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Abstract

In this paper we study the family of embeddings ®; of a compact RCD*(K, N)
space (X,d,m) into L?(X, m) via eigenmaps. Extending part of the classical results
[B85, BBG94] known for closed Riemannian manifolds, we prove convergence as ¢ | 0 of
the rescaled pull-back metrics ®}gr2 in L?(X,m) induced by ®;. Moreover we discuss
the behavior of @} gr2 with respect to measured Gromov-Hausdorff convergence and ¢.
Applications include the quantitative LP-convergence in the noncollapsed setting for
all p < 0o, a result new even for closed Riemannian manifolds and Alexandrov spaces.
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1 Introduction

General Riemannian manifolds, defined through charts, could a priori have been much more
complex than submanifolds of Euclidean space, but Nash’s embedding theorem tells us
that this is not the case: a general closed Riemannian manifold can always be isometrically
embedded into a Fuclidean space. This reduction in complexity is useful for many reasons,
ranging from making it easier to think about Brownian motion on a Riemannian manifold,
to opening up analytical tools when studying harmonic maps with a Riemannian manifold
as a target.

Approximately a decade ago, Sturm [St06], Lott and Villani [LV09] independently gave
a meaning to a Ricci curvature lower bound and a dimension upper bound on metric
measure spaces. It was at that time already well-known that lower bounds on the Ricci
curvature ensure many key estimates in the analysis of geometric inequalities and partial
differential equations on Riemannian manifolds. Sturm, Lott and Villani moved away from
Riemannian manifolds and considered the general class of metric measure spaces, which
includes weighted Riemannian manifolds.

The theory of metric measure spaces with generalized lower Ricci curvature bounds has
been under rapid development, both in the general classes singled out by Lott-Villani and
Sturm, and in the class of RCD* (K, N) spaces. Particularly in the latter, many classical
results from Riemannian geometry have been carried over. We recall the precise definition
of RCD*(K, N) spaces in Subsection 2.2.

A priori, RCD* (K, N) spaces could be very complex. Certainly, they are more general
than Riemannian manifolds, as they contain both the Gromov-Hausdorff limits of N-
dimensional Riemannian manifolds with uniform Ricci curvature lower bounds and Alexan-
drov spaces. Currently, we do not know whether isometric embeddings of RCD*(K, N)
spaces into Euclidean spaces always exist, but in this paper we study a relaxed version of
this question. We will seek an embedding into a Hilbert space rather than a Euclidean space,
and look for an embedding which is only approximately rather than precisely isometric.

Importance in data analysis

Another motivation for studying embeddings of RCD*(K, N) spaces comes from data
analysis. Indeed, embeddings of data into Euclidean space are an important tool in manifold-
learning or non-linear dimensionality reduction [LVO7]. This is a branch unsupervised
machine-learning tasked with finding a small set of relevant latent variables in a priori
high-dimensional data. Eigenmaps [BN03] and Diffusion Maps [CL06] are examples of
manifold-learning algorithms that are closely related to the embeddings considered in this
article.

While the merit of such embeddings is of course application-dependent, it often hinges
on how well the embedding preserves distances.

To analyze the quality of embeddings of data, there are at least two good reasons to
look at continuous spaces. Not only do continuous metric measure spaces often provide
a good model to approximate large amounts of data, also in many situations the data is
sampled from a “ground truth” distribution which in fact forms a continuous space itself.

For smooth Riemannian manifolds, classical theorems can be used to produce embed-
dings, but as a side-effect the quality of embeddings depends on high regularity of the
manifold. Yet embeddings are also desired in situations where for instance bounds on high



derivatives of the metric are not available, or worse, when the ground truth has singularities.
To produce embeddings and guarantee their quality for Riemannian manifolds that depend
only on relatively low-level geometric information such as curvature and dimension, or to
construct embeddings for nonsmooth spaces, it is essential to understand whether and how
certain maps embed metric measure spaces into Euclidean spaces. Our goal is to provide
convergence results that depend only on lower bounds on curvature and upper bounds
on dimension and diameter, not using bounds on injectivity radius or derivatives of the
metric; of course the price we pay is that convergence is understood in weaker topologies.
In order to obtain quantitative estimates, in the e — ¢ form, we argue by contradiction and,
for this reason, it is necessary to work in the compact category of RCD*(K, N) spaces.

Embedding a manifold M" into L?

For a closed n-dimensional Riemannian manifold (M™, g) and a positive time ¢ > 0, the
map ®; : M™ — L*(M™,vol,) is given by

Q)t(l‘) :p(l‘7',t) (1'1)

where p : M™ x M"™ x (0,00) — (0,00) is the heat kernel on M™. Bérard, Besson and
Gallot showed that the map ®; provides a smooth embedding of the Riemannian manifold
(M™, g) [B85, BBG94]. In addition, they showed that it almost preserves distances. Their
original result was phrased in terms of asymptotics for the pullback metric of the metric
on L?(M",voly) as t converges to 0, namely

t 1
c(n)t(”’Lg)/QCI):ng =9-3 (Ricg - §Scalg g) +0(@%), tlo.

This asymptotic expansion contains explicit curvature tensors on the right-hand side, which
are not available in a nonsmooth context, or which cannot be bounded if only a lower-bound
on the Ricci curvature is known.

A slightly different approach is more robust, thus better suited in nonsmooth settings,
and was used by the third author to obtain convergence results for the Diffusion maps
algorithm [P16]. Omitting for notational simplicity the x dependence of g, the differential
of the map ®; in the direction of the tangent vector v € T, M" is

(dq)t)x(v) = g(l}, vzp(xa ) t))

Its length is therefore

(2@ ()] = oD [ g0, Vaploy O dvoly). (12)
Now, every Riemannian manifold is locally Euclidean. For small enough ¢, the heat kernel
localizes so strongly, that only a small neighborhood is probed in the integral at the
right-hand side. Hence, this integral converges to its value in Euclidean space.

Embedding an RCD*(K, N) space and our convergence results

The analogous map ®; : X — L?(X, m) can also be constructed for a compact RCD*(K, N)
space (X,d,m) and is still given by (1.1). The heat kernel p exists and satisfies natural
estimates: this follows from the theory of linear heat flow on an RCD*(K, N) space (X, d, m)
developed by Gigli, Savaré and the first author [AGS14a], and from decay estimates on
the heat kernel obtained by Jiang, Li and Zhang [JLZ16].



We show that the map ®; : X — L?(X,m) is a continuous embedding of the compact
RCD*(K, N) space (X, d, m) into L?(X,m), in other words, the map ®; is a homeomorphism
onto its image. Note that our proof actually shows that ®; is Lipschitz, but in general
(®;)~! is not (see Remark 5.11). The next step is to define the pull-back metric g;, formally
given at x € X by

gt(v,v) :/Xg(pr(x,y,t),v)zdm(y)

for a tangent vector v at x, where g is the Riemannian metric of the space (X,d, m),
canonically derived from Cheeger’s energy (see Proposition 3.2).

However, since in calculus in metric measure spaces many objects (vector fields, gradients,
Hessians, etc.) are only defined up to m-negligible sets, we shall rather work with the
integral formula

/X (V. V) dm = /X /X 9(Vap(z,y,1), V(z)) dm(y) dm(z)

for any square integrable tangent vector field V' and we prove convergence as t | 0, after a
suitable rescaling, to [y g(V,V)dm. In the RCD*(K, N) theory we know, thanks to the
very recent work [BS18] (which extends a part of [CN12] from Ricci limit spaces to general
spaces) that RCD*(K, N) spaces have a unique “essential dimension” n (see Theorem 2.7
for the precise statement) related to m by the identity m = 6H" L R,,, where R,, is the
n-dimensional regular set of (X, d, m) according to [MN14]. Because of the weight 6, it is
natural to replace the scaling ¢(n)t("*2)/2 in (1.2) by the local and dimension-free scaling
function tm(B ;(z)). We prove in Theorem 5.10 that g := tm(B, ;(-))g: converge as t | 0,
in a strong sense (which involves also the Hilbert-Schmidt norms of the metrics), to

g :=cng

where ¢, is a suitable dimensional constant (see (5.3)). Under an additional technical
assumption, see (5.44) (satisfied for instance in Alexandrov spaces, weighted Riemannian
manifolds and Ahlfors regular spaces), we can also consider the rescalings

gt gt

and prove, in Theorem 5.15, their convergence to

where R is the “reduced” regular set introduced in (2.22) (in particular ¢, is related to
the constant ¢(n) in (1.2) by ¢(n) = wy/cp).

It would be desirable to have a counterpart of these convergence results involving also
the global (or, better, non-infinitesimal) point of view, i.e. distances instead of metrics.
Unfortunately, in the nonsmooth setting, the process that allows to recover distances out
of metrics is not straightforward, since the latter are only defined up to m-negligible sets.
We will tackle this problem in a forthcoming paper.

However, in this paper we prove two results that go in this direction. Specifically, let
us endow the class of RCD* (K, N) metric measure spaces with the topology of measured
Gromov-Hausdorff convergence. We prove in Theorem 5.19 that, one has:

(1) the map (X,d,m) — g;(X,d, m) is continuous, with respect to ¢ > 0 and the
convergence of metrics on different metric measure spaces of Definition 5.18;



(2) the map (X,d,m) — (®;(X),d;), where d; is the restriction of the ambient L?(X, m)-
distance, is continuous, endowing the target space with the Gromov-Hausdorff topol-
ogy.

Moreover, in the noncollapsed setting, (1) can be improved to the case up to continuity
at t = 0, which allows us to show the sharp quantitative convergence of g; as t | 0 (see
Theorems 6.8 and 6.9). These results are new, as far as we know, even for Riemannian
manifolds and Alexandrov spaces.

Plan of the paper

The paper is organized as follows: Section 2 collects all notation, preliminary results and
terminology on RCD*(K, N) spaces. In particular we focus on convergence results for
Sobolev functions and heat flows, also in the local form that is sometimes needed in the
paper, when proving results by a blow-up argument. Section 3 provides a description of
the tangent bundle, where we follow closely Gigli’s axiomatization in [G18]. In particular,
on the basis of this axiomatization and of [AGS14b], we are able to define the notion of
Riemannian metric on an infinitesimally Hilbertian metric measure space (X,d, m): in this
family, the canonical Riemannian metric is the one induced by Cheeger’s energy, since
Cheeger’s energy can be canonically built out of distance d and measure m. In Section 4 we
introduce the embedding map ®;, first in the smooth case (on the basis of [B85, BBG94])
and then in the nonsmooth case. Section 5 provides the proof of all convergence results
except for quantitative ones, to which Section 6 is dedicated. Finally, Appendix is devoted
to asymptotic bounds on the eigenvalues in the RCD* (K, N) setting and to the expansion
as a power series of the heat kernel.

Acknowledgement. The first and fourth authors acknowledge the support of the MIUR
PRIN 2015 project “Calculus of Variations”. The second author acknowledges supports
of the JSPS Program for Advancing Strategic International Networks to Accelerate the
Circulation of Talented Researchers, of the Grantin-Aid for Young Scientists (B) 16K17585
and Grant-in-Aid for Scientific Research (B) of 18H01118.

2 Preliminary notions

Throughout this paper, by metric measure space we mean a triple (X,d, m) where (X,d)
is a complete and separable metric space and m is a nonnegative measure on the Borel o-
algebra, finite on bounded sets. We use the notation LP(X, m) for the space of p-integrable
functions, where 1 < p < oo, and L°(X, m) for m-measurable functions. Similarly we
define LP(A,m) for all A C X Borel, and L! (X,m) as the set of all f € LY(X, m) with
fla € LP(X,m) for all bounded Borel subset A of X, where 14 denotes the characteristic
function of a set A, with values in {0, 1}.

We adopt standard metric space notation, as B,.(z) (B,(z), resp.) for open (closed,
resp.) balls, Lip(X,d) (Lipy, Lip,, resp.) for Lipschitz (bounded Lipschitz, compactly
supported Lipschitz, resp.) functions, etc.



2.1 Cheeger energy and Laplacian

The Cheeger energy Ch : L?(X, m) — [0, 0] associated to the metric measure structure
(X,d, m) is the convex and L?(X,m)-lower semicontinuous functional defined by

Ch(f) := inf{liminf/ lip” fidm : f; € Lipy(X,d) N L*(X,m), [Ifi = fllr2(x.m) — 0},
1— 00 X
(2.1)
where

lim sup % if x € X is not isolated,

lipf(z) := { ye
0 otherwise.
denotes the local Lipschitz constant. Accordingly, the Sobolev space H?(X,d,m) is
defined as the finiteness domain of Ch.
By looking at the optimal sequence in (2.1) one can identify a canonical object |V f|,
called the minimal relaxed slope, which is local on Borel sets (i.e. |V fi| = |V f2| m-a.e. on
{f1 = f2}) and provides integral representation to Ch, namely

Ch(f):/X|Vf|2dm Vfe HY?(X,d,m).

In this paper we shall only deal with infinitesimally Hilbertian metric measure spaces,
i.e. the metric measure spaces such that Ch is a quadratic form. The following result,
borrowed from [AGS14b] (see also [G18] for the first part), plays an important role in our
discussion:

Theorem 2.1. If Ch is quadratic, the function

(fitef)l = VAP
2¢

Y
(V11,9 f2) = limy

provides a symmetric bilinear form on HY?(X,d, m)x HY2(X,d, m) with values in L' (X, m),
and

S )= [ (VAL VRNdm, VA S € H(Xdm)
X
defines a strongly local Dirichlet form.

Still assuming that Ch is a quadratic form, we can adopt the standard definition of
Laplacian, namely

D(A) := {f € H"*(X,d,m) : there exists h € L?(X,m) such that
E(f,g) = / hgdm for all g € H"*(X,d, m)}
X

and Af := h for any f € D(A).

Besides the construction of Ch, we need the following results from the seminal paper
[Ch99]. They hold in the class of so-called PI spaces, namely metric measure spaces
(X,d, m) satisfying the local doubling condition and a local 2-Poincaré inequality.

Theorem 2.2. Let (X,d,m) be a PI space. Then:

(1) For all f € HY*(X,d,m), for m-a.e. € X one has Dev(f, B.(z)) = o(m(B,(z)))
as r | 0, where

Dev(f, By(x)) = /B . ]Vf\Qdm — inf{/B - \Vh|2dm : f—he Lipc(BT(:L‘))} .
(2.2)



(2) m-almost all of X can be covered by a sequence of Borel sets C' with the following
property: there exist M > 0, an integer k and Lipschitz functions F; € H'?(X,d,m),
1 <i <k, such that, for all f € Lip(X,d) N H“2(X,d, m), one has

k
lip(f(-) — ZXi(l‘o)Fi('))(ﬂ?o) =0 for m-a.e. xy € C (2.3)

=1

for suitable x; € L*(C,m) with ; x? < M|V f|?> m-a.e. in C.

2.2 RCD*(K, N) spaces: definition and main properties

Throughout this paper the parameters K € R (lower bound on Ricci curvature) and
1 < N < oo (upper bound on dimension) will be kept fixed. The class of RCD* (K, N)
metric measure spaces, introduced in [G15] (after the case N = oo studied in [AGS14b]) can
now be characterized in many ways, via entropic convexity inequalities along Wasserstein
geodesics or evolution variational inequalities satisfied by the heat flow or nonlinear diffusion
equations (see [EKS15], [AMS15]). For the language adopted in this paper, where optimal
transport does not play a dominant role, the most appropriate characterization is the one
based on the quadraticity of Ch, the growth condition m(B,(Z)) < ¢; exp(car?) (for some,
and thus any, £ € X) on the measure of balls, the Sobolev-to-Lipschitz property (namely
that any f € HY2(X,d,m) with |[Vf| € L°(X, m) has a Lipschitz representative, with
Lipschitz constant smaller than |||V f||~) and the validity of Bochner’s inequality

(Af)?

K 2
S

1
SAIVFE = (VF,VAf) >

in the class of functions
TestF(X,d,m) := { f € Lipy(X,d,m) N H'3(X,d,m) : Af € B (X, d,m)}  (24)

which, a posteriori, turns out to be an algebra thanks to Bochner’s inequality [S14].
True for the larger class of weak CD(K, N) spaces [Vi09, Th. 30.11], the Bishop-Gromov
theorem holds for any RCD*(K, N) space (X,d, m):

m(Br(z))
m(B,(z))

Vol (R) _ . cor

<
- VOIK,N(T) -

(2.5)

for any « € suppm and 0 < r < R, where Volg n(r) denotes the volume of a ball of radius
r in the N-dimensional model space with Ricci curvature K and cg, ¢; > 0 depend only on
K~ and N. A first trivial consequence is that (X, d, m) is locally doubling, meaning that
for any R > 0, there exists Cp > 0 depending only on K—, N and R, such that

m(Bay(z)) < Cpm(B,(z)) Vx € suppm, Vr < R. (2.6)
Because of (2.5), the following lemma, whose proof is omitted for brevity, applies to

the whole class of RCD*(K, N) spaces. It is a simple consequence of Cavalieri’s formula
together with (2.5) and its useful corollary:

< coexp (c1d(z,y)) Yz, y € suppm (2.7)

with ca = cpe!, thanks to the inclusion B1(x) C Bjiq(q,y)(y)-



Lemma 2.3. Let (Y,dy, my) be a metric measure space and let x € suppmy be satisfying

m(Br(z)) R

< cpet VR>1 (2.8)

for some constants cg, ¢y > 0. Then:

(1) for any § > 0 there exists Lo = Lo(6,co,c1) > 1 such that
2d? (x,
[ mB@)es (—Yé y)) dmy () < Sy (Bu2))% (29)
Y\BL, ()

(2) for any £ € Z there exists C = C({,cp,c1) € [0,00) such that

¢ _2d(,y) o+1

my (Bi(y))" exp . dmy (y) < C(my (By(z)))" . (2.10)
Y

Besides the doubling condition, Rajala proved [Raj12, Th. 1] that a local (1, 1)-Poincaré

inequality holds on the larger class of CD(K, c0) spaces, and thus on RCD* (K, N) spaces:

/ |f—][ £ dm| dmg4rem2/ |V | dm, (2.11)
B, (z) B, (z) Bar(z)

for any f € H'?(X,d, m) and any ball B,(z) with z € suppm. Here fBT(z) f dm denotes
the mean value m(B,(z))~! [ B, (x) / dm. It is also worth pointing out that also a local
(2,2)-Poincaré inequality holds if N < oo, as a direct consequence of [HK00, Th. 5.1] with
(2.5) and (2.11).

