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Abstract
We study finite-energy blow-ups for prescribed Morse scalar curvatures in both the subcritical and
the critical regime. After general considerations on Palais-Smale sequences we determine precise
blow up rates for subcritical solutions: in particular the possibility of tower bubbles is excluded in all
dimensions. In subsequent papers we aim to establish the sharpness of this result, proving a converse
existence statement, together with a one to one correspondence of blowing-up subcritical solutions
and critical points at infinity. This analysis will be then applied to deduce new existence results for
the geometric problem.
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1 Introduction
The problem of prescribing the scalar curvature of a manifold conformally has a long history, starting
from [33], see also [31], [32]. In case of the round sphere, this is known as Nirenberg’s problem.

Given a closed manifold (M, g0) of dimension n ≥ 3 and a conformal metric g = u
4

n−2 g0 for a positive
function u > 0 on M , the conformal change of the scalar curvature is given by

Rguu
n+2
n−2 = Lg0u,

where by definition

Lg0
u = −cn∆g0

u+Rg0
u, cn =

4(n− 1)

n− 2
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is the conformal Laplacian, while ∆g0 is the Laplace-Beltrami operator with respect to g0. Thus, in order
to prescribe a function K on M as the scalar curvature with respect to g, one needs to solve

Lg0
u = Ku

n+2
n−2 , u > 0 (1.1)

pointwise on M , see [3]. The exponent on the right-hand side is critical with respect to Sobolev’s
embedding, which makes the problem particularly challenging. In contrast to the Yamabe problem, which
amounts to finding a constant scalar curvature metric, for K varying on M there are obstructions to the
existence for (1.1). For example Kazdan and Warner proved in [33] that on the round sphere (Sn, gSn)
every solution u of (1.1) must satisfy∫

Sn
〈∇K,∇f〉gSnu

2n
n−2 dµgSn = 0

for any restriction f to Sn of an affine function on Rn+1. In particular, since u is positive, a necessary
condition for the existence of solutions is that the function 〈∇K,∇f〉gSn changes sign.

One of the first answers to Nirenberg’s problem was given by J. Moser in [41] for two dimensions,
where the counterpart of (1.1) has an exponential form. He proved that for K being an even function
on S2 a solution always exists. A related result was given by J. Escobar and R. Schoen in [23], showing
existence of solutions when K is invariant under some group G acting without fixed points, under suitable
flatness assumptions of order n − 2. In the same paper some results were also found for non-spherical
manifolds using positivity of the mass. Other sufficient conditions for the existence in case of G-invariant
functions were given by E. Hebey and M. Vaugon in [25], [26], allowing the possibility of fixed points.

Other existence results were obtained by A. Chang and P. Yang, see [18], [19], for the case n = 2
without requiring any symmetry of K. One condition, for which they obtained existence, is the following.
First they assumed, that K is a positive Morse function satisfying

{∇K = 0} ∩ {∆K = 0} = ∅, (1.2)

where here and in the following ∇ = ∇g0
and ∆ = ∆g0

, cf. (2.5) and below. Secondly, they supposed
that K possesses p local maxima and q saddle points with negative Laplacian and p 6= q + 1. The latter
condition was used to prove the result via a Leray-Schauder degree-theoretical argument. In the same
papers other results were given, requiring conditions only at some prescribed levels of K. Typically K
must possess two maxima x0 and x1, K(x1) ≤ K(x0), which are connected by some path x(t) for which

x saddle point for K ∧ inf
t
K(x(t))≤ K(x)<K(x0) ⇒ ∆K(x) > 0.

Statements of this last kind have been obtained in [21] for n = 2 and in [9] for n ≥ 3. Another existence
result was given by A. Bahri and J.M. Coron in [6] for n = 3 and a Morse function K satisfying (1.2) and∑

x∈{∇K=0}∩{∆K<0}

(−1)m(x,K) 6= −1. (1.3)

Here m(x,K) denotes the Morse index of K at x, cf. also [12]. The result of Bahri and Coron, which
relies on a topological argument, has been extended in several directions.

An extension of condition (1.3), based on Morse’s inequalities, was given by Schoen and Zhang in [45]
for the case n = 3. For a Morse function K satisfying (1.2) and setting

cq = ]{x ∈M : ∇K(x) = 0, ∆K(x) < 0 and m(K,x) = 3− q}

they required that either c0 − c1 + c2 6= 1 or c0 − c1 > 1. Note that the first condition is equivalent to
(1.3) and the second one for n = 2 corresponds to the condition p+ 1 > q in [18].

Other results of perturbative type and relying on finite-dimensional reductions were given by A. Chang
and P. Yang in [20] and by A. Ambrosetti, J. Garcia-Azorero and I. Peral in [1], see also [35]. The authors
considered the case in which K is close to a constant and satisfies an analogue of (1.3), i.e.∑

x∈{∇K=0}∩{∆K<0}

(−1)m(x,K) 6= (−1)n.
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In [28] Y.Y. Li proved existence of solutions for every dimension, if the function K near each critical
point has a Morse-type structure, but with a flatness of order β ∈ (n − 2, n). His proof relied on a
homotopy argument: considering Kt = tK + (1 − t), t ∈ [0, 1] the author used the degree-counting
formula of [20] for t small, and then a refined blow-up analysis of equation (1.1), when t tends to 1.
A different degree formula under more general flatness conditions was introduced in [16]. Other results
obtained by different approaches can also be found in [8], [10], [22].

A useful tool for the above results is a subcritical approximation of (1.1), namely

− cn∆g0
u+Rg0

u = K u
n+2
n−2−τ , 0 < τ � 1. (1.4)

The advantage of (1.4), compared to (1.1), is that the lower exponent makes the problem compact, so
it is easier to construct solutions. However, the interesting point is passing to the limit of solutions for
τ −→ 0 and in general one expects some of them to diverge with zero weak limit. The approach in [12],
[45], [28] was to understand in detail the behaviour of blowing-up solutions and then to use degree- or
Morse-theoretical arguments to show that some solutions stay bounded.

Consider now a Morse function K on the sphere satisfying (1.2). In dimension n = 3 or under a
flatness condition in higher dimensions, it turns out that blowing-up solutions to (1.4) develop a single
bubble at critical points of K with negative Laplacian. Bubbles correspond to solutions of (1.1) on Sn
with K ≡ 1 and were classified in [11], see also [2], [47], and after proper dilation represent the profiles
of diverging solutions, cf. Section 2 for precise formulas.

The single-bubble phenomenon can be qualitatively explained exploiting the variational features of
the problem, which admits the Euler-Lagrange energy J = JK given by

J(u) =

∫
M

(
cn|∇u|2g0

+Rg0u
2
)
dµg0

(
∫
Ku

2n
n−2 dµg0

)
n−2
n

,

see also (2.1) regarding (1.4). Denote by δa,λ a bubble centered at a ∈ Sn with dilation parameter λ.
Then for distinct and fixed points a1, a2 and λ large one has the expansions∫

Sn
K(δa1,λ+δa2,λ)

2n
n−2 dµgSn ' K(a1)+K(a2)+

c1
λn−2

,

∫
Sn
Kδ

2n
n−2

ai,λ
dµgSn ' c2K(ai)−

c3
λ2

∆K(ai) (1.5)

with constants ci > 0, where c1 depends on a1 and a2. We refer to Section 5 for more accurate results.
Terms similar to the above ones appear in the expression of Jτ . By the latter formulas and for λ −→∞
and n = 3 the interaction of the bubbles with K is dominated by the mutual interactions among bubbles.
This causes multiple bubbles to suppress each other allowing only one blow-up point at a time, which
has to be close to at critical points of K with negative Laplacian due to a Pohozaev identity.

This analysis was carried over in [29] also on S4. In this case the above interactions are of the same
order and multiple blow-ups occur. It was also shown there that multiple bubbles cannot accumulate
at a single point. Using a terminology from [43], [44] such blow-ups are called isolated simple. In four
dimensions a different constraint on multiple blow-up points replaces ∆K < 0, depending on the least
eigenvalue of a matrix constructed out of K and the location of the blow-up points, cf. (0.8) in [29].
On general four-dimensional manifolds there is an extra term due to the mass of the manifold leading to
similar phenomena, but with modified formulas, see [7].

The goal of this paper is to investigate the blow-up behaviour in an opposite regime, when the
dimension n ≥ 5 and the function K is Morse. In this case the second term in (1.5) dominates the first
one, so it is drastically different from situation of low-dimensions or with flat curvatures. However we can
still show that blow-ups are isolated simple, which is important in understanding the Morse-theoretical
structure of the energy functional. Here is our main result.

Theorem 1. Let (Mn, g0), n ≥ 5 be a closed manifold of positive Yamabe invariant and K : M −→ R a
smooth positive Morse function satisfying (1.2). Then positive sequences of solutions to (1.4) for τm ↘ 0
with uniformly bounded W 1,2-energy and zero weak limit have only isolated simple blow-ups at critical
points of K with negative Laplacian.
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The above theorem follows from Proposition 3.1, where a general characterization of blowing-up Palais-
Smale sequences for (1.4) as τ −→ 0 is given, and from Theorem 2, where a lower bound on the norm of
the gradient of the Euler-Lagrange functional Jτ for (1.4) is proved, see (2.1).

Remark 1.1. Solutions of (1.4) can be found as suitably normalized critical points of the scaling-invariant
energy Jτ in (2.1). For a sequence of critical points (um) of Jτm , with τm as in Theorem 1, there exist up
to subsequences q ∈ N and distinct points x1, . . . , xq ∈M with ∇K(xj) = 0 and ∆K(xj) < 0 such that∥∥∥∥um − q∑

j=1

αj,mδλj,m,aj,m

∥∥∥∥
W 1,2(M,g0)

−→ 0 as m −→∞

for some

αj,m =
Θ

K(xj)
n−2

4

+ o(1), aj,m −→ xj and λj,m ' λτm = τ
− 1

2
m ,

where the multiplicative constant Θ reflects the scaling invariance of Jτm , see (2.1), and can be fixed for
instance by prescribing the conformal volume, cf. Remark 6.2. In Theorem 2 we will show much more
precise estimates, that will be crucial for [36]. For example, if n ≥ 6, we find

λj,m = c1

√
∆K(xj)

K(xj)τ
, aj,m = c2(∇2K(xj))

−1∇∆K(xj)

λ3
j,m

, αj = Θ · p−1

√
λθj

K(aj,m)

up to errors of order o(λ−3
τm), where c1, c2 are dimensional constants and we identify by a slight abuse

of notation aj,m with its image in conformal normal coordinates at xj, cf. [27]. Hence all the finite
dimensional variables, i.e. αj,m, aj,m and λj,m are determined to a precision of order o(λ−3

τm).

Remark 1.2. We next compare Theorem 1 to some existing literature and add further comments.

(a) On S3 and S4 the isolated-simpleness of solutions was proved in [12], [28], [29], [45] for arbitrary
sequences of solutions by a refined blow-up analysis. The uniform W 1,2-bound is then derived a-
posteriori. In dimension n ≥ 5 the latter bound may not hold true in general - we refer the reader
to [13], [14], [15], where in some cases it is shown that blowing-up solutions for the purely critical
equation (1.1) must have diverging energy and blow-ups of diverging energies and towering bubbles
are also constructed, cf. also [34], [42], [48]. However, in the forthcoming paper [37] we will
construct solutions to (1.4) via min-max or Morse theory with the purpose of finding a non-zero
weak limit. These will indeed satisfy the required energy bound. This will allow us to obtain existence
results under less stringent conditions compared to some others in the literature, as in [9] and [17].

(b) On manifolds not conformally equivalent to Sn a-priori estimates were proved in [30] for n = 3 in
both critical and subcritical cases. Our analysis carries over for n = 4 as well, where the matrix in
Definition 6.1, introduced in [7], [29] and also involving the mass, gives constraints on the location of
multiple blow-up points. The main new aspect of our result is the isolated simple blow-up behaviour
in dimension n ≥ 5, so we chose to state Theorem 1 in a simple form only for this case. We refer
to Theorem 2 for a more precise version of the result: here we derive indeed estimates on solutions
with high precision as τ −→ 0, as well as estimates that are uniform in this parameter.

(c) In [36] we will show a converse statement. Given any distinct points p1, . . . , pk in {∇K = 0} ∩
{∆K < 0} and τi ↘ 0 there exist solutions (ui)i to (1.4) blowing-up at p1, . . . , pk exactly as
described above. Thence the characterization of Theorem 1 is optimal. We refer to [28], [29] for the
counterparts on three- and four-spheres. Proposition A2 in [5] regards the construction of a pseudo
gradient flow for problem (1.1) ruling out multiple bubble formation at the same point for any n,
although we believe the proof there is not complete. We refer to [39] for details and for the proof
of a one-to-one correspondence of blowing-up sequences and critical points at infinity, cf. [4]. See
also [40] for some delicate relations between L2- and pseudo gradient flows.

(d) We expect the same conclusion of Theorem 1 should hold true replacing the energy bound with a
Morse index bound. It would also be interesting to understand the case of non-zero weak limits.
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We discuss next some heuristics about the proof of Theorem 1. First we show a quantization result
for Palais-Smale sequences of solutions to (1.4) as τ −→ 0. We are inspired in this step from a result by
M. Struwe in [46], where the same was proved for τ = 0: in our case we need extra work in the limiting
process, due to a different dilation covariance of subcritical equations.

We then prove that we are in a perturbative regime and every solution to (1.4) for τ sufficiently small
can be written as a finite sum of highly peaked bubbles and an error term small in W 1,2-norm, which
we prove to have a minor effect in the expansions. Performing a careful analysis of the interactions of
the bubbles among themselves and with K, it is not difficult to see that for n ≥ 5 blow-ups should occur
at critical points of K with negative Laplacian only, cf. also Theorem 1.1 in [14], and we are left with
excluding multiple bubbles towering at the same limit point, which is the crucial result in our paper.

We give an idea of this fact in some particular cases, that are easy to describe. Let Jτ be the Euler-
Lagrange energy of (1.4), see (2.1). For a critical point a of K, the following expansion holds for Jτ on
a bubble concentrated at a

Jτ (δa,λ) ' 1

K
n−2
n (a)

(λτ − ∆K(a)

K(a)λ2
), (1.6)

cf. Proposition 5.1. By elementary considerations one checks that for ∆K(a) < 0 the function in the
right-hand side has a non-degenerate minimum point at λ = λτ ' τ−

1
2 , see also Proposition 2.1 in [45].

Since bubbles have an attractive interaction , cf. the first equation in (1.5), even in terms of dilations
centering more bubbles at the point a would make all dilation parameters collapse at λ = λτ , see Figure
1. For the same reason, still by (1.6), one would get collapse with respect to the center points of multiple
bubbles distributed along the unstable directions from a critical point of K, since points with lager values
of K have smaller energy, due to (1.6), see Figure 2. We consider then the case of bubbles centered at two

λ

Jτ (δa,λ)

δa,λ1 δa,λ2

Figure 1: two bubbles with
same center, different λ’s

a

Jτ (δa,λ)

δa1,λ δa2,λ

Figure 2: two bubbles along
unstable direction of K, same
λ

a

Jτ (δa,λ)
δa1,λ δa2,λ

Figure 3: two bubbles along
stable direction of K, same λ

points a1, a2 symmetrically located at distance d from a critical point p̄ such that ∆K(p̄) < 0, and along
a stable direction of K, with the same λ’s. Here in principle the attractive force among bubbles could
compensate the repulsive interaction from the critical point p̄ of K, see Figure 3. For this configuration
one gets an energy expansion of the form

Jτ (δa1,λ + δa2,λ) ' c0

K
n−2
n (a1)

(λτ − ∆K(a1)

K(a1)λ2
)− c1

1

dn−2λn−2
' (c2 − c3d2)

(
λτ + c4λ

−2
)
− c1

1

dn−2λn−2

with ci > 0. From the analysis in Proposition 3.1 it turns out that λτ ' 1, so imposing criticality in
both λ and d one finds the relations

1

λ2
' τ +

1

(λd)n−2
and d ' 1

λn−2dn−1
.

These asymptotics imply that λ−2 ' τ + λ−
2(n−2)
n , which is impossible for λ large. The general case is

rather involved to study and will be treated by a top-down cascade of estimates in Section 6.

The plan of the paper is the following. In Section 2 we introduce the variational setting of the problem
and list some preliminary results. We then study some approximate solutions of (1.1), highly concentrated
at arbitrary points of M . From these one can carry out a reduction procedure of the problem, which is
done later in the paper. In Section 3 we prove a general quantization result for Palais-Smale sequences of
(1.4) with uniformly bounded W 1,2-energy. In Section 4 we reduce the problem to a finite-dimensional
one, while in Section 5 we derive some precise asymptotic expansions of the Euler-Lagrange energy.
Section 6 is then devoted to proving suitable bounds on the gradient to exclude tower bubbles and prove
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our main result. We finally collect in the appendix the proofs of some useful technical estimates as well
as a list of relevant constants appearing.

Acknowledgments. A.M. has been supported by the project Geometric Variational Problems and
Finanziamento a supporto della ricerca di base from Scuola Normale Superiore and by MIUR Bando
PRIN 2015 2015KB9WPT001. He is also member of GNAMPA as part of INdAM.

2 Variational setting and preliminaries
In this section we collect some background and preliminary material, concerning the variational properties
of the problem and some estimates on highly-concentrated approximate solutions of bubble type.

We consider a smooth, closed Riemannian manifold M = (Mn, g0) with volume measure µg0 and
scalar curvature Rg0

. Letting A = {u ∈W 1,2(M, g0) | u ≥ 0, u 6≡ 0} the Yamabe invariant is defined as

Y (M, g0) = inf
A

∫ (
cn|∇u|2g0

+Rg0u
2
)
dµg0

(
∫
u

2n
n−2 dµg0)

n−2
n

, cn = 4
n− 1

n− 2
.

We will assume from now on that the invariant is positive. As a consequence the conformal Laplacian

Lg0
= −cn∆g0

+Rg0

is a positive and self-adjoint operator. Without loss of generality we assume Rg0
> 0 and denote by

Gg0
: M ×M \∆ −→ R+

the Green’s function of Lg0
. Considering a conformal metric g = gu = u

4
n−2 g0 there holds

dµgu = u
2n
n−2 dµg0 and R = Rgu = u−

n+2
n−2 (−cn∆g0u+Rg0u) = u−

n+2
n−2Lg0u.

