) into Lk(Ω) is compact k < +∞;

• if sp > N , then the embedding of W s,p(Ω) in C0,λ
b (Ω) is compact for every

λ < s−N/p.

When s > 1 and it is not integer we write s = m + σ, where m is an integer and
σ ∈ (0, 1). In this case

W s,p(Ω) := {u ∈Wm,p(Ω) : Dαu ∈Wσ,p(Ω) for any α : |α| = m}.

This is a Banach space with respect to the norm

‖u‖W s,p(Ω) :=

‖u‖pWm,p(Ω) +
∑
|α|=m

‖Dαu‖pWσ,p(Ω)

1/p

. (2.1.4)

Obviously, if s = m integer, the space W s,p(Ω) coincides with the Sobolev space
Wm,p(Ω).
For these spaces, embedding theorems similar to the previous ones hold, see [34,

Theorem 4.57] and [34, Theorem 4.58].

2.2 Nonlocal Minimal Surfaces
In this section we introduce the nonlocal minimal surfaces (or s-minimal surfaces) that
are boundaries of the minimizers of the fractional perimeter.
They appear in phenomena when the particles get farther and farther apart, faster

than the interaction potential decaying. So two particles which belong to different
phases and stay away from the interface give a nontrivial contribute to the total
interaction energy.

2.2.1 The fractional Perimeter
The notion of fractional perimeter was introduced by Caffarelli, Roquejoffre and Savin
in [22], where they were motivated by the structure of interphases that arise in classical
phase field models when very long space correlations are present.

Definition 2.7. For 0 < s < 1/2 the fractional perimeter (or s-perimeter) of a
measurable set E ⊆ RN is defined as

Ps(E) :=
∫
E

∫
EC

dxdy
|x− y|N+2s , (2.2.1)

13
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EE

Ω

Ω \ EΩ \ E

Ω ∩ EΩ ∩ E

EC \ΩEC \Ω

E \ΩE \Ω

Figure 2.1: The interactions considered in the localized fractional perimeter.

where hereafter EC will denote the complement of a set E. So, we say that a set
E ⊂ RN has finite s-perimeter if Ps(E) <∞.
We point out that the fractional perimeter corresponds to the usual semi-norm of

the characteristic function χE in the fractional Sobolev space Hs(RN ), that is

Ps(E) = 1
2 [χE ]2Hs(RN ) = 1

2

∫
RN

∫
RN

|χE(x)− χE(y)|2

|x− y|N+2s dxdy .

Moreover, by [6, Theorem 2], it is known that the fractional perimeter Γ -converges
to De Giorgi’s perimeter as s→ 1/2. Precisely, it holds

Γ − lim
s↑1/2

(1− 2s)Ps(E) = ωN−1P (E), (2.2.2)

where, here and in the following, ωN−1 denotes the (N − 1)-dimensional measure of
the unit sphere of RN−1.

The fractional perimeter can be localized to a bounded open set Ω ⊆ RN by taking
away the contribution of points of E and EC outside Ω, i.e.

Ps(E,Ω) :=
∫
E∩Ω

∫
EC

dx dy
|x− y|N+2s +

∫
E∩ΩC

∫
EC∩Ω

dxdy
|x− y|N+2s , (2.2.3)

where ΩC denotes the complement of Ω.
Roughly speaking, the localized fractional perimeter represents the interaction of

any point inside E with any point outside E where we "remove" possible infinite
contributions to the energy which come from infinity (see Figure 2.1), since they do
not contribute to the minimization.

Definition 2.8. We say that a set E ⊆ RN is a s-minimizer for the fractional perimeter
in Ω if

Ps(E,Ω) ≤ Ps(F,Ω) (2.2.4)

for any measurable set F that coincides with E outside Ω, i.e. F \Ω = E \Ω.

The boundaries of s-minimizing sets are referred to as nonlocal minimal surfaces.
Remark 2.9. [22] The set E ∩ ΩC plays the role of ‘boundary data’ for E ∩ Ω. If
Ω ⊂ RN is a bounded Lipschitz domain, inf Ps(·, Ω) is bounded by Ps(E \Ω,Ω) <∞.
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2.2 Nonlocal Minimal Surfaces

The existence of these minimizer for the fractional perimeter is easily proved through
the direct method of the Calculus of Variations. Indeed, the fractional perimeter is
lower semicontinuous:

Proposition 2.10. [22, Proposition 3.1]. If χEn → χE in L1
loc, then

lim inf
n→+∞

Ps(En, Ω) ≥ Ps(E,Ω).

Hence, the following existence result holds:

Theorem 2.11. [22, Theorem 3.2]. Let Ω ⊂ RN be a bounded Lipschitz domain,
E0 ⊂ ΩC is a given set. There esists a set E, with E ∩ΩC = E0 such that

inf
F∩ΩC=E0

Ps(F,Ω) = Ps(E,Ω).

In [22] it is proved that s-minimizers satisfy a suitable integral equation (that is the
Euler-Lagrange equation corresponding to the functional (2.2.3)). If E is a s-minimizer
for Ps in Ω and ∂E is smooth enough, this equation results∫

RN

χE(y)− χEC (y)
|x− y|N+2s dy = 0 (2.2.5)

for any x ∈ Ω ∩ ∂E.
Hence, if E ⊆ RN is an open set, in analogy with the classical minimal surfaces which

have zero mean curvature, one defines the nonlocal (or fractional) mean curvature,
briefly denoted with NMC, of ∂E at a point x ∈ ∂E as

Hs,∂E(x) :=
∫
RN

χE(y)− χEC (y)
|x− y|N+2s dy , (2.2.6)

so that equation (2.2.5) can be written as Hs,∂E(x) = 0.
We point out that the integral in (2.2.6) is understood in the principal value sense,

hence defining

Hδ
s,∂E(x) :=

∫
RN\Bδ(x)

χE(y)− χEC (y)
|x− y|N+2s dy (2.2.7)

we have
Hs,∂E = lim

δ→0
Hδ
s,∂E .

Note that, if ∂E ∈ C2, the nonlocal mean curvature Hs,∂E is well-defined in a neigh-
bourhood of x in the principal value sense and, in this case, it agrees with usual mean
curvature in the limit as s→ 1/2 by the relation

lim
s→1/2

(1− 2s)Hs,∂E = ωN−1H∂E ,

where H∂E denotes the classical mean curvature of ∂E, see [1, Theorem 12].
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If E is smooth and compactly contained in Ω, let w be a smooth function defined on
on ∂E, with small L∞ norm. We call Ew the set whose boundary ∂Ew is parametrized
by

∂Ew = {x+ w(x)νE(x) : x ∈ ∂E} (2.2.8)

where νE is a normal vector field to ∂E exterior to E.
The first variation of the fractional perimeter (2.2.3) along these normal perturbations

is given by

dtPs(Etw, Ω)|t=0 := d
dt

∣∣∣∣
t=0

Ps(Etw, Ω) =
∫
∂E

(Hs,∂E)w dσ , (2.2.9)

see [32], and this quantity vanishes for all such w if and only if

Hs,∂E(x) = 0 for all x ∈ ∂E ∩Ω.

We point out that, besides (2.2.6), there are other ways to write the nonlocal mean
curvature. For example, if x ∈ ∂E, setting χ̃E := χE − χEC , we have

Hs,∂E(x) = 1
2

∫
RN

χ̃E(x+ y)− χ̃E(x− y)
|y|N+2s dy

= 1
2

∫
RN

χ̃E(x+ y)− χ̃E(x− y)− 2χ̃E(x)
|y|N+2s dy

= (−∆)sχ̃E(x)
C(N, s) ,

(2.2.10)

where the first two integrals are understood in the principal value sense, C(N, s)
is defined in (2.1.3) and (−∆)s is the fractional Laplacian defined in (2.1.2). This
representation is useful because it allows us to write the Euler-Lagrange equation as

(−∆)sχ̃E = 0 along ∂E.

Finally, as conclusion of this section, we recall the partial known results about the
regularity theory of nonlocal minimal surfaces, (see [8] and [83]):

Theorem 2.12. [16, Theorem 5.3] In the plane, s-minimizers are smooth, i.e.

• if E is a s-minimizer in Ω ⊂ R2, then ∂E ∩Ω is a C∞-curve.

• Let E be a s-minimizer in Ω ⊂ RN , and let ΣE ⊂ ∂E ∩ Ω be its singular set.
Then, denoting with Hd the d-dimensional Hausdorff measure, Hd(ΣE) = 0 for
any d > N − 3.

Moreover, when s is close to 1/2, we have that

Theorem 2.13. [16, Theorem 5.4] There exists ε ∈ (0, 1/2) sucht that if s ≥ 1
2 − ε,

then

• if N ≤ 7 any s-minimizer is of classe C∞.
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2.3 Classical and fractional Allen-Cahn equations

• If N = 8 any minimal surface is of class C∞ except, at most, countably many
isolated points.

• any s-minimal surface is of class C∞ outside a closed set Σ of Hausdorff dimen-
sion N − 8.

2.3 Classical and fractional Allen-Cahn equations
S. Allen and J. W. Cahn in the 1970s introduced the well-known Allen-Cahn equation

−∆u = u− u3 in Ω ⊆ RN , (2.3.1)

which describes a phase coexistence model, where u is the phase of the medium at
x ∈ Ω and Ω represents the container.

It is easy to see that equation (2.3.1) has a variational structure, so its solutions can
be found as critical points of the energy functional

IΩ(u) := 1
2

∫
Ω

|∇u(x)|2 dx+
∫
Ω

W (u(x)) dx , (2.3.2)

where W (r) := (1−r2)2

4 is the well known double-well potential.
The first term of IΩ is an interfacial energy which prevents phase changes from point

to point and ‘wild’ phase oscillations; the second term penalizes considerable deviations
from the ‘pure phases’ ±1.
In the last thirty years of the 20th century a lot of results about the Allen-Cahn

equation are obtained: a Γ -convergence result (see [66]), energy and density estimates
(see [23]), and locally uniform convergence of level sets (see [23]) are shown.

Recently with the growth of interest for fractional operators, a lot of mathematicians
addressed their attention to the fractional counterpart of the Allen-Cahn equation, i.e.

(−∆)su = u− u3 in Ω ⊆ RN , (2.3.3)

where s ∈ (0, 1) and (−∆)s that is the fractional Laplacian introduced in (2.1.2). This
model, different from the classical one, deals with longe-range interactions which can
influence the coexistence of the two ‘phases’ introducing new phenomena.
However, as its classical counterpart, equation (2.3.3) has variational structure. In

this case, up to scaling constants omitted for simplicity, the energy associated to the
fractional Allen-Cahn equation is

Is,Ω(u) := CN,s
4

∫∫
CΩ

|u(x)− u(y)|2

|x− y|N+2s dxdy +
∫
Ω

W (u(x)) dx , (2.3.4)

where CN,s is defined in (2.1.3) and

CΩ := (Ω ×Ω) ∪
(
Ω × (RN \Ω)

)
∪
(
(RN \Ω)×Ω

)
. (2.3.5)
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2 Notation and preliminary results

It is interesting to observe that the interface term of (2.3.2) considers the points in Ω
which can be regarded as the complement in RN of the ‘inactive’ set RN \ Ω, while
in (2.3.3), CΩ collects the couples (x, y) ∈ RN × RN such that at least one of the
points belongs to Ω (and hence CΩ takes into account the ‘inactive’ couples of points
in (RN \Ω)× (RN \Ω)).
Following [38], we recall some interesting results, previously analyzed for equation

(2.3.1), obtained for the fractional Allen-Cahn equation (2.3.3).
For ε > 0 and s ∈ (0, 1), we define the functional Is,Ω,ε : Hs(Ω)→ R as

Is,Ω,ε(u) :=



∫∫
CΩ

|u(x)− u(y)|2

|x− y|N+2s dxdy + 1
ε2s

∫
Ω

W (u(x)) dx if s ∈
(
0, 1

2
)
,

1
| log ε|

∫∫
CΩ

|u(x)− u(y)|2

|x− y|N+2s dxdy + 1
ε| log ε|

∫
Ω

W (u(x)) dx if s = 1
2 ,

ε2s−1
∫∫
CΩ

|u(x)− u(y)|2

|x− y|N+2s dx dy + 1
ε

∫
Ω

W (u(x)) dx if s ∈
( 1

2 , 1
)
,

(2.3.6)
that is the rescaled functional obtained from the use of the blow-down sequence

uε(x) := u
(x
ε

)
for ε→ 0

in (2.3.4).
The Γ -convergence result for the fractional Allen-Cahn energy is the following:

Theorem 2.14. [82, Theorem 1.5] If Ω ⊆ RN is a smooth domain and uε : Ω → [−1, 1]
is a sequence of minimizers for Is,Ω,ε such that

sup
ε∈(0,1)

Is,Ω,ε(uε) < +∞,

then, up to a subsequence,

lim
ε→0

uε = u0 := χE − χEC in L1(Ω), (2.3.7)

for some set E ⊆ RN .
If s ∈ (0, 1/2) and uε converges weakly to u0 in RN \Ω, then the set E minimizes

the fractional perimeter Ps in Ω with respect to its datum in RN \Ω.
If s ∈ [1/2, 1), the set E minimizes the perimeter in Ω with respect to its boundary

datum.

It is important to highlight that this theorem represents the nonlocal analogue
of the classical Γ -convergence result proved in [66] with a fundamental difference:
the same limit (2.3.7) holds but, depending on the parameter s, the limit set E has
different features. Moreover, as remarked in [38], the Γ -convergence results stated
in Theorem 2.14 are easier in the case s ∈ (0, 1/2) since characteristic functions are
admissible competitors with finite energy. Contrarily, if s ∈ [1/2, 1), the proof is
more difficult because it needs to reconstruct a local energy from all the nonlocal
contributions.
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2.3 Classical and fractional Allen-Cahn equations

As it concerns the fractional counterpart of the energy and density estimates we
have this

Theorem 2.15. [84, Theorem 1.3 and Theorem 1.4] Let R ≥ 1 and BR be the ball of
radius R centered at the origin. If u : BR+1 → [−1, 1] is a minimizer of Is,BR+1 then

Is,BR+1(u) ≤


CRN−2s if s ∈

(
0, 1

2
)
,

CRN−1 logR if s = 1
2 ,

CRN−1 if s ∈
( 1

2 , 1
)
,

(2.3.8)

for some C > 0.
In addition, if u(0) = 0, the Lebesgue measure of {u > 1/2} and {u < −1/2} in BR

are both greater than cRN for some c > 0.

It is interesting to note that, as in the classical case, the energy bound is influenced
by the parameter s in the same way: for s large the estimate does not depends on s,
while for s small the energy contributions coming from infinity add energy in a large
ball.
Moreover we observe that the constants in Theorem 2.15 can depend on N and s

and they are weaker than the constant of the classical case. However the estimates in
Theorem 2.15 allow us to have this

Corollary 2.16. [84, Corollary 1.7] If Ω ⊆ RN is a smooth domain, E ⊆ RN and
uε : Ω → [−1, 1] is a minimizer of Is,Ω,ε such that (2.3.7) holds true, then the set
{|uε| ≤ 1/2} converges locally uniformly in Ω to ∂E as ε→ 0.

2.3.1 De Giorgi’s conjecture
Although we will not deal this topic in this thesis, we briefly discuss an important
problem related to the Allen-Cahn equation: the well known De Giorgi’s conjecture.
In 1979 De Giorgi conjectured the following

Conjecture 2.17. [33] Let u : RN → [−1, 1] be a solution of the Allen-Cahn equation
(2.3.1) in the whole of RN such that

∂u

∂xN
(x) > 0 for all x ∈ RN . (2.3.9)

Is it true that u is 1D that is, denoting with SN−1 the (N − 1)-dimensional sphere of
RN , u(x) = u0(ω · x) for some u0 : R→ R and ω ∈ SN−1, at least for N ≤ 8?

This conjecture was proved for N = 2, 3 (see [5, 51]) while the cases N = 4, 8 are
still open. For N = 4, . . . , 8 the conjecture was shown in [79] with the limit assumption

lim
xN→±∞

u(x′, xN ) = ±1. (2.3.10)

A variant of the conjecture (known as Gibbons conjecture) with (2.3.9) replaced by a
uniform limit assumption at infinity was showed independently in [44, 7, 9]. Moreover
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a variational variant with (2.3.9) replaced by a minimality assumption was proved in
[79] when N ≤ 7. The case N = 8 is still open, while a counterexample was given for
N ≥ 9 in [75].

In the fractional setting, Conjecture 2.17 is proved only in some cases:

Theorem 2.18. Let u : RN → [−1, 1] be a solution of the fractional Allen-Cahn
equation (2.3.3) in the whole of RN such that

∂u

∂xN
(x) > 0 for all x ∈ RN .

Suppose that either
N ≤ 3 and s ∈ (0, 1),

or
N = 4 and s = 1

2 .

Then u is 1D.

This theorem was proved in [21] when N = 2 and s = 1
2 , in [79, 20] when N = 2

and s ∈ (0, 1), in [17] when N = 3 and s = 1
2 , in [18] when N = 3 and s ∈ ( 1

2 , 1), in
[36] when N = 3 and s ∈ (0, 1

2 ) and in [47] when N = 4 and s = 1
2 . For N ≥ 9 and

s ∈ ( 1
2 , 1) a counterexample to the validity of Theorem 2.18 was exibithed in [28]. In

the other cases the problem is open (in higher dimensions Theorem 2.18 is proved with
the additional limit assumption (2.3.10) by a collage of [80, 81, 37]).

By a superposition of the results in the same papers [80, 81, 37], one can prove the
existence of ε0 ∈ (0, 1/2] such that the fractional variational version of De Giorgi’s
Conjecture was proved when N ≤ 7 and s ∈ ( 1

2 − ε0, 1) with the assumption (2.3.9)
replaced by a minimality assumption.
Finally we mention an interesting result which holds for the fractional Allen-Cahn

equation, but it is not true for the classical Allen-Cahn equation (see [75, Theorem 1]),
revealing a purely nonlocal phenomenon:

Theorem 2.19. [37] Let s ∈ (0, 1
2 ) and u be a solution of (2.3.3) in RN . Then u is

1D.

As highlighted in [38], this theorem tell us that if we have a phase coexistence in this
framework and we plug more energy into the system, then two situations can occur:

a) the two interfaces oscillate significantly at infinity (and hence the flatness as-
sumption of Theorem 2.19 does not hold);

b) the graph of u can oscillate but, since from Theorem 2.19 u has to be 1D, the
phase separation occurrs along parallel hyperplanes with possible multiplicity.

Thanks to [28, Theorem 1.3] we know that Theorem 2.19 is false when s ∈ (1/2, 1),
while the case s = 1/2 is still open.
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2.4 Introduction to the Lyapunov-Schmidt reduction
In this section we introduce the setting which we will use to apply the Lyapunov-
Schmidt reduction, i.e. a tool that allows us to study a class of problems with a small
(or large) parameter and variational structure.