Furthermore, it follows from the Sobolev-to-Lipschitz property (see [AGS14b, Th. 6.2],
[AES16, Th. 12.8] for details) that, on any RCD*(K, N) space (X,d,m), the intrinsic
distance

de(z,y) = sup{|f(z) = f(y)| : [ € H"*(X,d,m) N Cy(X), [Vf] <1}

associated to &£ coincides with the original distance d. Consequently, Sturm’s works on
the general theory of Dirichlet forms on PI spaces provide existence of a locally Hoélder
continuous representative p on suppm X suppm x (0, 00) for the heat kernel of (X, d, m):
see [St95, Prop. 2.3] and [St96, Cor. 3.3]. The sharp Gaussian estimates on this heat kernel
have been proved later on in the RCD context by Jiang, Li and Zhang [JLZ16, Th. 1.2]:
for any € > 0, there exist C; := Cj(e, K, N) > 1 for i = 1, 2, depending only on K, N and
€, such that

cr' d*(z, y) Ch d?(z,y)
w(B ;) ™ (‘ @—ot Cﬂ) =P S G ) P (‘ arort CT) |
2.12

for all z, y € suppm and any ¢t > 0, where from now on we state our inequalities with
the Holder continuous representative. Combined with the Li-Yau inequality [GM14, J15],
(2.12) implies a gradient estimate [JLZ16, Cor. 1.2]:

C d?(z,
|Vep(z,y,t)] < m exp (— (4:_ gi + C4t> for m-a.e. x € X (2.13)
t



for any ¢ > 0, y € suppm. Moreover by [D97, Th. 4] with (2.12) the inequality

T 2
0] = 1Baple ] < s e (—fi ) cw) (214)

holds for all ¢ > 0 and m x m-a.e. (z,y) € X x X, where C; := Cij(e, K,N) > 1
(1 =3,4,5,6). (see also [JLZ16, (3.11)]). Note that in this article, we will always work

with (2.12), (2.13) and (2.14) in the case € = 1.
In the sequel we shall denote by p;, the Euclidean heat kernel in R¥, given by

1 |z —y|?
pr(z,y,t) == exp <— (2.15)
\/47Ttk 4t

and recall the classical identity

1 9 2
—— | dx =t. 2.16
Tﬂ/Rm exp( 2t> z ( )

Furthermore, we shall often use the scaling formula

p(z,y,s) = b 'p(x,y,a?s) YV, y € suppm, Vs >0 (2.17)

relating for any a, b > 0, the heat kernel p of the rescaled space (X, ad,bm) to the heat
kernel p of (X,d, m).

Let us spend some words concerning spectral theory on compact RCD* (K, N) spaces. It
follows from a standard argument on Dirichlet forms [FOT10] that the resolvent operators
Ry = (ald — A)71: L2(X,m) — HY2(X,d,m), a > 0, are well-defined injective bounded
linear operators and that R, (L?(X,m)) is a dense subset of L?(X,m), independent of «,
which coincides with D(A). By the Rellich-Kondrachov theorem [HKO00, Th. 8.1], all the
R, are compact operators sharing the same discrete positive spectrum g > g > -+ — 0,
implying that (minus) the Laplacian operator —A admits a discrete positive spectrum
0=X <A <X <---— +o00. This provides the following expansions for the heat kernel
p:

plz,y,t) =Y e ei(x)pi(y)  in C(suppm x suppm) (2.18)
i>0

for any ¢t > 0 and

p(vyvt) = Ze_kitgpi(y)spi in HI’Q(deam) (219)
>0

for any y € suppm and t > 0. We refer to the Appendix for a detailed proof of these
expansions.

Let us conclude this overview by mentioning the main structural properties of RCD* (K, N)
spaces. Before that, we need to recall the definitions of rectifiable sets and of tangent
spaces to a metric measure space (X, d,m) at a point x.

Definition 2.4 (Rectifiable sets). Let (Y,dy) be a metric space and let & > 1 be an
integer.

(1) We say that S C Y is countably k-rectifiable if there exist at most countably many
bounded Borel sets B; C R¥ and Lipschitz maps f; : B; — Y such that S C U; f;(B;).



(2) For a nonnegative Borel measure p in Y (not necessarily o-finite), we say that S
is (u, k)-rectifiable if there exists a countably k-rectifiable set S’ C S such that
p (S\S") =0,ie S\S is contained in a p-negligible Borel set.

Definition 2.5 (Tangent metric measure spaces). For z € supp m, we denote by Tan(X,d, m, z)
the set of tangent spaces to (X,d,m) at x: the collection of all pointed metric measure
spaces (Y, dy,my,y) such that, as i — oo, one has

(3,7, m(By, (2) " 'm,z) " (Y, dy, my, y) (2.20)

for some r; — 07, where mGH denotes the measured pointed Gromov-Hausdorff conver-
gence.

If m is doubling, it is not hard to prove, by rescaling the 7; in (2.20) by a constant
factor, that Tan(X,d, m,z) is not empty for all x € suppm and that it is a cone in the
following very weak sense: for all ¢ > 0 and all (Y,dy,my,y) € Tan(X,d, m, z),

(Y, t~dy, my(Bt(y))*lmy, y) € Tan(X,d, m, x).

Definition 2.6 (Regular set Ry). For any k£ > 1, we denote by Ry the k-dimensional
regular set of (X,d, m), namely the set of points x € suppm such that

Tan(X,d,m,x) = {(Rk,de, (wk)_IHk,Ok)}7

where wy, is the k-dimensional volume of the unit ball in R¥.

We are now in a position to introduce the latest structural result for RCD* (K, N)
spaces.

Theorem 2.7 (Essential dimension of RCD*(K, N) spaces). Let (X,d, m) be « RCD*(K, N)
space. Then, there exists a unique integer n € [1, N] such that

m(X \ R,) =0. (2.21)
In addition, the set R, is (m,n)-rectifiable and m is representable as 6H" L R,,.

We denote by dimgnm(X) the “essential dimension” of (X,d, m), namely the integer
n such that m(R,) > 0. Note that the rectifiability of all sets Ry was inspired by
[CCI7, CCO00a, CCOOb] and proved in [MN14], together with the concentration property
m(X \ UgRy) = 0, with the crucial uses of [GMR15] and of [G13] ; the absolute continuity
of m on regular sets with respect to the corresponding Hausdorff measure was proved
afterwards and is a consequence of [KM16], [DePhMR17] and [GP16]. Finally, in the very
recent work [BS18] it is proved that only one set Ry has positive m-measure, leading to
(2.21) and to the representation m = OH" L R,,.

By slightly refining the definition of n-regular set, passing to a reduced set R, general
results of measure differentiation provide also the converse absolutely continuity property
S < mon RY. We summarize here the results obtained in this direction in [AHT18]:

Theorem 2.8 (Weak Ahlfors regularity). Let (X,d,m) be a RCD*(K, N)-space, n =
dimg m(X), m = OH"L R, and set

RZ::{mERn: 3 lim m(Br ()

r—0t  wpr®

€ (0, oo)} . (2.22)
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Then m(R, \ R}) =0, mL R} and H"L R} are mutually absolutely continuous and

i MB@)

r—0t  wpr”

=0(x) form-a.e. z € R, (2.23)

wpr"
1. —_— = ]_ * —_—
Jm S E@) R0
Moreover H" (R, \ R};) =0 if n = N.

form-a.e. x € X. (2.24)

2.3 Sobolev spaces and Laplacians on open sets

Following a standard approach, let us localize some of the concepts introduced in Section 2.1.
First of all, let us introduce the Sobolev space H?(U,d,m) for an open subset U of a
RCD*(K, N)-space (X,d,m). See also [Ch99, Sh00] for the definition of Sobolev space
HYP(U,d,m) for any p € [1,00). Our working definition is the following.

Definition 2.9. Let U C X be open.
1. (Hé’z—Sobolev space) We denote by HS’Q(U7 d,m) the H%2-closure of Lip,(U,d).

2. (Sobolev space on an open set U) We say that f € L2 (U, m) belongs to Hﬁ)’f(U, d, m)

if of € HY?(X,d, m) for any ¢ € Lip.(U,d). If, in addition, f,|Vf| € L*(U,m), we
say that f € HY2(U,d,m).

Notice that f € Hﬁ)’f(U, d, m) if and only if for any V' € U there exists f € H"?(X,d,m)
with f = f on V. The global condition f, |V f| € L?*(U,m) in the definition of H“2(U, d, m)
is meaningful, since the locality properties of the minimal relaxed slope ensure that
|V f| makes sense m-a.e. in X for all functions f € Hﬁ;?(U,d,m). Indeed, choosing
¢n € Lip.(U,d) with {¢, =1} 1 U and defining

IVIT=IV({fen)l  m-ae in{p, =1}

we obtain an extension of the minimal relaxed gradient to H'2(U,d, m) (for which we keep
the same notation, being also m-a.e. independent of the choice of ¢,,) which retains all
bilinearity and locality properties.

We introduce the Dirichlet Laplacian acting only on H& 2_functions as follows:

Definition 2.10 (Dirichlet Laplacian on an open set U). Let Do(A,U) denote the set of
all f e Hé’z(U, d, m) such that there exists h := Ay f € L?(U, m) satisfying

/hgdmz—/(Vf,Vg)dm Vg € Hy*(U,d,m).
U U

We also set Ay g := Apg,(z) when U = Bg(x) for some z € X and R > 0.

Strictly speaking, the Dirichlet Laplacian Ay should not be confused with the operator
A, even if the two operators agree on functions compactly supported on U; for this reason we
adopted a distinguished symbol. Notice that AP (Bg(x)) > 0 whenever m(X \ Br(z)) > 0,
as a direct consequence of the local Poincaré inequality.

Definition 2.11 (Laplacian on an open set U). For f € HY2(U,d, m), we write f €
D(A,U) if there exists h := Ay f € L?(U, m) satisfying

/hgdmz—/(Vf,Vg)dm Vg € Hy*(U,d,m).
U U
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Since for f € HS’Q(U,d,m) one has f € D(A,U) iff f € Dy(A,U) and the Laplacians
are the same, we retain the same notation Ay of Definition 2.10. It is easy to check
that for any f € D(A,U) and any ¢ € D(A) N Lip.(U,d) with Ap € L*>°(X,m) one has
(understanding @Ay f to be null out of U) ¢f € D(A) with

Alef) = fAp+2(Vp, V) + oAy f m-a.e. in X. (2.25)
Such notions allow to define harmonic functions on an open set U as follows.

Definition 2.12. Let U C X be open. We say that f € Hllo’CQ(U,d,m) is harmonic in U if
f e DA, V) with Ay f = 0 for any open set V' € U, namely

/ (Vf,Vg)dm =0 Vg € Lip.(U,d).
U

Let us denote by Harm(U, d, m) the set of harmonic functions on U.

In this article, we will consider mainly globally defined harmonic functions. It is
worth pointing out that, in general, these functions do not belong to H?(X,d, m) but, by
definition, they belong to Hﬁmz (X,d,m).

2.4 Convergence of global/local Sobolev functions

Let us fix a pointed measured Gromov-Hausdorff (mGH) convergent sequence

(Xs diymy, i) ™S (X, d,m, z) (2.26)
of RCD*(K, N) spaces. We adopt here the so-called extrinsic approach of [GMS13],
assuming that X; = suppm;, X = suppm and that all the sets X;, as well as X, are
contained in a common proper metric space (Y, d) (namely a metric space whose bounded
closed sets are compact), with d;|x,xx, = d and z; = 2 in Y. In the sequel we shall denote
by Ch! = Chu,, (-, )i, A, etc. the various objects associated to the i-th metric measure
structure.

When all the spaces involved are uniformly locally doubling, this approach, also called
pointed measured Gromov convergence (pmG for short), is equivalent to the classical mGH
convergence. See [GMS13, Th. 3.15] for a proof of this equivalence. The uniform local
doubling condition for a convergent sequence of RCD* (K, N) spaces, which follows from
(2.6), justifies the properness assumption on (Y, d).

The extrinsic approach is convenient to formulate various notions of convergence and
to avoid the use of e-isometries. However, it should be handled with care: for instance,
if f € Lip,(Y,d) is viewed as a sequence of bounded Lipschitz functions in the spaces
(X;,d;, m;), then the sequence need not be strongly convergent in H? (see [AST16] for a
simple example). Unlike X;, the ambient space (Y, d) will not appear often in our notation,
since the measures m; are concentrated on X;; however Y plays an important role to define
weak convergence of functions f; € LP(X;, m;), since the test functions are continuous and
compactly supported in the ambient space. Notice also that any continuous (compactly
supported, resp.) function ¢ : Bl){(i () — R can be thought as the restriction of a continuous
(compactly supported, resp.) function @ : By (x) — R.

In this setting, let us recall the definition of L2-strong/weak convergence of functions
with respect to the mGH-convergence. The following formulation is due to [GMS13]
and [AST16], which fits the pmG-convergence well. Other equivalent formulations of
L2-convergence, in connection with mGH-convergence, can be found in [KS03, H15]. See
also their references and [AH17] for the definition of LP-convergence for all p € [1, c0).
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Definition 2.13 (L?-convergence of functions defined on varying spaces). We say that
fi € L*(X;,m;) L*-weakly converge to f € L*(X, m) if sup; || fi|l 2 < oo and [, hfi dm; —
fY hf dm for all h € C.(Y). Moreover, we say that f; € L?(X;, m;) L%-strongly converge to
f € L3(X,m) if f; L?-weakly converge to f with limsup; ||fillz2 < || fllz2-

Note that it was proven in [GMS13] (see also [AST16], [AH17]) that any L?-bounded
sequence has an L%-weak convergent subsequence in the above sense.

Following [GMS13], let us now define weak and strong convergence of Sobolev functions
defined on varying metric measure spaces.

Definition 2.14 (H'2-convergence of functions defined on varying spaces). We say that
fi € HY2(X;,d;, m;) are weakly convergent in H'? to f € H%“?(X;,d;, m;) if f; are L>-
weakly convergent to f and sup; Ch’(f;) is finite. Strong convergence in H'? is defined by
requiring L?-strong convergence of the functions, and Ch(f) = lim; Ch(f;).

We can now introduce the local counterpart of these concepts.

Definition 2.15 (Local L?-convergence on varying spaces). We say that f; € L?(Bg(x;), m;)
are L2-weakly (or strongly, resp.) convergent to f € L?(Bgr(z),m) on Bg(z) if filBp() €
L?(X;,m;) L?-weakly (or strongly, resp.) convergent to f1 Bg(z) according to Definition 2.13.
We say that g; € L (X;,m;) are L -weakly (or strongly, resp.) convergent to

g € L? (X, m) if g; L?-weakly (or strongly, resp.) convergent to g on Bg(z) for all R > 0.

loc

Similarly, let us define local H'2-convergence as follows.

Definition 2.16 (Local H'?-convergence on varying spaces). We say that the functions
fi € HY*(Bg(x;),d;, m;) are weakly convergent in H'? to f € H"?(Bg(x),d,m) on Br(z)
if f; are L?-weakly convergent to f on Bpr(x) with sup, || fi|| 1.2 < co. Strong convergence in
H'2 on Bg(z) is defined by requiring strong L? convergence and lim, || IV filillL2(Br(z:)) =
11V £l 2 (Br())-

We say that ¢; € Hlloz (X, d;,my) Hllo’f—weakly (or strongly, resp.) convergent to
gE HI{)’S(X, d,m) if gi| B (a0 H'2_weakly (or strongly, resp.) convergent to 9| By () for all
R >0.

The following fundamental properties of local convergence of functions have been
established in [AH18]. They imply, among other things, that in the definition of local
H"“2_weak convergence one may equivalently require L?-weak or L?-strong convergence of
the functions.

Theorem 2.17 (Compactness of local Sobolev functions). Let R > 0 and let f; €
HY2(Bg(z;),di, m;) with sup; || fil| g1.2 < 0o. Then there exist f € H“?(Bg(z),d, m) and a
subsequence fi(;y such that f; L2-strongly converge to f on Br(z) and

lim inf IV ficiy |7y dmy; Z/ VI dm.
I JBR(zi(j) WG W Br(z)

Theorem 2.18 (Stability of Laplacian on balls). Let f; € D(A, Br(x;)) with
sup([| fill 512 (Br(w:)disms) T 1820 Rl £2(Br(@i)my)) < 005
(2

and with f; L?-strongly convergent to f on Bgr(x) (so that, by Theorem 2.17, f €
HY2(Bg(z),d,m)). Then:
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(1) f € D(A, Br());
(2) Ay, rfi L*-weakly converge to Ay pf on Br(z);
(3) |V fili L?-strongly converge to |V f| on B.(z) for any r < R.

The pointwise convergence of heat kernels for a convergent sequence of RCD*(K, N)
spaces has been proved in [AHT18, Th. 3.3]; building on this, and using the “concentration”
estimate (2.27) below, one can actually prove the global H'2-strong convergence.