Note that

c‖u‖2W 1,2(M,g0) ≤
∫
uLg0u dµg0 =

∫ (
cn|∇u|2g0

+Rg0u
2
)
dµg0 ≤ C‖u‖2W 1,2(M,g0).

In particular we may define and use ‖u‖2 = ‖u‖2Lg0 =
∫
uLg0u dµg0 as an equivalent norm on W 1,2. For

p =
n+ 2

n− 2
− τ and 0 ≤ τ −→ 0

we want to study the scaling-invariant functionals

Jτ (u) =

∫
M

(
cn|∇u|2g0

+Rg0
u2
)
dµg0

(
∫
Kup+1dµg0

)
2
p+1

, u ∈ A. (2.1)

Since the conformal scalar curvature R = Ru for g = gu = u
4

n−2 g0 satisfies

r = ru =

∫
Rdµgu =

∫
uLg0

udµg0
, (2.2)

we have
Jτ (u) =

r

k
2
p+1
τ

with kτ =

∫
K up+1dµg0

. (2.3)

The first- and second-order derivatives of the functional are given by

∂Jτ (u)v =
2

k
2
p+1
τ

[ ∫
Lg0

uvdµg0
− r

kτ

∫
Kupvdµg0

]
;
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∂2Jτ (u)vw =
2

k
2
p+1
τ

[ ∫
Lg0vwdµg0 − p

r

kτ

∫
Kup−1vwdµg0

]
− 4

k
2
p+1 +1
τ

[ ∫
Lg0

uvdµg0

∫
Kupwdµg0

+

∫
Lg0

uwdµg0

∫
Kupvdµg0

]
+

2(p+ 3)r

k
2
p+1 +2
τ

∫
Kupvdµg0

∫
Kupwdµg0

.

In particular Jτ is of class C2,α
loc (A) and uniformly Hölder continuous on each set of the form

Uε = {u ∈ A | ε < ‖u‖, Jτ (u) ≤ ε−1}.

Indeed u ∈ Uε implies

ε2 ≤ r ≤ ε−2 and c ε3 ≤ k
1
p+1
τ = Jτ (u)−1ru ≤ Cε−3.

Thus uniform Hölder continuity on Uε follows from the standard pointwise estimates{
||a|p − |b|p| ≤ Cp|a− b|p in case 0 < p < 1

||a|p − |b|p| ≤ Cp max{|a|p−1, |b|p−1}|a− b| in case p ≥ 1
(2.4)

We consider next some approximate solutions to (1.1), highly concentrated at arbitrary points of M .
As we will see, for suitable values of λ these are also approximate solutions of (1.4). Let us recall the
construction of conformal normal coordinates from [27]. Given a ∈ M , one chooses a special conformal
metric

ga = u
4

n−2
a g0 with ua = 1 +O(d2

g0
(a, ·)), (2.5)

whose volume element in ga-geodesic normal coordinates coincides with the Euclidean one, see also [24].
In particular

(expg0
a )− ◦ expgaa (x) = x+O(|x|3)

for the exponential maps centered at a, which e.g. implies

∇g0
K(a) = ∇gaK(a), ∇2

g0
K(a) = ∇2

gaK(a),

and in case ∇K(a) = 0 also

∇3
g0
K(a) = ∇3

gaK(a).

Moreover by smoothness of the exponential map expga = expgaa with respect to a there holds

∇a expga(x) = id+O(|x|2) (2.6)

in a ga-normal chart, as seen from the corresponding geodesic equation. We then denote by ra the
geodesic distance from a with respect to the metric ga just introduced. With this choice the expression
of the Green’s function Gga with pole at a ∈M , denoted by Ga = Gga(a, ·), for the conformal Laplacian
Lga simplifies considerably. From Section 6 in [27] one may expand

Ga =
1

4n(n− 1)ωn
(r2−n
a +Ha), ra = dga(a, ·), Ha = Hr,a +Hs,a for ga = u

4
n−2
a g0, (2.7)

where ωn = |Sn−1|. Here Hr,a ∈ C2,α
loc , while the singular error term satisfies

Hs,a = O


0 for n = 3

r2
a ln ra for n = 4
ra for n = 5

ln ra for n = 6
r6−n
a for n ≥ 7

 .
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Precisely the leading term in Hs,a for n = 6 is − |W(a)|2
288cn

ln r, where W denotes the Weyl tensor. Let

ϕa,λ =ua

(
λ

1 + λ2γnG
2

2−n
a

)n−2
2

, Ga = Gga(a, ·), γn = (4n(n− 1)ωn)
2

2−n for λ > 0. (2.8)

We notice that the constant γn is chosen so that

γnG
2

2−n
a (x) = d2

ga(a, x) + o(d2
ga(a, x)) as x −→ a.

Evaluating the conformal Laplacian on such functions shows that they are approximate solutions.

Lemma 2.1. There holds Lg0ϕa,λ = O(ϕ
n+2
n−2

a,λ ). More precisely on a geodesic ball Bα(a) for α > 0 small

Lg0
ϕa,λ = 4n(n− 1)ϕ

n+2
n−2

a,λ − 2ncnr
n−2
a ((n− 1)Ha + ra∂raHa)ϕ

n+2
n−2

a,λ +
u

2
n−2
a Rga
λ

ϕ
n
n−2

a,λ + o(rn−2
a )ϕ

n+2
n−2

a,λ ,

where ra = dga(a, ·). Since Rga = O(r2
a) in conformal normal coordinates, cf. [27], we obtain

(i) Lg0
ϕa,λ = 4n(n− 1)[1− cn

2 r
n−2
a (Ha(a) + n∇Ha(a)x)]ϕ

n+2
n−2

a,λ +O

λ
− 3

2ϕ
n−1
n−2

a,λ for n = 3

ln r
λ2 ϕ

n−1
n−2

a,λ for n = 4

λ−2ϕa,λ for n = 5

 ;

(ii) Lg0
ϕa,λ = 4n(n− 1)ϕ

n+2
n−2

a,λ = 4n(n− 1)[1 + cn
2 W (a) ln r]ϕ

n+2
n−2

a,λ +O(λ−2ϕa,λ) for n = 6;

(iii) Lg0
ϕa,λ = 4n(n− 1)ϕ

n+2
n−2

a,λ +O(λ−2ϕa,λ) for n ≥ 7.

The expansions stated above persist upon taking λ∂λ and ∇aλ derivatives.

Proof. A straightforward calculation shows that

∆ga

( λ

1 + λ2γnG
2

2−n
a

)n−2
2 =

n

2− n
γn
(ϕa,λ
ua

) n+2
n−2 |∇Ga|2gaG

2n−1
2−n
a + γnλ

(ϕa,λ
ua

) n
n−2G

n
2−n
a ∆gaGa,

which is due to |∇Ga|2gaG
2n−1

2−n
a = (n − 2)2|∇G

1
2−n
a |2ga and cn∆gaGa = −δa + RgaGa with δa denoting

the Dirac measure at a. This is equivalent to

∆ga

( λ

1 + λ2γnG
2

2−n
a

)n−2
2 = n(2− n)γn(

ϕa,λ
ua

)
n+2
n−2 |∇G

1
2−n
a |2ga +

Rgaγn
cn

λ
(ϕa,λ
ua

) n
n−2G

2
2−n
a .

Since Lga = −cn∆ga +Rga with cn = 4n−1
n−2 , we obtain

Lga
ϕa,λ
ua

=4n(n− 1)
(ϕa,λ
ua

) n+2
n−2 γn|∇G

1
2−n
a |2ga +

Rga
λ

(ϕa,λ
ua

) n
n−2 .

By conformal covariance we also get

Lg0ϕa,λ = 4n(n− 1)ϕ
n+2
n−2

a,λ γn|∇G
1

2−n
a |2ga +

u
2

n−2
a Rga
λ

ϕ
n
n−2

a,λ ,

in particular Lg0ϕa,λ = O(ϕ
n+2
n−2

a,λ ). Expanding Ga as Ga = 1
4n(n−1)ωn

(r2−n
a +Ha), ra = dga(a, ·) we find

γn|∇G
1

2−n
a |2ga =|∇(ra(1 + rn−2

a Ha)
1

2−n )|2ga = 1− 2

n− 2
((n− 1)Ha + ra∂raHa)rn−2

a + o(rn−2
a ),

and conclude that

Lg0
ϕa,λ = 4n(n− 1)ϕ

n+2
n−2

a,λ − 2ncn((n− 1)Ha + ra∂raHa)rn−2
a ϕ

n+2
n−2

a,λ + o(rn−2
a ϕ

n+2
n−2

a,λ ) +
u

2
n−2
a Rga
λ

ϕ
n
n−2

a,λ .

Clearly these calculations transcend to the λ and a derivatives. Then the claim follows from the above
expansion of the Green’s function.
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After introducing some notation we state a useful lemma, which will be proved in the first appendix.

Notation. Given an exponent p ≥ 1 we will denote by Lpg0
the set of functions of class Lp with respect

to the measure dµg0
. Recall also that for u ∈ W 1,2(M, g0) we set ru =

∫
uLg0

udµg0
, while for a point

a ∈M we denote by ra the geodesic distance from a with respect to the metric ga introduced above. For
a set of points {ai}i of M we will denote by Ki,∇Ki and ∆Ki for instance

K(ai), ∇K(ai) = ∇g0
K(ai) and ∆K(ai) = ∆g0

K(ai).

For k, l = 1, 2, 3 and λi > 0, ai ∈M, i = 1, . . . , q let

(i) ϕi = ϕai,λi and (d1,i, d2,i, d3,i) = (1,−λi∂λi , 1
λi
∇ai);

(ii) φ1,i = ϕi, φ2,i = −λi∂λiϕi, φ3,i = 1
λi
∇aiϕi, so φk,i = dk,iϕi.

Note that with the above definitions the φk,i’s are uniformly bounded in W 1,2(M, g0).

Lemma 2.2. Let θ = n−2
2 τ and k, l = 1, 2, 3 and i, j = 1, . . . , q. Then for

εi,j = (
λj
λi

+
λi
λj

+ λiλjγnG
2

2−n
g0 (ai, aj))

2−n
2 (2.9)

there holds uniformly as 0 ≤ τ −→ 0

(i) |φk,i|, |λi∂λiφk,i|, | 1
λi
∇aiφk,i| ≤ Cϕi;

(ii) λθi
∫
ϕ

4
n−2−τ
i φk,iφk,idµg0

= ck · id+O(τ + 1

λn−2+θ
i

+ 1

λ2+θ
i

), ck > 0;

(iii) for i 6= j up to some error of order O(τ2 +
∑
i6=j(

1
λ4
i

+ 1

λ
2(n−2)
i

+ ε
n+2
n

i,j ))

λθi

∫
ϕ
n+2
n−2−τ
i φk,jdµg0

= bkdk,iεi,j =

∫
ϕ1−τ
i dk,jϕ

n+2
n−2

j dµg0
;

(iv) λθi
∫
ϕ

4
n−2−τ
i φk,iφl,idµg0 = O( 1

λn−2
i

+ 1
λ2
i
) for k 6= l and for k = 2, 3

λθi
∫
ϕ
n+2
n−2−τ
i φk,idµg0

= O

τ +

λ2−n
i for n ≤ 5

lnλi
λ4
i

for n = 6

λ4
i for n ≥ 7

 ;

(v) λθi
∫
ϕα−τi ϕβj dµg0

= O(εβi,j) for i 6= j, α+ β = 2n
n−2 , α− τ >

n
n−2 > β ≥ 1;

(vi)
∫
ϕ

n
n−2

i ϕ
n
n−2

j dµg0 = O(ε
n
n−2

i,j ln εi,j), i 6= j;

(vii) (1, λi∂λi ,
1
λi
∇ai)εi,j = O(εi,j), i 6= j.

with constants bk =
∫
Rn

dx

(1+r2)
n+2

2

for k = 1, 2, 3 and

c1 =

∫
Rn

dx

(1 + r2)n
, c2 =

(n− 2)2

4

∫
Rn

(r2 − 1)2dx

(1 + r2)n+2
, c3 =

(n− 2)2

n

∫
Rn

r2dx

(1 + r2)n+2
.
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3 Blow-up analysis
In this section we prove a result related to a well-known one in [46]. We obtain indeed similar conclusions,
but allowing the exponent in the equation to vary along a sequence of approximate solutions.

Proposition 3.1. Let (um)m ⊂W 1,2(M, g0) be a sequence with um ≥ 0 and kτm = 1 satisfying

Jτm(um) = rum −→ r∞ and ∂Jτm(um) −→ 0 in W−1,2(M, g0).

Then up to a subsequence there exist u∞ : M −→ [0,∞) smooth, q ∈ N0 and for i = 1, . . . , q sequences

M ⊃ (ai,m) −→ ai∞ and R+ ⊃ λi,m −→∞ as m −→∞

such that um = u∞ +
∑q
i=1 αiϕai,m,λi,m + vm with

∂J0(u∞) = 0, ‖vm‖ −→ 0, λτmi,m −→ 1 and
r∞K(ai∞)α

4
n−2

i

4n(n− 1)
= 1

and (εi,j)m −→ 0 as m −→∞ for each pair 1 ≤ i < j ≤ q .

Proof. Setting J = Jτm , by our assumptions we have

J(um) =

∫
umLg0

umdµg0
−→ r∞ and ∂J(um) = Lg0

um − r∞Kupmm = o(1) in W−1,2(M, g0).

In particular (um) ⊂ W 1,2(M, g0) is bounded, hence um ⇀ u∞ weakly in W 1,2(M, g0) and strongly in
Lq(M, g0), q < 2n

n−2 . Notice that u∞ ≥ 0 is a critical point of J0 and therefore it is a smooth function.
We may then write um = u∞ + u1,m with u1,m ⇀ 0 weakly, and strongly in Lq(M, g0). Thus

r∞ ←− J(um) =

∫
u∞Lg0u∞dµg0 +

∫
u1,mLg0u1,mdµg0 + o(1),

whence
∫
u1,mLg0

u1,mdµg0
−→ r1,∞ ≥ 0 and secondly, due to (2.4), that

E(u1,m) := Lg0u1,m − r∞Kupm1,m = o(1) in W−1,2(M, g0). (3.1)

We may assume r1,∞ > 0, since otherwise we are done. We now claim the concentration behavior

∀ 0 < ε� 1 ∃ λm −→∞ : sup
x∈M

∫
B 1
λm

(x)

|∇u1,m|2g0
dµg0

≥ ε. (3.2)

Indeed we have for a fixed cut-off function

o(1) =〈E(u1,m), u1,mη
2〉 =

∫ [
(ηu1,m)Lg0(ηu1,m)− r∞K|ηu1,m|2upm−1

1,m

]
dµg0 + o(1)

≥‖∇(ηu1,m)‖2 − r∞Kmin‖ηu1,m‖2Lpm+1
µg0

‖u1,m‖pm−1

Lpm+1
µg0

(supp(η))
+ o(1).

Using Hölder’s inequality and Sobolev’s embedding we obtain

o(1) ≥‖∇(ηu1,m)‖2(1− C‖u1,m‖pm−1

Lpm+1
µg0

(supp(η))
) + o(1).

Thus, if u1,m does not concentrate in Lpm+1(M, g0) similarly to (3.2), then by a covering argument∫
|∇u1,m|2g0

dµg0
−→ 0

contradicting r1,∞ > 0. By (3.1) concentration in Lpm+1(M, g0) is equivalent to concentration in L2-norm
for the gradient, which had to be shown. Fixing ε > 0 small, we measure the rate of concentration via

Λ1,m = sup

{
λ > 0 | max

x∈M

∫
B 1
λ

(x)

|∇u1,m|2g0
dµg0

= ε

}
−→∞,
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and choose for any λ1,m ↗∞ with 1 ≤ limm→∞
Λ1,m

λ1,m
= δ <∞ up to a subsequence

(a1,m) ⊂M :

∫
B 1
λ1,m

(a1,m)

|∇u1,m|2g0
dµg0

= sup
x∈M

∫
B 1
λ1,m

(x)

|∇u1,m|2g0
dµg0

≥ c

for some positive c = c(ε, δ) to be specified later. On a suitably small ball Bρ(a1,m) we then rescale

w1,m = λ
2−n

2
1,m u1,m

(
expga1,m

·
λ1,m

)
.

The function w1,m is well defined on Bρλ1,m(0) and satisfies, with θm = n−2
2 τm,

−cn∆w1,m −
r∞K(ai,m)

λθm1,m
wpm1,m = o(1) in W−1,2

loc (Rn), ∆ = ∆Rn .

Since
∫
|∇u1,m|2dµg0

is bounded, so it is
∫
Bρλ1,m

(0)
|∇w1,m|2dx for any ρ > 0. Hence

w1,m ⇀ w1,∞ weakly in W−1,2
loc (Rn) with −∆w1,∞ = σ1r∞κ1w

n+2
n−2

1,∞ ,

where
κ1 = lim

m→∞
K(a1,m) and σ1 = lim

m→∞
λ−θm1,m ∈ [0, 1].

Given a compactly supported cut-off η, we calculate

0←−
∫
Rn

(w1,m − w1,∞)η2
(
∆w1,m +

r∞K

λθm1,m
wpm1,m

)
dx

=

∫
Rn

(w1,m − w1,∞)η2
(
∆(w1,m − w1,∞) + σ1r∞K(wpm1,m − w

n+2
n−2

1,∞ )
)
dx+ o(1)

≤−
∫
Rn

|∇((w1,m − w1,∞)η)|2dx+ σ1r∞

∫
Rn

Kη2|w1,m − w1,∞|pm+1dx+ o(1)

=−
∫
Rn

|∇((w1,m − w1,∞)η)|2dx+ σ1r∞

∫
Rn

Kη2|w1,m − w1,∞|pm+1dx+ o(1).

(3.3)

The main step here is the inequality in the above formula. Passing from n+2
n−2 to pm = n+2

n−2 − τm in the
exponent is easy, as w1,∞ is fixed. Since w1,m → w1,∞ in Lp(supp(η)), p < 2n

n−2 , we have∫
Rn

Kη2(w1,m − w1,∞)(wpm1,m − w
pm
1,∞)dx =

∫
Rn

Kη2(wpm+1
1,m − wpm+1

1,∞ )dx

=

∫
Rn

Kη2

[
−
∫ 1

0

∂s|w1,m − sw1,∞|pm+1ds− wpm+1
1,∞ + |w1,m − w1,∞|pm+1

]
dx.