If we denote with B1(ξ) a ball with center ξ ∈ RN and unit radius and we take
w ∈ C1(∂B1(ξ)), we will write B(ξ, w) to indicate the set such that

∂B(ξ, w) := {y ∈ RN : y = x+ w(x)νB1(ξ)(x), x ∈ ∂B1(ξ)}, (2.4.1)

where νB1(ξ) is the outer unit normal to ∂B1(ξ). Then, if Ω ⊆ RN is an open and
bounded set, we consider the fractional perimeter of a measurable set E ⊂ RN in Ω as
the interaction between E and its complement inside Ω only, i.e.

P̄s(E,Ω) :=
∫
E

∫
Ω\E

dxdy
|x− y|N+2s , (2.4.2)

where s ∈ (0, 1/2). In analogy with (2.2.6), we define the nonlocal mean curvature (in
Ω) of ∂E at x ∈ ∂E corresponding to (2.4.2) as

HΩ
s,∂E(x) :=

∫
Ω

χE(y)− χEc∩Ω(y)
|x− y|N+2s dy , (2.4.3)

(see [61, Theorem 1.3 and Proposition 3.2 with σ = 0 and g = 0]) where, as usual, χE
denotes the characteristic function of E, EC is the complement of E, and the integral
has to be understood in the principal value sense.
We also set

Sξ := ∂B1(ξ) and PΩs,ξ(w) := P̄s(B(ξ, w), Ω) (2.4.4)

then, for β ∈ (2s, 1) and ϕ ∈ C1,β(∂B(ξ, w)), we set(
PΩs,ξ

)′
(w)[ϕ] :=

∫
∂B(ξ,w)

HΩ
s,∂B(ξ,w)ϕdσw (2.4.5)

where dσw stands for the area element of ∂B(ξ, w(ξ)).
Consider next the spherical fractional Laplacian

Lsϕ(θ) := P.V.

∫
S

ϕ(θ)− ϕ(σ)
|θ − σ|N+2s dσ ,

where S := SN−1 = ∂B1 and P.V. denotes the principal value.
It turns out that (see [19])

Ls : C1,β(S)→ Cβ−s(S). (2.4.6)
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The operator Ls has an increasing sequence of eigenvalues 0 = λ0 < λ1 < λ2 < · · ·
whose explicit expression is given by

λk := π(N−1)/2Γ ((1− 2s)/2
(1 + 2s)22sΓ ((N + 2s)/2)

 Γ

(
2k +N + 2s

2

)
Γ

(
2k +N − 2s− 2

2

) − Γ

(
N + 2s

2

)
Γ

(
N − 2s− 2

2

)
,
(2.4.7)

see [78, Lemma 6.26], where Γ is the Euler Gamma function. The eigenfunctions are
the usual spherical harmonics, i.e. one has

Lsψ = λkψ for every k ∈ N and ψ ∈ Ek,

where Ek is the space of spherical harmonics of degree k and dimension nk := Nk−Nk−2,
with

Nk := (n+ k − 1)!
(n− 1)!k! for k ≥ 0 and Nk = 0 for k < 0.

We recall that n0 = 1 and that E0 consists of constant functions, whereas n1 = N and
E1 is spanned by the restrictions of the coordinate functions in RN to the unit sphere
S.
For sets that are suitable graphs over the unit sphere S of RN , we have the follow-

ing result concerning nonlocal mean curvature relative to the whole space, see [19,
Theorem 2.1, Lemma 5.1 and Theorem 5.2].

Proposition 2.20. Given β ∈ (2s, 1) we consider the family of functions

Υ :=
{
ϕ ∈ C1,β(S) : ‖ϕ‖L∞(S) <

1
2

}
.

Then the map ϕ 7→ Hs,∂B(0,ϕ) is a C∞ function from Υ into Cβ−2s(S). Moreover, its
linearization at ϕ ≡ 0 is given by

ϕ 7−→ 2dN,s(Ls − λ1)ϕ, (2.4.8)

where λ1 is defined in (2.4.7) and dN,s := 1−2s
(N−1)|BN−1

1 | with B
N−1
1 that is the unit ball

in RN−1.

Accordingly we have than every function in the kernel of the above linearized
nonlocal mean curvature is a linear combination of first-order spherical harmonics, i.e.
if w ∈ Ker (Ls − λ1), we have

w =
N∑
i=1

λiYi, (2.4.9)

where {Yi}i=1,··· ,N ∈ E1 and λi ∈ R. Therefore, defining

W :=
{
w ∈ C1,β(Sξ) :

∫
Sξ

wYi = 0 for i = 1, . . . , N,
}
, (2.4.10)
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2.5 Genus and category of a set

it follows by Fredholm’s theory that Ls − λ1 is invertible on W .
As a consequence of the above proposition, using a perturbation argument, we deduce

also the following result, for which we need to introduce some notation. Let Ω be a
bounded set in RN . For ε > 0 we denote Ωε := 1

εΩ. Fix a compact set Θ in Ω, and
let ξ ∈ 1

εΘ. Then we consider the operator LΩεs,ξ corresponding to the linearization of
the nonlocal mean curvature at B1(ξ) relative to Ωε (defined as in (2.4.3)), namely the
nonlocal operator such that

d
dt

∣∣∣∣
t=0

HΩε
s,∂B(ξ,tϕ) = (LΩεs,ξϕ).

We have the following result:

Proposition 2.21. Let Ω, Θ, ξ and LΩεs,ξ be as above, and let β ∈ (2s, 1). Consider
the family of functions

Υ :=
{
ϕ ∈ C1,β(Sξ) : ‖ϕ‖L∞(Sξ) <

1
2

}
.

Then the map ϕ 7→ HΩε
s,∂B(ξ,ϕ) is a C∞ function from Υ into Cβ−2s(Sξ). Moreover, if

W is as in (2.4.10), LΩεs,ξ is invertible with uniformly bounded inverse on W .

2.5 Genus and category of a set
In this last section we follow [4] to discuss briefly a theory introduced by Lusternik-
Schnirelmann to deduce multiplicity results for critical points of a functional defined on
a manifold M in connection with the topological properties of M . The main ingredient
of this theory is a topological tool, called the Lusternik-Schnirelmann (or L-S) category.

Let M be a topological space.

Definition 2.22. [4, Definition 9.2] The category of a set A ⊆M with respect to M ,
denoted by catM (A), is the least integer k such that A ⊆ A1 ∪ · · · ∪Ak with Ai closed
and contractible in M for every i = 1, · · · , k.

We set cat(∅) = 0 and catM (A) = +∞ if there are no integers with the above property.
We will use the notation cat(M) for catM (M) and Ā to indicate the topological closure
of the set A.
Remark 2.23. From the previous definition, it is easy to see that catM (A) = catM (Ā).
Moreover, if A ⊂ B ⊂M , we have that catM (A) ≤ catM (B), see [4, Lemma 9.6].
Then, assuming that

M = F−1(0), where F ∈ C1,1(E,R) with E ⊃M and F ′(u) 6= 0 ∀ u ∈M,
(2.5.1)

we set
catk(M) = sup{catM (A) : A ⊂M and A is compact}.

Note that if M is compact, catk(M) = cat(M).
We also recall the definition of the Palais-Smale condition (or (PS)-condition).
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2 Notation and preliminary results

Definition 2.24. Let H be a Hilbert space and J ∈ C1(H). Every subsequence
{un}n∈N such that

{J(un)} is bounded and J ′(un)→ 0 in H−1(Ω) (2.5.2)

is relatively compact. If a sequence satisfies (2.5.2), it is called Palais-Smale sequence
(or (PS)-sequence).

With this setting at hand, we can state an important result about the Lusternik-
Schnirelman category:

Theorem 2.25. [4, Theorem 9.10] Let (2.5.1) holds, let J ∈ C1,1(E,R) be bounded
from below on M and let J satisfy (PS)-condition. Then J has at least catk(M) critical
points on M .

Remark 2.26. If M has boundary, under the same assumptions of Theorem 2.25, one
can still find at least catk(M) critical points for J provided ∇J is non zero on ∂M and
points in the outward direction.
Actually, this interesting theory does not give any new result when M is the unit

sphere S in a infinite dimensional Hilbert space because cat(S) = 1. So it is useful to
introduce another topological tool which will substitute the category in the sense of
even simmetry:

Definition 2.27. [4, Definition 10.1] Let H be a Hilbert space and E be a closed
subset of H \ {0}, symmetric with respect to 0 (i.e. E = −E).
We call genus of E in H, indicated with genH(E), the least integer m such that

there exists φ ∈ C(H;Rm) such that φ is odd and φ(x) 6= 0 for all x ∈ E.
We set genH(E) = +∞ if there are no integer with the above property and

genH(∅) = 0.

We recall that, if SN is a N -dimensional sphere of H with centre in zero, it results
genH(SN ) = N + 1.

A remarkable result about the genus is the following:

Theorem 2.28. [4, Proposition 10.8] Let H be a Hilbert space and f : H → R be an
even C2-functional satisfying the (PS)-condition.

Set f c := {u ∈ H : f(u) ≤ c} for all c ∈ R. Then, for all c1, c2 ∈ R, such that
c1 ≤ c2 < f(0), we have

genH(f c2) ≤ genH(f c1) + #{(−ui, ui) : c1 ≤ f(ui) ≤ c2, f ′(ui) = 0},

where, if A is a set, we indicate with #A the cardinality of A.
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3 Multiplicity of critical points for the
fractional Allen-Cahn energy

In this chapter we present an existence and multiplicity result for critical points of the
functional

Fε(u) :=



1
2

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s dxdy + 1
ε2s

∫
Ω

W (u) dx, if s ∈ (0, 1/2),

1
2

1
| log ε|

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+1 dx dy + 1
|ε log ε|

∫
Ω

W (u) dx, if s = 1/2,

ε2s−1

2

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s dx dy + 1
ε

∫
Ω

W (u) dx, if s ∈ (1/2, 1),

(3.0.1)
where Ω ⊂ RN is a smooth and bounded domain, u ∈ Hs(Ω), and ε ∈ R+.

The map W : R→ R+ is the standard double-well potential, i.e. an even function
such that

W ∈ C2(R;R+), W (±1) = 0, W > 0 in (−1, 1),
W ′(±1) = 0, W ′′(±1) > 0.

(3.0.2)

Hence, Fε is the contribution in Ω of the energy associated to the fractional Allen-Cahn
equation. It is the fractional counterpart of the functional studied by Modica and
Mortola in [66], where they proved the Γ -convergence of their energy to De Giorgi’s
perimeter. An analogous result of Γ -convergence for a functional as (3.0.1) is discussed
by Valdinoci-Savin in [82].
Passaseo studied in [73] the classical analogue of our functional, i.e.

fε(u) = ε

∫
Ω

|Du|2 dx+ 1
ε

∫
Ω

G(u) dx (3.0.3)

where Ω ⊂ RN is a bounded domain, u ∈ H1(Ω), ε is a positive parameter and
G ∈ C2(R;R+) is a nonnegative function with two zeros, α and β. He proved that the
number of critical points for fε goes to ∞ as ε→ 0.

Our goal is to extend Passaseo’s result to the fractional counterpart given by Fε. In
particular we want to show the following

Theorem 3.1. Let Ω ⊂ RN be a smooth bounded domain and W be a function
satisfying (3.0.2). Then there exist two sequences of positive numbers {εk}k∈N, {ck}k∈N
such that, for every ε ∈ (0, εk), the functional Fε has at least k pairs

(−u1,ε, u1,ε), . . . , (−uk,ε, uk,ε)

25



3 Multiplicity of critical points for the fractional Allen-Cahn energy

of critical points, all of them different from the constant pair (−1, 1) satisfying

−1 ≤ ui,ε(x) ≤ 1 ∀ x ∈ Ω, ∀ ε ∈ (0, εk), i = 1, . . . k;
Fε(ui,ε) ≤ ck ∀ ε ∈ (0, εk), i = 1, . . . , k.

Moreover, for every ε ∈ (0, εk) and i = 1, . . . , k we have

Fε(ui,ε) ≥ min
{
Fε(u) : u ∈ Hs(Ω),−1 ≤ u(x) ≤ 1 for x ∈ Ω,

∫
Ω

udx = 0
}
. (3.0.4)

First of all we observe that critical points of Theorem 3.1 do not include constant
functions:
Remark 3.2. Notice that for every ε > 0, the function u ≡ 0 is obviously a critical point
for the functional Fε, but it is not included among the ones given by Theorem 3.1.
Indeed if s ∈ (1/2, 1), but for the other cases it is similar, we have

Fε(0) = 1
ε
W (0)|Ω| → +∞ as ε→ 0.

Moreover since inf{W (t) : W ′(t) = 0,−1 < t < 1} > 0, one can deduce that the
critical points given by Theorem 3.1 are not constant functions. Indeed, if uε = cε
is a constant critical point for Fε (distinct from ±1), it must be W ′(cε) = 0 and
−1 < cε < 1. Therefore

W (cε) ≥ inf{W (t) : W ′(t) = 0,−1 < t < 1} > 0 (3.0.5)

and thus, considering the functional related to s ∈ (1/2, 1), but the other cases are
similar, we would get

Fε(cε) = 1
ε
W (cε)|Ω| → +∞ as ε→ 0, (3.0.6)

in contradiction with Fε(cε) ≤ ck for all ε ∈ (0, εk).
Remark 3.3. Supposing, without loss of generality, that Ω is a connected domain, for
all ε > 0 it results

min
{
Fε(u) : u ∈ Hs(Ω),−1 ≤ u(x) ≤ 1 ∀x ∈ Ω,

∫
Ω

udx = 0
}
> 0. (3.0.7)

Indeed, let ū be a minimizing function and let us assume Fε(ū) = 0. Recalling the
definition of Fε it has to be∫

Ω

∫
Ω

|ū(x)− ū(y)|2

|x− y|N+2s dxdy ≡ 0 and W (ū) ≡ 0. (3.0.8)

From the first equality and the fact that
∫
Ω
ūdx = 0 it follows that ū ≡ 0, but this

contradicts the second equality in (3.0.8) since W (0) > 0.
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3.1 Estimate from above of Fε

3.1 Estimate from above of Fε

To prove Theorem 3.1 we need to introduce some notation and a preliminary result
which allow us to obtain a bound from above of the functional Fε.

Definition 3.4. Fixed k > 0 integer, for every λ = (λ(0), . . . , λ(k)) ∈ Rk+1 we define
the function ϕλ : R→ R as

ϕλ(t) :=
k∑

m=0
λ(m) cos(mt).

For every λ ∈ Rk+1 with |λ|Rk+1 = 1 and ε > 0, let Lε(ϕλ) : R → R be the function
given by

Lε(ϕλ)(t) := 1
2ε

∫ t+ε

t−ε

ϕλ(τ)
|ϕλ(τ)| dτ.

Note that Lε(ϕλ) is well defined because for all λ ∈ Rk+1 with |λ|Rk+1 = 1 the
function ϕλ has only isolated zeros.

Now, for x = (x1, · · · , xN ) ∈ Ω ⊂ RN , we denote by P1 the projection onto the first
component, and we set

Skε := {Lε(ϕλ) ◦ P1 : λ ∈ Rk+1, |λ|Rk+1 = 1}.

Lemma 3.5. [73, Lemma 2.4] Let us fix a, b ∈ R with a < b and consider

χ(ϕλ) := #{t ∈ [a, b] : ϕλ(t) = 0}

for λ ∈ Rk+1 with |λ|Rk+1 = 1. Then, for every k ∈ N, we have

sup{χ(ϕλ) : λ ∈ Rk+1, |λ|Rk+1 = 1} < +∞.

Lemma 3.6. Let Ω ⊂ RN be a bounded domain and W be a function satisfying (3.0.2).
Then, for every k ∈ N there exists a constant ck > 0 such that

Fε(f) ≤ ck ∀ f ∈ Skε . (3.1.1)

Proof. Let uλ,ε := Lε(ϕλ) ◦ P1 ∈ Skε and call

a := inf P1(Ω), b := supP1(Ω),
Zλ := {t ∈ [a, b] : ϕλ(t) = 0},

Zλ,ε := {t ∈ R : dist(t, Zλ) < ε}.

Note that, for x ∈ Ω,

(i) if P1(x) /∈ Zλ,ε, then |uλ,ε(x)| = 1 and Duλ,ε(x) = 0;

(ii) if P1(x) ∈ Zλ,ε, then |uλ,ε(x)| ≤ 1 and |Duλ,ε(x)| ≤ 1
ε .
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3 Multiplicity of critical points for the fractional Allen-Cahn energy

P1(Ω)a

Y 1
λ,ε

t1

Z1
λ,ε Y 2

λ,ε

t2

Z2
λ,ε Y 3

λ,ε

t3

Z3
λ,ε Y 4

λ,ε

Figure 3.1: The partition of P1(Ω).

We want to evaluate Fε(uλ,ε), analyzing the contributions given by two terms of the
functional.
Since Ω is bounded, we can suppose that it is included in a cube Q of side large

enough. Then, denoting with Yλ,ε := ZCλ,ε the complement of Zλ,ε, for x, y ∈ Ω, we
have three cases:

(a) P1(x) ∈ Yλ,ε and P1(y) ∈ Yλ,ε;

(b) P1(x) ∈ Zλ,ε and P1(y) ∈ Yλ,ε;

(c) P1(x) ∈ Zλ,ε and P1(y) ∈ Zλ,ε.

From Lemma 3.5, we can set k := max{χ(ϕλ) : λ ∈ Rk+1, |λ|Rk+1 = 1}, so that

Zλ,ε =
k⋃
i=1

Ziλ,ε and Yλ,ε ⊆
k+1⋃
i=1

Y iλ,ε,

where, for all i = 1, · · · , k, we denote Ziλ := {ti ∈ [a, b] : ϕλ(ti) = 0}, Ziλ,ε := {t ∈ R :
dist (t, Ziλ) < ε} and Y iλ,ε are as in Figure 3.1.

Now, calling Žλ,ε := P−1
1 (Zλ,ε) ∩Ω and Y̌λ,ε := P−1

1 (Yλ,ε) ∩Ω, we observe that∫
Y̌λ,ε

W (uλ,ε) dx = 0 (3.1.2)

and, defining ρ := sup{|x| : x ∈ Ω}, M := max{W (t) : |t| ≤ 1}, and cN := ωN−1ρ
N−1,

we get ∫
Žλ,ε

W (uλ,ε) dx ≤M |Žλ,ε| ≤ 2εkMcN < +∞, (3.1.3)

since χ(ϕλ) = #(Zλ), Zλ,ε = ∪t∈Zλ ]t−ε, t+ε[ and from Lemma 3.5, χ(ϕλ) ≤ k < +∞.
At this point it remains to estimate∫

Ω

∫
Ω

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+2s dxdy,

so we analyze it in the three cases distinguished above:
Case (a). We have∫

Y̌λ,ε

∫
Y̌λ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+2s dx dy ≤
k+1∑
i,j=1
i 6=j

∫
Y̌ i
λ,ε

∫
Y̌ j
λ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+2s dx dy.