Theorem 2.19 (H'2-strong convergence of heat kernels). For all convergent sequences
ti —tin (0,00) and y; € X; —y € X, pi(-,yi, ts) € HY?(X;, d;, m;) HY2-strongly converge
to p(>y7t) € H1’2(X7d7m)‘

Proof. By a rescaling argument we can assume t; =t = 1. Applying Theorem 2.18 for p;
with (2.14) yields that p;(-,yi, 1) Hli’z—strongly converge to p(-,y,1). We claim that for any

0 > 0 there exists L := L(K~, N,d) > 1 such that for any RCD*(K, N) space (Z,d,v) and
any y € supp v one has (¢ denoting its heat kernel)

o

2 2
L gy €D+ Vel D d2) £ s (227

Indeed, let us prove the estimate for ¢, the proof of the estimate for |V .q| (based on (2.13))
being similar. Combining (2.7) with the Gaussian estimate (2.12) with € = 1, one obtains

/ (z,y,1)dv(z) < C%C%GQCZ/ exp(—2d2(z y) + 2c1d(z y)> dv(z)
2B ~ A BW) s 57 o

and then one can use the exponential growth condition on v(Bg(y)), coming from (2.5), to
obtain that the left hand side is smaller than §/v?(B1(y)) for L = L(K~, N, d) sufficiently
large.

Combining (2.27) with the Hllo’cz—strong convergence of p; shows that

Hm {[pi (i, Dl arexg,ds,me) = 112Gy Dl a2 (x,d,m) (2.28)
1—00
which completes the proof. O

We shall also use the following local compactness theorem under BV bounds, applied
to sequences of Sobolev functions.

Theorem 2.20. Assume that a sequence (f;) C H%?(Ba(z;),d;, m;) satisfy

sup [ fill b Bty me) + / IV fils dm; < oo.
i Ba(z;)

Then (f;) has a subsequence LP-strong convergent on Bi(x) for all p € [1,00).

Proof. The proof of the compactness w.r.t. L'-strong convergence can be obtained arguing
as in [AH17, Prop. 7.5] (where the result is stated in global form, for normalized metric
measure spaces, even in the BV setting), using good cut-off functions, see also [H15,
Prop. 3.39] where a uniform LP bound on gradients, for some p > 1 is assumed. Then,
because of the uniform L® bound, the convergence is LP-strong for any p € [1,00), see
[AH17, Prop. 1.3.3(e)]. O
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Let us conclude this section by introducing the notion of harmonic replacement which
will play key roles in Sections 4 and 5. As we already remarked, the assumption that
the first Dirichlet eigenvalue AP (Bg(z)) for the ball Br(x) is strictly positive is valid for
sufficently small balls, indeed it holds as soon as m(X \ Br(z)) > 0. See [AH18, Lem. 4.2]
for the proof of the following proposition.

Proposition 2.21. Assume AP (Bg(z)) > 0. Then for any f € H"2(Bg(z),d, m), there
exists a unique f € D(A, Br(x)), called harmonic replacement of f, such that

Aprf=0
(2.29)
f - € Hy*(Bg(x),d,m).
Moreover,
IV Flll 2B r)m) < 2NV Il L2 (B )m)» (2.30)
122 (Ba)m) < IF1l22(Bp()m + mﬂvﬂﬂm(m(;p),m)- (2.31)

Finally, f — f is the unique minimizer of the functional

¢ € Hy*(Bg(z),d, m) r—>/ IV(f + )*dm.
X

Next proposition, which is crucial for Section 5, gives some conditions under which
harmonic replacements are continuous with respect to measured Gromov-Hausdorff conver-
gence. It is a consequence of [AH18, Th. 3.4].

Proposition 2.22 (Continuity of harmonic replacements). Assume AP (Bgr(z)) > 0 with

Hy*(Bg(z),d,m) = (| Hy*(Brae(z),d, m). (2.32)
e>0
Let f; € HY?(Bgr(z;),d;, m;) be a weakly H'2-convergent sequence to f € H“?(Bg(x),d, m)
on Br(z). Then the harmonic replacements f; of fi on Bgr(x;) exist for i large enough and
L?-strongly converge to the harmonic replacement f of f on Bgr(z).

Notice that a simple separability argument shows that, given z € X, the condition (2.32)
is satisfied for all R > 0 with at most countably many exceptions (see [AH18, Lem. 2.12]).

3 Tangent bundle

In this section we introduce the tangent bundle T'(X,d, m) on an infinitesimally Hilbertian
space (X,d, m). More precisely, in the smooth setting, the construction we give provides
L*(T(X,d,m)), namely all L? sections of the tangent bundle; here, according to [G18, W00]
we describe the tangent bundle implicity, through the collection of its sections. We follow
closely the construction from [G18], with minor simplifications deriving from the Hilbertian
assumption, since the original construction therein starts from L? sections of the cotangent
bundle L?(T*(X,d,m)) and then recovers L?(T(X,d,m)) by duality.

Recall that, according to [G18], a (real) L*(X,m)-module M is a real vector space
with the additional structure of bilinear multiplication by L°(X,m) functions x : m €
M — xym € M, with the associativity property x(x'm) = (xx')m, satisfying also the
locality and gluing axioms (see (1.2.1) and (1.2.2) in [G18]); in addition, multiplication by
A € R corresponds to multiplication by the L*°(X, m) function equal m-a.e. to A. We say
that a L>(X, m)-module M is a L?(X, m)-normed module if there exists a “local norm”
|- |: M — {f € L*(X,m) : f >0} satisfying:
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(a) |m +m/| < |m|+ |m/| m-a.e. in X for all m, m’ € M,
(b) |xm| = |x||m| m-a.e. in X for all m € M, x € L*>®(X, m);

(c) the function
1/2
ol += (] i) dma)) (3.1)

is a norm in M.

Notice that homogeneity and subadditivity of || - || are obvious consequences of (a), (b).

The starting point of Gigli’s construction is provided by the formal expressions
{(A;,Vfi)}icr, where I is a finite index set, {A;};c; is a m-measurable partition of
X and f; € HY?(X,d,m). The sum of two families {(4;, Vfi)}tier, {(Bj,Vgi)}jes is
{A; 0 B, V(fi + gj)}iij)erxs and multiplication by m-measurable functions y taking
finitely many values is defined by

N

X{(Ei, V fi)Yier = {(E: N Fj, V(2 fi)) Yajperxs  with x =Y zlp,.
j=1

Two families {(A;, V fi) }ier, {(Bj, Vgi)}jes are said to be equivalent if f; = g; m-a.e. on

A; N Bj for all (i,j) € I x J and one works with the vector space M of these equivalence

classes, since the above defined operations are compatible with the equivalence relation.
The local norm |{(A4;, Vfi)}| € L?*(X, m) of {(A;, Vf;)} is defined by

{(A;, Vi) H(z) = |V fil(x) m-a.e. on A;.

Thanks to the locality properties of the minimal relaxed slope, this definition does not
depend on the choice of the representative and satisfies |x{(A:, Vfi)} = [x|{(4i, Vi) }|
whenever y takes finitely many values.

This way, all properties of L?(X, m) normed modules are satisfied, with the only
difference that multiplication is defined only for functions x € L (X, m) having finitely
many values. By completion of M with respect to the norm ([, [{A;, fi}]2dm)1/2 we
obtain the normed module L*(T(X,d, m)).

In the sequel we shall denote by V, W, etc. the typical elements of L?(T(X,d,m)) and
by |V| the local norm. As in other papers on this topic we start using a more intuitive
notation, using V f for (the equivalence class of) {(X, V f)} and expressions like finite sums
> i Xifi-

The following result is a simple consequence of the definition of L?(T'(X,d, m)).

Theorem 3.1. The vector space
n
{Z xiVfi: xi € L®(X,m), fi e H**(X,d,m), n > 1}
i=1

is dense in L*(T(X,d, m)).

More generally, density still holds if the functions y; vary in a set D C L2 N L>(X, m)
stable under truncations and dense in L?(X,m) (such as Lip,(X,d) N L?(X, m)).

Since Theorem 2.1 guarantees that the square |- |* of the local norm satisfies m-a.e.
the parallelogram rule, the same holds on L?(T(X,d,m)), therefore one has the following:
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Proposition 3.2 (The canonical metric g). There ezists a unique symmetric and L (X, m)-
bilinear form g on L*(T(X,d, m)) x L?(T(X,d, m)) satisfying

9(Vf1,Vfa)=(Vf1,Vfa) m-a.e. on X
for all fi, fo € HY2(X,d, m).

The Riemannian metric g can be canonically viewed not only as a quadratic form or
bilinear form, but also as a linear operator, that we shall denote g, on the symmetric product
bundle. Recalling the definition (2.4) of TestF'(X,d, m), the construction in [G18] of the
L? sections of the symmetric tensor product of tangent bundles L?(T®2(X,d, m)) arises as
the L? completion of the finite sums Y, x;Vf} ® VfZ (with v;, fi, f? € TestF(X,d, m))
with respect to a canonical Hilbert-Schmidt norm |- |gs (see also Definition 4.3 below).
Given this construction, we define g as follows:

(e, szvfl ®VfE): szg (Vi1 V7). (3.2)

Notice that at this stage it is not clear whether the (dual) Hilbert-Schmidt norm of g is
finite, so that g might not admit in general an extension to the whole of L?(T®2(X,d, m)).

We shall also use the L?(X, m)-normed module L?(T*(X,d,m)) which is the dual of
L*(T(X,d, m)) according to [G18, Def. 1.2.6]. In particular, we will use the differential
operator d : H%?(X,d, m) — L?*(T*(X,d,m)) (acting on gradient vector fields by df(Vg) =
(Vf,Vg)), which satisfies all reasonable properties like locality, chain and Leibniz rules,
see [G18, Sect. 2.2.2] for details.

Moreover for all Borel subset A of X, we define L?*(T(A,d, m)) by the set of all
V € L3(T(X,d,m)) with |V|ys = 0 m-a.e. z € X \ A. Similarly we define L?(T*(A,d, m)).
They will be used in Subsection 5.3, where it will be more useful to distinguish the roles of
vectors and covectors.

Motivated by (3.2), we define also

TestT®%(X, d, m) {szvﬂ@w? xis f fE € TestF(X,d,m) V1 <i < n}
=1

Test(T*)%?(X,d, m) {Z xidff @df? : xi, fL f2 € TestF(X,d,m) V1 <i < n}
=1

and L2((T*)®?(X,d,m)) as the L? completion of the later one. Then L?((T*)®%(X,d, m))

is canonically isometric to the dual space of L2(T®%(X,d,m)) (see [G18, Sect. 3.2]).

The following result is a consequence of the rectifiability of the set R,, in Theorem 2.7,
which provides a canonical isometry between the tangent bundle as defined in this paper
and the tangent bundle defined via measured Gromov-Hausdorff limits, see [GP16, Th. 5.1]
for the proof.

Lemma 3.3. If (X,d, m) is a RCD*(K, N) space, the canonical metric g of Proposition 3.2
satisfies
gl4g=n m-a.e. in X, with n = dimg n(X). (3.3)

In the context of RCD(K, o0) spaces, a good local notion of Hessian is available as
symmetric bilinear form on L?(T(X,d,m)) (see also Subsection 4.2). In this paper the
Hessian will play a role only in Subsection 5.3. In particular we will only use the fact that
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the Hessian is defined for all f € D(A) with an integral estimate coming from Bochner’s
inequality [G18, Cor. 3.3.9]

/ |Hess ¢|2dm g/ (]Af\Q —K\Vf]Q) dm  Vf e D(A). (3.4)
X X

In addition, we shall use the property (see [S14], [G18, Prop. 3.3.22]) that, for f; € D(A)
with |V f;| € L®(X,m)(i = 1,2), one has (Vf1,Vf2) € H'2(X,d, m), with

d(Vf1,V fo) = Hessy, (V fa, ) + Hessp, (Vf1,-)  in L*(T*(X,d,m)). (3.5)

4 Embeddings to L?-spaces via heat kernels

In this section we study the properties induced by the family of continuous embeddings
(®4)>0 of a compact RCD*(K, N) space (X,d,m) into L?(X,m). Each map ®; : X —
L?(X,m) is defined as follows:

Dy(x) = p(x,-,t) Vo e X. (4.1)

Here p: X x X x (0,00) — (0,00) denotes the Holder continuous representative of the
heat kernel of (X,d, m) and, in this section, we are assuming that m has full support.

We start with a brief account of the Riemannian picture, in which it is known from
[BBG94] that the embeddings ®; are smooth and provide a family of pull-back metrics
®Fgr2 which, after rescaling, nicely converge to the original metric as ¢ goes to 0 (see
(4.6) below). We focus afterwards on the (possibly non-smooth) RCD*(K, N) setting. To
treat properly the Riemannian result (4.6) in this context, we first introduce a meaningful
notion of Riemannian metric on (X, d, m). Among these Riemannian metrics on (X, d, m)
there is a canonical one g, singled out by Proposition 3.2, which obviously coincides with
the classical metric when (X, d, m) is a weighted Riemannian manifold. Finally we define
a family of well-chosen Riemannian metrics g; serving as pull-back metrics on (X,d, m).
The convergence of sctg: to g, where sc; is a suitable scaling function, will be treated in
Section 5.

4.1 Smooth case

Let (M™,g) be an n-dimensional closed Riemannian manifold equipped with its canonical
Riemannian distance d, and volume measure vol,. The next proposition is similar to
[BBG94, Th. 5]. We give a proof for the reader’s convenience.

Proposition 4.1. For any t > 0 the map ®; is a smooth embedding. Moreover the
differential d®¢ : T,M™ — L2(M”,volg) at x € M" is given by

dy®(v) =y = g2 (Vap(z,y,t),v) Yo e T,M". (4.2)

In particular

”dx(I)t(v)”%Q(M",volg) = /M !gx(vmp(x,y,t),v)|2dvolg(y) Vo e T,M".

Proof. We first check that ®; is a continuous embedding. Continuity is obvious. As
(M™,dg) is compact, it suffices to show that ®; is injective. Recall the expression (2.18) of
the heat kernel, we see that ®;(z;) = ®¢(z2) yields

Ze*)‘itgoi(xl)goi(y) = Ze*)‘it%(mg)cpi(y) for volg-a.e. y € M. (4.3)
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In particular, multiplying both sides of (4.3) by ¢;(y) and integrating over M shows that
©;(z1) = @j(x2) holds for all j. Then since p(z1,z1,s) = p(x1,z2,s) for all s > 0 by (2.18),
the Gaussian bounds (2.12) with € = 1 yield
1
01V01(BS1/2 (1‘1

) exp (—Css) < p(x1,x1,8) = p(1, 22, S)

Ch d?(z1, x2)
< b2 o
= Yol(Byya(z1) ¥ ( 55 T2

i.e. exp(—Chs) < C% exp(—d?(z1,72)/(5s) + Cas). Then letting s | 0 yields x1 = xa, which
shows that ®, is injective.

Next we prove the smoothness of ®; along with (4.2). Take a smooth curve ¢ : (—e¢,€) —
M™ with ¢(0) = 2 and ¢/(0) = v and estimate

2

H Bl ; Beocl) 92(Vap(z,y,1),v)
_ / n

_ /Mn

h 2
< h/ / ’Hessp(c(s),,’t) (d(s), c’(s))‘ ds dvolg, (4.4)
nJo

L2
2

ple(h), y,t) = p(c(0),y,t)  d dvoly(y)

h ds

h
S
/0 EHeSSp(C(S),-,t) (d(s),d(s))ds

p(c(s), y, )

s=0
2

dvol,

where we applied the identity f(h) = f(0)+f'(0)h— fo sf"(s) ds, valid for any f € C?(—e¢,¢),
to the family of functions f,(s) := p(c(s),y,t), y € M™. Thus letting h — 0 in (4.4) shows
that @, is differentiable at x € M™ and that (4.2) holds. The smoothness of ®; follows
similarly. O

Let g72 be the “flat” Riemannian metric on L*(M™,vol,) given by the L? scalar product.
Thanks to Proposition 4.1, for any ¢ > 0 one can consider the pull-back metric ®} g2 which
writes as follows:

D gr2(v,w) := / 92 (Vap(2,y,1),0)92(Vap(x, y, t), w) dvoly(y), Vv,w € T,M". (4.5)
The asymptotic behavior of ®}gr2 was discussed in [BBG94, Th. 5] where the authors
showed

()t tD2rg 0 =g — - (Ricg - %Scalg g> +0(t%), tlo, (4.6)

in the sense of pointwise convergence, where ¢(n) is a positive dimensional constant and
Ricy, Scal, denote the Ricci and the scalar curvature of (M™, g) respectively. Note that
actually, Bérard, Besson and Gallot considered normalized functions ¥; : M™ — ¢?(N).
Nevertheless, the formula V.p(z,y,t) = >, e Nl (y)Vapi(x) easily yields Uh,gp =
c(n)t220% g .

4.2 RCD-setting

We replace now the Riemannian manifold (M",g) by a compact RCD*(K, N) space
(X,d,m). It is immediate that even in this case the maps ®; are continuous embeddings.
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Indeed, since (2.18) holds in the RCD*(K, N) setting too, we can carry out the proof of
Proposition 4.1 to get that &; is an embedding for any ¢ > 0. Continuity is obvious as
we consider the continuous representative of the heat kernel, see the Appendix for more
details.

Let us turn now to an analog of the expansion (4.6) in the RCD*(K, N) setting. As
there is presently no pointwise notion of Ricci and scalar curvature in this context, it
is unlikely to get such a precise expansion. One might however be interested in the
convergence statement:

c(n)t" 2ok, g t]0. (4.7)

In order to give a meaning to this statement on (X, d, m), let us first introduce a nonsmooth
notion of Riemannian metric (recall that L%(X,m) denotes the space of m-measurable
functions on (X, m)).