Therefore the main inequality follows from observing that∣∣∣∣∫
Rn

Kη2

[
−
∫ 1

0

∂s|w1,m − sw1,∞|pm+1ds− wpm+1
1,∞

]
dx

∣∣∣∣
≤
∫ 1

0

ds

∫
Rn

Kη2[(pm+1)(w1,m − sw1,∞)|w1,m − sw1,∞|pm−1w1,∞ − wpm+1

1,∞ ]dx

−→
∫ 1

0

ds

∫
Rn

Kη2[(pm+1)(1− s)pmwpm+1
1,∞ − wpm+1

1,∞ ]dx = 0.
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Hence (3.3) is justified and we obtain as before∫
Rn

|∇((w1,m − w1,∞)η)|2(1− C‖w1,m − w1,∞‖pm−1
Lpm+1 (supp(η))

)dx ≤ o(1).

Thus w1,m −→ w1,∞ locally strongly, unless w1,m concentrates in Lpm+1, but by our choice of Λ1,m

ε = sup
x∈M

∫
B 1

Λ1,m

(x)

|∇u1,m|2g0
dµg0

≥ sup
x∈Bcλ1,m

(0)⊂Rn

∫
B λ1,m

Λ1,m

(x)

|∇w1,m|2dx

and 1 ≥ λ1,m

Λ1,m
6−→ 0, so the L2-gradient norm does not concentrate beyond ε and, since

−cn∆Rnw1,m −
r∞K(a1,m)

λθm1,m
wpm1,m = o(1) locally strongly in W−1,2

loc (Rn),

neither the Lpm+1-norm does. Thus w1,m −→ w1,∞ locally strongly. In particular∫
B1(0)

|∇w1,∞|2dx←−
∫
B 1
λ1,m

(a1,m)

|∇u1,m|2g0
dµg0

≥ c = c(ε, δ).

But σ1 = 0 implies w1,∞ = 0 by harmonicity, so σ1 ∈ (0, 1], cf. (3.3), and we easily show w1,∞ > 0 and

w1,∞ = α1

(
λ̃1

1 + λ̃2
1r

2
a

)n−2
2

with α1 > 0, ra = |x− a|, a ∈ Rn and λ̃1 > 0.

Note that −∆Rnw1,∞ = σ1r∞κ1w
n+2
n−2

1,∞ implies σ1r∞κ1α
4

n−2

1 = 4n(n− 1). Moreover by construction∫
B1(0)

|∇w1,m|2dx ≥ sup
x∈Bcλ1,m

(0)

∫
B1(x)

|∇w1,m|2dx,

which transfers to w1,∞ by locally strong convergence. This implies a = 0 and

λ̃n1

1 + λ̃n1
∼
∫
B1(0)

∣∣∣∣∇( λ̃1

1 + λ̃2
1r

2

)n−2
2
∣∣∣∣2dx = εα−2

1 = ε(σ1r∞κ1)
n−2

2 .

By lim
m→∞

λ−θm1,m = σ1 ∈ (0, 1] and 0 < ε� 1 we get λ̃1 ∼ lim
m→∞

λ
2−n
2n θm

1,m . Dilating back we may then write

um = u∞ + α1ϕ1,m + u2,m, ϕ1,m = ϕa1,m,λ̄1,m
, λ̄1,m = λ̃1λ1,m.

Moreover we know that u2,m ⇀ 0 weakly in W 1,2(M, g0) and

w2,m = (λ̄1,m)
2−n

2 u2,m

(
expga1,m

·
λ̄1,m

)
−→ 0 locally strongly in W 1,2(Rn).

Since the initial sequence (um) was non-negative, it follows that u∞ ≥ 0 and the negative part of u2,m

tends to zero as m −→ ∞ in W 1,2-norm. Using a dilation argument, the latter property and the above
formula, it is easy to show that, if α, β ≥ 1 with α+ β = 2n

n−2 , then∫
ϕα1,m|u2,m|βdµg0

−→ 0 as m −→∞, (3.4)

and that also
∫
u2,mLg0ϕ1,mdµg0 = o(1). Thence as before for u1,m

r∞ ←− Jτm(um) =

∫
u∞Lg0

u∞dµg0
+ α2

1

∫
ϕ1,mLg0

ϕ1,mdµg0
+

∫
u2,mLg0

u2,mdµg0
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and therefore
∫
u2,mLg0u2,mdµg0 −→ r2,∞ ≥ 0. Likewise

E(u2,m) = Lg0u2,m − r∞Kupm2,m = o(1) in W−1,2
loc (Rn)

since by expansion of the non-linear term of ∂Jτm(um) we find

o(1) =Lg0
(u∞ + α1ϕ1,m + u2,m)− r∞K(u∞ + α1ϕ1,m + u2,m)pm

=Lg0
u∞ − r∞Kupm∞ + α1Lg0

ϕ1,m − r∞Kαpm1 ϕpm1,m

+ Lg0u2,m − r∞Kupm2,m + o(1) = Lg0u2,m − r∞Kupm2,m + o(1) in W−1,2(M, g0).

The second equality follows from applying the latter formulas to any test function in W 1,2(M, g0) and
then applying Sobolev’s and Hölder’s inequalities together with (3.4). We may therefore iterate the afore
going and find for a finite sum um =

∑
i αiϕi,m + vm, with energy

r∞ ←− J(um) ≥
∫
u∞Lg0

u∞dµg0
+
∑
i

α2
i

∫
ϕi,mLg0

ϕi,mdµg0
.

But all αi are uniformly lower bounded due to

σir∞κiα
4

n−2

i = 1, σi = lim
m→∞

λ−θmi,m ∈ (0, 1] and κi = lim
m→∞

K(ai,m),

thence the iteration has to stop after finitely-many steps. In particular vm does not concentrate locally
and consequently vanishes strongly as m −→∞. Now take any fixed index j and recall that

wj,m = λ̄
2−n

2
j,m uj,m

(
expgaj,m

·
λ̄j,m

)
and that by construction λ̄k,m

λ̄l,m
6−→ 0 for k < l. We had seen

wj,m −→ wj,∞ weakly and locally strongly, where − cn∆wj,∞ − σjr∞κjw
n+2
n−2

j,∞ = 0.

On the other hand

wj,m = αj

(
1

1 + r2

)n−2
2

+
∑
i>j

uai,m(aj)αi

( λ̄i,m
λ̄j,m

1 + λ̄2
i,mγnG

2
2−n
ai,m

(
expgaj,m

·
λ̄j,m

))n−2
2

up to some error of order o(1) locally in W 1,2, and the latter sum has to vanish, which is equivalent to

λ̄j,m
λ̄i,m

−→∞ or λ̄i,mλ̄j,mGai,m(aj,m) −→∞.

Recalling (2.9), this shows that (εi,j)m −→ 0 for all i 6= j. We are left with proving λ̄τmi,m −→ 1. Ordering

λ̄1,m ≥ . . . ≥ λ̄q,m

up to a subsequence, let

1 ≤ q̄ = ]

{
l = 1, . . . , q | lim

m→∞

λ̄1,m

λ̄l,m
<∞

}
.

Then λ̄k,m
λ̄l,m

−→∞ for k ≤ q̄ < l and c ≤ limm→∞
λ̄k,m
λ̄l,m

≤ C for k, l ≤ q̄. Select a half-ball B+
δ (ak,m) with

1 ≤ k ≤ q̄ and 0 < δ � 1 such that B+
δ (ak,m) ∩ {al,m | 1 ≤ l ≤ q̄, l 6= k} = ∅

up to a subsequence, where for some affine function νk,m with unit gradient we have set

B+
δ (ak,m) = Bδ(ak,m) ∩ {νk,m > 0}
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in a local coordinate system. Then rescaling um on Bak,mδ ∩ {νk,m > 1
λ̄k,m
} we find

wk,m = λ̄
2−n

2

k,m um

(
expgai

·
λ̄k,m

)
= αl

(
1

1 + r2

)n−2
2

+ o(1) on Bcλ̄k,m(0) ∩ {x1 > 1}.

On the other hand side, wk,m solves

−cn∆wk,m −
r∞κk

λ̄θmk,m
wpmk,m = o(1), κk = lim

m→∞
K(ak,m) on Bcλ̄k,m(0).

Recalling that pm = n+2
n−2 − τm and θm = n−2

2 τm, this implies, that up to rotating coordinates

(1 + r2)θm is nearly constant on B+
cλ̄k,m

(0) ∩ {x1 > 1}.

Thus λ̄θmk,m −→ 1. The claim follows, since limm→∞
λ̄k,m
λ̄l,m

≥ c for all l = 1, . . . , q.

4 Reduction and v-part estimates
In this section we will consider a sequence um as in Proposition 3.1, with zero weak limit. We will recall
some well-known facts about finite-dimensional reductions and derive preliminary error estimates and on
suitable components of the gradient of Jτ .

For ε > 0, q ∈ N, u ∈W 1,2(M, g0) and (αi, λi, ai) ∈ (Rq+,R
q
+,M

q) we define

(i) Au(q, ε) = {(αi, λi, ai) | ∀
i 6=j

λ−1
i , λ−1

j , εi,j ,

∣∣∣∣1− rα
4

n−2
i K(ai)

4n(n−1)kτ

∣∣∣∣, ‖u− αiϕai,λi‖ < ε, λτi < 1 + ε};

(ii) V (q, ε) = {u ∈W 1,2(M, g0) | Au(q, ε) 6= ∅},

cf. (2.2), (2.3) and (2.8). For both conditions λi > ε−1, λτi < 1 + ε to hold, we will always assume
that τ � ε and this is consistent with the statement of Proposition 3.1. Under the above conditions on
the parameters αi, ai and λi the functions

∑q
i=1 α

iϕai,λi form a smooth manifold in W 1,2(M, g0), which
implies the following well known result, cf. [4].

Proposition 4.1. For every ε0 > 0 there exists ε1 > 0 such that for u ∈ V (q, ε) with ε < ε1

inf
(α̃i,ãi,λ̃i)∈Au(q,2ε0)

∫
(u− α̃iϕãi,λ̃i)Lg0(u− α̃iϕãi,λ̃i)dµg0

admits an unique minimizer (αi, ai, λi) ∈ Au(q, ε0) depending smoothly on u and we set

ϕi = ϕai,λi , v = u− αiϕi, Ki = K(ai). (4.1)

The term v = u− αiϕi is orthogonal to all ϕi,−λi∂λiϕi, 1
λi
∇aiϕi, with respect to the product

〈·, ·〉Lg0 = 〈Lg0
·, ·〉L2

g0
.

For u ∈ V (q, ε) let

Hu(q, ε) = 〈ϕi, λi∂λiϕi,
1

λi
∇aiϕi〉

⊥Lg0 . (4.2)

We next have an estimate on the projection of the gradient of Jτ onto Hu.

Lemma 4.1. For u ∈ V (q, ε) with kτ = 1, cf. (2.3),and ν ∈ Hu(q, ε) there holds

∂Jτ (αiϕi)ν = O

([∑
r

τ

λθr
+
∑
r

|∇Kr|
λ1+θ
r

+
∑
r

1

λ2+θ
r

+
∑
r

1

λn−2+θ
r

+
∑
r 6=s

ε
n+2
2n
r,s

λθr

]
‖ν‖
)
.
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Proof. Due to the fact that kτ = 1 and ν ∈ Hu(q, ε) we have

−1

2
∂Jτ (αiϕi)ν =rαiϕi

∫
K(αiϕi)

pνdµg0
,

and therefore
∂Jτ (αiϕi)ν '

∫
K(αiϕi)

pνdµg0
.

Decomposing iteratively M as
{
αjϕj >

∑
i>j αiϕi

}
∪
{
αjϕj ≤

∑
i>j αiϕi

}
, we find∫

K(αiϕi)
pνdµg0

=
∑
i

∫
K(αiϕi)

pνdµg0
+O(

∑
r 6=s

∫
{αsϕs≤αrϕr}

(αrϕr)
p−1αsϕs|ν|dµg0

).

Using Hölder’s inequality with exponents 1 = 1
p + 1

q = n+2
2n + n−2

2n and Lemma 2.2 (v) applied to the
latter error term, where the inequality ϕs . ϕr can be used to apply it with β ≥ 1, we get∫

K(αiϕi)
pνdµg0

=
∑
i

∫
K(αiϕi)

pνdµg0
+O

(∑
r 6=s

ε
n+2
2n
r,s

λθr
‖ν‖
)
,

and by a simple expansion we also obtain∫
K(αiϕi)

pνdµg0 =
∑
i

Kiα
p
i

∫
ϕpi νdµg0 +O

([∑
r

|∇Kr|
λ1+θ
r

+
∑
r

1

λ2+θ
r

+
∑
r 6=s

ε
n+2
2n
r,s

λθr

]
‖ν‖
)
. (4.3)

Note that

‖λ−θi ϕ
n+2
n−2

i − ϕpi ‖
2n
n+2

L
2n
n+2
g0

=

∫
ϕ

2n
n−2−

2n
n+2 τ

i |1− λ−θi ϕτi |
2n
n+2 dµg0

.
∫
Bc(0)

(
λi

1 + λ2
i r

2

)n− 2n
n+2 θ

∣∣∣∣1− ( 1

1 + λ2
iO(r2)

)θ∣∣∣∣ 2n
n+2

dx+O

(
1

λ
n− 2n

n+2 θ

i

)

=λ
− 2n
n+2 θ

i

∫
Bcλi (0)

(
1

1 + r2

)n− 2n
n+2 θ

∣∣∣∣1− ( 1

1 +O(r2)

)θ∣∣∣∣ 2n
n+2

dx+O

(
1

λ
n− 2n

n+2 θ

i

)
,

whence

‖λ−θi ϕ
n+2
n−2

i − ϕpi ‖
L

2n
n+2
g0

= O

(
θ

λθi
+

1

λ
n− 2n

n+2 θ

i

)
. (4.4)

Thus up to some O([
∑
r
τ
λθr

+
∑
r
|∇Kr|
λ1+θ
r

+
∑
r

1

λ2+θ
r

+
∑
r 6=s

ε
n+2
2n
r,s

λθr
]‖ν‖) we arrive at∫

K(αiϕi)
pνdµg0

=
∑
i

Kiλ
−θ
i α

n+2
n−2

i

∫
ϕ
n+2
n−2

i νdµg0
.

Finally from Lemma 2.1 and the fact that ν ∈ Hu(q, ε) (hence
∫
νLg0

ϕidµg0
= 0) we obtain

∣∣∣∣ ∫ ϕ
n+2
n−2

i νdµg0

∣∣∣∣ ≤ ‖v‖∥∥∥∥ Lg0ϕi
4n(n− 1)

− ϕ
n+2
n−2

i

∥∥∥∥
L

2n
n+2
g0

= O


λ−1
i for n = 3
λ−2
i for n = 4
λ−3
i for n = 5

ln
2
3 λiλ

− 10
3

i for n = 6
λ−4
i for n ≥ 7

 ‖v‖, (4.5)

so the claim follows.
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Lemma 4.2. For u ∈ V (q, ε) with kτ = 1 and v is as in (4.1) there holds

‖v‖ = O

(∑
r

τ

λθr
+
∑
r

|∇Kr|
λ1+θ
r

+
∑
r

1

λ2+θ
r

+
∑
r

1

λn−2+θ
r

+
∑
r 6=s

ε
n+2
2n
r,s

λθr
+ |∂Jτ (u)|

)
.

Proof. Since the Hessian of Jτ is uniformly Hölder continuous on bounded sets of W 1,2, we have

∂Jτ (u)v = ∂Jτ (αiϕi)v + ∂2Jτ (αiϕi)v
2 + o(‖v‖2) = ∂Jτ (αiϕi)v + ∂2Jτ (u)v2 + o(‖v‖2);

∂2Jτ (u)v2 =2

[ ∫
vLg0

vdµg0
− pruKup−1v2dµg0

]
− 8

∫
uLg0

vdµg0

∫
Kupvdµg0

+ 2(p+ 3)r

∫
Kupvdµg0

∫
Kupvdµg0

.

(4.6)

Since v ∈ Hu(q, ε), by similar expansions we then find (also replacing p with n+2
n−2 with an error o(1))

∂2Jτ (u)v2 = 2

[ ∫
vLg0

vdµg0
− pru

∫
Kup−1v2dµg0

]
=2

[ ∫
vLg0vdµg0 −

n+ 2

n− 2

( ∫
(αiϕi)Lg0(αjϕj)dµg0

) ∫
K(αiϕi)

p−1v2dµg0

]

=2

[ ∫
vLg0vdµg0 −

n+ 2

n− 2

∑
i,j

Kiα
4

n−2

i α2
j

∫
ϕjLg0

ϕjdµg0

λθi

∫
ϕ

4
n−2

i v2dµg0

]
up to some o(‖v‖2). Furthermore by definition of V (q, ε) there holds λθi = 1 + o(1) and

Kiα
4

n−2

i =
1

rαiϕi
+ o(1) =

1∫ ∑
j α

2
jϕjLg0

ϕjdµg0

+ o(1).

Thus

∂2Jτ (u)v2 =2

[ ∫
vLg0vdµg0 −

n+ 2

n− 2

∫
ϕ

4
n−2

i v2dµg0

]
+ o(‖v‖2).

This quadratic form is positive definite for ε sufficiently small on the subspace v belongs to, cf. [4], so

‖v‖2(1 + o(1)) ≤ C∂2Jτ (u)v2 ≤ C[∂Jτ (αiϕi)v + |∂Jτ (u)|2].

Therefore the claim follows from Lemma 4.1.

We now establish cancellations testing the gradient of Jτ orthogonally to Hu(q, ε).

Lemma 4.3. For u ∈ V (q, ε) with kτ = 1 the quantity ∂Jτ (u)φk,i expands as

∂Jτ (αjϕj)φk,i +O

(∑
r

τ2

λ2θ
r

+
∑
r

|∇Kr|2

λ2+2θ
r

+
∑
r

1

λ4+2θ
r

+
∑
r

1

λ
2(n−2)+2θ
r

+
∑
r 6=s

ε
n+2
n

r,s

λ2θ
r

+ |∂Jτ (u)|2
)
.