(3.1.4)
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3.1 Estimate from above of Fε

Since the bigger contribution in the interaction comes from two successive strips
Y̌ iλ,ε and Y̌ i+1

λ,ε for i = 1, · · · , k which are at least 2ε away, we denote with Q− :=
Q ∩ P−1

1 ({t < 0}), with Q+ := Q ∩ P−1
1 ({t > 2ε}) and we can write

k+1∑
i,j=1
i 6=j

∫
Y̌ i
λ,ε

∫
Y̌ j
λ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+2s dxdy

≤ (k + 1)2
∫
Q−

∫
Q+

4
|x− y|N+2s dxdy .

(3.1.5)

Then we split Q− in n strips of width ε > 0, with n of order 1/ε and using polar
coordinates, we obtain

(k + 1)2
∫
Q−

∫
Q+

4
|x− y|N+2s dx dy ≤ 4n(k + 1)2c2N

∫ −ε
−2ε

∫ +∞

−2x1

r−2s−1 dr dx1

= 2
s
n(k + 1)2c2N

∫ −ε
−2ε

(−2x1)−2s dx1 .

(3.1.6)

Now, depending on the value of s ∈ (0, 1), we distinguish two cases:

(j) if s 6= 1/2, we have

2
s
n(k+1)2c2N

∫ −ε
−2ε

(−2x1)−2s dx1 = 21−2sn(k + 1)2c2N
s(1− 2s) ·ε1−2s(21−2s−1). (3.1.7)

(jj) If s = 1/2,

2
s
n(k + 1)2c2N

∫ −ε
−2ε

(−2x1)−2s dx1 = 4n(k + 1)2c2N

∫ −ε
−2ε

(−2x1)−1 dx1

= 2n(k + 1)2c2N log 2.
(3.1.8)
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3 Multiplicity of critical points for the fractional Allen-Cahn energy

Case (b). We note that Y̌ iλ,ε ⊆ Q \ Žiλ,ε, thus

∫
Žλ,ε

∫
Y̌λ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+2s dxdy

≤
k∑
i=1

∫
Ži
λ,ε

∫
Q\Ži

λ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+2s dxdy

≤ 2cNε
k∑
i=1

sup
x∈Ži

λ,ε

∫
Q\Ži

λ,ε

min{1/ε2|x− y|2, 4}
|x− y|N+2s dy

≤ 2kεc2N
(∫ 2ε

0

1
ε2 r

1−2s dr +
∫ +∞

2ε
4r−1−2s dr

)
= k

(
2
ε
· r

2−2s

2− 2s

]2ε

0
+ 8ε r

−2s

−2s

]+∞

2ε

)
c2N

= kε1−2s
(

22−2s

1− s + 22−2s

s

)
c2N .

(3.1.9)

Case (c). It results

∫
Žλ,ε

∫
Žλ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+2s dx dy

=
k∑
i=1

∫
Ži
λ,ε

∫
Ži
λ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+2s dxdy

+
k∑

i,j=1
i 6=j

∫
Žj
λ,ε

∫
Ži
λ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+2s dx dy.

(3.1.10)

Concerning the first term of the right-hand side, we have

k∑
i=1

∫
Ži
λ,ε

∫
Ži
λ,ε

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+2s dxdy

≤ 1
ε2

k∑
i=1
|Žiλ,ε|cN

∫ 2ε

0
r1−2s dr ≤ kc2N

22−2s

1− s ε
1−2s.

(3.1.11)

The other term is estimated as in Case (b).
Hence, by (3.1.5), (3.1.7), (3.1.8), (3.1.9) and (3.1.11), we obtain the following

30



3.1 Estimate from above of Fε

estimates for the functionals Fε: if s ∈ (0, 1/2), we have

Fε(uλ,ε) = 1
2

∫
Ω

∫
Ω

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+2s dxdy + 1
ε2s

∫
Ω

W (uλ,ε) dx

≤ k
(
c2N

(
22−2s

1− s + 22−2s

s
+ 21−2s

1− s

)
+ 2cNM

)
ε1−2s

+ 2−2sn(k + 1)2

s(1− 2s) (21−2s − 1)c2Nε1−2s

≤ k
(
c2N

(
22−2s

1− s + 22−2s

s
+ 21−2s

1− s

)
+ 2cNM

)
+ 2−2sn(k + 1)2

s(1− 2s) (21−2s − 1)c2N .

(3.1.12)

If s = 1/2 we get

Fε(uλ, ε) = 1
2| log ε|

∫
Ω

∫
Ω

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+1 dxdy + 1
|ε log ε|

∫
Ω

W (uλ,ε) dx

≤ 1
| log ε|

(
k(10c2N + 2McN ) + n(k + 1)2c2N log 2

)
≤ k(10c2N + 2McN ) + n(k + 1)2c2N log 2.

(3.1.13)
Finally, if s ∈ (1/2, 1) it results

Fε(uλ, ε) = ε2s−1

2

∫
Ω

∫
Ω

|uλ,ε(x)− uλ,ε(y)|2

|x− y|N+2s dx dy + 1
ε

∫
Ω

W (uλ,ε) dx

≤ k
(
c2N

(
22−2s

1− s + 22−2s

s
+ 21−2s

1− s

)
+ 2McN

)
+ 2−2sn(k + 1)2

s(1− 2s) (21−2s − 1)c2N ,

(3.1.14)

and the proof is complete.

We now state a technical lemma, that will be useful to prove our main result.

Lemma 3.7. For every ε > 0 and k ∈ N the set Skε verifies the following properties:

(a) Skε is a compact subset of Hs(Ω);

(b) Skε = −Skε ;

(c) for all k ∈ N there exists ε̄k > 0 such that 0 /∈ Skε ∀ ε ∈ (0, ε̄k);

(d) for all k ∈ N and ∀ ε > 0 such that 0 /∈ Skε , gen (Skε ) ≥ k + 1.

Proof. The points (b), (c) and (d) are proved in [73]. For (a) we use [73, Lemma 2.8]
and the fact that H1(Ω) is continuously embedded in Hs(Ω) for all s ∈ (0, 1), see
Proposition 2.3.
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3 Multiplicity of critical points for the fractional Allen-Cahn energy

3.2 Proof of Theorem 3.1
In this section we will show the proof of Theorem 3.1. To do this we will use a classical
result about the genus, i.e. Theorem 2.28.
To apply this result, however, we need to prove the following

Lemma 3.8. The functional (3.0.1) satisfies the (PS)-condition.

Proof. We will show the lemma for s ∈ (1/2, 1) being the other cases analogous.
Since W is quadratic, there exist α, β > 0 such that

W (u) ≥ αu+ β ∀ u ∈ R. (3.2.1)

From Lemma 3.6 we know that {Fε(un)}n∈N is bounded, hence (3.2.1) implies that
‖un‖Hs(Ω) is bounded, so that un ⇀ u in Hs(Ω) and un → u in Lq from Theorem 2.6,
∀ q < 2N

N−2s . Therefore un → u a.e. x ∈ Ω.
We claim that u is a critical point of Fε. Indeed for all v ∈ Hs(Ω),

F ′ε(u)(v) = ε2s−1
∫
Ω

∫
Ω

u(x)− u(y)
|x− y|N+2s (v(x)− v(y)) dxdy

+ 1
ε

∫
Ω

W ′(u)v dx

= lim
n→∞

(
ε2s−1

∫
Ω

∫
Ω

un(x)− un(y)
|x− y|N+2s (v(x)− v(y)) dx dy

+1
ε

∫
Ω

W ′(un)v dx
)

= 0,

(3.2.2)

since un ⇀ u in Hs(Ω) and, by hypothesis, F ′ε(un)→ 0. This implies that F ′ε(un)(un−
u) + F ′ε(u)(un − u)→ 0, but

F ′ε(un)(un − u) + F ′ε(u)(un − u)

= ε2s−1
∫
Ω

∫
Ω

un(x)− un(y)
|x− y|N+2s (un(x)− u(x)− un(y) + u(y)) dxdy

− ε2s−1
∫
Ω

∫
Ω

u(x)− u(y)
|x− y|N+2s (un(x)− u(x)− un(y) + u(y)) dxdy

+ 1
ε

∫
Ω

[W ′(un)−W ′(u)](un − u) dx,

(3.2.3)

and the second term on the right hand side tends to 0. In particular we obtain∫
Ω

∫
Ω

|un(x)− un(y)|2

|x− y|N+2s dxdy →
∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s dxdy.

Hence ‖un‖2Hs(Ω) → ‖u‖
2
Hs(Ω) and since un ⇀ u in Hs(Ω), the proof of the lemma is

complete.
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3.2 Proof of Theorem 3.1

We are now able to prove our main result.

Proof of Theorem 3.1. As usual we prove the theorem only for s ∈ (1/2, 1). Consider
W ∈ C2(R;R+) another even function, satisfying the following properties:

W = W ∀ t ∈ [−1, 1] and tW
′(t) > 0 for |t| > 1.

This asymptotic behaviour guarantees that

F ε(u) := ε2s−1

2

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|N+2s dx dy + 1
ε

∫
Ω

W (u) dx

is a C2-functional which satisfies the (PS)-condition. We claim that for every critical
point u ∈ Hs(Ω) of the functional F ε, it holds |u(x)| ≤ 1 for all x ∈ Ω, which implies
that u is a critical point for the functional Fε too. Indeed, if u is a critical point for
F ε, for all v ∈ Hs(Ω), we have that

ε2s−1
∫
Ω

∫
Ω

u(x)− u(y)
|x− y|N+2s (v(x)− v(y)) dx dy + 1

ε

∫
Ω

W
′(u)v dx = 0.

In particular, if we set û := max{min{u, 1},−1}, choosing v = u− û, it results

ε2s−1
∫
Ω

∫
Ω

u(x)− u(y)
|x− y|N+2s (u(x)− û(x)− u(y) + û(y)) dxdy+1

ε

∫
Ω

W
′(u)(u− û) dx = 0,

(3.2.4)
with∫

Ω

∫
Ω

u(x)− u(y)
|x− y|N+2s (u(x)− û(x)− u(y) + û(y)) dxdy

=
∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2s dx dy ≥ 0, (3.2.5)

and ∫
Ω

W
′(u)(u− û) dx >

∫
Ω

W
′(u− û)(u− û) dx > 0 if u− û 6≡ 0 in Ω,

since tW ′(t) > 0 for |t| > 1. It follows that u = û, that is |u(x)| ≤ 1 for almost every
x ∈ Ω as desired.
At this point we take εk > 0 such that εk < 1

ck
W (0)|Ω|, where ck is the constant

introduced in Lemma 3.6. Then, for every ε ∈ (0, εk) we can apply Theorem 2.28 to the
functional F ε with c1 < 0 and c2 = ck, observing that F ε(0) = 1

εW (0)|Ω| > ck for all
ε ∈ (0, εk). In this way, since gen(F c1ε ) = gen(∅) = 0, and gen(F ckε ) ≥ gen(Skε ) ≥ k + 1
from Lemma 3.7 and the fact that Skε ⊆ F

ck
ε ⊆ Hs(Ω) \ {0}, we obtain that for every

ε ∈ (0, εk), the functional F ε has at least (k + 1) pairs (−u0,ε, u0,ε), . . . , (−uk,ε, uk,ε)
of critical points with F ε(ui,ε) ≤ ck for all i = 0, 1, . . . , k.
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3 Multiplicity of critical points for the fractional Allen-Cahn energy

Note that these (k + 1) pairs of critical points include also this one given by the
minimizers ±1. Thus we can assume that (−u0,ε, u0,ε) = (−1,+1).

On the contrary, if Ω is a connected domain, the other solutions are not minimizers
for the functional F ε. Indeed it results

F ε(ui,ε) > 0 ∀ ε ∈ (0, εk) and i = 0, 1, . . . , k

because if Fε(ui,ε) = F ε(ui,ε) = 0, we should have∫
Ω

∫
Ω

|ui,ε(x)− ui,ε(y)|2

|x− y|N+2s dxdy = 0 and W (ui,ε) = 0 in Ω

and hence ui,ε should be a constant function with value +1 or −1.
Moreover let us remark that for all ε ∈ (0, εk) and i = 1, . . . k we have

Fε(ui,ε) ≥ min
{
F ε(u) : u ∈ Hs(Ω),

∫
Ω

udx = 0
}
. (3.2.6)

To see this fact, as discussed above, we assume that

min
{
F ε(u) : u ∈ Hs(Ω),

∫
Ω

udx = 0
}
> 0,

otherwise (3.2.6) would be obvious. Then, for every c1 > 0 such that

c1 < min
{
F ε(u) : u ∈ Hs(Ω),

∫
Ω

udx = 0
}
,

we would have gen
(
F
c1
ε

)
= 1 because below c1 the mean is non zero and we can use

it as odd function into R1 in the genus definition, i.e. Definition 2.27. Therefore, if
(3.2.6) were false, the solutions would belong to a set of genus one, in contradiction
with their construction in Theorem 2.28. Now, it remains to prove (3.0.4). Let us
replace the function W appearing in the definition of functional F ε by a sequence
of functions {W j}j∈N and denote by {F jε}j∈N the corresponding sequence of new
functionals. Moreover suppose that, for all j ∈ N, the functions W j satisfy the same
properties of W and that

lim
j→∞

W j(t) = +∞ for |t| > 1. (3.2.7)

Then property (3.2.6) holds for the higher critical values of the functional F jε for all
j ∈ N. Thus (3.0.4) follows for j large enough, since

Fε(ui,ε) ≥ lim
j→∞

min
{
F
j

ε(u) : u ∈ Hs(Ω),
∫
Ω

udx = 0
}

= min
{
Fε(u) : u ∈ Hs(Ω), |u(x)| ≤ 1 ∀x ∈ Ω,

∫
Ω

udx = 0
}

thanks to (3.2.7).
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4 Minimizers for a fractional
Allen-Cahn equation in a periodic
medium

In this chapter, which corresponds to [71], we study the solutions of a fractional
mesoscopic model of phase transitions in a periodic medium, i.e. for N ≥ 2 we consider
the energy functional

E(u) := 1
2

∫
RN

∫
RN
|u(x)−u(y)|2K(x, y) dx dy+

∫
RN

W (x, u(x)) dx+
∫
RN

H(x)u(x) dx .

(4.0.1)
The function K : RN × RN → [0,+∞] is measurable, symmetric and comparable to
the kernel of the fractional laplacian, i.e.

K(x, y) = K(y, x) for a.e. x, y ∈ RN (K1)

and, denoting with χ(0,1) the characteristic function of the interval (0, 1),

λχ(0,1)(|x− y|)
|x− y|N+2s ≤ K(x, y) ≤ Λ

|x− y|N+2s for a.e. x, y ∈ RN , (K2)

for some Λ ≥ λ > 0 and s ∈ (0, 1).
The function H ∈ L∞(RN ) is a small perturbation of the fractional Allen-Cahn

functional. So we assume that
sup
RN
|H| ≤ η, (H1)

for η sufficiently small, depending on N and on the structural constants of the problem.
We also assume that H has zero-average and it is ZN -periodic, i.e.∫

[0,1]N
H(x) dx = 0 (H2)

and
H(x+ k) = H(x) ∀ k ∈ ZN . (H3)

The map W : RN × R→ [0,+∞) is the standard double well-potential, i.e. it is a
bounded measurable function such that

W (x,±1) = 0 for a.e. x ∈ RN , (W1)
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4 Minimizers for a fractional Allen-Cahn equation in a periodic medium

and for any θ ∈ [0, 1)
inf
x∈RN
|r|≤θ

W (x, r) ≥ γ(θ) (W2)

where γ : [0, 1)→ R+ is a non-increasing function. We assume that W is differentiable
in the second component, with partial derivative locally bounded in r ∈ R and uniformly
in x ∈ RN , that is

W (x, r)|Wu(x, r)| ≤W ∗ for a.e. x ∈ RN and any r ∈ [−1, 1] (W3)

for someW ∗ > 0. Moreover, since we want to model a periodic environment, we require
both K and W to be periodic under integer translations:

K(x+ k, y + k) = K(x, y) for a.e. x, y ∈ RN and any k ∈ ZN (K3)

and
W (x+ k, r) = W (x, r) for a.e. x ∈ RN and any k ∈ ZN , (W4)

for any fixed r ∈ R. Finally we require that

Wu(x,−1− r) ≤ −c and Wu(x, 1 + r) ≥ c (W5)

for any r ≥ δ0 with δ0 ∈ (0, 1/10), and suitable c > 0, and

W (x,−1 + r) = W (x, 1 + r) (W6)

for any r ∈ [−δ0, δ0].
The functional (4.0.1) is composed by three terms (the first two give us the fractional

Allen-Cahn equation):

• a ‘kinetic interaction term’ |u(x) − u(y)|2K(x, y), which penalizes the phase
changes of the system;

• a double-well potential term W , which penalizes considerable deviations from the
‘pure phase’ ±1;

• a ‘mesoscopic term’ Hu, which is ‘neutral’ in the average and at each point it
prefers one of the two phases.

Hence we have a model of phase coexistence where u : RN → R is a state parameter.
The fractional exponent s ∈ (0, 1) represents the fact that this model considers

long-range particle interactions (and it can produce, depending on the value of s, local
or non-local effect, see [82, 84]).

We are interested in plane-like minimizers, so our main goal is to construct minimal
interfaces lying to a strip of universal size. To do this we need to introduce some
terminology:

Definition 4.1. Fixed ω ∈ QN \ {0}, we define in RN the relation

x ∼ω y ⇐⇒ y − x = k ∈ ZN with ω · k = 0.
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It is easy to see that ∼ω is an equivalence relation and we denote with

R̃Nω := RN/∼ω

the associated quotient space.
A function u : RN → R is said to be periodic with respect to ∼ω if

u(x) = u(y) for any x, y ∈ RN such that x ∼ω y. (4.0.2)

When the context is clear, we will write ∼ and R̃N to refer to ∼ω and R̃Nω .
Then, we consider a set Ω ⊆ RN and we define the total energy E of u : RN → R in

Ω as

E(u,Ω) := 1
2

∫∫
CΩ
|u(x)− u(y)|2K(x, y) dx dy +

∫
Ω

W (x, u(x)) dx+
∫
Ω

H(x)u(x) dx ,

(4.0.3)
where

CΩ := (RN × RN ) \ ((RN \Ω)× (RN \Ω))
= (Ω ×Ω) ∪ (Ω × (RN \Ω)) ∪ ((RN \Ω)×Ω).

(4.0.4)

Observe that if Ω = RN the energy (4.0.3) coincides with (4.0.1).
Moreover, setting for all U, V ⊆ RN

K (u;U ;V ) := 1
2

∫
U

∫
V

|u(x)− u(y)|2K(x, y) dxdy ,

thanks to (K1), we can see E(u,Ω) as the sum of the kinetic part

K(u;Ω;Ω) + 2K(u;Ω;RN \Ω)

and the potential part

P(u;Ω) :=
∫
Ω

(
W (x, u(x)) +H(x)u(x)

)
dx .

