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Abstract

We study finite-energy blow-ups for prescribed Morse scalar curvatures in both the subcritical and
the critical regime. After general considerations on Palais-Smale sequences we determine precise
blow up rates for subcritical solutions: in particular the possibility of tower bubbles is excluded in all
dimensions. In subsequent papers we aim to establish the sharpness of this result, proving a converse
existence statement, together with a one to one correspondence of blowing-up subcritical solutions
and critical points at infinity. This analysis will be then applied to deduce new existence results for
the geometric problem.
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1 Introduction

The problem of prescribing the scalar curvature of a manifold conformally has a long history, starting
from [33], see also [31], [32]. In case of the round sphere, this is known as Nirenberg’s problem.
4
Given a closed manifold (M, go) of dimension n > 3 and a conformal metric g = u»-2 go for a positive
function u > 0 on M, the conformal change of the scalar curvature is given by
Rguu% = Ly, u,

where by definition
4(n—1)

Lgu = —cpAgou+ Rgou, cp = —



is the conformal Laplacian, while A, is the Laplace-Beltrami operator with respect to go. Thus, in order
to prescribe a function K on M as the scalar curvature with respect to g, one needs to solve

Lgou:Ku%, u>0 (1.1)

pointwise on M, see [3]. The exponent on the right-hand side is critical with respect to Sobolev’s
embedding, which makes the problem particularly challenging. In contrast to the Yamabe problem, which
amounts to finding a constant scalar curvature metric, for K varying on M there are obstructions to the
existence for (L.1)). For example Kazdan and Warner proved in [33] that on the round sphere (S™, gs»)
every solution u of must satisfy

/ (VE,V f)gon i@ dptgn = 0

for any restriction f to S™ of an affine function on R®*!. In particular, since u is positive, a necessary
condition for the existence of solutions is that the function (VK,Vf)4,. changes sign.

One of the first answers to Nirenberg’s problem was given by J. Moser in [4I] for two dimensions,
where the counterpart of has an exponential form. He proved that for K being an even function
on S? a solution always exists. A related result was given by J. Escobar and R. Schoen in [23], showing
existence of solutions when K is invariant under some group G acting without fixed points, under suitable
flatness assumptions of order n — 2. In the same paper some results were also found for non-spherical
manifolds using positivity of the mass. Other sufficient conditions for the existence in case of G-invariant
functions were given by E. Hebey and M. Vaugon in [25], [26], allowing the possibility of fixed points.

Other existence results were obtained by A. Chang and P. Yang, see [I8|, [19], for the case n = 2
without requiring any symmetry of K. One condition, for which they obtained existence, is the following.
First they assumed, that K is a positive Morse function satisfying

(VK =0} N {AK =0} =0, (1.2)

where here and in the following V = V,, and A = A, cf. and below. Secondly, they supposed
that K possesses p local maxima and g saddle points with negative Laplacian and p # ¢ + 1. The latter
condition was used to prove the result via a Leray-Schauder degree-theoretical argument. In the same
papers other results were given, requiring conditions only at some prescribed levels of K. Typically K
must possess two maxima xo and z1, K(z1) < K (o), which are connected by some path x(t) for which

x saddle point for K A irtlf K(z(t) < K(z)<K(xz9) = AK(z) > 0.

Statements of this last kind have been obtained in [2I] for n = 2 and in [9] for n > 3. Another existence
result was given by A. Bahri and J.M. Coron in [6] for n = 3 and a Morse function K satisfying (|1.2]) and

> (—1)m@E0 £ 1, (1.3)

ze{VK=0}N{AK<0}

Here m(z, K) denotes the Morse index of K at z, cf. also [I2]. The result of Bahri and Coron, which
relies on a topological argument, has been extended in several directions.

An extension of condition , based on Morse’s inequalities, was given by Schoen and Zhang in [45]
for the case n = 3. For a Morse function K satisfying and setting

cq=HzeM : VK(z) =0, AK(z) <0 and m(K,z) =3 —q}

they required that either ¢y — ¢1 +c¢o # 1 or ¢g — ¢; > 1. Note that the first condition is equivalent to
and the second one for n = 2 corresponds to the condition p+ 1 > ¢ in [I8].

Other results of perturbative type and relying on finite-dimensional reductions were given by A. Chang
and P. Yang in [20] and by A. Ambrosetti, J. Garcia-Azorero and I. Peral in [I], see also [35]. The authors
considered the case in which K is close to a constant and satisfies an analogue of , ie.

N e R

ze{VK=0}N{AK<0}



In [28] Y.Y. Li proved existence of solutions for every dimension, if the function K near each critical
point has a Morse-type structure, but with a flatness of order 8 € (n — 2,n). His proof relied on a
homotopy argument: considering K; = t K + (1 —t), t € [0,1] the author used the degree-counting
formula of [20] for ¢ small, and then a refined blow-up analysis of equation , when ¢ tends to 1.
A different degree formula under more general flatness conditions was introduced in [I6]. Other results
obtained by different approaches can also be found in [§], [10], [22].

A useful tool for the above results is a subcritical approximation of (|1.1)), namely
fangoquRgou:Ku%g*T, 0<r< 1. (1.4)

The advantage of (L.4)), compared to (LI, is that the lower exponent makes the problem compact, so
it is easier to construct solutions. However, the interesting point is passing to the limit of solutions for
7 — 0 and in general one expects some of them to diverge with zero weak limit. The approach in [12],
[45], [28] was to understand in detail the behaviour of blowing-up solutions and then to use degree- or
Morse-theoretical arguments to show that some solutions stay bounded.

Consider now a Morse function K on the sphere satisfying . In dimension n = 3 or under a
flatness condition in higher dimensions, it turns out that blowing-up solutions to develop a single
bubble at critical points of K with negative Laplacian. Bubbles correspond to solutions of on S™
with K = 1 and were classified in [I1], see also [2], [47], and after proper dilation represent the profiles
of diverging solutions, cf. Section [2| for precise formulas.

The single-bubble phenomenon can be qualitatively explained exploiting the variational features of
the problem, which admits the Euler-Lagrange energy J = Ji given by

J(u) = S (cn|Vu|2 + Ry,u?) dpg,
fKu" 2 djig,) " ’

see also (2.1) regarding (1.4]). Denote by d,  a bubble centered at a € S™ with dilation parameter A.
Then for distinct and fixed points a1, a2 and A large one has the expansions

[ Kot i) F5 g, = K() + K (aa) / K] g, ~ oK (0) ~ 3 AK(a;) (15)
with constants ¢; > 0, where ¢; depends on a; and ay. We refer to Section [5] for more accurate results.
Terms similar to the above ones appear in the expression of J.. By the latter formulas and for A — oo
and n = 3 the interaction of the bubbles with K is dominated by the mutual interactions among bubbles.
This causes multiple bubbles to suppress each other allowing only one blow-up point at a time, which
has to be close to at critical points of K with negative Laplacian due to a Pohozaev identity.

This analysis was carried over in [29] also on S*. In this case the above interactions are of the same
order and multiple blow-ups occur. It was also shown there that multiple bubbles cannot accumulate
at a single point. Using a terminology from [43], [44] such blow-ups are called isolated simple. In four
dimensions a different constraint on multiple blow-up points replaces AK < 0, depending on the least
eigenvalue of a matrix constructed out of K and the location of the blow-up points, cf. (0.8) in [29].
On general four-dimensional manifolds there is an extra term due to the mass of the manifold leading to
similar phenomena, but with modified formulas, see [7].

The goal of this paper is to investigate the blow-up behaviour in an opposite regime, when the
dimension n > 5 and the function K is Morse. In this case the second term in dominates the first
one, so it is drastically different from situation of low-dimensions or with flat curvatures. However we can
still show that blow-ups are isolated simple, which is important in understanding the Morse-theoretical
structure of the energy functional. Here is our main result.

Theorem 1. Let (M™, go), n > 5 be a closed manifold of positive Yamabe invariant and K : M — R a
smooth positive Morse function satisfying . Then positive sequences of solutions to for T, \( 0
with uniformly bounded W12-energy and zero weak limit have only isolated simple blow-ups at critical
points of K with negative Laplacian.



The above theorem follows from Proposition [3.1] where a general characterization of blowing-up Palais-
Smale sequences for ([1.4)) as 7 — 0 is given, and from Theorem [2| where a lower bound on the norm of
the gradient of the Euler-Lagrange functional J, for (1.4]) is proved, see ({2.1)).

Remark 1.1. Solutions of (1.4) can be found as suitably normalized critical points of the scaling-invariant

energy Jr in (2.1). For a sequence of critical points (um,) of Jr,, , with Ty, as in Theorem there exist up
to subsequences ¢ € N and distinct points x1,...,x4 € M with VK (z;) =0 and AK(z;) < 0 such that

—0 as m—

q
Um = D im0,
j=1 W1:2(M,go)

for some
© -3
Q= ———= +0(1), ajm—2; and N, >, =Tm?,
K(z;) %
where the multiplicative constant © reflects the scaling invariance of J,, , see (2.1)), and can be fixed for
instance by prescribing the conformal volume, cf. Remark[6.4 In Theorem[q we will show much more
precise estimates, that will be crucial for [36]. For example, if n > 6, we find

AK () ) _1VAK(z) Y Y
p— A e K(x: I— A . —0. A
K(ayr m = oV RET 5 = 6= Y R

up to errors of order 0()\;73), where c1,co are dimensional constants and we identify by a slight abuse
of notation a; ., with its image in conformal normal coordinates at x;, cf. [Z7]. Hence all the finite
dimensional variables, i.e. &jm,ajm and \j, are determined to a precision of order o(A;3).

)\j7m =C1

Remark 1.2. We next compare Theorem[]] to some existing literature and add further comments.

(a) On S and S* the isolated-simpleness of solutions was proved in [12], [28], [29], [45] for arbitrary
sequences of solutions by a refined blow-up analysis. The uniform W2-bound is then derived a-
posteriori. In dimension n > 5 the latter bound may not hold true in general - we refer the reader
to [13], [19], [15)], where in some cases it is shown that blowing-up solutions for the purely critical
equation must have diverging energy and blow-ups of diverging energies and towering bubbles
are also constructed, cf. also [3l], [42], [48]. However, in the forthcoming paper [37] we will
construct solutions to via min-mazx or Morse theory with the purpose of finding a non-zero
weak limit. These will indeed satisfy the required energy bound. This will allow us to obtain existence
results under less stringent conditions compared to some others in the literature, as in [9] and [I7].

(b) On manifolds not conformally equivalent to S™ a-priori estimates were proved in [30] for n =3 in
both critical and subcritical cases. Our analysis carries over for n = 4 as well, where the matriz in
Definition[6.1] introduced in [7], [29] and also involving the mass, gives constraints on the location of
multiple blow-up points. The main new aspect of our result is the isolated simple blow-up behaviour
in dimension n > 5, so we chose to state Theorem[d] in a simple form only for this case. We refer
to Theorem [ for a more precise version of the result: here we derive indeed estimates on solutions
with high precision as T — 0, as well as estimates that are uniform in this parameter.

(¢) In [36] we will show a converse statement. Given any distinct points p,...,p; in {VK = 0} N
{AK < 0} and 7; N\ O there exist solutions (u;); to (1.4) blowing-up at p1,...,pr exactly as
described above. Thence the characterization of Theorem optimal. We refer to [28)], [29] for the
counterparts on three- and four-spheres. Proposition A2 in [3] regards the construction of a pseudo
gradient flow for problem ruling out multiple bubble formation at the same point for any n,
although we believe the proof there is not complete. We refer to [39] for details and for the proof
of a one-to-one correspondence of blowing-up sequences and critical points at infinity, cf. [fl]. See
also [{0] for some delicate relations between L?- and pseudo gradient flows.

(d) We expect the same conclusion of Theorem (1] should hold true replacing the energy bound with a
Morse index bound. It would also be interesting to understand the case of non-zero weak limits.



We discuss next some heuristics about the proof of Theorem [I} First we show a quantization result
for Palais-Smale sequences of solutions to as 7 — 0. We are inspired in this step from a result by
M. Struwe in [46], where the same was proved for 7 = 0: in our case we need extra work in the limiting
process, due to a different dilation covariance of subcritical equations.

We then prove that we are in a perturbative regime and every solution to for 7 sufficiently small
can be written as a finite sum of highly peaked bubbles and an error term small in W' 2-norm, which
we prove to have a minor effect in the expansions. Performing a careful analysis of the interactions of
the bubbles among themselves and with K, it is not difficult to see that for n > 5 blow-ups should occur
at critical points of K with negative Laplacian only, cf. also Theorem 1.1 in [14], and we are left with
excluding multiple bubbles towering at the same limit point, which is the crucial result in our paper.

We give an idea of this fact in some particular cases, that are easy to describe. Let J; be the Euler-
Lagrange energy of 7 see . For a critical point a of K, the following expansion holds for J, on
a bubble concentrated at a ) AK(a)

~ T J— L

Ira) = o = O = ) (16)
cf. Proposition By elementary considerations one checks that for AK(a) < 0 the function in the
right-hand side has a non-degenerate minimum point at A = A\, ~ 7'_%, see also Proposition 2.1 in [45].
Since bubbles have an attractive interaction , cf. the first equation in (1.5, even in terms of dilations
centering more bubbles at the point a would make all dilation parameters collapse at A\ = A, see Figure
For the same reason, still by , one would get collapse with respect to the center points of multiple
bubbles distributed along the unstable directions from a critical point of K, since points with lager values
of K have smaller energy, due to , see Figure[2 We consider then the case of bubbles centered at two

‘IT((S(L)\)
T R
S Gurs \ Oarn Oaz\ a
Figure 1: two bubbles with Figure 2: two bubbles along Figure 3: two bubbles along
same center, different \’s unstable direction of K, same stable direction of K, same A

A

points aq, as symmetrically located at distance d from a critical point p such that AK(p) < 0, and along
a stable direction of K, with the same A’s. Here in principle the attractive force among bubbles could
compensate the repulsive interaction from the critical point p of K, see Figure [3] For this configuration
one gets an energy expansion of the form

1
€1 dn—2)\n—2

Co ; AK(a) 1 ~
Jr(éal,k + 6(12)\) — Kn;Q (al) ()‘ K(a1)>\2) €1 dn—2)n—-2 —

(CQ — 03d2) ()\T + 64)\72) —

with ¢; > 0. From the analysis in Proposition [3.I]it turns out that A™ ~ 1, so imposing criticality in
both A and d one finds the relations

1 1
2z ~ 7T+ 7()\d)"—2 and d~ g1

These asymptotics imply that A=2 ~ 7 4+ A\~ 2("52), which is impossible for A large. The general case is
rather involved to study and will be treated by a top-down cascade of estimates in Section [6}

The plan of the paper is the following. In Section[2] we introduce the variational setting of the problem
and list some preliminary results. We then study some approximate solutions of , highly concentrated
at arbitrary points of M. From these one can carry out a reduction procedure of the problem, which is
done later in the paper. In Section [3] we prove a general quantization result for Palais-Smale sequences of
with uniformly bounded W1'2-energy. In Section |4 we reduce the problem to a finite-dimensional
one, while in Section [5] we derive some precise asymptotic expansions of the Euler-Lagrange energy.
Section [6] is then devoted to proving suitable bounds on the gradient to exclude tower bubbles and prove



our main result. We finally collect in the appendix the proofs of some useful technical estimates as well
as a list of relevant constants appearing.
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2 Variational setting and preliminaries

In this section we collect some background and preliminary material, concerning the variational properties
of the problem and some estimates on highly-concentrated approximate solutions of bubble type.

