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Abstract. We show that, given a metric space (Y, d) of curvature bounded from above in the

sense of Alexandrov, and a positive Radon measure µ on Y giving finite mass to bounded sets,
the resulting metric measure space (Y, d, µ) is infinitesimally Hilbertian, i.e. the Sobolev space

W 1,2(Y, d, µ) is a Hilbert space.
The result is obtained by constructing an isometric embedding of the ‘abstract and analytical’

space of derivations into the ‘concrete and geometrical’ bundle whose fibre at x ∈ Y is the tangent

cone at x of Y. The conclusion then follows from the fact that for every x ∈ Y such a cone is a
CAT(0) space and, as such, has a Hilbert-like structure.
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1. Introduction

A metric space (Y, d) is said to be a CAT(κ) space if, roughly said, it is geodesic and geodesic
triangles are ‘thinner’ than triangles in the model space Mκ of constant sectional curvature = κ.
Typical examples of CAT(κ) spaces are simply connected Riemannian manifolds with sectional
curvature ≤ κ and their Gromov-Hausdorff limits. Despite the absence of any a priori smooth
structure, CAT(κ) spaces are quite regular and carry a solid calculus resembling that on manifolds
with curvature≤ κ. We refer to [25], [8], [10], [11], [1] for overviews on the topic and a more detailed
bibliography.

In the particular case κ = 0 the CAT(0) condition reads as follows: for any points x0, x1 ∈ Y
and any geodesic γ : [0, 1]→ Y connecting them it holds that

(1.1) d2(γt, y) ≤ (1− t)d2(x0, y) + td2(x1, y)− t(1− t)d2(x0, x1) ∀y ∈ Y, t ∈ [0, 1].

This can be regarded as a parallelogram inequality and from this point of view it is perhaps not
surprising that several aspects of CAT(0) spaces strongly resemble properties of Hilbert spaces;
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this perspective is emphasised e.g. in [8]. For instance, from (1.1) it directly follows that if a
normed vector space is a CAT(0) space, then the norm comes from a scalar product. Equivalently,

(1.2)
if a normed vector space isometrically embeds in a CAT(0) space,
then the norm comes from a scalar product.

Given that CAT(0) spaces naturally arise as tangent cones to generic CAT(κ) spaces, these analo-
gies with Hilbert structures appear also at small scales on CAT(κ) spaces.

A metric measure space (Y, d, µ) is called infinitesimally Hilbertian provided the Sobolev space
W 1,2(Y, d, µ) is Hilbert (see [13] and then also [40], [5] for the definition of Sobolev spaces in this
context). The concept of infinitesimal Hilbertianity, introduced in [21], aims at detecting Hilbert
structures at small scales in the non-smooth setting. The motivating example in the smooth
category is the following: if Y is a smooth Finsler manifold and µ is a smooth measure on it (i.e.
with smooth density when seen in charts), then the W 1,2-norm can be written as

(1.3) ‖f‖2W 1,2 =

∫
|f |2(x) + ‖df(x)‖2x dµ(x).

Since f 7→
∫
|f |2 dµ always satisfies the parallelogram identity, we see that f 7→ ‖f‖2W 1,2 has the

same property if and only if f 7→
∫
‖df(x)‖2x dµ(x) satisfies the parallelogram identity. With

a little bit of work it is possible to check that this is the case if and only if ‖ · ‖2x satisfies the
parallelogram identity for every x, i.e. if and only if Y is in fact a Riemannian manifold.

In the smooth category one could run the above consideration also with smooth functions,
rather than with Sobolev ones, but this is obviously not possible on a metric measure space. In
this direction let us emphasise that in the non-smooth environment it is crucial to work with
Sobolev functions rather than, say, with Lipschitz ones. To see why, recall that the local Lipschitz
constant lipf : Y → [0,∞] of a function f : Y → R is defined as

lipf(x) := lim
y→x

|f(y)− f(x)|
d(x, y)

if x is not isolated, 0 otherwise

and consider the following example. Let (Y, d) be the Euclidean space (Rd, dEucl) and µ be a
positive Radon measure. Then:

a) The map

LIPc(Rd) 3 f 7→
∫

(|f |2 + lip2f) dµ

is not a quadratic form, in general.
b) The map

W 1,2(Rd, dEucl, µ) 3 f 7→ ‖f‖2W 1,2

is a quadratic form, i.e. (Rd, dEucl, µ) is infinitesimally Hilbertian.

To see why (a) holds simply consider µ to be a Dirac delta at a point o and f, g ∈ LIPc(Rd) generic
functions not differentiable at o: for these the parallelogram identity for f 7→ lip2f(o) typically
fails. Intuitively, this is due to the fact that, if f and g are not differentiable at o, they are not
(close to being) linear in the vicinity of o and thus their local Lipschitz constants fail to capture
the Hilbert structure of the cotangent space T∗oRd at o.

The statement in (b) is non-trivial and is one of the results proved in [22]. The crucial aspect
of the proof is the possibility of approximating Sobolev functions with C1 functions: these are
by nature differentiable everywhere, and thus also µ-a.e., and hence are suitable to identify the
Hilbertian structure of the cotangent spaces.

Hence the idea behind the notion of infinitesimal Hilbertianity is to exploit the fact that ‘by
nature’ Sobolev functions are a.e. differentiable in some sense, regardless of the regularity of the
metric and of the measure in consideration (for instance, if µ is a Dirac delta as above, it turns out
that Sobolev functions have 0 differential, so that the claim (b) is trivially true in this case). This
makes them suitable for detecting Hilbert structures at an infinitesimal scale. Let us emphasise
that even though this is an analytic notion, it is strictly related to – and its introduction has
been motivated by – the study of geometric properties of metric measure spaces, in particular
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those satisfying a curvature-dimension bound in the sense of Lott-Sturm-Villani. An example
of this link is the validity of the non-smooth splitting theorem [18, 20], which states that under
the appropriate geometric rigidity given by a LSV condition the weak and ‘differential’ notion of
infinitesimal Hilbertianity implies the validity of a kind of Pythagora’s theorem for the ‘integrated’
object d.

These considerations about Sobolev functions, together with the fact that tangents of CAT(κ)-
spaces are CAT(0)-spaces and thus exhibit behaviour akin to Hilbert spaces, might lead one to
suspect that a CAT(κ)-space equipped with any measure is infinitesimally Hilbertian.

This is indeed the case and is the main result of this manuscript:

Theorem 1.1 (Universal infinitesimal Hilbertianity of local CAT(κ) spaces). Let κ ∈ R, (Y, d) be
a local CAT(κ)-space and µ a non-negative and non-zero Radon measure on Y giving finite mass
to bounded sets.

Then (Y, d, µ) is infinitesimally Hilbertian, i.e. the Sobolev space W 1,2(Y, d, µ) is a Hilbert
space.

Let us collect some comments:

i) Sobolev functions on metric measure spaces are typically studied either on generic mm-
spaces, mostly for foundational purposes, or on spaces which are either doubling, support
a Poincaré inequality, or have Ricci curvature bounded from below. In these contexts,
Sobolev spaces constitute a key ingredient for the development of a non-smooth calculus
(see [13], [9], [28], [29], [5] and the references therein). All these conditions are in strong
contrast to the upper sectional curvature bound encoded by the CAT(κ) notion as they all
more-or-less point to a lower (Ricci) curvature bound.

In this direction it is worth mentioning that CAT(κ) spaces do not carry any natural
reference measure (unlike, for instance, finite-dimensional Alexandrov spaces with curva-
ture bounded from below) and perhaps for this reason they have been investigated mostly
as metric spaces, rather than as metric measure spaces.

To the best of our knowledge, this manuscript contains the first result about the struc-
ture of Sobolev functions on CAT(κ) spaces.

ii) A particular case of Theorem 1.1 has been obtained in the recent paper [30] by Kapovitch
and Ketterer. There the authors consider a metric measure space (X, d,m) which is a
CD(K,N) space in the sense of Lott-Sturm-Villani ([32], [42, 43]) when seen as a metric
measure space and a CAT(κ) space when seen as metric space. Among other things, they
prove that (X, d,m) is infinitesimally Hilbertian, thus giving another instance of the fact
that a CAT(κ) condition forces W 1,2 to be Hilbert. Their proof is based on the strong
rigidity which comes from having both a ‘lower Ricci’ and an ‘upper sectional’ curvature
bound (in fact the study of such rigidity, and of the regularity it enforces, is their main
goal) and cannot be adapted to our case.

iii) We have mentioned that, in [22], to prove the result stated in (b) above the use of C1

functions is crucial. Something similar happens here, where we make extensive use of the
fact that on CAT(κ) spaces there are many semiconvex Lipschitz functions (e.g. distance
functions) and they have a well-defined notion of differential at every point; see Subsection
2.3.

iv) This manuscript is part of a broader program aiming at stating and proving the Bochner-
Eells-Sampson inequality

(1.4) ∆
|du|2HS

2
≥ 〈du,∆du〉HS +K|du|2HS

for maps from a RCD(K,N) space (X, dX,mX) to a CAT(0) space (Y, d). Notice that
inequality (1.4) would immediately imply Lipschitz regularity of harmonic maps, by well
known elliptic regularity theory in the non-smooth setting.

The role of this manuscript, to be used in conjunction with [23], is to ensure that
L2(T∗Y;u∗(|du|2mX)) is a Hilbert module, so that the same holds for the tensor product
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L2(T∗X;mX)⊗
(
u∗L2(T∗Y;u∗(|du|2mX))

)
and thus the ‘pointwise Hilbert-Schmidt norm’

appearing in (1.4) makes sense. We refer to [23] and [24] for more details on this.
v) CAT(κ) spaces are not necessarily separable (for instance, the CAT(0) space obtained

by glueing uncountably many copies of [0, 1] at 0 is not separable), as opposed to finite-
dimensional spaces with curvature bounded from below. For this reason separability is
not an assumption in Theorem 1.1. Still, given that Sobolev spaces on metric measure
spaces are typically studied in a separable environment, we first prove our main result
for separable spaces and postpone the technical details needed to handle the general case
until the final section.

Let us briefly describe the proof of Theorem 1.1. The basic intuition is given by (1.2) and the
fact that the tangent cone of a local CAT(κ) space is a CAT(0) space. More precisely, we consider:

(1) The space Der2,2(Y;µ) of derivations (with divergence), as introduced by the first author
in [14, 15] (see Section 5). These are in duality with Sobolev functions.

(2) The collection L2(TGY;µ) of ‘L2(µ) Borel sections of the bundle TGY on Y whose fibre
at x is the tangent cone TxY’ (see Section 3).

In Theorem 6.2 and Corollary 6.4, we construct an isometric embedding

F : Der2,2(Y;µ) ↪→ L2(TGY;µ)

which respects distances fibrewise. From this fact, the arguments behind (1.2) and the aforemen-
tioned duality between derivations and Sobolev functions easily imply the main Theorem 1.1.

To construct the embedding F , recall that a derivation b ∈ Der2,2(Y;µ) gives rise to a normal 1-
current Tb in the sense of Ambrosio-Kirchheim [7] (Lemma 6.1). Using Paolini–Stepanov’s version
[35, 36] of Smirnov’s superposition principle (see Theorem 4.9) we express the 1-current Tb as a
superposition

∫
[[γ]] dπTb(γ), where πTb is a finite measure on the space of absolutely continuous

curves and [[γ]] is the current induced by γ.
Inspired by [33], we see that if γ is an absolutely continuous curve then the right and left

derivatives γ̇+
t and γ̇−t exist as elements of TγtY, and satisfy γ̇+

t ⊕ γ̇−t = 0, for almost every
t ∈ [0, 1] (Proposition 2.20, Remark 2.21 and Lemma 2.22).

Given the measures (πTb × L1|[0,1]
)x, obtained by disintegrating πTb × L1|[0,1]

with respect to

the evaluation map (γ, t) 7→ γt, we consider their push-forward by the ‘right-derivative’ map (cf.
Proposition 3.7), thus obtaining measures nx supported in TxY.

The Borel section F (b) is defined to be, at almost every x ∈ Y, the barycenter of nx. The
barycenter lies in the tangent cone TxY. By a rigidity property of barycenters (Lemma 2.27), and
convexity properties of tangent cones, the measure nx is concentrated on a half-line for almost
every x ∈ Y.

Theorem 1.2 below is an improved version of the embedding result (Theorem 6.2 and Corollary
6.4), and follows from it by Theorem 1.1 and Proposition 6.5. It states that the tangent module
L2(TY;µ), introduced by the second named author in [19] (see also [21]), admits an isometric
embedding into L2(TGY;µ) that is compatible with the fibrewise CAT(0)-structure on the target
side. We refer to [19, 21] for the theory of tangent modules, and to Section 2.2 for the notation
(below Theorem 2.10).

Theorem 1.2. Let Y be a complete and separable locally CAT(κ)-space (κ ∈ R) and µ a Borel
measure on Y that is finite on bounded sets. Then there is a map F : L2(TY;µ) ↪→ L2(TGY;µ)
such that for X,Y ∈ L2(TY;µ)

(1) F (X + Y ) = F (X)⊕F (Y ),
(2) d·(F (X),F (Y )) = |X − Y |, and
(3) 2(|F (X)|2· + |F (Y )|2· ) = d2

· (F (X),F (Y )) + |F (X)⊕F (Y )|2·
pointwise µ-almost everywhere.

Both main results, along with Proposition 6.5, are proven in the end of Section 6.
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2. CAT(κ)-spaces and basic calculus on them

2.1. Definition of CAT(κ)-spaces and basic properties. In this paper geodesics will always
be assumed to be minimizing and with constant speed. If, for two given points x, y in a metric
space (Y, d), there is only one (up to reparametrization) geodesic connecting them, the one defined
on [0, 1] will be denoted by Gyx. Given a point x ∈ Y, we denote by distx : Y → R the function
y 7→ d(x, y).

For κ ∈ R the model space Mκ is the connected, simply connected, complete 2-dimensional
manifold with constant curvature κ, and dκ is the distance induced by the metric tensor. Thus
(Mκ, dκ) is (a) the hyperbolic space H2

κ of constant sectional curvature κ, if κ < 0, (b) R2 with
the usual Euclidean metric, if κ = 0, and (c) the sphere S2

κ of constant sectional curvature κ, if
κ > 0.

We set Dκ := diam(Mκ), i.e.

Dκ =

{
∞ is κ ≤ 0,
π√
κ

if κ > 0.

We refer to [10, Chapter I.2] for a detailed study of the model spaces Mκ.

CAT(κ) spaces are geodesic spaces where geodesic triangles are ‘thinner’ than in Mκ: they offer
a metric counterpart to the notion of ‘having sectional curvature bounded from above by κ’.

To define them we start by recalling that if a, b, c ∈ Y is a triple of points satisfying d(a, b) +
d(b, c) + d(c, a) < 2Dκ, then there are points, called comparison points, ā, b̄, c̄ ∈Mκ such that

dκ(ā, b̄) = d(a, b), dκ(b̄, c̄) = d(b, c), dκ(c̄, ā) = d(c, a).

A point d ∈ Y is said to be intermediate between b, c ∈ Y provided d(b, d) + d(d, c) = d(b, c) (if
Y is geodesic, as we shall always assume, this means that d lies on a geodesic joining b and c). A
comparison point of d is a point d̄ ∈Mκ, such that

dκ(d̄, b̄) = d(d, b), dκ(d̄, c̄) = d(d, c).

Definition 2.1 (CAT(κ) spaces). A metric space (Y, d) is called a CAT(κ)-space if it is geodesic
and satisfies the following triangle comparison principle: for any a, b, c ∈ Y, satisfying d(a, b) +
d(b, c) + d(c, a) < 2Dκ, and any intermediate point d between b, c, there are comparison points
ā, b̄, c̄, d̄ ∈Mκ as above such that

(2.1) d(a, d) ≤ dκ(ā, d̄).

A metric space (Y, d) is said to be locally CAT(κ) (or of curvature ≤ κ) if every point in Y has a
neighbourhood which is a CAT(κ)-space with the inherited metric.

It is worth noting that balls of radius < Dκ/2 in the model space Mκ are convex, cf. Definition
2.3. Hence the comparison property (2.1) grants that the same is true on CAT(κ) spaces (see
[10, Proposition II.1.4.(3)] for the rigorous proof of this fact). It is then easy to see that, for
the same reasons, (Y, d) is locally CAT(κ) provided every point has a neighbourhood U where
the comparison inequality (2.1) holds for every triple of points a, b, c ∈ U , where the geodesics
connecting the points (and thus the intermediate points) are allowed to exit the neighbourhood
U .

Let us fix the following notation: if (Y, d) is a local CAT(κ) space, for every x ∈ Y we set

rx := sup
{
r ≤ Dκ/2 : B̄r(x) is a CAT(κ) space

}
.