Proof. By the mean value theorem and (4.6) we have, with some σ ∈ [0, 1]

∂Jτ (u)φk,i − ∂Jτ (αjϕj)φk,i = ∂2Jτ (αjϕj + σv)φk,iv

=2(1 +O(‖v‖))
[ ∫

vLg0φk,idµg0 − prαiϕi(1 +O(‖v‖))
∫
K(αjϕj + σv)p−1vφk,idµg0

]
− 4(1 +O(‖v‖))

[ ∫
(αjϕj + σv)Lg0

vdµg0

∫
K(αjϕj + σv)pφk,idµg0

+

∫
(αjϕj + σv)Lg0

φk,idµg0

∫
K(αjϕj + σv)pvdµg0

]
+ 2(p+ 3)rαiϕi(1 +O(‖v‖))

∫
K(αjϕj + σv)pvdµg0

∫
K(αjϕj + σv)pφk,idµg0

.
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Therefore, since v ∈ Hu(q, ε), up to some O(‖v‖2) we also get

∂Jτ (u)φk,i − ∂Jτ (αjϕj)φk,i = −2prαiϕi

∫
K(αjϕj + σv)p−1vφk,idµg0

− 4

∫
(αjϕj)Lg0

φk,idµg0

∫
K(αjϕj + σv)pvdµg0

+ 2(p+ 3)rαiϕi

∫
K(αjϕj + σv)pvdµg0

∫
K(αjϕj + σv)pφk,idµg0

.

Decomposing now M as {αjϕj ≤ 2‖v‖} ∪ {αjϕj ≥ 2‖v‖}, and using |φk,i| ≤ Cαiϕi ≤ Cαjϕj , we find

∂Jτ (u)φk,i − ∂Jτ (αjϕj)φk,i = −2prαiϕi

∫
K(αjϕj)

p−1vφk,idµg0

− 4

∫
(αjϕj)Lg0φk,idµg0

∫
K(αjϕj)

pvdµg0

+ 2(p+ 3)rαiϕi

∫
K(αjϕj)

pvdµg0

∫
K(αjϕj)

pφk,idµg0
+O(‖v‖2).

Now, arguing as for (4.3) and using Lemma 2.2 (iv), we have∫
K(αjϕj)

pvdµg0
=
∑
j

Kjα
p
j

∫
ϕpjvdµg0

+O

([∑
r

|∇Kr|
λ1+θ
r

+
∑
r

1

λ2+θ
r

+
∑
r 6=s

ε
n+2
2n
r,s

λθr

]
‖v‖
)

;

∫
K(αjϕj)

p−1φk,ivdµg0
= Kiα

p−1
i

∫
ϕp−1
i φk,ivdµg0

+O

([∑
r

|∇Kr|
λ1+θ
r

+
∑
r

1

λ2+θ
r

+
∑
r 6=s

ε
n+2
2n
r,s

λθr

]
‖v‖
)
,

whence

∂Jτ (u)φk,i − ∂Jτ (αjϕj)φk,i =− 2prαiϕiKiα
p−1
i

∫
ϕp−1
i φk,ivdµg0

− 4αi

∫
ϕiLg0

φk,idµg0

∑
j

Kjα
p
j

∫
ϕpjvdµg0

+ 2(p+ 3)rαiϕiKiα
p
i

∫
ϕpi φk,idµg0

∑
j

Kjα
p
j

∫
ϕpjvdµg0

up to some O
(∑

r
|∇Kr|2

λ2+2θ
r

+
∑
r

1

λ4+2θ
r

+
∑
r 6=s

ε
n+2
n

r,s

λ2θ
r

+ ‖v‖2
)
. Using (4.4) and (4.5) we arrive at

∂Jτ (u)φk,i − ∂Jτ (αjϕj)φk,i = −2prαiϕiKiα
p−1
i

∫
ϕp−1
i φk,ivdµg0

+O

(∑
r

τ2

λ2θ
r

+
∑
r

|∇Kr|2

λ2+2θ
r

+
∑
r

1

λ4+2θ
r

+
∑
r

1

λ
2(n−2)+2θ
r

+
∑
r 6=s

ε
n+2
n

r,s

λ2θ
r

+ ‖v‖2
)
.

Yet also the first summand on the right hand side is of the same order as the second one, arguing as for
(4.4) and (4.5). Combining this with Lemma 4.2, we obtain the conclusion.

5 The functional and its derivatives
For u ∈ V (q, ε) and ε > 0 sufficiently small let

α2 =
∑
i

α2
i , αsK,τ =

∑
i

Ki

λθi
αsi , θ =

n− 2

2
τ. (5.1)

Recalling the notation from the previous section we may expand the Euler-Lagrange energy as follows.
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Proposition 5.1. For u = αiϕi + v ∈ V (q, ε) and ε > 0, both Jτ (u) and Jτ (αiϕi) can be written as

ĉ0α
2

(αp+1
K,τ )

2
p+1

(
1− ĉ1τ − ĉ2

∑
i

∆Ki

Kiλ2
i

α2
i

α2
− b̂1

∑
i 6=j

αiαj
α2

εi,j − d̂1

∑
i

α2
i

α2



Hi
λi

for n = 3
Hi+O(

lnλi
λ2
i

)

λ2
i

for n = 4
Hi
λ3
i

for n = 5
Wi lnλi
λ4
i

for n = 6

0 for n ≥ 7


)

with positive constants ĉ0, ĉ1, ĉ2, b̂1, d̂1 up to errors of the form

O(τ2 +
∑
r

|∇Kr|2

λ2
r

+
1

λ4
r

+
1

λ
2(n−2)
r

+
∑
r 6=s

ε
n+2
n

r,s + |∂Jτ (u)|2).

Proof. The above expansion for Jτ (αiϕi) implies the one for Jτ (u) via Lemmata 4.1 and 4.2 expanding

Jτ (u) = Jτ (αiϕi) + ∂Jτ (αiϕi)v +O(‖v‖2).

We next start analyzing Jτ (αiϕi) from the denominator. Decomposing iteratively M as

M = {αjϕj >
∑
i>j

αiϕi}+ {αjϕj ≤
∑
i>j

αiϕi}

we may expand∫
K(αiϕi)

p+1dµg0 =
∑
i

αp+1
i

∫
Kϕp+1

i dµg0 + (p+ 1)
∑
i 6=j

αpiαj

∫
Kϕpiϕjdµg0

+O

(∑
r 6=s

∫
{αrϕr≥αsϕs}

(αrϕr)
pαsϕsdµg0

)
.

Recalling λθr ∼ 1 and the boundedness of αr by the definition of V (q, ε), using Lemma 2.2 and reasoning

as for the proof of Lemma 4.1, the latter term is of order O(
∑
r 6=s ε

n+2
n

i,j ), and also∫
Kϕpiϕjdµg0 =Ki

∫
ϕpiϕjdµg0 +O

(∫
Bc(ai)

(|∇Ki|rai + r2
ai)ϕ

p
iϕjdµg0

)
+O

(
1

λ
n+2
n−2−θ
i λ

n−2
2

j

)

=Ki

∫
ϕpiϕjdµg0

+O

(∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+ ε
n+2
n

r,s

)
.

Indeed we for example have∫
Bc(ai)

raiϕ
p
iϕjdµg0 =

∫
Bc(ai)

raiϕ
n+2
n−2−

n+2
2n

i ϕ
n+2
2n
i ϕjdµg0 ≤ Cε

n+2
2n
i,j ‖rϕ

n+2
n−2−

n+2
2n

0,λi
‖
L

( 2n
(n+2)

)2

µg0

with the latter norm that can be controlled by∫
Rn

r( 2n
n+2 )2

(
λi

1 + λ2
i r

2
)ndx ≤ Cλ−( 2n

n+2 )2

i

(
1 +

∫ ∞
1

r−1+n+( 2n
n+2 )2−2ndr

)
= O

((
1

λi

)( 2n
n+2 )2)

.

Thus Lemma 2.2, where b1 is defined, yields∫
Kϕpiϕjdµg0 = b1

Ki

λθi
εi,j +O

(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+
1

λ
2(n−2)
r

+ ε
n+2
n

r,s

)
, (5.2)
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and we arrive at∫
K(αiϕi)

p+1dµg0
=
∑
i

αp+1
i

∫
Kϕp+1

i dµg0
+ (p+ 1)

∑
i 6=j

αpiαjb1
Ki

λθi
εi,j

=
∑
i

αp+1
i

∫
Kϕp+1

i dµg0 + b̄1
∑
i 6=j

α
n+2
n−2

i αj
Ki

λθi
εi,j , b̄1 =

2n

n− 2
b1

(5.3)

up to an error O(τ2 +
∑
r 6=s

|∇Kr|2
λ2
r

+ 1
λ4
r

+ 1

λ
2(n−2)
r

+ ε
n+2
n

r,s ). Finally, recalling our notation in Section 2

and denoting by xi a generic polynomial of degree i in the x-variables, we expand∫
Kϕp+1

i dµg0 =

∫
Bc(ai)

Kϕp+1
i dµg0 +O

( 1

λn−θi

)
=Ki

∫
Bc(ai)

ϕp+1
i dµg0 +∇Ki

∫
Bc(ai)

xϕp+1
i dµg0

+
∇2

2
Ki

∫
Bc(ai)

x2ϕp+1
i dµg0 +

∇3

6
Ki

∫
Bc(ai)

x3ϕp+1
i dµg0 +O

(
1

λ4
i

+
1

λ
2(n−2)
i

) (5.4)

with an extra error of order O
(

lnλ
λ4

)
if n = 4. For the first term on the right-hand side up to some

O(τ2 + 1
λ4
i
) we may pass integrating with respect to conformal normal coordinates. Indeed∫

Bc(ai)

ϕp+1
i dµg0

=

∫
Bc(ai)

u−τai (
ϕi
uai

)
2n
n−2−θdµgai =

∫
Bc(ai)

(
ϕi
uai

)
2n
n−2−θdµgai +O(τ

∫
Bc(ai)

r2
ai(

ϕi
uai

)
2n
n−2−θdµgai )

and the latter term is of order O( τ

λ2+θ
i

). From (2.8) we find∫
ϕp+1
i dµg0

=

∫
Bc(ai)

(
λi

1 + λ2
i r

2
ai(1 + rn−2

ai Hai)
2

2−n
)n−θdµgai

=

∫
Bc(0)

(
λi

1 + λ2
i r

2
)n−θ

(
1 +

2(n− θ)
n− 2

λ2
i r
nHai

1 + λ2
i r

2

)
dx,

up to some O(τ2 + 1
λ4
i

+ 1
λni

). Clearly∫
Bc(0)

(
λi

1 + λ2
i r

2
)n−θdx =λ−θi

∫
Bcλi

dx

(1 + r2)n−θ
= λ−θi

∫
Rn

dx

(1 + r2)n−θ
+O(λ−ni )

=
1

λθ

∫
Rn

dx

(1 + r2)n
+

θ

λθ

∫
Rn

ln(1 + r2)dx

(1 + r2)n
+O

(
τ2 +

1

λ4
i

+O

(
1

λ
2(n−2)
i

))

=
c̄0
λθi

+
c̄1τ

λθi
+O

(
τ2 +

1

λ4
i

+O

(
1

λ
2(n−2)
i

))
letting

c̄0 =

∫
Rn

dx

(1 + r2)n
and c̄1 =

n− 2

2

∫
Rn

ln(1 + r2)

(1 + r2)n
dx. (5.5)

Moreover

∫
Bc(0)

λn+4−θ
i r2nH2

ai

(1 + λ2
i r

2)n+2−θ dx ≤
∫
Bc(0)

λn−θi r2(n−2)H2
ai

(1 + λ2
i r

2)n−θ
dx ≤ C

∫
Bc(0)

λn−θi r2(n−2)

(1 + λ2
i r

2)n−θ


1 for n = 3
1 for n = 4
1 for n = 5

ln2 r for n = 6
r2(6−n) for n ≥ 7

 dx
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up to some O( 1

λ
2(n−2)
i

+ 1
λ4
i
) and with an extra error of order O

(
lnλ
λ4

)
if n = 4, and

∫
Bc(0)

(
λi

1 + λ2
i r

2

)n−θ
λ2
i r
nHai

1 + λ2
i r

2
dx =

∫
Bc(0)

(
λi

1 + λ2
i r

2

)n−θ
λ2
i r

2

1 + λ2
i r

2
rn−2


Hi +∇Hix+O(r2)

Hi +∇Hix+O(r2 ln r)
Hi +O(r)

−Wi ln r +O(r ln r)
O(r6−n)

 dx,

whence up to some O(τ2 + 1
λ4
i

+ 1

λ
2(n−2)
i

)

∫
Bc(0)

(
λi

1 + λ2
i r

2

)n−θ
λ2
i r
nHai

1 + λ2
i r

2
dx =d̄1



Hi
λ1+θ
i

Hi
λ2+θ
i

+O( lnλi
λ4+θ
i

)
Hi
λ3+θ
i

Wi lnλi
λ4+θ
i

0

 , d̄1 =

∫
Rn

rndx

(1 + r2)n+1
. (5.6)

Likewise by radial symmetry and, since we may assume dµgai ≡ 1, cf. [24], we find

(1)
∫
Bc(ai)

x3ϕp+1
i dµgai = O

(
1
λ4
i

+ 1

λ
2(n−2)
i

)
;

(2) ∇2

2 Ki

∫
Bc(ai)

x2ϕp+1
i dµg0 = ∆Ki

2nλ2+θ
i

∫
Rn

r2dx
(1+r2)n +O

(
τ2 + 1

λ4
i

+ 1

λ
2(n−2)
i

)
;

(3)
∫
Bc(ai)

xϕp+1
i dµg0

= O

(
1
λ4
i

+ 1

λ
2(n−2)
i

)
with an extra error of order O

(
lnλ
λ4

)
if n = 4. Collecting all terms we arrive at

∫
Kϕp+1

i dµg0
=
c̄0Ki

λθi
+ c̄1

Kiτ

λθi
+ c̄2

∆Ki

λ2+θ
i

+ d̄1Ki



Hi
λ1+θ
i

Hi
λ2+θ
i

+O( lnλi
λ4+θ
i

)
Hi
λ3+θ
i

Wi lnλi
λ4+θ
i

0

 , c̄2 =
1

2n

∫
Rn

r2dx

(1 + r2)n
(5.7)

up to an error O(τ2 + 1
λ4
i

+ 1

λ
2(n−2)
i

), and thus obtain

∫
K(αiϕi)

p+1dµg0
=
∑
i

(
c̄0
Ki

λθi
αp+1
i + c̄1

Ki

λθi
α

2n
n−2

i τ + c̄2
∆Ki

λ2+θ
i

α
2n
n−2

i

)

+ d̄1

∑
i

Ki

λθi
α

2n
n−2

i



Hi
λi

Hi+O(
lnλi
λ2
i

)

λ2
i
Hi
λ3
i

Wi lnλi
λ4
i

0


+ b̄1

∑
i6=j

α
n+2
n−2

i αj
Ki

λθi
εi,j

(5.8)
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up to some O(τ2 +
∑
r 6=s

|∇Kr|2
λ2
r

+ 1
λ4
r

+ 1

λ
2(n−2)
r

+ ε
n+2
n

r,s ). Consequently up to the same error

Jτ (αiϕi) =
αiαj

∫
ϕiLg0

ϕjdµg0

(
∫
K(
∑
i αiϕi)

p+1)
2
p+1

=
αiαj

∫
ϕiLg0

ϕjdµg0

(c̄0
∑
i
Ki
λθi
αp+1
i )

2
p+1

(
1− c̄1

∑
i

Ki

λθi

α
2n
n−2

i

α
2n
n−2

K,τ

τ

− c̄2
∑
i

∆Ki

λ2+θ
i

α
2n
n−2

i

α
2n
n−2

K,τ

− d̄1

∑
i

Ki

λθi



Hi
λi

Hi+O(
lnλi
λ2
i

)

λ2
i
Hi
λ3
i

Wi lnλi
λ4
i

0


α

2n
n−2

i

α
2n
n−2

K,τ

− b̄1
∑
i 6=j

α
n+2
n−2

i αj

α
2n
n−2

K,τ

Ki

λθi
εi,j

)
.

(5.9)

Next for i 6= j using Lemma 2.1 we get∫
ϕiLg0

ϕj
4n(n− 1)

dµg0 =

∫
ϕ
n+2
n−2

i ϕjdµg0 +O

(
1

λ4
i

+
1

λ
2(n−2)
i

+ ε
n+2
n

i,j

)
.