We consider a smooth, closed Riemannian manifold M = (M",gy) with volume measure pug, and
scalar curvature R,,. Letting A = {u € W%(M, go) | u > 0,u # 0} the Yamabe invariant is defined as

f (Cn|vu|go + RQOUQ) dpg, _ 4n -1
n—2 ’ n T

([ dpig,) "= n-2

We will assume from now on that the invariant is positive. As a consequence the conformal Laplacian

Y(Ma gO) = lgf

Lo, = —cnlg, + Ry,
is a positive and self-adjoint operator. Without loss of generality we assume Ry, > 0 and denote by
Ggo : M x M\ A — R,
the Green’s function of Ly,. Considering a conformal metric g = g, = unz go there holds

_2n_ _n42 _nt2
dpg, =un—2dpg, and R=R, =u 2(—cyAgu+ Rgu) =u 2Ly u.

Note that
c||ull? < [ uLgudpg, = [ (cn|Vul2, + Ryou?) dpg, < Cllull;
W12(M,go) = go U Cltg, n g0 90 Hgo > W1H2(M,go)*
In particular we may define and use ||u|? = ||u|\%q0 = [uLg,udpg, as an equivalent norm on W12, For
2
p:n+ —7 and 0<7—0
n—2

we want to study the scaling-invariant functionals

T () = o (Cnl VUl + Rogw?) dytgy (2.1)
' (f Kurttdpg,) 70

Since the conformal scalar curvature R = R, for g = g, = un? go satisfies

r=1ry, = /Rd,ugu = /uLgoudﬂg07 (2.2)
we have
Jr(u) = ; with &k, = /Kup+1dug0. (2.3)
ket

The first- and second-order derivatives of the functional are given by

2
J(u)v = T[/Lgouvdugo — kL /Kupvdugo];

kEtt



2
O* T (w)yow =—5- [/Lgovwd,ugo —pkL/Kupflvwdugo]
4

kEtt
- szrl_H[/Lgouvdugo/Kupwd,ugo —I—/Lgouwdugo/Kupvdugo}

3)r
p:+ /K Pudjig, /Ku wdfig, -
kp

In particular J; is of class 0120? (A) and uniformly Holder continuous on each set of the form

U ={ucAle<|ul, J-(u) <e '}

Indeed u € U, implies

1
2<r<e? and ¢ <EFT =T (u) T, < Ce?

Thus uniform Holder continuity on U, follows from the standard pointwise estimates

P _ |plP| < —plp i
{ [la|P — 6P| < Cpla — b incase 0 <p<1 (2.4)

[la|P — |b]P| < Cp max{|alP~1, [P~} a —b| in case p>1

We consider next some approximate solutions to (1.1]), highly concentrated at arbitrary points of M.
As we will see, for suitable values of A these are also approximate solutions of ([1.4]). Let us recall the
construction of conformal normal coordinates from [27]. Given a € M, one chooses a special conformal
metric

4
Jo =Uq “go with wg=1+ O(clz0 (a,-)), (2.5)

whose volume element in g,-geodesic normal coordinates coincides with the Euclidean one, see also [24].
In particular

(expd®)~ o expd®(z) = z + O(|z)
for the exponential maps centered at a, which e.g. implies
Vg K(a) =Vy,K(a), Vi K(a) =V K(a),
and in case VK (a) = 0 also
Vi K(a) = Vi K(a).
Moreover by smoothness of the exponential map exp, = expj* with respect to a there holds
Viexp, () = id + O(|z|?) (2.6)

in a g,-normal chart, as seen from the corresponding geodesic equation. We then denote by r, the
geodesic distance from a with respect to the metric g, just introduced. With this choice the expression
of the Green’s function G4, with pole at a € M, denoted by G, = Gy, (a,-), for the conformal Laplacian
L,, simplifies considerably. From Section 6 in [27] one may expand

1

Ga = dn(n — Dw,

(rZ "+ H,), 1o = dg,(a,"), Hy = Hyq + Hs, for o = 1 ? g0, (2.7)

where w,, = |S""!|. Here H,., € CZQOCO‘, while the singular error term satisfies

0 for n=3

r2lnr, for n=4

H; =0 Tq for n =15
Inr, for n=26

7“2_” for n>17



Precisely the leading term in H, , for n =6 is — &(ggf Inr, where W denotes the Weyl tensor. Let

n—2

2
Pa.x =Uq <)\z> . Go=Gy,(a,), = (4n(n— 1)wn)ﬁ for A>0. (2.8)
14+ A2, Ge™"

We notice that the constant v, is chosen so that

_2
WGa " (z) =d; (a,z) +o(d} (a,x)) as x—>a.

Evaluating the conformal Laplacian on such functions shows that they are approximate solutions.
n+2

Lemma 2.1. There holds Lg,pax = O(p; )"). More precisely on a geodesic ball Bo(a) for o> 0 small

% n—2 2%3 UC:ZQRga
Lgypar =4n(n —1)p; " = 2ncnry” “((n — 1)Ho + 740, Ha)p )\ + S

where 4 = dg, (a,-). Since Ry, = O(r2) in conformal normal coordinates, cf. [27], we obtain

n 9 n+42
n—2 n— n—2
Pgx Tt o(ry )‘Pm)\ )

_ Vo forn=3
1

(i) Lgypax =4n(n—1)[1 — Lr2"2(H,(a) + nVHa(a)x)]goﬁ +0 m%wfiz form—=4|;
2

A
AT%0a N for n=2>5

nt2 nt2
(i) Lgypar =4n(n —1)p 37 =4n(n — D1 + S W(a)Inrlp; 7 + OA 2par)  forn=6;
n+2

(i) Lgpax = 4n(n — 1)) 3" + ON"2p4)  formn>T.
The expansions stated above persist upon taking A\OA and % derivatives.

Proof. A straightforward calculation shows that

A n-2 n Pa,
Dy (————=) ° = Y (F22)

Ga

n+t2
n—2

255 A\ 75 2w
; o VGal2, Ga* + A (22) T2 G Ay, G,
14+ A2, Ga" oo ta Ha

n—1 1
which is due to |VGa|£2]aG22’" = (n—2)*VGi "2, and ¢,Ay Gy = =04 + Ry, G, with &, denoting
the Dirac measure at a. This is equivalent to

A n2 a juce =) = R n a e
g ()T =02 =)y (22) VG TR, 4 Tl (22 PG
14+ A24,GET Ug, Cn Uq
Since Ly, = —c, Ay, + Ry, with ¢, = 42=L, we obtain

Pa,x Pa,xy 22 a2 | Bgu i Paryis
L ) ::4 __1 ) n—2 n a ) n 2.
b A 1) (P22 B ot S ()

By conformal covariance we also get

2

s i U Ry, ot
Lgypan = dn(n — 1)<pa7)\ | VGa g T fgoa,)\ )
nt2
in particular Lg,¢qx = O(¢.?). Expanding G, as G, = m(ﬁ*” + H,), ro =dg,(a,-) we find
Y| VGa™" |§a =[V(ra(1+7g 2Ha)2_")‘§a =1- m((n —1)Hy +740r, Ho)ry >+ o(ry, 2)7

and conclude that

_2_
n—2
Uq,

n+2 g n
o n-2
A Qpa,)\ .

e nt2 n+t2
Lgopax =4n(n —1)p " —2nc,((n — 1) Hy + raaTaHa)rZ_zgo;‘;\Q + 0(7‘2‘2@;‘7;2) +

Clearly these calculations transcend to the A and a derivatives. Then the claim follows from the above
expansion of the Green’s function. O



After introducing some notation we state a useful lemma, which will be proved in the first appendix.

Notation. Given an exponent p > 1 we will denote by L~ the set of functions of class L” with respect

to the measure du,,. Recall also that for u € W12(M, go) we set r, = [ uLg,udpg,, while for a point
a € M we denote by 7, the geodesic distance from a with respect to the metric g, introduced above. For
a set of points {a;}; of M we will denote by K;, VK; and AK; for instance

K(a;), VK(a;) = V4 K(a;) and AK(a;) = Ay K(a;).
For k,l=1,2,3and \; >0,a, € M,i=1,...,q let
() @i = @a;n and (i, doisdz) = (1, =iy, 3 Va,);
(i) @15 = i, P2 =—NiO\ i, 3 = ,\%Vai%', SO Pk = diipi-

Note that with the above definitions the ¢y ;’s are uniformly bounded in W2(M, go).

Lemma 2.2. Letf =12 Tandklf123and2]f1 ,q. Then for
Aj Ai Py 2-n
eig = (52 + 3+ AX G, " (ai,05)) 7 (2.9)
i J

there holds uniformly as 0 <1 — 0

(1) kil N0 bril, |5 Vas bril < Cwis

(i1) )\efgpl gzbk iOk,idg, = ck - id + O(T + v L+ /\2+9) cr > 0;

n+2

(iii)  for i # j up to some error of order O(t% + z#j()\%; + AQ(TL 5 t+eif )

0 - 2t2
Ai / ¢k ]d,ugo = brdy, i€ig = / “Tdy, ng] d}Lgo,

(iv) )ﬁfcpz d)kz(bl,dugo—O(/\n 2+/\2)fork7élandf0rk:—23
- /\f_" forn <5

nt2
)\afsﬁ ¢kzdugo—0 T+ % forn=26
N forn>7T

(v) N [T dpg, = Ol ) fori#j, a+pf =25 a—7> >8> 1

W) [l e T dug, = O(F Inei), i #
(vii) (1,00, 3V )eig = Olei), i # J.

with constants by, = [ 7“2 fork=1,2,3 and
fn (14r2) 73
/ dz (n— 2)2/(7“2 —1)2%dx (n— 2)2/ r?dx
a= | T—5 2= , €3 = .
(1+7r2)n 4 (14 r2)n+2 n (14 r2)nt2
Rn Rn Rn



3 Blow-up analysis

In this section we prove a result related to a well-known one in [46]. We obtain indeed similar conclusions,
but allowing the exponent in the equation to vary along a sequence of approximate solutions.

Proposition 3.1. Let (tn)m C WH2(M, go) be a sequence with u,, > 0 and k,, = 1 satisfying
Jr () =T, — Too and 0J;, (upm) — 0 in W H2(M, go).
Then up to a subsequence there exist uo, : M — [0,00) smooth, g € Ng and fori=1,...,q sequences
M D (aim) — a;, and Ry D Xjyy —> 00 as m — 00

such that w,, = s + ZZ 1 QPay e Nin T U With

a4
. reoK(a; )a]™?
0Jo(uoo) =0, | lom[ — 0, A7 —1  and T—l)z =1

and (€;5)m — 0 as m — oo for each pair 1 <i < j<gq.

Proof. Setting J = J., , by our assumptions we have
J(um) = /ungUumd,ugo — 7o and 0J(Up,) = Lyt — oo KuPr = o(1) in W12(M, g).

In particular (um) C W2(M, go) is bounded, hence u,, — us weakly in W12(M, go) and strongly in
LY(M,go), ¢ < ;7%. Notice that u, > 0 is a critical point of Jy and therefore it is a smooth function.
We may then write U, = oo + U1, With ug ,, — 0 weakly, and strongly in L(M, go). Thus

Too $— J(Upm) = /uOOLgOuc,od,ug0 + /ul’ngouLmd/VLgo +o(1),
whence fulyngOuLmdugo — T1,00 > 0 and secondly, due to (2.4), that
E(ui,m) := Lgyu1,m — rooKup’” =o(1) in W 3(M,go). (3.1)

We may assume r; o, > 0, since otherwise we are done. We now claim the concentration behavior

VO<e<< 13\, — 00 : sup |Vu1,m|§0d/¢go > €. (3.2)
v€M JB 1 (x)

Indeed we have for a fixed cut-off function

o(1) =(B(u1,m), 11,mn?) = / [ 701,m) L (01,) = o K s 2™ | g -+ 0(1)

Pm—1 _"_0(1).

LEm+t (supp(n))

Z||V(77u1,m)||2 - TooKmin”nul,mHiﬁerl l[u1,m
90

Using Hélder’s inequality and Sobolev’s embedding we obtain

o(1) 2|1V (rur,m)II* (1 —CI|U1m||me+1 )+ o(1).

(supp(n))

Thus, if uy,m, does not concentrate in LPm 1 (M, go) similarly to (3.2), then by a covering argument

/|VU1,m|§Odﬂgo — 0

contradicting r1 0o > 0. By (3.1 concentration in LP=1(M, go) is equivalent to concentration in L?-norm
for the gradient, which had to be shown. Fixing £ > 0 small, we measure the rate of concentration via

xeM

Ay, = sup {/\ >0 | max/ |Vu1,m\30dugo = 5} — 00,
B%(I)

10



Al,'m

and choose for any A; ,, /oo with 1 < lim, v

=0 < oo up to a subsequence

(a1,m) C M / |Vu1m|£2]0d/¢g0 = sup |Vu17m\!2]od/¢go >c
B_1 (al,m) zeM B#(aj)

Al,m 1,m

for some positive ¢ = c(e, §) to be specified later. On a suitably small ball B,(a1 ) we then rescale

2-n .
_ 3 o
Wi,m = Al,m Ui,m (expgal,m M )
N

The function wy ,, is well defined on B,y, . (0) and satisfies, with 6,, = 2527,,,

ooK i,Mm . —
—enAwy y — TT(:’)wm —o(1) in W ARY), A= Ag.
1,m
Since [ [Vui,m|*dpg, is bounded, so it is [ © |Vw1 p|?dz for any p > 0. Hence
PX1,m

n+2
2 . e
“(R™) with — Awy e = Ulrmmwl,oj,

. —1
Wi,m — Wi,00 Weakly in W, .
where

k1= lim K(ai,,) and o1 = lim )\17,9,;” € [0,1].
m—00 m— o0 ’

Given a compactly supported cut-off 7, we calculate

Too K
0 H/(wlm — w1 ,00)0? (Awr  + %mw’fjﬁn)dx
Rn /\1,m
9 n+2
:/(wLm — W1 00)7 (A(wl,m — W1,00) + 017"00K(fw’fj;;1 — wl";j ))dm +0o(1)
B (3.3)
<- /|V((w1m — w1,00)N)2dx + Ulrm/Kn2|w17m — W1 0o|P T dx + o(1)
R R
=_ /|V((w1m —w1.00)N)2dx + 0'17’00/K772|'w17m — W1 0o|Pm T dx + o(1).
Rn R
The main step here is the inequality in the above formula. Passing from :‘L—fg to pm = Z—“:g — T in the
exponent is easy, as w o is fixed. Since w1, — Wi,00 in LP(supp(n)), p < %, we have
[ R wrm = wn )@l - wpn)de = [KeP(uly = wlyde
R’!L R’IL
1
:/qu [ — / Os|wi,m — sW1,00 pmtlgg — w’l’jgjl + w1 m — W1 00|P™H | d.
0
Rn

Therefore the main inequality follows from observing that

1
'/KnQ [ - / Os|W1,m — SW1,00
0
Rn

1
< [ s [ R s = 1o = s s~
0
R’H

1
Pmtlgg wy Oj }d:v

1
— [ds [ Km0 - syt - wli o =0,
0
Rﬂ.

11



Hence (3.3)) is justified and we obtain as before

J1901m = 00D =l = 010 51 i < 1),
R‘n

Thus wy,m — w1, locally strongly, unless w ,, concentrates in LP=+1 but by our choice of A
€= sup |vu1,m|30dﬂg0 > sup / \Vwy o |*de
B ,, ()

x€MJB ;4 (QC) QCEBCAL"L(O)CR"

Am Am

and 1 > I){i—’;% 0, so the L?-gradient norm does not concentrate beyond ¢ and, since

OOK m . —
ww”m =o(1) locally strongly in W,,1*(R™),

7CnA]R"w1,m — )\am 1,m
1,m

neither the LPm*1-norm does. Thus wy ., — w1 o locally strongly. In particular

/ |V, oo 2da +— / |Vu17m\§odygo > ¢ =c(g,9).
B1(0) B 1 (a1,m)

)\1,771,

But 07 = 0 implies w; o = 0 by harmonicity, so o1 € (0,1], cf. (3.3), and we easily show w1 o > 0 and

\ - B
W00 = O] <1) with a1 >0, r, = |z —a|], a € R" and A > 0.