Notice that in particular Brx(x) is a CAT(κ) space. The definition trivially grants that ry ≥
rx − d(x, y) and thus in particular x 7→ rx is continuous.

We mention in passing that restricting attention to complete CAT(κ)-spaces presents no loss
of generality, since the completion of a CAT(κ)-space is a CAT(κ)-space; see [10, Corollary 3.11].
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In a CAT(κ) space, points at distance < Dκ are connected by a unique (up to parametriza-
tion) geodesic and these geodesics vary continuously with the endpoints. The following lemma
is a quantitative version of this statement, and directly implies the uniqueness and continuous
dependence of geodesics between points of distance < Dκ.

Lemma 2.2. Let κ ∈ R and let Y be a CAT(κ)-space. For every λ < Dκ, there are constants
C = C(κ, λ) > 0 and ε0 = ε0(κ, λ) > 0 such that the following holds: if x, y ∈ Y satisfy d(x, y) ≤ λ,
and m is the midpoint of x, y, we have, for any ε ∈ (0, ε0) and m′ ∈ Y, that

d(m,m′) ≤ Cε, whenever d2(x,m′), d2(y,m′) ≤ 1
4d

2(x, y) + ε2.

Proof. By the definition of CAT(κ) space, using the triangle comparison property with the points
x, y,m′, we see that it is sufficient to prove the claim when Y is the model space Mκ. Since
CAT(κ) spaces are CAT(κ′) spaces for κ′ ≥ κ (see [10, Part II, Chapter 1]), we can assume that
κ > 0. Thus we may assume Y = S2

κ. In this case the conclusion follows by direct computations,
one possible line of thought being the following.

Let ε0 be such that

(2.2)
ε2

0

2 cos(
√
κλ/2)

< 1 and
√
κ(ε2

0 + (λ/2)2) < π/2.

Let ε ∈ (0, ε0), and let x, y,m and m′ be as in the claim.

Set rε :=
√
d(x, y)2/4 + ε2 and consider the set

S := BS2
κ
(x, rε) ∩BS2

κ
(y, rε)

(note that m′ ∈ S). The distance

max
s∈S

d(s,m)

is maximized at a point s ∈ ∂S where the geodesic segment [m, s] makes a right angle with
the geodesic segment [x, y]. The spherical cosine law, applied to the triangle ∆(x,m, s) (resp.
∆(y,m, s)) yields

(2.3) cos(
√
d(m, s)) cos

√
κd(x, y)

2
= cos(

√
κrε).

Denote a := d(x, y)/2 and define

f(s) :=
cos(

√
κ(a2 + s2))

cos(
√
κa)

, 0 ≤ s ≤ ε0.

Note that

1− f(ε) ≤
∫ ε

0

|f ′(s)|ds ≤
∫ ε

0

κsds

cos(
√
κa)
≤ κε2

cos(
√
κa)

.

From this estimate, (2.3), and the fact that a ≤ λ/2, we have

cos(
√
κd(m, s)) = f(ε) ≥ 1− κε2

cos(
√
κλ/2)

.

This, the elementary estimate arccos(1− t2) ≤ 2t (0 ≤ t < 1) and (2.2) then imply that

√
κd(m, s) ≤

√
κε√

cos(
√
κλ/2)

.

This completes the proof. �

Being geodesic spaces, on CAT(κ) spaces it makes sense to speak about convex sets:

Definition 2.3 (Convex sets and convex hull). Let Y be a CAT(κ) space. Then a set C ⊂ Y
is said to be convex provided for any x, y ∈ C we have that every geodesic connecting them is
entirely contained in C. The (closed) convex hull of a set C ⊂ Y is the smallest (closed) convex
set containing C.
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One might define a weaker form of convexity by requiring that for every x, y there exists a
geodesic connecting them which is entirely contained in C. In CAT(κ) spaces this distinction
is relevant only when d(x, y) ≥ Dκ, as otherwise geodesics are unique. For the purposes of the
current manuscript the distinction is irrelevant.

The following simple lemma will be useful later on:

Lemma 2.4 (Separable convex hull). Let Y be a CAT(κ) space and C ⊂ Y a separable subset
which is contained in a closed ball B of radius < Dκ/2.

Then the closed convex hull Cconv of C is separable and contained in B.

Proof. Define the sequence (Cn) of subsets of Y recursively as follows. Set C0 := C, then iteratively
let Cn+1 be the union of the images of geodesics whose endpoints are in Cn. It is clear that the
convex hull of C must contain ∪nCn and thus Cconv ⊃ ∪nCn.

To conclude the proof it is therefore enough to show that ∪nCn is convex and separable. The
convexity of ∪nCn is a straightforward consequence of the definition using induction. Since B is
convex we see that ∪nCn ⊂ B. Hence we have that supx,y∈∪nCn d(x, y) < Dκ. By Lemma 2.2,
the geodesic connecting two points x, y ∈ ∪nCn depends continuously on x and y. In particular,
the separability of Cn+1 follows from that of Cn (and the uniqueness of geodesics). Thus ∪nCn
is separable. By the continuous dependence of the (unique) geodesics and the convexity of ∪nCn
the convexity of ∪nCn follows. �

We conclude the section with the following result, taken from [10, Part II, Lemma 3.20]:

Lemma 2.5. Let (Y, d) be a CAT(κ) space and x ∈ Y. Then there exists a function C defined
on a right neighbourhood of 0 such that limr↓0 C(r) = 1 and

(2.4)
d
(
(Gyx)ε, (G

z
x)ε
)

ε
≤ C(r) d(y, z) for every ε ∈ (0, 1) and y, z ∈ Br(x)

for all r < Dκ sufficiently small.

2.2. Tangent cone. Here we define the tangent cone at a point on a CAT(κ) space and study
its first properties. We refer the interested reader to the surveys [10, 11, 12] and the references
therein for more details.

We start by describing a construction of tangent cone which is valid in every geodesic space. Let
Y be a geodesic space and x ∈ Y. We denote by GeoxY the space of (constant speed) geodesics
starting from x and defined on some right neighbourhood of 0 and equip such space with the
pseudo-distance dx defined as:

(2.5) dx(γ, η) := lim
t↓0

d(γt, ηt)

t
∀γ, η ∈ GeoxY.

Then dx naturally induces an equivalence relation on GeoxY by declaring γ ∼ η iff dx(γ, η) = 0.
The equivalence class of γ ∈ GeoxY in GeoxY/ ∼ will be denoted by γ′0. Clearly dx passes to the
quotient and defines a distance – still denoted by dx – on GeoxY/ ∼ .

Definition 2.6 (Tangent cone). Let Y be a geodesic space and x ∈ Y. The tangent cone (TxY, dx)
is the completion of (GeoxY/ ∼, dx). We call 0 ∈ TxY, or sometimes 0x ∈ TxY, the equivalence
class of the constant geodesic in GeoxY.

In a general geodesic space little can be said about the structure of tangent cones, but if Y is
locally a CAT(κ) space then tangent cones have interesting geometric properties and can be used
as basic tools to build a robust first-order calculus.

In order to understand the geometry of TxY it is necessary to recall the notion of angle between
geodesics. To do so, let us recall the definition of modified trigonometric functions

snκ(x) :=


1√
κ

sin(
√
κx) if κ > 0

x if κ = 0
1√
−κ sinh(

√
−κx) if κ < 0

cnκ(x) :=

 cos(
√
κx) if κ > 0

1 if κ = 0
cosh(

√
−κx) if κ < 0
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and that in the model space Mκ the cosine law reads, for κ 6= 0, as

cos(α) =
cnκ(a)− cnκ(b) cnκ(c)

κ snκ(b) snκ(c)

whenever a, b, c are the lengths of the sides of a geodesic triangle and α is the angle opposite to a
(in the limiting case κ→ 0 this reduces to the classical Euclidean cosine law).

Then given three points x, y0, y1 in a metric space with d(x, y0) + d(x, y1) + d(y0, y1) < 2Dκ,
we define the angle between y0, y1 seen from x as

(2.6) ∠
κ

x(y0, y1) := arccos

(
cnκ(d(y0, y1))− cnκ(d(x, y0)) cnκ(d(x, y1))

κ snκ(d(x, y0)) snκ(d(x, y1))

)
.

Notice that this is the angle in the model space Mκ at x̄ of a comparison triangle ∆̄(x̄, ȳ0, ȳ1) and
from this observation it is not hard to check that

(2.7) ∠
κ

x(y0, y2) ≤ ∠κx(y0, y1) + ∠
κ

x(y1, y2)

for any four points x, y0, y1, y2 in a metric space.
A direct consequence of the definition of CAT(κ) space and of the above cosine law is that on

a CAT(κ) space Y, for x ∈ Y and γ, η ∈ GeoxY

the angle ∠
κ

x(γt, ηs) is non-decreasing in both t and s

provided they vary in
{

(t, s) : d(x, γt), d(x, ηs) < Dκ

}
.

(2.8)

Hence, if Y is a local CAT(κ) space, x ∈ Y and γ, η ∈ GeoxY the joint limit

(2.9) ∠κx(γ, η) := lim
t,s↓0
∠
κ

x(γt, ηs)

exists and it is called angle between the geodesics γ, η.

The following technical result will be useful (for the proof see [1, Lemma 3.3.1] and the discussion
thereafter).

Lemma 2.7 (Independence of the angle on κ). Let κ1, κ2 ∈ R, κ1 ≥ κ2. Then there is a constant
C = C(κ1, κ2) such that the following holds: for any metric space Y and x, y1, y2 ∈ Y with
d(x, y1), d(x, y2), d(y1, y2) < Dκ1 it holds that∣∣∠κ1

x (y1, y2)− ∠κ2

x (y1, y2)
∣∣ ≤ Cd(x, y1) d(x, y2).

In particular, the angle ∠κx(γ, η) between geodesics γ, η ∈ GeoxY does not depend on κ and we
shall drop the superscript from the notation. Picking κ1 = 0 we see that, for any κ ∈ R, we have

(2.10) cos(∠
κ

x(γt, ηs)) =
d2(γt, x) + d2(ηs, x)− d2(γt, ηs)

2d(γt, x)d(ηs, x)
+ o(ts).

We drop the superscript from the notation of the comparison angle as well, with the understanding
that κ is fixed in each claim.

From (2.7) it is not hard to check that ∠x is a pseudo-distance on GeoxY and thus defines an
equivalence relation ∼′ by declaring γ ∼′ η iff ∠x(γ, η) = 0. It is worth noticing that the angle
between two different reparametrizations of the same geodesic is 0.

We denote by dirxY the quotient GeoxY/ ∼′ and, abusing a bit the notation, we keep denoting
by ∠x and γ ∈ dirxY the distance induced by ∠x and the equivalence class of γ ∈ GeoxY,
respectively.

Definition 2.8 (Space of directions). Let Y be a local CAT(κ) space and x ∈ Y. The space of
directions (ΣxY,∠x) is the completion of (dirxY,∠x).

Let us now recall that given a generic metric space (X, dX), the (Euclidean) cone over it is the
metric space (C(X), dC(X)) defined as follows (see also e.g. [11] for further details). As a set, C(X)

is equal to
(
[0,∞) × X

)
/ ∼, where (t, x) ∼ (s, y) iff t = s = 0 or (t, x) = (s, y). The distance is

defined as

(2.11) d2
C(X)

(
(t, x), (s, y)

)
:= t2 + s2 − 2ts cos

(
dX(x, y) ∧ π

)
.
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On C(X) there is a natural operation of ‘multiplication by a positive scalar’: the product λz of
z = (t, x) by λ ≥ 0 is defined as (λt, x).

We then have the following:

Theorem 2.9 (TxY as a cone over the space of directions). Let Y be a local CAT(κ) space.
Fix a point x ∈ Y. Then the lim in (2.5) is a limit. Moreover, the map sending γ ∈ GeoxY to
(Lip(γ), γ) ∈ [0,∞) × dirxY passes to the quotient and uniquely extends to a bijective isometry
from TxY to C(ΣxY). Finally, the map Brx(x) 3 y 7→ (Gyx)′0 ∈ TxY is continuous. In particular,
if D ⊂ Brx(x) is dense in a neighbourhood of x, then {λ(Gyx)′0 : λ ≥ 0, y ∈ D} is dense in TxY.

Proof. For any γ, η ∈ GeoxY, by picking t = s in (2.10) we see that

d2(γt, ηt)

t2
= Lip(γ)2 + Lip(η)2 − 2Lip(γ)Lip(η) cos(∠x(γt, ηt)) + o(t2).

Since limt↓0∠x(γt, ηt) = ∠x(γ, η) it follows that the limit lim
t↓0

d2(γt, ηt)

t2
exists, and equals

lim
t↓0

d2(γt, ηt)

t2
= Lip(γ)2 + Lip(η)2 − 2Lip(γ)Lip(η) cos(∠x(γ, η))

= d2
C(ΣxY)

(
(Lip(γ), γ), (Lip(η), η)

)
.

It follows that the map γ′0 7→ (Lip(γ), γ) defines a bijective isometry TxY 7→ C(ΣxY).
For the continuity of y 7→ (Gyx)′0, notice that from the monotonicity of the angle it follows that

∠x
(
(Gyx)′0, (G

z
x)′0
)
≤ ∠κx(y, z)

and thus if z → y we have ∠x
(
(Gyx)′0, (G

z
x)′0
)
→ 0. Since trivially it also holds that Lip(Gzx) =

d(x, z)→ d(x, y) = Lip(Gyx), continuity follows.
For the last claim, notice that by the definition of tangent cone and of multiplication by a

positive scalar we have that {λ(Gyx)′0 : λ ≥ 0, y ∈ Br(x)} is dense in TxY for any r ∈ (0, rx).
Then the continuity just proved ensures that for any λ ≥ 0 the set {λ(Gyx)′0 : y ∈ D} is dense in
{λ(Gyx)′0 : y ∈ Br(x)}, leading to the claim. �

A key property of the tangent cone is the following statement, which is central for our subsequent
results. For the proof we refer to [10, Chapter II, Theorem 3.19].

Theorem 2.10. Let Y be a local CAT(κ) space and x ∈ Y. Then the tangent cone (TxY, dx) is
a CAT(0)-space.

The tangent cone TxY is not only a CAT(0) space, but also comes with an additional structure
which somehow resembles that of a Hilbert space. To make this more evident, let us introduce
the following notation, valid for any v, w ∈ TxY (see [12, 37]).

a) Multiplication by a positive scalar. As for general cones, for λ ≥ 0 and v = (t, γ) ∈ TxY ≈
C(ΣxY) we put λv := (λt, γ).

b) Norm. |v|x := dx(v, 0).
c) Scalar product. 〈v, w〉x := 1

2

[
|v|2x + |w|2x − d2

x(v, w)
]
.

d) Sum. v ⊕ w := 2mv,w, where mv,w is the midpoint of v, w (well-defined because TxY is a
CAT(0) space).

The basic properties of these operations are collected in the following proposition:

Proposition 2.11 (Basic calculus on the tangent cone). Let Y be a local CAT(κ) space and
x ∈ Y. Then the four operations defined above are continuous in their variables. The ‘sum’ and
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the ‘scalar product’ are also symmetric. Moreover:

|λv|x = λ|v|x,(2.12a)

d2
x(v, w) = |v|2x + |w|2x − 2〈v, w〉x,(2.12b)

〈γ′0, η′0〉x = |γ′0|x|η′0|x cos(∠x(γ, η)),(2.12c)

〈λv,w〉x = 〈v, λw〉x = λ〈v, w〉x,(2.12d)

|〈v, w〉x| ≤ |v|x|w|x,(2.12e)

〈v, w〉x = |v|x|w|x if and only if |w|xv = |v|xw,(2.12f)

d2
x(v, w) + |v ⊕ w|2x ≤ 2(|v|2x + |w|2x),(2.12g)

for any v, w ∈ TxY, γ, η ∈ GeoxY and λ ≥ 0.

Proof. The symmetry of the ‘sum’ and ‘scalar product’ are obvious and so are the continuity of
the ‘norm’ and then of the ‘scalar product’. The continuity of (λ, v)→ λv is a direct consequence
of the inequality

dx(λv, λ′v′) ≤ dx(λv, λv′) + dx(λv′, λ′v′) = λdx(v, v′) + |λ′ − λ||v′|x,

where the equality follows trivially from the definition of cone distance and Theorem 2.9. For the
continuity of the ‘sum’ it is now sufficient to prove that the map (v, w) 7→ mv,w is continuous.
This follows from the bound

dx(mv,w,mv′,w′) ≤
1

2

(
dx(v, v′) + dx(w,w′)

)
which is valid in any CAT(0) space (see e.g. [8, Proposition 1.1.5 and Theorem 1.3.3]).