For example to check the error term, we may estimate∫
Bc(ai)

rn−2
ai ϕ

n+2
n−2

i ϕjdµg0
≤‖rn−2

ai ϕ
n+2
n−2−

n+2
2n

i ‖
L

( 2n
n+2

)2

Bc(ai)

‖ϕ
n+2
2n
i ϕj‖

L
4n2

(3n+2)(n−2)
,

which is of order O(
ε
n+2
2n
i,j

λn−2
i

) thanks to Lemma 2.2, and likewise for e.g. n ≥ 7∫
ϕiϕjdµg0 .‖ϕiϕj‖

L
n
n−2
g0

= O(εi,j ln
n−2
n εi,j),

whence λ−2
i

∫
ϕiϕjdµg0

= o(
ε
n+2
2n
i,j

λ2
i

). Thus Lemma 2.2 shows that∫
ϕiLg0

ϕjdµg0
= b̃1εi,j +O(

∑
r 6=s

1

λ4
r

+
1

λ
2(n−2)
r

+ ε
n+2
n

r,s ), b̃1 = 4n(n− 1)b1. (5.10)

Finally from (2.8) and Lemma 2.1 we find

∫
ϕiLg0ϕi

4n(n− 1)
dµg0

=

∫
ϕ

2n
n−2

i dµg0 −
cn
2

∫
Bc(0)

λ2
i r
n−2

(1 + λ2
i r

2)n


Hi + n∇Hix
Hi + n∇Hix
Hi + n∇Hix
−Wi ln r

0


up to some error terms of order O(λ−3

i , λ−4
i lnλi, λ

−4
i , λ−4

i , λ−4
i ), whence

∫
ϕiLg0

ϕi
4n(n− 1)

dµg0
=

∫
ϕ

2n
n−2

i dµg0
− d̃1


Hi
λi

Hi
λ2
i

+O( lnλi
λ4
i

)
Hi
λ3
i

Wi lnλi
λ4
i

0

 , d̃1 =
cn
2

∫
Rn

rn−2dx

(1 + r2)n
,

up to O( 1
λ4
i

+ 1

λ
2(n−2)
i

). Recalling (5.7), we obtain

∫
ϕiLg0ϕi

4n(n− 1)
dµg0 =c̄0 + 4n(n− 1)(d̄1 − d̃1)


Hi
λi

Hi
λ2
i

+O( lnλi
λ4
i

)
Hi
λ3
i

Wi lnλi
λ4
i

0

 (5.11)
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up to some O(τ2 + 1
λ4
i

+ 1

λ
2(n−2)
i

). As d̄1 = d̃1, cf. (5.6), we simply get

αiαj
∫
ϕiLg0ϕjdµg0 =4n(n− 1)c̄0

∑
i

α2
i + b̃1

∑
i 6=j

αiαjεi,j (5.12)

up to an error of order O
(
τ2 +

∑
r

1
λ4
r

+ 1

λ
2(n−2)
r

+
∑
r 6=s ε

n+2
n

r,s

)
. Plugging this into (5.9), we obtain

Jτ (αiϕi) =
4n(n− 1)c̄

p−1
p+1

0

∑
i α

2
i

(
∑
i
Ki
λθi
αp+1
i )

2
p+1

(
1− c̄1

∑
i

Ki

λθi

α
2n
n−2

i

α
2n
n−2

K,τ

τ − c̄2
∑
i

∆Ki

λ2+θ
i

α
2n
n−2

i

α
2n
n−2

K,τ

− d̄1

∑
i

Ki

λθi

α
2n
n−2

i

α
2n
n−2

K,τ



Hi
λi

Hi+O(
lnλi
λ2
i

)

λ2
i
Hi
λ3
i

Wi lnλi
λ4
i

0


−
∑
i 6=j

(b̄1
Ki

λθi

α
n+2
n−2

i αj

α
2n
n−2

K,τ

− b̃1
c̄0

αiαj
α2

)εi,j

)

up to some O(τ2 +
∑
r
|∇Kr|2
λ2
r

+ 1
λ4
r

+ 1

λ
2(n−2)
r

+
∑
r 6=s ε

n+2
n

r,s ). Recalling

b̄1 =
2n

n− 2
b1, b̃1 = 4n(n− 1)b1, α2 =

∑
i

α2
i , α

2n
n−2

K,τ =
n

n− 2
c̄0
∑
i

Ki

λθi
α

2n
n−2

i ,

and setting

ĉ0 = 4n(n− 1)c̄
p−1
p+1

0 , ĉ1 =
c̄1
c̄0
, ĉ2 =

c̄2
c̄0
, d̂1 =

d̄1

c̄0
, b̂1 = 2

b1
c̄0

(5.13)

we may rewrite this as

Jτ (u) = Jτ (αiϕi) =
ĉ0α

2

(αp+1
K,τ )

2
p+1

(
1− ĉ1

∑
i

Ki

λθi

α
2n
n−2

i

α
2n
n−2

K,τ

τ − ĉ2
∑
i

∆Ki

λ2+θ
i

α
2n
n−2

i

α
2n
n−2

K,τ

− d̂1

∑
i

Ki

λθi

α
2n
n−2

i

α
2n
n−2

K,τ



Hi
λi

Hi+O(
lnλi
λ2
i

)

λ2
i
Hi
λ3
i

Wi lnλi
λ4
i

0


− b̂1

∑
i 6=j

(Ki

λθi

α
n+2
n−2

i αj

α
2n
n−2

K,τ

− αiαj
2α2

)
εi,j

)
.

Then the claim follows from Lemma 5.1.

We next state three lemmas with some expansions for the derivatives of the functionals with respect
to the parameters involved (recall our notation from Section 2). The proofs are given in appendix B.

Lemma 5.1. For u ∈ V (q, ε) and ε > 0 sufficiently small the three quantities ∂Jτ (u)φ1,j, ∂Jτ (αiϕi)φ1,j,
∂αjJτ (αiϕi) can be written as

αj

(α
2n
n−2

K,τ )
n−2
n

(
c̀0
(
1− α2

αp+1
K,τ

Kj

λθj
αp−1
j

)
− c̀2

(∆Kj

Kjλ2
j

−
∑
k

∆Kk

Kkλ2
k

α2
k

α2

)

+ b̀1

(∑
k 6=l

αkαl
α2

εk,l −
∑
j 6=i

αi
αj
εi,j

)
− d̀1



Hj
λj
−
∑
k
α2
k

α2
Hk
λk

for n = 3
Hj
λ2
j
−
∑
k
α2
k

α2
Hk
λ2
k

+O(
∑
r

lnλr
λ4
r

) for n = 4

Hj
λ3
j
−
∑
k
α2
k

α2
Hk
λ3
k

for n = 5

Wj lnλj
λ4
i
−
∑
k
α2
k

α2
Wk lnλk

λ4
k

for n = 6

0 for n ≥ 7


)
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with positive constants c̀0, c̀2, b̀1, d̀1 up to an error of order

O
(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+
1

λ
2(n−2)
r

+ ε
n+2
n

r,s + |∂Jτ (u)|2
)
. (5.14)

In particular for all j

α2

αp+1
K,τ

Kj

λθj
αp−1
j = 1 +O

(
τ +

∑
r 6=s

1

λ2
r

+
1

λn−2
r

+ εr,s + |∂Jτ (u)|
)
.

Lemma 5.2. For u ∈ V (q, ε) and ε > 0 sufficiently small the three quantities ∂Jτ (u)φ2,j, ∂Jτ (αiϕi)φ2,j

and λj
αj
∂λjJτ (αiϕi) can be written as

αj

(α
2n
n−2

K,τ )
n−2
n

(
c̃1τ + c̃2

∆Kj

Kjλ2
j

− b̃2
∑
j 6=i

αi
αj
λj∂λjεi,j + d̃1



Hj
λj

for n = 3
Hj
λ2
j

+O(
lnλj
λ4
j

) for n = 4
Hj
λ3
j

for n = 5
Wj lnλj
λ4
j

for n = 6

0 for n ≥ 7


)
,

with positive constants c̃1, c̃2, d̃1, b̃2 up to some error of the form

O
(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+
1

λ
2(n−2)
r

+ ε
n+2
n

r,s + |∂Jτ (u)|2
)
. (5.15)

Lemma 5.3. For u ∈ V (q, ε) and ε > 0 sufficiently small the three quantities ∂Jτ (u)φ3,j, ∂Jτ (αiϕi)φ3,j

and
∇aj
αjλj

Jτ (αiϕi) can be written as

− αj

(α
2n
n−2

K,τ )
n−2
n

č3 ∇Kj

Kjλj
+ č4

∇∆Kj

Kjλ3
j

+ b̌3
∑
j 6=i

αi
αj

∇aj
λj

εi,j

 ,

with positive constants č3, č4, b̌3 up to some error of the form

O
(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+
1

λ
2(n−2)
r

+ ε
n+2
n

r,s + |∂Jτ (u)|2
)
. (5.16)

6 Gradient bounds
Theorem 2 will give suitable lower norm-bounds on the gradient of Jτ , yielding Theorem 1 as a corollary.
We recall that on S3 and S4 the result was proved in [12], [28], [29], [45] in more generality.

Definition 6.1. Let H be as in (2.7). We call a positive Morse function K on M non-degenerate

(i) of degree q ∈ N in case n = 4, if {∇K = 0} ∩ {c̃2 ∆K
K + c̃3H = 0} = ∅ and if for every 1 ≤ k ≤ q

and every subset {x1, . . . , xk} ⊆ {∇K = 0} ∩ {c̃2 ∆K
K + c̃3H < 0} the matrices

Mx1,...,xk = −



c̃2
∆K(x1)
K(x1)2 + c̃3

H(x1)
K(x1) c̃4

G0(x1,x2)

γn(K(x1)K(x2))
1
2

. . . c̃4
G0(x1,xk)

γn(K(x1)K(xk))
1
2

c̃4
G0(x2,x1)

γn(K(x2)K(x1))
1
2

. . .
...

...
...

...
. . . c̃4

G0(xk−1,xk)

γn(K(xk−1)K(xk))
1
2

c̃4
G0(xk,x1)

γn(K(xk)K(x1))
1
2

. . . c̃2
∆K(xk)
K(xk)2 + c̃3

H(xk)
K(xk)
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have non-vanishing least eigenvalues, where c̃2 =
√

3ω4, c̃3 = 24
√

3ω4 = c̃4. We say that K is
non-degenerate, if it is non-degenerate of all degrees.

(ii) in case n ≥ 5, if {∇K = 0} ∩ {∆K = 0} = ∅, i.e. (1.2) holds.

Remark 6.1. Non-degeneracy in case n = 4 implies the existence of a least eigenvalue

Mx1,...,xkxx1,...,xk = λx1,...,xkxx1,...,xk with λx1,...,xk 6= 0

and such that λx1,...,xk is simple and has a positive eigenvector, i.e.

xx1,...,xk = (x1
x1,...,xk

, . . . , xkx1,...,xk
) with xlx1,...,xk

> 0 for all 1 ≤ l ≤ k.

Theorem 2. LetMx1,...,xk be as in Definition 6.1, and suppose that{
K is non-degenerate of degree q for n = 4
K is non-degenerate for n ≥ 5

}
.

Then for ε > 0 sufficiently small there exists c > 0 such that for any u ∈ V (q, ε) with kτ = 1 there holds

|∂Jτ (u)| ≥ c
(
τ +

∑
r 6=s

|∇Kr|
λr

+
1

λ2
r

+
∣∣1− α2

αp+1
K,τ

Kr

λθr
αp−1
r

∣∣+ εr,s
)
,

cf. (5.1), unless there is a violation of at least one of the four conditions

(i) τ > 0;

(ii) there exists xi 6= xj ∈
{
{∇K = 0} ∩ {c̃2 ∆K

K + c̃3H < 0} for n = 4,
{∇K = 0} ∩ {∆K < 0} for n ≥ 5

}
and d(ai, xi) = O( 1

λi
);

(iii)


αj = Θ ·

(
λθj
Kj

(
1 + 1

8

( ∆Kj
Kjλ2

j
− 60

Hj
λ2
j
−

∑
k(

∆Kk
K2
k
λ2
k

−60
Hk
Kkλ

2
k

)∑
k

1
Kk

))) 1
p−1

+ o( 1
λ2
j
) for n = 4,

αj = Θ · ( λ
θ
j

Kj
)

1
p−1 + o( 1

λ2
j
) for n ≥ 5

 ;

(iv)

{
Mx1,...,xq > 0 and λj =

σj+o(1)√
τ

for n = 4,

c̃1τ = −c̃2 ∆Kk
Kkλ2

k
+ o( 1

λ2
k

) for n ≥ 5

}
for all j 6= i, j = 1, . . . , q, where σ = (σ1, . . . , σq) in case n = 4 is the unique solution of

c̃1


σ1

K(x1)

...
σq

K(xq)

 =Mx1,...,xq


1
σ1

...
1
σq

 with σj > 0,

while Θ is given in Remark 6.2. In the latter case there holds λ1 ' . . . λq ' λ = 1√
τ

and setting

aj = expgxj
(āj)

we still have up to an error o( 1
λ3 ) the lower bound

|∂J(u)| &
∑
j

(|τ +
1

2

∆K(xj)

K(xj)λ2
j

+ 12[
H(xj)

λ2
j

+
∑
j 6=i

√
K(xj)

K(xi)

Gg0
(xi, xj)

γnλiλj
]|)

+
∑
j

(| āj
λj

+
1

3
(∇2K(xj))

−1∇∆K(xj)

λ3
j

+ 8
∑
j 6=i

√
K3(xj)

K(xi)
(∇2K(xj))

−1∇xjGg0
(xi, xj)

γnλiλ2
j

|)

+
∑
j

|αj −Θ · p−1

√√√√√ λθj
K(aj)

(1 +
1

8

∆K(xj)

K(xj)λ2
j

− 60
H(xj)

λ2
j

−

∑
k( ∆K(xk)
K(xk)2λ2

k
− 60 H(xk)

K(xk)λ2
k

)∑
k

1
K(xk)

)|
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in case n = 4 and

|∂J(u)| &
∑
j

|τ +
2

9

∆K(xj)

K(xj)λ2
j

+
512

9π
[
H(xj)

λ3
j

+
∑
j 6=i

√
K(xj)

K(xi)

Gg0(xi, xj)

γn(λiλj)
3
2

]|

+
∑
j

| āj
λj

+
č4
č3

(∇2K(xj))
−1∇∆K(xj)

λ3
j

|

+
∑
j

|αj −Θ · p−1

√√√√√ λθj
K(aj)

(1− 1

90

∆K(xj)

K(xj)λ2
j

+
2816

π

H(xj)

λ3
j

−

∑
k( ∆K(xk)
K(xk)2λ2

k
+ 2816

π
H(xk)
K(xk)λ3

k
)∑

k
1

K(xk)

)|

in case n = 5 and

|∂Jτ (u)| &
∑
j

(|τ +
c̃2
c̃1

∆K(xj)

K(xj)λ2
j

|+ | āj
λj

+
č4
č3

(∇2K(xj))
−1∇∆K(xj)

λ3
j

|+ |αj −Θ · p−1

√
λθj

K(aj)
|)

in case n ≥ 6. The constants appearing above are defined by c̄0 =
∫
Rn

dx
(1+r2)n ,

c̃1 =
n(n− 1)(n− 2)2

c̄
n−2
n

0

∫
Rn

1− r2

(1 + r2)n+1
ln

1

1 + r2
dx, c̃2 = − (n− 1)(n− 2)

c̄
n−2
n

0

∫
Rn

r2(1− r2)

(1 + r2)n+1
dx

and

č3 =

∫
Rn

4(n− 1)(n− 2)

(1 + r2)n
dx, č4 =

∫
Rn

2(n− 1)r2

(1 + r2)n
dx.

The differences in the above expressions for n = 5 and n ≥ 6 is caused by a different decay of bubble
functions causing stronger mutual interactions in lower dimension.

Remark 6.2. Under non-degeneracy conditions, Theorem 2 has the following immediate implications.

1. In case τ = 0 there are no solutions of ∂J(u) = ∂J0(u) = 0 in V (q, ε), cf. Theorem 1.4 in [14].

2. In case τ > 0 every solution ∂Jτ (u) = 0 in V (q, ε) satisfies

λ1 ' . . . ' λq '
1√
τ

and has isolated simple blow-ups occurring close to{
{∇K = 0} ∩ {c̃2 ∆K

K + c̃3H < 0} for n = 4

{∇K = 0} ∩ {∆K < 0} for n ≥ 5.

3. The αj , λj and aj’s are determined to a precision o(τ
3
2 ) +O(|∂Jτ (u)|). Indeed, for e.g. n = 6

|τ +
c̃2
c̃1

∆K(xj)

K(xj)λ2
j

|

determines λj up to the latter error from τ and xj, whence aj is determined as well by

| āj
λj

+
č4
č3

(∇2K(xj))
−1∇∆K(xj)

λ3
j

|

from λj and xj, and finally up to the multiplicative constant Θ also αj is determined by

|αj −Θ · p−1

√
λθj

K(aj)
|
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from λj , aj and τ , recalling θ = n−2
2 τ and p = n+2

n−2 − τ . As for the multiplicative constant we have

1 = kτ =

∫
K(αiϕi + v)p+1dµg0

=

∫
K(αiϕi)

p+1 =
∑
i

K(ai)

λθi
αp+1
i

(
c̄0 + c̄1τ + c̄2

∆K(xi)

K(xi)λ2
i

)

)

up to some o(τ
3
2 ), cf. (4.5), Lemma 4.2, Lemma 2.2 and (5.8), whence

1 = Θp−1
∑
i

α2
i

(
c̄0 + c̄1τ + c̄2

∆K(xi)

K(xi)λ2
i

)

)
= Θp+1

∑
i

(
λθj

K(aj)

) 2
p−1 (

c̄0 + c̄1τ + c̄2
∆K(xi)

K(xi)λ2
i

)

)
up to the same error and so the multiplicative constant Θ is determined as well.

Proof of Theorem 2. First we note that kτ = 1 implies, that all the αi do not tend to infinity and least
one of them does not approach zero. Hence by definition of V (q, ε) all the αi are uniformly bounded
away from zero and infinity. Secondly, if for some index j = 1, . . . , q we have

∣∣1− α2

αp+1
K,τ

Kj

λθj
αp−1
j

∣∣� τ +
∑
r 6=s

|∇Kr|
λr

+
1

λ2
r

+ εr,s,

then the claim follows from Lemma 5.1, whence we may henceforth assume that for all j = 1, . . . , q

α2

αp+1
K,τ

Kj

λθj
αp−1
j = 1 +O

(
τ +

∑
r 6=s

|∇Kr|
λr

+
1

λ2
r

+ εr,s
)
. (6.1)

Thus we have to show

|∂Jτ (u)| & τ +

q∑
j=1

|∇Kj |
λj

+
1

λ2
j

+
∑
r 6=s

εr,s (6.2)

and arguing by contradiction we may assume that

|∂Jτ (u)| . τ +

q∑
j=1

|∇Kj |
λj

+
1

λ2
j

+
∑
r 6=s

εr,s.