Assuming from now on that every set and every function is measurable, we give the
following

Definition 4.2. Let Ω ⊆ RN be a bounded set. A function u is a local minimizer of
E in Ω if E(u,Ω) < +∞ and

E(u,Ω) ≤ E(v,Ω)

for any v ≡ u in RN \Ω.

Remark 4.3. [31, Remark 1.2] A minimizer u of Ω is also a minimizer on every subset
of Ω.
Since our aim is to construct functions with minimizing properties in RN , we have

to make precise how we extend Definition 4.2 to the full space.
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4 Minimizers for a fractional Allen-Cahn equation in a periodic medium

Definition 4.4. A function u is called a class A-minimizer of the functional E if it is
a minimizer of E in Ω for any bounded set Ω ⊆ RN .

With this setting at hand, we can state our main result:

Theorem 4.5. Let s ∈ (0, 1) and N ≥ 2. Suppose that the kernel K and the potential
W satisfy (K1)-(K3) and (W1)-(W6) respectively.
Given θ ∈ (0, 1− δ0), there exists a positive constant M0 depending only on θ and

on universal quantities, such that, for any ω ∈ RN \ {0}, there is a class A minimizer
uω of the functional E for which we have

{|uω| < θ} ⊂
{
x ∈ RN : ω

|ω|
· x ∈ [0,M0]

}
.

Moreover,

• if ω ∈ QN \ {0}, uω is periodic with respect to ∼ω;

• if ω ∈ RN \QN , uω is the uniform limit on compact subsets of RN of a sequence
of periodic class A minimizers.

Roughly speaking, this theorem tells us that given any vector ω ∈ RN \ {0} we
look for minimizers having most of the transition between the pure states in a strip
orthogonal to ω and of universal width.

We prove this result using geometric and variational tools introduced in [24] and [86]
and then adapted in [31] to deal with nonlocal interactions. Fixed ω ∈ QN \ {0} we
will consider the strip

SMω := {x ∈ RN : ω · x ∈ [0,M ]},
where M > 0, and the quotient space R̃N which allows us to gain compactness. This
will be necessary to obtain a minimizer uMω w.r.t. periodic perturbations with support
in SMω . Thanks to geometrical arguments, if M/|ω| is larger than some universal
parameter M0, uMω becomes a class A-minimizer for E . Since M0 does not depend on
the fixed direction ω, we can pass to the limit on rational directions and deduce the
result for an irrational vector ω ∈ RN \QN .

We stress that the energy and density estimates is the standard technique to show that
uMω is a class A-minimizer. These estimates have been obtained in [18, 84] (in different
settings), but their framework is different from ours. Thus we use the Hölderianity of
local minimizers of E and an energy estimate.
Finally we point out that the addition of the term Hu to (1.0.7) changes the ‘pure

phases’ from ±1 into periodic functions, introducing a considerable difference with
respect to [31]. Indeed, this fact produces a volume term in the energy that requires a
renormalization as in [69].

4.1 Regularity of the minimizers and energy estimate
In this section we want to prove that local minimizers of E are Hölder continuous
functions with a growing energy inside large balls.

38



4.1 Regularity of the minimizers and energy estimate

Let Ω ⊆ RN be an open and bounded set, s ∈ (0, 1) and K a measurable kernel
satisfying (K1) and (K2). If u : RN → R is a measurable function, we say that
u ∈ X(Ω) if

u|Ω ∈ L
2(Ω) and (x, y) 7→ (u(x)− u(y))

√
K(x, y) ∈ L2(CΩ).

Then we denote with X0(Ω) the subspace of X(Ω) given by functions vanishing a.e.
outside Ω. It is easy to see that by (K2) it results Hs(RN ) ⊂ X(Ω) ⊆ Hs(Ω) and if
Ω′ ⊆ Ω we have X0(Ω′) ⊆ X0(Ω) ⊂ Hs(RN ).
Now we call

DK(u, ϕ) =
∫
RN

∫
RN

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x, y) dxdy

observing that it is well-defined for example when u ∈ X(Ω) and ϕ ∈ X0(Ω). Let
f ∈ L2(Ω). We call u ∈ X(Ω) a supersolution of

Dk(u, ·) = f in Ω (4.1.1)

if
Dk(u, ϕ) ≥ 〈f, ϕ〉L2(RN ) for any non-negative ϕ ∈ X0(Ω). (4.1.2)

Similarly, we say that u ∈ X(Ω) is a subsolution of (4.1.1) if

Dk(u, ϕ) ≤ 〈f, ϕ〉L2(RN ) for any non-negative ϕ ∈ X0(Ω) (4.1.3)

and we tell that u ∈ X(Ω) is a solution of (4.1.1) if

Dk(u, ϕ) = 〈f, ϕ〉L2(RN ) for any ϕ ∈ X0(Ω). (4.1.4)

Obviously u is a solution of (4.1.1) if it is a subsolution and a supersolution.
Thanks to these definitions we can show the regularity of the minimizers of E .

Theorem 4.6. Take s0 ∈ (0, 1/2) and let s ∈ [s0, 1 − s0]. If u is a bounded local
minimizer of E in a bounded open set Ω ⊆ RN , then u ∈ C0,α

loc (Ω) for some α ∈ (0, 1).
The exponent α only depends on N , s0, λ and Λ, while the C0,α norm of u on any
Ω′ ⊂⊂ Ω may also depend on ‖u‖L∞(RN ), ‖Wr(·, u)‖L∞(Ω), η and dist(Ω′, ∂Ω).

Proof. If we compute the first variation of (4.0.3) we have that u is a solution of the
Euler-Lagrange equation (4.1.1) in Ω with −f = Wr(·, u) +H(·). Since E(u,Ω) < +∞
we have that u ∈ X(Ω). Moreover u, H ∈ L∞(RN ) and Wr locally bounded imply that
f is bounded in Ω. So we can apply Theorem 2.1 of [31] to obtain C0,α

loc regularity of u
in Ω. (We point out that Theorem 4.6 can also be proved using [30, Theorem 2.4] which
allows us to deduce the regularity of minimizers without using the Euler-Lagrange
equation).

Now we define

Ψs(R) :=


R1−2s if s ∈ (0, 1/2)
logR if s = 1/2
1 if s ∈ (1/2, 1)

(4.1.5)
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4 Minimizers for a fractional Allen-Cahn equation in a periodic medium

and thanks to a well-known result in [84], based on the preliminary estimates in [72],
we want to show the energy estimate for minimizers:

Theorem 4.7. Let N ∈ N, s ∈ (0, 1), x0 ∈ RN and R ≥ 3. Suppose that K and W
satisfy (K1), (K2) and (W1), (W3), respectively. If u : RN → [−1 − δ0, 1 + δ0] is a
local minimizer of E in BR+2(x0), then

E(u,BR(x0)) ≤ CRN−1Ψs(R), (4.1.6)

for some constant C > 0 which depends on N , s, Λ and W ∗.

Proof. Since u is a local minimizer of E in BR+2(x0), we know that

E(u,BR+2(x0)) ≤ E(v,BR+2(x0)) (4.1.7)

for any v ≡ u in RN \BR+2(x0).
Moreover u satisfies

(−∆)su+Wu(x, u) +H(x) = 0 in BR+2(x0), (4.1.8)

and hence, given every domain V ⊂ U ⊂ BR(x0), thanks to interior regularity estimates
we have that

‖u‖Hs(V ) ≤ c
√
|U |,

where c > 0 is a constant, see [26, 11, 29].
Now, being |u| ≤ 1 + δ0, we can proceed as in [69, Proof of Theorem 1] to obtain our

thesis.

We conclude this section giving an auxiliary result that will be very useful in the
next Section 4.2.

Lemma 4.8. Let s ∈ (0, 1), U , V ⊆ RN be measurable sets and u, v ∈ Hs
loc(RN ).

Then

K (min{u, v};U ;V ) + K (max{u, v};U ;V ) ≤ K (u;U ;V ) + K (v;U ;V ), (4.1.9)

and
P(min{u, v};U) + P(max{u, v};U) = P(u;U) + P(v;U). (4.1.10)

Proof. The second identity is straightforward, while the first is proved in [31, Lemma
3.2].

4.2 Proof of Theorem 4.5 for rapidly decaying kernels
In this section we want to prove Theorem 4.5 assuming the following hypothesis on K:

K(x, y) ≤ Γ

|x− y|N+β for a.e. x, y ∈ RN such that |x− y| ≥ R̄ with β > 1, (K4)
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4.2 Proof of Theorem 4.5 for rapidly decaying kernels

for some constant Γ , R̄ > 0. This assumption is only technical and we will remove it
in the next section. However a fast decay of the kernel K at infinity due to the fact
that β > 1 ensures us that there exists a competitor with finite energy in the large.
Then, since geometric estimates will not depend on the quantities in (K4), we can use
a limit procedure.

We start showing that the functional E has a minimizer among all periodic functions.
Let s ∈ (0, 1), Q := [0, 1]N and define Q-periodic functions in Hs

loc(RN ) as

Hs
per(Q) = {u ∈ Hs

loc(RN ) such that u(x+ ej) = u(x) for all x ∈ RN} (4.2.1)

where {e1, · · · eN} is the standard Euclidean base of RN .
With this notation in hand, proceeding as in [69, Lemma 7], we have the following

Theorem 4.9. Assume K and W as in Theorem 4.5. Then the functional E attains
its minimum in Hs

per(Q). Moreover if u is a minimizer, it is continuous and∣∣∣|u(x)| − 1
∣∣∣ ≤ δ0 (4.2.2)

for any x ∈ Q, as long as η is small enough.

Proof. Let consider {un}n∈N be a minimizing sequence. By (H2) we may suppose that

E(uk, Q) ≤ E(1, Q) = 0. (4.2.3)

Then, from (W5) we have

min{W (x, 1 + s)−W (x, 1 + δ0),W (x,−1− s)−W (x,−1− δ0)} ≥ c(s− δ0)
≥ |H(x)(δ0 − s)|

(4.2.4)

for any s ≥ δ0 and
W (x, r) +H(x)r ≥ 0

as long as |r| ≥ C0 with C0 sufficiently large if η is small enough. Accordingly, by
(4.2.3),∫∫

CQ
|uk(x)−uk(y)|2K(x, y) dxdy ≤

∫
Q∩{|uk|≤C0}

|H(x)uk(x)|dx ≤ C0|Q|η. (4.2.5)

Hence we define

u∗k(x) =


uk(x) if |uk(x)| < 1 + δ0

1 + δ0 if uk(x) ≥ 1 + δ0

−1− δ0 if uk(x) ≤ −1− δ0
(4.2.6)

and thanks to (4.2.4) we get that E(u∗k, Q) ≤ E(uk, Q).
So, up to replacing uk with u∗k we may assume that

|uk| ≤ 1 + δ0. (4.2.7)
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4 Minimizers for a fractional Allen-Cahn equation in a periodic medium

By (4.2.5), (4.2.7) and the compact embedding of Hs(Q) in L2(Q) we obtain that
uk → u in L2(Q), uk ⇀ u in Hs(Q) and, up to subsequences, uk → u a.e. Therefore
u ∈ Hs

per(Q) and

lim inf
k→∞

∫∫
CQ
|uk(x)− uk(y)|2K(x, y) dx dy ≥

∫∫
CQ
|u(x)− u(y)|2K(x, y) dx dy .

Then Fatou’s Lemma and the Dominated Convergence Theorem give us

inf
Hsper(Q)

E(·, Q) = lim inf
k→∞

E(uk, Q) ≥ E(u,Q)

i.e. u is the desired minimizer.
From Theorem 4.6 we have that u is continuous, so it remains to prove (4.2.2). To

do this, we take u ∈ Hs
per(Q) minimizer for E(·, Q) and define

u∗(x) :=


u(x) if |u(x)| < 1 + δ0

1 + δ0 if u(x) ≥ 1 + δ0

−1− δ0 if u(x) ≤ −1− δ0.
(4.2.8)

By (4.2.4) and since u is a minimizer, we have

0 ≤ E(u∗, Q)− E(u,Q) ≤ − c2

[ ∫
{u>1+δ0}

(u− 1− δ0) +
∫
{u<−1−δ0}

(−u− 1− δ0)
]
≤ 0,

that is |u| ≤ 1 + δ0. Then, if by contradiction

−1 + δ0 ≤ u(x0) ≤ 1− δ0 for some x0 ∈ Q,

the uniform continuity of u gives

−1 + δ0
2 ≤ u(x) ≤ 1− δ0

2
for any x ∈ Bρ(x0) for a suitable, universal ρ > 0. As a consequenceW (x, u(x)) ≥ const
for x ∈ Bρ(x0), from which

E(u,Q) ≥ const · |Bρ(x0)| − η|Q| > 0 = E(1, Q) ≥ E(u,Q),

which is a contradiction and proves (4.2.2).

This theorem and (W6) imply that the functional E(·, Q) admits two minimizers
u± ∈ Hs

per(Q) such that u+ = u− + 2 and

‖u± ∓ 1‖L∞(Q) =: δη < δ0. (4.2.9)

Note that if W (x, ·) is strictly convex in [1− δ0, 1 + δ0] and [−1− δ0,−1 + δ0] these
minimizers are the only global minimizers of E(·, Q) in Hs

per(Q) and from now on we
assume that

E(u+, Q) = E(u−, Q). (4.2.10)
Remark 4.10. Note that (W6) (required for example by [69]) implies (4.2.10).
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4.2.1 Minimization with respect to periodic perturbations
Given ω ∈ QN \ {0} and u : RN → R a measurable function, we say that u ∈ L2(R̃N )
if u ∈ L2

loc(RN ) and u is periodic with respect to ∼.
Hence, taken A, B two real numbers such that A < B and denoting with R̃N any

fundamental domain of the relation ∼, we define

AA,Bω := {u ∈ L2
loc(R̃N ) : u(x) ≥ 1− δ0 if ω ·x ≤ A and u(x) ≤ −1 + δ0 if ω ·x ≥ B}

(4.2.11)
the set of admissible functions and we consider

Fω(u) := 1
2

∫
R̃N

∫
RN

(
|u(x)− u(y)|2 − |u+(x)− u+(y)|2

)
K(x, y) dxdy

+
∫
R̃N

(
W (x, u(x))−W (x, u+(x))

)
dx+

∫
R̃N

H(x)
(
u(x)− u+(x)

)
dx .

(4.2.12)
We want to show that there exists an absolute minimizer of Fω in the class AA,Bω ,

i.e. there exists u ∈ AA,Bω such that Fω(u) ≤ Fω(v) for any v ∈ AA,Bω .
First of all we prove that Fω is not identically infinity on AA,Bω :

Theorem 4.11. Let ū ∈ AA,Bω be defined as

ū(x) :=


u+ if ω · x ≤ A
u+ − (u+−u−)

B−A ((ω · x)−A) if A < ω · x ≤ B
u− if ω · x > B.

(4.2.13)

Then Fω(ū) < +∞.

Proof. Since the potential term of Fω vanishes at u+ and u− (thanks to (4.2.10)) for
a.e. x ∈ RN , it is obviously finite if we evaluate it in ū. So we only have to estimate
the kinetic term and thanks to (K2) and (K4) it is sufficient to prove that∫

R̃N

(∫
BR̄(x)

|ū(x)− ū(y)|2 − |u+(x)− u+(y)|2

|x− y|N+2s dy

+
∫
RN\BR̄(x)

|ū(x)− ū(y)|2 − |u+(x)− u+(y)|2

|x− y|N+β dy
)

dx < +∞,
(4.2.14)

where as usual BR̄(x) denotes the ball with radius R̄ and center at x.
Less than an affine transformation we may assume ω = eN and for simplicity we

may also suppose that A = 0 and B = 1. In this framework R̃N = [0, 1]N−1 × R.
Accordingly (4.2.14) is equivalent to

I :=
∫

[0,1]N−1×R

∫
BR̄(x)

|ū(x)− ū(y)|2 − |u+(x)− u+(y)|2

|x− y|N+2s dy dx < +∞ (4.2.15)

and

J :=
∫

[0,1]N−1×R

∫
RN\BR̄(x)

|ū(x)− ū(y)|2 − |u+(x)− u+(y)|2

|x− y|N+β dy dx < +∞. (4.2.16)
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4 Minimizers for a fractional Allen-Cahn equation in a periodic medium

Recalling the definition of ū it follows that

I =
∫

[0,1]N−1×[−R̄,R̄+1]

∫
BR̄(x)

|ū(x)− ū(y)|2 − |u+(x)− u+(y)|2

|x− y|N+2s dy dx (4.2.17)

and being ū Lipschitz, we get

I ≤ 4(1 + δ0)2
∫

[0,1]N−1×[−R̄,R̄+1]

(∫
BR̄(x)

dy
|x− y|N+2s−2

)
dx

= 2NωN (1 + δ0)2

1− s (2R̄+ 1)R̄2−2s

(4.2.18)

where we remind that ωN denotes the N -dimensional measure of the unit sphere of
RN and hence (4.2.15) follows.

Now to prove (4.2.16) we write J = J1 + J2 + J3 with

J1 :=
∫

[0,1]N−1×[2,+∞)

(∫
RN\BR̄(x)

|ū(x)− ū(y)|2 − |u+(x)− u+(y)|2

|x− y|N+β dy
)

dx ,

J2 :=
∫

[0,1]N−1×(−∞,−1)

(∫
RN\BR̄(x)

|ū(x)− ū(y)|2 − |u+(x)− u+(y)|2

|x− y|N+β dy
)

dx ,

J3 :=
∫

[0,1]N−1×[−1,2]

(∫
RN\BR̄(x)

|ū(x)− ū(y)|2 − |u+(x)− u+(y)|2

|x− y|N+β dy
)

dx .

By the definition of ū we have that

J1 ≤
∫

[0,1]N−1×[2,+∞)

(∫
RN−1×(−∞,1]

|u−(x)− ū(y)|2

|x− y|N+β dy
)

dx

≤ 4(1 + δ0)2
∫

[0,1]N−1×[2,+∞)

(∫
RN−1×(−∞,1]

dy
|x− y|N+β

)
dx .

(4.2.19)

Writing x = (x′, xN ) ∈ RN−1×R, y = (y′, yN ) ∈ RN−1×R and substituing z′ := (y′−
x′)/|xN − yN |, we get∫

RN−1×(−∞,1]

dy
|x− y|N+β

=
∫ 1

−∞
|xN − yN |−N−β

∫
RN−1

(
1 + |x′ − y′|2

|xN − yN |2

)−N+β
2

dy′
 dyN

=
∫ 1

−∞
|xN − yN |−1−β

[∫
RN−1

(1 + |z′|2)−
N+β

2 dz′
]

dyN

= Θ

β
(xN − 1)−β , (4.2.20)
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4.2 Proof of Theorem 4.5 for rapidly decaying kernels

where
Θ :=

∫
RN−1

(1 + |z′|2)−
N+β

2 dz′ < +∞.