Notice that (2.12a), (2.12b) are direct consequences of the definitions. For (2.12c) we observe
that by definition we have

〈γ′0, η′0〉x = 1
2

(
|γ′0|2x + |η′0|2x − d2

x(γ′0, η
′
0)
)

and thus recalling (2.5) (and the fact that the lim is actually a limit – see Theorem 2.9) we obtain

〈γ′0, η′0〉x = |γ′0|x|η′0|x lim
t↓0

d2(γt, x) + d2(ηt, x)− d2(γt, ηt)

2d(γt, x)d(ηt, x)

(2.10)
= |γ′0|x|η′0|x cos(∠x(γ, η)).

For (2.12d) we note that from the definition (2.11) and Theorem 2.9 it is clear that dx(λv, λw) =
λdx(v, w) for λ ≥ 0. Hence we also have 〈λv, λw〉x = λ2〈v, w〉x and thus, taking into account the
symmetry of the scalar product, to conclude it is sufficient to prove that

(2.13) 〈λv,w〉x ≥ λ〈v, w〉x for λ ∈ [0, 1].

To see this, notice that by the 2-convexity (1.1) of squared distance functions in CAT(0)-spaces
we have, for λ ∈ [0, 1] and v, w ∈ TxY, that

d2
x(λv,w) ≤ (1− λ)|w|2x + λd2

x(v, w)− λ(1− λ)|v|2x.

The estimate (2.13) follows from this and the definition of 〈·, ·〉x.
To prove (2.12e) let γ, η ∈ dirxY and t, s ≥ 0 and observe that∣∣2〈(t, γ), (s, η)〉x

∣∣ =
∣∣t2 + s2 − d2

x

(
(t, γ), (s, η)

)∣∣ = 2ts| cos∠x(γ, η)| ≤ 2ts = 2|(t, γ)|x|(s, η)|x.

Since elements of the form (t, γ) are dense in TxY, we just proved (2.12e).
The ‘if’ in (2.12f) comes from (2.12d), for the ‘only if’ suppose that 〈v, w〉x = |v|x|w|x and take

γn, ηn ∈ dirxY so that (|v|x, γn)→ v and (|w|x, ηn)→ w in TxY. It follows that

|v|x|w|x = 〈v, w〉x = lim
n→∞

〈(|v|x, γn), (|w|x, ηn)〉x = |v|x|w|x lim
n→∞

cos∠x(γn, ηn),

i.e. limn→∞∠x(γn, ηn) = 0. This implies that

dx(|w|xv, |v|xw) = lim
n

dx
(
(|v|x|w|x, γn), (|v|x|w|x, ηn)

)
= |v|x|w|x lim

n
dx
(
(1, γn), (1, ηn)

)
= 0,

which was the claim.
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Finally, (2.12g) is also a direct consequence of the 2-convexity of the squared distance from a
point, which gives ∣∣∣1

2
(v ⊕ w)

∣∣∣2
x
≤ 1

2

(
|v|2x + |w|2x

)
− 1

4
d2
x(v, w).

Taking into account the proved homogeneities, this is the claim. �

It is worth underlying that, in general, ⊕ is not associative.

Lemma 2.12. Let (Y, d) be a CAT(κ) space. Fix a point x ∈ Y. Then for any y, z ∈ BDκ(x)\{x}
and α, β > 0 it holds that

(2.14)
(
α(Gyx)′0

)
⊕
(
β(Gzx)′0

)
= lim

ε↓0

2(Gmεx )′0
ε

∈ TxY,

where mε denotes the midpoint between (Gyx)εα and (Gzx)εβ.

Proof. Let us call pε := (Gyx)εα and qε := (Gzx)εβ . For ε, δ > 0 small it holds that (Gyx)δεα = (Gpεx )δ,
whence by using (2.5) and Lemma 2.5 we obtain that

dx
(
α(Gyx)′0,

(Gmεx )′0
ε

)
=

1

ε
dx
(
εα(Gyx)′0, (G

mε
x )′0

)
=

1

ε
lim
δ↓0

d
(
(Gyx)δεα, (G

mε
x )δ

)
δ

=
1

ε
lim
δ↓0

d
(
(Gpεx )δ, (G

mε
x )δ

)
δ

≤ 1

ε
d(pε,mε) =

1

2ε
d(pε, qε).

Similarly, we have that dx
(
β(Gzx)′0, ε

−1(Gmεx )′0
)
≤ d(pε, qε)/(2ε). Choosing εn ↓ 0 so that∣∣∣d(pεn , qεn)

εn
− dx

(
α(Gyx)′0, β(Gzx)′0

)∣∣∣ < 2

n
for every n,

we deduce that ε−1
n (G

mεn
x )′0 is a 1

n -approximate midpoint between α(Gyx)′0 and β(Gzx)′0. This yields
(2.14) by Lemma 2.2, as required. �

We close this section with the following important formula:

Proposition 2.13 (First variation formula). Let Y be a CAT(κ) space, x ∈ Y and γ, η ∈ GeoxY
with η defined on [0, 1] and such that d(x, η1) < Dκ. Then

(2.15) 〈γ′0, η′0〉x = −Lip(η) lim
t↓0

d(γt, η1)− d(γ0, η1)

t
.

Proof. We know from (2.12c) and (2.10) that

〈γ′0, η′0〉x = lim
t,s↓0

d2(γt, x) + d2(ηs, x)− d2(γt, ηs)

2ts

and by direct computation we see that

lim
t↓0

d2(γt, x) + d2(ηs, x)− d2(γt, ηs)

2ts
= lim

t↓0

d2(ηs, x)− d2(γt, ηs)

2ts

= −Lip(η) lim
t↓0

d(γt, ηs)− d(x, ηs)

t
.

Since the triangle inequality gives d(γt, η1) − d(x, η1) ≤ d(γt, ηs) − d(x, ηs), from the above we
deduce

〈γ′0, η′0〉x ≤ −Lip(η) lim
t↓0

d(γt, η1)− d(γ0, η1)

t
.

Now notice that from (2.12c), Lemma 2.7, the assumption d(x, η1) < Dκ and the monotonicity
property (2.8) we get

〈γ′0, η′0〉x ≥ Lip(γ)Lip(η) lim
t↓0

cnκ(d(γt, η1))− cnκ(d(γt, x)) cnκ(d(η1, x))

κ snκ(d(γt, x)) snκ(d(η1, x))
.
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Thus using the expansions

cnκ(d(γt, x)) = 1 +O(t2),

cnκ(d(γt, η1)) = cnκ(d(x, η1))− κ snκ(d(x, η1))
(
d(γt, η1)− d(x, η1)

)
+O(t2),

snκ(d(γt, x)) = tLip(γ) +O(t2),

we get the inequality ≥ in (2.15) and the conclusion. �

2.3. Differential of locally semiconvex Lipschitz functions. In this section we see that for
Lipschitz and locally semiconvex functions there is a well-behaved notion of differential defined
on the tangent cone of every point in the domain of the function itself. See [37, 38] for the lower
curvature bound case, and [33] for more general classes of metric spaces.

We start by recalling the following notion:

Definition 2.14 (Locally semiconvex function). Let Y be a geodesic metric space and f : Y → R.
We say that f is semiconvex if there exists K ∈ R so that the inequality

f(γt) ≤ (1− t)f(γ0) + tf(γ1)− K

2
t(1− t)d2(γ0, γ1)

holds for any geodesic γ : [0, 1]→ Y.
A function f : Ω→ R, with Ω ⊂ Y open connected set, is called locally semiconvex if every point

x ∈ Ω has a neighbourhood U such that the inequality above holds for all geodesics γ : [0, 1] → Ω
with endpoints in U .

For locally semiconvex functions it is possible to define directional derivatives, which we do in
the setting of CAT(κ) spaces:

Definition 2.15 (Directional derivative). Let Y be a local CAT(κ) space, x ∈ Y, U ⊂ Brx(x) a
neighbourhood of x and f : U → R locally semiconvex. The directional derivative of f at x is the
map σxf : GeoxY → R ∪ {−∞} defined as

σxf(γ) := lim
h↓0

f(γh)− f(γ0)

h
.

Notice that the monotonicity of incremental ratios of convex functions ensures that the limit
above exists. Still, in general it is not clear if σxf passes to the quotient GeoxY/ ∼ nor if it is
real-valued. In the next proposition we see that this is the case if we further assume that f is
Lipschitz in a neighbourhood of x.

Recall that given f : Y → R the asymptotic Lipschitz constant lipaf : Y → [0,+∞] is defined
as

lipaf(x) := lim
y,z→x

∣∣f(y)− f(z)
∣∣

d(y, z)
= lim

r↓0
Lip(f |Br(x)

) = inf
r>0

Lip(f |Br(x)
).

Proposition 2.16 (Differentials of locally Lipschitz and semiconvex functions). Let Y be a local
CAT(κ) space, Ω ⊂ Y open and f : Ω→ R be locally semiconvex and Lipschitz.

Then for each x ∈ Ω there exists a unique continuous map dxf : TxY → R, called the differential
of f at x, such that

(2.16) dxf(γ′0) = σxf(γ) ∀γ ∈ GeoxY.

Moreover, dxf is convex, lipaf(x)-Lipschitz and positively 1-homogeneous, i.e dxf(λv) = λdxf(v)
for any v ∈ TxY and λ ≥ 0.

Proof. Fix x ∈ Ω and let r > 0 be such that Br(x) ⊂ Ω. Then for every γ, η ∈ GeoxY we have
γt, ηt ∈ Br(x) for t� 1 and thus∣∣σxf(γ)− σxf(η)

∣∣ ≤ lim
h↓0

∣∣∣f(γh)− f(ηh)

h

∣∣∣ ≤ Lip(f |Br(x)
) lim
h↓0

d(γh, ηh)

h
≤ Lip(f |Br(x)

)dx(γ, η).

This shows that σxf passes to the quotient and defines a Lip(f |Br(x)
)-Lipschitz map on GeoxY/ ∼.

Existence and uniqueness of the continuous extension dxf to the whole TxY are then obvious and,
letting r ↓ 0, it is also clear that dxf is lipaf(x)-Lipschitz.
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For the homogeneity observe that, for γ ∈ GeoxY and λ ≥ 0, the isometry given in Theorem
2.9 and the definition of multiplication by positive scalar ensure that λγ′0 = γ̃′0 in C(ΣxY) ≈ TxY,
where γ̃t := γλt. Then (2.16) and the definition of directional derivative grant that dxf(λγ′0) =
λdxf(γ′0) for any λ ≥ 0 and γ ∈ GeoxY. Since tangent vectors of the form γ′0 are dense in TxY,
the claim follows by the continuity of dxf that we already proved.

It remains to prove that dxf is convex and, thanks to the continuity just proven, it is sufficient
to show that for any γ, η ∈ GeoxBrx(x) ' GeoxY, letting m be the midpoint of γ′0, η

′
0 ∈ TxY it

holds that

(2.17) dxf(m) ≤ 1

2

(
dxf(γ′0) + dxf(η′0)

)
.

To this aim, let ε > 0 and use the density of GeoxBrx(x)/ ∼ in TxY to find ρ ∈ GeoxBrx(x) such
that ρ′0 is an approximated midpoint of γ′0, η

′
0 in the sense that

d2
x(γ′0, ρ

′
0), d2

x(η′0, ρ
′
0) ≤ 1

4d
2
x(γ′0, η

′
0) + ε2.

By the very definition (2.5) of dx we see that there exists T > 0 such that

d2(γt, ρt), d
2(ηt, ρt) ≤ 1

4d
2(γt, ηt) + 2ε2t2 ∀t ∈ [0, T ].

Up to taking T smaller, we can assume that d(γt, ηt) ≤ 1
2Dκ, thus we are in a position to apply

Lemma 2.2 (in TxY and Brx(x)) to deduce that

dx(ρ′0,m) ≤ Cε,
d(ρt,mt) ≤ Cεt ∀t ∈ [0, T ],

(2.18)

for some C > 0 independent on t, where mt is the midpoint of γt, ηt. Now let V be a neighbourhood
of x where f is K-semiconvex and L-Lipschitz and notice that what previously proved grants that
dxf is L-Lipschitz as well. Then γt, ηt ∈ V for t� 1 and the K-semiconvexity gives

f(mt) ≤
1

2

(
f(γt) + f(ηt)

)
− K

8
d2(γt, ηt) ≤

1

2

(
f(γt) + f(ηt)

)
+
|K|
8
t2
(
Lip2(γ) + Lip2(η)

)
and thus

(2.19) lim
t↓0

f(mt)− f(x)

t
≤ 1

2
lim
t↓0

f(γt)− f(x)

t
+

1

2
lim
t↓0

f(ηt)− f(x)

t
=

1

2

(
dxf(γ′0) + dxf(η′0)

)
.

Hence taking into account (2.18) and the L-Lipschitz property of f and dxf we get

dxf(m)
(2.18)

≤ CLε+ dxf(ρ′0) = CLε+ lim
t↓0

f(ρt)− f(x)

t
(2.18)

≤ 2CLε+ lim
t↓0

f(mt)− f(x)

t

(2.19)

≤ 2CLε+
1

2

(
dxf(γ′0) + dxf(η′0)

)
.

The conclusion follows letting ε ↓ 0. �

In the model space Mκ, if γ is a geodesic on [0, 1] and x ∈Mκ is such that d(γ0, γ1) +d(γ0, x) +
d(γ1, x) < 2Dκ we have that t 7→ d(γt, x) is semiconvex. Hence if Y is a local CAT(κ) space and
x ∈ Y, for any y ∈ Brx(x) the function disty is semiconvex on Brx(x).

We collect below the main properties of the differential:

Proposition 2.17 (Differentials of distance functions). Let Y be a CAT(κ) space and x ∈ Y.
Then:

i) For y ∈ Y with d(x, y) < Dκ we have

(2.20) dxdisty(v) =

{
− 1

Lip(η) 〈v, η
′
0〉x if y 6= x,

|v|x if y = x,
∀v ∈ TxY,

where η ∈ GeoxY is any geodesic passing through y.
ii) For D ⊂ BDκ(x) dense in a neighbourhood of x we have

|v|x = sup
y∈D

[
− dxdisty(v)

]
∀v ∈ TxY.
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iii) Let v, w ∈ TxY and D ⊂ BDκ(x) be dense. Assume that

dxdisty(v) ≤ dxdisty(w) ∀y ∈ D.

Then |w|2x ≤ 〈v, w〉x and in particular |w|x ≤ |v|x.
If moreover either |v|x ≤ |w|x or x ∈ D, then we also have v = w.

Proof.
(i) By the continuity of v 7→ dxdisty(v) and of the stated expression it is sufficient to check (2.20)
for v of the form v = γ′0 for arbitrary γ ∈ GeoxY. Then keeping in mind the identity (2.16) and
the definition of directional derivative we see that the case y = x is obvious. For the case y 6= x
we notice that (2.12d) ensures that − 1

Lip(η) 〈v, η
′
0〉x does not depend on the particular choice of η.

We choose η to be defined on [0, 1] and such that η1 = y and conclude noticing that the formula
is a restatement of the first variation formula in Proposition 2.13.
(ii) Inequality ≥ follows from point (i) and the ‘Cauchy-Schwarz inequality’ (2.12e). The opposite
inequality is trivial if v = 0. If not, we use the density result in Theorem 2.9 to find (yn) ⊂ D

such that, letting γn : [0, 1] → Y be the geodesic from x to yn, we have 1
d(x,yn)γ

′
n,0 → 1

|v|x v. By

point (i) (and recalling the calculus rules in Proposition 2.11) we have that

−dxdistyn(v) =
1

d(x, yn)
〈v, γ′n,0〉x → 1

|v|x
〈v, v〉x = |v|x.

(iii) If w = 0 the first claim is obvious. Otherwise use the density result in Theorem 2.9 to find
(yn) ⊂ D such that, letting γn : [0, 1] → Y be the geodesic from x to yn, we have 1

d(x,yn)γ
′
n,0 →

1
|w|xw. Then point (i) and our assumption give − 1

d(x,yn) 〈v, γ
′
n,0〉 ≤ − 1

d(x,yn) 〈w, γ
′
n,0〉 and passing

to the limit (using the calculus rules in Proposition 2.11) we get the first claim.
For the second claim, notice that if x ∈ D, picking y := x in our assumption and using again

point (i) we deduce |v|x ≤ |w|x (and thus |v|x = |w|x). Hence from what previously proved we
obtain 〈v, w〉x ≥ |w|2x ≥ |v|x|w|x, so that from (2.12f) we conclude |w|xv = |v|xw and from the
equality of norms we conclude v = w, as desired. �

2.4. Velocity of absolutely continuous curves. Recall that a curve γ : [0, 1]→ Y with values
in a metric space is said to be absolutely continuous provided there is f ∈ L1(0, 1) such that

(2.21) d(γt, γs) ≤
∫ s

t

f(r) dr ∀t, s ∈ [0, 1], t < s.