Then by Lemmata 5.2 and 5.3 we have

(a) ∂Jτ (u)φ3,j =
−αj

(α
2n
n−2

K,τ )
n−2
n

(č3
∇Kj

Kjλj
+ b̌3

∑
j 6=i

αi
αj

∇aj
λj

εi,j);

(λ) ∂J(u)φ2,j =
αj

(α
2n
n−2

K,τ )
n−2
n

(
c̃1τ + c̃2

∆Kj

Kjλ2
j

− b̃2
∑
j 6=i

αi
αj
λj∂λjεi,j

)

up to some errors of the form O( 1
λ3
j
) +O(τ2 +

∑
r 6=s

|∇Kr|2
λ2
r

+ 1
λ4
r

+ ε
n+2
n

r,s ), where we have to add for (λ)

d̃1
Hi
λ2
i
to c̃2 ∆Ki

Kiλi2
in case n = 4. Ordering indices so that λ1 ≥ . . . ≥ λq ⇐⇒ 1

λ1
≤ . . . ≤ 1

λq
and recalling

(2.9), we have

−λj∂λjεi,j =
n− 2

2

λj
λi
− λi

λj
+ λiλjγnG

2
2−n
g0 (ai, aj)

(
λj
λi

+ λi
λj

+ λiλjγnG
2

2−n
g0 (ai, aj))

n
2

and therefore

λj∂λjεi,j =
2− n

2
εi,j +O(

1

λ4
j

+ ε
n+2
n

i,j ) in case j < i or dg0(ai, aj) 6= o(1). (6.3)
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From (a) and (λ) above we find uniformly bounded vector fields A1,Λ1 on V (q, ε) such that

(A1) ∂Jτ (u)A1 &
|∇K1|
λ1

+O(
1

λ3
1

+
∑
1 6=i

ε1,i) +O
(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+ ε
n+2
n

r,s

)
;

(Λ1) ∂Jτ (u)Λ1 'c̃1τ + c̃2
∆K1

K1λ2
1

+ c̃4
∑
16=j

αi
α1
ε1,i +O(

1

λ3
1

) +O
(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+ ε
n+2
n

r,s

)
with c̃4 = n−2

2 b̃2, and combining X1 = Λ1 + εA1 with some ε > 0 small and fixed such that we keep a
positive coefficient in front of ε1,i, we get

(C1) B1 = ∂Jτ (u)X1 &
(
c̃1τ+c̃2

∆K1

K1λ2
1

)
+ε
( |∇K1|

λ1
+
∑
16=i

ε1,i

)
+O(

1

λ3
1

)+O(τ2+
∑
r 6=s
r,s>1

|∇Kr|2

λ2
r

+
1

λ4
r

+ε
n+2
n

r,s ).

Likewise from (a) and (λ) we find uniformly bounded vector fields A2,Λ2 defined on V (q, ε) such that

(A2) ∂Jτ (u)A2 &
|∇K2|
λ2

+O
( 1

λ3
2

+
∑
26=i

ε1,i

)
+O

(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+ ε
n+2
n

r,s

)
;

(Λ2) ∂Jτ (u)Λ2 'c̃1τ + c̃2
∆K2

K2λ2
2

+ c̃4
∑
2<i

αi
α2
ε1,i +O

( 1

λ3
2

+ ε1,2

)
+O

(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+ ε
n+2
n

r,s

)
and combining them as X2 = Λ2 + εA2 with ε > 0 small we obtain

B2 = ∂Jτ (u)X2 &
(
c̃1τ + c̃2

∆K2

K2λ2
2

)
+ ε
( |∇K2|

λ2
+
∑
2<i

ε2,i

)
+O

( 1

λ3
2

+ ε1,2

)
+O

(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+ ε
n+2
n

r,s

)
.

Therefore combining B1 and B2 so that the coefficient of εi,j is positive

(C2) B1 + εB2 &
2∑
j=1

[
εj
(
c̃1τ + c̃2

∆Kj

Kjλ2
j

)
+ εj+1

( |∇Kj |
λj

+
∑
j 6=i

εj,i
)]

+O
( 1

λ3
2

)
+O

(
τ2 +

∑
r 6=s
r,s>2

|∇Kr|2

λ2
r

+
1

λ4
r

+ ε
n+2
n

r,s

)
.

Iteratively, for all k = 1, . . . , q we can find uniformly bounded vector fields Ak,Λk such that

(Ak) ∂Jτ (u)Ak &
|∇Kk|
λk

+O
( 1

λ3
k

+
∑
k 6=i

εk,i
)

+O
(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+ ε
n+2
n

r,s

)
;

(Λk) ∂Jτ (u)Λk 'c̃1τ + c̃2
∆Kk

Kkλ2
k

+ c̃4
∑
k<i

αi
αk
εk,i +O

( 1

λ3
k

+
∑
k>i

εk,i
)

+O
(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+ ε
n+2
n

r,s

)
;

(Ck)

k∑
j=1

εjBj &
k∑
j=1

[
εj
(
c̃1τ + c̃2

∆Kj

Kjλ2
j

)
+ εj+1

( |∇Kj |
λj

+
∑
j 6=i

εj,i
)]

+O
( 1

λ3
k

)
+O

(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+ ε
n+2
n

r,s

)
,

where we have to add c̃3
Hj
λ2
j
to c̃2

∆Kj
Kjλ2

j
in case n = 4, where

c̃3 = d̃1 (6.4)
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In particular

(Cq)

k∑
j=1

εjBj &
k∑
j=1

[
εj
(
c̃1τ + c̃2

∆Kj

Kjλ2
j

)
+ εj+1

( |∇Kj |
λj

+
∑
j 6=i

εj,i
)]

+O
(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+ ε
n+2
n

r,s

)
.

Then, if either

1

λ2
q

�τ +

q∑
j=1

|∇Kj |
λj

+
∑
r 6=s

εr,s or
1

λ2
q

� τ +

q∑
j=1

|∇Kj |
λj

+
∑
r 6=s

εr,s,

we obviously have (6.2) from (Cq). Thus we may assume

1

λ2
q

' τ +

q∑
j=1

|∇Kj |
λj

+
∑
r 6=s

εr,s, (6.5)

whence we may simplify the above formulas to

(Ak) ∂Jτ (u)Ak &
|∇Kk|
λk

+O
(∑
k 6=i

εk,i
)

+ o
( 1

λ2
q

)
;

(Λk) ∂Jτ (u)Λk 'c̃1τ + c̃2
∆Kk

Kkλ2
k

+ c̃4
∑
k<i

αi
αk
εk,i +O

(∑
k>i

εk,i
)

+ o
( 1

λ2
q

)
;

(Ck)

k∑
j=1

εjBj &
k∑
j=1

[
εj
(
c̃1τ + c̃2

∆Kj

Kjλ2
j

)
+ εj+1

( |∇Kj |
λj

+
∑
j 6=i

εj,i
)]

+ o
( 1

λ2
q

)
,

adding c̃3
Hj
λ2
j
to c̃2

∆Kj
Kjλ2

j
for n = 4. We first consider the pair (q − 1, q). Suppose

1

λ2
q−1

= o(
1

λ2
q

).

To prove (6.2) we then may assume from (Cq−1) and (6.5) that also τ +
∑
r 6=s εr,s = o( 1

λ2
q
), since

q−1∑
j=1

∑
j 6=i

εi,j =
∑

q−1≥r 6=s

εr,s =
∑
r 6=s

εr,s.

As the coefficient of λ−2
q in (Λq) is non zero by non-degeneracy, (6.2) follows. So we may assume

1

λq−1
' 1

λq
,

and therefore, still by (6.5),

|∇Kq−1| .
1

λq−1
, |∇Kq| .

1

λq
.

So, if aq−1 is close to aq, these points are close to the same critical point of K, which, as K is Morse,
implies d(aq−1, aq)) . 1

λq
' 1

λq−1
. This however contradicts the fact that by Proposition 3.1

εq−1,q '
1

(λq−1λqd2(aq−1, aq))
n−2

2

−→ 0.
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Therefore for the pair (q − 1, q) we may assume

|∇Kq−1|, |∇Kq| .
1

λq−1
' 1

λq
, and d(aq−1, aq) > c.

In particular in case n ≥ 5 we have εq−1,q ' 1
λn−2
q

= o( 1
λ2
q
), whereas in case n = 4

εq−1,q =
Gg0

(aq−1, aq)

γnλq−1λq
+O(

1

λ4
q

).

We turn to consider the triple (q − 2, q − 1, q). Suppose that 1
λ2
q−2

= o( 1
λ2
q−1

). To get (6.2) we then may
assume from (Cq−2) and (6.5) that

τ +
∑

q−2≥r 6=s

εr,s = o(
1

λ2
q

)

as well. But then clearly in case n ≥ 5 we obtain (6.2) from (Λq−1) or (Λq), since εq−1,q = o(λ−2
q ) is

already known. In case n = 4 we have to argue more subtly. From (λ) we find

∂J(u)φ2,q−1 =
αq−1

(α
2n
n−2

K,τ )
n−2
n

(
c̃2

∆Kq−1

Kq−1λ2
q−1

+ c̃3
Hq−1

λ2
q−1

+ c̃4
αq
αq−1

Gg0
(aq−1, aq)

γnλq−1λq

)

and
∂J(u)φ2,q =

αq

(α
2n
n−2

K,τ )
n−2
n

(
c̃2

∆Kq

Kqλ2
q

+ c̃3
Hq

λ2
q

+ c̃4
αq−1

αq

Gg0
(aq−1, aq)

γnλq−1λq

)
up to an error of order o( 1

λ2
q
), cf. (6.3). Obviously (6.2) then follows if either

c̃2
∆Kq

Kqλ2
q

+ c̃3
Hq

λ2
q

> 0 or c̃2
∆Kq−1

Kq−1λ2
q−1

+ c̃3
Hq−1

λ2
q−1

> 0.

We may thus assume both summands to be negative. Recalling (6.1), we then obtain

∂Jτ (u)

(
βq−1φ2,q−1

βqφ2,q

)
=

(
1

λq−1
0

0 1
λq

)c̃2 ∆Kq−1

K2
q−1

+ c̃3
Hq−1

Kq−1
c̃4

G0(aq−1,aq)

γn(Kq−1Kq)
1
2

c̃4
G0(aq−1,aq)

γn(Kq−1Kq)
1
2

c̃2
∆Kq
K2
q

+ c̃3
Hq
Kq

( 1
λq−1

1
λq

)

up to an error o( 1
λ2
q
) letting

Kjαjβj = (α
2n
n−2

K,τ )
n−2
n for j = q − 1, q,

and thus |∂Jτ (u)| & λ−2
q , since otherwise aq−1, aq close to xq−1, xq ∈ {∇K = 0}∩{c̃2 ∆K

K + c̃3H < 0} and

Mq−1,q =

c̃2 ∆K(xq−1)
K(xq−1)2 + c̃3

H(xq−1)
K(xq−1) c̃4

G0(xq−1,xq)

γn(K(xq−1)K(xq))
1
2

c̃4
G0(xq−1,xq)

γn(K(xq−1)K(xq))
1
2

c̃2
∆K(xq)
K(xq)2 + c̃3

H(xq)
K(xq)


would have after a blow-up for τ −→ 0 a vanishing eigenvalue with strictly positive eigenvector, which
by Remark 6.1 is impossible. So (6.2) again follows. We may thus assume

1

λq−2
' 1

λq−1
' 1

λq

and therefore by (6.5)

|∇Kq−2| .
1

λq−2
, |∇Kq−1| .

1

λq−1
, |∇Kq| .

1

λq
.
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So, if aq−2 is close to either aq−1 or aq, these points are close to the same critical point of K, whence

εq−2,q−1 ' 1 or εq−2,1 ' 1

as before, contradicting Proposition 3.1. Thus for (q − 2, q − 1, q) we may assume

|∇Kq−2, |, |∇Kq−1|, |∇Kq| .
1

λq−2
' 1

λq−1
' 1

λq

and
d(aq−2, aq−1), d(aq−2, aq), d(aq−1, aq) > c

analogously to the previous case of the pair (q − 1, 1). In particular in case n ≥ 5

εq−2,q−1, εq−2,q, εq−1,q '
1

λn−2
q

= o
( 1

λ2
q

)
,

whereas in case n = 4 up to an error O( 1
λ4
q
)

εq−2,q−1 =
Gg0(aq−2, aq−1)

γnλq−2λq−1
, εq−2,q =

Gg0(aq−2, aq)

γnλq−2λq
, εq−1,q =

Gg0(aq−1, aq)

γnλq−1λq
.

Iteratively, we then may assume for all k 6= l = 1, . . . , q

|∇Kk| .
1

λk
' 1

λl
and d(ak, al) > c.

In particular εk,l = o( 1
λ2
q
) for n ≥ 5 and εk,l =

Gg0 (ak,al)

λkλl
for n = 4. But then

(Λk) ∂Jτ (u)Λk '(c̃1τ + c̃2
∆Kk

Kkλ2
k

) + o
( 1

λ2
q

)
in case n ≥ 5 and thus

|∂Jτ (u)| &
∣∣∣∣c̃1τ + c̃2

∆Kk

Kkλ2
k

∣∣∣∣
up to some o( 1

λ2
q
). Therefore (6.2) holds unless c̃1τ + c̃2

∆Kk
Kkλ2

k
= o( 1

λ2
q
), while now for n = 4

∂J(u)φ2,j =
αj

(α
2n
n−2

K,τ )
n−2
n

(
c̃1τ + c̃2

∆Kj

Kjλ2
j

+ c̃3
Hj

λ2
j

+ c̃4
∑
j 6=i

αi
αj

Gg0
(ai, aj)

γnλiλj

)

up to some o( 1
λ2
q
), cf. (6.3), for all j = 1, . . . , q. Obviously (6.2) then follows, if for some j = 1, . . . , q

c̃2
∆Kj

Kjλ2
j

+ c̃3
Hj

λ2
j

> 0,

whence we may assume all these summands to be negative, proving (ii). From (λ) and (6.1) we then have

∂J(u)(βjφ2,j) =c̃1
τ

Kj
+ c̃2

∆Kj

K2
j λ

2
j

+ c̃3
Hj

Kjλ2
j

+ c̃4
∑
j 6=i

Gg0
(ai, aj)

γn
√
KiKjλiλj

up to some o( 1
λ2
q
) letting as before βj =

(α
2n
n−2
K,τ )

n−2
n

Kjαj
. Therefore

|∂J(u)| &

∣∣∣∣∣∣∣

c̃1τ
K1

...
c̃1τ
Kq

− diag(
1

λ1
, . . . ,

1

λq
)Ma1,...,aq


1
λ1

...
1
λq


∣∣∣∣∣∣∣
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up to the same error. This implies that (6.2) holds true, unless we can solve
c̃1τλ1

K1

...
c̃1τλq
Kq

 =Ma1,...,aq


1
λ1

...
1
λq

+ o
( 1

λq

)
(6.6)

and we may already assume, by (ii), that aj is close to

xj ∈ {∇K = 0} ∩ {c̃2
∆K

K
+ c̃3H < 0}.

In particular (6.2) follows in case τ = 0 by the non-degeneracy condition on K, proving (i). In case τ > 0,
writing σj =

√
τλj , we find passing to the limit τ −→ 0, that there has to exist a solution to

c̃1


σ1

K(x1)

...
σq

K(xq)

 =Mx1,...,xq


1
σ1

...
1
σq

 . (6.7)

In particular, testing the above relation with x = xx1,...,xq , cf. Remark 6.1, we find

0 ≤ c̃1
∑
j

xjσj
Kj

= λ
∑
j

xj
σj
,

where λ = λx1,...,xq is the least eigenvalue ofMx1,...,xq . Thus necessarilyMx1,...,xq > 0. Since

F (σ) =Mx1,...,xq


1
σ1

...
1
σq




1
σ1

...
1
σq

+ 2c̃1
∑ σi

Ki

is a sum of convex functions, there exists a unique critical point of F satisfying (6.7). Hence we have
comparability λ1 ' . . . ' λ1 ' 1/

√
τ ' λ like in case n ≥ 5. Thus (iv) follows upon checking constants for

n = 4, i.e. c̄0 =
∫
Rn

( 1
1+r2 )n = ω4

12 and

1. c̃1 = n(n−1)(n−2)2

c̄
n−2
n

0

∫
Rn

1−r2

(1+r2)n+1 ln 1
1+r2 dx = 2

√
3ω4;

2. c̃2 = − (n−1)(n−2)

c̄
n−2
n

0

∫
Rn

r2(1−r2)
(1+r2)n+1 dx =

√
3ω4;

3. c̃3 = d̃1 = − 4n(n−1)

c̄
n−2
n

0

∫
Rn

rn(n+2−nr2)
(1+r2)n+2 = 24

√
3ω4;

4. c̃4 = n−2
2 b̃2 = 2n(n−1)(n−2)

c̄
n−2
n

0

∫
Rn

1

(1+r2)
n+2

2

= 24
√

3ω4,

(6.8)

cf. (7.14) from the corresponding Lemma 5.2. We turn next to (iii). In case n ≥ 5 we may now assume

c̃1τ + c̃2
∆Kk

Kkλ2
k

= o(
1

λ2
) and εk,l = o(

1

λ2
) for λk ' λl ' λ,

which by Lemma 5.1 implies

|∂Jτ (u)| &

∣∣∣∣∣1− α2

αp+1
K,τ

Kj

λθj
αp−1
j

∣∣∣∣∣+ o(
1

λ2
).

Note that αp−1
j = Θp−1 · λ

θ
j

Kj
is modulo scaling the unique and non-degenerate maximum of

α = (α1, . . . , αq) −→
α2

(αp+1
K,τ )

2
p+1

=

∑
α2
i

(
∑ Ki

λθi
αp+1
i )

2
p+1

.
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Now (6.2) follows, unless αp−1
j = Θp−1 · λ

θ
j

Kj
+ o( 1

λ2 ) and there holds

|∂Jτ (u)| &

∣∣∣∣∣∣αj −Θ · p−1

√
λθj
Kj

∣∣∣∣∣∣+ o(
1

λ2
).