12,.2
14 Ajr2
n+2 4
Note that —Agrwi oo = 017cck1wy . implies o17rok1aq > = 4n(n — 1). Moreover by construction

/ |Vw17m\2dx > sup / |Vw17m|2d:c,
B1(0) ©€Bex, ., (0) /By (x)

which transfers to wi o by locally strong convergence. This implies a = 0 and

~ ~ n—2 2
)\n )\ 2 n—
Lo v(—2 der = safz = e(017T00k1) el
L+ A7 Il \1+ A2

< 2-n
By lim \{?" =0, € (0,1] and 0 < & < 1 we get Ay ~ lim A\ o Dilating back we may then write
’ m—oo

m— 00

Uy, = Ueo T a1P1,m + U2,m, P1,m = Spal,m75‘1.m7 )\l,m = )\1)\17m-

Moreover we know that ug,, — 0 weakly in W12(M, go) and

Wa,m = ()\1)7,1)22an,m(expga1 )\) — 0 locally strongly in W1?(R™).
ALm

Since the initial sequence (u,,) was non-negative, it follows that u., > 0 and the negative part of ug ,,
tends to zero as m — oo in Wh2-norm. Using a dilation argument, the latter property and the above
formula, it is easy to show that, if o, 8 > 1 with a + 8 = Tff” then

2,
/gof"m|u2,m|5d,ugo — 0 asm — oo, (3.4)

and that also fuztngogol,md,ugo = 0(1). Thence as before for uy ,

Too — Jr, (Um) = /uooLgouoodugU + a%/gpl,ngogol’md,ugo + /UQ’ngU'LLQ_’mdMgO

12



and therefore qu’ngoug,md,ugo — 2,00 = 0. Likewise
E(u2,m) = Lgyuz,m — recKub7, = o(1) in W, *(R")

since by expansion of the non-linear term of 9.J;_ (u,,) we find

0(1) =Lgy (too + @191,m + U2, m) — Too I (Uoo + Q101,m + Uz m )P™

Too KUET + 0ty Lgyp1,m — rooKap’"cpp’;Ln

= Ly uom — 7"00Ku2 r+o(l) in W_172(M, 9o)-

=LgyUoe —
+ Lgyu2,m — rec Kuy'y, +o(1)

The second equality follows from applying the latter formulas to any test function in W12(M, gg) and
then applying Sobolev’s and Holder’s inequalities together with (3.4). We may therefore iterate the afore

going and find for a finite sum w,, = Y, ;@i m + vm, With energy

Too ¢ J(Um) > /Uochouood,ugo + Zaz‘z/Wz’,ngo@i,mdﬂgu'
%

But all a; are uniformly lower bounded due to
_4_
1,0, = lim A = (0,1] and k; = lim K(a;m),

m—r oo

TiTookiQt] ) O

m— o0

thence the iteration has to stop after finitely-many steps. In particular v,, does not concentrate locally
and consequently vanishes strongly as m — co. Now take any fixed index j and recall that

,m

2—n .
Wjm = )‘]m qu<expga N /—\_)
3,m

’””7L>0f0rk<l We had seen

n+2
n—2 __
— OjTookjWw; S = 0.

and that by construction

Wjm — Wjoo weakly and locally strongly, where — c,Aw; o

>/ |

On the other hand

>

Wi m =

1 )2 i 2
;| ——= + uamm(a;)ai( )\ ( >

i>7

up to some error of order o(1) locally in W2, and the latter sum has to vanish, which is equivalent to

>l

L — 00 o AimAjmGa; ,, (j.m) — 00

>~

i,m

Recalling (2.9)), this shows that (&; ;)m

— 0 for all 7 # j. We are left with proving )\ » — 1. Ordering

5\1,m Z.. 2z Xq,'m

up to a subsequence, let ~
A,m
1§(jﬁ{ll,...,g| lim _1’<oo}.
m—o00 >\l,m
Then 55\";7” —soofork<g<landc<lim,_o ;—\," < C for k,l < q. Select a half-ball Bg‘(ak,m) with

1<k<gand 0 <§ <1 such that By (am)N{am |1 <I<gl#£k}=10

up to a subsequence, where for some affine function vy, ,,, with unit gradient we have set

Bgr(ak’m) = Bg(ak’m) N {Vk,m > 0}

13



in a local coordinate system. Then rescaling u,, on B;’“’m N A{Vik,m > %} we find

n—2

_2-n . 1 7

Wh,m = /\kjn “m(engai 5\k> = qq <1—|—r2> +o(1) on Bcj\k”n (0) N {xy > 1}.
0, m

On the other hand side, wy, », solves

TooKk m
—Cn AWy — ;;}m i’m =o(1), kK = w}lmooK(ak m) on B (0).
k,m
Recalling that p,, = Z—fg — T and 0, = "T_QTm, this implies, that up to rotating coordinates

(1+72)% is nearly constant on B;kwm(O) N{zy > 1}.

.
Al,m

Thus )\0 — 1. The claim follows, since lim,, >cforalll=1,...,q. O

4 Reduction and v-part estimates

In this section we will consider a sequence u,, as in Proposition with zero weak limit. We will recall
some well-known facts about finite-dimensional reductions and derive preliminary error estimates and on
suitable components of the gradient of .J;.

For e >0, ¢ € N, u € Wh2(M, go) and (a?, \;, a;) € (]RZ_,RZ_,M‘I) we define

ro’ K(al
1- 4n(n Dk,

@) Aulge) = {@" Xa) | ¥ AN e, lu = a'a, T<l+ek

(i)  Vige)={ueW'(M go) | Aulg,e) # 0},

cf. , and . For both conditions \; > 5‘1,)\[ < 14 € to hold, we will always assume
that 7 < ¢ and this is consistent with the statement of Proposition Under the above conditions on
the parameters «;, a; and \; the functions > 7 | a’p,, , form a smooth manifold in W*2(M, go), which
implies the following well known result, cf. [4].

Proposition 4.1. For every ey > 0 there exists €1 > 0 such that for uw € V(q,e) with e < &3

_inf /(u — &', 5 ) Lgo(u— &g, 5 )dig,
(G4,a4,2i)EAL(q,2e0) i3 AG PN

admits an unique minimizer (o, a;, ;) € Au(q,€0) depending smoothly on u and we set
Pi=Pan, v=u—a'e,  Ki=K(a). (4.1)

The term v = u — aigoi is orthogonal to all @;, —A;0x, i, %Vai ©;, with respect to the product

() '>Lg0 = <Lgo'7 '>L§O'
For u € V(q,¢) let
1
Hu(Qa 5) = <90i7 AiOx; pis yvai@»lp‘m . (42)

We next have an estimate on the projection of the gradient of J. onto H,,.

Lemma 4.1. Foru € V(q,e) with k- =1, ¢f. (2.3),and v € H,(q,€) there holds

VK TS
AJ-(a'ps)v =0 ({Z)\e Z|>\71+9|+ZA2+9+Z)\H 2+9+Z‘€ ]I/|>

r#s
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Proof. Due to the fact that k; =1 and v € H, (¢, &) we have

1 , ,
fiaJT(a’goi)V :rai%/K(alcpi)pydugo,

and therefore
(o' pi)v ~ /K(aigoi)pydugo.

Decomposing iteratively M as {a;p; > disj aipi} U {ajp; < Dis ;i }, we find

/K atpi)Prdpg, = Z/K (i) Prdpg, + O Z/ (0" )P~ 0% s |v|dpig, ).

rs {asps<arpr}

Using Holder’s inequality with exponents 1 = % + % = "+2 + =2 and Lemma [2.2| (v) applied to the

2n

latter error term, where the inequality s < ¢, can be used to apply it with g > 1 we get

n+2
(€T2§L

/K ') rdpg, = Z/K a'e;) Vdugo+0<z " IIVII),
r#s T

and by a simple expansion we also obtain

i VK,
[ ooy, =3 st [ ety +0( |2 T+ 5 e + 55 } ). @

r r r#s

Note that

R == +2 In, — 2-:—127' 0 T2

— n—2 n _ n— n — 2

1A 708~ —f 2 = [ P |1 =X |2 dpug,
L

90
9 2n
1 etz 1
1— (s do + O ———
(1+A30<r2>) v (Aé—fr20>

o)
~ BC(O) 1 + )\%7’2
n—-2n_g 0, -2n_
_2n /] 1 n+2 1 n+2 1
=), "2 / — 11— ———e de + 0 —— ),
! Bex, (0) (1 + 7"2) (1 + 0(7’2)> A =l

0

whence

6 1
n— 2 p — E—
IO — IInggQ = 0</\9 + An_fbg) (4.4)

3
SH
N

2
Thus up to some O([3_, 57 + 3=, ‘ffig +>, )\2+9 DI o 1lvll) we arrive at

n+2

- n+2
/K(algoi)pl/d,ugo :ZKi)\i_gai"*? /(pi"’deugU.

Finally from Lemma and the fact that v € H,(q,€) (hence [ vLg @idpg, =0) we obtain

)\;1 for n=3
)\i_Q for n=14
o Lgo‘Pi ot? A3 £ =5
P vdpg,| < |l -1 % 2, =0 AT o =0, (4.5)
Lg, In3 )\i)\;T for n=26
A for n>7
so the claim follows. O
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Lemma 4.2. Foru € V(q,e) with k; =1 and v is as in (4.1) there holds

T VK, | am
Il = 0( X2 55 + 32 St + X e + X s + 2 S+ 0w

r#s

Proof. Since the Hessian of .J, is uniformly Holder continuous on bounded sets of W12, we have
T (u)v = aJ-(a'ps)v + 0% T, (' )v? + o(||v]|?) = 8T, (' p;)v + 02T (u)v* + o(||v]|?);
0? T (u)v? :2{/1}Lgovdugo —pruKup_%Zdugo} - S/u[/govd/@O /Kupvd,ugo

(4.6)
+2(p+3)r/Kupvd,ugo/Kupvdugo.

Since v € H,(q,¢), by similar expansions we then find (also replacing p with Z—f% with an error o(1))
0*J, (u)v? =2 {/ngOvdugo —pru/KuplvzdugU]

n+2 i i i -
:2[/ULgovdMgo - m(/(a @i)Lgo(O‘]‘Pj)d,“go) /K(a ;)P 1v2dﬂgo]

n+ 2 Ko7 ad [y p;du .
:2|:/ULgovdMgo - n—2 Z )\0] pr /()01 2U2d,u90
] v

up to some o(|[v|?). Furthermore by definition of V'(q,¢) there holds A? =1+ o(1) and

_4_ 1 1
Kial? = —— 41 o(1) =
o Taip, fZg Q?Wngo@jd:ugo

+ o(1).

Thus
2 _4_
62JT(U)’U2 :2 |:/ULgovdMgo — % /‘P{lQUQdMgO:| + O(||U||2)
This quadratic form is positive definite for ¢ sufficiently small on the subspace v belongs to, cf. [4], so
[0]2(1 + (1)) < COJr(u)v? < ClOT, (' pi)v + [0 (w) ).
Therefore the claim follows from Lemma .1l O

We now establish cancellations testing the gradient of J, orthogonally to H,(q,¢).
Lemma 4.3. Foru € V(q,¢) with k; =1 the quantity 0J,(u)dx; expands as

n+2
VK, |? Ers 2
Tr(e5) b +O<Z >\29 \2+20 Z )\4+20 +Z 220 2)+29 +2 oo T10J- ()7 ).
r#s T

Proof. By the mean value theorem and (4.6) we have, with some o € [0, 1]
0T (Wi — 0 (07 0j)pri = O - (0 pj + o) v

=201+ (01| [ oLuyn i, — prass, 1+ 010l [ K (@i + 000~ s, |
~ 41+ (ol [ @y + o)Ly, [ K (@ + 000
+ / (o ¢j + 00) Lg, i idpig, / K(a’g; +0v)”vdugo}

4200+ Hrasg, (L+O([0l) [ K@i+ avpudng, [ K(alp;+ 00261 idig,
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Therefore, since v € H,(q,€), up to some O(||v]|?) we also get
OJ-(u) ki — 8J7(aj<pj)¢k7i = —2pryig, /K(ajgpj + Uv)p_lvqbk,idugo
- 4/(aj¢j)Lgo¢k,¢dugo /K(Ozj@j + ov)Podyg,
2+ Drasy, [ KTy + 00 et [ Ky + 00 oridi,

Decomposing now M as {ap; < 2|[v||} U{adp; > 2|jv||}, and using |¢y ;| < Caipi < Calep;, we find
0, (W)os = 01,07 s = ~2orass, [ K07 0 iy
_4/(O‘j@j>Lgo¢k,idﬂgo/K(aj‘Pj)pUdﬂgo
24 Hrass, [ Klad gy odi, [ K(@hos)onaduy, +O(o]?)

Now, arguing as for (4.3) and using Lemma [2.2] (iv), we have

_ VK, 5rs
et o (5 £
J o &

r#s

n+2

VK ET'.S
| K@iy ouvi, = Kot [ v + 0| Sl + 3 o+ 5 o)

r#s

whence

0T (u)pri — 0T (07 ) bi = — 2praiy, Kool ™ /@f_l¢k,wdﬂgo
74041'/901‘Lg0¢k,id#ggZKJ‘OZ?/(P?UngO
J

+2(p + 3)raiy, Kl / bk idpg, > Kol / ©Pudyig,
J

n+2

2 n
up to some O(Zr IZ;&L +, )\ﬁ-lme + D s E;\j + |v||2> Using (4.4) and (4.5) we arrive at

( )¢k © (ajsoj)d)k i = _2procitp1:Kiaf_1 /Lpf_1¢k:,ivdﬂgo
n+2
72 |VI{T|2 1 Ers 5
+0( X+ e Z)\Q(n s+ 3 + el ).
" " r " T " r#£s T

Yet also the first summand on the right hand side is of the same order as the second one, arguing as for
(4.4) and (4.5). Combining this with Lemma we obtain the conclusion. O

5 The functional and its derivatives

For u € V(q,¢) and € > 0 sufficiently small let

K; 9
aQZZaf, O‘%T:ZFO@’ 9:n2 . (5.1)

Recalling the notation from the previous section we may expand the FEuler-Lagrange energy as follows.
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Proposition 5.1. For u = a‘p; +v € V(q,e) and € > 0, both J.(u) and J,(c'p;) can be written as

H; —
A for n=3
HH‘O(%)

éoal? AK; o 5 ;0 5 a? X2 for m
(all’;"l) (1617_622}{)\20(2 Z o2 f':i,j*dlZ? % for n=25
T i#) 7 WL;E i fo,r. n = 6
0 for n>7
with positive constants ¢y, €1, Co, 131, d up to errors of the form
|V 1 1
Z +7+/\2(n 2)+ZETS + |0 (w)?).

r#s
Proof. The above expansion for J,(a’y;) implies the one for J,(u) via Lemmata and expanding
Jr(u) = J(a'p;) + 07 (' i) + O(||v]?).
We next start analyzing J,(a‘y;) from the denominator. Decomposing iteratively M as
M ={a;p; > Y i} +{ajp; < aips}
i>j i>j
we may expand

/K 4,01 p+1dM Zap+1/Kg0p+1d/‘90 (p+1) Za aj/chzapjd,ugo
i#j

+0 < Z/ (O‘rspr)pas@sdﬂgo> .
r#s {arwrzasw.e}

Recalling A% ~ 1 and the boundedness of a, by the definition of V(q, ), using Lemma and reasoning
n+2

as for the proof of Lemma the latter term is of order O(>_ ), and also

r#s zg

1
/Kwﬁ’wjdugo =Ki/¢§’s0jdugo +0(/B( )(IVK ilra, + 77 )%%du%) +0<n+2)

Al A2
VE, 2 i
:Ki\/@?@jd#go +O(Z 2 + F +éers .