Definition 4.2 (Riemannian metrics). We say that a symmetric bilinear form
g: L*(T(X,d,m)) x L*(T(X,d,m)) — L°(X, m)
is a Riemannian (semi, resp.) metric on (X,d, m) if the following two properties hold:

(1) (L*°-linearity) g(xV,W) = xg(V,W) m-a.e. on X for all V, W € L*(T(X,d, m)),
X € L>(X,m);

(2) (non (semi, resp.) degeneracy) for all V € L?(T(X,d, m)) one has

gV,V)y>0 (g(V,V) >0, resp.) m-a.e. on {|V]| > 0}. (4.8)

In the sequel we denote by g the canonical metric singled out by Proposition 3.2.

As we did for the canonical metric g in (3.2), we can also define the lifted metric g on
the tensor product; for all x; € L>=(X,m), f/ € HY?(X,d, m)

and we shall apply this construction also, more generally, to L°°(X, m)-bilinear forms
g:[L*(T(X,d,m))]? — L°(X, m) (for instance, differences of metrics).

In the class of Riemannian semi metrics a natural partial order, that we shall use, is
induced by the relation

G <g = gV,V)<g(V,V) mae inX,forall Ve L*T(X,d,m)). (4.10)

It is also obvious that the class of Riemannian semi metrics is invariant under multiplication
by positive m-a.e. functions in L°(X, m). This motivates the following definition.

Definition 4.3 (Local norm of a Riemannian semi metric). For a L°°(X, m)-bilinear form
g:[LA2(T(X,d,m))]? — L°(X,m), the smallest m-measurable function h : X — [0, co], up
to m-measurable sets, satisfying

18> iV @ VDI <hY xiVfl @ VfE,q mae inX

for all 3=, \;Vf} @ Vf? € TestT®%(X,d, m) is denoted |g|ys or |g| for short.

Whenever |g|gs € L%(X, m) we have a unique extension of g, still denoted g, to the
completion of Test(T®%(X,d, m)), namely L?(T®?(X,d, m)).

20



Remark 4.4. Any T = Zf fAdfl @ df? € Test(T*)®%(X,d,m) (i.e. fg € TestF(X,d,m))
induces the L*°(X, m)-bilinear form by as follows:

k
br(V,W) =Y [V VIVZW) € L%(X,m) WV, W e LX(T(X,d,m))
i=1

with the same Hilbert-Schmidt norm: |br|gs(z) = |T|gs(z) for m-a.e. = € X. This
observation can be extended to the case when T € L2((T*)®?(X,d, m)), i.e. any T €
L2((T*)®?(X,d,m)) induces the bilinear form by with the same Hilbert-Schmidt norm.
Conversely, for any L% (X, m)-bilinear form g with |g|gs € L?(X,m), g defines
an element in (L?(T®%(X,d,m)))* by (4.9). In particular, since L?(T®%(X,d, m))* =
L2((T*)®?(X,d,m)), there exists a unique 7' € L((T*)®%(X,d,m)) such that by = g.
Therefore we will sometime regard any Riemannian semi metric g with |g|gs € L?(X, m)
as an element in L2((T*)®%(X, d, m)), without making explict the distinction (e.g. in (4.16)).

Finally, we introduce a suitable notion of convergence of Riemannian semi metrics g;

on a fixed RCD*(K, N) space (X,d, m).

Definition 4.5 (Convergence of Riemannian semi metrics). We say that Riemannian semi
metrics g; L*-weakly converge to a Riemannian semi metric g if sup; |||8;|ms||2 < oo and
g;(V, V) L?-weakly converges to g(V,V) for all V € L®(T(X,d, m)). We say that g; — g
L2-strongly if |g; — g|gs — 0 in L?(X,m).

In the previous definition, the adjective “weakly” refers also to the fact that convergence
is required in a pointwise sense, namely without any uniformity w.r.t. V, even though
the convergence with V fixed might occur in the strong L? sense. Also, this terminology
is justified by the fact that this notion of convergence corresponds precisely to weak
convergence in the reflexive space L?(T®2%(X,d, m)), since g is uniquely determined by its
value on tensor products V ® V', namely g(V, V). As a consequence, one has

1— 00

liminf/ |§i\%{$dmi2/ gl s dm
X X

whenever g; L?-weakly converge to g.
Notice also that L2-strong convergence of g; to g implies strong convergence in L? of

gi(V,V) to g(V,V) for all V € L*>®°(T(X,d, m)) because
9:(V,V) = g(V, V)| < V18 — &lus,

so that by integration the L? convergence of g;(V, V) to g(V, V) can be obtained.
Similarly, if g; < Cg for some C' > 0 independent of i, then the L?-strong convergence
of g; to g implies that g;(V,V) — g(V,V) in L}(X, m) for all V € L*(T(X,d,m)).
The following convergence criterion will also be useful.

Proposition 4.6. Let g;, g be Riemannian semi metrics. Then g; L?-strongly converge to

g as i — oo if and only if

lim [ §(V,V)dm= / GV, V)dm WV € L®(T(X,d,m)) (4.11)
X

and

timsup [ (gl dm < [ [gfsdm < .
X X

1—00
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Proof. One implication is obvious. To prove the converse, by the reflexivity of L2(T%?(X,d, m))
it is sufficient to check the weak convergence in that space of g; to g.

Then replacing V by 14V in (4.11) for all Borel subset A of X yields that [, g;(V,V)dm —
1) 4 9(V,V)dm as i — oo, which implies the L2-weak convergence of g; to g. O

For any ¢t > 0, a natural way to define a pull-back Riemannian semi metric g; on
(X,d, m) is based on an integral version of (4.5), namely g;(V1, V2) satisfies:

X XX
YW1, Vo € L*(T(X,d, m)). (4.12)

To see that this is a good definition (see also the next subsection for another equivalent
definition), notice that the integrand G(x,y) in the right hand side of (4.12) is pointwise
defined as a map y +— G(-,y) with values in L?(X,m) (L? integrability follows by the
Gaussian estimate (2.13)). By Fubini’s theorem also the map = — [y G(z,y) dm(y) is well
defined, up to m-negligible sets, and this provides us with the pointwise definition, up to
m-negligible sets, of g¢(V1, V2), namely

(Vi Vi) (&) = /X (Vap(z,9. 1) Vi(2)) (Vaple. 1), Va(@)) dm(y).  (4.13)

As a matter of fact, since many objects of the theory are defined only up to m-measurable
sets, we shall mostly work with the equivalent integral formulation.

It is obvious that (4.13) defines a symmetric bilinear form on L?(T'(X,d, m)) with values
in L°(X, m) and with the L>°(X, m)-linearity property. The next proposition ensures that
g¢ is indeed a Riemannian semi metric on (X, d, m), provides an estimate from above in
terms of the canonical metric, and the representation of the lifted metric g;.

Proposition 4.7. Formula (4.13) defines a Riemannian metric g; on L*(T(X,d, m)) with
[ lefhsdm = S [ (e, Ve dm (119
X i X

= e [ [ p(e0.0. T amy) dm(o)

form-a.e. x € X (4.15)

&ilas(z) = \ /X dp(,,1) ® dyp(z, y, 1) dm(y)

HS
and representable as the HS-convergent series
g => ¢ PMdp;@dp;  in L2((T*)**(X,d,m)). (4.16)
i=1
Moreover, the rescaled metric tm(B /(-))g:t satisfies
tm(B 4()g: < C(K,N)g Vi€ (0,C;h), (4.17)

where Cy is the constant in (2.13).

Proof. Let us prove (4.17), assuming 0 < ¢ < min{1,C;'}. For V € L*(T(X,d, m)) and
y € X, the Gaussian estimate (2.13) with e = 1 and the upper bound on ¢ yield

2 03262 —2d($,y)2
[ (S aptat. vy amin) < [ (

73\/2@))2 exp 5 ) |V (2)[* dm(z).

(4.18)
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By integration with respect to y and taking into account (2.10) with £ = 0 (applied to

the rescaled space (X,d;, m) with d; = \/Zild, whose constants cg, c1, co can be estimated
uniformly w.r.t. ¢, since (X,d;, m) is RCD*(¢2K, N)), we recover (4.17).

Let us prove now the non-degeneracy condition (4.8), using the expansion (2.19) of
V.p. For all V € L*(T(X,d,m)) we have

[ avvydm
X
_ / / (Vap(z, y, 1), V(2))? dm(z) dm(y)

2
/ / (Z 6_)\ ! y){(Vei, V) (x)) dm(z) dm(y)
= [ [ X O )iy ()T V@) (s, V) i) i)
¥

_Ze—”t/ (Vi V)2 dm. (4.19)

By L°°-linearity, it suffices to check that ||g:(V,V)||;1 = 0 implies |V |(z) = 0 for m-a.e.
x € X. Thus assume ||g:(V,V)||z1 = 0. Then (4.19) yields that for all 4,

(Vi, V)(z) =0 for m-a.e. x € X. (4.20)

Since L?(T(X,d, m)) is generated, in the sense of L2-modules, by {Vf: f € H"?(X,d,m)}
and since the vector space spanned by ¢; is dense in H12(X,d, m), it is easily seen that
L?*(T(X,d, m)) is generated, in the sense of L%-modules, also by {Vip; : i > 1}.
particular (4.20) shows that V' = 0.

In order to prove (4.14) and (4.16), fix an integer N > 1 and let

N
= Z e_ZAitdcpi ® dep;.
i=1

Then

/ g g dm— 3 &0 / (Vi Vipj)? dm (4.21)

i, j=1

N N
_ =2\t —2);t Vo V ‘2d
—Ze Ze (Vi Vigs)* dm
<Ze 2)‘t/ 9t(Vi, Vip;)dm

< 02672)‘ t/ |Vips)? dm < CZefz/\it)\i < 00,

i=1
where C = C(K,N,t,m(X)) and we used (4.17) and (4.19), together with a uniform
lower bound on m(B ;(z)). By Proposition 7.2, an analogous computation shows that
gy — gM|uslla — 0 as N, M — oo, hence g¥ — g, in L?((T*)®%(X,d, m)).
Passing to the limit in the identity

/ € VIOV dn=Y e / (Vi VF)2 dm
X X

=1
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with y € L®(X,m), f € TestF(X,d, m), we obtain from (4.19) with V = xV f

/ &)V f © V) dm = / (& 2V @ V) dm.
X X

Hence g, = g; (in particular g; has finite Hilbert-Schmidt norm and g; can be extended to
L*(T®%(X,d,m))).
In order to prove (4.14) it is sufficient to pass to the limit as N — oo in

N
/ |g£V’%IS dm = / Z 6_2()\i+>\j)t<V(pi,V(pj>2dm’
X X i,j=1
taking (4.19) into account.
Finally, (4.15) follows by the observation that g; is induced by the scalar product, w.r.t.
the Hilbert-Schmidt norm, with the vector fX dep(z,y,t) @ dep(z, y,t) dm(y). O

4.3 The pull-back semi metric of a Lipschitz map into a Hilbert space

In this subsection we discuss the pull-back Riemannian semi metric of a Lipschitz map
from a compact RCD*(K, N) space into a Hilbert space in order to introduce the finite
dimensional reduction (Proposition 4.11).

Let (X,d, m) be a compact RCD*(K, N) space with dimg ,(X) = n and suppm = X,
let (H,(-,-)) be a (real) separable Hilbert space and let F': X — H be a L-Lipschitz map.
We fix an orthonormal basis {e;};>1 of H and denote by F; : X — R the projection of F
to R= Re; C H.

Lemma 4.8. We have

(o.9]

S IVEP <nLl?  m-ae inX. (4.22)

i=1
Proof. Fix e > 0 and ¢ € N\ {0}. Let C be the Borel domain of a (1 + €)-biLipschitz
embedding ¢ : C — R", and as a consequence of Theorem 2.7 we can assume that
(p)g(mLC) and H"L ¢(C) are mutually absolutely continuous. Let G = (G1,...,Gy) :
R™ — R’ be a (1 + ¢)L-Lipschitz extension of (Fj o o™l ..., Fy0¢7!) : p(C) - R
(granted by Kirszbraun’s theorem). Applying the chain rule, we get that ¢, |[VF;|? <
(14¢)2X%, |[VGil?> 0 ¢ m-a.e. on C. Moreover Rademacher’s theorem yields

l l { n
S IVEP < (146> [VGilPop=(1+€>>_ > |0;,Gil’op  m-ae onC. (4.23)
=1

i=1 i=1k=1
Since G is (1 + €)L-Lipschitz, for any k = 1,...,n one has Y%_, [0,Gi|> < L2(1 + €)?
‘H"-a.e. on R™. This with (4.23) and [MN14, Th. 1.1] implies
¢
Z |VF|? < (1+¢)*nL? m-a.e. on X.
i=1

The result follows by letting € | 0 and then letting ¢ — oo. O

Proposition 4.9. The L?-tensor
o0
> dF;®dF; € L*((T*)®*(X,d, m)) (4.24)
i=1

defines the Riemannian semi metric F* gy (called the pull-back metric by F) with |F*gp|gs(x) <
nL? for m-a.e. * € X, and it does not depend on the choice of the orthonormal basis {e;};.
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Proof. For all ¢ > i, |Z£:idFi ®dFg| < Zé:i |VF;|?. Hence, Lemma 4.8 yields
4
Y dFi®dF; —g  in L*((T*)**(X,d,m))
k=1

as £ — oo, with |g|gs(z) < nL? for m-a.e. z € X.

In order to prove the independence of (4.24) with respect to the choice of the orthonormal
basis {e;}i, let us fix another orthonormal basis {v;}; of H and let us denote by G the
projection of F' to Rv; C H. Let {a;;};; C R with e; = 37, ajjv;, so that the orthogonality
of €; gives Zj [ 6zk

Then, since G; = Y, a;; F;, for all V4, Vo € L*(T(X,d, m)) we have

2/ (VG;, Vi) (VG;, V) dm = ZZ%%/ (VF;, V1)(VF, V2) dm

7 i,k

_ZZ%%/ (VE;, Vi)Y (VFy, Vo) dm

iwk J

:Z/X(VFi,Vl)(VFi,V2) dm

which proves the desired independence. O

It is clear that in the Riemannian case (X,d, m) = (M",dy,voly), if F is smooth, then
(4.24) is equal to the standard pull-back metric. More generally one has the following:

Proposition 4.10. The Lipschitz embedding ®; : X — L?(X,m) in (4.1) satisfies ;g2 =
gt, with g in (4.13).

Proof. Note that the Lipschitz continuity of ®; comes from (2.13), and that the corre-
sponding projection (®;); of ®; to Ry; € L?(X,m) is

@i(@) = [ ploy i) dm = ),
Thus for Vi, Vo € L?(T(X,d,m)) we have
| @002V, Vi) dm = ) [ TN T (), Vo
= Ze 2T 0, VIV, Vo) dm

:/ (Vi Va) dm
X

which completes the proof. O
Similarly we get the following:

Proposition 4.11. For all ¢ € N, let @f be the projection of ®; to H := @le Ry; C
L*(X,m). Then (®})*gy = gi, where

gl = Z e itdy; @ do;. (4.25)
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5 Convergence results via blow-up

In this section, we study the L2-convergence of the rescaled metrics sc;g; to g as t — 0F
on a given compact RCD*(K, N) space (X,d,m) with suppm = X. Here the function
sc; : X — R is a suitable scaling function whose expression requires an immediate
discussion. In the Riemannian case (X,d,m) = (M",dg,voly), one knows by (4.6) that
sc; = ¢(n)t"2)/2 where ¢(n) > 0 is a constant depending only on the dimension n. In the
RCD setting:

e The analogy with the Riemannian setting suggests to take s¢; = t("2)/2 where
n = dimg m(X) (recall Theorem 2.7).

e On the other hand, since the RCD setting is closer to a weighted Riemannian setting,
we can also set sc; = tm(B, 4(+)), to take also into account the effect of the weight 6,
namely the density of m with respect to H"L R,,.

In both cases, we prove that sc;g; converges to a rescaled version of the canonical Riemannian
metric g on (X,d, m), where the rescaling reflects the choice of sc;. To be more precise,
we prove in Theorem 5.10 that §; := tm(Bﬁ(x))gt converge to § = ¢,g, with ¢, as in

(5.3) below. Concerning the second scaling, as t("+2)/2 = m(BLj:(x))tm(B\/i(x)), we prove in

Theorem 5.15 that the limit of the newly rescaled metrics gt is ¢, (wnf) 1z g (notice that
this is a good definition, since 6 is well-defined up to H"-negligible sets and m and H™ are
mutually absolutely continuous on R}).

We start with introducing a technical concept, namely harmonic points of vector fields.
Those are points at which a vector field infinitesimally (meaning after blow-up of the metric
measure space) looks like a harmonic function.

5.1 Harmonic points

Let us first recall the definition of Lebesgue point.

Definition 5.1 (Lebesgue point). Let f € LY (X, m) with p € [1,00). We say that x € X

loc

is a p-Lebesgue point of f if there exists a € R such that

lim fly) —al’ dm(y) = 0.
i f 1)~ al dm(y)

The real number a is uniquely determined by this condition and denoted by f*(x) (we omit
the p-dependence). The set of p-Lebesgue points of f is Borel and denoted by Leb,(f).

Note that the property of being a p-Lebesgue point and f*(z) do not depend on the
choice of the versions of f, and that z € Leb,(f) implies fBT(:p) Ilf(y)|Pdm — [f*(x)[P
as r | 0. It is well-known (e.g. [HeinO1]) that the doubling property ensures that
m(X \ Leb,(f)) =0, and that the set {z € Leb,(f) : f*(x) = f(x)} (which does depend
on the choice of representative in the equivalence class) has full measure in X. When we
apply these properties to a characteristic function f = 14 we obtain that m-a.e. x € Ais a
point of density 1 for A and m-a.e. z € X \ A is a point of density 0 for A.