In case n = 4 we may rewrite Lemma 5.1 up to some o( 1
λ2 ) with constant given below as

∂Jτ (u)φ1,j =
αj

(α
2n
n−2

K,τ )
n−2
n

(
c̀0(1− α2

αp+1
K,τ

Kj

λθj
αp−1
j )

−Kj(c̀2
∆Kj

K2
j λ

2
j

+ d̀1
Hj

Kjλ2
j

+ b̀1
∑
j 6=i

Gg0(ai, aj)

γn
√
KiKjλiλj

)

+
α

2n
n−2

K

(α2)2
(c̀2
∑
k

∆Kk

K2
kλ

2
k

+ d̀1

∑
k

Hk

Kkλ2
k

+ b̀1
∑
k 6=l

Gg0
(ak, al)

γn
√
KkKlλkλl

)
(6.9)

using (6.1) and λθj ' ( 1√
τ

)
n−2

2 τ = 1 +O( lnλ
λ2 ). Moreover, up to an error o(1) there holds

(α2)2

α
2n
n−2

K

=
α2
∑
i α

2
i

α
2n
n−2

K

=
α2
∑
i
α

2n
n−2
K

α2
1
Ki

α
2n
n−2

K

=
∑
i

1

Ki
,

and due to (6.6)

c̃2
∑
k

∆Kk

K2
kλ

2
k

+ c̃3
∑
k

Hk

Kkλ2
k

+ c̃4
∑
k 6=l

Gg0(ak, al)

γn
√
KkKlλkλl

=Ma1,...,aq


1
λ1

...
1
λq




1
λ1

...
1
λq

 = c̃1
∑
i

τ

Ki

and

c̃2
∆Kj

K2
j λ

2
j

+ c̃3
Hj

Kjλ2
j

+ c̃4
∑
j 6=i

Gg0
(ai, aj)

γn
√
KiKjλiλj

=Ma1,...,aq


1
λ1

...
1
λq

 ej
λj

= c̃1
τ

Kj

up to some o( 1
λ2 ). We may therefore cancel out the interaction terms in (6.9) and obtain

∂Jτ (u)φ1,j =
αj

(α
2n
n−2

K,τ )
n−2
n

(
c̀0(1− α2

αp+1
K,τ

Kj

λθj
αp−1
j )−Kj((c̀2 −

b̀1
c̃4
c̃2)

∆Kj

K2
j λ

2
j

+ (d̀1 −
b̀1
c̃4
c̃3)

Hj

Kjλ2
j

)

+
1∑
k

1
Kk

((c̀2 −
b̀1
c̃4
c̃2)
∑
k

∆Kk

K2
kλ

2
k

+ (d̀1 −
b̀1
c̃4
c̃3)
∑
k

Hk

Kkλ2
k

)
.

(6.10)

Checking constants for n = 4, i.e. with c̄0 =
∫
Rn

dx
(1+r2)n = ω4

12

1. c̀0 = 8n(n− 1)(
∫
Rn

dx
(1+r2)n )

2
n = 16

√
3ω4, c̀2 = 8n(n−1)

c̄
n−2
n

0

1
2n

∫
Rn

r2

(1+r2)n = 4
√

3ω4;

2. d̀1 = 8n(n−1)

c̄
n−2
n

0

∫
Rn

rn

(1+r2)n+1 = 24
√

3ω4, b̀1 = 8n(n−1)(n+2)

c̄
n−2
n

0 (n−2)

∫
Rn

1

(1+r2)
n+2

2

= 144
√

3ω4,

cf. (7.9) from the corresponding Lemma 5.1, we then find

|∂Jτ (u)| &

∣∣∣∣∣1− α2Kjα
p−1
j

αp+1
K,τ λ

θ
j

+
1

8

(
∆Kj

Kjλ2
j

− 60
Hj

λ2
j

−

∑
k( ∆Kk
K2
kλ

2
k
− 60 Hk

Kkλ2
k

)∑
k

1
Kk

)∣∣∣∣∣+ o(
1

λ2
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Note that setting

Ej =
1

8

(
∆Kj

Kjλ2
j

− 60
Hj

λ2
j

−

∑
k( ∆Kk
K2
kλ

2
k
− 60 Hk

Kkλ2
k

)∑
k

1
Kk

)
,

there holds Ej = O( 1
λ2 ),

∑
j
Ej
Kj

= 0, and αp−1
j = Θp−1 λ

θ
j

Kj
(1 + Ej) is modulo scaling the unique and

non-degenerate maximum of

α = (α1, . . . , αq) −→
α2

(αp+1
K

1+E ,τ
)

2
p+1

=

∑
αi

(
∑ Ki

λθi (1+Ei)
αp+1
i )

2
p+1

,

and satisfies

α2

αp+1
K,τ

Kj

λθj
αp−1
j =Θp−1 · α2

αp+1
K,τ

(1 + Ej) =

∑
[
λθi
Ki

(1 + Ei)]
2
p−1∑ Ki

λθi
[
λθi
Ki

(1 + Ei)]
p+1
p−1

(1 + Ej)

=

∑
(
λθi
Ki

)
2
p−1 + 2

p−1

∑
(
λθi
Ki

)
2
p−1Ei∑

(
λθi
Ki

)
2
p−1 + p+1

p−1

∑
(
λθi
Ki

)
2
p−1Ei

(1 + Ej) = 1 + Ej + o(
1

λ3
)

due to (
λθi
Ki

)
2
p−1 = 1

Ki
+O( lnλ

λ2 ). Thus (6.2) follows unless, up to some o( 1
λ2 ),

|∂Jτ (u)| &

∣∣∣∣∣∣∣αj −Θ
p−1

√√√√ λθj
Kj

(
1 +

1

8
(

∆Kj

Kjλ2
j

− 60
Hj

λ2
j

−

∑
k( ∆Kk
K2
kλ

2
k
− 60 Hk

Kkλ2
k

)∑
k

1
Kk

)

)∣∣∣∣∣∣∣ . (6.11)

We have therefore proved (i)-(iv), which will be used for showing the second statement of the proposition.
In this case the error terms in Lemmata 5.1, 5.2 and 5.3 are of type o(λ−3) +O(|∂Jτ (u)|2). This follows

immediately in case n ≥ 5, while the terms ε
n+2
n

r,s ' λ−3 in case n = 4, for which however the underlying
estimates can be improved to derive a quadratic error in εr,s, cf. [38]. Let us first treat the lower bounds
arising from Lemma 5.3. In case n ≥ 5 we find from the latter lemma

|∂Jτ (u)| &|č3
∇Kj

Kjλj
+ č4

∇∆Kj

Kjλ3
j

| & |č3
∇K(aj)

λj
+ č4

∇∆K(xj)

λ3
j

|

up to some o(λ−3) and therefore, writing aj = expgxj
(āj), that

|∂Jτ (u)| &| āj
λj

+
č4
č3

(∇2K(xj))
−1∇∆K(xj)

λ3
j

|+ o(
1

λ3
).

Similarly in case n = 4 we find up to some o(λ−3)

|∂Jτ (u)| & |č3
∇Kj

Kjλj
+ č4

∇∆Kj

Kjλ3
j

+ b̌3
∑
j 6=i

αi
αj

∇ajGg0
(ai, aj)

γnλiλ2
j

|.

From (iii) we have αi = Θ(
λθi
Ki

)
1
p−1 + O( 1

λ2 ), which by θ = n−2
2 τ and λi ' τ−

1
2 due to (iv) becomes

αi = Θ√
Ki

+O( lnλ
λ2 ). Thus, still up to some o(λ−3)

|∂Jτ (u)| &|∇K(aj)

λj
+
č4
č3

∇∆K(xj)

λ3
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|
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(∇2K(xj))
−1∇∆K(xj)

λ3
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+
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√
K3(xj)

K(xi)
(∇2K(xj))

−1∇xjGg0
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and checking constants from Lemma 5.3, cf. (7.20), we have

č3 =

∫
Rn

4(n− 1)(n− 2)dx

(1 + r2)n
= 3ω4, č4 =

∫
Rn

2(n− 1)r2dx

(1 + r2)n
= ω4, b̌3 =

∫
Rn

8n(n− 1)dx

(1 + r2)
n+2

2

= 24ω4.

We conclude that, up to some o( 1
λ3 )

|∂Jτ (u)| &

| ājλj + 1
3 (∇2K(xj))

−1∇∆K(xj)

λ3
j

+ 8
∑
j 6=i

√
K3(xj)
K(xi)

(∇2K(xj))
−1∇xjGg0 (xi,xj)
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j
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| ājλj + č4
č3

(∇2K(xj))
−1∇∆K(xj)

λ3
j
| for n ≥ 5

 (6.12)

By this, i.e. āj = O( 1
λ2 ), and αi = Θ√

Ki
+O( lnλ

λ2 ) we then infer from Lemma 5.2 that up to some o( 1
λ3 )
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+ d̃1
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|

with constants, cf. above, given for n = 4, 5 respectively by

1. c̃2
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∫
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(1+r2)n+1 dx

n(n−2)
∫
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1−r2
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1+r2
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2
9 ;

2. c̃3
c̃1

= d̃1

c̃1
= 4

(n−2)2

∫
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rn(n+2)−nr2

(1+r2)n+2 dx∫
Rn

1−r2
(1+r2)n+1 ln( 1
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9π ;
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2
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= c̃4
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= 2
n−2

∫
Rn
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(1+r2)
n+2

2∫
Rn

1−r2
(1+r2)n+1 ln( 1

1+r2
)dx

= 12, 512
9π ,

we conclude
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+
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]| for n = 5
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∆Kj
Kjλ2

j
| for n ≥ 6

 . (6.13)

By similar reasoning, using āj = O( 1
λ2 ) and αi = Θ√

Ki
+O( lnλ

λ2 ) we finally have, up to some o( 1
λ3 )
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∑
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k
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2
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j
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j
−

∑
k(

∆Kk
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k
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)| for n = 5

|1− α2Kjα
p−1
j

αp+1
K,τλ

θ
j

| for n ≥ 6

 .

This follows in case n ≥ 6 immediately from Lemma 5.1 and for n = 4 by repeating the arguments leading
to (6.9) and (6.10), while the case n = 5 follows by arguing as in case n = 4 using (6.13) to cancel out
the interaction terms when passing from (6.9) to (6.10). Then arguing as for the passage from (6.10) to
(6.11) we finally obtain that up to some o( 1

λ3 )

|∂Jτ (u)| &



|αj −Θ
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(1 + 1
8 (
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j
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(1− 1
90 (

∆Kj
Kjλ2

j
+ 2816

π
Hj
λ3
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∑
k(

∆Kk
K2
k
λ2
k

+ 2816
π

Hk
Kkλ

3
k

)∑
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1
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))| for n = 5

|αj −Θ p−1

√
λθj
Kj
| for n ≥ 6


. (6.14)

Thus the second statement of the theorem follows from combining (6.12), (6.13) and (6.14).
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In [36] the next result will be needed.

Lemma 6.1. For every u ∈ V (q, ε) there holds

|∂Jτ (u)| . τ +
∑
r 6=s

|∇Kr|
λr

+
1

λ2
r

+
1

λn−2
r

+ |1− α2

αp+1
K,τ

Kr

λθr
αp−1
r |+ ε

n+2
2n
r,s + ‖v‖.

Proof. Recalling (4.2) we can find |βk.i|, |β| = O(1) and ν ∈ Hu(p, ε), ‖ν‖ = 1 such that

|∂Jτ (u)| . |βk,i||∂Jτ (u)φk,i|+ |β||∂Jτ (u)ν| .
∑
k,i

|∂Jτ (u)φk,i|+ |∂Jτ (u)ν|.

From Lemmata 5.1, 5.2 and 5.3 we then find

∑
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|∂Jτ (u)φk,i| . τ +

q∑
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|∇Kj |
λj

+
1

λ2
j

+
1
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j
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K,τ

Kj

λθj
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j |+

∑
r 6=s

εr,s + |∂Jτ (u)|2,

whereas from Lemma 4.1 we have

∂Jτ (u)ν = ∂Jτ (αiϕi)ν +O(‖v‖) = O(τ +
∑
r

|∇Kr|
λr

+
1

λ2
r

+
1

λn−2
r

+
∑
r 6=s

ε
n+2
2n
r,s + ‖v‖).

From this the claim follows.

7 Appendix

7.1 Interactions
Proof of Lemma 2.2. (i) follows using straightforwardly the expression of φk,i.

(ii) (α) Case k = 1. We have φk,i = ϕi for k = 1, and thus for c > 0 small∫
ϕ

2n
n−2−τ
i dµg0 =

∫
Bc(ai)

u−τai

(
λi

1 + λ2
i γnG

2
2−n
ai

)n−θ
dµgai +O

(
1

λn−θi

)
.

On Bc(ai) one has u−τai = 1 +O(τ |x− ai|2), and by (2.8)

γnG
2

2−n
ai = r2 +O


r3 for n = 3
r4 for n = 4
r5 for n = 5

r6 ln r for n = 6
r6 for n ≥ 7

 ,

whence passing to normal coordinates at ai

∫
ϕ

2n
n−2−τ
i dµg0

=

∫
Bcλi (0)

λ−θi dx

(1 + r2)n−θ
+O


1

λ1+θ for n = 3
1

λ2+θ for n = 4
1

λ3+θ for n = 5
lnλ
λ4+θ for n = 6

1
λ4+θ for n ≥ 7


up to some error O( τ

λ2+θ
i

), whence the claim follows with c1 =
∫
Rn

dx
(1+r2)n .

(β) Case k = 2. The proof works analogously to the one of case k = 1 above.
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(γ) Case k = 3. We have φk,i = 2−n
2 uai

λiγn∇aiG
2

2−n
ai

1+λ2
iγnG

2
2−n
ai

ϕi +
∇aiuai
λi

ϕi, whence

γn(∇aiG
2

2−n
ai )(x) = −2x+O(r2, r3, r4, r5 ln r, r5) for n = 3, . . . , 6 and n ≥ 7.

Moreover uai = 1 +O(r2
ai), implies ∇aiuai = O(rai). Thus

∫
ϕ

4
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=
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λ−2−θ for n = 4
λ−3−θ for n = 5

lnλ
λ4+θ for n = 6
λ−4−θ for n ≥ 7

 .

From this the claim follows.

(iii) We just prove the case k = 2 and start showing that

−λθiλj
∫
ϕ
n+2
n−2−τ
i ∂λjϕjdµg0

=− λθiλj
∫
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i ∂λjϕ
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j dµg0
(7.1)
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∑
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λ
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+ε
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−λθiλj
∫
ϕ
n+2
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ϕ
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1
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j

), whence using Lemma 2.1 we find
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2n
i,j ). Indeed we clearly have λ−
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2

i λ
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2
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(
λ−1
i ε
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)
, and the differ-

ence from Lg0ϕi to 4n(n− 1)ϕ
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i can be estimated by Lemma 2.1 via quantities of the type∫
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rαaiϕ
β
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=
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αϕ
β−n+2

2n

0,λ ‖
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( 2n
n+2

)2

)
,

thanks to case (v). Passing back to integrating on the whole manifold M we find , estimating also
mixed products of gradients of ϕi and ϕj ,

−λθiλj
∫
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By direct calculation ∆g0
ϕ−τi = O(τϕ

4
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i ), whence
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Now applying Lemma 2.1 as before, but in differentiated form, (7.1) follows. Let
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λ
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+ ε
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denote a quantity such order. We now assume the non-exclusive alternative

ε
2

2−n
i,j ∼

λi
λj

∨ ε
2

2−n
i,j ∼ λiλjd

2(ai, aj)�
λj
λi
. (7.2)

For c > 0 small and fixed we have by the expression in (2.8)
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whence passing to gai-normal coordinates and recalling (2.8) we find
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x
λi
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up to the error Ri,j . Indeed for e.g. n ≥ 7 (2.8) tells us that on Bc(0)
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in conformal normal coordinates, whence by Hölder’s inequality and Lemma 2.2∫
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.

Due to (7.2) we have that either

ε
2
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2
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2
2−n
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λi
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,

and for ε > 0 sufficiently small may expand on
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}
∪
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aj (ai) + 1

+
2

( λiλj + λiλjγnG
2

2−n
aj (ai))

n
2

γn∇G
2

2−n
aj (ai)λjx

1 + λ2
jγnG

2
2−n
aj (ai)

+
O(
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.
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Using radial symmetry we then get, with b̃2 = n−2
2

∫
Rn

dx

(1+r2)
n+2

2

= n−2
2 b1,

−λθiλj
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ϕ
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i ϕjdµg0
=

b̃2uaj (ai)

( λiλj + λiλjγnG
2

2−n
aj (ai))

n−2
2

λ2
jγnG

2
2−n
aj (ai)− 1

λ2
jγnG

2
2−n
aj (ai) + 1
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In case ε
2
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, we obviously have
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2 −2θ

= o(ε
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Changing coordinates via di,j = exp−1
gai

expgaj
, we get

IB1 ≤
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and thus IB1 = O(ε
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i,j ) = o(ε
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n

i,j ) using, (7.2). Moreover
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=
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.

This shows IAc . IB1 + IB2 = o(ε
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i,j ), and we arrive at
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up to some error of the form Ri,j . Due to conformal covariance, there holds
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and we therefore conclude

− λθiλj
∫
ϕ
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2
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2
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n
2

+Ri,j . (7.4)

We turn to the case left by (7.2), i.e.

ε
2

2−n
i,j ∼

λj
λi

(7.5)

and, recalling (7.1), estimate for c > 0 small

− λθiλj
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up to some error Ri,j , whence up to the same error

−λθiλj
∫
ϕi∂λjϕ

n+2
n−2

j dµg0 =
n+ 2

2

∫
Bcλj (0)

r2 − 1

r2 + 1
(

1
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2
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(
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+ λiλjγnG
2
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x
λj
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.

On A =

{∣∣ x
λj

∣∣ ≤ ε√γnG 2
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}
∪
{∣∣ x

λj

∣∣ ≤ ε 1
λi

}
we may expand for ε > 0 sufficiently small
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With analogous estimates as in the previous case we derive
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with

b̄2 =
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2
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r2 + 1
(

1

1 + r2
)
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2 dx (7.6)

and indeed b̄2 = b̃2 = n−2
2n ωn whence, using conformal covariance, as before (7.5) implies

−λj
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=
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2
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2
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Now the claim follows comparing (7.4) under (7.2) and (7.7) under (7.5).

(iv) The first claim, i.e. that for k 6= l∫
ϕ

4
n−2−τ
i φk,iφl,idµg0

= O
( 1

λn−2+θ
i

+
1

λ2+θ
i

)
follows like in case (ii), just with vanishing leading terms. The second one is proved analogously to
(ii), cf. case (α) in the proof.
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(v) The case τ = 0 is known, cf. e.g. [38], Lemma 3.4. By Lemma 2.2 we therefore have∫
ϕα−τi ϕβj dµg0 =

∫
(ϕα−τi − 1

λθi
ϕαi )ϕβj dµg0 +O(λ−θi εβi,j).

To estimate the integral in the above right-hand side, we write∫
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∫ 1
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From the case τ = 0 and α+ β = 2n
n−2 we then get∫
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∥∥(
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2

ε
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.

By direct evaluation the latter norm is of order λ−θi and the claim follows.

(vi) also follows from the same above reference in [38], while (vii) is a straightforward computation.