Therefore

J1 ≤
4(1 + δ0)2

β
Θ

∫ +∞

2
(xN − 1)−β dxN = 4(1 + δ0)2 Θ

(β − 1)β ,

since β > 1. Analogously it is easy to see that J2 is finite too. Thus we pass to estimate
J3. Since ū is a bounded function we have

J3 ≤ 4(1 + δ0)2
∫

[0,1]N−1×[−1,2]

(∫
RN\BR̄(x)

dy
|x− y|N+β

)
dx = 12NωN

β
(1 + δ0)2R̄−β

(4.2.21)
and (4.2.16) follows.

Note that condition (K4) allows us to have the integrability of the first addendum of
Fω.

With this result in hand we can prove that
Theorem 4.12. There exists an absolute minimizer of the functional Fω in the class
AA,Bω .
Proof. We use the standard direct method of the Calculus of variations.
By Theorem 4.11 and since Fω ≥ 0 we have that

m := inf{Fω(u) : u ∈ AA,Bω } ∈ [0,+∞).

So, if {uj}j∈N ⊆ AA,Bω is a minimizing sequence, we may suppose that

|uj | ≤ 1 + δ0 a.e. in RN . (4.2.22)

Then we consider an integer k > max{−A,B} and the Lipschitz domains

Ωk := R̃N ∩ {x ∈ RN : |ω · x| ≤ k}.

Thanks to (4.2.22) and (K2) we obtain

[uj ]2Hs(Ωk) ≤
∫
Ωk

(∫
B1(x)

|uj(x)− uj(y)|2

|x− y|N+2s dy
)

dx

+ 4(1 + δ0)2
∫
Ωk

(∫
RN\B1(x)

dy
|x− y|N+2s

)
dx

≤ 2
λ
Fω(uj , Ωk) + 1

λ

∫
Ωk

∫
RN

|u+(x)− u+(y)|2

|x− y|N+2s dxdy + 2
λ

∫
Ωk

W (x, u+(x)) dx

+ 2
λ

∫
Ωk

H(x)u+(x) dx− 2
λ

∫
Ωk

W (x, uj(x)) dx− 2
λ

∫
Ωk

H(x)uj(x) dx

+ 2(1 + δ0)2

s
NωN |Ωk|,

(4.2.23)
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4 Minimizers for a fractional Allen-Cahn equation in a periodic medium

where we denote with

Fω(u,Ωk) := 1
2

∫
Ωk

∫
RN

(
|u(x)− u(y)|2 − |u+(x)− u+(y)|2

)
K(x, y) dxdy

+
∫
Ωk

(W (x, u(x))−W (x, u+(x))) dx+
∫
Ωk

H(x)(u(x)− u+(x)) dx .

(4.2.24)
Now we take k ∈ N such that kω ∈ ZN , so that Ωk is a periodicity domain for u+.
From this and the fact that u+ is minimizer for E on all the domains Ωk, we get

0 ≤ Fω(uj , Ωk) ≤ Fω(uj , R̃N ),

so (4.2.23) becomes

[uj ]2Hs(Ωk) ≤
2
λ
Fω(uj) + 2

λ

∫
Ωk

∫
RN

|u+(x)− u+(y)|2

|x− y|N+2s dxdy + 2
λ

∫
Ωk

W (x, u+(x)) dx

+ 2
λ

∫
Ωk

H(x)u+(x) dx+ 2|Ωk|
(

(1 + δ0)
λ

η + (1 + δ0)2

s
NωN

)
.

(4.2.25)
Hence {uj}j∈N is bounded in Hs(Ωk) uniformly in j. Since Hs(Ωk) ↪→↪→ L2(Ωk) (see
[35, Theorem 7.1]), less than extract a subsequence, uj → u in L2(Ωk) and a.e. in
Ωk. Now we use a diagonal argument (on j and k) to find a subsequence {u∗j}j∈N of
{uj}j∈N such that uj∗ → u a.e. in R̃N . We may identify the u∗j ’s and u with their
∼-periodic extension to RN so that the convergence will be in the full space RN .
As a consequence u ∈ AA,Bω and using Fatou’s Lemma we get Fω(u) = m that

concludes the proof.

4.2.2 The minimal minimizer
Define

MA,B
ω := {u ∈ AA,Bω : Fω(u) ≤ Fω(v) for any v ∈ AA,Bω }

the set of the absolute minimizers of Fω in AA,Bω . Observe that from Theorem 4.12,
MA,B

ω is not empty, hence we can introduce the following

Definition 4.13. We call uA,Bω a minimal minimizer when it is the infimum ofMA,B
ω

if we considerMA,B
ω subset of the partially ordered set (AA,Bω ,≤). In particular uA,Bω

is the unique function of AA,Bω such that

uA,Bω ≤ u in RN for every u ∈MA,B
ω (4.2.26)

and

if v ∈ AA,Bω is such that v ≤ u in RN for every u ∈MA,B
ω , then v ≤ uA,Bω in RN .

(4.2.27)
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4.2 Proof of Theorem 4.5 for rapidly decaying kernels

The existence of uA,Bω is not obvious, so we will denote the rest of the section to
show it.

First of all we need to prove that the minimum between two elements ofMA,B
ω still

belongs toMA,B
ω . To obtain this, we follow [31], showing first a couple of auxiliary

lemmas.

Lemma 4.14. Let A, A′, B, B′ be real numbers such that A < A′ and B < B′ with
A < B and A′ < B′. If u ∈MA,B

ω and v ∈MA′,B′

ω , then min{u, v} ∈ MA,B
ω .

Proof. Observing that min{u, v} ∈ AA,Bω and max{u, v} ∈ AA′,B′ω and using Lemma 4.8,
we get

Fω(min{u, v}) + Fω(max{u, v}) ≤ Fω(u) + Fω(v).

Now, since v ∈MA′,B′

ω we have

Fω(min{u, v}) + Fω(max{u, v}) ≤ Fω(u) + Fω(max{u, v})

and hence
Fω(min{u, v}) ≤ Fω(u),

that is min{u, v} ∈ MA,B
ω .

As a consequence, if we choose A = A′ and B = B′ we obtain this

Corollary 4.15. If u, v ∈MA,B
ω , then min{u, v} ∈ MA,B

ω .

At this point we can show thatMA,B
ω is also closed with respect to take the minimum

among a countable family of its elements:

Lemma 4.16. If {un}n∈N is a sequence of elements inMA,B
ω , then infn∈N un ∈ MA,B

ω .

Proof. Define u∗ := infj∈N uj and inductively the sequence

vj :=
{
u1 if j = 1
min{vj−1, uj} if j ≥ 2.

(4.2.28)

Corollary 4.15 gives us that {vj}j∈N ⊆MA,B
ω . On the other hand vj → u∗ a.e. in RN ,

so from an application of Fatou’s Lemma we have that u∗ ∈ AA,Bω and

Fω(u∗) ≤ lim
j→+∞

Fω(vj) = Fω(vk)

for any k ∈ N. Hence u∗ ∈MA,B
ω .

These results allow us to prove this

Proposition 4.17. The minimal minimizer uA,Bω exists and belongs toMA,B
ω .
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4 Minimizers for a fractional Allen-Cahn equation in a periodic medium

Proof. SinceMA,B
ω is separable with respect to convergence a.e. (see [31, Proposition

B.2]), for all u ∈MA,B
ω we can find a sequence {un}n∈N ⊆MA,B

ω from which we can
extract a subsequence {unk}k∈N such that unk → u a.e. in RN . We define

uA,Bω := inf
n∈N

un

and from Lemma 4.16 we get uA,Bω ∈MA,B
ω .

We claim that uA,Bω is the minimal minimizer, that is we have to check (4.2.26) and
(4.2.27).

Let u ∈ MA,B
ω and {unk}k∈N a subsequence of {un}n∈N such that unk → u a.e. in

RN . By definition uA,Bω ≤ unk in RN for all k ∈ N. Therefore, passing to the limit as
k → +∞, we obtain (4.2.26).
In order to prove (4.2.27) we have to suppose the existence of v ∈ AA,Bω such that

v ≤ u for all u ∈ MA,B
ω . This implies v ≤ un for all n ∈ N. Hence v ≤ uA,Bω and

(4.2.27) is proved.

4.2.3 The doubling property
The doubling property, or no-symmetry breaking property, is an important feature of
the minimal minimizer. In this subsection we want to show that uA,Bω is not only the
minimal minimizer ofMA,B

ω , but also the minimal minimizer over the functions with
periodicity multiple of ∼. To do this we introduce a few more notation.

We denote with z1, · · · , zN−1 ∈ ZN some vectors spanning the (N − 1)-dimensional
lattice induced by ∼. If k ∈ ZN is such that ω · k = 0 we can write

k =
N−1∑
i=1

µizi,

with µ1, · · · , µN−1 ∈ Z. Then we take m ∈ NN−1 and we define the equivalence relation
∼m as

x ∼m y ⇔ x− y =
N−1∑
i=1

µimizi for µ1, · · · , µN−1 ∈ Z.

We denote by R̃Nm := RN/∼m and with L2
loc(R̃Nm) the ∼m periodic functions of L2

loc(R̃N ).
Note that in R̃Nm there are m1 · · ·mN−1 copies of R̃N because the relation ∼ is stronger
than ∼m and L2

loc(R̃N ) ⊆ L2
loc(R̃Nm).

We define the space
AA,Bω,m := {u ∈ L2

loc(R̃Nm) : u(x) ≥ 1− δ0 if ω ·x ≤ A and u(x) ≤ −1+ δ0 if ω ·x ≥ B},
i.e. the admissible functions related to the new equivalence relation. Then we consider
the functional

Fω,m(u) := 1
2

∫
R̃Nm

∫
RN

(
|u(x)− u(y)|2 − |u+(x)− u+(y)|2

)
K(x, y) dxdy

+
∫
R̃Nm

(
W (x, u(x))−W (x, u+(x))

)
dx+

∫
R̃Nm

H(x)
(
u(x)− u+(x)

)
dx

(4.2.29)
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4.2 Proof of Theorem 4.5 for rapidly decaying kernels

and the set of absolute minimizers

MA,B
ω,m := {u ∈ AA,Bω,m : Fω,m(u) ≤ Fω,m(v) for any v ∈ AA,Bω,m}.

We call uA,Bω,m the minimal minimizer ofMA,B
ω,m whose existence is assured by the same

arguments of Subsection 4.2.2.
Finally we denote the translation of a function u : RN → R in the direction z ∈ RN

by
τzu(x) := u(x− z) for any x ∈ RN . (4.2.30)

At this point we can show that the minimal minimizer in a class of larger period
coincides to that in a class of smaller period:

Proposition 4.18. For any m ∈ NN−1, it results uA,Bω,m = uA,Bω .

Proof. Proceeding as in [31, Proposition 4.3.1], we consider without loss of generality
m1 = 2 and mi = 1 for every i = 2, · · · , N − 1. (The general case is analogous but the
notation is much heavier).
First we show that uA,Bω ∈MA,B

ω,m, since this implies that uA,Bω,m ≤ uA,Bω . To do this
we consider τz1uA,Bω,m (i.e. the translation of uA,Bω in the doubled direction of z1) and we
observe that it is an element ofMA,B

ω,m. Defining

ûA,Bω,m := min{uA,Bω,m, τz1u
A,B
ω,m}, (4.2.31)

we may see that it is ∼-periodic, so ûA,Bω,m ∈ AA,Bω . Then, using Lemma 4.8 and arguing
as in the proof of Lemma 4.14, we have

Fω,m(uA,Bω ) = 2Fω(uA,Bω ) ≤ 2Fω(ûA,Bω,m) = Fω,m(ûA,Bω,m) ≤ Fω,m(uA,Bω,m).

As a consequence uA,Bω ∈MA,B
ω,m and so uA,Bω,m ≤ uA,Bω , being uA,Bω,m the minimal minimizer

ofMA,B
ω,m.

On the other hand, since ûA,Bω,m ∈MA,B
ω,m and uA,Bω ∈ AA,Bω,m, we get

Fω(ûA,Bω,m) = 1
2Fω,m(ûA,Bω,m) ≤ 1

2Fω,m(uA,Bω ) = Fω(uA,Bω ),

from which it follows that ûA,Bω,m ∈MA,B
ω . Hence

uA,Bω ≤ ûA,Bω,m ≤ uA,Bω,m

and the proof is complete.

4.2.4 Minimization with respect to compact perturbations
In this subsection we want to construct a class A-minimizer for E , so we have to prove
that the elements ofMA,B

ω are also minimizers of the energy E with respect to compact
perturbations in the strip

SA,Bω := {x ∈ RN : ω · x ∈ [A,B]}.
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4 Minimizers for a fractional Allen-Cahn equation in a periodic medium

We call
S̃A,Bω,m := SA,Bω /∼m

the quotient of the strip with respect to the relation ∼m and we show a relation between
E and Fω,m.

Lemma 4.19. Let u ∈ AA,Bω,m be a bounded function such that Fω,m(u) <∞. For any
Ω ⊂⊂ S̃A,Bω,m , consider v another bounded function such that u = v in RN \ Ω and
denote with ϕ := v − u. Calling ṽ and ϕ̃ the ∼m-periodic extension to RN of v|R̃Nm and
ϕ|R̃Nm

respectively, we have

E(v, R̃Nm)− E(u, R̃Nm) = Fω,m(ṽ)−Fω,m(u) +
∫
R̃Nm

∫
RN\R̃Nm

ϕ̃(x)ϕ̃(y)K(x, y) dx dy .

(4.2.32)
In particular if u ∈MA,B

ω,m,

E(v, R̃Nm)− E(u, R̃Nm) ≥
∫
R̃Nm

∫
RN\R̃Nm

ϕ̃(x)ϕ̃(y)K(x, y) dxdy . (4.2.33)

Observe that, being ϕ compactly supported on S̃A,Bω,m and bounded, the right hand
sides of (4.2.32) and (4.2.33) are finite (see [31, Lemma A.2 in Appendix A])

Proof. We prove the lemma in the case m = (1, · · · , 1) but the general case is analogous;
moreover we only show (4.2.32) because then (4.2.33) follows noticing that ṽ ∈ AA,Bω,m.
Recalling the expression of E (see (4.0.1)), we start by computing K(v, R̃N ,RN \ R̃N ).
Proceeding as in [31, Lemma 4.4.1], we get

K (v, R̃N ,RN \ R̃N ) = K (ṽ, R̃N ,RN \ R̃N ) + K (u, R̃N ,RN \ R̃N )

−K (v,RN \ R̃N , R̃N ) +
∫
R̃N

∫
RN\R̃N

ϕ̃(x)ϕ̃(y)K (x, y) dx dy .

(4.2.34)
Then we note that

K (v, R̃N , R̃N ) = K (ṽ, R̃N , R̃N ) and P(v, R̃N ) = P(ṽ, R̃N )

and recalling the definitions of E and Fω we conclude the proof.

Now we are ready to prove that the absolute minimizers of Fω,m in AA,Bω,m are also
minimizers for E with respect to compact perturbations in S̃A,Bω,m :

Proposition 4.20. If u ∈MA,B
ω,m, then it is a local minimizer of E in every open set

Ω ⊂⊂ S̃A,Bω,m , i.e.
E(u,Ω) ≤ E(v,Ω) (4.2.35)

for all v ≡ u in RN \Ω.
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Proof. Without loss of generality we may suppose that E(v,Ω) < +∞ and |v| ≤ 1 + δ0
a.e. in RN . Let ϕ := v−u and note that spt ϕ ⊂ Ω. We claim that (4.2.35) holds with
Ω replaced by R̃Nm, i.e.

E(u, R̃Nm) ≤ E(v, R̃Nm). (4.2.36)

Then Remark 4.3 will imply (4.2.35).
To show (4.2.36) we observe that if ϕ is either non-negative or non-positive, then

(4.2.36) is a direct consequence of (4.2.33). Moreover, if ϕ is sign-changing, we consider
min{u, u+ ϕ} and max{u, u+ ϕ}. From Lemma 4.8 we get

E(min{u, u+ ϕ}, R̃Nm) + E(max{u, u+ ϕ}, R̃Nm) ≤ E(u, R̃Nm) + E(u+ ϕ, R̃Nm).

Moreover, noticing that

min{u, u+ ϕ} = u− ϕ− and max{u, u+ ϕ} = u+ ϕ+

and using (4.2.33), we obtain

2E(u, R̃Nm) ≤ E(u− ϕ−, R̃Nm) + E(u+ ϕ+, R̃Nm) = E(min{u, u+ ϕ}, R̃Nm)
+ E(max{u, u+ ϕ}, R̃Nm) ≤ E(u, R̃Nm) + E(u+ ϕ, R̃Nm)

(4.2.37)

that is our thesis.

As a consequence of this proposition and Subsection 4.2.3 we have the following

Corollary 4.21. The minimal minimizer uA,Bω is a local minimizer of E for every
Ω ⊂⊂ SA,Bω .

Proof. Given Ω, considerm ∈ NN−1 such that Ω ⊂⊂ S̃A,Bω,m . Thanks to Proposition 4.18,
uA,Bω is the minimal minimizer with respect toMA,B

ω,m and Proposition 4.20 implies that
uA,Bω is a local minimizer of E in Ω.

4.2.5 The Birkhoff property
In this subsection we recall a geometric property of the level sets of the minimal
minimizer called the Birkhoff property, or non-self intersection property, representing
the fact that the level sets of the minimal minimizers are ordered under translations.
We start giving some useful notation. We define

τzE := E + z = {x+ z : x ∈ E}

the translation of a set E ⊆ RN with respect to z ∈ RN and observe that for a sublevel
set (and analogously for a superlevel set)

τz{u < θ} = {τzu < θ}.

Definition 4.22. We say that E ⊆ RN has the Birkhoff property with respect to a
vector ω̄ ∈ RN if
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4 Minimizers for a fractional Allen-Cahn equation in a periodic medium

• τkE ⊆ E for any k ∈ ZN such that ω̄ · k ≤ 0, and

• τkE ⊇ E for any k ∈ ZN such that ω̄ · k ≥ 0.

We call Birkhoff set a set satisfying the Birkhoff property and we recall an useful
result about these sets:

Proposition 4.23. [31, Proposition 4.5.2] Let E ⊆ RN a Birkhoff set with respect to
ω̄ ∈ RN \ {0} and containing a ball B√N of radius

√
N . Then E contains a half-space

including the center of the ball, is delimited by a hyperplane orthogonal to the vector ω̄
and is such that ω̄ points outside of it.

Now proceeding as in [31, Proposition 4.5.3], we want to show that level sets of the
minimal minimizer are Birkhoff sets.

Proposition 4.24. Given θ ∈ R, the superlevel set {uA,Bω > θ} has the Birkhoff
property with respect to ω, i.e.

• {τkuA,Bω > θ} ⊆ {uA,Bω > θ}, for any k ∈ ZN such that ω · k ≤ 0, and

• {τkuA,Bω > θ} ⊇ {uA,Bω > θ}, for any k ∈ ZN such that ω · k ≥ 0.

In the same way the sublevel set {uA,Bω < θ} has the Birkhoff property with respect to
−ω.
Proposition 4.24 still holds if strict levels are replaced by the broad ones.