Definition 5.2 (Harmonic point of a function). Let x € X, R > 0, z € Bgr(x) and let
f € HY?(Bgr(z),d,m). We say that z is a harmonic point of f if 2 € Leby(|Vf|) and
for any (Y,dy,my,y) € Tan(X,d, m, z), mGH limit of (X, t;ld,m(Bti(z))_lm, z), where
t; — 0T, there exist a subsequence (t;(;)); of (;); and f € Lip(Y,dy) N Harm(Y, dy, my)
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()2 Hllo’f—strongly converge to f as j — oo, where f,; is

1
fos = (f - 7{_? » fdm>

on (X,t7'd, m(B(z))"'m). We denote by H(f) the set of harmonic points of f.

such that the rescaled functions f;,
defined by

Note that being an harmonic point also does not depend on the choice of versions of
f and |V f| and that this notion is closely related to the differentiability of f at z. For
instance in the Riemannian case (X,d, m) = (M™,dg, vol,) with f € C'(M™), every point
x € M™ is a harmonic point of f, and the function f appearing by blow-up is unique and
equals the differential of f at z. On the other hand if f(z) = |z| on R", then 0,, is not an
harmonic point of f.

The definition of harmonic point can be extended to vector fields as follows.

Definition 5.3 (Harmonic point of an L2-vector field). Let V € L?(T(X,d,m)) and let
z € X. We say that z is a harmonic point of V if there exists f € H?(X,d, m) such that
z € H(f) and

nmf IV — Vf|*dm = 0. (5.1)
™0 /B, (z)
We denote by H (V) the set of harmonic points of V.

Obviously, if V = V£ for some f € HY2(X,d, m), then Definition 5.3 is compatible with
Definition 5.2. Notice also that, as a consequence of (5.1) and the condition z € Leba(|V f]),
JEBT(z) |V|? dm converge as r | 0 to (|V£|*)?(z) and we shall denote this precise value by
|V |2*(2). By the Lebesgue theorem, this limit coincides for m-a.e. z € H(V) with |V|?(z).
The statement and proof of the following result are very closely related to Cheeger’s version
[Ch99] of Rademacher theorem in metric measure spaces; we simply adapt the proof and
the statement to our needs.

Theorem 5.4. For all V € L*(T(X,d,m)) one has m(X \ H(V)) = 0.

Proof. Step 1: the case of gradient vector fields V = V f. Recall that RCD*(K, N) spaces
are doubling and satisfy a local Poincaré inequality, see (2.11). We fix z € Leba(|V f])
where Dev(f, B,(z)), as defined in (2.2) of Theorem 2.2, is an infinitesimal faster than
m(B,(z)) as r L 0. Let us prove that z € H(f). Let (¢;); and (Y,dy,my,y), fi, . be as in
Definition 5.2. Take R > 1, set d;, = t; 'd, my, = m(By,(z))"'m and write Htli’2 and L7, for
HLQ(B?%” (2),ds;, my;) and LQ(B;;” (z),my,), respectively. Along with the existence of the
limit (|Vf|*(x))? of fBr(z) |V f|?dm as 7 | 0, this provides, for i large enough, a uniform

de.
control of the Htli’2—norms of fi, . on Bp'(2);

dy,
m(Bg' (2))

de;
mib,

Vf?d
=) ésim' m

gCMKQN)f‘ VfF&n+ChU£AﬂRde IV £ dm

d
BtiR(z) BtiR(Z

< Co(K, N, R)((IV f[*(2))* + 1),

2 -2 2
sl =720 =, Famii +

where we used the Poincaré inequality. Thus, since R > 1 is arbitrary, by Theorem 2.17
and a diagonal argument there exist a subsequence (s;); of (¢;); and f € Hﬁ)f (Y,dy,my)

such that f, . H110c2 -weakly converge to f.
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Let us prove that f,, . is a Hﬁ)’f—strong convergent sequence. Let R > 0 where (2.32)
holds on (Y,dy,my,y) and let hs, p be the harmonic replacement of f,, . on Bf{i(z).
Then applying Proposition 2.22 yields that hs, g H?-weakly converge to the harmonic
replacement hp of f on Br(y). Since hg; g are harmonic, by Theorem 2.18, hs, , H>-
strongly converge to hr on B,(z) for any r < R.

Note that Proposition 2.21 and the harmonicity of h; r yield

/dsv ’v(fsz-,z_hsz-,R)Pdmsl- —/ds_ |stz-,z’2dmsz- _/ds_ ‘Vh5i7R‘2dm5i = Dev(f, Bps,;(2))-
Bp*(2) Bp"(2) Bp*(2)

Thus, since by our choice of z, Dev(f, Brs,(2)) goes to 0 as i — oo, the Poincaré inequality
gives || fs, = — hs, R — 0, hence fs, . H%?-weakly converge to hg on Bg(y), so

ds;

. |L2(BR (2))
that f = hg on Bgr(y). In addition, the H'2-strong convergence on balls B,(z), for all
r < R, of the functions hs, g shows that fs, ., H'?-strongly converge to f on B, (z) for
all 7 < R. Since R has been chosen subject to the only condition (2.32), which holds
with at most countably many exceptions, we see that f € Harm(Y, dy, my) and that f, .
Hﬁ)’f-strongly converge to f .

Finally, let us show that f has a Lipschitz representative. It is easy to check that the
condition z € Leba(|V f]), namely

lim IV = [VFI*(2)] dm = 0
™0 J By (2)

with the Hﬁ)’f—strong convergence of fs, . yield |V f|(w) = |[Vf[*(z) for my-a.e. w € Y.
Thus the Sobolev-to-Lipschitz property shows that f has a Lipschitz representative.

Step 2: the general case when V € L*(T(X,d, m)). Let C, M, k, F; be given by Theorem 2.2.
It is sufficient to prove the existence of f as in Definition 5.3 for m-a.e. z € C. Since
fBT(x)\C' [V|?dm = o(m(B,(z))) for m-a.e. x € C, we can assume with no loss of generality,

possibly replacing V' by 1x\¢V, that V=0 on X \ C. As illustrated in [G18, Cor. 2.5.2]
(by approximation of the x; by simple functions) the expansion (2.3) gives also

k

1o (Vf - ZoziVE) =0
i=1

for all f € Lip(X,d) N HY?(X,d, m), with }_, a? < M|V f| m-a.e. on C. By the approxi-

mation in Lusin’s sense of Sobolev by Lipschitz functions and the locality of the pointwise

norm, the same is true for Sobolev functions f. Eventually, by linearity and density of

gradients, we obtain the representation

k
V= Z OJZ'VFZ'

=1

for suitable coefficients a; € L?(X,m), null on X \ C. It is now easily seen that if z is an
harmonic point of all F; and a 2-Lebesgue point of all «;, then x € H(V') with
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5.2 The behavior of tm(B 4;(x))g, as t | 0

The main purpose of Subsections 5.2 and 5.3 is to prove Theorem 5.10, i.e. the L?-strong
convergence of the metrics

N to .

ge = tm(B ;(-))gt — (5.2)
where § is the normalized Riemannian metric on (X,d, m) defined by ¢,g, where n =
dimg m(X') and the dimensional constant ¢, is given by

Wn,

T Gy /Rn\axl (74 * da (5.3)

Here is an important proposition whose proof contains the main technical ingredients
that shall be used in the sequel.

Proposition 5.5. Let V € L*(T(X,d,m)) and y € R, N H(V). Then

Lim Xtm(B\/z(fv))Kpr(fv,y,t%V(l’))!zdm(x) =l VI*(y). (5.4)

Proof. As y € H(V), there exists f € HY?(X,d,m) such that y € H(f) and JCBT(x) |V —
Vf?dm — 0asr ] 0. With W =V — Vf, let us first prove that

im Xfm(B\/z(x))Kpr(%y,t%W(iﬂ)HQdm(if) =0. (5.5)

Using the heat kernel estimate (2.13) with € = 1 we need to estimate, for 0 < ¢ < C4_1,

1 ex _72d2(x,y) z) 2 dm(z
vt p( 5t )rw< )2 dm()

and use (2.7) to reduce the proof to the estimate of

(20 9D i
B p( ) 4o, ﬁ)\m )2 dm().

Using the identity [ f(d(-,y)) du = — [;° u(Br(y))f'(r) dr with py := exp(c1d(-, y)/VE)|[W|*m
and f,(r) = exp(—2r%/(5t)), we need to estimate

1

~ B /0 iy (Bo () £1(r) dir.

Now, write (B, (y)) < w(r)exp(car/vt)m(B,(y)) with w bounded and infinitesimal as
r | 0 and use the change of variables r = sv/¢ to see that it suffices to estimate

4 [o° m(B 252

/ w(sﬂ)w exp | 15 — 27 ) sds.

5 Jo m(B () 5
Now we can split outer the integration in (0,1) and in (1, 00); the former obviously gives
an infinitesimal contribution as ¢t | 0; the latter can be estimated with the exponential

growth condition (2.5) on m(B,(y)) and gives an infinitesimal contribution as well. This
proves (5.5).
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Now, setting ¢, (L) = wy/(4m)" fBL(0)|ar1 (eflx‘2/4)]2 dz 1 ¢, as L 1 oo, we shall first
prove that

bim tm(B 4 (2))[(Vap(2,y, 1),V (2))]* dm(z) = e (L)|V[*(y) (5.6)
By q(y)

for any L < oo. Taking (5.5) into account, it suffices to prove that

lim tm(B ;(2))[(Vap(z, y, 1), V f(2)) P dm(z) = co(L)([Vf)*(y) VL € [0,00).
BL\ﬁ(y)
(5.7)

In order to prove (5.7), for t > 0 let us consider the rescaling d — d; := \/i_ld, m e my =

m(B ﬁ(y))_lm. We denote by p; the heat kernel on the rescaled space (X, d;, m¢). Applying

(2.17) with a := \/Fl, b:= ——=+— and s := t yields (notice that the factor t = a2
m(B ;(y))

disappears by the scaling term in the definition of f 5 , and the scaling of gradients)

/ (B (1) (Vap(z, . 1), V f () ? dm(z)
By i(y)

= /Bdt ( )mt(Bff(w))prt(x,y, 1), V£, ()] dmy (). (5.8)

Take a sequence t; — 0, let (s;); be a subsequence of (¢;); and f be a Lipschitz and
harmonic function on R™ as in Definition 5.2 (i.e. f is the limit of f /s.y)- Note that f has
necessarily linear growth. Since linear growth harmonic functions on Euclidean spaces are
actually linear or constant functions, we see that V f =2 aj% for some a; € R. Then,

by Theorem 2.19, letting i — oo in the right hand side of (5.8) shows

B (B D Taps 910,V ) P i (0
Lty
-/ o, P B (Vatnf, 00, 1), V@) P O @), (5.9)

where H™ = H" /w,, (hence H™(Bi(z)) = 1) and g, denotes the heat kernel on (R", dgn, H").
Since (2.15) and (2.17) give

n(z,0,,1) = &6*|1|2/47
47

a simple computation shows that the right hand side of (5.9) is equal to ¢, (L)(>; |aj|?).
Finally, from

1
VfI*(2))? = lim / Vf2dm>:,1im V1 s yl* dms,
(’ | ( )) r10 <m(Br(y)) BT(y)‘ | iS00 Bisi(y)‘ \/779’

:/ IVZdH" = |a;f?, (5.10)
B1(0n) j

we have (5.6) because (¢;); is arbitrary.
In order to obtain (5.4) it is sufficient to let L — oo in (5.6), taking into account that
cn(L) 1 ¢, as L T oo and that, arguing as for (5.5), one can prove that

lim  sup / (Vap(,y,t), W (y)) 2 dm(z) = 0.
X\B ;(v)

L2009 g
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Corollary 5.6. Let A be a Borel subset of X. Then for any V € L*(T(X,d,m)) and
y e H(V)NR,, one has

(1) if [, (na [V|2dm = o(m(B,(y))) as r | 0, we have

bim ., tm(B;(2)) (Vap (@, y, 1), V(@) [* dm(z) = 0; (5.11)

(2) if fBT(y)\A [V|?dm = o(m(B,(y))) as r ] 0, we have

tim | (B (@) (Vaplary, ). V() dn(z) = eal VI (0). (5.12)

In particular, if V € LP(T(X,d,m)) for some p > 2, (5.11) holds if A has density 0 at y,
and (5.12) holds if A has density 1 at y.

Proof. (1) Let W =14V and notice that our assumption gives that y € H(W), with f =0,
so that |[W|?*(y) = 0. Therefore (5.11) follows by applying Proposition 5.5 to W. The
proof of (5.12) is analogous. O

Remark 5.7. Thanks to the estimate (2.7), a similar argument provides also the following
results for all y € H(V)NR,:

(1) if fBr(y)ﬂA |V|?dm = o(m(B,(y))) as r | 0, we have

lim . tm(B () [(Vap(z,y,t), V(2))[* dm(z) = 0; (5.13)

(2) if fBr(y)\A |V|2dm = o(m(B,(y))) as r | 0, we have

lim Atm(B\/g(y))Ingp(x,y,t), V(@) ? dm(z) = ca|VI*(y). (5.14)

Theorem 5.8. Let V € L?(T(X,d, m)). Then for any Borel subsets Ay, Az of X we have

1&61 A </A2 tm(B, (@) (Vap(z,y, 1), V(xmzdm(x)) dm(y) = /AmA2 g(V,V)dm.
(5.15)

Proof. Taking the uniform L estimate (4.17) into account, it is enough to prove the
result for V € L>(T(X,d, m)), since this space is dense in L*(T(X,d,m)). Take y € X.
By (4.18), for 0 < t < C; !, we get

03262”‘/”%00 ex <_2d(l"y)2 dm(a;)

/Xtm(Bﬁ(w))Kpr(w,y,t),V(w)HQdm(m) = x m(B 4(x)) ot

(5.16)

and, by applying (2.10) to the rescaled space (X, \/f_ld,m(B\/i(x)))_lm), we obtain that
the right hand side in (5.16) is uniformly bounded as function of y.

31



Thus, denoting by A3 the set of points of density 1 of Ay and by A5* the set of points
of density 0 of Ay (so that m(X \ (A5 U A%*)) = 0), the dominated convergence theorem,
Corollary 5.6 and the definition of § imply

/A1 (/Az fm(Bﬁ(ﬂf))Kpr(%y,t),V(x)>|2dm(x)> dm(y)
). </ tm(B.(2) (Vap(w,y, 1), V(@) dm@)) dm(y)
RnNAINA; As

" /72nmAmA§* </32 tm(Bz(@)|(Vap(@, y,1), V()" dm(z )> dm(y)

S calVI*(y) dm(y) = / 4V, V) dm. (5.17)
RnNAINAS A1NAz

Remark 5.9. Building on Remark 5.7, one can prove by a similar argument

im [ ( /. B AT v<x>>\2dm<x>> an) = [ vV
(5.18)

In order to improve the convergence of §; from weak to strong, a classical Hilbertian
strategy is to prove convergence of the Hilbert norms. In our case, at the level of g; (and
taking (3.3) and (4.15) into account), this translates into

limsup/X (tm(B\/z(x)))z

)

2
dm(z) < ncZm(X).
HS

/X dzp(z,y,t) @ dp(z,y,t) dm(y)

(5.19)
The proof of this estimate requires a more delicate blow-up procedure, and to its proof we
devoted the next subsection. Notice that, by using the (non-sharp) estimate of the left

hand side in (5.19) with [ [tm(B 4()) [y [Vap|? dm]2 dm one obtains n2c2m(X), but this
upper bound is not sufficient to obtain the convergence of the Hilbert-Schmidt norms.
We are now in a position to prove the main theorem of this subsection.

Theorem 5.10. The family of Riemannian metrics §; in (5.2) L?-strongly converges to §
as t } 0 according to Definition /.5. In particular one has L'-strong convergence of g;(V, V)
to g(V,V) ast ] 0 for all V € L2(T(X,d, m)).

Proof. For all V € L*(T(X,d,m)), the L'-weak convergence of g;(V, V) to §(V, V) follows
easily from Theorem 5.8: indeed, choosing A1 = X, we obtain that [ Ay 9:(V, V) dm converge
ast0to [, g 4, 9(V,V) dm for any Borel set Ay C X. The Vitali-Hahn-Saks theorem then

grants convergence in the weak topology of L'.
By combining (4.15), (5.19) and (3.3) we have

hmsup/ |gt|HS dm

2

— limsup / (tm(B5(a)))*| | Aol 0) © duplo .ty dmly)| (o)
t}0 X HS
— nm(R / &2 dm. (5.20)
The L?-strong convergence now comes from Proposition 4.6. O
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Remark 5.11. With a uniform L>®-bound (4.17), the L?-strong convergence §; — § implies
LP-strong convergence for all 1 < p < oco. However, this result cannot be improved to
L*°-strong convergence because of the following example (note that higher dimensional
analogous examples can be obtained by taking cartesian products):

Let us consider a RCD*(0, 1) space (X, d, m) := ([0, 7], d, H!/7) where d is the Euclidean
distance. In this context, the canonical Riemannian metric g is g = ds ® ds, the operator
A is the Laplacian with Neumann boundary condition, the corresponding orthonormal
basis of L?([0, 7], H!/7) made of eigenfunctions (;);>¢ is given by pg = 1 and ¢;(s) =
V2 cos(is)(i > 1), and by (4.16) for any ¢ > 0 the pull-back metric g; is

g =2 Z e 242 gin2 (is)ds ® ds. (5.21)
i>1

Since |g¢|ms is infinitesimal around s = 0, 7, we have |||g&; — &|ms||L~ > ¢1 for any ¢ > 0.
Moreover, ®; is not biLipschitz, that is, (®;)~! : ®;(X) — X is not Lipschitz because if it
were Lipschitz, then by an argument similar to the proof of Proposition 4.1, there would
be ¢, > 0 such that g; > ¢,g, which contradicts that |g;|mg is infinitesimal around s = 0, 7.
Similarly ®f is not biLipschitz for all ¢, ¢ (recall Proposition 4.11 for the definition of ®}).