J

r#s
Indeed we for example have
» n+§ _ n2+2 n+2 n+§ _ 712+2
. o n— n 2n 2n - n
/ Ta; 5 Pjdbg, = / Ta, P @2 @idpg, < C@ wo o S
Be(ai) Be(ai) Ligq

with the latter norm that can be controlled by

) . (28)?
(#)*(—Nyngy < on” G (g / ptn (-, ) — o (L
/r (1—&-)\127“2) x < C)\ + : r y )

R

Thus Lemma where by is defined, yields

n+2

K; V 1 1 nt2
/wa%'dﬂgo = blﬁéfi,j + O< Z | v + 202 +ers )7 (5.2)
g r#s r
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and we arrive at

K,
/K Yo )P dpg, = Zaﬁl/Ksoﬁ’“dugo +p+1)) alabi— 37
i#£]

nt2 - 2n
_ZapH/K@ZHdugo—i—blZa *aj )\95%% bl:n—le
i#J

(5.3)

up to an error O(72 + 277&5 /\2 + )\4 + 2(71 o + z—:rs ) Finally, recalling our notation in Section

and denoting by z* a generic polynomial of degree 7 in the x-variables, we expand

1
/K¢p+1dugo _/ p+1d:ugo + O( 9)
Be(ai) A

K2

=K; / P dpg, + VK, B( wi’“duqo (5.4)

1 1
—K prlg K / pig 6] -
+ 9 B.(as) .’ﬂ i :LLQO (a5) :E Pi Hgo + A4 )\72(71—2)

with an extra error of order O (lﬁ%) if n = 4. For the first term on the right-hand side up to some

O(1? + %) we may pass integrating with respect to conformal normal coordinates. Indeed

P+1d — -7 & nzjé _ / & n?j'Q 9] / 2 & w',zf/z
o = [, = [, w06 [ )

B.(a;) Bc(a;) Be(a;)

and the latter term is of order O( 2+9) From ([2.8) we find

Y
p+1d / ? n—~0
2 ( )" dpg,
/ g0 — Be(a;) 14+ X272 (1+ ,«gi—2Hm)ﬁ 9a;

A ngqq . 20— 0) Nt H,,
= v \n 1 i s d
/Bu<0>(1+&27"2) A 1+A?r2) “

up to some O(72 + A%; + %) Clearly
)\i —9 —0 dx _0/ d-r _
——=)" " dr =), =\ | ——— + O\ "
/Bc(o>(1+>\?7”2) T, G T J (L r2)n=e tOT)
1 dx 0 [In(1+r?)dz 5 1 1
_F/i(l T 7‘2)n + F/i(l n T2)n + o1 + )\7;1 + @) 7)\2(’“72)
Rn R»

50 C1T 1 1
RARY +0(=+ 35 +0( 303

letting
B dx B n—2 In(1 +72?)
Co = /Rn 7(1 T and ¢ = 3 /n 1o dz. (5.5)
Moreover
1 for n=3
/ AnFHA=0,.2n 2 < /)\n92(n 2)H2dm<0/ AP=0p2(n=2) 1 igiziél N
2,.2\n+2—6 2,.2\n—0 (1 o \2p2\n—0 -
(14 A7r?) (14 Mr (14 A2r2) m2r  for n—6

B.(0) B.(0) B.(0)
r26=n) for p>7
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up to some O(—m—s 2(,7 5y + )\4) and with an extra error of order O (h)%(\) if n =4, and

H; + VH;x + O(r?)

n—=0 n—=0 H;+VH;z+ O r?lnr
A NN A AU H; +O( g ) d
1+ A2r2 1+ \2r2 v 1+ A2r2 1+ )\ZTQT ! " m,

B (0) B (0) z o héﬁﬁgr "

whence up to some O(7% + 35 + ﬁ)

Bc(0) 1+ Afr2 14—/\22 ! /\3“" » 1= (1+r2)ntl’ :

Likewise by radial symmetry and, since we may assume du,, =1, cf. [24], we find

1
(1) ch(a'i) "Escprr dﬂga’i = O<)\1? + A;‘_>(71,,_2)>;
(2) K fB y T @f+1dﬂgo = on )\2+9 f (11;1’} +O<T2 + Aif + ,\"’“1""))’

1
(3) ch(ai) prgﬂr d'u‘go = O()\lil + )\72(%2)>

with an extra error of order O (li%) if n = 4. Collecting all terms we arrive at

H;
A1+9
)\2+9 +0
+d\ K; H;

ABTe
Wiln s
4460
Ai
0

A

;He) 1 rdz

o) ()
Rn

1 E()Ki _ KiT AK
/K<Pf+ dfig, =0 tc 150 +tC 5 2T

K2 K3

Ql
)

up to an error O(72 + % + ﬁ), and thus obtain

i B K’L K 2n AKZ n2n
/K(a e g, = Z (CUAQO‘ Tag )\9 [T G arg )\2+9 2)

'3 K2

- K; - i ’
+dlzﬁo‘i"2 i, +b1ZOé aj)\(,s”
i i i#]
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2 n+2
up to some O(7% + 37 IV)I\?I + %‘ﬁ + ﬁ +&,% ). Consequently up to the same error

271
i i —2
I (ags) = [ eilg,idig, _ o'a? [ iLg,pjdpg, Z
T i) — — 1
p+1 s
fK i Qi p+1)p+1 (CO Zz )\906 )p+1 i l aKT
H;
)\"1 A
n
H1+O( )\121) 2n n+2
= . s n—2 n—
—CZAK& dz& Aﬁ Oéi _Bzaz O[st
2 210 o 1 )\9 )\3'5 2n 1 2n )\0 i,J
z o ? 2 i 3 a2 its o ?
K, Wi, ln \; K, T J K,
AE
T
0

Next for i # j using Lemma [2.1] we get

Pilg,p; _ =" 1 1 2
/4n(n7 1y M0 = /‘pi Piditon + O\ 33 Sz TE )

For example to check the error term, we may estimate

<3

n+2 n4+2 n+2
n—

Ta (P (pjdlu’go <||ra1 zn : ||L(

”(*j))QH% @JHLW%@%’
Bc(ai) Be

+2
which is of order O( = _ ) thanks to Lemma and likewise for e.g. n > 7

n—2
n. = 0(62'7]' In"» Eiyj),

90

/%wdugo Slewwsll,

n+2
whence A, 2 [ pipjdpg, = o> /\2 ). Thus Lemma shows that

1 n+2 ~

/301 go‘p]d,ugo = blé‘zj + O Z )\4 W +&rs ), by = 4’[7,(7’1, — 1)b1
r#s r

Finally from (2.8) and Lemma we find

H;, + nVH;x
piLg, pi — Cn Ajrn—?
dpig :/% dpigy — = s | Hi +nVHz
/4n(n—1) ’ ° 2 B.(0) (1+A7r?) —W;Inr
0
up to some error terms of order O(A;S, )\;4 In \;, /\;47 )\;4, )\;4), whence
H;
b w)
F+O0(2g
,\ Y n—2
Pilgopi 22 5 A i Cn [ " Pdr
T du,, = "2 dpg, —d § di=— [ ———
e L R I N R e
'L}\? i R
0
up to O(% + ﬁ) Recalling (5.7)), we obtain
H;
H, |, Nilna
i Ly 0 N E A
1=gor — - .
— =T dug, = 4 —1)(dy —d 4
[ oGy =0 antn )@ ) | %
S
0
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up to some O(72 + )\%1 + ﬁ) As dy = d,, cf. (5.6), we simply get

atal /% g0 Pidttg, =4n(n — 1) CoZOé + by Zazaﬁ” (5.12)
i#]

n+2
up to an error of order 0(72 +>. AL;% + ﬁ + Z#s Ers > Plugging this into (5.9)), we obtain

p—1

. dn(n — 1)l Ka“ AK, a7
Jr(awi): ( ) Z ( - IZ n CQZ an

p+1 240
(Zl )\9 O[ )p+1 )\ K T
&
Ail A
20 Hi+0( A?l) 12 N
K, o 22 K; oz" *a; by ooy
R B A e
A 2 A3 — co o2 g
. i an 2 i ’L a -2 0
@ KT W, ln X 7] K1
A7
0
up t O( +Z‘VK'+ + +3 L ert ). Recall
p to some O(T X 2@ o pots €78 ecalling
= 2n ~ 2n n K; =2~
b = by, by =4dn(n—1b, o= Zaz ap? = Co — a7
n—2 ’ ( ) ’ : 79 K, n—2 : )\ZH i )
7 7
and setting ~
-l c Co = dy - b
. _ . 1 . 2 1 1
00:4n(n—1) y 1, Cl=—, Co = —, dlzf, b1: - (513)
0 Co Co Co
we may rewrite this as
2 2n
o R K; a AK; o]
Jr(u) = J(ae;) = ST <1 G g — &2 Z )\2+9 e
( Ka"')P t ’ aK,'r aK,'r
H;
)\ l /\
2712 H; +O( ) %
—d Z&% ?f —b Z(&% Y _ L%
PN 2 N ! 07 T p2 /W
R W;ln \; i#j Tt Qe g
Py
0
Then the claim follows from Lemma 511 O

We next state three lemmas with some expansions for the derivatives of the functionals with respect
to the parameters involved (recall our notation from Section . The proofs are given in appendix B.

Lemma 5.1. Foru € V(q,€) and € > 0 sufficiently small the three quantities 0.J-(u)¢1 j, OJ (' ;)b 4,
Oa, J-(a'p;) can be written as

2

o . o KJ p—1 b AK;, ozk

—— (21—

(@)= (CO( I )~ K )\2 Z Kip)? a)
K, T

N apog Q; 3 ko,
b E Skl — E —¢&ii ] —d H; ) Hy _
+ 01 o2 Skl . S 1 X Zk 5 forn =25

— O
k#l e W, In X,
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with positive constants ¢g, C2,b1,d1 up to an error of order

2 VK[> 1 1 ot2 2
O+ =5 55+ S tend +1WP). (5.14)
T#S T
In particular for all j
a? K;
ap-ﬁ‘lﬁf _1+OT+Z /\n 2+E7‘5+‘8J(>|)
K,t ") r#s r

Lemma 5.2. Foru € V(q,e) and e > 0 sufficiently small the three quantities 0.J-(u)pa,j, OJ-(a'p;)da

and J (’9)\ (at;) can be written as

I:\I—; - for n=3
ax 540083 o
Qs B ~ . . Q - J . J
%]L? (C1T+02Kj)\]2 _bQZOT;/\jax\jsi,j‘f'dl %J for n=5 ),

(O‘K,T) " 7 J#i Wi 172 Aj for n==6

0 for n>7

with positive constants ¢q, Cs, ch, by up to some error of the form
\VK |2 1 nt2
> N T Em T F 107, (u)]?). (5.15)

r#s
Lemma 5.3. Foru € V(q,e) and € > 0 sufficiently small the three quantities 8J,(u)ps ;, O (a'w;)Ps ;

Ve, , ‘
2
and L Jr(a'p;) can be written as

Qi p VK VAK I (673 Va,-
- +¢ b ——2eii |,
(ait? )T2 K )\ Cq Ky)\:; 3 ; OZJ 1,]
with positive constants ¢s, Cq, 63 up to some error of the form
‘V L 1 e 2
T e T Terd + ). (5.16)

r#S

6 Gradient bounds

Theorem [2 will give suitable lower norm-bounds on the gradient of .J;, yielding Theorem [I] as a corollary.
We recall that on S? and S* the result was proved in [12], [28], [29], [45] in more generality.

Definition 6.1. Let H be as in (2.7). We call a positive Morse function K on M non-degenerate

(i) of degree g € N in case n =4, if {VK = O}O{EQAK +¢é3H =0} =0 and if for every 1 < k < ¢
and every subset {z1,..., 2} C {VK =0} N {655 + & H < 0} the matrices

~ AK(Il) ~ H(z1) ~ Go(z1,%2) ~ Go(z1,zx)
+c c . C

K(I )2 SK(Il) 4fyn(K($1)K($2))% 'Yn(K(zl)K(zk))%
~ Go(z2,71) ; . :

n (K (z2)K(21))2

Mﬂﬁh e — :
é Go(rrp—1,Tk)
Go ) ’Yn(K(l‘k 1)K(33k))2)

c 0 kL1 2 K(xk)2 ‘I’ 3K<$:)

o (K (i) K (21)) 2
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have non-vanishing least eigenvalues, where ¢o = /3wy, C3 = 24+/3wy = ¢4. We say that K is
non-degenerate, if it is non-degenerate of all degrees.

(it) in case n > 5, if {VK =0} N{AK =0} =0, i.e. (1.2]) holds.

Remark 6.1. Non-degeneracy in case n = 4 implies the existence of a least eigenvalue

Mo, .., zp Xz, T, = Azy,zn X,k with 9017 STk #0
and such that Ay, ..z, 15 simple and has a positive eigenvector, i.e.
ol k . l
Xaqoon = (majl)m@k, . ,xmhwwk) with x5, .. >0 forall <1<k

Theorem 2. Let My, . ., be asin Deﬁnition@ and suppose that

K is non-degenerate of degree q  for n =4
K is non-degenerate for n>5

Then for € > 0 sufficiently small there exists ¢ > 0 such that for any u € V(q, ) with k. =1 there holds

IVK . 1
|07 (u \>c Z |1_ p+1 )\eap |+5rs)
r#s
cf. (b.1), unless there is a violation of at least one of the four conditions
(i) T1>0;
g . 4 , {VK =0} n{&55 +&H <0} for n=4, Ny,
(i1)  there exists x; # x; € {{VK O}H{AK<O} Jor m>5 and d(a;, z;) = O(5-);
2K 60 ) P=1
o ' )\75_ 1 AK; & Zk(KQAZ Ky, ,\2 1 .
(iii) a; =0 (K_,- <1+8(K,-/\§ X2 N = ) +0(,\§) Jor n =4, ;
0
aj:®-(%)ﬁ +o(%) for n>5
J
(iv) Mq,...xy >0 and /\j:L\/O;(I) for n =4,
w C1T = —Co ﬁlg\’a + 0()\%) for n>5
forallj#i,j=1,...,q, where 0 = (01,...,04) in case n = 4 is the unique solution of
g1 1
K(ﬁh) o1
C1 = Macl,...,afq with o > 0,
9q 1
K(zq) Tq

while © is given in Remark . In the latter case there holds A\ ~ ... \j ~ X\ = L and setting

S

aj = expy, (@;)

we still have up to an error o(55) the lower bound

|8J |>Z ]‘AK .’E]) +Z (E] Qo(x“:rj)”)

)\2 o K(z;)  vnAidj
a VAK (x;) 1 Ve, Gy (4, 25)
_|_Z 45 VZK( ) 1 )\3 J 82 VQK( ) 1%|)
];él ’Yn 1 J
3 ;-0 N o4l AK(%‘)_60H<wj>_Zk(K(wa'?a—GOK(mfAi) )
% K(a) "8\ K@)y X 2k Ran)



n casen =4 and

ZAKJC) 512 Hac (x4, 4)
2I6 22+ 55 52 + v ) 4y ) Swlanty))
J#i 7”()‘ Aj)?
aj | Ca o2 ~1 VAK(%‘)
2L 22K (2
AK(x H(x
+2 o ol AL (ARG W16 H () 2l RoBE T 22 Rar) )
! K(a;) 90 \ K(z;)A2  « X > 7o
in casen =5 and
62 AK () 2p 1 VAK (z;) LA
107 (u)] 2 T |+| (V K(z;)) ——7z | +la; = O )
Z ©3)A; Aj ’ K (a;)
in case n > 6. The constants appearing above are defined by ¢y = fRn (1+r2)"’
n(nl)(n2)2/ 1—r? 1 i (n—l)(n—?)/ r2(1 - r?)
€= n—2 P In dl’, Co = — ) - T
G Rn(l—i—r?) 142 o Rn(l_,_?a) +1
an 4( 1)( 2) 2( 1)r?
n—1)(n— n—1)r
O e AL kL M T i
@ /n (1+r2)m T /n (1+r2)" z

The differences in the above expressions for n = 5 and n > 6 is caused by a different decay of bubble
functions causing stronger mutual interactions in lower dimension.