Proof. Denote with v := min{uA,Bω , τku
A,B
ω } and note that τkuA,Bω is the minimal

minimizer with respect to τkMωA,B = MωA+ω·k,B+ω·k. Now, if ω · k ≤ 0, from
Lemma 4.14 we have that v ∈MA+ω·k,B+ω·k

ω , so that τkuA,Bω ≤ v ≤ uA,Bω . Therefore

{τkuA,Bω > θ} ⊆ {uA,Bω > θ}.

Similarly, if ω · k ≥ 0 we get that v ∈MA,B
ω and hence

{uA,Bω > θ} ⊆ {τkuA,Bω > θ}.

For the conclusion concerning the sublevel set {uA,Bω ≤ θ} and the superlevel set
{uA,Bω ≥ θ} we can reason as in [31, Proposition 4.5.3].

4.2.6 Unconstrained and class A-minimization
From now on we consider strips of the form

SMω := S0,M
ω = {x ∈ RN : ω · x ∈ [0,M ]}.

We denote the space of admissible functions A0,M
ω with AMω , the absolute minimizers

withMM
ω and the minimal minimizer with uMω . Since we want to avoid narrow strips,

we assume M > 10|ω|.
The goal of this subsection is to show that, for large universal values of M/|ω|, the

minimal minimizer uMω becomes unconstrained, i.e. it no longer feels boundary data
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4.2 Proof of Theorem 4.5 for rapidly decaying kernels

prescribed outside SMω , gaining additional minimizing properties in the whole RN . First
of all we adapt the results of Section 4.1 to the minimal minimizer uMω and, in view of
Corollary 4.21, we have that uω is a local minimizer for E inside the strip SMω . Thus,
from Theorem 4.6, we get the existence of universal quantities α ∈ (0, 1) and C1 ≥ 1
such that

‖uMω ‖C0,α(S) ≤ C1 (4.2.38)

for any open S ⊂⊂ SMω with dist(S, ∂SMω ) ≥ 1. Then from Proposition 4.7, fixed
x0 ∈ SMω and R ≥ 3 such that BR+2(x0) ⊂⊂ SMω we get that

E(uMω , BR(x0)) ≤ C2R
N−1ΨR(R) (4.2.39)

where C2 > 0 is a universal constant and ΨR(R) is defined in (4.1.5).
These two inequalities have a crucial role to show the main result of this section:

Theorem 4.25. There exists a universal constant M0 > 0 such that if M ≥M0|ω|, the
distance between the superlevel set {uMω > −1+δ0} and the upper constraint {ω ·x = M}
delimiting SMω is at least 1.

Proof. First of all we point out that during this proof we will denote balls B and cubes
Q without expliciting their center. Then we claim that

∃M0 ≥ 8N universal constant such that, for anyM ≥M0|ω|, we find a ball
B√N (z̄) ⊂⊂ SMω for some z̄ ∈ SMω on which either uMω ≥ 1− δ0 or uMω ≤ −1 + δ0.

(4.2.40)
Given M ≥ 8N |ω|, assume that for every ball B̃√N ⊂⊂ SMω we can find a point
x̃ ∈ B̃√N such that |uMω (x̃)| < 1−δ0. If we prove thatM/|ω| ≤M0, then claim (4.2.40)
follows.
Proceeding as in [31, Proposition 4.6.1] we take k ≥ 2 to be the only integer such

that
k ≤ M

4N |ω| < k + 1. (4.2.41)

Then we let x0 ∈ SMω be a point on the hyperplane
{
ω · x = M

2
}
and B = BNk(x0).

Thanks to (4.2.41) we get that B ⊂⊂ SMω with

dist(B, ∂SMω ) = M

2|ω| −Nk ≥ Nk ≥ 4. (4.2.42)

Therefore we can apply (4.2.38) to obtain

‖uMω ‖C0,α(B) ≤ C1. (4.2.43)

Now we consider Q a cube with center in x0 and side 2
√
Nk. Clearly Q ⊂ B and we

can partition it (up a negligible set) into a collection {Qj}k
N

j=1 of cubes with sides 2
√
N

parallel to those of Q. Then we call Bj ⊂ Qj the ball of radius
√
N with the same
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4 Minimizers for a fractional Allen-Cahn equation in a periodic medium

center of Qj . By our initial assumption, for every j = 1, · · · , kN , there exists x̃j ∈ Bj
such that |uMω (x̃j)| < 1− δ0. We claim that

|uMω | < 1− δ1 in Br0(x̃j) (4.2.44)

for some δ1 < δ0 and some universal radius r0 ∈ (0, 1). Indeed, defining r0 :=
(
δ0−δ1
C1

)1/α
,

by (4.2.43), we have

|uMω (x)| ≤ |uMω (x̃j)|+ C1|x− x̃j |α < 1− δ0 + C1r
α
0 =: 1− δ1,

for any x ∈ Br0(x̃j) and the claim is proved.
On the other hand, since x̃j ∈ Bj ⊂ Qj , we get

|Br0(x̃j) ∩Qj | ≥
1

2N |Br0(x̃j)| =
ωN
2N r

N
0 . (4.2.45)

Therefore, from (4.2.44), (4.2.45) and (W2) we obtain

P(uMω , B) ≥P(uMω , Q) =
kN∑
j=1

P(uMω , Qj) ≥
kN∑
j=1

P(uMω , Br0(x̃j) ∩Qj)

=
kN∑
j=1

∫
Br0 (x̃j)∩Qj

(
W (x, uMω (x)) +H(x)uMω (x)

)
dx

≥
[
γ(1− δ1)− η(1− δ1)

] kN∑
j=1
|Br0(x̃j) ∩Qj |

≥
[
γ(1− δ1)− η(1− δ1)

]ωN
2N r

N
0 k

N := C3k
N ,

(4.2.46)

where C3 > 0 is a universal constant. Moreover from (4.2.39) (that we can apply to B
thanks to (4.2.42))

P(uMω , B) ≤ E(uMω , B) ≤ C2(Nk)N−1Ψs(Nk) ≤ C4k
N−1Ψs(k),

for some universal C4 > 0. Comparing the last two inequalities and recalling (4.1.5),
we deduce that k cannot be greater than a universal constant. By (4.2.41), the same
holds for M/|ω|, so (4.2.40) follows.
Thus it remains to show that uMω cannot be greater or equal to 1− δ0 on B√N (z̄),

showing that uω ≤ −1 + δ0 in B√N (z̄).
Assume by contradiction that

uMω ≥ 1− δ0 in B√N (z̄). (4.2.47)

Using Proposition 4.24 we have that the set {uMω ≥ 1− δ0} has the Birkhoff property
with respect to ω. Then, (4.2.47) and Proposition 4.23 imply that the superlevel set
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4.2 Proof of Theorem 4.5 for rapidly decaying kernels

contains the half-space Π− := {ω · (x− z̄) < 0}. Since B√N (z̄) ⊂ SMω , we can affirm
that ∂Π− is at least at distance 1 from the level constraint {ω · x = 0}.
As a consequence if we suppose w.l.o.g. that ω1 > 0, the translation τ−e1uMω ∈ AMω .

In view of the periodicity assumptions (K3), (W4) and (H3), we get that Fω(τ−e1uMω ) =
Fω(uMω ) and so τ−e1uMω ∈MM

ω . Then, since uMω is the minimal minimizer, it results

uMω (x+ e1) = τ−e1u
M
ω ≥ uMω (x) for a.e. x ∈ RN .

Now, iterating this inequality we obtain

uMω (x+ te1) ≥ uMω (x) ≥ 1− δ0 for a.e. x ∈ Π− and t ∈ N

or equivalently uMω ≥ 1− δ0 a.e. in RN that contradicts the fact that uMω ≤ −1 + δ0 in
{ω ·x ≥M} by construction. As a consequence uMω ≤ −1+δ0 on the ball B√N (z̄), hence
applying again Proposition 4.24 and Proposition 4.23 to the sublevel set {uMω ≤ −1+δ0},
we prove the theorem.

Corollary 4.26. If M ≥M0|ω|, then uMω = uM+a
ω for all a ≥ 0.

Proof. Given M ≥M0|ω| and a ∈ [0, 1], we may apply Theorem 4.25 to the minimal
minimizer uM+a

ω to obtain that uM+a
ω ≤ −1 + δ0 a.e. in the half-space {ω · x ≥ M}.

But then uM+a
ω ∈ AMω and by minimality of uMω , we get that Fω(uMω ) ≤ Fω(uM+a

ω ).
On the other hand, obviously uMω ∈ AM+a

ω , so Fω(uM+a
ω ) ≤ Fω(uMω ). Therefore uMω

and uM+a
ω belong toMM

ω ∩MM+a
ω and hence they are the same function. Iterating

this argument we can extend this result to any a ≥ 0.

Roughly speaking, this corollary tells us that if M/|ω| is greater than the universal
constant M0 found in Theorem 4.25, the upper constraint {ω · x = M} becomes
irrelevant for the minimal minimizer uMω which achieves values below −1 + δ0 well
before touching the constraint.
In the next proposition we show that we have an analogous behaviour with the

lower constraint {ω · x = 0} and hence we get that the minimal minimizer uMω is
unconstrained.

Proposition 4.27. If M ≥ M0|ω|, then uMω ∈ M−a,M+a
ω for any a ≥ 0, i.e. uMω is

unconstrained.

Proof. Fix k ∈ ZN such that ω · k ≥ a. Let v ∈ A−a,M+a
ω and consider its translation

τkv ∈ AM+a+ω·k
ω . Corollary 4.26 tells us that Fω(uMω ) ≤ Fω(τkv) and the thesis follows

since by (K3), (W4) and (H3), we have that Fω(v) = Fω(τkv).

We conclude this subsection combining the previous proposition with the results of
Subsection 4.2.1 obtaining that uMω is a class A minimizer.

Theorem 4.28. If M ≥M0|ω|, then uMω is a class A minimizer of the functional E.
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4 Minimizers for a fractional Allen-Cahn equation in a periodic medium

Proof. The proof is similar to that of [31, Theorem 4.6.4]; we include it for complete-
ness. Let Ω ⊆ RN be a bounded subset. Take a ≥ 0 and m ∈ ZN−1 such that
Ω ⊂⊂ S̃−a,M+a

ω,m . From Proposition 4.18, it follows that u−a,M+a
ω is the minimal

minimizer of the class M−a,M+a
ω,m . On the other hand Proposition 4.27 implies that

Fω(uMω ) = Fω(u−a,M+a
ω ). Then

Fω,m(uMω ) = cmFω(uMω ) = cmFω(u−a,M+a
ω ) = Fω,m(u−a,M+a

ω ),

where cm = ΠN−1
i=1 mi.

Therefore uMω ∈M−a,M+a
ω,m and Proposition 4.20 yields that uMω is a local minimizer

of E in Ω.

4.2.7 The case of irrational directions
In this subsection we want to prove Theorem 4.5 with the assumption (K4), also for
irrational vectors ω. We will use an approximation argument as in [31, Subsection 4.7].

Taken ω ∈ RN \QN , we consider a sequence {ωj}j∈N ⊂ QN \ {0} such that ωj → ω.
Denoting with uj the class A minimizer given by our construction which corresponds
to ωj , we know that uj ∈ Hs

loc(RN ) ∩ L∞(RN ) with |uj | ≤ 1 + δ0 in RN and

{
x ∈ RN : |uj(x)| ≤ 1− δ0

}
⊆
{
x ∈ RN : ωj

|ωj |
· x ∈ [0,M0]

}
(4.2.48)

for any j ∈ N. Moreover Theorem 4.6 implies that the uj ’s are uniformly bounded in
C0,α

loc (RN ) for some unversal α ∈ (0, 1). So, thanks to Ascoli-Arzelà Theorem we can
find a subsequence of {uj}j∈N (not relabeled) converging to some continuous function
u, uniformly on compact subsets of RN and |u| ≤ 1 + δ0 in RN . Since condition (4.2.48)
passes to the limit, the same inclusion holds if we replace uj and wj with u and w.
Hence, to prove Theorem 4.5 we only need to check that u is a class A minimizer of E .
With this aim in mind we fix R ≥ 1 and we claim that u is a local minimizer of E in
BR, i.e. E(u,BR) < +∞ and

E(u,BR) ≤ E(u+ ϕ,BR) for any ϕ such that spt ϕ ⊂ BR. (4.2.49)

Thanks to Remark 4.3, this will implies that u is a class A minimizer.
To show (4.2.49) we apply Theorem 4.7 to uj so

E(uj , BR+1) ≤ CR

for some constant CR > 0 independent of j. Moreover by an application of Fatou’s
Lemma

E(u,BR+τ ) ≤ lim inf
j→+∞

E(uj , BR+τ ) (4.2.50)

for any τ ∈ [0, 1]. In particular

E(u,BR) ≤ E(u,BR+1) ≤ CR < +∞ (4.2.51)
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because E(u, ·) is monotone non-decreasing with respect to set inclusion. As it concerns
the right hand side of (4.2.50) we let {εj}j∈N such that

εj := ‖uj − u‖L∞(BR+1).

It is easy to see that εj → 0 and we may suppose that εj ≤ 1/2 for any j ∈ N. Then
we consider ηj ∈ C∞c (RN ) a cut-off function such that 0 ≤ ηj ≤ 1 in RN , ηj = 1 in BR,
spt (ηj) ⊆ BR+εj and |∇ηj | ≤ 2/εj in RN . Take ϕ as in (4.2.49) and assume w.l.o.g.
that ϕ ∈ L∞(RN ). We also suppose that E(u + ϕ,BR) < +∞, otherwise (4.2.49) is
obviously satisfied. Consequently, using (4.2.51), (K2) and the boundedness of H, u
and ϕ, we get that ϕ ∈ Hs(BR+1). At this point we define v := u+ ϕ and

vj := ηju+ (1− ηj)uj + ϕ in RN .

Observe that vj = v in BR and vj = uj in RN \ BR+εj , hence vj is an admissible
competitor for uj in BR+εj . Then, being uj minimizer,

E(uj , BR+εj ) ≤ E(vj , BR+εj ). (4.2.52)

Moreover vj → v uniformly on compact subsets of RN and

‖vj − v‖L∞(BR+1) ≤ ‖uj − u‖L∞(BR+1) = εj .

Now, we want to deal with the right-hand side of (4.2.52). We can proceed as in [31,
Pag. 32-34] to decompose CBR+εj

and estimate E(vj , BR+εj ) in each of these regions.
Then we can use

P(vj , BR+εj ) ≤P(v,BR) +W ∗|BR+εj \BR|+ η‖u‖L∞(RN )|BR+εj \BR|

to say that there exists a function r : (0, 1)→ (0,+∞) for which

lim
δ→0+

r(δ) = 0 (4.2.53)

such that
lim sup
j→+∞

E(uj , BR) ≤ E(v,BR) + r(δ).

Combining this inequality with (4.2.50) we have

E(u,BR) ≤ E(v,BR) + r(δ)

and since δ is arbitrary and (4.2.53) holds, we obtain (4.2.49), i.e. u is a class A
minimizer of E .

4.3 Proof of Theorem 4.5 for general kernels
In this section we want to prove Theorem 4.5 also for kernel not satisfying condition
(K4). Indeed none of the estimates that we showed there involve any of the parameters
appearing in (K4). So we can use a limit argument similar to this of Section 4.2.7.

57



4 Minimizers for a fractional Allen-Cahn equation in a periodic medium

Let K be a kernel satisfying (K1), (K2), (K3) and consider a monotone increasing
sequence {Rj}j∈N ⊂ [2,+∞) diverging to +∞. We define

Kj(x, y) := K(x, y)χ[0,Rj ](|x− y|) for any x, y ∈ RN

and we observe that it fulfills (K1), (K2), (K3). Moreover Kj satisfies (K4) with
R̄ = Rj . Call Ej the energy functional (4.0.3) corresponding to Kj and, fixed a
direction ω ∈ RN \ {0}, we denote with uj the plane-like class A-minimizer for Ej with
direction ω. Since Kj verifies (K4) these minimizers exist thanks to Section 4.2. We
have {

x ∈ RN : |uj(x)| ≤ 1− δ0
}
⊆
{
x ∈ RN : ω

|ω|
· x ∈ [0,M0]

}
, (4.3.1)

for a universal value M0 > 0. We also know that |uj | ≤ 1 + δ0 in RN and, thanks
to Theorem 4.6, ‖uj‖C0,α

loc (RN ) ≤ C for some α ∈ (0, 1]. We underline that, since
Kj satisfies (K2) with the same structural constants, we can choose M0, α and C
independent of j. As a consequence, Ascoli-Arzelà Theorem implies that, up to a
subsequence, {uj} converges to a continuous function u, uniformly on compact subsets
of RN . The limit function u satisfies (4.3.1) and, if ω is rational, each uj is ∼-periodic,
hence u is ∼-periodic. To show that u is a class A minimizer, we fix R ≥ 1 and we take
a perturbation ϕ with spt ϕ ⊂⊂ BR. We know that

Ej(uj , BR) ≤ Ej(uj + ϕ,BR) for any j ∈ N.

On the other hand from an application of Fatou’s Lemma we get

E(u,BR) ≤ lim inf
j→+∞

Ej(uj , BR)

and following the reasoning of the Subsection 4.2.7 we have that

lim sup
j→+∞

Ej(uj , BR) ≤ E(u+ ϕ,BR).

These two inequalities tell us that u is a class A minimizer of E so Theorem 4.5 is
completely proved.
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5 On critical points of the relative
fractional perimeter

In this last chapter of this thesis we shift our attention to the fractional perimeter.
In particular, we focus first on the localization of sets with constant nonlocal mean
curvature (briefly denoted with CNMC sets) and small prescribed volume relative to an
open bounded domain. Then, in the second part of the chapter we study the existence
and some properties of sets minimizing the fractional perimeter in an half-space.

5.1 Localization of sets with CNMC and small volume
Let Ω ⊆ RN be a bounded open set. We consider the fractional perimeter of a
measurable set E ⊂ RN in Ω as the interaction between E and its complement inside
Ω, i.e.

P̄s(E,Ω) :=
∫
E

∫
Ω\E

dxdy
|x− y|N+2s , (5.1.1)

where s ∈ (0, 1/2).
Notice that, with respect to the general definition of fractional perimeter given in

(2.2.3), in this definition we are neglecting the interaction between E ∩Ω and EC \Ω.
Similar to what we saw in Section 2.2.1, the nonlocal mean curvature (in Ω) of ∂E

at x ∈ ∂E corresponding to (5.1.1) is given by

HΩ
s,∂E(x) := P.V.

∫
Ω

χE(y)− χEC∩Ω(y)
|x− y|N+2s dy . (5.1.2)

Observe that, when Ω = RN , (5.1.2) coincides with (2.2.6), so we will simply write
Hs,∂E to refer to HRN

s,∂E .
The first main result of this chapter is to prove that sets with constant nonlocal mean

curvature and prescribed small volume in a bounded open set with smooth boundary
are sufficiently close to critical points of a suitable nonlocal potential:

Theorem 5.1. Let s ∈ (0, 1/2) and Ω ⊆ RN be a bounded open set with smooth
boundary.