It is well-known that to any absolutely continuous curve we can associate a function |γ̇| ∈ L1(0, 1),
called metric speed, which plays the role of the modulus of the derivative. The following proposition
recalls the main properties of |γ̇|; for the proof we refer to [3, Theorem 1.1.2] and its proof.

Proposition 2.18. Let (Y, d) be a separable metric space and γ : [0, 1] → Y be absolutely con-

tinuous. Then for a.e. t ∈ [0, 1] there exists the limit |γ̇t| as h → 0 of d(γt+h,γt)
|h| . The function

t 7→ |γ̇t| belongs to L1(0, 1) and is the least, in the a.e. sense, function f for which (2.21) holds.
Moreover, for any (xn) ⊂ Y dense, letting fn,t := d(γt, xn), the following holds: for a.e. t ∈ [0, 1]

the function fn is differentiable at t for every n ∈ N and

(2.22) |γ̇t| = sup
n∈N

[−f ′n,t].

On a local CAT(κ) space more can be said: for a.e. time we have not only a ‘numerical’ value
for the derivative, but also right and left derivatives as elements of the tangent cone. The key
lemma needed for achieving such a result is the following (see also [33, Theorem 1.6]):

Lemma 2.19. Let Y be a local CAT(κ) space and γ : [0, 1] → Y be an absolutely continuous
curve. Then for almost every t ∈ [0, 1] we have that either |γ̇t| = 0 or

(2.23) lim
δ2↓0

lim
δ1↓0
∠
κ

γt(γt+δ1 , γt+δ2) = 0.
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Proof. The statement is local in nature, thus up to use the compactness of γ([0, 1]), its cover made
of Brγt

(γt) and Lemma 2.4 we can assume that Y is a separable CAT(κ) space of diameter < Dκ.
Let t ∈ [0, 1] be such that the metric derivative |γ̇t| exists, is strictly positive and (2.22) holds

for some fixed countable dense (xn) ⊂ Y. Then for every x ∈ Y we have

lim
δ↓0

cos
(
∠
κ

γt(γt+δ, x)
)

= lim
δ↓0

cnκ(d(x, γt+δ))− cnκ(d(γt, x))cnκ(d(γt, γt+δ))

κ snκ(d(γt, γt+δ))snκ(d(γt, x))

with obvious modifications for κ = 0. Using the expansions

cnκ(d(γt, γt+δ)) = 1 + o(δ),

cnκ(d(γt+δ, x)) = cnκ(d(γt, x))− κ snκ(d(γt, x))
(
d(γt+δ, x)− d(γt, x)

)
+ o(δ),

snκ(d(γt, γt+δ)) = δ|γ̇t|+ o(δ),

we obtain

lim
δ↓0

cos
(
∠
κ

γt(γt+δ, x)
)

= − lim
δ↓0

d(γt+δ, x)− d(γt, x)

δ|γ̇t|
.

Picking x = xn and recalling that by assumption s 7→ fn,s := distxn(γs) is differentiable at t, we

see that limδ↓0 cos
(
∠
κ

γt(γt+δ, xn)
)

= − f
′
n,t

|γ̇t| . Hence by triangle inequality for angles (2.7) we obtain

lim
δ2↓0

lim
δ1↓0
∠
κ

γt(γt+δ1 , γt+δ2) ≤ lim
δ1↓0
∠
κ

γt(γt+δ1 , xn) + lim
δ2↓0
∠
κ

γt(γt+δ2 , xn) = 2 arccos
(
−
f ′n,t
|γ̇t|

)
∀n ∈ N.

Taking the infimum in n and using (2.22) we conclude the proof. �

We then have the following result:

Proposition 2.20 (Right derivative of AC curves). Let Y be a local CAT(κ) space and γ : [0, 1]→
Y be an absolutely continuous curve. For any t, s ∈ [0, 1] write, for brevity, Gst in place of Gγsγt
whenever this is well-defined.

Then for every t ∈ [0, 1] for which |γ̇t| exists and the conclusion of Lemma 2.19 holds (and thus
in particular for a.e. t) we have that:

i) the limit, denoted by γ̇+
t in TγtY, of 1

s−t (G
s
t )
′
0 as s ↓ t exists, and

ii) for every locally Lipschitz and locally semiconvex function f defined on some neighbourhood
of γt it holds that

(2.24) lim
h↓0

f(γt+h)− f(γt)

h
= dγtf(γ̇+

t ).

Proof.
(i) We shall prove that s 7→ 1

s−t (G
s
t )
′
0 ∈ TγtY has a limit as s ↓ t for any t for which |γ̇t| exists and

the conclusions of Lemma 2.19 hold. Notice that | 1
s−t (G

s
t )
′
0|γt = d(γt,γs)

|s−t| → |γ̇t|, thus if |γ̇t| = 0 the

conclusion follows. If |γ̇t| > 0, by the convergence of norms that we just proved and recalling (2.11)
and Theorem 2.9, to conclude it is sufficient to prove that lims2↓t lims1↓t∠γt((G

s2
t )′0, (G

s1
t )′0) = 0.

This is a direct consequence of (2.23) and the monotonicity property (2.8), which ensures that

∠γt((G
s2
t )′0, (G

s1
t )′0) ≤ ∠γt(G

s2
t (1),Gs1t (1)) = ∠

κ

γt(γt+s2 , γt+s1).

(ii) If |γ̇t| = 0 both sides of (2.24) are easily seen to be zero, so that the conclusion follows.

Otherwise, for δ2 ≥ δ1 > 0 put for brevity ηδ1,δ2 := (G
γt+δ2
γt )δ1/δ2 and notice that the monotonicity

(2.8) of angles gives

cos
(
∠
κ

γt(γt+δ1 , ηδ1,δ2)
)
≥ cos

(
∠
κ

γt(γt+δ1 , γt+δ2)
)
.

From (2.10) we have that

cos
(
∠
κ

γt(γt+δ1 , ηδ1,δ2)
)

=
d2(γt, γt+δ1) + d2(γt, ηδ1,δ2)− d2(γt+δ1 , ηδ1,δ2)

2d(γt, γt+δ1)d(γt, ηδ1,δ2)
+O(δ1)
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and thus using the identity d(γt, ηδ1,δ2) = δ1
δ2
d(γt, γt+δ2) and passing to the limit recalling (2.23)

we deduce that

(2.25) lim
δ2↓0

lim
δ1↓0

d2(γt+δ1 , ηδ1,δ2)

δ2
1

= 0.

Now let L be the Lipschitz constant of f in some neighbourhood of γt and notice that for δ2 > 0
sufficiently small we have

lim
δ1↓0

∣∣∣dγtf( 1
δ2

(Gt+δ2t )′0
)
− f(γt+δ1)− f(γt)

δ1

∣∣∣ = lim
δ1↓0

∣∣∣f(ηδ1,δ2)− f(γt)

δ1
− f(γt+δ1)− f(γt)

δ1

∣∣∣
≤ L lim

δ1↓0

d(ηδ1,δ2 , γt+δ1)

δ1
.

The conclusion follows by letting δ2 ↓ 0 and using (2.25). �

Remark 2.21. The conclusions of Lemma 2.19 and Proposition 2.20 hold for left derivatives as
well; for a.e. t ∈ {|γ̇t| > 0} we have limδ↓0 limε↓0∠γt(γt−δ, γt−ε) = 0, and for every t satisfying it
the limit of 1

t−s (Gst )
′
0 as s ↑ t exists. We denote this limit by γ̇−t . �

Lemma 2.22. Let γ : [0, 1] → Y be an absolutely continuous curve. Then, for almost every
t ∈ [0, 1], the limits γ̇+

t and γ̇−t are antipodal, i.e.

γ̇+
t ⊕ γ̇−t = 0.

Proof. We prove that

(2.26) ∠γt(γ̇
+
t , γ̇

−
t ) = lim

δ↓0
∠γt(γt+δ, γt−δ) = π

for almost every t ∈ [0, 1]. The claim follows from this.

If |γ̇t| = 0 then γ̇+
t = γ̇−t = 0 and the claim is clear.

By Lemma 2.19, Proposition 2.20 and Remark 2.21, almost every t ∈ {|γ̇t| > 0} satisfies
conditions (i) and (ii) below.

(i) limδ↓0 limε↓0∠γt(γt+δ, γt+ε) = 0 and limδ↓0 limε↓0∠γt(γt−δ, γt−ε) = 0;

(ii) limδ↓0
d(γt+δ,γt)

δ = limδ↓0
d(γt−δ,γt)

δ = limδ↓0
d(γt−δ,γt+δ)

2δ = |γ̇t| (including the existence of
these limits).

We fix t ∈ [0, 1] satisfying (i) and (ii). Note that, by the monotonicity of angles (2.8), we have
the estimate

∠γt(γ̇
+
t , γ̇

−
t ) = lim

δ↓0
∠γt((G

t+δ
t )′0, (G

t−δ
t )′0) = lim

δ↓0
lim
ε↓0
∠γt((G

t+δ
t )ε, (G

t−δ
t )ε)

≤ lim
δ↓0
∠γt(γt+δ, γt−δ).

To prove the opposite inequality, we use the triangle inequality (2.7) to obtain

∠γt((G
t+δ
t )ε, (G

t−δ
t )ε) ≥ ∠γt((Gt+δt )ε, γt−εδ)− ∠γt(γt−εδ, (Gt−δt )ε)

≥ ∠γt(γt+εδ, γt−εδ)− ∠γt(γt+εδ, (Gt+δt )ε)− ∠γt(γt−εδ, (Gt−δt )ε)

≥ ∠γt(γt+εδ, γt−εδ)− ∠γt(γt+δ, γt+εδ)− ∠γt(γt−δ, γt−εδ).

Here the last estimate follows simply by the monotonicity of angles (2.8). By (i), it follows that

∠γt(γ̇
+
t , γ̇

−
t ) = lim

δ↓0
lim
ε↓0
∠γt((G

t+δ
t )ε, (G

t−δ
t )ε) ≥ lim

δ↓0
lim
ε↓0
∠γt(γt+εδ, γt−εδ) = lim

δ↓0
∠γt(γt+δ, γt−δ).

It remains to show that limδ↓0∠γt(γt+δ, γt−δ) = π. By (ii) and (2.10), we have

lim
δ↓0

cos∠γt(γt+δ, γt−δ) = lim
δ↓0

d2(γt+δ, γt) + d2(γt−δ, γt)− d2(γt+δ, γt−δ)

2d(γt+δ, γt)d(γt−δ, γt)

=
|γ̇t|2 + |γ̇t|2 − (2|γ̇t|)2

2|γ̇t|2
= −1,

implying the claim and completing the proof. �
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2.5. Barycenters and rigidity. In this section we review the concept of ‘barycenter’ of a prob-
ability measure on a CAT(0) space. With the exception of the rigidity statement given by Propo-
sition 2.27, the content comes from [41].

Fix a CAT(0) space Y and denote by P(Y) the set of all Borel probability measures on Y
having separable support, and by P1(Y) ⊂ P(Y) the set of those with finite first moment, i.e.
those µ ∈P(Y) such that for some, and thus all, y ∈ Y it holds that

∫
d(·, y) dµ <∞.

For a proof of the following result we refer to [41, Proposition 4.3].

Proposition 2.23 (Definition of barycenter). Let Y be a CAT(0) space, µ ∈P1(Y) and y ∈ Y.
Then

Y 3 x 7−→
∫ [

d2(·, x)− d2(·, y)
]

dµ ∈ R

admits a unique minimizer. The minimizer does not depend on y, is called the barycenter of ν
and is denoted by Bar(ν) ∈ Y.

The basic properties of barycenters that we shall need are collected in the following statement:

Theorem 2.24. Let Y be a CAT(0) space. Then the following holds:

i) Variance inequality. For any µ ∈P1(Y) and p ∈ Y it holds

(2.27)

∫ [
d2(·, p)− d2(·,Bar(µ))

]
dµ ≥ d2(p,Bar(µ)).

ii) Jensen’s inequality. Let ϕ : Y → [0,+∞) be convex and lower semicontinuous. Then
for every µ ∈P1(Y) we have

(2.28) ϕ(Bar(µ)) ≤
∫
ϕdµ.

Proof. The variance inequality (2.27) is proved in [41, Proposition 4.4], while Jensen’s inequality
comes from [41, Theorem 6.2]. �

Applying Jensen’s inequality (2.28) to the convex and Lipschitz function ϕ := d(·, p) we see
that the inequality

d(Bar(µ), p) ≤
∫

d(x, p) dµ(x)

holds for any µ ∈ P1(Y) and p ∈ Y. Our aim is now to study the equality case and in order to
do so we first recall the notion of nonbranching geodesics.

Definition 2.25 (Non-branching from p). We say that a geodesic space (X, d) is non-branching
from p ∈ X provided the following holds: if, for given points q, x1, x2 ∈ X with q 6= p, we have
that there are geodesics γ1, γ2 starting from p and passing through q, x1 and q, x2 respectively, then
there is a geodesic γ starting from p and passing through q, x1, x2.

Here ‘passing through’ q, xi implies nothing about the order in which these points are met. It
is not hard to see that the above definition is equivalent to the more classical one requiring for any
t ∈ (0, 1] the injectivity of the map γ 7→ γ|[0,t] on the space of constant speed geodesics [0, 1]→ X

starting from p.
It is easy to verify that if q 6= p and (xi) ⊂ X are given points such that there are geodesics

starting from p and passing through q, xi for every i, then there is a curve γ starting from p and
passing through q and all the xi’s and such curve is either a geodesic or a half-line, i.e. a map
from [0,+∞) to X such that its restriction to any compact interval is a geodesic.

The main example of space that is non-branching from one of its points is the cone over a metric
space. Here the relevant point is the vertex 0.

Lemma 2.26 (Tangent cones are non-branching from the origin). Let X be any metric space, and
C(X) the Euclidean cone over X. Then C(X) is non-branching from its origin 0. In particular,
for a local CAT(κ) space Y we have that

(2.29) TpY is non-branching from 0 for every p ∈ Y.
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Proof. By direct computation based on the definition of the cone distance we see that if γ is a
constant speed geodesic starting from the origin 0 it must hold γt = tγ1, where the ‘product’ of t
and γ1 is defined as before Proposition 2.11. Thus for two given such curves γ, η we have – again
using the definition of distance on the cone – that dC(X)(γt, ηt) = dC(X)(tγ1, tη1) = tdC(X)(γ1, η1).
Hence if γ1 6= η1 we also have γt 6= ηt for every t ∈ (0, 1]. This is sufficient to conclude. �

We now come to the rigidity statement:

Proposition 2.27 (Rigidity). Let Y be a CAT(0) space and µ ∈ P1(Y). Assume that for some
point p it holds that

(2.30) d(Bar(µ), p) ≥
∫

d(x, p) dµ.

Then

(2.31) d(x,Bar(µ)) =
∣∣d(x, p)− d(Bar(µ), p)

∣∣ for µ-a.e. x ∈ Y.

In particular, if Y is non-branching from p, then the measure ν is concentrated on the image of a
curve γ starting from p which is either a geodesic or a half-line.

Proof. By the discussion following Definition 2.25, we see that it is sufficient to prove (2.31). To
this aim, notice that the triangle inequality gives

(2.32)
∣∣d(x, p)− d(x,Bar(µ))

∣∣2 − d2(Bar(µ), p) ≤ 0 ∀x ∈ Y.

On the other hand we have∫ ∣∣d(x, p)− d(Bar(µ), p)
∣∣2 − d2(x,Bar(µ)) dµ(x)

=

∫
d2(x, p) + d2(Bar(µ), p)− 2d(x, p)d(Bar(µ), p)− d2(x,Bar(µ)) dµ(x)

by (2.27) ≥
∫

2d2(p,Bar(µ))− 2d(x, p)d(x,Bar(µ)) dµ(x)

=2d(p,Bar(µ))
(
d(p,Bar(µ))−

∫
d(x, p) dµ(x)

)
by (2.30) ≥0.

This inequality and (2.32) give (2.31) and the conclusion. �

Remark 2.28. It is easily seen that in the preceding proposition the non-branching assumption
is needed. Indeed, consider the ‘tripod’, i.e. the CAT(0)-space Y obtained as the Euclidean cone
over the space {a, b, c} equipped with the discrete metric. Then Y is not non-branching from a
and, indeed, the conclusion of Proposition 2.27 fails for the measure µ = 1

3 (δa + δb + δc), even
though the identity (2.30) holds for µ. Note that in this case Bar(µ) = 0. �

3. Geometric tangent bundle L2(TGY;µ)

In this section we fix a separable local CAT(κ) space Y. Our first aim here is to give a
measurable structure to the ‘geometric tangent bundle’ TGY, i.e. the collection of all tangent
cones on Y. Once this is done, we will endow Y with a non-negative and non-zero Radon measure
µ and study the space of ‘L2-sections’ of TGY, which we shall denote by L2(TGY;µ).