Remark 6.2. Under non-degeneracy conditions, Theorem[d has the following immediate implications.
1. In case T = 0 there are no solutions of 0J(u) = 0Jo(u) =0 in V(q,€), c¢f. Theorem 1.4 in [13)].

2. In case T > 0 every solution 0J(u) =0 in V(q,e) satisfies

At

¢

LA

1
NG
and has isolated simple blow-ups occurring close to
(VK =0} N{&:55 +&H <0} forn=4
{ {VK =0} Nn{AK < 0} formn > 5.

3. The aj, Aj and a;’s are determined to a precision o(72) 4+ O(|0J,(u)|). Indeed, for e.g. n =6
I+ = C2 AK(x;) AK(z;) |

& K ()0
determines A; up to the latter error from T and x;, whence a; is determined as well by

g _ VAK(z))
+g4(v2K($j)) 1TJ|
3 J

45

|,\j

Jrom \; and x;, and finally up to the multiplicative constant © also o is determined by

By
\ Koy
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from \j,a; and T, recalling 6 = 727 and p = ""'2 — 7. As for the multiplicative constant we have

i i K(ai) pir (., o, DK (i)
| =k = /K(a o; +U)p+1dugo _ /K(a I e Z Tfaf Co+ 1T+ czm)

i

3

up to some o(T2), cf. ., Lemma 4 Lemmam and (| ., whence

1= @P*;a? (co +c17+c2f((K(;E’ ) - P“Z ( )El (co +01T+02M(xi))>

K(z:)\f
up to the same error and so the multiplicative constant © is determined as well.

Proof of Theorem |2, First we note that k, = 1 implies, that all the a; do not tend to infinity and least
one of them does not approach zero. Hence by definition of V(g,¢) all the «; are uniformly bounded

away from zero and infinity. Secondly, if for some index j =1,...,q we have
2
ot K; |V 1
e SV I E AP Dh wah b vt
aK,‘r J r#s
then the claim follows from Lemma, whence we may henceforth assume that for all j = 1,...,¢
2
o K; VK, |
oPtt A" of ' =1+0(r Z +*+ €r,s)- (6.1)
K, r#s T

Thus we have to show

0. (u)| > T +ZWK| /\2 +Zsrs (6.2)

j=1 ] r#s

and arguing by contradiction we may assume that

q
IVE;
oJ, <
orrl 7+ 30
Jj=1
Then by Lemmata [5.2] and [5.3] we have

P _ VK, . a; Vg,
(a) OJ;(u)ds; =z (és }”.+b325 S e

- iz +) ers

J r#s

o - . AK; Q;
(A 0J(u)pa,; :2"])";2<61T+62KJ/\3 — sz%Aj8Aj€i,j>

n—2 .
(aKT J#i

up to some errors of the form O(/\ij) +O0(r2 + Zr?ﬁs s i )\4 + €r 5 ) where we have to add for (\)

dlf—g to ¢o KAI)\{ZZ in case n = 4. Ordering indices so that \; > ... > A\, <= )\% <...< i and recalling
(2.9), we have
A =
n—2 X = >\ Y )‘J’YnGgo (ai,aj)
_)‘ja&‘gi,j = D) 3 n
( + "’ Ai /\J'YnGgo (az,a]))
and therefore
2—n 1 ni2 . ..
Aoy €i5 = —5Cij + O(F +e;7 ) incase j<i or dg,(ai,a;)# o(1). (6.3)
J
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From (a) and () above we find uniformly bounded vector fields A, A1 on V(q,¢) such that

|VK1| |V 1 nt2
(A1) OTn(u) AL 2= + O /\3""25“ )+0(r2+Y +ygtend );
1#4 T#S
AK, 1 VK,|? nt2
(A1) 8J()A1NC1T+62K>\2+C4Z 5114—0(—? Zl | +7+5r9 )
r#s

with ¢4 = "77252, and combining X; = A; + €A; with some € > 0 small and fixed such that we keep a
positive coefficient in front of £, ;, we get

- _ AK;y ‘VK1 ‘V | n+2
(C1) Bi=0dJ (u)X; > (c17+c2K1A%)+e( N +§ 1 +O()\ )+O0(r +g:: +A4+ rE )

rys>1

Likewise from (@) and (A) we find uniformly bounded vector fields Az, Ay defined on V (g, ) such that

|VIG| |VK 2 nt2
(AZ) aJ‘r(’u)A2Z )\2 +O /\3 +QZ#51l +O ; +7+ 7"9 )7

AK, VK 1 n42
(A2) 0J,(u )A2N61T+CQK>\2+C4Z 5114—0()\34-312 ) +0(r Z\ +7+5Ts )
2
r#s

and combining them as Xo = As + €As with € > 0 small we obtain

AK, e VK|
KoX2 A2

BQ = 8J7-(U)X2 2(517' + 52

+Z €2, +O(A3+512 ) +O(r Z'v +i+e::2).
r#s

Therefore combining B; and B so that the coefficient of €; ; is positive

2

i [~ ~ AK VK VK, nt2
(02) B1+€B2ZZ[EJ(61T+C2KA)+ ]+1(| )\ |+Z ]Z +O( Z‘ | +7+€rs )
J=l1 17 g J#i 2 r#s
r,s>2

Iteratively, for all kK =1,...,q we can find uniformly bounded vector fields Ay, Ax such that

|VKk|
AL

(Ak) 8JT(u)

VK 1 n
+0( >\3+Z€]” )+O(r Z' +7+€r:2);
k#i r#s

AK, VK, 1 +2
(Ak) 8]()Ak—81T+62K)\2+C4Z e+ O( )\34_25]” )+0(r Z| +7+ s

k>1 r#s
k k
- AK K; 1 n
(Ck) Y B 23 [éf clr+cQK])\”2)+€J+1(V)\] \+Z s +O( Z\V +*+€r:2),
j=1 j=1 J VE) r#s

. H. - AK; .
where we have to add C35# 10 Caz% in case n = 4, where
5 i

i3 =d, (6.4)
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In particular

k k
, . AK; K; 1 2
Y €B; 2 [6](51T+52K)\ )+ J“(WA ‘+§ eii)] +O(*+)) 'V +—+ ,f).
=1 j=1 7% J J#i T#s

Then, if either

< +Z| +Z e T +Z| +Z

r#s r#s
we obviously have (6.2)) from (Cq). Thus we may assume
|VK |
gty Ty, 69
r#s
whence we may simplify the above formulas to

V
(Ay) OJ,(u)Ay > > | k' O(> eri) +of 72
k#1 q

AKy 1
(Ak) aJ()Ak_cU—i-czK/\Q-F 42 EIH-I-O Z:E;H —l—o(/\q)
koo k AK. |V
(Cx) Z€ij ZZ [/ ( C1T+02K )\JQ) + e —&—25]7 )
j=1 j=1 77 j#i Al

adding ¢3 )\2 to ¢y K for n = 4. We first consider the pair (¢ — 1, ¢). Suppose

1
)\2 20(73).

q—1

To prove (6.2) we then may assume from (Cq-1) and (6.5)) that also 7+ 3, ers = o(5z), since
q

q—1
§ § €ij = § Er,s = § Ers-

J=1 j#i q—1>r#s r#s

As the coefficient of /\;2 in (Aq) is non zero by non-degeneracy, (6.2) follows. So we may assume

LI
/\q—l B >‘q7
and therefore, still by (6.5),
1 1
K,-1] < K, < —.
|v q 1|N )\q—17 |v q|N )\q

So, if ag—1 is close to a4, these points are close to the same critical point of K, which, as K is Morse,
implies d(aq—1,aq)) S /\i ~ ﬁ This however contradicts the fact that by Proposition
q q—

1
€g—1,q = — — 0.

()‘qfl)‘qd2 (ag-1, aq))nT
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Therefore for the pair (¢ — 1, ¢) we may assume

1

1
K, _ K,| < —
‘V q ll’ |V q‘ ~ )\q_l )\q?

and  d(ag—1,a4) > c

In particular in case n > 5 we have €,_1., ~ —— = o(<5), whereas in case n = 4
q—1,q9 A A2/
q q

Gy, (ag-1,aq) 1
g = —— "+ 0(—).
€q—-14 nAg—1 Mg + ()\3)
We turn to consider the triple (¢ —2,q — 1,q). Suppose that z— = of /\21 ). To get (6.2) we then may
—2 a—1

assume from (Cq_2) and (| . ) that

as well. But then clearly in case n > 5 we obtain (6.2) from (Aq_1) or (Aq), since g,_1,, = o(A;?) is

already known. In case n = 4 we have to argue more subtly. From () we find

03u)ony1 = — (Rl e T, t Gl )
(a;{;)%z Kq1Xj_ Ag-1 Qg-1 TnAg-1Aq
and AK, _H Gy )
_ Qq a4 = Q=1 Ggollg—1,0q
P = (Ot[n; 2) n ( K A Y A7 o Qg YnAg-1Aq )

up to an error of order 0(%21 cf. . Obviously (6.2) then follows if either

AR, Hy o AKea o Hin
3 or C2 3 .
R Y RAPY Kq- 1)\q PV

We may thus assume both summands to be negative. Recalling (6.1)), we then obtain

AK H 1 ~ GO aQg—1,a
Bg-19 - 0 2 g2’ SRS ol {0g=1.0a), 1
&J( ) q—192,q9—-1\ _ [ Ag—1 -1 Yn(Kq-1Kq)?2 Ag—1
T /8 (Z) - 0 1 ~ Go(aq_l,aq) ~ AKy ~ Hg 1
qP2,q g Cyq Co 7 —|-C3K—q BN
q

1
’Yn(ququ) 2

Q

up to an error o(5z) letting
g 20 n—2 .
Kja;B; = (ag 7)™ for j=q—1,4q,
and thus [0J-(u)| 2 A, 2, since otherwise aq_1,aq close to 241,24 € {VK = 0}N{& 55 4+ é&H < 0} and

~ AK( ) (:qul) ~ Go(zq,l,zq)
B 2 R (z, 1)2 t+c 3K(wq—1) ¢ o (K (g 1)K(xq )%
Mg-1,4= &, Golwg—1,2,) 5, A (zg) H{(z, g

(K (24— 1)K (20)) 2 2 Kwn? T 3K,

would have after a blow-up for 7 — 0 a vanishing eigenvalue with strictly positive eigenvector, which
by Remark is impossible. So (6.2) again follows. We may thus assume

and therefore by (6.5




So, if ag_2 is close to either a,_; or a4, these points are close to the same critical point of K, whence
€q—2,q—-1 =1 or g,91 =1
as before, contradicting Proposition Thus for (¢ — 2,9 — 1,q) we may assume
1 1 1

~ ~

M-z A1 A,

VK2, [, [VEga], [VEg| S

and
d(ag—2,aq-1), d(ag—2,aq),d(ag-1,aq) > ¢

analogously to the previous case of the pair (¢ — 1,1). In particular in case n > 5

€q—2,4—1,€q-2,¢:€q—1,¢ = PVl 0(/\2)7
q

whereas in case n = 4 up to an error O(5)
‘1

€y p ol = Ggylag—2,a4-1) o ga = Gy (ag—2, aq) - Ggo(aq—laaq).
a 4 ’Yn)\q72)\q71 T 4 'VnAq72)\q e 7q 'Vn)\qfl/\q
Iteratively, we then may assume for all k A1 =1,...,q
VK <~ ~ L and dag,a) >
— ~ — an
k )\ )\l a ag, aj C
In particular €5 ; = 0(%) forn > 5 and e;; = W for n = 4. But then
- . AKy 1
(Ax) OJr(u)Ap =(E17 + @m) + 0()\—3)
in case n > 5 and thus
_ . AKy
|8J—,—(U)‘ z ClT"‘CQm
1 ~ - AK 1 .
up to some o()\—g). Therefore (6.2)) holds unless é;7 + Qﬁ = o()\—g), while now for n =4
o . AK; a; Gy (a;,a;)
c’?J(u)(/)g,j :7?7,;"2(01T+02K )\2 + 03 +C4Z go )\ )\ g )
(aKﬂ') " ]

up to some o % cf. . forall j =1,...,q. Obviously (6.2) then follows, if for some j =1,...,q

e NP B
Co—t + C3—=
2Kj)\? 3)\? )

whence we may assume all these summands to be negative, proving (ii). From () and (6.1)) we then have

T AK H alaa
8J(u)(ﬁj¢2’j) +02K2)\2 +C3K ;\2 + 42 90( J)

KJ KRN,

n 2 _—
up to some 0(%) letting as before §; = (@7 (i . Therefore
C1T L
Ki 1 1 A1
|8J(U)| Z _diag(ra 'ar)Mal,...,aq
ElT 1 q 1
K, Aq
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up to the same error. This implies that (6.2]) holds true, unless we can solve

C1TA 1
Ky A1 1
; = Ma,....a, + 0()\—) (6.6)
617’)\{1 i q
S Kqo Aa

and we may already assume, by (ii), that a; is close to
AK

In particular (6.2]) follows in case 7 = 0 by the non-degeneracy condition on K, proving (i). In case 7 > 0,
writing o; = \/7\;, we find passing to the limit 7 — 0, that there has to exist a solution to

o1 1
K(x1) o1
al @ =Moo | ] (6.7)
9q 1
K(zq) 9q

In particular, testing the above relation with x = X4, .. »,, ¢f. Remark we find
0, x;
0< o5 _ N
S

where A = Ay, .z, is the least eigenvalue of My, . . . Thus necessarily My, . ., > 0. Since

1 1

o1 o1

. . _ o;
Flo)= Mz, .z, | * : +2012f

1 1 ¢

Oq Oq

is a sum of convex functions, there exists a unique critical point of F' satisfying . Hence we have
comparability A\ ~ ...~ A\; ~ 1/,/7 ~ X like in case n > 5. Thus (iv) follows upon checking constants for

n=4,ie o= [(;5s)" =% and
R7L

1. 61 e Tl(’ﬂ 172(7274 2 f (1 n+1 1_‘:7_2 dx — 2,/3(“_)4;
Co
(n— 2 r
2. Go=- f (lﬁg)n+1dx = /3wa;
~ CO 4n(n 1) " (n42—nr? (68)
3. C3 = dl f 1+r2)”+2 — 24,/3w4;
4. 64 — nT_2b2 _ 2n(n 7717)(n 2) f 1 n+2 _ 24\/m7
Gy ™ R (1472)

cf. (7.14) from the corresponding Lemma We turn next to (iii). In case n > 5 we may now assume
AKj, 1

617+52m = O(ﬁ) and g = 0(/\2) for Ap ~ A\ = A,
which by Lemma [5.1] implies
aQ Kj p—1 1
|07 (u)| Z |1 - 04?;:.: T?aj + O(F)

]
Note that a’; 1 — @r-1. 24 is modulo scaling the unique and non-degenerate maximum of

K;
a? S a?

@D (T el

a=(a,...,0q) —
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0

Now (6.2) follows, unless af “l_ert. % + 0(%) and there holds
> Pt 1
01 (w)| 2 o — 0 " 2| +o(3).