For x in a given compact set Θ of Ω, set

VΩ(x) :=
∫
RN\Ω

1
|x− y|N+2s dy .

Then for every strict local extremal or non-degenerate critical point x0 of VΩ in Ω,
there exists ε > 0 such that for every 0 < ε < ε there exist spherical-shaped surfaces Sε
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with constant HΩ
s,∂Sε

curvature and enclosing volume identically equal to ε, approaching
x0 as ε→ 0.

We prove this result using the non-degeneracy of sheres with respect to the linearized
nonlocal mean curvature equation, which follows from a result in [19]. Moreover, the
central tool of the proof is a Lyapunov-Schmidt reduction which allows us to study
a finite-dimensional problem, treated by carefully expanding the relative fractional
perimeter of balls with small volume.

Then, thanks to classical results in min-max theory, we deduce a multiplicity result:

Corollary 5.2. Let s ∈ (0, 1/2) and Ω ⊆ RN be a bounded open set with smooth
boundary. Then there exists ε > 0 such that for every 0 < ε < ε there exist at
least cat(Ω) spherical-shaped surfaces Sε with constant HΩ

s,∂Sε
curvature and enclosing

volume identically equal to ε.

Here cat(Ω) denotes the Lusternik-Schnirelman category of the set Ω (see [59] and
Section 2.5 for more details).

5.1.1 The Lyapunov-Schmidt reduction
In this section we show a finite-dimensional reduction, i.e. the Lyapunov-Schmidt
reduction, which will determine the location of critical points of the relative fractional
perimeter depending on s and the geometry of the domain. To obtain it, one of the
main tools is the following asymptotic expansion of the relative s-perimeter.
From now on we consider s ∈ (0, 1/2) and, for every ε > 0, we set Ωε := 1

ε
Ω. We

aim to prove that the nonlocal mean curvature HΩ
s is sufficiently close to HRN

s .

Lemma 5.3. Let Θ ⊆ Ω be a fixed compact set. For all ε > 0 we consider B1(x̄) a
ball of center x̄ ∈ Θε := 1

εΘ and unit radius. Then, for the fractional perimeter defined
in (5.1.1), the following expansion holds

P̄s(B1(x̄), Ωε) = Ps(B1(x̄))− ωNε2sVΩ(εx̄) +O(ε1+2s) as ε→ 0, (5.1.3)

where ωN is the volume of the N -dimensional unit ball and

VΩ(εx̄) :=
∫
RN\Ω

1
|εx̄− y|N+2s dy . (5.1.4)

Moreover one has that

∇x̄P̄s(B1(x̄), Ωε) = −ωNε2s+1∇x̄VΩ(εx̄) +O(ε2+2s). (5.1.5)

Proof. Taking ε small enough, we can assume B1(x̄) ⊂ Ωε. Recalling (2.2.1), we have

P̄s(B1(x̄), Ωε)− Ps(B1(x̄)) = −
∫
B1(x̄)

∫
RN\Ωε

1
|x− y|N+2s dxdy . (5.1.6)
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If we replace x with x̄ in the last integrand, we obtain

1
|x− y|N+2s = 1

|x̄− y|N+2s +O

(
1

|x̄− y|N+2s+1

)
x ∈ B1(x̄), y ∈ RN \Ωε.

Therefore∫
B1(x̄)

∫
RN\Ωε

1
|x− y|N+2s dxdy

= ωN

∫
RN\Ωε

1
|x̄− y|N+2s dy +

∫
RN\Ωε

O(1)
|x̄− y|N+2s+1 dy .

From the latter formulas and a change of variables, we find that

P̄s(B1(x̄), Ωε)− Ps(B1(x̄)) = −ε2sωN

∫
ΩC

1
|εx̄− y|N+2s dy +O(ε1+2s),

which concludes the proof of (5.1.3). Formula (5.1.5) follows in a similar manner.

Now we want to evaluate the deviation of the nonlocal mean curvature from a
constant, when it is computed relatively to a large domain. To do that, we define

H̃s,ξ : SN−1 → R

H̃s,ξ(x) := HΩε
s,Sξ

(x+ ξ).
(5.1.7)

Lemma 5.4. Let β ∈ (2s, 1). For the (relative) fractional mean curvature defined in
(5.1.2), the following expansion holds:

H̃s,ξ = cN,s +O(ε2s) in Cβ−2s(SN−1), (5.1.8)

where cN,s := Hs,Sξ and we recall that Sξ = ∂B1(ξ) with B1(ξ) denoting the ball of
center at ξ and unit radius. Moreover, one has that for all i = 1, . . . , N ,

∂

∂ξi
H̃s,ξ = O(ε2s+1) in Cβ−2s(SN−1). (5.1.9)

Proof. Using the definition of (relative) fractional mean curvature (see (5.1.2)) and [77,
Lemma 2], for x ∈ ∂B1, we can write

H̃s,ξ(x) = cN,s +
∫
RN\Ωε

dy
|x+ ξ − y|N+2s . (5.1.10)

where cN,s := Hs,ξ(·+ ξ).
Therefore we get that, for x ∈ ∂B1,

H̃s,ξ(x) = cN,s +O(ε2s). (5.1.11)
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Then, using (5.1.10) and differentiating with respect to ξi, we find that, for all i =
1, . . . , N ,

∂

∂ξi
H̃s,ξ = ∂

∂ξi

(
cN,s +

∫
RN\Ωε

dy
|x+ ξ − y|N+2s

)

= O

(∫
RN\Ωε

dy
|x+ ξ − y|N+2s+1

)
= O(ε2s+1).

(5.1.12)

Thus, we proved (5.1.8) and (5.1.9) in a pointwise sense. It is easy however to see
that they also hold in the C1 sense on the unit sphere Sξ, and therefore also in
Cβ−2s(SN−1).

At this point we can perform the finite-dimensional reduction of the problem, which
is possible by the smallness of volume in the statement of Theorem 5.1.
We refer to [3] for a general treatment of the subject and to Section 2.4 for the

setting used in the following.

Proposition 5.5. Suppose that Ω is a smooth bounded set of RN , Θ a set compactly
contained in Ω, and let β ∈ (2s, 1). For ε > 0 small, let ξ ∈ Θε. Then there exist
wε : Sξ → R in W and λ = (λ1, · · · , λN ) ∈ RN such that

V ol(B(ξ, wε)) = ωN ;
∫
Sξ

wεYi dσ = 0; HΩε
s,∂B(ξ,wε) = c+

N∑
i=1

λiYi,

where c ∈ R is close to cN,s and where {Yi}i=1,··· ,N ∈ E1 (extended as zero-homogeneous
function in a neighborhood of the unit sphere). Moreover, there exists C > 0 (depending
on Θ,Ω,N and s) such that ‖wε‖C1,β(Sξ) ≤ Cε2s and such that ‖∂ξwε‖C1,β(Sξ) ≤
Cε2s+1.

To make the above formula for HΩε
s more precise, we mean that

HΩε
s,∂B(ξ,wε)(ξ + x(1 + wε(x))) = c+

N∑
i=1

λiYi(x) for every x ∈ Sξ.

Proof. Let us denote byW the family of functions in Cβ−2s(Sξ) that are L2-orthogonal,
with respect to the standard volume element of Sξ, to constants and to the first-order
spherical harmonics. Notice that W ⊆ W , see (2.4.10). Let us consider the two-
component function FW : Θε × C1,β(Sξ)→ Cβ−2s(Sξ)× R defined by

FW (ξ, w) :=
(
PW (HΩε

s,∂B(ξ,w)), V ol(B(ξ, w))− ωN
)

; w ∈W,

where ωN := V ol(B1(ξ)) and PW : Cβ−2s(Sξ) 7→W the orthogonal L2-projection onto
the space W , with respect to the standard volume element of Sξ. With this notation,
we want to find w ∈W such that FW (ξ, w) = (0, 0).

62



5.1 Localization of sets with CNMC and small volume

By Lemma 5.4 we have that

FW (ξ, 0) = (O(ε2s), 0), (5.1.13)

where the latter quantity is intended to be bounded by Cε2s in the Cβ−2s(Sξ) sense.
In our notation, the constant C is allowed to vary from one formula to the other.

By Proposition 2.21 and by the fact that

d
dw

∣∣∣∣
w=0

V ol(B(ξ, w))[ϕ] =
∫
Sξ

ϕdσ,

we have that Lξ := ∇wFW (ξ, 0) ∈ Inv(W,W × R) with ‖L−1
ξ ‖L(W×R,W ) ≤ C. Hence

FW (ξ, w) = (0, 0) if and only if FW (ξ, 0)+Lξ[w]−Lξ[w]+FW (ξ, w)−FW (ξ, 0) = (0, 0),
which can be written as

w = Tξ(w) := −L−1
ξ [FW (ξ, 0)− Lξ[w] + FW (ξ, w)− FW (ξ, 0)].

Therefore FW (ξ, w) = (0, 0) if and only if w is a fixed point for Tξ. Let us show that
Tξ is a contraction in a ball BCε2s(ξ) centered at ξ with radius Cε2s for C sufficiently
large. From the definition of Tξ, the estimate (5.1.13) and the fact that

‖L−1
ξ ‖L(W×R,W ) ≤ C,

we have
‖Tξ(0)‖C1,β(Sξ) = ‖L−1

ξ [FW (ξ, 0)]‖C1,β(Sξ) ≤ C
2ε2s. (5.1.14)

Then, taking w1 and w2 ∈ BC̄ε2s(ξ) ⊆W it follows that

‖Tξ(w1)−Tξ(w2)‖C1,β(Sξ) ≤ C‖FW (ξ, w1)−FW (ξ, w2)−Lξ[w1−w2]‖C1,β(Sξ). (5.1.15)

We notice that the function w 7→ V ol(B(ξ, w)) is a smooth function from the metric
ball of radius 1

2 in C1,β(Sξ) into R. Thanks also to the smoothness statement in
Proposition 2.21, the right hand side in the latter formula can be bounded by

FW (ξ, w1)− FW (ξ, w2)− Lξ[w1 − w2] =
∫ 1

0

(
∇wFW (ξ, w2 + s(w1 − w2))

−∇wFW (ξ, 0)[w1 − w2]
)

ds ≤ C‖w1 − w2‖2C1,β(Sξ).

(5.1.16)

Hence, in BC̄ε2s(ξ) ⊆W the Lipschitz constant of Tξ is CC̄ε2s. So choosing first any
C̄ ≥ 2C, and then ε > 0 small enough, we find therefore that Tξ is a contraction in
BC̄ε2s(ξ). As a consequence, there exists wε : Sξ → R in W such that ‖wε‖C1,β(Sξ) ≤
C̄ε2s and such that FW (ξ, wε) = (0, 0).

We also recall that the fixed point wε can be proved to be continuous and differentiable
with respect to the parameter ξ, (see e.g. [14], Section 2.6).

Recall that wε = wε(ξ) solves

V ol(B(ξ, wε)) = ωN and PW (HΩε
s,∂B(ξ,wε)) = 0 for all ξ ∈ RN .
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5 On critical points of the relative fractional perimeter

We want next to differentiate the above relations with respect to ξ. For this purpose,
it is convenient to fix an index i, and to consider the one-parameter family of centers

ξ(t) = (ξ1, . . . , ξi + t, . . . , ξN ) = ξ + tei. (5.1.17)

Our aim is to understand the variation of ∂B(ξ(t), wε(ξ(t))) normal to ∂B(ξ, wε(ξ)).
The above variation is characterized by a translation in the i-th component and by a
variation of wε, which is in the radial direction with respect to the center ξ. Therefore,
letting νwε denote the unit outer normal vector to ∂B(ξ, wε(ξ)), the normal variation
of ∂B(ξ(t), wε(ξ(t))) with respect to ∂B(ξ, wε(ξ)) (computed at t = 0) is the scalar
product between the pointwise shift ei + ∂wε(ξ)

∂ξi
and the unit outer normal vector to

∂B(ξ, wε(ξ)) that is νwε , i.e.

νwε · ei + ∂wε(ξ)
∂ξi

(x− ξ) · νwε , x ∈ Sξ. (5.1.18)

Hence we have that

∂

∂ξi
V ol(B(ξ, wε)) = 0 and PW

(
∂

∂ξi
HΩε
s,∂B(ξ,wε(ξ))

)[
νwε ·ei+

∂wε(ξ)
∂ξi

(x−ξ)·νwε
]

= 0.

Using (5.1.9) and Proposition 2.21 one finds from the second equation in the latter
formula that ‖vi,ε‖C1,β(Sξ) ≤ Cε2s+1, where vi,ε = PW∂ξiwε. Since ∂wε

∂ξi
∈ W , it

remains to control then the component of ∂ξiwε in the orthogonal complement of W̄ ,
namely its average. Let us write

∂ξiwε = vi,ε + ci,ε with ci,ε ∈ R.

From a direct computation we have that

0 = ∂

∂ξi
V ol(B(ξ, wε)) =

∫
Sξ

(1 + wε)N−1(vi,ε + ci,ε)dσ.

Since we know that ‖vi,ε‖C1,β(Sξ) ≤ Cε2s+1, it follows from the latter formula that
also |ci,ε| ≤ Cε2s+1. Therefore one deduces

‖∂ξiwε‖C1,β(Sξ) ≤ Cε
2s+1, (5.1.19)

which is the desired conclusion, possibly relabelling the constant C.

5.1.2 Proof of Theorem 5.1
In this subsection we prove Theorem 5.1 using the Lyapunov-Schmidt reduction. In
particular, as first step, we show how to find ξ’s so that the Lagrange multipliers λi
in the statement of Proposition 5.5 vanish, obtaining surfaces with constant (relative)
nonlocal mean curvature.
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5.1 Localization of sets with CNMC and small volume

Proposition 5.6. Let wε : Sξ → R given by Proposition 5.5. Recalling (2.4.4),
for ξ ∈ Θε we define Φξ := PΩεs (B(ξ, wε)). Then, for ε > 0 sufficiently small, if
∇ξΦξ |ξ=ξ̄ = 0 for some ξ̄ ∈ Θε, one has

HΩε
s,∂B(ξ̄,wε)

≡ c,

where c = c(ε, ξ̄).

Proof. Recall that wε = wε(ξ) solves

V ol(B(ξ, wε)) = ωN and PW (HΩε
s,∂B(ξ,wε)) = 0 for all ξ ∈ RN .

Since V ol(B(ξ, wε)) = ωN for any choice of ξ, it follows that the integral over
∂B(ξ, wε(ξ)) of the normal variation vanishes, i.e. recalling (5.1.18), we have for ξ = ξ̄∫

∂B(ξ̄,wε(ξ̄))

[
νwε · ei + ∂wε(ξ̄)

∂ξi
(x− ξ̄) · νwε

]
dσwε = 0, (5.1.20)

where dσwεstands for the area element of ∂B(ξ̄, wε(ξ̄)).
For the same reason, recalling (2.2.9) and (5.1.17), we have that

d
dt

∣∣∣∣
t=0

PΩεs (B(ξ(t), wε(ξ(t))))

=
∫
∂B(ξ̄,wε(ξ̄))

HΩε
s,∂B(ξ̄,wε(ξ̄))

[
νwε · ei + ∂wε(ξ̄)

∂ξi
(x− ξ̄) · νwε

]
dσwε .

By our choice of ξ̄ we have that, for all i = 1, . . . , N

∂

∂ξ i|ξ=ξ̄
Φξ = 0.

Recalling also that by Proposition 5.5, HΩε
s,∂B(ξ̄,wε)

= c+
∑N
i=1 λiYi (see Section 2.4 for

the definition of the first-order sphereical harmonics Yi) , from (5.1.20) we have that
for all i = 1, . . . , N

0 =
∫
∂B(ξ̄,wε(ξ̄))

 N∑
j=1

λjYj

[νwε · ei + ∂wε(ξ̄)
∂ξi

(x− ξ̄) · νwε
]
dσwε . (5.1.21)

Notice that by the estimates on wε and ∂ξwε in Proposition 5.5 one has∫
∂B(ξ̄,wε(ξ̄))

Yj

[
νwε · ei + ∂wε(ξ̄)

∂ξi
(x− ξ̄) · νwε

]
dσwε = δij + oε(1); i, j = 1, . . . , N.

Therefore the system (5.1.21) implies the vanishing of all λj ’s, which gives the desired
conclusion.
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5 On critical points of the relative fractional perimeter

The next step is to show that fractional perimeter of B1(ξ) is sufficiently close to
fractional perimeter of the deformed ball B(ξ, wε), also when we differentiate with
respect to ξ.

Proposition 5.7. Let wε : Sξ → R given by Proposition 5.5. The following Taylor
expansion holds:

PΩεs (B(ξ, wε)) = PΩεs (B1(ξ)) +O(ε4s). (5.1.22)

Moreover one has

∂

∂ξi
PΩεs (B(ξ, wε)) = ∂

∂ξi
PΩεs (B1(ξ)) +O(ε1+4s). (5.1.23)

Proof. Recalling the notation introduced in Section 2.4 and thanks to the first statement
of Lemma 5.4, we get that

PΩεs (B(ξ, wε)) = PΩεs (B1(ξ)) + (PΩεs,ξ )′(0)[wε] + PΩεs (B(ξ, wε))− (PΩεs,ξ )′(0)[wε]

− PΩεs (B1(ξ))

= PΩεs (B1(ξ)) +O(ε4s) +
∫ 1

0

(
(PΩεs,ξ )′(t wε)− (PΩεs,ξ )′(0)

)
[wε] dt .

(5.1.24)
Using the fact that the nonlocal mean curvature is smooth, we deduce then that∫ 1

0

(
(PΩεs,ξ )′(t wε)− (PΩεs,ξ )′(0)

)
[wε] dt = O(ε4s),

so the last two formulas imply (5.1.22).
To prove (5.1.23), we use the estimate ‖∂ξwε‖C1,β(Sξ) ≤ Cε2s+1 from Proposition 5.5.

Calling τi the quantity in (5.1.18), we write that

∂

∂ξi
PΩεs (B(ξ, wε)) = (PΩεs,ξ )′(wε)[τi].

Taylor-expanding the latter quantity, we can write that

∂

∂ξi
PΩεs (B(ξ, wε)) = (PΩεs,ξ )′(0)[τi] + 1

2(PΩεs,ξ )′′(0)[τi] + o(ε1+4s)

= ∂

∂ξi
PΩεs (B1(ξ)) +O(ε1+4s).

(5.1.25)

This concludes the proof.

With this result at hand, we are ready to prove the main theorem of this section.