As a set, the geometric tangent bundle TGY is defined as

TGY :=
{

(x, v)
∣∣ x ∈ Y, v ∈ TxY

}
.

We denote by πY : TGY → Y the canonical projection defined by πY(x, v) := x and call section
of TGY a map v : Y → TGY such that πY(v(x)) = x for every x ∈ Y.

We now endow TGY with a σ-algebra B(TGY), defined as the smallest σ-algebra such that:

i) The projection map πY : TGY → Y is measurable, Y being equipped with Borel sets.



INFINITESIMAL HILBERTIANITY OF LOCALLY CAT(κ)-SPACES 19

ii) For every x ∈ Y and y ∈ Brx(x) the map d disty : TGY → R, defined as

(d disty)(z, v) :=

{
dzdisty(v)
0

if (z, v) ∈ (πY)−1
(
Brx(x)

)
,

otherwise,

is measurable.

It is clear that these define a σ-algebra B(TGY), to which we shall refer as the class of Borel
subsets of TGY, hereafter speaking about Borel (rather than measurable) maps. This is a slight
abuse of terminology, since we are not defining any topology on TGY. The abuse of terminology
is justified by the fact that if Y is a smooth Riemannian manifold, then B(TGY) coincides with
the σ-algebra of Borel subsets of the tangent bundle of Y.

The following result gives a basic description of B(TGY):

Proposition 3.1. Let Y be a local CAT(κ) space which is also separable and (xn) ⊂ Y a countable
set of points such that

⋃
nBrxn (xn) = Y (these exist by the Lindelöf property of Y). For each n,

let (xn,m) ⊂ Brxn (xn) be countable and dense.
Then B(TGY) coincides with the smallest σ-algebra B′(TGY) satisfying i) above and

ii’) For every n,m ∈ N the function d distxn,m is measurable.

Moreover, for any x ∈ Y the measurable structure induced on TxY by B(TGY) coincides with the
Borel structure of (TxY, dx).

Proof. It is clear that B′(TGY) ⊂ B(TGY). To prove the other inclusion start observing that the
continuity of x 7→ rx grants that Brx(x) ⊂

⋃
nBrxn (xn) if xn → x, thus to conclude it is sufficient

to show that for given n ∈ N and y ∈ Brxn (xn) the map (πY)−1(Brxn (xn)) 3 (x, v) 7→ dxdisty(v)
is B′(TGY)-measurable. Keeping in mind point (i) of Proposition 2.17, this will be achieved if we
prove that:

a) the map TyY 3 v 7→ |v|y is measurable w.r.t. the σ-algebra induced by B′(TGY),
b) (πY)−1(Brxn (xn)) 3 (x, v) 7→ 〈v, (Gyx)′0〉x is B′(TGY)-measurable.

Point (a) is a direct consequence of point (ii) of Proposition 2.17. For (b), we notice that by
assumption the claim is true if y = xn,m for some n,m. Then the general case follows from the
continuity of the scalar product established in Proposition 2.11 and the continuity of the map
Brxn (xn) 3 y 7→ (Gyx)′0 proved in Theorem 2.9.

For the second claim, denote by B(TxY) the collection of Borel sets in (TxY, dx) and by Ax the
σ-algebra induced by B(TGY) on TxY. Then the continuity of the ‘norm’ and ‘scalar product’
on TxY proved in Proposition 2.11 and the already recalled point (i) of Proposition 2.17 give the
inclusion Ax ⊂ B(TxY). For the opposite inclusion it is sufficient to prove that for any v ∈ TxY
the map TxY 3 w 7→ d2

x(v, w) is Ax-measurable. Since in (a) above we have already proved that
TxY 3 w 7→ |w|x is Ax-measurable, by (2.12b) it is sufficient to prove that TxY 3 w 7→ 〈w, v〉x is
Ax-measurable as well. For v of the form (Gyx)′0 for some y ∈ Brx(x) this can be proved as in (b)
above. Then the general case follows by the positive homogeneity of the scalar product given in
(2.12d) and the density result in Theorem 2.9. �

Corollary 3.2. Let Y be a local CAT(κ) space which is also separable. Then B(TGY) is countably
generated.

Proof. By definition, the σ-algebra B′(TGY) defined in Proposition 3.1 is countably generated.
Thus the same holds for B(TGY). �

Corollary 3.3. Let Y be a local CAT(κ) space which is also separable. Let us denote by Norm :
TGY → R+ the map sending (x, v) to |v|x. Then Norm is a Borel function.

Proof. Given that x 7→ rx is continuous, for any z ∈ Y we can find λz ∈ (0, rz) such that Bλz (z) ⊂
Brx(x) whenever x ∈ Bλz (z). By Lindelöf property, to get the statement it is sufficient to prove that
(πY)−1

(
Bλz (z)

)
3 (x, v)→ |v|x is Borel for every z ∈ Y. Fix z ∈ Y and choose a dense sequence

(yn) ⊂ Bλz (z). We know from item ii) of Proposition 2.17 that |v|x = − infn dxdistyn(v) holds
for every (x, v) ∈ (πY)−1

(
Bλz (z)

)
. Thus the required measurability follows from the definition
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of B(TGY), which grants that (x, v) 7→ dxdistyn(v) is measurable on (πY)−1
(
Bλz (z)

)
for every

choice of n ∈ N. �

We shall say that a section v : Y → TGY is simple provided there are (yn) ⊂ Y, (αn) ⊂ R+

and a Borel partition (En) of Y such that for every n ∈ N and x ∈ En we have yn ∈ Brx(x) and
v(x) = αn(Gynx )′0. We will use the notation v =

∑
n
χEnαn(Gyn· )′0 for simple sections. Notice that,

arguing as in the proof of Proposition 3.1, we see that simple sections are automatically Borel.

The following lemma will be useful:

Lemma 3.4. Let Y be a separable local CAT(κ) space. Then for every Borel section v of TGY
and ε > 0 there is a simple section ṽ such that dx

(
v(x), ṽ(x)

)
< ε for every x ∈ Y.

Proof. Using the Lindelöf property of Y and the covering made by Brx/2(x) it is easy to see that
we can reduce to the case in which Y is CAT(κ) and, for any x, y ∈ Y, it holds that y ∈ Brx(x).
Assume this is the case and let (yn) ⊂ Y be countable and dense. By Theorem 2.9, for every
x ∈ Y the set

{
r(Gynx )′0 : r ∈ Q+, n ∈ N

}
is dense in TxY. Let i 7→ (ri, yni) be an enumeration

of the couples (r, yn) with r ∈ Q+ and n ∈ N. Given a Borel section v, define

Ei :=
{
x ∈ Y

∣∣∣ i is the least index j such that dx
(
v(x), rj(G

yj
x )′0

)
< ε
}

and notice that, since the map x 7→ dx
(
v(x), ri(G

yi
x )′0

)
is Borel for every i, the sets Ei are Borel.

The density result previously recalled ensures that
⋃
iEi = Y. It follows that ṽ :=

∑
i
χEiri(G

yi
· )′0

fulfills the requirements. �

Corollary 3.5. Let Y be a local CAT(κ) space which is also separable. Let f : Y → R be a locally
semiconvex, locally Lipschitz function and v a Borel section of TGY. Then Y 3 x 7→ dxf

(
v(x)

)
is a Borel function.

Proof. In light of Lemma 3.4, it is sufficient to prove the statement for simple sections. Let
v =

∑
n
χEnαn(Gyn· )′0 be simple and observe that, for every x ∈ Y, one has that

dxf
(
v(x)

)
=
∑
n

χEn(x)αn dxf
(
(Gynx )′0

)
=
∑
n

χEn(x)αn lim
h↓0

f
(
(Gynx )h

)
− f(x)

h
.

Since the function En 3 x 7→ f
(
(Gynx )h

)
− f(x) is continuous for all h ∈ (0, 1) by Lemma 2.2, we

conclude that Y 3 x 7→ dxf
(
v(x)

)
is Borel, thus completing the proof of the statement. �

The approximation result Lemma 3.4 also links the notion of Borel sections to Borel functions
on Y.

Proposition 3.6. Let Y be a separable local CAT(κ) space. Let v, w be Borel sections of TGY
and λ ≥ 0. Then it holds that

Y 3 x 7−→ |v|x,
Y 3 x 7−→ dx

(
v(x), w(x)

)
,

Y 3 x 7−→
〈
v(x), w(x)

〉
x

are Borel functions. Moreover, λv and v ⊕ w are Borel sections of TGY.

Proof. For the first part of the statement it is sufficient to prove that x 7→ dx
(
v(x), w(x)

)
is Borel,

by the definition of ‘norm’ and of ‘scalar product’. As for the proof of Lemma 3.4 above, we use
the Lindelöf property of Y and the covering made of the balls Brx/2(x), x ∈ Y, to reduce to the
case of a CAT(κ) space Y such that y ∈ Brx(x) for every x, y ∈ Y. By Lemma 3.4 it is sufficient
to prove the claim for simple sections v, w. Let v =

∑
i
χEiαi(G

yi
· )′0 and w =

∑
j
χFjβj(G

zj
· )′0 be

simple, and notice that

dx
(
v(x), w(x)

)
=
∑
i,j

χEi∩Fj (x) dx
(
αi(G

yi
x )′0, βj(G

zj
x )′0

)
.

The Borel regularity of x 7→ dx
(
v(x), w(x)

)
will follow if we show that x 7→ dx

(
α(Gyx)′0, β(Gzx)′0

)
is

Borel for every y, z ∈ Y and α, β > 0. To this aim notice that, since geodesics in Y are unique,
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they depend continuously (w.r.t. uniform convergence) on their endpoints (see also Lemma 2.2).
Therefore, for every t ∈ (0, 1), we have that x 7→ d

(
(Gyx)αt, (G

z
x)βt

)
is continuous and the conclusion

follows recalling that, by (2.11) and Theorem 2.9, we have

dx
(
α(Gyx)′0, β(Gzx)′0

)
= lim
n→∞

d
(
(Gyx)αtn , (G

z
x)βtn

)
tn

,

where (tn) is any sequence decreasing to 0.
It is straightforward to see that λv is a Borel section of TGY: the function Y 3 x 7→

dxdisty
(
λv(x)

)
= λ dxdisty

(
v(x)

)
is Borel for every y ∈ Y, whence λv is a Borel section.

We now aim to prove that v⊕w is a Borel section of TGY. By Lemma 3.4 it is enough to show
that Y \ {y, z} 3 x 7→ dxdistp

(
α(Gyx)′0, β(Gzx)′0

)
is Borel for every p, y, z ∈ Y and α, β > 0. By

Lemma 2.12 and the properties of dxdistp we have

dxdistp
(
α(Gyx)′0, β(Gzx)′0

)
= lim

ε↓0
dxdistp

(
2ε−1(Gmε(x)

x )′0
)

= lim
ε↓0

lim
h↓0

d
(
p, (G

mε(x)
x )2h/ε

)
− d(p, x)

h
,

where mε(x) stands for the midpoint between (Gyx)εα and (Gzx)εβ . Given that the map sending

x ∈ Y to (G
mε(x)
x )2h/ε ∈ Y is continuous (as one can see by repeatedly applying Lemma 2.2), we

conclude that Y \ {y, z} 3 x 7→ dxdistp
(
α(Gyx)′0, β(Gzx)′0

)
is Borel, as required. This completes the

proof of the statement. �

We now consider the ‘right derivative’ map RightDer : C([0, 1]; Y)× [0, 1]→ TGY, given by

(3.1) RightDer(γ, t) :=

{ (
γt, lim

h↓0
h−1(Gγt+hγt )′0

)
, if the limit in TγtY exists,

(γt, 0), otherwise.

Proposition 3.7. Let Y be a separable local CAT(κ) space. Then RightDer : C([0, 1]; Y)×[0, 1]→
TGY is a Borel map.

Proof. Let us denote by e : C([0, 1]; Y) × [0, 1] → Y the evaluation map (γ, t) 7→ γt, which is
clearly continuous. In order to show that RightDer is Borel it suffices to prove that:

i) πY ◦ RightDer is Borel,
ii) d disty ◦ RightDer is Borel for every x ∈ Y and y ∈ Brx(x).

Item i) trivially follows from the observation that e = πY ◦ RightDer. To prove ii), fix x ∈ Y and
y ∈ Brx(x). Let us define the sets D′, D and Sh for h ∈ (0, 1) as follows:

D′ :=
{

(γ, t) ∈ C([0, 1]; Y)× [0, 1)
∣∣ γt ∈ Brx(x)

}
= e−1

(
Brx(x)

)
,

D :=
{

(γ, t) ∈ D′
∣∣ lim
h↓0

h−1(Gγt+hγt )′0 exists
}
,

Sh :=
{

(γ, t) ∈ D′
∣∣ t+ h ∈ [0, 1), γt+h ∈ Brγt

(γt)
}
,

respectively. Since e and x 7→ rx are continuous, we have that D′ and Sh are open. Notice that

(d disty ◦ RightDer)(γ, t) = χD(γ, t) lim
h↓0

dγtdisty
(
h−1(Gγt+hγt )′0

)
(2.16)

= χD(γ, t) lim
h↓0

lim
ε↓0

χSh(γ, t)
d
(
y, (G

γt+h
γt )ε

)
− d(y, γt)

εh
,

where the first equality stems from the continuity of TγtY 3 v 7→ dγtdisty(v). Given any h, ε ∈
(0, 1), the map (γ, t) 7→ χSh(γ, t)

[
d
(
y, (G

γt+h
γt )ε

)
− d(y, γt)

]
/(εh) is continuous on Sh by Lemma

2.2. Thus, to obtain the measurability of the function d disty ◦ RightDer, it remains to show that
the set D is Borel. To this aim, let us set

Ah1,h2,ε :=
{

(γ, t) ∈ Sh1
∩ Sh2

∣∣∣ dγt(h−1
1 (G

γt+h1
γt )′0, h

−1
2 (G

γt+h2
γt )′0

)
< ε
}

for every h1, h2 ∈ (0, 1) and ε > 0. Given that for all (γ, t) ∈ Sh1
∩ Sh2

we can write

dγt
(
h−1

1 (G
γt+h1
γt )′0, h

−1
2 (G

γt+h2
γt )′0

) (2.5)
= lim

δ↓0

d
(
(G
γt+h1
γt )δ/h1

, (G
γt+h2
γt )δ/h2

)
δ

,
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we can deduce (by Lemma 2.2) that each set Ah1,h2,ε is Borel. Finally, observe that

D =
⋂
ε∈Q+

⋃
h∈Q+

h<1

⋂
h1,h2∈Q+

h1,h2<h

Ah1,h2,ε,

whence the set D is Borel. The statement follows. �

We now fix a non-negative and non-zero Radon measure µ on Y. We are interested in Borel
sections of TGY which are also in L2(µ).

Definition 3.8 (The space L2(TGY;µ)). Let Y be a separable local CAT(κ)-space and µ a non-
negative non-zero Radon measure on Y. The space L2(TGY;µ) is defined as

L2(TGY;µ) :=
{
v Borel section of TGY :

∫
|v|2x dµ(x) <∞

}
/ ∼,

where v ∼ w if {x : v(x) = w(x)} is µ-negligible. We endow L2(TGY;µ) with the distance

dµ(v, w) :=

√∫
d2
x

(
v(x), w(x)

)
dµ(x).

Notice that, by Proposition 3.6, the integrals in Definition 3.8 are well-defined. With a (com-
mon) abuse of notation we do not distinguish between a Borel section v and its equivalence class
up to µ-a.e. equality.

We conclude the section collecting some basic properties of
(
L2(TGY;µ), dµ

)
:

Proposition 3.9. Let Y be a separable local CAT(κ) space and µ a non-negative, non-zero Radon
measure on it. Then

(
L2(TGY;µ), dµ

)
is a complete and separable CAT(0) space.