5.3 Proof of (5.19)

We set
2

F(z,t) = (tm(B (= ‘ / 2P(2,7,t) @ dop(z, y, 1) dm(y )HS

and (4.17) provides a uniform upper bound on the L norm of F(-,t), for 0 < ¢t < 1. Now,
we claim that (5.19) follows by Proposition 5.12 below; indeed, by integration of both sides
we get

im # T . N
i [ s s ) dmia) () = néim(X)

and, thanks to Fubini’s theorem, the left hand side can be represented as

| 1 )
im [ P ( /B e dm(:c)) dm(z)

Since it is easily seen that [ B () “‘(37\/()) dm(z) are uniformly bounded and converge to

last] 0 forall z € R, (in particular for m-a.e. ), we have

/X F(a:,t)( /B I wdm(m) dm(z) — /X F(z,t) dm(z)

@)

1 _

<c / dm(z)
X

- / _
B i(z) M(B (7))
where we used the dominated convergence theorem. Thus

dm(z) — 0,

1
lim [ F(z,t)dm(z) = lim

(B () x T z) = nc?
t10 Jx 10 Jx m(B (7)) /Bf(x) F(x,t) dm(x) dm(z) 2m(X)

which proves (5.19).
Hence, we devote the rest of the subsection to the proof of the proposition.
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Proposition 5.12. For all x € R,, one has

1
lim/ F(x,t)dm(x :nci, 5.22
B B OO0 (5.22)

with ¢, defined as in (5.3).
Proof. Let us fix t; — 0" and consider the mGH convergent sequence

(X,d;,mj,7) = (X, \/tj-_ld,m(B\/g(i'))_lm, 1:) "SI (R da, H0,),(5.23)

where H" := H" /wh,.
Setting (note that the center in the first factor is z, unlike F'(z,t))

2
Fa.t)i= (m(B,5(@)"] [ dapl.9.1) & dapl ) dm(y)|
b'e HS
we claim that, in order to get (5.22), it is sufficient to prove that
1
lim / F(x,t;)dm(z) = nc?. (5.24)
J—00 m(B\/g(:c)) B\/?(E) J
Indeed, letting
2
Hj(z) = ‘/ dep(z,9,t5) ® dep(z,y,t;) dm(y)| (5.25)
X HS
so that F(z,t;) = (tjm(B\/g(i‘)))QHj(x), one has
i [ |6mB @) H @) - (6B @) @) dne)
m(B /(1)) B () J j
2
= / .1 (my(BY (@)’ / dop;(@,y,1) @ dupy(,y,1) dmy (y)|  dmy(a)
By (2) b'e HS

<C [, 1= (m(BY @) dmi(z) - C

. 1= (A" (B1(2)))?| A" () =0,
B/ (z) )

Bl (On

where C' comes from the Gaussian estimate (2.13) and we used the uniform convergence of
m;(BY () to H'(By(x)).

Applying Proposition 2.22 with the good cut-off functions constructed in [MN14] for the
standard coordinate functions h; : R™ — R yields that (possibly extracting a subsequence)
the existence of Lipschitz functions h; ; € D(A7), harmonic in ng (z), such that h; ;
H'2_strongly converge to h; on B3(0,) with respect to the convergence (5.23). Here and
in the sequel we are denoting A7 the Laplacian of (X, d;j, m;). Note that gradient estimates
for solutions of Poisson’s equations given in [J14] show

C = sup ||[Vhi; < 0. (5.26)
i.J

il s

On the other hand Bochner’s inequality (we use here and in the sequel the notation
Hess’ for the Hessian in the rescaled space. Recall that in Subsection 2.2) it is shown that

1 : :
/ A]¢]Vhi7j|?dmj>/ o (IHess, 2+ t;K|Vhi;3) dm; (5.27)
2 /x X i
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for all ¢ € D(AY) with AJp € L>°(X, m;) and supp ¢ C ng (). In particular, taking as
¢ = ; the good cut-off functions constructed in [MN14] we obtain
lim ]Hess{lm 2dm; = 0. (5.28)

. d _
J—00 B2J (:C)

Let us define functions a :B J( ) = R, a®™ : By(0,,) = R by

0™ () = /X (V3 (5,9, 1), Vi 3 (2)) (T (2,5, 1), Vhon 3 () i (1),

@)= [ (Va0 1. V() (Tt (9, 1), V(0 4 (),

respectively, where p;(x,y,t) is the heat kernel of (X,d;, m;) and ¢,(x,y,t) is the heat
kernel of (R™, dgn, H™) (we also use the (-, -); notation to emphasize the dependence of
these objects on the rescaled metric). Notice that the explicit expression (2.17) of ¢, (z,y,t)
provides the identity abm = CnOp,m-

Now let us prove that aﬁ’m LP-strongly converge to a®™ on By(0,) for all p € [1,00). It
is easy to check the uniform L* boundedness by the Gaussian estimate (2.13) and (5.26),
and the LP-weak convergence by Theorem 2.19. To improve the convergence from weak to
strong, thanks to the compactness result stated in Theorem 2.20, it suffices to prove that

aﬁ’m € H1’2(ng (Z),dj, m ) for all j, and that

sup/d, ]Vaf’m]j dm; < . (5.29)
i By (2)

Thus, let us check that (5.29) holds as follows. For any y € X, the Leibniz rule and (3.5)
give; in L2(T*(BY (z),d;, m;))

do ((Vap;(@, 4, 1), Vi (2))5(Vep; (2,5, 1), Vim,j(2))5) (5.30)
= (Vapj(z,y,1),Vhe;(2)); (Hess G, 1)(th,j,-)—i—Hessim’j(prj(x,y, 1),-))
+ (Vapj(z,y,1), Vi j(x)); (Hessp (w 1)(th7j, )+ Hess;%j (Vapi(z,y,1),-)).
Now, recalling that (X, d;, m;) arises from the rescaling of a fixed compact space, the
Gaussian estimate (2.13) yields that (Vap;(z,y,1), Vhe;(x));(Vaepj(x,y,1), Vhm j(x));

belong to HI’Q(ng (x),d;j, m;), with norm for j fixed uniformly bounded w.r.t. y. Hence,
we can commute differentiation w.r.t.  and integration w.r.t. y to obtain that aﬁ’m €

HY2(BY (2),d;, m;) with
/ Vo (Vo (@9, 1), Vhej (2))5 (Ve (2,4, 1), Vi (2));) dmy () (5.31)

in Lz(T(ng (z),d,m)). From (5.30) we then get

’Vag.’m’j < C(]Hessj (w )(Vhe,J,Vth)‘+’HeSS

‘ Vhin,js Vi j)) Vi (- y,1)] 5

()

+ C(IHeSSh S(Vp(,9,1),Vp(-,y, 1 )| + [Hess), (Vp(-,y,1), Vp(-,y, D)) [Vp; (-
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where C' is the constant in (5.26), so that using (5.26) once more we get

lm

1/2
=¢ (//Ba [Hess) 1) dm; (@) dm;(y ) (//B] Vapj(@,y, ))\?dmj(:c)dmj(y)>

#C [ [ (s, 1Ty D s, )1y 1) ) i )
(5.32)

for some positive constant C' (recall that the Hessian norm is the Hilbert-Schmidt norm).
Note that the second term of the right hand side of (5.32) is uniformly bounded with
respect to j because of the Gaussian estimate (2.13), (5.28) and Cavalieri’s formula (see
Lemma 2.3). Note that (2.13) and (2.14) with Lemma 2.3 show

sup(// 3G ) ) am // Do D) dm ) am >) .

In particular by applying (3.4) to the scaled spaces, with a sequence of good cut-off
functions constructed in [MN14], we obtain

sup/ / |Hess? R 2(z) dm;(x) dm;(y) < oo.
B % p; (y:1)

Thus (5.32) yields (5.29), which completes the proof of the LP-strong convergence of aﬁ’m
to a®™ for all p € [1,00).
Then, since a®™ = 260 we get

1 67 ) » —
lim /ij S dmy = / Zyaﬁmy?dyn_nci. (5.33)

Jmre0 (@) {m B1(0n) 4m

Hence, to finish the proof of (5.24), and then of the proposition, it suffices to check that

f

is infinitesimal as j — oo.

To prove this fact, we first state an elementary property of Hilbert spaces whose proof
is quite standard, and therefore omitted: for any r-dimensional Hilbert space (V/ (-,-)),
€ >0, {e;}_; C V one has the implication

T
[0 = > (v, &)
i=1

Note that the scaling property (2.17) of the heat kernel gives

(5.34 /B " Z a2

G;(x) == \ /X dopy (2., 1) @ dopy (2,9, 1) dm; (1)

2
£m 2

m(B\/t;(w)))Q’ /X dop(z,y,t;) @ dep(z, y,t;) dm(y)| | dm(z)

HS

\/q(i") £m
(5.34)

eiej) — 0| <e Vi,j = C(r)elv*  YoeV. (5.35)

G;| dm;, (5.36)

where )

HS
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Let

lm

€ 1= max/d. [(Vhej, V)i — Sem| dmj.
B/ (2)

Then notice that for all £, m, one has
/d_ (Vhyj, Vhim )i — 0| dm; — [(Vhe, Vi) — G| dH™ = 0
B/ (2) B1(0n)

as j — oo. In particular €; — 0.
Let

m d;, _
Kim = {w € BY(Z): |(Vhej, Vhm)i(w) — 6| > \/a} .

Then the Markov inequality and the definition of ¢; give mj(Kf’m) < /€, so that Kj; :=
Ue.m Kf’m satisfy m;(K;) — 0 as j — oo.
On the other hand, (5.35) with r = n? yields

-

where we used sup; ”GJ'HLoo(B‘l‘j @)

Z|afm _

£m

G| dm; < C(n2)e J/ » (G dmy 0, (37
xr

< 00, as a consequence of the Gaussian estimate (2.13).

Then since
/ Z|a£m — Gj|dm; < \/m;(K; / y Z|a£m — dm; — 0,
Kj |g ,m B (2) |¢ ,m
where we used the uniform L°°-bounds on aﬁ’m, we have
/ Z:|a£m Gj|dm; + / Z\aem Gjldm; — 0.
Kj |¢ ,m T\K; Lm

Thus we have that the expression in (5.34) is infinitesimal as j — oo, which completes the

proof of Proposition 5.12. 0

5.4 The behavior of t"*2/2g, as t | 0

Let us now consider the convergence result

— t(n+2)/2

gt gt — 7,

where n = dimg n(X) and, with our notation m = 0", where 6 is the density of m w.r.t.

‘H™. the normalized metric § is defined by

~:71*,
g 973”9

Wn

We shall need the following well-known lemma, already used in [AHT18], and whose simple
proof is omitted here.

Lemma 5.13. Let fi, gi, f, g € L'(X,m). Assume that f; — f and g; — g m-a.e., that
|fil < gi m-a.e., and that lim; oo [|9ill L1 (x.m) = N9l L1 (x,m)- Then fi = f in L'(X,m).
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Let us start with the analog of Theorem 5.8 in this setting.
Theorem 5.14. Let V € L*(T(X,d,m)) and Ay C R}, Borel. If

i, s 0 = ], i 0 < o

then for any Borel set Ao C X one has

Cn

lim < / t("+2)/2|<vxp(x,y,t),V(x))|2dm(x)> dm(y) = / VI2AH". (5.39)
Aq Ao A1NAs

tl0 Wn

Proof. Recall that (2.24) of Theorem 2.8 gives that r"/m(B,(y)) converges as r — 0 to
1/(wnf(y)) for m-a.e. y € Ay, By an argument similar to the proof of Theorem 5.10, using
also (2.8), we obtain

pily) = tm(B\/g(y)))/A [(Vap(z,y,1),V(2))* dm(z) < C(K, N)|[V |7~ (5.40)

2

for all y € X and t € (0,C; ). Let

_ _ vVt
fily) = mlm(y)wt(y), gu(y) = C(K, N)| V|70 14, (y)m(Bﬁ(y))a (5.41)
so that (5.40) gives fi(y) < g+(y). Note that (5.13) and (5.14) yield
i fo(s) = L) G5 [VIEG) for mene. € Ay (5.42)

Applying Lemma 5.13 with g(y) = C(K, N)||V 2014, (y)/(wnf(y)) and taking (5.38) into
account we get

Cn

li dm= [ lim fidm = = V> dH", 5.43
ip [ dam= [ mam =2 [ W (543

which proves (5.39). O

We are now in a position to prove the main result of this subsection. It is worth
pointing out that (5.44) is equivalent to satisfying Weyl’s law on (X,d, m). Moreover all
known examples satisfy (5.44) (see [AHT18]).

Theorem 5.15. Assume that

/r.n ,rn
lim dmw:/'mldmw<+m. (5.44)
rl0 Jr: m(Br(y)) R

Then G; L?-strongly converge to § ast | 0.

Proof. Let As C X be a Borel set and V' € L*°(T'(X,d, m)). Then Fubini’s theorem leads
to

/A V.V dm = /X /R (e, 0,V (@) dme) dmiy)

Then, we can apply Theorem 5.14 to get
/ g(V,V)dm — C”/ V|2 dH™ = / g(V, V) dm. (5.45)
Ay Wn JRxNAy Ay
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Let us prove now the L%-strong convergence of &, to g as t | 0 using Proposition 4.6 with
(5.45). Note that

glus, 8i|ns = |8t|Hs-

= 7]_ *
&lms 0§ R
Let us write for clarity F(z,t) = |fX dep(z,y,t) @ dep(z,y, t) dm(y)|HS. Applying (4.15),
(5.19) and (3.3) we get

hmsup/ ]gt!Hsdm—thllp/ t"+2\gt]HSdm
10 n

= limsup/ "2 E2 (2, t) dm(z)
t10 "

. H(n+2)/2 2 , ) o
< / timsp (WM) 2m(B.;(x)) 2 (. £) dm(x)

1
:/ 202nc dm(z / 8|/ ¢ dm < oc. (5.46)

Notice that we are enabled to pass to the limit under the integral sign thanks to (5.44)
and Lemma 5.13, since the convergence in (5.19) is dominated. O

We obtain in particular the following corollary when the metric measure space (X, d, m)
is Ahlfors n-regular: indeed, in this case obviously one has n = dimg,(X), m and H"
are mutually absolutely continuous and the existence of the limits in (5.44), as well as
the validity of the equality, are granted by the rectifiability of R,, and by the dominated
convergence theorem.

Corollary 5.16. Assume that m is Ahlfors n-regular, i.e. there exists C' > 1 such that

C—1<“‘(Ln(x))gc Vr € (0,1], Vz € X.

o T
Then §; L?-strongly converge to § ast | 0.

5.5 Behavior with respect to the mGH-convergence

Fix a mGH-convergent sequence of compact RCD*(K, N)-spaces, with (X,d, m) compact

as well:
(X, dj,mj) "G (X, d,m).

In this section we can adopt the extrinsic point of view of Subsection 2.4, viewing when
necessary all metric measure spaces as isometric subsets of a compact metric space (Y, d),
with X; convergent to X w.r.t. the Hausdorff distance and m; weakly convergent to m.

Let us denote by A; j, Ai, i j, @i the corresponding eigenvalues and eigenfunctions of
—Aj, —A, respectively, listed taking into account their multiplicities (we will also use
a similar notation below), recall that {; ;}i>0 are orthonormal bases of L?(X;, m;) and
that, according to [GMS13], for any i one has \;; — A; as j — o0, so-called spectral
convergence. In addition, by the uniform bound on the diameters of the spaces, we know
from Proposition 7.1 (see also [J14]) that uniform Lipschitz continuity of eigenfunctions
holds, i.e.

sup [|[VeijljllLee <00 Vi>0. (5.47)
J
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With no loss of generality, we can also assume that the ¢; ; are restrictions of Lipschitz
functions defined on Y, with Lipschitz constant equal to ||V ;|| Lo (X, m;)-

Although the following lemma was already discussed in the proof of [GMS13, Th. 7.8],
we give the proof for the reader’s convenience.

Lemma 5.17. Under the same setting as above, there exist j(k) and an L?-orthonomal
basis {1 }i>o of L*(X,m) such that Pi (k) H'2_strongly converge as k — oo to 1; for all
i. In addition, the convergence is also uniform in this sense: for all € > 0 there exist
d > 0 and ko such that k > ko, x), € suppmq,) and x € suppm with d(zg,x) < & imply

01 ey (Tr) — i(z)] < e.

Proof. Since |||V ;];]|32 = Ai,j, by Theorem 2.18 and a diagonal argument there exist a
subsequence j(k) and v; € L?(X, m) such that Dij(k) H'2_strongly converge as k — 0o to
1; for all i > 0, with L?-weak convergence of Ajr)Pijk) to A;. In particular we obtain
that Avy; = A\;¢; for all ¢ and that

/ Yoty dm = klim / 05k Prm,jk) AM(k) = Opm-
X I Xy

Thus, as written above, {1;}i>0 is an L%-orthonormal basis of L?(X,m). Finally the
uniform convergence is justified by the L2-strong convergence of ¢; with (5.47). O

Taking Lemma 5.17 into account, with no loss of generality in the sequel we can assume
that ¢; ; H 1.2_strongly converge to ; for all i > 0, in addition with uniform convergence
inY.

Let us discuss the L2-convergence of Riemannian semi metrics g; with respect to
mGH convergence. It is easyto check that the following definition is compatible with
Definition 4.5, dealing with metrics in a fixed metric measure structure.