In case n = 4 we may rewrite Lemma up to some 0()\%) with constant given below as

2
Qs . ot K;
AT (u)1j = ——— <Co(1 — 7T )\g b
(0e)™ o
AK; H; (ai,aj)
- K; d b SCR,
(02K2A2+ 1K)\2+ 12 T’K)\)\) (6.9)
2n
Tl AK, Gy (ag, ap)
+ K (& +d +b _ T90\%k> M)
(a2)2( ZK2)\2 Z % 12,)/” /KkKl)\k)\l
using (6.1) and A ~ (\%)%T =1+ O(%%3). Moreover, up to an error o(1) there holds
2n
n—2
(@22 a?Y, 02 o’ Y, 1
n_ 2n = 2n = ?7
a1n<72 06171(72 a}"{* i 1
and due to
1 1
A1 A1
_ AK, Hy, _ Gyolag,ar) ) . _ T
¢ —— +¢ = Mag,... : : =c —
zzk: KX 32,; K ; Sv2er YSYRERAE A U B U Z K;
Aq Aq
and
1
A1
AK; H; _ Ggolai,ay) e LT
02K2A2 TR )\2 T Z Yoo VRN B vty e
Aq
up to some o(55). We may therefore cancel out the interaction terms in and obtain
Q, . o> K; ,_ . by . AK; N bp. . H,
A7 (u)gr,; = ﬁ (CO(1 T Tt )\g O‘p 1) — K;((e2 — ECQ)KT)\J? + (di — ECB)K-;\Q-)
(g 7)™ OK,r 3N 3N
: (6.10)
1 bl . AKk N b] ~ Hk
d
+ Zk }%k (( 5402)2 K2)\2 (di — CS)Z Kip\2
Checking constants for n = 4, i.e. with ¢y = [, (H_TQ)H =
L ¢ =8n(n = D)(fan i)™ = 16v30r, &0 = G50 50 [ ity = 4v/3ws;
R’n

2. dy = 8",? )| f(1+r2)n+1 243wy, by = Sl 1(?”+)2>f(1+ o — 144,/3wy,
n (p—2) Rn r

" €o

cf. (7.9) from the corresponding Lemma we then find

2Kl ) ) 60
01l 2 |1 - S <AK§ oot TR W)) +ol3)
ai A 8NGO Xk A
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Note that setting

iT g 2 N2 ’
SA\KGA A PO o
there holds E; = O(55), > % =0, and aé-’_l — gr1l (1 + Ej;) is modulo scaling the unique and
non-degenerate maximum of
CY2 Zaz

+1 2 K +1\ 2
(OZPL )p ! (Z ,\9 1+E;) P ) +

a=(a,...,aq) —

and satisfies

o
2 K 2 A (1 + By
@t —gr-t 1+ E;) = LI+ Bl (1+E;)
P+1 2\ T p+1 J K.t A\ pr1 j
YK K >l (1 + Byl

1
/\3)

2

due to (;‘: )P = =+ O(IK—Q’\) Thus (6.2) follows unless, up to some o(5z),

A 1 AK,  H,  ulghE —605%s)
10T (w)| 2 la; —O " | =L |14 = (==L —60~—2 — PR (6.11)
J K; 8 K;\2 A2 POy

We have therefore proved (i)-(iv), which will be used for showmg the second statement of the proposition.
In this case the error terms in Lemmata[5.1] ! 5.2 and [5.3| are of type o(A™3) + O(|8J; (u)[?). This follows

immediately in case n > 5, while the terms £,% ~ A~3 in case n = 4, for which however the underlying
estimates can be improved to derive a quadratic error in ¢, g, cf. [38]. Let us first treat the lower bounds
arising from Lemma [5.3] In case n > 5 we find from the latter lemma

VK, VAK; VK(a;) . VAK(z;)
> J J
‘6JT(U)| N‘C?) K )\3 | ~ | C3 )\J + C4 )\? |

K)\ + ¢4

up to some o(A73) and therefore, writing a; = expy, (@;), that

a; ¢ _1VAK (z; 1
07,0 215 + 27K () T o).
J

Similarly in case n = 4 we find up to some o(A~3)

VE; |,
KN UK

VAKJ > Q5 Vango (ai,aj)
LD D wv
nsit J

|07 (u)| Z |é3
G

From (111) we have o; = @( )P T+ O(5%), which by § = 527 and \; ~ 772 due to (iv) becomes
o F +O(%22). Thus, still up to some o(A73)

VK(a;) Cq VAK (z; b3 K3(z;) Vi, Ggo (s, 25)
07, (u)] 2| A(_J p 2 E 3 g;Azj\
7 3 03 x’L Yn
a; G4 VAKm 1V, Gy (w4, 25)
>12L 4 2 (V2K ()L J } : 2K i 90 J
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and checking constants from Lemma [5.3] cf. (7.20)), we have

4(n—1)(n — 2)dx 2(n — 1)r3dx . /Sn(n —1)dz
G — =3 Cp = —_— = b = =24
c3 /n T Wq, C4 / T2 wyq, 03 (1+72) niz Wy
R’IL

Rn

We conclude that, up to some 0(/\1—3)

o+ 5(V2K (25))” NAK(%) +82 Ifj((fﬂ) (V2K (z;)) 1%(;%)‘ for m—4
07 (u)| 2 YAK () B (6.12)
,\; g;l(VQK( i)~ 1TJ\ for n>5

By this, i.e. G; = O(5%), and o; = \/% + O(%22) we then infer from Lemmathat up to some o(55)

. _ AK(:U 2~ (xl,x ) ~ H(xzj)
oJ(u)| 2 e + ¢ ] G 4+ d 1

with constants, cf. above, given for n = 4,5 respectively by

T T2
fuw 17)d:r

1. & — _ (1+r2)"+1 1 2.
1 n(n—2) fyn (leﬁ In(;Ez)de 279
5 I ™ (n+2)—nr? dz
2 C3 _ di __ 4 R™ —(14r2)n+2 —12 512,
C1 ¢1 ~ (n—2)2 1-—r2 1 > O )
Jor Gy In(gz)de
_ rn — g
3., n=2by _ & _ _2_ (14r2)" 2 — 19, 512
= T F. T o 2 9 )
2 ¢ c1 n—2 fRﬂ WIH(H_ 5 )dx 91
we conclude
1 AK($7) K(z 7) s?()(x1 IJ) —
IT+3 K(a;)\2 + 12[ ,\2 Nt >t K@) i, for n =4
2 AK(z; ) 512 K(z;) G (M,x])
u)| = J 2== . J/ 790 IS = . 1
07 (W)l 2 |T+9K(ﬂc AT + 9w[ +Zy¢z (:r:z)%(xx)z for n =5 (6.13)
AK;
|T+2K)\2| for n>6

By similar reasoning, using a; = O(5%) and o; = \ﬁ + O(22) we finally have, up to some o(5)

AK H
25 oP1 Tl k)
a’Kja 1/ AK; H; KIAZ Kk)\2
- a?jlj\‘? +§(Kj)\]’% _6075_ ka =) for n =4
ZT
AKy | Ss16 Hy
2 -1 2816
|8J'r(u)| 2 1-¢ Kjoj 1 AKJ 2816 HJ _ 2k (Kg)‘rz " K’“AS) fi =5
~ | P16 9 ( + )l or n=
[Py 0% KA Zk o8
o? p 1
K;a¥
|1—#| for n>6
1 =
a‘;’(ﬂ_)\?

This follows in case n > 6 immediately from Lemmal5.I]and for n = 4 by repeating the arguments leading
to and , while the case n = 5 follows by arguing as in case n = 4 using to cancel out
the interaction terms when passing from to . Then arguing as for the passage from (6.10]) to
(6.11]) we finally obtain that up to some o(5z)

laj — © p‘\l/jf_(l + (255 602 — E’C(ﬁ%;*% e W for n=4
i A3 2 * Ry
072 | |0, — 6 p_i/?é(l B 90(%2 | 280 1; 2 <£I§;:K K’:is)))' for nes|- (614
p
loj —© 7§ [)\(—i| for n>6
Thus the second statement of the theorem follows from combining (6.12)), (6.13) and (6.14). O
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In [36] the next result will be needed.

Lemma 6.1. For every u € V(q,€) there holds

VK, 1 o? K, nt2
10, (u +§ | - =5 ok e 4 ol
T;és r )\ OéKT >\

Proof. Recalling (4.2) we can find |Bi.;|,|5] = O(1) and v € Hy(p,€), ||v|| = 1 such that

0 (w)| < 18510, (w)ri] + 8]0 (u |<Z|8J )il + [0, (w)].

From Lemmata [5.1} [5.2] and [5.3] we then find

q 2
IVK;| 1 1 o? K,
2 107 N Pt I el 1 e T ),
J

j=1 J J J K, r#s

whereas from Lemma 1] we have

VK,
1y = 03y + O(lel) = 00+ 3 P 4 4+ 5228 4 o,
T r#s

From this the claim follows.

7 Appendix

7.1 Interactions

Proof of Lemma[2.3 (i) follows using straightforwardly the expression of ¢y ;.
(i) (o) Case k = 1. We have ¢;; = ¢; for kK =1, and thus for ¢ > 0 small

20 —r ., A e 1
o dpig, = Uy | ———————=— dug,, + O o=
Be(a;) 1 _~_>\22%G3;n A

On Bc(a;) one has u,” =1+ O(7|z — a;]*), and by (2.8)

r3 forn=3

s rt forn=4
WGET =2 +0 | P forn=5{,

nr forn==6

76 forn>7

whence passing to normal coordinates at a;

XTFo forn =3

_ oy forn=4

. A Vdx N2
/QD,ZL 2 d/”’go = / W + O )13143\9 forn=>5
Bex, (0) ,\%H forn =6

bY=22 for n 2 7
up to some error O 3 —+7), whence the claim follows with ¢; = [ aii%)"'
Rﬂ,

) Case k = 2. The proof works analogously to the one of case k = 1 above.
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2

_ iV Va, G2 Ve, ta,
(7) Case k = 3. We have ¢, ; = %uai i s—; + /\? Lp;, whence

1+AnnG2, "

2
YV, GE ) (@) = =22 + O, r3, 74 P Inr,7%) for n=3,...,6 and n>T.
Moreover uq, = 1+ O(r2.), implies Vg, uq, = O(rg,). Thus

A0 forn=3
_ A270 form=4
— n—2)2 A; 9124y 1 _3_
/%‘nf |¢k,i|2dug0= ( ) / AT +O( 2Jre)—|—0 A0 form=5
n (1+1r2) A ‘ _
R" v 110 orn==~0
A0 forn>7

From this the claim follows.

(iii) We just prove the case k = 2 and start showing that

P e 9 1—r ntz
—Ai A / "0, idig, = — M, / @i 0N 0] dpg, (7.1)

n+2

up to some O(T +Z,¢j (A4 + 2(n TR )), so we may evaluate either of these integrals. Clearly
ey /% T 0N idg, = = AN /B L O\ dpg,
a;

PP

up to an error O(%H%) whence using Lemma [2.1| we find

0 e 0 Lgo ®i
AN [ el On g, = — A i 0N iy Hg

- nt2
up to O(\; 2+ A, (n= 2)) ;7 ) Indeed we clearly have A, = Aj . =O0(X\'e;2" ), and the differ-

i €i N
n+2

ence from Ly, ; to 4n(n —1)p; ~* can be estimated by Lemma via quantities of the type

a, B B— nztf 712;;2 712;;2 a, B—
T P idig, = reer 29 pidug, = 0(g, % r¥eq
Bc(ai) Bc(a’i)

n+2
2n

L(f—;g)z)v

thanks to case (v). Passing back to integrating on the whole manifold M we find , estimating also
mixed products of gradients of ¢; and ;,

nt2 L
A [0 iy, = ~(1+ O / o100, s,

1 n+2

+O()\ (plAgo(pz LlOJdM‘]D) +O(( + An 2)5 T )

By direct calculation Ay ;" = O(Tgp{‘ 7277 whence

n+2

L 1
n— 6 1—7 goyp
Y / 270N, g, = — AN /%- aAjWM)dugo +O((r + e

1 n+2

)\n 2)6

Now applying Lemma as before, but in differentiated form, ([7.1)) follows. Let

n+2

Rij=O(r” +Z 2(n Sty teig )
i#] Al
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denote a quantity such order. We now assume the non-exclusive alternative
2 A -2 N\
2T~ )\J Vel ~ ANd (aq,a5) > )\—J (7.2)
J 7

For ¢ > 0 small and fixed we have by the expression in (2.8))

0 22T
— A / ®; Ox; pjdpg,
2
= n_2)\9 / ( )\7’ %2&_9 uaj ( A] anAfynngn _1d/1/ +R .
2 " 2 25 uttT 2 2 2 PE Ga w1
1+ M7, Ga; i 1+ AMnGa, NmGa; " +1

Bc(ai) 7
whence passing to g,,-normal coordinates and recalling (2.8]) we find

2
nt2_ o n—2 Ugq, (a;) /\2-’YnG§;" (exp,, )Ti) -1
f)\?)\j/@i/ ’ 6>\190de902 9 / 1+ 2)%4-2_9 ; 2 L N
By, (0) T MnGa; " (expy, ) +1 73)
! 252 '
( x o 2 ) Wge,
Svia Aidj1nGa; (expgai )
up to the error R; ;. Indeed for e.g. n > 7 (2.8)) tells us that on B.(0)
Ai nf2 g i nt2_g A2t Ai nt2_g 9
= (— 1 = 2 1
(1_1_)\37,.2) ( +O(1+)\2T2)) (1+)\227‘2) ( +T)

=
L § X, GE
in conformal normal coordinates, whence by Holder’s inequality and Lemma [2.2]

nt2
n+2 nt2 n42 nt2 £.2n
2 n—2" T 2 m—2 2n T Zn %]
[ e e, < 1ol T e = 0Ck).
Bc(ai 7
Due to (7.2) we have that either
_2 Py 2 Y
2—n 5 2—n 7
Ei,j ~ /\i/\j’}/nGQ—" (ai,aj) or 51‘,;‘ ~ Y,
J

and for € > 0 sufficiently small may expand on
A= |£|<e\/yn0ﬁ(ai) U y£\<ei C Bex,(0)
N T / N T )\j ‘

the integrand in ([7.3) as

_2
1 AmGa; " (exp,, 5

, = n=2 P
(R + NidmGa; ™ (expy, )77 A7 Ga, " (exp, ) +1

. 2 2—n )\2 nG(iiin a;) — 1
= (ﬁ + XN Ga; " (ag) 2 7mCe; " (1)

. =2
j ANynGa; " (ai) + 1

_2 2
2-n VG, (a)Nr  NwGa; " (ai) — 1
2

(3 + Mh G (a)3 NynGE ™ (ar) +1

+
= O(2d |22
2 ’}/nVGaj (ai))\jz ()\i |l‘| )
sy P E Y =
(T; —+ /\l/\j’)/nGaJ_n (ai))f 1+ )\j’}/nGaj_" (az) (T; —+ )\i)\j’}/nGaj_n (al))

n
2
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Using radial symmetry we then get, with by = "7_2 Ik —de = ”T_le,
Rr (1472)72
- ) 2
bQUaj (a;) Aj’YnGaj_n (a;) —1

n42
—A?Aj/%"”sojdugo = R — o
(3L + XX nGa; " (ai)) = NyGay " (ai) + 1

up to errors of the form R; ; and 4., where

1 1 n-2
IA°2/ = ( z ) dug,,
o\ Et2 _g v 2 a;
Ac(l +7r2) 2 % + i\ Ga, (expgai /\l)
2
In case z—:f;" ~ i—, we obviously have
? J
i\ nt2_op n+2
Lie <C() 7 P =o(e,7 ).
i

Otherwise we may assume A°¢ # (), thus d(a;,a;) < 1, and write A° C By U By, where

By = {e\/’ynG;’j"(ai) < ’/\i‘ < E\/’ynG[f]%" (ai)} and By = {E\/'ynij" (a;) < |

for a sufficiently large constant £ > 0. We then may estimate

1 1 ne2
Ip, :/ T2 ( 2 ) ? dpg,,
2 nrz_g X oy ag

B, (1+72)"2 i—; + XX Ga, (expgai /\%)

bl
IA
o

——

<

. n+2
CG3) 1 nz2

5 = n+2_p 5 2 R ) 7 dpg,,-
(1 + A mGa, " (a;)) 2 { \/2T 1+ >‘j7nG% (engai Z)
& I<E %Ga;"(an}

Changing coordinates via d; j = exp;1 exp,, , we get
a; a

Iy, <— < [ )T
24 MNGET () 0 J r
(/\,L J J ( )) {\%j\gEd(ai,aj)}

_n__r nt2
and thus Ip, = O(¢;";* ) =o(e; 7 ) using, (7.2)). Moreover

1)
1 1 n—2
Is, :/ 142 M_g( N 2 )2 diig,,
Bz( +r?) Syl AidjvnGa; " (expgai )\%)
< C dx
(/\7 + A1 G " (a;)) 2 .
{lw\z\/A?wnGa?;" (ai)}
nt2
This shows I4c < I, + I, = o(¢; 7 ), and we arrive at
. 2
i baug, (a;) NynGa; " (ai) — 1
*AfAﬂ'/ D pidpg, = . ’ '

(,’\\*; + AN Ga; " (ai) 7 NvaGa; " (ai) +1
up to some error of the form R; ;. Due to conformal covariance, there holds

G, (ay,a;) = ug ai)ug (a;) Gy, (ai, ay)
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and we therefore conclude

{Hz 8)\j @,jdﬂgo = by + an. (74)

2
—n AL
3 )\GAJ /<p”+2 )\i)\j’}/nGgZO (ai, aj) — x
%
(ij + AN G " (ai,aj))

We turn to the case left by (7.2)), i.e.