Proof. The fact that dµ is a distance on L2(TGY;µ) is trivial, so we turn to the other properties.
Completeness. The argument is standard: as it is well-known, it is sufficient to prove that

any (vn) ⊂ L2(TGY;µ) such that
∑
n dµ(vn, vn+1) <∞ is convergent. Then from the inequality∥∥∥∑

n

d·(vn, vn+1)
∥∥∥
L2(µ)

≤
∑
n

∥∥d·(vn, vn+1)
∥∥
L2(µ)

=
∑
n

dµ(vn, vn+1) <∞

we see that
∑
n d·(vn, vn+1) ∈ L2(µ) and in particular that

∑
n dx(vn(x), vn+1(x)) <∞ for µ-a.e.

x. For any such x the sequence (vn(x)) is Cauchy in TxY and thus has a limit v(x). It is then
clear that v is (the equivalence class up to µ-a.e. equality of) a Borel section. Moreover, by Fatou’s
lemma and the definition of dµ we see that

lim
n

dµ(v, vn) ≤ lim
n

lim
m

dµ(vn, vm) = 0,

having used again the assumption that (vn) is dµ-Cauchy. This proves that v is the dµ-limit of
(vn) and, since this fact and the triangle inequality for dµ also tell that v ∈ L2(TGY;µ), the claim
is proved.

Separability. Using the Lindelöf property of Y and the very definition of distance dµ we
can reduce to the case in which Y is a separable CAT(κ) space with diameter < Dκ and µ is a
finite measure. Then taking into account Lemma 3.4 above it is easy to see that to conclude it
is sufficient to find a countable set D ⊂ L2(TGY;µ) whose closure contains all simple sections of
the form v = χE(Gy· )′0 for generic E ⊂ Y Borel and y ∈ Y. Let D1 ⊂ Y be countable and dense
and D2 ⊂ B(Y) be countable and such that for any E ⊂ Y Borel and ε > 0 there is U ∈ D2 such
that µ(U∆E) < ε (for instance, the family of all finite unions of open balls having center in D1

and rational radius does the job – by regularity of the measure µ).
We then define

D :=
{
χE(Gy· )

′
0 : y ∈ D1, E ∈ D2

}
and claim that this does the job. To see this, notice that the inequality

d2
µ

(
χE(Gy· )

′
0, χẼ(Gy· )

′
0

)
=

∫
E∆Ẽ

|(Gyx)′0|2x dµ(x) ≤ µ(E∆Ẽ)D2
κ
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grants that the closure of D contains all the sections of the form χE(Gy· )′0 for E ⊂ Y Borel and
y ∈ D1. To conclude recall the continuity of y 7→ (Gyx)′0 ∈ TxY proved in Theorem 2.9 and notice
that an application of the dominated convergence theorem gives that χE(Gyn· )′0 → χE(Gy· )′0 in
L2(TGY;µ) if yn → y.

CAT(0) condition. By [41, Remark 2.2], it is sufficient to show that for any v, v′ ∈ L2(TGY;µ)
there exists v′′ ∈ L2(TGY;µ) such that

d2
µ(w, v′′) ≤ 1

2
d2
µ(w, v) +

1

2
d2
µ(w, v′)− 1

4
d2
µ(v, v′) for every w ∈ L2(TGY;µ).

Let us define v′′ ∈ L2(TGY;µ) as

v′′x :=
1

2
vx ⊕ v′x ∈ TxY for µ-a.e. x ∈ Y.

(Note that v′′x is the midpoint between vx and v′x.) The fact that v′′ is (the equivalence class of)
a Borel section of TGY follows by Proposition 3.6, while the integrability condition (x 7→ |v′′x |x) ∈
L2(µ) is implied by inequality (2.12g). By [41, Corollary 2.5], we have

d2
x(wx, v

′′
x) ≤ 1

2
d2
x(wx, vx) +

1

2
d2
x(wx, v

′
x)− 1

4
d2
x(vx, v

′
x) for µ-a.e. x ∈ Y.

By integrating with respect to µ we obtain the desired inequality. �

4. Normal 1-currents and the superposition principle

In this section we recall the notion of metric 1-current as introduced by Ambrosio-Kirchheim in
[7] and Paolini-Stepanov’s metric version of Smirnov’s superposition principle. Throughout this
section (Y, d) is a complete and separable metric space. See also [31] and [45] for more on the
topic.

We denote by LIP(Y) the space of real-valued Lipschitz functions on Y, and by LIPb(Y) the
subspace of bounded Lipschitz functions.

Definition 4.1 (Normal 1-currents). A (metric) 1-current of finite mass on Y is a bilinear func-
tional

T : LIPb(Y)× LIP(Y)→ R
satisfying the following conditions:

(a) T (g, f) = 0 if the function f ∈ LIP(Y) is constant on the support of g ∈ LIPb(Y),
(b) T (g, fn)→ T (g, f) whenever fn → f pointwise and supn Lip(fn) <∞,
(c) there exists a finite Borel measure ν on Y satisfying

(4.1)
∣∣T (g, f)

∣∣ ≤ Lip(f)

∫
|g|dν ∀g ∈ LIPb(Y), f ∈ LIP(Y).

A normal 1 current is a 1-current of finite mass such that there is a finite Borel measure µ (called
boundary of T and denoted by ∂T ) such that

T (1, f) =

∫
f dµ ∀f ∈ LIPb(Y).

It is not hard to check that if T has finite mass, there is a minimal (in the sense of partial
ordering of measures) Borel measure for which (4.1) holds: it will be denoted by ‖T‖ and called
mass measure of T . We set M(T ) := ‖T‖(Y).

A prototypical example is the normal 1-current [[γ]] induced by an absolutely continuous curve
γ : [0, 1]→ Y via the formula

[[γ]](g, f) :=

∫ 1

0

g(γt)(f ◦ γ)′t dt, (g, f) ∈ LIPb(Y)× LIP(Y).

Its mass measure is given by γ∗
(
|γ̇|L1|[0,1]

)
and its boundary is given by ∂[[γ]] = δγ1

− δγ0
.

Notice that the current [[γ]] remains unchanged if we change the parametrization of γ. This
makes it natural to consider the space of ‘curves up to reparametrization’ as follows (here we only
consider non-decreasing reparametrizations).
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4.1. Reparametrizations of curves. A reparametrization α : [0, 1]→ [0, 1] is a non-decreasing
continuous surjection. If γ, η ∈ C([0, 1]; Y), we say that η is a reparametrization of γ if there is a
reparametrization α satisfying γ ◦ α = η.

Remark 4.2. Given γ ∈ C([0, 1]; Y), there exists a curve η ∈ C([0, 1]; Y) which is not constant
on any open interval, and is a reparametrization of γ, cf. [16, Proposition 3.6]. �

Define an equivalence relation on C([0, 1]; Y) by declaring γ ∼ η if there is a curve ϕ ∈
C([0, 1]; Y) which is a reparametrization of both γ and η. It is easy to see that this indeed
defines an equivalence relation. Let Γ(Y) := C([0, 1],Y)/ ∼ be the quotient space. We define a
distance function on Γ(Y) by

dΓ([γ], [η]) = inf
{
d∞(γ ◦ α, η ◦ β) : α, β reparametrizations

}
, [γ], [η] ∈ Γ(Y),

where
d∞(γ, η) := sup

0≤t≤1
d(γt, ηt).

This is clearly symmetric, and satisfies the triangle inequality. Consequently it defines a pseudo-
metric on Γ(Y). It follows from Lemma 4.3 below that dΓ defines a metric on Γ(Y).

Note that, since a non-decreasing surjection [0, 1] → [0, 1] may be approximated uniformly by
increasing homeomorphisms of [0, 1], it easily follows that dΓ([γ], [η]) has the representation

dΓ([γ], [η]) = inf
{
d∞(γ ◦ φ, η) : φ increasing homeomorphism of [0, 1]

}
.

Lemma 4.3. Let γ, η ∈ C([0, 1]; Y) be such that dΓ([γ], [η]) = 0. Then [γ] = [η].

Proof. Let γ, η ∈ C([0, 1]; Y). By Remark 4.2 we may assume that γ is not constant on any
non-trivial interval. We will prove that there is a reparametrization φ such that γ ◦ φ = η.

Let φn : [0, 1]→ [0, 1] be a sequence of increasing homeomorphisms minimizing dΓ([γ], [η]):

lim
n→∞

d∞(γ ◦ φn, η) = 0.

Denote ψn = φ−1
n . For each n ∈ N, ψn is also an increasing homeomorphism. Thus, φn and ψn are

of bounded variation and their distributional derivatives φ′n and ψ′n (which are positive measures
on [0, 1]) satisfy ∫ 1

0

|φ′n|dt = 1 =

∫ 1

0

|ψ′n|dt

for all n ∈ N. By Helly’s selection principle (see [34]), there are subsequences (labeled here by the
same indices) and functions φ, ψ : [0, 1]→ [0, 1] of bounded variation so that φn → φ and ψn → ψ
pointwise. Clearly, φ and ψ are non-decreasing and satisfy φ(0) = ψ(0) = 0, φ(1) = ψ(1) = 1.
Since γ is continuous, and φn → φ pointwise, we have the estimate

d(γφ(t), ηt) = lim
n→∞

d(γφn(t), ηt) ≤ lim
n→∞

d∞(γ ◦ φn, η) = 0

for all t ∈ [0, 1]. Thus
γ ◦ φ = η.

Similarly we obtain
γ = η ◦ ψ.

For any 0 ≤ a < b ≤ 1, the pointwise convergence φn → φ implies that
∞⋃
k=1

⋂
n≥k

φ−1
n [a, b] ⊂ φ−1[a, b].

Moreover, we have

(ψ(a), ψ(b)) ⊂
∞⋃
k=1

⋂
n≥k

φ−1
n [a, b].

To see this, let x ∈ (ψ(a), ψ(b)). For all large enough n ∈ N, we have ψn(a) < x < ψn(b) or,
equivalently, a < φn(x) < b. Thus φ(x) = limn→∞ φn(x) ∈ [a, b]. The inclusions above imply

(4.2) (ψ(a), ψ(b)) ⊂ φ−1[a, b].
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It follows that φ is continuous. Indeed, if a non-decreasing function φ : [0, 1] → [0, 1] has a point
of discontinuity, it must omit some non-trivial interval [a, b] ⊂ [0, 1], i.e. φ−1[a, b] = ∅, implying
ψ(a) = ψ(b). By (4.2), we have

d(γa, γb) = d(ηψ(a), ηψ(b)) = 0,

which contradicts the fact that γ is not constant on any non-trivial interval. �

Remark 4.4. Since C([0, 1]; Y) is complete and separable, we have that Γ(Y) is complete and
separable. �

We will denote by Γ(Y) ⊂ Γ(Y) the image of AC([0, 1]; Y) ⊂ C([0, 1]; Y) under the quotient
map q : C([0, 1]; Y) → Γ(Y) given by γ 7→ [γ], i.e. Γ(Y) = q

(
AC([0, 1]; Y)

)
. Notice that since

AC([0, 1]; Y) is a Borel subset of C([0, 1]; Y) (see for instance [5, Section 2.2]), we have that Γ(Y)
is a Suslin subset of Γ(Y) and thus universally measurable.

Recall that a curve γ ∈ C([0, 1]; Y) is called rectifiable, if it has finite length:

`(γ) := sup

{
m∑
i=1

d(γti , γti−1)

}
<∞,

where the supremum is taken over all partitions 0 = t0 < . . . < tm = 1 of [0, 1]. Note that the
length `(γ) is independent of reparametrization and, for absolutely continuous curves, is given by

`(γ) =

∫ 1

0

|γ̇t|dt;

see [26] for these statements, as well as the proposition below.

Proposition 4.5 (Reparametrization with constant speed). [26, Theorem 3.2 and Corollary 3.8]
Let Y be a complete and separable space and γ ∈ C([0, 1]; Y) a non-constant rectifiable curve.
Define φ : [0, 1]→ [0, 1] by

φ(t) := inf
{
s ∈ [0, 1] : `(γ|[0,s]) = t`(γ)

}
, t ∈ [0, 1].

Then γ̄ := γ ◦ φ is a `(γ)-Lipschitz curve and has constant metric speed | ˙̄γt| = `(γ) for almost
every t. Moreover

γ̄
(
`(γ|[0,t])/`(γ)

)
= γ(t), t ∈ [0, 1],

i.e. γ̄ is a reparametrization of γ.
If γ ∼ η are two absolutely continuous curves, then their reparametrizations with constant speed

coincide.

We shall denote by ConstSpRep : Γ(Y)→ C([0, 1],Y) the map sending the equivalence class of
γ ∈ AC([0, 1]; Y) to the constant speed reparametrization of any element in the class. Proposition
4.5 implies that this map is well-defined. Also, we have:

Proposition 4.6. Let Y be a complete separable space. Then ConstSpRep : Γ(Y) → C([0, 1]; Y)
is a Borel map.

Proof. Throughout the proof we use the shorthand θ̄ := ConstSpRep(θ). Introduce a new metric
d0 on Γ(Y) by setting

d0(θ1, θ2) := max
{
dΓ(θ1, θ2),

∣∣`(θ1)− `(θ2)
∣∣}, θ1, θ2 ∈ Γ(Y).

Since the length functional ` : Γ(Y)→ [0,∞] is lower semicontinuous, and since

Bd0
(θ, r) = BΓ(θ, r) ∩ `−1(`(θ)− r, `(θ) + r),

it follows that d0-balls Bd0(θ, r) are Borel in (Γ(Y), dΓ). Consequently the identity

I : (Γ(Y), dΓ)→ (Γ(Y), d0)

is a Borel map. Define
h0 : (Γ(Y), d0)→ C([0, 1];Y ), θ 7→ θ̄
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and note that ConstSpRep = h0 ◦ I. Thus, it suffices to prove that h0 is continuous. We thank
Stefan Wenger for providing the elegant argument presented below.

Suppose d0(θn, θ) → 0 as n → ∞. Then there are nondecreasing bijections ϕn : [0, 1] → [0, 1]
such that

d∞(θn ◦ ϕn, θ̄)→ 0 as n→∞.
Denote γn := θn ◦ ϕn. We have lim

n→∞
`(γn) = `(θ). Moreover, for any t ∈ [0, 1], we have

`(θ̄) = `(θ̄|[0,t]) + `(θ̄|[t,1]
) ≤ lim

n→∞
`(γn|[0,t]) + lim

n→∞
`(γn|[t,1]

)(4.3)

≤ lim
n→∞

(
`(γn|[0,t]) + `(γn|[t,1]

)
)

= `(θ̄).

Since

`(θ̄|[0,t]) ≤ lim
n→∞

`(γn|[0,t]) and `(θ̄|[t,1]
) ≤ lim

n→∞
`(γn|[t,1]

),(4.4)

it follows from (4.3) that the inequalities in (4.4) are in fact equalities, and we may pass to a
subsequence (not relabeled) so that, for a countable dense set D ⊂ [0, 1], we have

(4.5) `(θ̄|[0,t]) = lim
n→∞

`(γn|[0,t]), t ∈ D.

Set

`n(t) :=
`(γn|[0,t])

`(γn)
, t ∈ [0, 1],

whence, by (4.5) and the fact that θ̄ is constant speed parametrized, we have

(4.6) lim
n→∞

`n(t) =
`(θ̄|[0,t])

`(θ̄)
= t, t ∈ D.

The sequence (γ̄n)n of constant speed parametrizations of γn is uniformly Lipschitz and thus, after
passing to a subsequence, it has a uniform limit β : [0, 1] → Y which is a Lipschitz curve. Note
that θ̄n = γ̄n.

By the constant speed parametrization, we have

(4.7) γ̄n ◦ `n = γn.

For each t ∈ D we have, by (4.6) and (4.7),

β(t) = lim
n→∞

γ̄n(`n(t)) = lim
n→∞

γn(t) = θ̄(t).

Since the equality holds on a dense set of points, we conclude that β = θ̄.
By repeating this argument for any subsequence of θn we have that, if θn → θ in d0, then

θ̄n → θ̄. Thus h0 is continuous, and this completes the proof of the claim. �

4.2. The superposition principle. We shall consider finite Borel measures π on Γ(Y) concen-
trated on Γ(Y) and typically denote by [γ] their ‘integration variable’. In doing this, we always
implicitly assume that γ is absolutely continuous for π-a.e. [γ] (i.e. we select an element in [γ]
which is absolutely continuous – see also Proposition 4.6 above).

Lemma 4.7. For any (g, f) ∈ LIPb(Y)×LIP(Y), the map A : C([0, 1]; Y)→ R∪ {+∞} given by

(4.8) A(γ) :=

{
[[γ]](g, f)
+∞

if γ ∈ AC([0, 1]; Y),
otherwise

is a Borel map.