Definition 5.18. We say that Riemannian semi metrics g; on (Xj,dj,mj) L?-weakly
converge to a Riemannian semi metric g on (X,d, m) if sup; fXj |gj|%]s dm; < oo and
9;(Vhj, Vh;) L%-weakly converge to g(Vh, Vh), whenever h; H?-strongly converge to
h with sup; [|[Vh;ljl|e < 0o. L?-strong convergence is defined by requiring, in addition,
that lirnj fXj |g]‘%15 dmj = fX |g‘%15 dm

It is not difficult to show several fundamental properties of L?-strong/weak convergence
of semi metrics, including L?-weak compactness (not needed in this paper) and lower semi-
continuity of L?-norms with respect to L?-weak convergence, as discussed in Definition 4.6;
in particular, the convergence can be improved from weak to strong if

limsup/ \gjlilsdmj S/X’gﬁfsdm'

i X

Theorem 5.19. Let t; — t € (0,00), let @ijj : X; — L*(Xj,m;) be the corresponding
embeddings and let gt);j be the corresponding pull-back metrics of (X;,d;,m;). Then gt)jj L2-

strongly converge to gi* and @&j (X;), endowed with the L2(Xj,mj) distance, GH-converge
to ®;X(X) endowed with the L?(X, m) distance.

Proof. By rescaling with no loss of generality we can assume that t; =t = 1.
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Let us prove first the convergence of metrics. Note that (4.17) yields sup; || |gf{j |HsllLe <
oo. For all k£ > 1, recalling the representation formula (4.16) for the metrics, we define

o
Con X, Xk
Gf::E:e2M”®%j®d%g(:g1]—(&fﬁ g
i>k

and define G* analogously. Then, arguing as in (4.21), we get

/ ‘Gﬂ%qsdm] _ Z 6—2()\[’j+>\m,j)\/\ <V(,0£,J,V<Pm]> dm] <CZ>\£ o 2Aej (5 48)
X; ¢, m>k X; >k

with ¢ = C(K, N,m(X)), and a similar estimate holds for [} |G*|%;¢dm. On the other

hand, since
/ / Vapj(z,y, )| dm;(z) dm;(y Z)\é T

and
/ / V(2 1)[2 dmy () dm; (y) — / / Vp(esy. 1) dm(z) dm(y).
x; Jx; xJx

taking also the spectral convergence into account we get
(o.9] o
S hgge P 5 3 NeTP vk (5.49)
>k >k
In particular for any € > 0 there exists k£ such that for all sufficiently large j
[e.e] oo
Z )\47]-672)‘“ + Z )\g(f”“Z < e.
>k >k
Thus, for sufficiently large j one has
/ G375 dm; +/X |G* |35 dm < 2Ce. (5.50)
i

On the other hand, since g ; H'2_strongly converge to ¢y, (5.47) yields that (Vri, Vom)
LP-strongly converge to (Vy, Vo) for all p € [1,00). In particular, as j — oo we get

X.
[ 1) s am, = S e 2hntAn) [ (Vo Vomam

j £,m=1 X;
R /X (Vot, Vipm)? dm = /X (&) g dm.  (5.51)
l,m=1

Since € is arbitrary, combining (5.50) with (5.51) yields
X
[ s dm; = [ g s dam. (552)
j

Since it is easy to check that Lemma 5.17 yields that (gfj )k=1 L2-weakly converge to
(g7)*~1, combining (5.50) with (5.52) completes the proof of the L2-strong convergence of
metrics.
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Now we prove the second part of the statement. Using the eigenfunctions ¢; ; we can

embed isometrically all @f(j (X;) C L*(X;,m;) into f2, and then we need only to prove the
Hausdorff convergence inside £ of the sets W; to W, where

W; = {(e_’\i’fgpl-7j(:n))i21 DX € Xj}, W = {(6_)‘1'g0¢(x))i21 DX € X} :
By Propositions 7.2 and 7.1, for all € > 0 there exists & € N such that for all j

S e Pl <Y el <
Skl i>k+1

Denoting 7% : f5 — £ the projection defined by 7%((z);) := (1, ...,2%,0,...), from this it
is easy to get

dp(W;, Wy <e,  dgW.Wh) <e,
where Wf = 7k(W;), Wk := 7%(W) and d2 denotes the Hausdorff distance. Hence, by
the triangle inequality, it suffices to check that d%,(VV;c ,WF) = 0 for fixed k. Since

Wf = {(e*)‘lvhpl,j(x), e i g i(T), . .., e*/\’“jcpk,j(a:), 0,0,...): z € Xj} ,

and an analogous formula holds for W, from the uniform convergence of the @i j to p; we
immediately get that d%(WJk, WF) — 0. O

Remark 5.20. The canonical Riemannian metrics g%/ L?-weakly converge to g~ , as a direct
consequence of [AH17, Th. 5.7]. In particular the lower semicontinuity of the L2-norms of

g%, namely
iminf [ g frsdm; > [ &Y s dm (5.53)
i
yields
hjnig)lf dimg; m; (X;) > dimg m(X). (5.54)

Indeed, setting n; = dimg; m; (X;), n = dimg (X ), Lemma 3.3 shows that fXj lgXi|%gdm; =
njmj(Xj) and fX |gX|12qS dm = nm(X)

This allows us to define the notion that {(X;,d;, m;)}; is a noncollapsed convergent
sequence to (X, d, m) if lim; n; = n (see also [K17]). Moreover, convergence occurs without
collapse if and only if

lim [ |g%i[}gdm; = lim njm;(X;) = nm(X) = / lg¥ i1 dm
J]—00 X J]—00 X

that is, if and only if g7 L2-strongly converge to g~ (these observation are justified even
for the noncompact case if we replace X;, X by Bi(z;), Bi(z), where z; — x). One of
the important points in Theorem 5.19 is that the Riemannian metrics gt)jj are L2-strongly
convergent even without the noncollapsed assumption, if t; — ¢ > 0. Compare with the

next section.
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6 Quantitative L>-convergence for noncollapsed spaces

Let us start this section with the following three questions, related to each other:
(1) Can Theorem 5.19 be improved as follows:

(ca)) "ty (B _p(@)gr,” — g~ (6.1)

in the sense of L?-strong convergence, whenever t; — 07 and one has a mGH convergent se-

quence of compact RCD*(K, N) spaces (X;,d;, m;) mGH (X,d, m) with uniformly bounded

diameter and n; := dimg; m,; (X;)?
(2) Does a quantitative version of Theorem 5.10 hold? Namely, for all e > 0, d > 1 does
there exist tg := to(K, N, €,d) > 0 such that

sup |8 — &lusllrz(xm) <€ (6.2)
0<t<to
holds for any RCD*(K, N) space (X,d, m) with d~! < diam(X,d) < d, suppm = X and
m(X) =17
(3) Recall a result proved in [P16]: for all e > 0, 7 > 0, d > 0, n € N, there exists g :

to(K,n,e,7,d) > 0 such that for all 0 < t < ¢y there exists Ny := No(K,n,e,7,d,t) > 1
such that if a closed Riemannian manifold (M", g) satisfies Ricy > K, diam(M™",dy) < d,
inj, > 7, then for all z € M" and N > N,

1—€<|g—c(n)t" 22N gan|ns(z) <1+ (6.3)

where inj, denotes the injectivity radius and @V is the truncated embedding map of
Proposition 4.11. What happens if we replace the assumption “inj, > 77 by the weaker one
“H™(M™) > 777 Let us give a simple example where (6.1) is not satisfied. As a consequence,
also the second question has no positive answer in general, because (6.2) easily implies
(6.1).

Example 6.1. We consider a sequence of collapsing flat tori:

g xg™s 472y »Egh

(X", d" m") = <81(1) x SY(r),d e ) m&H <Sl(1) d 7;;) = (X,d,m) (rl]0),

where S!(r) := {x € R?; |z| = r} with the standard Riemannian metric g".

Then choosing sufficiently small ¢, with [[|(c2) ™ 't,m" (B s (z))(g" x g")—(g' x g")|usllr2 <
r yields that [[|[(co)~'t,m" (B g (2))(g' x g")|usli. =2 # 1= |lg'asll72 as | 0 which
shows that (6.1) is not satisfied.

In this section we give positive answers to all above questions for moncollapsed
RCD*(K, N) spaces (Theorems 6.8 and (6.9), except for the embeddedness of ®}. For
that, we introduce two useful notations to simplify our arguments (for the latter one, see
also [CC96]),

1. for a, b € R and € € (0,00), we write a = b+ € if |a — b| <,

2. any function f : (Rs)¥™™ — Rxg, satisfying that
lim Of(el,...,ek,cl,...,cm) =0

€1,eey€f—>

for all fixed ¢y, ..., ¢y € R, is denoted by V(ey, ..., €;c1,. .., ) for simplicity.
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The following three convergence results are valid in general compact RCD*(K, N)
spaces, and they will play key roles in the proofs of the main theorems.

Let us recall that for pointed (not necessary compact) RCD* (K, N) spaces, the pointed
mGH-convergence topology is metrizable. For example, the pGyy-distance introduced in
[GMS13] gives such a distance.

Proposition 6.2. Let (X,d,m) be a compact RCD*(K, N) space and f € D(A) with
IV e+ ||Af|| e < L. Assume that the pGyy -distance between (X, \/f_ld,m(B\/z(x))_lm, x)
and (R",dgn,w; *H",0,) is at most € for somet >0, x € X. Then

/ tm(B\/i(z)szp(z,:p,t),Vf(z»zdm(z) = cn][ |VfI2dm=£W(e, t; K,N, L). (6.4)
X B s (z)

Proof. The proof is achieved by contradiction. Assume that (6.4) does not hold for some
K, N and L. Then there exist 7 > 0 and sequences as follows;

1. (X;,d;, m;) are compact RCD*(K, N) spaces,

2. 1 € (0, 1) with t; — 0T,

3. f € D(AY with [V Ao~ + A1~ < L
4. x; € X; with (Xi, ﬁ_ldi,m(B\/E(xi))’lm, :L'Z) mgH (Rn,an,wﬁlHn,On) and
/ 1 (B (2)) (Vapi(z, ), V fi(2))2 dmy(2) — e ][ IV £[2 dmi| > 7.
(6.5)

Since [AYf g .| < t;L, where A% is the Laplacian on (Xi,\/t:_ldl-,mi(B\/E(xi))_lmi),
by combining Theorem 2.17 and Theorem 2.18, with no loss of generality we can assume
that f s ., Hllo’f—converge to a linear growth harmonic function f on R™. Note that

[VF*2 = [V f2(05).

By an argument similar to the proof of Proposition 5.5, we have

[ timB (D) (T 0, V£ )

BR\/E($1')
Then taking the limit ¢ — co shows
[ (B o), VAE) ()
— ( )ﬁ"(Bl(z))(qun(z,On,1),Vf(z)>2d7:[” = cn(R)\Vﬂ*Q(On), (6.7)
Br(0n

where recall #" = w;"H". Thus letting R 1 co and taking (6.6), (6.5) and (6.7) into
account yields

VIO —enf  VIP| 27 (63)
B1(05)
which contradicts the fact that |V f|*2 = |V f]*2(0,,). Thus the proof is completed. O
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Corollary 6.3. Under the same assumptions as in Proposition 6.2, let h € LIP(X,d) with
[Allzee + [[VR|||Le < L. Then

/ tm(B (2))(V:p(z, 2, 1), h(2)Vf(2))*dm(z) = cnh(x)Q][ IVF?dm+ ¥, (6.9)
X B ()
with U(e,t; K, N, L).

Proof. For the sake of brevity, let us write H(z, z,t) := tm(B_;(2))(V.p(z, 7, 1), h(2)V f(2))?,
H(z,,t) = tm(B ;(2))(V.p(z, z,1), h(x)V f(2))? and C := fB\[(x) |V £|? dm. As discussed
in the proof of Proposition 5.5, we know that

/ H(z, 2, 1) dm(z) = / H(z 2, t)dm(z) £ U(R-L K, N, L) (6.10)
X BR\/E(I)
and

/ (2,2, t) dm(z) = / (2, 2,t)dm(z) = U(R-\ K, N, L). (6.11)
From and the fact that [AVf 5 — h(z)V [ ;.| < L?R+/t holds on Bf{(w), where

(5. )
= V1 'd, (6.10) and (6.11) imply
/ H(z,z,t)dm(z / H(z,z,t)dm(z) & (W(R™; K,N,L) + U(RVt; K, N, L)).

Proposition 6.2 applied to h(z)f gives [y H(z,z,t)dm(z) = cyh(z)?C £ ¥(t,e; K, N, L),
which yields to

/ H(z,z,t)dm(z) = ¢,h(z)*C £ (W(R™Y; K,N,L) + Y(RVt; K,N,L) 4+ ¥(t,e; K, N, L)).
X
(6.12)

Thus taking R = ¢~'/* in (6.12) completes the proof. O

Lemma 6.4. Let (X;,d;j,m;) = mGH (X,d,m) be a mGH-convergent sequence of compact
RCD*(K, N) spaces with uniformly bounded diameter. Then a sequence of Riemannian
semi metrics g; on (Xj,dj, my;), with sup; fXj |gj|%s dm; < oo, L?-weakly converge to a
Riemannian semi metric g on (X,d,m) according to Definition 5.18 if and only if

i(h;Vh3 hiVh3)dm; — [ g(h'Vh* h'VA?)dm (6.13)
X ! X

_ AR

J
whenever h]l € LIP(Xj,d;), h2 € TestF(X;,d;, m;) L?-strongly converge to h! € LIP(X,d), h? €
TestF'(X,d, m), respectively, wzth sup; ([[[VA]jl e + [IIVA3 ]l L 4+ [ATh3]| L) < o0.

Proof. 1t is enough to check the “ if ” part.

By an argument similar to the proof of [AH17, Th.10.3], we see that |||g|ms|r2 <
lim inf; oo |||8;|ms| 2, in particular, g € L2((T*)®?(X,d, m)).

First let us remark that if a sequence ¢; € L*(X;,m;) with ¢ € L?(X, m) satisfies
sup; |5l 2 < oo and

/ 1/1]‘4,0]‘ dmj—>/ T,ZJngm (6.14)
X; X
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for every L2-strongly convergent sequence ;€ LIP(X;,d;) — ¢ € LIP(X,d) with
sup; |||Vl ll e < oo, then ; L?-weakly converge to ¢ because for every uniformly
convergent sequence 7; € CY(X;) = n € C%(X) and all € > 0, we can find a uniformly
convergent sequence 7); € LIP(X],d ) — 7 € LIP(X,d) with sup; |[|[Vn;|j|lre < oo and
sup; [|n; — Ajllze < e

Replacing hl h' by ,/|hjl| + 1, /|h!] + 1 respectively in (6.13) yields

/ |hj|gj(Vh§.,Vh§.)dmj+/ g;(Vh3,Vh5) dm;
X; X;

—>/ \h1|§(Vh2,Vh2)dm+/ g(Vh?, Vh?) dm. (6.15)
X X

Since letting hjl» = 11in (6.13) shows

/ gj(Vh?th?)dmj—)/Q(Vh2,Vh2)dm
X X

by (6.15) we have
/ |hjlg;(Vh3, Vh?) dm; %/ |h1]g(Vh?, Vh?) dm
X; X
which easily yields (after truncation for h;)
/ h;g;(Vh3,Vh?) dm; — / h1g(Vh?,Vh?) dm
X

By (6.14), we see that g;(Vh3,Vh3) L?-weakly converge to g(Vh? Vh?) on X.

Let f; € LIP(Xj,d;) with sup; [|[[V fj|;]|~ < oo, and let f € LIP(X d) be the H“2-
strong limit of f;. Then our goal is to prove that g; (V£i, VL) L?-weakly converge to
g(V 2,V f2).

By using a mollified heat flow (c.f. [AH17, G18]), we can find a sequence h; €
TestF(X,d, m) with Ah; € L*> for any fixed i, sup, |||Vhil||L~ < oo and h; — f in
H'2(X,d, m). Moreover, for any i, there exists a sequence hi; € TestF(X;,d;, m;) such
that sup, (||| Vil Lo +[|A7hs j]| L) < 0o and that h; ; H'?-strongly converge to h;. Note
that the argument above shows that g; (thzj’ thj) L%-weakly converge to g(Vh?, Vh?)
on X.

Letting Ly = [[Vhilsllze + 1V fylsll e shows

/X ‘%(th‘,j, Vhij) = g;(V fj ij)‘ dm;

J

S/ 19;1s|Vhij @Vhij—Vf; @V filnsdm;
X

= / ‘gj’H5|Vhi,j ®@Vh;; —Vfi@Vh,; +Vfi@Vh;; —Vf;® vfj|HS dm;
j
< /X 1&8jlmslms (IVhiy = Vil Vhisli + [V f1i1Vhij =V fjl;) dm;
j
< 2Lijlllg;l sl 2 IV (i = Fi)lill 2 (6.16)
Then the right hand side of (6.16) converges to 0 when letting j — oo and then letting
i — 0o. Combining these observations with the L2-weak convergence of %(Vhf > Vh2 )
g(Vh?,Vh?) yields that g; (fo, VfQ) L2-weakly converge to g(V f2, V £2), which completes
the proof. O
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From now on we focus on noncollapsed RCD*(K, N) spaces, namely RCD*(K, N)
spaces (X, d, m) with suppm = X and m = HN . Such spaces were introduced and studied
in [DePhG18] where they proved the following facts which generalize important properties
of noncollapsed Ricci limit spaces [CC97, CC00a, CCO0b] to the RCD setting.