7.2 Derivatives
In this appendix we give the remaining proofs from Section 5.

Proof of Lemma 5.1. First note that the equalities up to the error in (5.14)

∂Jτ (u)φ1,j = ∂Jτ (αjϕj)φ1,i = ∂αjJτ (αiϕi)

follow from Lemma 4.3 and the chain rule of differentiation. So we evaluate
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up to an error O(
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up to an error of order
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k

Kk

λθk
α
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n−2

k



Hk
λk

Hk+O(
lnλi
λ2
k

)

λ2
k

Hk
λ3
k

Wk lnλk
λ4
k

0


+ b̄1

∑
k 6=l

α
n+2
n−2

k αl
Kk

λθk
εk,l

)

− 8n(n− 1)c̄
− 2
p+1

0 b1α
2

(αp+1
K,τ )

2
p+1 +1

Kj

λθj
αp−1
j

(∑
k 6=l

αj
αkαl
α2

εk,l + p
∑
j 6=i

αiεi,j

)
,
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again up to the same error term. Recalling that b̄1 = 2n
n−2b1, we can rewrite this as

∂Jτ (αiϕi)ϕj =
8n(n− 1)c̄

p−1
p+1

0

(αp+1
K,τ )

2
p+1

αj

(
1− α2

αp+1
K,τ

Kj

λθj
αp−1
j

)
−

8n(n− 1)c̄
−n−2

n
0 α2α

n+2
n−2

j

(α
2n
n−2

K,τ )
n−2
n +1

Kj

λθj(
c̄1
(
1−

∑
k

Kk

λθk

α
2n
n−2

k

α
2n
n−2

K,τ

)
τ + c̄2

(∆Kj

Kjλ2
j

−
∑
k

∆Kk

Kkλ2
k

Kk
λθk
α

2n
n−2

k

α
2n
n−2

K,τ

)

+ d̄1



Hj
λj
−
∑
k

Kk
λθ
k

α
2n
n−2
k

α
2n
n−2
K,τ

Hk
λk

Hj
λ2
j
−
∑
k

Kk
λθ
k

α
2n
n−2
k

α
2n
n−2
K,τ

Hk+O(
∑
r

lnλr
λ2
r

)

λ2
k

Hj
λ3
j
−
∑
k

Kk
λθ
k

α
2n
n−2
k

α
2n
n−2
K,τ

Hk
λ3
k

Wj lnλj
λ4
i
−
∑
k

Kk
λθ
k

α
2n
n−2
k

α
2n
n−2
K,τ

Wk lnλk
λ4
k

0



)

− 8n(n− 1)c̄
−n−2

n
0 b1α

2

(α
2n
n−2

K,τ )
n−2
n +1

Kj

λθj
α

4
n−2

j

(∑
k 6=l

αj
(αkαl
α2
− 2n

n− 2

Kk

λθk

α
n+2
n−2

k αl

α
2n
n−2

K,τ

)
εk,l +

n+ 2

n− 2

∑
j 6=i

αiεi,j

)
up to an error of the form

O
(
τ2 +

∑
r 6=s

∣∣1− α2

α
2n
n−2

K,τ

Kr

λθr
α

4
n−2
r

∣∣2 +
|∇Kr|2

λ2
r

+
1

λ4
r

+
1

λ
2(n−2)
r

+ ε
n+2
n

r,s

)
.

Note that by (5.1) the coefficient of c̄1 in the above term vanishes. This then tells us in a first step, that

∀ i : 1− α2

αp+1
K,τ

Kj

λθj
αp−1
j = O

τ2 +
∑
r

1

λ2
r

+
1

λn−2
r

+
∑
r 6=s

εr,s + |∂Jτ (u)|


and therefore

∀ i : 1− α2

α
2n
n−2

K,τ

Kj

λθj
α

4
n−2

j = O

τ +
∑
r

1

λ2
r

+
1

λn−2
r

+
∑
r 6=s

εr,s + |∂Jτ (u)|

 .

Using this we derive up to an error of the form O
(
τ2 +

∑
r 6=s

|∇Kr|2
λ2
r

+ 1
λ4
r

+ 1

λ
2(n−2)
r

+ ε
n+2
n

r,s + |∂Jτ (u)|2
)

∂Jτ (αiϕi)ϕj =
8n(n− 1)c̄

2
n
0

(α
2n
n−2

K,τ )
n−2
n

αj

(
1− α2

αp+1
K,τ

Kj

λθj
αp−1
j

)

− 8n(n− 1)c̄
−n−2

n
0 αj

(α
2n
n−2

K,τ )
n−2
n

(
c̄2(

∆Kj

Kjλ2
j

−
∑
k

∆Kk

Kkλ2
k

α2
k

α2
) + d̄1



Hj
λj
−
∑
k
α2
k

α2
Hk
λk

Hj
λ2
j
−
∑
k
α2
k

α2

Hk+O(
∑
r

lnλr
λ2
r

)

λ2
k

Hj
λ3
j
−
∑
k
α2
k

α2
Hk
λ3
k

Wj lnλj
λ4
i
−
∑
k
α2
k

α2
Wk lnλk

λ4
k

0


)

− 8n(n− 1)c̄
−n−2

n
0 b1

(α
2n
n−2

K,τ )
n−2
n

(∑
k 6=l

αj(
αkαl
α2
− 2n

n− 2

αkαl
α2

)εk,l +
n+ 2

n− 2

∑
j 6=i

αiεi,j

)
.
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Finally note that the last summand can be simplified to

n+ 2

n− 2

8n(n− 1)c̄
−n−2

n
0 b1

(α
2n
n−2

K,τ )
n−2
n

(∑
k 6=l

αj
αkαl
α2

εk,l −
∑
j 6=i

αiεi,j

)
.

From this the lemma follows setting

b̀1 =
8n(n− 1)(n+ 2)

c̄
n−2
n

0 (n− 2)
b1, c̀2 =

8n(n− 1)

c̄
n−2
n

0

c̄2, d̀1 =
8n(n− 1)

c̄
n−2
n

0

d̄1, c̀0 = 8n(n− 1)c̄
2
n
0 , (7.9)

cf. (5.6), (5.7) and Lemma 2.2.

Proof of Lemma 5.2. From Lemma 4.3 and the chain rule of differentiation we obtain

∂Jτ (u)φ2,j = ∂Jτ (αiϕi)φ2,j = λj∂λjJτ (αiϕi),

up to the error in (5.15), and evaluate ∂Jτ (αiϕi)φ2,j = 2Λ

(
∫
K(αiϕi)p+1dµg0 )

2
p+1

with

Λ =

∫
αiϕiLg0λj∂λjϕjdµg0 −

∫
(αiϕi)Lg0

(αkϕk)dµg0∫
K(αiϕi)p+1dµg0

K(αiϕi)
pλj∂λjϕjdµg0 .

Arguing as for (7.8), we find

Λ =αj

∫
ϕjLg0

λj∂λjϕjdµg0
−
∫

(αiϕi)Lg0(αkϕk)dµg0∫
K(αiϕi)p+1dµg0

Kαpjϕ
p
jλj∂λjϕjdµg0

+
∑
j 6=i

αi

∫
ϕiLg0

λj∂λjϕjdµg0
−
∫

(αiϕi)Lg0
(αkϕk)dµg0∫
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Kαpiϕ
p
i λj∂λjϕjdµg0

− p
∫
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(αkϕk)dµg0∫

K(αiϕi)p+1dµg0

∑
j 6=i

∫
Kαp−1

j αiϕ
p−2
j ϕiλj∂λjϕjdµg0

and arguing as for (5.2) (5.10), (5.11) we see that∫
Kϕpi λj∂λjϕjdµg0 = b2

Ki

λθi
λj∂λjεi,j +O

(
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∑
r 6=s

|∇Kr|2
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r

+
1

λ4
r

+
1

λ
2(n−2)
r

+ ε
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n

r,s

)
,

and ∫
ϕiLg0

λj∂λjϕjdµg0
= b̃2λj∂λjεi,j +O

(∑
r 6=s

1

λ4
r

+
1

λ
2(n−2)
r

+ ε
n+2
n

r,s

)
, b̃2 = 4n(n− 1)b2 (7.10)

as well as
∫
ϕjLg0λj∂λjϕjdµg0 = O

(
τ2 + 1

λ4
j

+ 1

λ
2(n−2)
j

)
. Using these, we arrive at

Λ =−
∫

(αiϕi)Lg0(αkϕk)dµg0∫
K(αiϕi)p+1dµg0

∫
Kαpjϕ

p
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+ 4n(n− 1)b2
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∑
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r 6=s

|∇Kr|2
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r

+
1

λ4
r

+
1

λ
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n

r,s

)
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Moreover, still arguing as for (5.10) and using Lemma 2.2, we have up to the same error as above∫
Kϕp−1

j ϕiλj∂λjϕjdµg0
=
b2
p

Kj

λθj
λj∂λjεi,j .

Combining this with (5.8), (5.10) and (5.11) we get with the same precision

Λ =− 4n(n− 1)
α2 +

∑
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∫
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2
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Using Lemma 5.1 we find by cancellation
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− 4n(n− 1)b2
∑
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∑
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. Moreover from Lemma 2.2 we have∫
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∫
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,

whence recalling (5.8) we get

Λ = −4n(n− 1)
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α
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p
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)
. Therefore

∂Jτ (αiϕi)φ2,j =
2Λ

(
∫
K(αiϕi)p+1dµg0

)
2
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=− 4n(n− 1)c̄
−n−2

n
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n
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∑
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(7.11)

up to the same error. Thus we are left with analysing∫
Kϕpjλj∂λjϕjdµg0 =

∫
Bc(aj)

Kϕpj∂λjϕjdµg0 +O
( 1

λn−θj

)
=Kj

∫
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+∇Kj

∫
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+
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2
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∫
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∇3
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∫
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+
1

λ
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)
.
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Expanding the bubble ϕj and its derivative λj∂λjϕj in conformal normal coordinates, i.e.

(p+ 1)ϕpj∂jϕj = λj∂jϕ
2n
n−2−τ
j = u

2n
n−2−τ
aj λj∂λj

( λj

1 + λ2
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2
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2
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2
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2
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2
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2
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2
aj )

2

)
and arguing as for (5.4) we find using radial symmetry

(1)
∫
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xϕpj∂λjϕjdµg0
,
∫
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(
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λ4
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λ
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)
;

(2) ∇2

2 Kj

∫
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∆Kj
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j
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λ4
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Finally we have∫
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=
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2
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2
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2
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+
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up to some O(τ2 + 1
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j
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λ
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j

), and see that for the first summand above there holds
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2
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2
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2

θ
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∫
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)n 1− r2
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ln

1
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up to the same error. Defining

c̃1 =
(n− 2)2

4

∫
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ln

1

1 + r2
dx, c̃2 = −n− 2
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∫
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dx, (7.12)

it can be shown, that

c̃1 =
(n− 2)2

48n
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Γ
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n
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Γ
(
n
2

)
+ Γ

(
n
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)
Γ
(
n
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)
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> 0,

so we arrive at∫
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up to some O(τ2 + 1
λ4
j

+ 1

λ
2(n−2)
j

) and arguing as for (5.6) we find

∫
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ln r
λj

)

O( r
6−n
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1
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j

+
1

λ
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)
, ϑj =
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, d̃1 = −

∫
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rn(n+ 2− nr2)

(1 + r2)n+2
dx.

(7.13)

We conclude that∫
Kϕpjλj∂λjϕjdµg0

=− c̃1
Kj

λθj
τ − c̃2

∆Kj

λ2+θ
j

− d̃1Kj d̃1
ϑj
λθj

+O(τ2 +
1

λ4
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+
1

λ
2(n−2)
j

).

Plugging this into (7.11), we then have

∂Jτ (u)φ2,j =
4n(n− 1)c̄

−n−2
n

0 α2

(α
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n−2

K,τ )
n−2
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Now the claim follows from Lemma 5.1 by replacing the constants as follows

(c̃1, c̃2, d̃1, b̃2) 
4n(n− 1)

c̄
n−2
n

0

(c̃1, c̃2, d̃1, b2), (7.14)

cf. (7.10), (7.12) and (7.13) as well as Lemma 2.2.

Proof of Lemma 5.3. From Lemma 4.3 and the chain rule we obtain up to the error in (5.16)

∂Jτ (u)φ3,j = ∂Jτ (αiϕi)φ3,j =
∇aj
λj

Jτ (αiϕi)

and write
∂Jτ (αiϕi)φ2,j =

2A

(
∫
K(αiϕi)p+1dµg0)

2
p+1

(7.15)
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A =
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Arguing as for (7.8), we find
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and arguing as for (5.2) and (5.10), in particular using Lemma 2.2, we obtain
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j 6=i
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α2
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K,τ

Ki

λθi
αpi − p

α2
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K,τ

Kj

λθj
αp−1
j αi
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λj
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=αj

∫
ϕjLg0
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λj
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−
∫

(αiϕi)Lg0
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K(αiϕi)p+1dµg0

Kαpjϕ
p
j
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λj

ϕjdµg0
− 4n(n− 1)b3

∑
j 6=i

αi
∇aj
λj

εi,j

up to some

O
(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r

+
1

λ4
r

+
1

λ
2(n−2)
r

+ ε
n+2
n

r,s + |∂Jτ (u)|2
)
,

using Lemma 5.1 for the last step. Consider a cut-off function η such that

η ∈ C∞(M, [0, 1]), η = 1 on Bc(a) and η = 0 on Bc2c(a),

with c > 0 sufficiently small and some a ∈M sufficiently close to aj . Then∫
Kϕpj

∇aj
λj

ϕjdµg0 =

∫
Kηϕpj

∇aj
λj

ϕjdµg0 +O
( 1

λn−θj

)
=

1

p+ 1

∇aj
λj

∫
Kηϕp+1

j dµg0 +O
( 1

λn−θj

)
and passing to conformal normal coordinates around aj we have

∇aj
λj

∫
Kηϕp+1

j dµg0
=
∇aj
λj

∫
(Kη) ◦ expgaj

( λj

1 + λ2
jr

2(1 + rn−2Haj )
2
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∫ (∇aj expgaj
λj
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)( λj
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2(1 + rn−2Haj )
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∫

(Kη) ◦ expgaj
(

λj
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jr

2(1 + rn−2Haj )
2
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λ2
jr

2∇aj
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(1 + rn−2Haj )
2

2−n

1 + λ2
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2(1 + rn−2Haj )
2

2−n
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( 1

λn−θj

)
=Γ− (n− θ)M +O

( 1

λn−θj

)
,

where

M =
2

2− n

∫
Bc(aj)

K(expgaj
)
( λj

1 + λ2
jr

2

)n−θ λ2
jr
n∇aj
λj
Haj (1 +O(rn−2Haj ))

1 + λ2
jr

2
dx

up to some O( 1

λn−θj

). From (2.6) anda(2.8) and using radial symmetry we obtain

Γ = č3
∇Kj

λ1+θ
j

+ č4
∇∆Kj

λ3+θ
j

with č3 =

∫
Rn

dx

(1 + r2)n
and č4 =

1

2n

∫
Rn

r2dx

(1 + r2)n
. (7.16)
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up to some O
(
τ2 +

|∇Kj |2
λ2
j

+ 1
λ4
j

+ 1

λ
2(n−2)
j

)
. By (2.8) we have ∇HajHaj = O(1) for n = 3, 4, 5 and

∇HajHaj = O

(
ln2 r for n = 6
r12−2n for n ≥ 7

)
,

whence up to some O
(

1
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j
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)
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∇ajHj
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+O( r

2

λj
)

∇ajHj
λj

+
∇aj∇Hjx

λj
+O( r

2 ln r
λj

)
∇ajHj
λj

+O( r
λj

)

−∇ajWj

λj
ln r +O( 1

λj
)

O( r
6−n

λj
),


dx,

and we obtain
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up to some O( 1

λ4
j

+ 1

λ
2(n−2)
j

). Collecting terms we arrive at
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(7.17)

up to some O
(
τ2 +

|∇Kj |2
λ2
j

+ 1
λ4
j

+ 1

λ
2(n−2)
j

)
and conclude
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. Applying Lemma 5.1 we find
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) (7.18)
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up to the same error. We are left with estimating∫
ϕjLg0

∇aj
λj

ϕjdµg0 =

∫
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λj

ϕjdµg0 +O
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.

Then from Lemma 2.1 we see that in case n = 4, 5∫ ϕjLg0
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. Finally we observe that
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and using the smoothness of conformal normal coordinates with respect to aj we find
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This gives∫
ϕj

4n(n− 1)
Lg0

∇aj
λj

ϕjdµg0
=
n− 2

2
ď1ϑj +

(n− 2)cn
2

∫
Bc(aj)

λjxajr
n−2
aj (Hj + n∇Hjx)ϕ

2n
n−2

j

1 + λ2
jr

2
aj (1 + rn−2

aj Haj )
2

2−n
dµg0

up to some O
(
τ2 +

|∇Kj |2
λ2
j

+ 1
λ4
j

+ 1

λ
2(n−2)
j

)
. Passing to conformal normal coordinates around aj , we find
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. Plugging into (7.18) we arrive at
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up to some

O
(
τ2 +

∑
r 6=s

|∇Kr|2

λ2
r
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1

λ4
r
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1

λ
2(n−2)
r

+ ε
n+2
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.

Recalling (7.15) the claim follows by setting or replacing

(č3, č4, b̌3) 4(n− 1)(n− 2)(č3, č4,
2n

n− 2
b3), (7.20)

cf. 7.16 and Lemma 2.2.
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7.3 List of constants
We give here a list of constants, referring to where they can be found.

¯ ˆ ` ˜ ˇ
c0 (5.5) (5.13) (7.9)
c1 Lemma 2.2 (5.5) (5.13) (7.14)
c2 Lemma 2.2 (5.7) (5.13) (7.9) (7.14)
c3 Lemma 2.2 (6.4) (7.20)
c4 (6.8) (7.20)
d1 (5.6) (5.13) (7.9) (7.14)
b1 Lemma 2.2 (5.3) (5.13) (7.9) (5.10)
b2 Lemma 2.2 (7.6) (7.14)
b3 Lemma 2.2 (7.20)

For instance, c2 is found in Lemma 2.2, c̄2 in equation (5.7) and d̂1 in equation (5.13). For the empty
fields the corresponding combination of accent and symbol is non-existent. As a caveat please note that
we have within some proofs redefined constants for the sake for normalization, hence we point to the final
definition, from which upwards mentioned constants can be easily recovered. Finally we recall that cn is
the normalizing constants in the definition of the conformal laplacian

Lg = −cn∆g +Rg, cn =
4(n− 1)

n− 2
.
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