Proof. Since AC([0, 1]; Y) ⊂ C([0, 1]; Y) is Borel, it suffices to show that the map

A|AC : AC([0, 1]; Y)→ R, γ 7→ [[γ]](g, f)
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is Borel. Let γ̄ denote the constant speed parametrization given by Proposition 4.5. Let q :
C([0, 1]; Y) → Γ(Y) be the quotient map γ 7→ [γ]. Since γ̄ = ConstSpRep(q(γ)), Proposition 4.6
implies that AC([0, 1]; Y) 3 γ 7→ γ̄ is Borel. Consequently the map

In : AC([0, 1]; Y)→ R, γ 7→
∫ 1−1/n

0

g(γ̄t)f(γ̄t+1/n) dt

is Borel for each n ∈ N ∪ {∞}. To show that A|AC is Borel it suffices to see that

(4.9) A|AC = lim
n→∞

n(In − I∞).

For each γ ∈ AC([0, 1]; Y) we have that f ◦ γ̄ is Lipschitz and thus, by the dominated convergence
theorem,

A(γ) = [[γ]](g, f) = [[γ̄]](g, f) =

∫ 1

0

g(γ̄t) lim
n→∞

n
[
f(γ̄t+1/n)− f(γ̄t)

]
dt

= lim
n→∞

n

(∫ 1−1/n

0

g(γ̄t)
[
f(γ̄t+1/n)− f(γ̄t)

]
dt

)
= lim
n→∞

n
(
In(γ)− I∞(γ)

)
,

establishing (4.9). �

By (4.8), and the fact that [[γ]] = [[η]] if γ ∼ η, we see that for any finite non-negative Borel
measure π on Γ(Y) concentrated on Γ(Y) the functional [[π]] : LIPb(Y)× LIP(Y)→ R given by

[[π]](g, f) :=

∫
[[γ]](g, f) dπ([γ]) ∀(g, f) ∈ LIPb(Y)× LIP(Y)

is well-defined and a normal 1-current: for its mass we have the bound

(4.10)

∫
g d‖[[π]]‖ ≤

∫∫
g dγ∗(|γ̇|L1

|[0,1]
) dπ([γ]) =

∫∫ 1

0

g(γt)|γ̇t|dtdπ([γ])

for every non-negative g ∈ LIPb(Y); notice that γ∗(|γ̇|L1|[0,1]
) is independent on the parametriza-

tion of γ – see also Proposition 4.5 below. For its boundary we have∫
f d∂[[π]] =

∫
f d
(
(e1)∗π − (e0)∗π

)
=

∫
f(γ1)− f(γ0) dπ([γ]) ∀f ∈ LIPb(Y)

(notice that γ0, γ1 are independent on the parametrization of γ). Observe that picking g ≡ 1 in
(4.10) we obtain

(4.11) M([[π]]) ≤
∫∫ 1

0

|γ̇t|dt dπ([γ]).

The superposition principle states that every normal 1-current is of the form [[π]] for some π as
above, and moreover π can be chosen so that equality holds in (4.11). For the proof of the following
result we refer to [36, Corollary 3.3]:

Theorem 4.8 (Superposition principle). Let Y be a complete and separable space and T a normal
1-current. Then there is a finite non-negative Borel measure π on Γ(Y) concentrated on Γ(Y) such
that

T = [[π]],

M(T ) =

∫∫ 1

0

|γ̇t|dtdπ([γ]).

For our applications it will be more convenient to deal with measures on C([0, 1]; Y) rather than
on Γ(Y). Using Lemma 4.7 and Proposition 4.6, we can reformulate Theorem 4.8 as follows:

Theorem 4.9 (Superposition principle - equivalent formulation). Let Y be a complete and sep-
arable space and T a normal 1-current. Then there is a finite non-negative Borel measure π on
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C([0, 1]; Y) concentrated on the set of non-constant absolutely continuous curves with constant
speed such that

T (g, f) =

∫∫ 1

0

g(γt)(f ◦ γ)′t dtdπ(γ),∫
g d‖T‖ =

∫∫ 1

0

g(γt)|γ̇t|dtdπ(γ)

(4.12)

for any g ∈ LIPb(Y) and f ∈ LIP(Y).

Proof. By Theorem 4.8, there is a finite measure η ∈M (Γ(Y)) for which

T (g, f) =

∫∫ 1

0

g(θt)(f ◦ θ)′t dtdη(θ) for all (g, f) ∈ LIPb(Y)× LIP(Y),

M(T ) =

∫
`(θ) dη(θ).

We define π ∈M (C([0, 1]; Y)) as
π := ConstSpRep∗η.

Since both

`(θ) =

∫ 1

0

|θ̇t|dt and

∫ 1

0

g(θt)(f ◦ θ)′t dt

are independent of parametrization, we have the identities

T (g, f) =

∫∫ 1

0

g(γt)(f ◦ γ)′t dtdπ(γ),(4.13)

M(T ) =

∫∫ 1

0

|γ̇t|dtdπ(γ)(4.14)

for all (g, f) ∈ LIPb(Y)× LIP(Y).
It remains to prove the second identity in the claim. It suffices to prove it for g = χE for Borel

sets E ⊂ Y. It follows from (4.13) that∣∣T (g, f)
∣∣ ≤ ∫∫ 1

0

|g|(γt)lipaf(γt)|γ̇t|dtdπ(γ),

whence ‖T‖ ≤ ν, where ν is defined by

ν(E) :=

∫∫ 1

0

χE(γt)|γ̇t|dtdπ(γ), E ⊂ Y Borel.

By the characterisation of mass (see [7, Proposition 2.7]) it follows that, for every ε > 0, there
are functions (gε, fε) ∈ LIPb(Y)× LIP(Y) such that |gε| ≤ 1 and Lipfε ≤ 1, and for which

M(T )− ε < T (gε, fε).

Using (4.13) and the identity 1 = χE(γt) + χY\E(γt), we have∫∫ 1

0

χE(γt)|γ̇|t dtdπ(γ) +

∫∫ 1

0

χY\E(γt)|γ̇|t dtdπ(γ)− ε = M(T )− ε < T (gε, fε)

=

∫∫ 1

0

χE(γt)gε(γt)(fε ◦ γ)′t dtdπ(γ) +

∫∫ 1

0

χY\E(γt)gε(γt)(fε ◦ γ)′t dtdπ(γ)

≤
∫∫ 1

0

χE(γt)gε(γt)(fε ◦ γ)′t dtdπ(γ) +

∫∫ 1

0

χY\E(γt)|γ̇t|dtdπ(γ),

which implies∫∫ 1

0

χE(γt)|γ̇|t dtdπ(γ)− ε ≤
∫∫ 1

0

χE(γt)gε(γt)(fε ◦ γ)′t dtdπ(γ) ≤ ‖T‖(E)

for every ε > 0. It follows that ‖T‖ = ν, and this completes the proof of the last identity in
(4.12). �
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5. Metric measure spaces

For our purposes, a metric measure space is a triple (Y, d, µ) where (Y, d) is a complete separable
metric space and µ a Borel measure on Y that is finite on bounded sets.

5.1. Derivations and the space Der2,2(Y;µ). We introduce derivations and their basic proper-
ties, based on the presentation in [14, 15]. This notion of derivation has been inspired by a similar
concept introduced by N. Weaver in [44].

Let us denote by L0(µ) the set of equivalence classes of µ-measurable maps on Y (without any
integrability assumptions).

Definition 5.1. A derivation b on Y is a linear map b : LIPb(Y)→ L0(µ) satisfying the following
two conditions:

(1) (Leibniz rule) b(fh) = fb(h) + hb(f) µ-a.e. for all f, h ∈ LIPb(Y).
(2) (Weak locality) There is g ∈ L0(µ) such that

∣∣b(f)
∣∣ ≤ g lipaf µ-a.e. for all f ∈ LIPb(Y).

We denote the set of derivations on Y by Der(Y). The space Der(Y) is a LIPb(Y)-module:
given a Lipschitz function ϕ ∈ LIPb(Y) and a derivation b ∈ Der(Y), the linear map

ϕb : LIPb(Y)→ L0(µ), f 7→ ϕb(f)

is again a derivation; see [14].

Remark 5.2. By weak locality, we may extend a derivation b ∈ Der(Y) to act on LIP(Y). Indeed,
given f ∈ LIP(Y) and an open ball B ⊂ Y, we have

χBb(f) = χBb(f̃)

for any f̃ ∈ LIPb(Y) for which f |B = f̃ |B . Thus, for any f ∈ LIP(Y) (and some fixed x0 ∈ Y),

the function
b(f) = lim

n→∞
χBn(x0)b

(
(1− dist(·, Bn(x0)))+f

)
is well-defined, and LIP(Y) 3 f 7→ b(f) satisfies (1) and (2) above. �

Given a derivation b ∈ Der(Y), we define

|b| =: ess sup
{
b(f)

∣∣ f ∈ LIPb(Y), Lip(f) ≤ 1
}
.

Lemma 5.3. Let b ∈ Der(Y). Then |b| satisfies (2) in Definition 5.1. Moreover, |b| is the least
function satisfying (2) in Definition 5.1.

Proof. Let f ∈ LIPb(Y). For x ∈ Y and r > 0, set Lr = Lr(x) := Lip
(
f |Br(x)

)
. Consider the

McShane extension gr of f |Br(x)
; in particular, gr/Lr is 1-Lipschitz and so we have∣∣b(gr/Lr)∣∣ ≤ |b| µ-almost everywhere.

Since b(gr) = b(f) in Br(x), we deduce that
∣∣b(f/Lr)∣∣ ≤ |b| holds µ-almost everywhere on Br(x).

Thus for each x ∈ Y and r > 0 we have∣∣b(f)
∣∣(y) ≤ |b|(y) · Lr(x) ≤ |b|(y) · L2r(y) µ-a.e. y ∈ Br(x).

Using this reasoning for a countable dense set (xn) ⊂ Y, we deduce that for every r > 0∣∣b(f)
∣∣(y) ≤ |b|(y) · Lr(y) µ-a.e. y ∈ Y.

The conclusion now follows by taking a sequence rn ↓ 0 and taking the limit as n→∞. �

A derivation b ∈ Der(Y) is said to have divergence if there exists a function h ∈ L1
b(µ) (that is,

h is integrable on bounded sets) so that

(5.1)

∫
b(f) dµ = −

∫
fhdµ for all f ∈ LIPb(Y)

(whenever this makes sense). If such a function h exists, it is unique and we denote it by div(b)
or div b. The set of b ∈ Der(Y) that have divergence is denoted by D(div).
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For 1 ≤ p ≤ ∞ we set

Derpb(Y;µ) :=
{
b ∈ Der(Y) : |b| ∈ Lpb(µ)

}
; Derp(Y;µ) :=

{
b ∈ Der(Y) : |b| ∈ Lp(µ)

}
and, for 1 ≤ p, q <∞,

Derp,q(Y;µ) :=
{
b ∈ Derp(Y) ∩D(div) : div b ∈ Lq(µ)

}
.

Lemma 5.4. Let b ∈ D(div). Assume (fn) is a sequence in LIPb(Y) converging to f ∈ LIPb(Y)
pointwise and with supn Lip(fn) <∞.

(1) Then

(5.2)

∫
ϕb(fn) dµ→

∫
ϕb(f) dµ

for each ϕ ∈ LIPb(Y).
(2) If, in addition, b ∈ Derpb(Y) for some 1 < p <∞, then the convergence (5.2) holds for all

ϕ ∈ Lq(µ) with bounded support. Here q is the conjugate exponent of p, i.e. 1/p+1/q = 1.

Proof. By linearity it suffices to prove the claims when f = 0. The Leibniz rule implies

ϕb(fn) = b(ϕfn)− fnb(ϕ).

Thus ∫
ϕb(fn) dµ =

∫
b(ϕfn) dµ−

∫
fnb(ϕ) dµ = −

∫
fn
[
ϕdiv b+ b(ϕ)

]
dµ.

Since fn → 0 pointwise and supn Lip(fn) < ∞ it follows – using the dominated convergence
theorem – that

∫
ϕb(fn) dµ→ 0 for all ϕ ∈ LIPb(Y). This proves (1).

Let ϕ ∈ Lq(µ) have bounded support B′ ⊂ Y, and consider the set B =
{
x : dist(B′, x) ≤ 1

}
.

Take a sequence (ϕm) ⊂ LIPb(Y) with supports in B such that

lim
m→∞

∫
|ϕm − ϕ|q dµ = 0.

Denote

L = sup
n

Lip(fn).

Then, for each m,n ∈ N we may estimate∣∣∣∣∫ ϕb(fn) dµ

∣∣∣∣ ≤ ∣∣∣∣∫ ϕmb(fn) dµ

∣∣∣∣+

∣∣∣∣∫ (ϕ− ϕm)b(fn) dµ

∣∣∣∣
≤
∣∣∣∣∫ ϕmb(fn) dµ

∣∣∣∣+

(∫
|ϕm − ϕ|q dµ

)1/q (∫
B

∣∣b(fn)
∣∣p dµ

)1/p

≤
∣∣∣∣∫ ϕmb(fn) dµ

∣∣∣∣+ L

(∫
|ϕm − ϕ|q dµ

)1/q (∫
B

|b|p dµ

)1/p

Taking first limn→∞ and then limm→∞ we obtain

lim
n→∞

∫
B

ϕb(fn) dµ = 0,

thus proving (2). �

In order to prove the next proposition, we recall the notion of strong locality, cf. [14, Lemma
7.13]: if b ∈ D(div), then for every f, g ∈ LIPb(Y) we have

b(f) = b(g) µ-almost everywhere on {f = g}

and, moreover, ∣∣b(f)
∣∣ ≤ |b| lipa(f |C) µ-almost everywhere on C,

for every closed set C ⊂ Y.
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Proposition 5.5. Let (Y, d, µ) be a metric measure space, Ω ⊂ Y an open set, and b ∈ Der1
b(Y)∩

D(div). Let D = (xn) ⊂ Y be countable and dense in Ω. Define fn(x) := d(xn, x). Then we have

ess supn
{
b(fn)

}
= |b|, ess infn

{
b(fn)

}
= −|b|

µ-almost everywhere in Ω.

Proof. Denote h+ = ess supnb(fn) and h− = ess infnb(fn). It suffices to prove that |b| ≤ h+ and
−|b| ≥ h− µ-almost everywhere on Ω.

Claim Consider the countable set

A =
{

(distx1 + q1) ∧ · · · ∧ (distxk + qk)
∣∣ x1, . . . , xk ∈ D, q1, . . . , qk ∈ Q, k ∈ N

}
.

The set of restrictions {g|Ω : g ∈ A } is dense in LIP1(Ω) :=
{
f ∈ LIP(Ω) : Lip(f) ≤ 1

}
in the

topology of pointwise convergence.

Proof of Claim. Let f ∈ LIP1(Y). Since D is dense in Ω, it is easy to see that

f(x) = inf
{
g(x) : g ∈ A , g ≥ f

}
for every x ∈ Ω. For each xk ∈ D, let (gmk )m be a sequence in A satisfying

gmk (xk)− f(xk) < 1/m

for all m ∈ N. Set

gn = gn1 ∧ · · · ∧ gnn .
Then (gn) is a sequence in A , and

lim
n→∞

gn(xk) = f(xk)

for every xk ∈ D. Since gn and f are 1-Lipschitz functions, it follows that

lim
n→∞

gn(x) = f(x)

for every x ∈ Ω. �

For any f ∈ LIP1(Y), let (gj) ⊂ A be a sequence such that gj |Ω converges to f |Ω pointwise. By

passing to a subsequence we may assume that gj converges pointwise to some 1-Lipschitz function
f ′ in Y (in this case f ′|Ω = f |Ω). For each j write gj as

gj = f j1 ∧ · · · ∧ f
j
kj
,

with f jn = distxjn + qjn. Define the sets Bjn, n = 1, 2, . . . as Bjn := {gj = f jn} if 1 ≤ n ≤ kj and

Bjn := ∅ if n > kj ; also set

Cjn := Bjn \
⋃
m<n

Bjm.

Note that {Cjn}n is a partition of Y. By the strong locality of b we have

b(gj) = b(f jn)

µ-almost everywhere on Bjn. Thus the identity

b(gj) =
∑
n

χCjnb(f
j
n)

is valid µ-almost everywhere. For any non-negative η ∈ LIPb(Y) with bounded support, we then
have ∫

ηb(gj) dµ =
∑
n

∫
ηχCjnb(f

j
n) dµ ≤

∑
n

∫
ηχCjnh+ dµ =

∫
ηh+ dµ.

It follows that b(gj) ≤ h+ µ-a.e. and, by Lemma 5.4, that b(f ′) ≤ h+ µ-almost everywhere. Since
f ′|Ω = f |Ω the locality of b implies that b(f) ≤ h+ µ-almost everywhere on Ω. Since f is arbitrary

it follows that |b| ≤ h+ µ-almost everywhere on Ω.
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The inequality −|b| ≥ h− (µ-almost everywhere) on Ω is proven analogously, using the identity

−|b| = ess infLip(f)≤1b(f).