Proof of Theorem 5.1. Suppose x0 is a strict local extremal of VΩ, without loss of
generality a minimum. Then there exists an open set Υ ⊂⊂ Ω such that VΩ(x0) <
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5.1 Localization of sets with CNMC and small volume

inf∂Υ VΩ − δ for some δ > 0. Let Φξ be defined as in Proposition 5.6: by the estimates
(5.1.3) and (5.1.22) it follows that for every x̄ ∈ 1

εΥ

Φx̄ = PRN
s (B1(x̄))− ωNε2sVΩ(εx̄) +O(ε1+2s). (5.1.26)

Since PRN
s (B1(x̄)) = PRN

s (B1(x0
ε )), we get

Φ x0
ε
− Φx̄ = ωNε

2s(VΩ(εx̄)− VΩ(x0)) +O(ε1+2s)

≥ ωNε2s(inf
∂Υ
VΩ(εx̄)− VΩ(x0)) +O(ε1+2s)

> δωNε
2s +O(ε1+2s) ≥ δωNε2s + Cε1+2s > 0

(5.1.27)

for ε < δωN
C where C > 0 is a constant. Hence, for ε sufficiently small

Φ x0
ε
> sup

1
εΥ

Φ..

As a consequence Φ· attains a maximum in the dilated domain 1
εΥ , and the conclusion

follows from Proposition 5.6.
Suppose now that x0 is a non-degenerate critical point of VΩ. From (5.1.5) and

(5.1.23) one can find an open set Υ ⊂⊂ Ω such that

deg
(
∇Φ., 1

ε
Υ, 0
)
6= 0.

This implies that Φξ has a critical point in 1
εΥ , and the conclusion again follows

from Proposition 5.6.
Since in both cases the set Υ containing x0 can be taken arbitrarily small, the

localization statement in the theorem is also proved.

Remark 5.8. From [3, Theorem 2.24] one has a relation between the Morse index of a
critical point as found in Proposition 5.6 and the Morse index of the corresponding
critical point of Φ. In our case, since round spheres are global minimizers for the
fractional perimeter relative to RN , these two indices coincide.

To prove Corollary 5.2, we need the following lemma.

Lemma 5.9. For all x ∈ ∂Ω one has

lim
y→x

VΩ(y) = +∞,

and
lim

Ω3y→x
∇VΩ(y) · νΩ(x) = +∞,

where νΩ denotes the outer unit normal to ∂Ω.
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5 On critical points of the relative fractional perimeter

Proof. Letting d := dist(x, ∂Ω) for all x ∈ Ω, thanks to the change of variables x′ = x
d ,

we get that

VΩ(x) =
∫
RN\Ω

1
|x− y|N+2s dy =

∫
RN\(Ω/d)

1
|dx′ − y′|N+2s dy′ (5.1.28)

from which, if d→ 0, setting RN+ = {x ∈ RN : xN > 0}, we have∫
RN\(Ω/d)

1
|dx′ − y′|N+2s dy′ →

∫
(RN+ )C

1
|y′|N+2s dy′ < +∞,

i.e. VΩ behaves asymptotically as d−N−2s when d→ 0. With a similar proof, one finds
that the component of ∇VΩ normal to ∂Ω behaves as d−N−2s−1.

Proof of Corollary 5.2. Given δ > 0 small enough, let us define the set Ωδ ⊆ Ω by

Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}.

From Lemma 5.9 we have
∇VΩ · νΩδ > 0 on ∂Ωδ.

As in the proof of Theorem 5.1, it turns out that

∇Φ· · ν 1
ε Ω

δ > 0 on ∂ 1
ε
Ωδ.

Clearly, since Ω̄ is compact, the (PS)-condition holds. So the conclusion follows from
Theorem 2.25 and Remark 2.26.

Remark 5.10. It is interesting to see how the geometry of the domain (and not just
the topology, as in Corollary 5.2) plays a role in order to obtain either uniqueness of
multiplicity of solutions.

In this last part of the section we will prove uniqueness for the unit ball B1, i.e. we
will show that VB1 has a unique critical point at the origin which is a non-degenarate
minimum.

Secondly, we will give an example of dumble-bell domain, topologically equivalent to
a ball, such that the reduced functional Φξ (defined as in Proposition 5.6) has at least
three critical points, while Corollary 5.2 would give us only one solution.

Lemma 5.11. If B1 is the unit ball of RN , then 0 ∈ B1 is a non-degenerate global
minimum of VB1 and it is the unique critical point.

Proof. First of all we note that VB1 is a radial function, i.e. VB1(x) = vB1(|x|). Hence,
since VB1 is smooth in the interior of the ball, it follows that v′B1

(0) = 0.
It is easily seen that

(∆VB1)(0) = 2(1 + s)(N + 2s)
∫
BC1

1
|y|N+2s+2 dy > 0,
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5.1 Localization of sets with CNMC and small volume

where BC1 denotes the complement of B1. Therefore, since v′′B1
(0) = 1

n∆VB1(0), it
follows that for fixed δ > 0 one has v′′B1

(t) > 0 for t ∈ [0, δ], which implies the
non-degeneracy of the origin as a critical point of VB1 .
It remains to show the monotonicity of vB1 in the whole interval (0, 1), but since

Lemma 5.9 holds, it is sufficient to show that

d
dtVB1(t~e1) 6= 0 for t ∈ [δ, 1− δ]. (5.1.29)

Recalling the definition (5.1.4), we get

d
dtVB1(t~e1) = c̃N,s

∫
BC1

y1 − t
|y − t~e1|N+2s+2 dy , (5.1.30)

where c̃N,s is a constant depending only on N and s and y = (y1, y
′) ∈ R× RN−1.

By Fubini’s Theorem∫
BC1

y1 − t
|y − t~e1|N+2s+2 dy =

∫
RN−1

dy′
∫
{y1:(y1,y′)∈BC1 }

y1 − t
|y − t~e1|N+2s+2 dy . (5.1.31)

Since (y1, y
′) ∈ Bc1 × RN−1, we have two cases:

1) if |y′| ≥ 1 ⇒ y1 ∈ R;

2) if |y′| < 1 ⇒ y1 ≤ −
√

1− |y′|2 ∨ y1 ≥
√

1− |y′|2.

In the first case we obtain by oddness∫
{y1:(y1,y′)∈BC1 }

y1 − t
|y − t~e1|N+2s+2 dy =

∫
{y1∈R}

y1 − t
((y1 − t)2 + |y′|2)(N+2s+2)/2 dy = 0.

(5.1.32)
In the second case, using the changes of variables y1 − t = s and z = t− y1, we get∫
{y1:(y1,y′)∈BC1 }

y1 − t
|y − t~e1|N+2s+2 dy

=
∫
{y1≤−

√
1−|y′|2}

y1 − t
|y − t~e1|N+2s+2 dy +

∫
{y1≥
√

1−|y′|2}

y1 − t
|y − t~e1|N+2s+2 dy

=
∫
{z≥t+

√
1−|y′|2}

z

(z2 + |y′|2)(N+2s+2)/2 dz

+
∫
{s≥
√

1−|y′|2−t}

s

(s2 + |y′|2)(N+2s+2)/2 dy > 0,

(5.1.33)

since {z : z ≥ t+
√

1− |y′|2} ⊆ {z : z ≥
√

1− |y′|2 − t} and since the first integral is
negative.
Putting together (5.1.30), (5.1.31), (5.1.32) and (5.1.33) we obtain (5.1.29) which

concludes the proof.
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0 δ

1/δ
r

δΩ

Figure 5.1: A dumb-bell domain δΩ.

Lemma 5.12. Let Φξ be defined as in Proposition 5.6. There exist a dumble-bell
domain (as in Figure 5.1), with the same topology of the ball, such that Φξ has at least
three critical points.

Sketch of the Proof. Given δ > 0 small enough, we consider a sequence of domains δΩ
as in Figure 5.1. Fixed r ∈ (0, 1), it is easy to see that

VδΩ → VB1 in C2(Br(0)) as δ → 0. (5.1.34)

For δ small, by Lemma 5.11, we get that VδΩ has a unique non-degenerate minimum
x1 in Br/2(0) and there exists γ > 0 such that

inf
∂Br(0)

VδΩ > sup
Br/2(0)

VδΩ + γ.

By symmetry, we have a non-degenerate minimum point x2 in the other ball with the
same properties. Recall also that from Lemma 5.9 that if x ∈ ∂(δΩ), it holds

lim
δΩ3y→x

VδΩ(y) = +∞.

Hence, from (5.1.26) (with a similar formula for the gradient in ξ) and the above
observations, there exists a critical point of Φ other that x1 and x2, by Mountain Pass
Theorem.

5.2 s-minimizers in an half-space
In this second part of the chapter we consider the fractional perimeter of a measurable
set E ⊂ RN in an half-space, proving the existence of a minimizer under fixed volume
constraint. Then we characterize its intersection with the hyperplane {xN = 0} and
we show some of its properties as smoothness and symmetry.

Let us consider a bounded open set with smooth boundary Ω ⊆ RN , and s ∈ (0, 1/2).
We point out that, if

P̄s(E,Ω) :=
∫
E

∫
Ω\E

dxdy
|x− y|N+2s , (5.2.1)
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5.2 s-minimizers in an half-space

using the direct method of Calculus of Variations and the Sobolev embeddings (which
hold for fractional spaces too, see [35]), it is easy to show that there exist minimizers
for

{P̄s(E,Ω), |E| = m} m ∈ (0,+∞), (5.2.2)

see [22, Theorem 3.2].
Our goal is to show that minimizers exist also relatively to an half-space, and to

characterize them to some extent. Thus, analogously to (5.2.1), we define the fractional
perimeter in an half-space:

Definition 5.13. Let s ∈ (0, 1/2) and E ⊂ RN be a measurable set. We denote with

P̄s(E,RN+ ) :=
∫
E

∫
RN+ \E

dxdy
|x− y|N+2s , (5.2.3)

where RN+ = {x ∈ RN : xN > 0} is the half-space.

The main result of this section is the following:

Theorem 5.14. There exists a minimizer E for the problem

inf
{
P̄s(A,RN+ ), |A| = m

}
, m ∈ (0,+∞), (5.2.4)

where RN+ := {x ∈ RN : xN > 0}. Moreover ∂E is a radially-decreasing symmetric
graph of class C∞ in the interior, intersecting orthogonally the hyperplane {xN = 0}.

To prove this theorem first we will show the existence of a suitable rearranged
minimizing sequence which is axially symmetric and graphical over the boundary
hyperplane. After that, we will employ some results from [8], [22], [61] to prove a
diameter bound and the smoothness of the minimizing limit.

5.2.1 Proof of Theorem 5.14
We begin by studying minimizers of

{P̄s(E,RN+ ) : E ⊆ B+
R , |E| = m} m ∈ (0,+∞), (5.2.5)

where B+
R := BR ∩RN+ denotes the open half-ball of radius R > 0 centred at the origin

with |B+
R | ≥ m. Without loss of generality we can assume that m = 1 and, with the

same reasoning used to show the existence of minimizers for (5.2.2), we can also prove
the following result.

Proposition 5.15. Problem (5.2.5) admits a minimizer E ⊆ B+
R .

Note that, since we look for minimizers in a half-ball, we can assume that minimizers
of (5.2.5) are close sets.
We have next the following lemma.

Lemma 5.16. If E is a minimizer for (5.2.5), then dist (E, {zN = 0}) = 0.
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RN−1

xN

E

(a) Level set of u.

RN−1

xN

E∗

(b) Level set of u∗.

Figure 5.2: The radially symmetric rearrangement of u.

Proof. By contradiction suppose that the minimizer E ⊆ B+
R does not intersect the

plane {zN = 0}. Then, if e := (e1, · · · , eN ) is the canonical basis of RN and λ :=
dist(E, {zN = 0}) > 0, we consider the shifted set E − λeN . Using the following
change of variables (i.e. translating downwards the set E by λ~eN )

E 3 x 7−→ x′ = x− λeN ∈ E − λeN ,
RN+ \ E 3 y 7−→ y′ = y − λeN ∈ RN+ \ (E − λeN ),

we have

P̄s(E,RN+ ) =
∫
E

∫
RN+ \E

dxdy
|x− λeN − y + λeN |N+2s

>

∫
E−λeN

∫
RN+ \(E−λeN )

dxdy
|x− y|N+2s = P̄s(E − λeN ,RN+ ).

(5.2.6)

This is in contradiction to the minimality of E.

Now we address to show the symmetry of minimizers of (5.2.5). To do this, we have
to premise a couple of useful definitions.

Definition 5.17. Given a function u : RN → R+, we define u∗ : RN → R+ the radially
symmetric rearrangement of u with respect to xN so that, given xN > 0, t > 0, the
superlevel set {u∗(·, xN ) > t} is a ball B in RN−1 centered at the origin and such that

|{u∗(·, xN ) > t}| = |{u(·, xN ) > t}|,

as in Figure 5.2.
If u = χE , we call E∗ the ball such that χE∗ = (χE)∗.

Definition 5.18. Given a function u : RN → R+, we define û : RN → R+ to be
the decreasing rearrangement of u with respect to xN : given x′ > 0, t > 0, {xN :
û(x′, xN ) > t} ⊆ R+ is a segment of the form [0, α) with α := |{xN : û(x′, xN ) > t}|,
as in Figure 5.3.

If u = χE , we call Ê the set such that χÊ = ˆ(χE). Notice that ∂Ê is a graph in the
direction ~eN .
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RN−1

xN

(a) Level set of u.

RN−1

xN

(b) Level set of û.

Figure 5.3: The decreasing rearrangement of u.

With these definitions at hand, we can show that minimizers of (5.2.5) are radially
symmetric sets:

Lemma 5.19. If E is a minimizer of (5.2.5), we have that

P̄s(E∗,RN+ ) ≤ P̄s(E,RN+ )

and the equality holds if and only if E = E∗.

Proof. Proceeding as in [68], we define

Hs(RN+ ) := {u ∈ L2(RN+ ) : [u]Hs(RN+ ) < +∞},

where

[u]2Hs(RN+ ) := inf
{∫

RN+×R+
(|∇xv|2 + |∂yv|2)y1−2s dxdy

: v ∈ H1
loc(RN+ × R+), v(·, 0) = u(·)

}
.

(5.2.7)

The space Hs(RN+ ) is endowed with the Hilbert norm

‖u‖2Hs(RN+ ) = ‖u‖2L2(RN+ ) + [u]2Hs(RN+ ).

According to (5.2.7) we get that

P̄s(E,RN+ ) = 1
2 inf

{∫
RN+×R+

(|∇xv|2 + |∂yv|2)y1−2s dxdy

: v ∈ H1
loc(RN+ × R+), v(·, 0) = χE(·)

} (5.2.8)

and we define

H1(RN+ × R+, y1−2s dy) :=
{
v ∈ H1

loc(RN+ × R+)

:
∫
RN+×R+

(|v|2 + |∇xv|2 + |∂yv|2)y1−2s dxdy <∞
}
.

(5.2.9)
For all v ∈ H1(RN+ × R+, y1−2s dy), we set v∗(·, y) = [v(·, y)]∗. Then
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a) since the symmetrization preserves characteristic functions, we have that

(χE(·))∗ = χE∗(·); (5.2.10)

b) from [15, Theorem 1] we get that∫
RN+×R+

(|∇xv∗|2 + |∂yv|∗)2)y1−2s dxdy ≤
∫
RN+×R+

(|∇xv|2 + |∂yv|2)y1−2s dxdy .

(5.2.11)

Hence combining (5.2.8), (5.2.10) and (5.2.11) we deduce the desired conclusion.

In a similar way we obtain also this

Lemma 5.20. Let E be a minimizer of (5.2.5). Then

P̄s(Ê,RN+ ) ≤ P̄s(E,RN+ )

and the equality holds if and only if E = Ê.

Proof. Proceeding as in Lemma 5.19 and denoting with v̂(·, y) = ˆ[v(·, y)], we have that

( ˆχE(·)) = χÊ(·), (5.2.12)

and from [15, Theorem 1] we get∫
RN+×R+

(|∇xv̂|2 + (v̂y)2)y1−2s dxdy ≤
∫
RN+×R+

(|∇xv|2 + v2
y)y1−2s dxdy . (5.2.13)

Recalling (5.2.8) and using (5.2.12) and (5.2.13) we conclude the proof.

Remark 5.21. Note that from these two symmetrizations we obtain a connected minim-
izer for (5.2.5).

Now we prove an estimate on the diameter of minimizers of (5.2.5) which will allows
us to deduce, as a corollary, that these minimizing sets are also minimizers for (5.2.4):

Theorem 5.22. If E is a minimizer of (5.2.5), then

|diam E| ≤ 2
√

2C0

rN−1
0

, (5.2.14)

where diam E denotes the diameter of the set E and both C0 > 0 and r0 > 0 come
from [61, Theorem 1.7].

Proof. Thanks to Lemma 5.19 and Lemma 5.20 we can suppose that there exists H > 0
such that

[0, HeN ] ⊆ E (5.2.15)
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and that, for all t > 0,
Et := E ∩ {xN = t} = BR(t). (5.2.16)

We consider the interval [0, HeN ] and we divide it in M subintervals of length at most
2r0, where r0 > 0 comes from [61, Theorem 1.7] and, denoting with

[
·
]
the integer

part of a real number, M =
[
H
2r0

]
+ 1. For every subinterval we take its center xi

where i = 1, · · · ,M . From [61, Theorem 1.7], for every xi, there exist C0 > 0 and a
ball Br0(xi) with center at xi and radius r0 such that

|E ∩Br0(xi)| ≥ rN0
C0

> 0 for all i = 1, · · · ,M.

Thus
1 = |E| ≥ H

2r0
· r

N
0
C0

.

and hence
H ≤ 2C0

rN−1
0

. (5.2.17)

We proceed similarly to estimate R(t) for all t > 0, obtaining that

|R(t)| ≤ 2C0

rN−1
0

for all t > 0. (5.2.18)

Combinig (5.2.17) and (5.2.18), we deduce the thesis.

Corollary 5.23. Let E be a minimizer of (5.2.5). If R > 2
√

2C0
rN−1
0

(where C0, r0 > 0
comes from [61, Theorem 1.7]) it is a free minimizer, i.e.

E ⊂ BR.

Finally we prove the regularity of sets minimizing (5.2.5):
Proposition 5.24. Let E be a minimizer of (5.2.5). Then ∂E is C∞.
Proof. From Lemma 5.20 we know that ∂E is graph in the direction xN . Then [8,
Corollary 3] implies that ∂E is C∞ outside a closed singular set of Hausdorff dimension
N − 8. Moreover, since by Lemma 5.19 E is also radially decreasing and symmetric,
the singular set has to be its highest point (in the xN direction of E). Now we consider
a blow up of E centered at the singular point and we obtain a singular and symmetrical
cone C. By densities estimates (see [61, Theorem 1.7]) which hold for E, we get that
C 6= ∅. Hence C is a lipschitz cone, so [45, Theorem 1] tells us that C is a halfspace.
As a consequence ∂E is C∞.

Proof of Theorem 5.14. From Proposition 5.15 and Corollary 5.23 we have the existence
of a minimizer for (5.2.4). Moreover, thanks to Lemma 5.19, Lemma 5.20, Proposition
5.24 and Lemma 5.16, we deduce the minimizer’s properties.

Remark 5.25. It would be interesting to know whether minimizers, or even critical
points, of (5.2.4) are unique up to horizontal translations (see for instance [55, 56, 54]
for similar uniqueness results).
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