Theorem 6.5. If (X,d, HY) is a noncollapsed RCD*(K, N) space, then N = dimg 4~ (X).
Moreover N
i 1B 0)
rl0 WNT
The equality in (6.17) holds if and only if x € Ry.
Finally, for all v > 0, the pGyy -distance and the pointed Gromov-Hausdorff distance
induces the same compact topology on the set M(K,N,v) of all isometry classes of pointed
noncollapsed RCD*(K, N) spaces (Y,d, HY,y) with HN (B1(y)) > v,

The almost rigidity of (6.17) shown in the next proposition is a direct consequence of
[DePhG18, Th.1.3 and 1.5].
Proposition 6.6. Let (X,d,H") be a noncollapsed RCD*(K, N) space, x € X and € > 0.
Assume that % > 1—e for somer < 1. Then, for allt < 1, the pGyy -distance between
(X, t74d, HN (By(x)) YHN  2) and (RN, dgw, wyt HY,0n) is at most U(e,t/r,r; K, N).
Proof. The proof is achieved by contradiction. If the above statement does not hold, there

exist pointed noncollapsed RCD*(K, N) spaces (X;,d;, H" , z;), positive numbers ¢; | 0,7; |

N .
0 and 7 > 0 such that %w — 1, t;/r; = 0, and that the pGyy-distance (denoted by

D; for short) between (X;, ¢ d;, HY (By, (2:)) "HY, ;) and (RN, dpwv,wiHY,0x) is at
least 7. Then for all R > 0 by the Bishop-Gromov theorem (2.5) we have

<1 Vr e X. (6.17)

—1d, . i
i MY By (@) L HY (B, (w) L HN (B, (3) Voliy (2Rt)
i—00 wN(QR)N i—00 wN(QRti)N i—00 VOIK,N(thz’) wN(QRt,‘)N
HN (BY: (;
> lim M -1

T i—00 riZN

-1y,

because of lim, o %ﬁw = 1. Thus by [DePhG18, Th.1.5], (B% d’(xi),tjldi,xi) pointed
Gromov-Hausdorff converge to (Bg(0y), dgn, On). This implies that (X;,; 'd;, z;) pointed
Gromov-Hausdorff converge to (RY, dg~,0x). By Theorem 6.5, D; is infinitesimal, which
contradicts D; > 1. ]

We are now in a position to improve Theorem 5.19, including the case when ¢t = 0, thus
giving a positive answer to our first question (6.1) in the setting of noncollapsed spaces.
For the proof, let us recall the maximal function theorem for a compact RCD(K, N) space
(X,d,m):

C(K,N,d)
t
where d is a constant with diam X < d, and M(f)(z) := sup,-g fBT(m) |f| dm (see for

instance [HeinO1] for the proof).

m({M(f) > t}) < /Xf|dm Wt >0, Vf € L(X,m), (6.18)

Theorem 6.7. Let (X, dj,HN) mGH (X,d,HN) be a sequence of compact noncollapsed

RCD*(K, N) spaces with uniformly bounded diameter. Then thN(B\/E(x))gfjj L?-

strongly converge to cyg™ for all t; — 0". In particular th§N+2)/ngfj L?-strongly

converge to cNgX .
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Proof. First let us check the L?-weak convergence. For that, by Lemma 6.4, it is enough to
prove that for all L?-strong convergent sequences h; € LIP(X},d;), f; € TestF(X;,d;, HN)
to h € LIP(X,d), f € TestF(X,d, H"), respectively, with

L= sup([|hsllzee + VA5l oo + 1 fillzee + IV filjll oo + 147 5l 2) < oo,
J
it holds that as j — oo

[ [ B @) i), @V 1) ) ) e [ s
(6.19)

Fix 0 < e < 1. For all z € Ry N H(f), there exists 0 < r(x) < € such that (By(z),d, z) is
(et)-Gromov-Hausdorff close to (B;(0y),dgn,0n) for all 0 < t < 2r(x) and

][ VI = V2 () dHY <e Wi e (0,2r(z)]. (6.20)
Bi(z)

Then, applying Vitali’s theorem to the cover B := {B(2)}ser ynm () t<r(z) of Rv N H(f)
we obtain a disjoint subcover B := {B,. (;)}ien C B such that

l [eS)
RyOH(NH\ U Br(zi) € |J Bsr(w))  VEN,
=1 i=0+1

Take ¢ = Ny with >, 11 HY (By,(2:)) < €. In particular

HY ZHN (Br,(w:)) + Z HN (Bsr, (2:)) ZHN (B, (2:)) £ U(e K, N).
=1 i=No+1 =1
(6.21)
For all i = 1,2,..., Ny, fix a convergent sequence (z;;) C X; with z;; = x; € X. Note

that for all such ¢, (6.20) yields
F o IVAE - A an < 2e (6.22)
Boyr, (zi,5

for any sufficiently large j.

For any sufficiently large j, since ( (:Ew) dJ,$1 ;) is (2er;)-Gromov-Hausdorff close
to (Bay (On),dgy,0n), we see that (By,(y),dj,y) is (3er;)-Gromov-Hausdorff close to
(B, (0N),dgn,0p) for all y € By, (x;;). In particular, Theorem 6.5 (after rescaling r; 'd;)
yields

Ba,
B,,

HN (B, (y))
HN (B, (0n))
Applying the Bishop-Gromov inequality with (6.17) yields

=1+ V(¢ K,N).

HY(Bi(y))

HY (B (0n)) 1+ U(e K,N) Vte (0,7 (6.23)

Thus Proposition 6.6 yields that the pGyy-distance between (X;, ¢~ td;, HV (Bi(y)) "1 HY, )
and (RY, dgn,wy HY,0x) is at most W(t/r;, e; K, N). Combining this (as ¢ := /s) with
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Corollary 6.3 yields that for all ¢, for all sufficiently large j,
/X sHN (B 5(2))(Vapj(2,y, ), hj(2)V f;(2)) AH" (z)
i

_ cNhj(y)2][ V£ 2(2) AHY (@) £ W(v5/ri e K, N, L) Vy € By, (:).¥s € (0,r2].
B 5 (y)

In particular
[ 4B ) oy 5), by (2T )2 Y (0
X
_ cNhj(a;i,ﬂ?][ V1 2(0) dHY (@) £ W(e K, N, L) Vy € B (xi)).  (6.24)
B\/g(y)

On the other hand, letting d := sup, diam (X}, d;) with (6.18) and (6.22) shows
F o IVHP@ Y @) - 962w

HY [ {y € By (2:)); > /e
B\/q(y)

<O (K7 N, d)ﬁ/HN(BTz (xi7j))
/ ][ ’ny () A () AHN (y) = (IVf?(20) £Co (K, N, )V HY (By, (7).

(6.25)
Note that by the gradient heat kernel estimate (2.13), the L? norm of the function

which easily yields

Yo / LHY (B (@) (Vaps (2,5, 1), By £)2 AN () (6.26)

is bounded from above by a constant depending only on K, N and L. Moreover it is clear
that for all ¢ € L2(X;,d;, V) with ||¢| ;2 < D < oo, if a Borel subset A of X, satisfies
HN (X, \ A) <4, then

/ ngHN:/godHNiél/QD (6.27)
X A

i
because of the Cauchy-Schwartz inequality. Applying (6.27) for A := Uiv By, (x; ;) and
the function defined in (6.26) with (6.24) and (6.25) shows that for any sufficiently large j

/ / LHY (B (@) (Vap ., 15), g ()9 £ ()2 0 (@) a1 ()
/B . / EHYN (B () (Vas (2., £5), by (2)V 5 (2))2 dHY (2) MY (9) + W(e; K, N, L)

—ZcNh (2 )2 IV 12 (x)HN (B, (2:5)) £ Y(e;d, K, N, L, V)
=1

No
=1+ (K, N, L)Y enh(w:)*|V £ (@) HY (B, (2:)) £ ¥(e;d, K,N, L, V)
=1

=(1+ V(e K, N, L))/ en|hVf2AHY £ U(e;d, K,N, L, V), (6.28)
X
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where V' := sup; H" (X}) < co. Since € is arbitrary, we have (6.19) and then the claimed
L?-weak convergence.

In order to improve this to the L2-strong convergence, let us remark that under the
same notation as above, by an argument similar to the proof of Proposition 5.12, we can
prove that for all z € B,,(z;) and all z; € B, (x; ;) with z; — z,

][ Fj(z,t;) dHY (2) = N(cn)? £ ¥(e; K, N) (6.29)
ENAHC)
for any sufficiently large j, where

2

Fy(w,t) == (tHV(B ﬁ(x)>)2 ‘ /X dopj (2, y,t) ® dopj(z, y, 1) dHN ()
J HS

Therefore we have

/ ][ t) AR () AR (2)
/BT (w”)f (z,t;) dHN (2) AHY (2) £ ¥(e; K, N)

= Z N(en)*HN (B, (2i7)) + U(e; K, N)

= (1+¥(e; K,N))N(en)*HN(X) £ ¥(e; K, N)

=(1+V(gK, N))/ leng™ 3o dHY £ U(e; K, N) (6.30)
X

which yields
/ ][ L, ty) dAHY (o) dHY (2) —>/ leng™ |3 dHY (6.31)

because € is arbitrary. Note that it is easy to check by Proposition 6.6 that for all
i=1,2,..., Ng,

- / B; AN (z)

<U(eK,N) Vze B, (i)
HN i »J

for any sufficiently large j. Thus an argument similar to that in the begining of Subsec-
tion 5.3 shows

tim [ 1M (B ()en s A (@) = lim | it ty) O @)

Jj—o0 X; Jj—o0

~ Jim / 7[ (2, t;) AHN (z) ARV (=)

which completes the proof of the desired L2-strong convergence.
Finally, the remaining convergence result comes from Corollary 5.16. O

50



Let us give positive answers to the remaining questions.

Theorem 6.8. For all e > 0 and 1 < p < oo, there exists ty := to(K,N,v,d,e,p) > 0
such that any compact noncollapsed RCD*(K, N) space (X,d, H") with HN(X) > v and
diam (X, d) < d satisfies

N+2)/2

[|wnt! gt — cnglas|r <€ vt € (0,to]. (6.32)

Proof. Note that thanks to (4.17), it is enough to check the statement in the case when
p = 2 only. Assume it does not hold. Then there exist ¢g > 0, t; — 0 and a sequence of
compact noncollapsed RCD*(K, N) spaces (X;,d;, HY) with diam (X;,d;) < d, HV (X;) >
v satisfying

N+2)/2_X;
)/ g

[wnt! — engXiluslle > €0 Vi (6.33)

Thanks to Theorem 6.5 we know that, up to a subsequence, (Xi,di,’HN ) converge in
the measured Gromov-Hausdorff sense to a compact noncollapsed RCD*(K, N) space
(X,d, HN ). Then, Theorem 6.7 yields a contradiction. O

Theorem 6.9. For alld>0,v>0,€e>0and 1 <p < oo letty:=ty(K,N,v,d,e,p) >0
be given by Theorem 6.8. Then for all0 < t < to and any compact noncollapsed RCD* (K, N)
space (X,d, HN) with HN (X) > v and diam(X,d) < d, we have

N+2)/2g¢

[t ¢ engluslle <€ V0> Ny = No(K,N,v,d,€,p,t), (6.34)

where gf is the finite-dimensional approzimation in (4.25).

Proof. Again, thanks to (4.17), it is enough to check the statement in the case when p = 2
only. It suffices to check that for all ¢ > 0 and € > 0, there exists Ny := No(K, N,v,d,t,€) >
1 such that for all £ > Ny and any compact noncollapsed RCD*(K, N) space (X,d, H)
with HY(X) > v and diam (X, d) < d, we have

ot ™2/ 2(g; — gl msllze < e (6.35)

because applying (6.35) for ¢ < ¢y yields (6.34).

Assume that (6.35) is not satisfied. Then, as in the proof of Theorem 6.8, there exist

€0 > 0, N; — oo and a mGH-convergent sequence (X}, d;, HN) mGH (X,d,H™) of compact

noncollapsed RCD*(K, N) spaces such that
X; X\ N
eont ™22 — (g7 7)N0) sl 2 > eo. (6.36)

Theorem 5.19 with Lemma 5.17 yields

N+2)/2(

N X X\ . X Xj\¢
Ilowt™ 27 (g — (&) sz = Jim Nowt™ (80" — (g) ) aslie

. X X, .
> limsup |[lwnt ™22 (g, — (g77)"9) sl 2 > o,
j—o0

for all ¢, which is a contradiction because the left hand side converges to 0 as £ — oo, [

Theorems 6.8 and 6.9 are new even for smooth Riemannian manifolds and Alexandrov
spaces. Moreover, recall that these convergence results are sharp because of Remark 5.11.
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7 Appendix: expansion of the heat kernel

Throughout this section we assume that (X,d, m) is a compact metric measure space with
m(X) =1 (this is not restrictive, up to a normalization), diam (X,d) > 0 and suppm = X.
The main aim of this section is to provide a complete proof of the expansions

p(x.y.t) = e Moi(x)pi(y)  in C(X x X) (7.1)
i>0
for any t > 0 and
p(-,y,t) - Ze_/\it(/)i(y)(pi in Hlyz(X7dvm) (7'2)
i>0

for any y € X and t > 0, where p denotes the locally Holder representative of the heat
kernel in the case when, in addition, (X,d,m) is a RCD*(K, N) space. Our goal is to
justify the convergence of the series in (7.1) and (7.2): as soon as this is secured, a standard
argument shows that they provide good representatives of the heat kernel. Here and in the
sequel 0 = A\g < A1 < Ay < -+ — 400 are the eigenvalues of —A, and ¢, ©1, @2, ... are
corresponding eigenfunctions forming an orthonormal basis of L?(X,m), with ¢o = 1.

In the following proposition we obtain an explicit estimate on the L* norm and the
Lipschitz constant of eigenfunctions of —A in terms of the size of eigenvalues. Recall that,
under our assumptions, we can use the continuous version of the ; which are even Lipschitz
[J14]. It is worth pointing out that a local (2.2)-Poincaré inequality for RCD* (K, N) spaces
(recall just after (2.11)) yields Ay > C(K, N, d) > 0 if diam(X) < d.

Proposition 7.1. Assuming that (X,d,m) is a compact RCD*(K,N) space, and that
D > 0 is such that diam(X,d) < D and \; > D2, one has for some C = C(K,N,D) > 0

N/4

llpillee < CA7T, IV il e < C)‘ENH)M'

Proof. Without loss of generality we assume that K < 0. Since ¢; is an eigenfunction with
eigenvalue \;, for all ¢ > 0 one has hyp; = e_)‘it%-, where h; denotes the heat flow, so that

pi(x) = N /X Py, () dm(y), Vi € X.

Now by (2.12))
oi(a)] < Nt / p(@, 9, B)li(y)] dm(y)
X

1/2
< A 12 ( /X P, v, t>2dm<y>)

2y 1/2
S An@i@;)) exp(Cat) ( [ e (—ngt”) dm<y>> ,

where in the last line we used the normalization ||¢;|| 2 = 1 and constants C; depending
on K and N. Now we use a scaled version of Lemma 2.3, and get for t < D?

o)) £ U0 explht + Ot e

m(Bp(z))

= ClC eXp()\Zt + CQt) 1’[1(_87\/(1’))7
t
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where the constant C' depends on D, K and N. The last equality follows by the assumption
that diam(X,d) < D and m(X) = 1. By the Bishop-Gromov inequality (2.5), we find

m(B, ;(2)) - m(Bp(z))
Volg, v (v/t) ~ Vol n(D)

Therefore,
VOIKJV (D)

i < C.C it + Cot _—
(a)] € C1Cexp(nt + Cot) | SN

We choose t = 1/\; to conclude the proof.
Let us now prove the second inequality. We start from

pi(z) = 6A”/Xp(x,y,t)w(y) dm(y), Vre X,

to derive for m-almost all x € X,

Vi) < Mt /X V(. 9, 1) 4(3)] dm(y)

1/2
< A1 ( /X |vxp<m,y,t>12dm<y>) |

By the gradient bound in (2.13) and again Lemma 2.3 we get

| e &(z,y) 2
IVei(z)| < e WGXP(C@) (/X exp <— 57 ) dm(y))

1
< C3C exp()\it + C4t)—
tm(B, /4 (z))

< C3C exp (Ait + Cat) M

We use the Bishop-Gromov inequality once more to get

VOIKVN(D)
tVolK,N(\/f) '

Again, we pick t = 1/\; to conclude the proof. O

[Vei(x)] < C3C exp(Ait + Cat)

The following result, well-known for compact Riemannian manifolds, provides a poly-
nomial lower bound for the eigenvalues of —A. The estimate we provide is not sharp, but
sufficient for our purposes.

Proposition 7.2. Let D > 0. Assuming that (X,d,m) is a RCD*(K,N) space with
diam(X,d) < D and A\ > D72, there exists a constant Co = Co(D, K, N) > 0 such that

N > Coi?™N i > 1.

Proof. Take i > 1, write E; = Span(p1,...,p;). We claim that there exists f, € E; such
that sup f& >4 and || fo[l2 = 1. Let us define the continuous function F' = >>%_; % and let
p € X be a maximum point of F'. Then

folx) := ﬁ Z wip
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satisfies || follo = 1 and f,(p) = /F(p), so that
i:dimEZ-:/ Fdm < F(p) < sup f2. (7.3)
X
We claim now that there exists C'y > 0 depending only on K and N such that

sup|f| < OO\ fll:  Vf € By (7.4)

Using this claim with f = f, together with (7.3), we obtain the stated lower bound on ;.
Proposition 7.1 yields that for all a; € R we have

2

i 7
N/4\N/4
< 3 lagllarllesllon] < C(D K N)Y ST AN AN a0 a
J k=1 Ji k=1

7
D ajp;

Jj=1

< C(Dv K, N)/\£V/2 Z(aj)2
j=1

which proves (7.4). O

We are now in a position to conclude. The first expansion (7.1) is a direct consequence
of Propositions 7.1 and 7.2. The second expansion (7.2) follows, thanks to the simple
observation that ||V, |3 = \;.
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