2=
it~ —J (7.5)
3
and, recalling (7.1)), estimate for ¢ > 0 small
0 1— n+2
— A / Pi O dpg,
2, ATw
o n -+ 2)\9 / )\Z %_0 ui:T )\j ”TJFZ )\j’)/nGaj_" — 1d’u
= i 2 3 2 9a;
2 ey THNGET Yo 1N GET A GET L
up to some error R; ;j, whence up to the same error
_ i
. ni n+2 221, 1 e ug, 7 (a;)(35) dug,,
_)‘i)‘j @iax\ﬁpj d:ugo = 9 7”2+1(1+7’2) 2 v 2 i,
B, (0) (TZ + AidjmGa; " (engaj )%)) T

2

On A = {|;7| < e\ 1mGa " (aj)} U {’%’ < e%} we may expand for € > 0 sufficiently small

A 2= T\ 2zng A 2 2-n
(2 + MAmGa " (expy, 1)) T =G+ AAm G (a) T
2
2-n W VGa " (a5)hix + O (3|2 ]?)
2

+ A P -0~
(3 + XidjmGa; " (a)))”

With analogous estimates as in the previous case we derive

n+2 _ g, (a)(35)°
_)‘?)‘j/‘Pin O, ¢jdprg, = b2 N %] w2, + Rij
(3L + Aidj1nGa; " (aj) = ~
with )
- n+2 [ro—-1 1 nt2
by = 2 d .
277 /r2+1(1+r2) S (7.6)

R

and indeed by = by = "wan whence, using conformal covariance, as before (7.5)) implies

nt2 B
—AJ‘/ { 0N pidpg, = N ; T g (7.7)
(55 + X\ 1nGy, " (ai, a5)) =

Now the claim follows comparing (|7.4) under (7.2)) and (7.7) under (7.5).
The first claim, i.e. that for k& # [

ais—T 1 1
/% P Oriduidpg, = O(W + W)

follows like in case (ii), just with vanishing leading terms. The second one is proved analogously to
(ii), cf. case («) in the proof.
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(v) The case 7 = 0 is known, cf. e.g. [38], Lemma 3.4. By Lemma [2.2| we therefore have

a—T a—T 1
/soi 7 dpg, Z/(soi VAL O dpg, + O\ el ).

To estimate the integral in the above right-hand side, we write

/ i T|1*p%}sﬁ dpg, < / dU/B o (Hi%g )75 g,
SH/BC(m |IHW|% dpg,
<6l n Hinm [
From the case =0 and o+ 8 = 2112 we then get
[ern- Al?go{ 2 gy < cegﬁju(lﬁ;?ﬂ) 22 (o) mﬁu g

By direct evaluation the latter norm is of order \; % and the claim follows.

(vi) also follows from the same above reference in [38], while (vii) is a straightforward computation. O

7.2 Derivatives

In this appendix we give the remaining proofs from Section

Proof of Lemma[5.1] First note that the equalities up to the error in
8- (u)pr; = 0J (a7 ;) p1s = Day Jr (' pi)

follow from Lemma 4.3 and the chain rule of differentiation. So we evaluate

‘ 2 : J (i) Ly, (0F i) dpug
OJ (i) = YoiLg,piditg, — °K id
(@pi)p; (fK(aigoi)erld/j/gO)ﬁ </Oz PiligyPjAlg, fK Oll%)”ld,ug ( i) pjdug,

and start expanding

[r@orodun, = [ Kt e p Y Kal e vidu,

{ajo>Zvai<Pz‘} a7
+ / ZO@% Poidug, + O Z/ N fflcpidugo)dugo.
j#i r#s {pr=>eps}

{%‘%'Sz#i aipi}

+
The above error term is of order O( ZT 45 ErS ) by Lemma [2.2} whence

/K a'oi)Poidug, = /Kaé’spé’ﬂ _,_pZKa;’*lai(p;’gpidﬂgo + / K(Z ipi)Ppiditg,,
77 {ajp; <305 it 73

iz
up to an error of order O(, , &r3 ). Similarly

/ K> aipi)Poidig, = / Kaj @l pjdpg, + / K(Y i) pjdpug,

o .} JF G 10
{%%5321%%}7 ' {ajp; <30, it {011%52_0%%} P
. JFi
n {7#1}1 N N {j#1} N

a1p1>) i i
R {a1p1< 30 aipi}
J.1#1
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nt2
up to an error O(}, 4 ers ), and thus

K> aigi)Pojdpg, —X{1¢J}/Ka1<p1<p7duqo

{aj; SZ_,';& aipi} el
+ X{15} / K(Y aipi)Poidpg,.
{O‘j@jgzj‘¢7‘, aipi} 1
Iteratively we obtain Il K (322 cipi)Ppjding, = > [ Kai ol pjdug, and conclude
{ajp; <32, i}
/ K(a'¢i)Ppjdpug, = / Kelpidug, +p Y Kob aplpidpug, (7.8)
Jj#i

nt2
up to an error of order O(3_, , &r% ). From this, we obviously have

i 2 f(ai%')Lg (Ofk@k)d#g +1
OJ, (o' pi)p; = (/a-cp-L pidpg, — e Lol Kot dp
o i atgarridpg 7 \J T 2ion = i iy, P e

2

+ 2
et [ Kol dpg,) v

> i [ okLg,prdig,
a;Lg,pjdpg, — 1 1 ] K¢y pjdpyg
; </ T el [ K dpy, ’

2p 3y ok J oLy Prdig, p
(St [ K dpg )t ZO‘ @i | Kejpidug,
k

up to some O(>,. 45 er n ) Then ) and (|5.11) applied to the second and third summands above show

2 J (@' i) L, (* 1) dpa !
0:L d _ 90 go PK p+ d
(/Oé]‘pj 90Pj At go fK Oﬂ ‘)p+1d,ug0 QO Hgo

8pn(n — 1), NG b2 Z K; , 4

8n(n — 1)ex " by o K; ,_
¥Zai(l—740f I)Ei,j ) ) Qi Oy &
(aK,T)p+1

0%
j#i Aj

up to an O(72 + ZT?&& /\2 - /\4 + Z(n 5 + sr n ) Then applying (5 as well as (5.10) and Lemma
22 to the first summand above we ﬁnd

07 (a'pi)p; = Bnn — 1) (an- Q007+ b1 3 O HER /Ksa”“du >
’ (J Koo+ i, )i W T K (i)t dpg, &
8n(n — 1)65 lbl a? K; .4 8pn(n — 1), N bia? K; ,1
+ - 1.2z Zai(l — ﬁfa&f )Ei,j ZO&Z‘TOJZ} Eij-
(a??i) + i O‘?(,r A (a§(+:)p+1+l i Aj !

Using (5.8) for the first term in the right-hand side, we then get
1

8n(n — 1)éoa; a?all” / 11
1 Kettld
U Kot tidieg )75\ TR @00 g, 20T

_Sn(n—l) NG blzk¢lakal€klaij 8pn(n — 1)&, +1b1a Z EP '
(o h7n X AFal™ A (i) S N

O (' pi)p; =

41



up to an error of order

0} K, o [VE[ L
(7 + Z I1— e ay ‘ t—a Tt F + 202) +erd ).
r;ﬁs K‘r ’l" T r

Applying now (5.8) to the first coefficient above we find

i 8n(n — 1) LSRNy a2
AT (' pi)p; = ’ (1 T K (o) Ldpy, aj” 1/K<pp“dugo
_ 16n(n—1) o G a-<1— a? K; p_1>
1% J

+1
()

TP
p+1y -2 p+1 0
p+1 (aK,-r)p+1 K, a]
H;
Ai
Hi+o(h;\;\"
2n 2n _ K A2
2 — 1 —3 1 —3
(clz N THe Y el T+ di) o % +b120‘
i@ i U Wi In A i#j
i
0

8n(n — 1)¢, G bia® K; o
B (ap+1)z;+1 +1 7‘? J Zaj Ekl +pZaZgZ7J
K,

k#l VED)

and obviously the second summand is of order of the previous error term. Thus

i 8n(n 1)557 o? 1 +1
0 (' pi)p; —Waj(l TK(alpi)p ldpy, g /K@p dfig,

~ 8n(n - 1)c0 7 bia? K o 1
e SIS Sy
K,T

k#l V)
up to the same error, and applying finally (5.7) and 1' we arrive at

p—1

. 8n(n —1)eg*! < o? K; 1)
oI (' pi)p; =————aj( 1 — —=—>al”
(i), (a@’;fj)f J a;}){t} )\? J
H;
A1+6
+ 0
8’)’L(7’L— 1) p+1042a§ <_ K]T Lz AKJ +d_ K >\2+9 H( ;L )
- C1 C2 148
+1 0 246 J N
(aII)(J ) p+1 i >\j /\j I/VA In \;
W
0

8n(n —1)¢, " a?al K 2n_

J ( 712”2 + nf
— C1 T+ C2 E
p+1y—2-42 0 Z VA 2+0 Y
(o )Pt Aj Ak Ak

ﬂ
Hk+0(1nA )
_ Kk % )2 n+2 K
+d1ZTZOLk H]i +b120&k ql—F /\9 5kl)

k Wi In A lnAk k#l
AL
0

8n(n — 1), NG bia? K ol 1
O (athE T > ez ek P i ),
K,t k#l VED)
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again up to the same error term. Recalling that b; = %bh we can rewrite this as

n—2 n+2

p—1 - uks
0 (0 i), — 8n(n —1)eg*! (. o K; p—l B 8n(n —1)¢, a2aj 2 K;
T\&Pi)P; (ap+1)ﬁ J ot )\9 Ptgyn=2 4 P\
K, K, (QK,T ) n J
2 7121L2
K o) AK AK 30 %%
(cl(l_ZA: el X g )
ROk ag ] 9 e TR ag ]
Lgan?EQ
H A0 Tk H
VR D G T e
Yk, r
K n,znz ’ In A
HJ Tgak Hk-FO(ZT n>\27)
3 2k iz AR
d— K, 2
th H; Técak ] Hy )
A Zk 2n_ )3
0‘}272 k
Ky iz
W, In X Y Wy In A
J,\;L -2k ]; I ki .
0
( ) _n—2 9 n+2
8n(n—1)¢, " bia® K; 45 Qo 2n Ky op~ 2y
g el (i T e ekt s
( K‘r) " J k#l k 04[(-,— VE)
up to an error of the form
Ao |VK,|? 1 1 n+2
(4> 1- - ;"2| i 2" + 37+ gy Tend )
r;és aKT ’l‘ )\’I“ )\’I“ >\T
Note that by (5.1]) the coefficient of ¢; in the above term vanishes. This then tells us in a first step, that
. o?
Vi:l-— p+1/\0 ‘=0 T—l-z 2+Z£rs+|a‘]()‘
aKT
r#s

and therefore

. o? K o 1
VZ:l_ﬁTgaj =0 T+E F n2+§ Er,s + 07 (u)]
r T r#s

nt2
Using this we derive up to an error of the form O(72 + Dorts v X2 i )\4 + z(n o5 +ers + (00 (u)]?)

2
- 8n(n — 1)eg o K;
i _ 0 . ') P 1
OJ-(a'pi)pj = ——— ;|1 = 77
(an 2)”n aKT )\
K, 7
Hy Z O‘k Hy
k a2 X
", Z a2 HitO(%, “‘AQ'
_—n=2 = — -,
8n(n—1)¢, ™ o4 Z AKy, ozk id Aj Hk o , Ok
- n 1 i _ X Hi
(@)= K )\2 Kp\2 a2 T Xk a3
T Wilnx; ap Wi ln g
)\fL.l k a2 )\i
0
_n-2
8n(n—1)¢, ™ by Z Ry 2n apo n+2
- 2n n—=2 a]( 2 - 2 2 )ekyl + 2 67«7] M
(an72)'n oy « n — « n — —
K, JFi

43



Finally note that the last summand can be simplified to

n+28n(n—1 bl(z ROy >
27 Ekl_zo‘gw

n-2 (;’?f)n Kl i
From this the lemma follows setting
N 8 -1 2 8 -1 s 8 —1) - 2
b = n(272 )(’/l + )bl, Gy = %62, dy = %dl, o = 871(7”& — 1)662 (79)
" "
O

&" (n—2)

cf. (5.6, (5.7) and Lemma
Proof of Lemma[5.3 From Lemma [£.3] and the chain rule of differentiation we obtain

OJ-(w)a; = 0T, (i) da; = X0, J- (o' p;),
28 — with

up to the error in (5.15)), and evaluate 8.J; (a'p;)p2 ; =
&1 T K@i dpgg) T
(') Lgo (" r) dp
J (@' 90 K (alips)P A0, 05dtg, -

A :/ai%Lgo)\jax\j%d#go - [ K(aip;)Ptidu
[ g0

Arguing as fOr ‘-' we ﬁnd
“;Z L (#k? d/,Lg Vo a l
f( ) ( ) 0 l( {y 7)\j /\j 7 J /’LQO

A :Ozj/(ijgo)\ja)\jtpjdugo — fK Oﬂ )p+1du
J (@' @i) Ly (@F p1)dpag,
+ ZCVZ/S%LQO)\ a)\ <p]dll’bg() - IK OéZ )p+ d/j,g .Z:{OZZ 801)\ 8)\ ond/,l,go

J#i
gey L )d
f( QO) ( on Fao Z/Kap 1()‘1()0] QOZ)‘ a)\ @Jd:ugo

-p
K(alip;)ptl
f diigo J#i

and arguing as for ((5.2)) (5.10), (5.11) we see that
|VK |2 1 S
Z v \2(n=2) +erk ),
7" r

K;
/Kg@f)\](‘%\]cp]dugo =by— )\9 )\ 8)\ €i,j +O
r#s

(7.10)

and
2(n—2)
A

/cpngo)\ A, pjdtig, = baXjOr i + O Z Mt
r#s

as well as [ ;Lg N0, pidpg, = 0(7'2 + )\% + ﬁ) Using these, we arrive at
J i

O[i zL d
f( SD) Spk #QO/KO[ :;j)‘ja)\Jsojd,u'go

A=-—
| K(aip; P+1d,ug
J(@'@i) Ly, (@*pr)dpg, , Ki
+4n(n — 1)b2;ai5‘>\j€i,j R (@ e iy by —~ ° af X0y, €i
f( Z‘)Ol)L ( k%’k)d/ﬁgo p—1 p—1
-p 11 Zaj Ozi/Kng <pi)\j8,\,.<pjdug0
fK P dlug() ]#Z i
|VK 2, 1, e
+ g )\2(”72) + Er,s )
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Moreover, still arguing as for (5.10) and using Lemma we have up to the same error as above

by

/K(p;]il(piAja/\j(deugo = )\9 )‘ a)\ Eij-

Combining this with (5.8)), (5.10)) and (5.11)) we get with the same precision

24 Zk# QRO EL,

A=—4n(n— ) TR (aip)P dpy, /Kozjcpj)\ Ox, pjditg, +4n(n — 1)by E ;0 €i 5
9o VE)
dn(n —1)a? K; 4n(n — 1)bya? K;
—7@ 04)\55\5 ——Ea— A@As
i 0 ) i 0 [NE
Oé%+7_ )\ Oézl);r‘r V) )\J

Using Lemma [5.1] we find by cancellation

o 4 3 ke )
f K(ai@i)p+1dugo

A=—4n(n—1) /Ka?ap?)\j(%\jwjdugo —4dn(n — 1)bs Zamja&a’j,

J#i

2 n+2
up to some O (7% + 277&5 X2 L /\%1 + ﬁ +ers +10J-(u)?). Moreover from Lemmawe have

VK| 1
/K(pj)\ O\, pjdpg, =K; /CY %0])\ O, pjdpig, +O( 1+g +O(F))
] J

:O(Tg + )\;L—Q-‘,—Q + )\Jl—‘r@ + O(Ai—‘rQ))’

whence recalling (5.8]) we get

A=—4dn(n—-1) s /Koz] PENON, pidptg, —4n(n —1)by Z ;A0 €i
aK‘r JFi

2 n42
up to some O(7% + 3, \Vf%rl + % + ﬁ +ers +10J-(u)[?). Therefore

- 2A
OJ- (' pi)pa,; = :
T (K (et g, ) T
s a2 (7.11)
dn(n — e, ™ o? dn(n — 1), ™ bey
= — ( 2712) 0 2 a?/Kg@?)\ja)\j cpjd,ugo — ( 27"2) (7)172 Z ai)\j(?,\jsi,j
(o 2) 54 S
up to the same error. Thus we are left with analysing
1
/K@?Aja,\jgajdugo :/ ( )K%aA S 0idpig, —I—O()\n 9)
claj
=K; (Pé')akj @jdrugo + VK; / xsp?a)\j (pjd/-j’go
Be(aj) Bc(aj)
V2 V3 1
+ 5K P20 pidpg, + K 2> h0x, pjdhg, +O( + 5oy )
Be(ay) Be(ay) J A
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Expanding the bubble ¢; and its derivative \;0x;¢; in conformal normal coordinates, i.e.

o y T Aj n—=0
(p+1)%050; = X;05¢ =ug; ® N\, j i
Joary ] J J (1 +)\3T§J(1 +rg]f2Haj)m)
_ 2

=(n—0)( Aj nool = N2 (L4710 2H, ) 7w

14+ A2r2 (14 rd; *Hy,)Tn L+ 222 (1478 2 H,, )7

22 2,.n n+2-0 42,2

:(TL _ 9)( )‘j )nfe 1-—- )\] a; 2(n — 9)2 ( )‘j )nfe /\jrajHaj 20 /\] a; 1

1+ )\?ng 1+ )\Q.TZ n—2 ‘14 /\?ng 14+ /\?ng 1+ /\?ng

4 2n 2
)\j )n 0 /\g a; Ha )
1+ X572 (1+X3r2 )2

+O((

and arguing as for (5.4) we find using radial symmetry

(1) fB (a; x‘:"jak pidpg, fB (a;) T %a)\ pjdpg, = O(T + 7 + e 2))

2 n—2 AK; r“(1-—r
(2) %Kj ch(aj) x2@§8Aj<deﬂgo = Tnzkiw f (1_,_(T2)w+1 dr + O(T + >\4 + 2(71. 2))

Finally we have

2,.2
» n—2 Aj n_el—)\jT

PEN 0N pidp 27/ dx
Lc(aj) 37 i go 2 BC(O) (1_’_)\37.2) 1_'_)\?742

Aj n—>o A?r"Haj n+2— n)\?rg
+/ Gee) T e @
(0 LA AT AT
up to some O(72 + % + ﬁ), and see that for the first summand above there holds
I i
_9 Aj el — A2 -2 1 nl—12 1
8 / (=) ’ 5l 7_L7/( 7) 7’2 In 54z,
2 B.(0) 1+ AT L+ A5r 2 N 14727 1+7r 1+7r
Rn
up to the same error. Defining
~ (n—2)2/ 1—1r2 1 . n—2/r2(1—r2)
= 1 d =— d 12
“ 1 )@t T2t @ an ) @+t (7.12)
R™ Rn
it can be shown, that
. (n—2)% T(n/2)? . o on—2 T(E+)r(2)+r(2-1)T(2+2)
= n 0 and ¢é = n 0,
T T 1 R T 2T (n + 1) ~
so we arrive at
K AK; A neo A" Hy n+2 —nA2r?
Dy . - G AT ) J J J J
/K‘Pj)‘aaAj%d/igo =-a )\27 02)\§+a +K]/ ( (1+/\?T2) L+ A2 14222 dz
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up to some O(72 + )\%1 + ﬁ) and arguing as for (5.6 we find
J

A nog T2— )\27°2 )\2 "HaJ
/ (0)(1+A§r2) 1+A§r2 1+)\2 2
H; + VH; & + O(;—;)
) P H+VHJ;” +O(A31 AL,)
= )\n72+9/ ) (1 +T2)n+2707ﬂ Hj +O()\L7) dx
1 cA r T T
O(55=) (7.13)
H,
A+
H; InAj
=t + O(55%)
9. 1 A Aj . r™(n+ 2 — nr?)
:_dl j+0( 74+27) 9, = 7Hj d]z—/—dfﬂ.
4 (n—2)/7 7J A3+0 ’ 1 & p2)n+2
A A Aj W;In )\, Re (1+r%)
ATHe
0
We conclude that
. K; AK; 9 1
/K(pf)\ja)\J(pjdpgo = — Cl)\i‘?y 02 )\5+0 d]K dl )\9 + O(T + — )\] + W)
J
Plugging this into (|7.11)), we then have
—2
dn(n—1)¢, ™ o* K; AK; -
(u) 2,5 - ol (17 + ég—5 + d1Y;
J (a nz_: ) n—2 41 )\6 ( K])\? -7)
71,—2
4 — )¢, VK 2 1 nt2
— n(n 2n)c ZO@)\ (9>\ Elj + O Z ‘ | + m + 57»77; + |aJ—,—(U)|2)
(= 3 = T
Now the claim follows from Lemma by replacing the constants as follows
I 4 -1 -
C1,Co,dy, ba) ~ M ¢1,Ca,dy, b2), 7.14
n—2
G
cf. (7.10), (7.12)) and (7.13)) as well as Lemma O

Proof of Lemma[5.3 From Lemma and the chain rule we obtain up to the error in ([5.16])

Ve, )
——J- (i)

T ()3 = 0, (a'p;) s j = "
J

and write 5 A
AT (i) baj = (7.15)
” () K(aip;)PTdug, )T

with

4 Va, J Ly, (@' 0i) (a" o) dps Va,
A= [ 'L, p;~2p, — L 200 P K (0l ;)P ~2 o dpyg, .
/a 0 Pi 3 fK Oﬂ%)pﬂdug (o) 5, Padiao
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Arguing as for (7.8]), we find

Va J(a'pi) Ly, (0 i) dp p Va,
A =Q /(leLgo >\4J Sojd:ugo - fK azw )p+ dp/ gOK 5 ] A %]dﬂgo
i 90

J(a @z)L (0" or)dpig, pVa,
; 90 /\ ] Hgo fK p+ d/lg z z /\ J%Hg0
f( i@l)L aF oy, )dpg, / 1 —2 Vg,
_ KaoP~ i P i 7 pad
P TR (@l Ty, ; ARGV
and arguing as for (5.2) and (5.10), in particular using Lemma [2.2] we obtain
Va, (e ’%)L (¥ pr)dp pVa,
A =q; L L pidig, — P Kaob d
O‘J/SOJ 90 X Pj0Hg, T (o) g, ]80] X “pjdiig,
o? K; o? K; 1 Va,
—4 — 1) P — ¢ P _ p— : J »
n(n ) 32 (a +1 )\9 pap-‘,-l )\9 o ) )‘j €ij
J#i
Va, (0'pi) Lg, (0" o1)dps
:aj/songo S eiditg, — ffK aﬁ" o dy, L Kalgh == y Lpidpg, —4n(n —1 %Zal L €45
J J#i

up to some

VK 2 1 nt2
Z | | Vi = +ers +107-(uw)?),
r#s T T

using Lemma [5.1] for the last step. Consider a cut-off function 1 such that
neC*(M,[0,1]), n=1 on B.(a) and n=0 on BS.(a),
with ¢ > 0 sufficiently small and some a € M sufficiently close to a;. Then

Va_,» Vaj 1 1 v‘lj +1 1
/K‘pé? n, FifHao = /KW?Aj(pjdug" +O(A;P—9) P ESIDY /KW? U +O(A§?‘9)

and passing to conformal normal coordinates around a; we have

a v Aj n—~o0
L Kt dpg, = /(Kn)oeXP : dx
/ go )\ Ja; (1+A§T2(1+T’n_2H@j)ﬁ)
VGJ equa A n—0
:/ 7(77 K)Oenga ( 5 : L) dx
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J
where
2 rn= 2
2 s g AT v Ha](1+O( H,,))
9}1:2 / K (expg, )( v z)n ’ ' 2.2 dzx
=1 JB.(a;) i L+ AT L+ A5r
up to some O(ﬁ) From ([2.6) anda(2.8]) and using radial symmetry we obtain
j
. VK; _ VAK; | . dx . 1 r2dz
r :CgA;_Hg + C4 )\?—‘,—9 with C3 = /m and Cy = %/m (716)
R Rn
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up to some 0(7’2 + Wf\gj‘Q + 51+ ﬁ) . By (2.8) we have VH, ;H,, = O(1) for n = 3,4,5 and
J J 3

VH,, H,, = O ( Wy for = 6)

ri2=2n for n>7

whence up to some O (51 + 7)\2(,} 27)
3

o 2 \j NS, .
= K Aj
2—n /Bc(aj) (engaj )( L+ A?TQ) oo

1+ )\?ﬂ
Vel T T2 4 052
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2-n ) J 14 X202 14+ X202 o TOG; ) ’
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and we obtain
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2K A A2y $ + 00 1
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— )\j lnsij— O(Z)
0(=5)
0
Va, H;
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' ]/\g’+ (r Aﬁ)’ ! 2—n/(1+r2)n+1 N 0
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0
up to some O(% + ﬁ) Collecting terms we arrive at
i j
Va, r-n—-6Mm n-2, VK; VAK; Y
Ko?—Lpidu,, = = d1 K~ 7.17
/ ¥ X Pjafg, P+l m (c3 )\1+0 + ¢4 >\3+0 + nd )\?) ( )
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J J 3
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g’ K Aj /\j A

¢ O(r? VI L 4eri +[0J.(u)]?). Applying Lemma [5.1|we find
up to some O (T + D s Xt oy tend + |0J;(w)|?). Applying Lemma 5.1 we fin
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up to the same error. We are left with estimating
Va, Va, 1
/(Pngo /\a.J QDjd/J'go :/ 90ng0 /\(%] Sajdﬂgo + O( n—a)'
J Be(aj) J >\]
Then from Lemma [2.I] we see that in case n = 4,5
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‘ijgo )\-J Pj nt? V c nt2 V7,
——— - Zdpy, = . dpg, — — "2(Hj 4+ nVHz)e! > —Lp;id
/ dn(n —1) Hgo /Bc(aj) @ X “@jdig, ) /B(aj) Ta, (Hj+n 333)%0] by Pj0lgo
up to some O()\% + ﬁ), and thus due to ((7.17)
J j

®j Ve, n—2; Fn—2 w3 Vo,
— Ly ~Fpidug, = ——d1¥; — — H; VHjza,)p; id
/4n(n— DY 5 0h g0 1 2 e ro, (Hj+n Ta,)P; y ©jdpig,

12
up to some 0(72 + Wf\;]‘ + /\17 + ﬁ) Finally we observe that
J

Aj 2 AV, (r2 (14 1772H, ) 77) o),
e 2 - - —— +O0(79;
L4+ A2 (L4 7d 2 Hyy)7n 14+ 222 (14 7d; 2Hyy) 57 Aj

)‘j Pj = 2 U’aj(

and using the smoothness of conformal normal coordinates with respect to a; we find

ESD' 2o, ( A = 2AjTa,
Aj j 2 N 1 + )\jr‘z’*j (1 + 7’3]-72Ha].)ﬁ 1 + )\?ng (1 + Tg;QHaj)z%
)\j’l‘i. )\"r"_l T,
(@) J Taj
+ ((1—&-)\?7’?” + 1—1—)\5742] X ~5)%5)-
This gives
2771
_ 9 g Ve g, = _2d19 (n—2en [ Niayri 2(Hj +nVH;z)p; ,
4 —1) 9 ). Pjtg, = 1 5 5 — g
n(n ) j 1+ )\jrg (1+ T Haj) =

o(a;
O(r? + WL L Ly L) Passi formal I coordi f
up to some (T + =t W) assing to conformal normal coordinates around a;, we find
J J i

277

/ AjTa,r0" 2(H +nVH, x) ; / A+ g QH]d |
Hgo = e I i
b 1H R, (1 Ty Sy QAT

up to some O(55 + ﬁ)) We therefore conclude
i

V. .
[ iLn S esdag, = 20— 1)(n — 2t
]

up to some O(72 + % + /\17 + ﬁ) Plugging into (|7.18)) we arrive at
J VAK»
A=—2(n—-1)( = n(n—1)bs Zaz sw, (7.19)
Kj)\j oy
up to some
IVE.[® 1 1 e
LT ey e+ 10 WP,
r#£s T
Recalling ([7.15)) the claim follows by setting or replacing
. 2n
(é3,é4,b3) w4(n—1)(n—2)(63,é4, n_2b3)7 (720)
cf. [[.16] and Lemma 2.2 O
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7.3 List of constants

We give here a list of constants, referring to where they can be found.

— ~ N ~ ~

co 5.5 5.13) | (7.9)

c1 || Lemmal2.2[| (5.5 5.13 7.14

co || Lemma 2.2 | (5.7 5.13) | (7.9) | (7.14

c3 || Lemma|2.2 6.4 7.20
Ca 6.8) | (7.20)
dy 5.6 5.13 7.9 7.14

by || Lemma2.2] | (5.3) | (5.13 7.9 5.10

by || Lemma|2.2[| (7.6)) 7.14

b3 || Lemma|2.2 7.20

For instance, ¢ is found in Lemma Cy in equation and d; in equation . For the empty
fields the corresponding combination of accent and symbol is non-existent. As a caveat please note that
we have within some proofs redefined constants for the sake for normalization, hence we point to the final
definition, from which upwards mentioned constants can be easily recovered. Finally we recall that c,, is
the normalizing constants in the definition of the conformal laplacian

4(n—1)

L:_nA R7 n —
g CnByg + Ity N n—2
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