�

Definition 5.6. Given p ≥ 1, we define the norm ‖ · ‖p,p on Derp,p(Y;µ) as

‖b‖p,p :=

(∫
|b|p dµ+

∫
(div b)p dµ

)1/p

.

The normed space
(
Derp,p(Y;µ), ‖ · ‖p,p

)
is a Banach space; see [14]. We shall also use the norm

‖b‖p :=

(∫
|b|p dµ

)1/p

.

5.2. The Sobolev space W 1,2(Y, d, µ). In order to define Sobolev spaces on metric measure
spaces, we adopt the approach in [14] using derivations with divergence.

Definition 5.7 (Sobolev space). Let (Y, d, µ) be a metric measure space and p ∈ (1,∞). Let q
be the conjugate exponent of p. A function f ∈ Lp(µ) belongs to the Sobolev space W 1,p(Y, d, µ)
provided there exists a LIPb(Y)-linear continuous map Lf : Derq,q(Y;µ)→ L1(µ) such that

(5.3)

∫
Lf (b) dµ = −

∫
f div bdµ for every b ∈ Derq,q(Y;µ).

Whenever such a map Lf exists, it is unique (cf. [14, Remark 7.1.5]).

Theorem 5.8 (p-weak gradient). Let f ∈ W 1,p(Y, d, µ). Then there is a function gf ∈ Lp(µ)
such that

(5.4)
∣∣Lf (b)

∣∣ ≤ gf |b| µ-a.e. for every b ∈ Derq,q(Y;µ).

The least function gf (in the µ-a.e. sense) that realises (5.4) is called p-weak gradient of f and
denoted by |Df |.

For a proof of the previous result we refer to [14, Theorem 7.1.6]. We point out that the p-weak
gradient |Df | might depend on p (this dependence is omitted in our notation). Thus, the p-weak

gradient and the p′-weak gradient of a function in W 1,p(Y, d, µ)∩W 1,p′(Y, d, µ) can be different.

The space W 1,2(Y, d, µ) equipped with the norm

(5.5) ‖f‖W 1,2(Y,d,µ) :=

(∫
|f |2 dµ+

∫
|Df |2 dµ

)1/2

is a Banach space. In general it is not a Hilbert space. There are alternative (equivalent) ways to
define Sobolev spaces on metric measure spaces, namely the approaches that have been proposed
in [13, 40, 5]; see also [29, 9] and the monographs [27, 26] for related discussions.

By combining [14, Theorem 7.2.5] with the results of [4], one gets the ensuing approximation
theorem:

Theorem 5.9. Let f ∈W 1,2(Y, d, µ) be given. Then there exists a sequence (fn) ⊂ LIPb(Y) such
that fn → f and lipafn → |Df | in L2(µ).

The following identity expresses a duality between W 1,2(Y, d, µ) and Der2,2(Y;µ).

Proposition 5.10. Let f ∈ W 1,2(Y, d, µ) be a given Sobolev function. Let us denote by B the
normed dual of

(
Der2,2(Y;µ), ‖ · ‖2

)
. We define the element Lf ∈ B as Lf (b) :=

∫
Lf (b) dµ for

every b ∈ Der2,2(Y;µ). Then

(5.6) ‖Lf‖B =
∥∥|Df |∥∥

L2(µ)
.

To prove Proposition 5.10, we use the following well-known lemma. Let LIPbs(Y) be the space
of all Lipschitz functions on Y with bounded support.
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Lemma 5.11. Let f ∈ L∞(µ) be given. Then there exists a sequence (fn)n ⊆ LIPbs(Y) such that
fn → f pointwise µ-a.e. and ‖fn‖L∞(µ) ≤ ‖f‖L∞(µ) for every n ∈ N.

Proof of Proposition 5.10. Step 1. First of all, we claim that

(5.7) ‖Lf‖B = sup
{∫ ∣∣Lf (b)

∣∣ dµ ∣∣∣ b ∈ Der2,2(Y;µ), ‖b‖2 ≤ 1
}
.

Call C the right hand side of (5.7). Recall that by definition of dual norm we have

‖Lf‖B = sup
{∫

Lf (b) dµ
∣∣∣ b ∈ Der2,2(Y;µ), ‖b‖2 ≤ 1

}
,

whence trivially ‖Lf‖B ≤ C. To show the converse inequality, fix b ∈ Der2,2(Y;µ) with ‖b‖2 ≤ 1.
By Lemma 5.11, we can choose (gn)n ⊆ LIPbs(Y) such that supn |gn| ≤ 1 and gn → sgnLf (b)
hold µ-a.e.. Hence by applying the dominated convergence theorem we get∫

Lf (gnb) dµ =

∫
gn Lf (b) dµ −→

∫ (
sgnLf (b)

)
Lf (b) dµ =

∫ ∣∣Lf (b)
∣∣ dµ.

Since gnb ∈ Der2,2(Y;µ) and ‖gnb‖2 ≤ ‖b‖2 ≤ 1 for all n ∈ N, we have
∫ ∣∣Lf (b)

∣∣ dµ ≤ ‖Lf‖B and
accordingly C ≤ ‖Lf‖B. This proves (5.7).
Step 2. It can be readily checked that

|Df | = ess sup
b∈Der2,2(Y;µ)

χ{|b|>0}
Lf (b)

|b|
in the µ-a.e. sense.

This means that there exists a sequence (bi)i ⊆ Der2,2(Y;µ) such that

|Df | = sup
i∈N

χ{|bi|>0}
Lf (bi)

|bi|
in the µ-a.e. sense.

For any n ∈ N, we can pick pairwise disjoint Borel subsets An1 , . . . , A
n
n of Y such that |bi| > 0

µ-a.e. on Ani for all i ≤ n and

sup
i≤n

χ{|bi|>0}
Lf (bi)

|bi|
=

n∑
i=1

χAni
Lf (bi)

|bi|
in the µ-a.e. sense.

Notice that limn µ
(
D \

⋃
i≤nA

n
i

)
= 0, where we set D :=

{
|Df | > 0

}
. Moreover, by monotone

convergence theorem we see that
∑n
i=1

χAni Lf (bi)/|bi| → |Df | in L2(µ) as n→∞. Let us choose
Borel subsets Bni ⊆ Ani such that

χBni /|bi| ∈ L
∞(µ) for every i ≤ n,

µ
(⋃

i≤nA
n
i \Bni

)
≤ 1/n for every i ≤ n,

n∑
i=1

χBni
Lf (bi)

|bi|
→ |Df | in L1(µ) as n→∞.

(5.8)

Now let n ∈ N be fixed. Lemma 5.11 grants for all i ≤ n the existence of (gik)k ⊆ LIPbs(Y) such
that supk ‖gik‖L∞(µ) < +∞ and gik → χBni /|bi| µ-a.e. in Y. Then an application of the dominated

convergence theorem yields

n∑
i=1

gik Lf (bi)
k−→

n∑
i=1

χBni
Lf (bi)

|bi|
in L1(µ),

∣∣∣∣ n∑
i=1

gik bi

∣∣∣∣ k−→ χ⋃
i≤n B

n
i

in L2(µ).

Hence for k sufficiently big we have that the derivation b̃n :=
∑n
i=1 g

i
k bi ∈ Der2,2(Y;µ) is such

that the L1(µ)-norm of L(b̃n) −
∑n
i=1

χBni Lf (bi)/|bi| and the L2(µ)-norm of |b̃n| − χ⋃
i≤n B

n
i

are

smaller than 1/n. By recalling (5.8), we thus deduce that L(b̃n)→ |Df | in L1(µ) and |b̃n| → χD
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in L2(µ) as n → ∞. Possibly passing to a not relabeled subsequence, we can assume that there
exists G ∈ L1(µ) such that∣∣Lf (b̃n)

∣∣, |b̃n|2 ≤ G µ-a.e. for every n ∈ N,

Lf (b̃n)→ |Df | µ-a.e. as n→∞,

|b̃n| → χD µ-a.e. as n→∞.

(5.9)

Step 3. We can finally prove (5.6). For any b ∈ Der2,2(Y;µ) with ‖b‖2 ≤ 1 it holds that∫ ∣∣Lf (b)
∣∣dµ ≤ ∫ |Df ||b|dµ ≤ ∥∥|Df |∥∥

L2(µ)

by Hölder inequality, whence ‖Lf‖B ≤
∥∥|Df |∥∥

L2(µ)
by (5.7). For the converse inequality, fix

h ∈ LIPbs(Y). By recalling (5.9) and using the dominated convergence theorem, we get∫
|h||Df |dµ = lim

n→∞

∫
|h|
∣∣Lf (b̃n)

∣∣ dµ = lim
n→∞

∫ ∣∣Lf (hb̃n)
∣∣dµ (5.7)

≤ lim
n→∞

‖hb̃n‖‖Lf‖B
= ‖χDh‖L2(µ)‖Lf‖B ≤ ‖h‖L2(µ)‖Lf‖B.

(5.10)

Now choose any sequence (hi)i ⊆ LIPbs(Y) such that hi → |Df | pointwise µ-a.e. and (dominated)
in L2(µ). By writing (5.10) with hi in place of h and then letting i → ∞, we conclude that∥∥|Df |∥∥

L2(µ)
≤ ‖Lf‖B, as required. �

6. Proof of the main result in the separable case

In this section we assume that (Y, d) is a complete and separable local CAT(κ) space equipped
with a Borel measure µ that is finite on bounded sets. As discussed in the introduction, the crucial
step in the proof of Theorem 1.1 is the construction of an embedding of the ‘abstract analytical
object’ Der2,2(Y;µ) into the ‘concrete and geometric bundle’ L2(TGY;µ) that preserves distances
on fibres. The construction of such embedding is the scope of this section.

We start by recalling the following general fact (see also [39, Theorem 3.7] for the general module
homomorphism between derivations and 1-currents; notice that it is obvious that the boundary
operation and the divergence operator are in correspondence under this homomorphism).

Lemma 6.1 (From derivations to currents). Let (Y, d, µ) be a metric measure space. Fix any
derivation b ∈ Der1,1(Y;µ). Then the functional Tb : LIPb(Y)× LIP(Y)→ R defined by

(6.1) Tb(g, f) :=

∫
gb(f) dµ

is a normal 1-current and the mass measure ‖Tb‖ satisfies

(6.2) ‖Tb‖ = |b|µ.

See Remark 5.2 for extending derivations to act on LIP(Y).

Proof. By Lemma 5.3 we get the estimate

(6.3)
∣∣Tb(g, f)

∣∣ ≤ ∫ |g||b|lipaf dµ ≤ Lip(f)

∫
|g||b|dµ

and thus taking into account Lemma 5.4 we see that Tb is a finite mass 1-current, with

(6.4) ‖Tb‖ ≤ |b|µ.

It is moreover normal, since

Tb(1, f) =

∫
b(f) dµ = −

∫
fdiv(b) dµ, ∀f ∈ LIPb(Y).
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We are left with proving (6.2). By (6.4), it suffices to show that M(Tb) =
∫
|b|dµ. Let (xn) ⊂ Y

be countable and dense, and let fn be the function x 7→ d(xn, x), for each n ∈ N. For ε > 0 and
n ∈ N, set

An :=
{
x ∈ Y : b(fn)(x) ≥ |b|(x)− ε

}
and Bn := An \

⋃
m<n

Am.

Since, by Proposition 5.5, |b| = supn b(fn) µ-almost everywhere, we have that the sets An cover
Y up to a set of µ-measure zero. Thus the collection (Bn) is a countable Borel partition of Y up
to a µ-null set. Let B ⊂ Y be a ball, and estimate∫

B

|b|dµ =
∑
n

∫
Bn∩B

|b|dµ ≤
∑
n

∫
Bn∩B

(
b(fn) + ε

)
dµ = εµ(B) +

∑
n

∫
Bn∩B

b(fn) dµ

= εµ(B) +
∑
n

Tb(χBn∩B , fn).

By the characterization of mass (cf. [7, Proposition 2.7]), we obtain∫
B

|b|dµ ≤ εµ(B) + ‖Tb‖(B).

Since ε > 0 and B are arbitrary, the claim follows. �

We now come to the construction of the embedding.

Theorem 6.2 (Embedding of Der2,2(Y;µ) into L2(TGY;µ)). Let (Y, d, µ) be a complete and
separable local CAT(κ) space equipped with a Borel measure µ which is finite on bounded sets, and
let b ∈ Der2,2(Y;µ). Then there exists a unique v ∈ L2(TGY;µ) such that for any x̄ ∈ Y and
y ∈ Brx̄(x̄) it holds that

(6.5) dxdisty(v(x)) = b(disty)(x) µ-a.e. x ∈ Brx̄(x̄).

Moreover, v satisfies

(6.6) |v(x)|x = |b|(x) µ-a.e. x ∈ Y.

Proof.
Borel regularity. Taking into account Proposition 2.17(i), we can rewrite (6.5) as

(6.7) 〈v(x), (Gyx)′0〉x = −d(x, y) b(disty)(x) µ-a.e. x ∈ Brx̄(x̄).

Thus taking into account the continuity of y 7→ (Gyx)′0, established in Theorem 2.9, and the weak
continuity of y 7→ b(disty), given by Lemma 5.4, we see that (6.5) holds for every y ∈ Brx̄(x̄) if
and only if it holds for a countable and dense set of y ∈ Brx̄(x̄). Since the continuity of x 7→ rx
grants that Brx(x) ⊂ ∪nBrxn (xn) if xn → x, using an argument based on the Lindelöf property of
Y, we can reduce the claim to checking (6.5) for a countable and dense set of x̄’s.

Now for given x̄, and y ∈ Brx̄(x̄) running in these countable sets, fix a Borel representative fx̄,y
of b(disty) on Brx̄(x̄) and notice that if v satisfies (6.5) for any y, x̄ in such countable sets, there is
a Borel µ-negligible set N ⊂ Y such that dxdisty(v(x)) = fx̄,y(x) for every x ∈ Brx̄(x̄) \ N. Thus
redefining v on N by setting it to 0 and recalling Proposition 3.1 we conclude that any v for which
(6.5) holds for any x̄ ∈ Y and y ∈ Brx̄(x̄) is, up to modification in a negligible set, a Borel section
of TGY.
Integrability. Propositions 5.5 and 2.17 ensure that any v for which (6.5) holds also satisfies
(2.12a). This, together with the Borel measurability proved above, implies that any v satisfying
(6.5) belongs to L2(TGY;µ).
Uniqueness. Let v1, v2 ∈ L2(TGY;µ) satisfy (6.5) so that, by what we already proved, we have
that |v1(x)|x = |v2(x)|x for µ-a.e. x. By Proposition 2.17(iii), we conclude that v1(x) = v2(x) for
µ-a.e. x.
Existence. Assume at first that b ∈ Der1,1(Y;µ) and let Tb be defined as in Lemma 6.1, so
that Tb is a normal 1-current. By Theorem 4.9, we find a finite non-negative Borel measure π
on C([0, 1]; Y) concentrated on curves with constant speed for which (4.12) holds with T = Tb.
Notice that, by restricting π to the complement of the set of constant curves (this does not affect
the validity of (4.12)), we can assume that π gives 0 mass to constant curves.
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Let e : C([0, 1]; Y) × [0, 1] → Y be the evaluation map defined as e(γ, t) := γt and put π̂ :=
π × L1|[0,1]

and ν := e∗π̂. Since C([0, 1]; Y) × [0, 1] and Y are Polish spaces, we may apply the

disintegration theorem (see e.g. [2, Theorem 5.3.1] or [17, Chapter 45]) to π̂ and e to find a weakly
measurable family {π̂x}x∈Y of Borel probability measures on C([0, 1]; Y)× [0, 1] such that

(6.8) e∗π̂x = δx for ν-a.e. x

and

(6.9)

∫
Ψ(γ, t) dπ̂(γ, t) =

∫ (∫
Ψ dπ̂x(γ, t)

)
dν(x)

for any Borel real-valued map Ψ for which any of these two integrals makes sense.
Recall that the map RightDer : C([0, 1]; Y)× [0, 1]→ TGY defined in (3.1) is Borel (Proposition

3.7) and set nx := RightDer∗π̂x. Notice that although, by definition, the measures nx are measures
on TGY, in fact for ν-a.e. x we have that nx is concentrated on TxY and will therefore be
considered, with a slight abuse of notation, as a measure on TxY. To see this, let πY : TGY → Y
be the canonical projection and notice that e = πY ◦ RightDer, thus (6.8) gives πY

∗ nx = δx for
ν-a.e. x, which implies the claim.

Now observe that, for any g ∈ LIPb(Y), we have∫
g|b|dµ (4.12),(6.2)

=

∫∫ 1

0

g(γt)|γ̇t|dπ̂(γ, t).

By Proposition 2.20 and the definition of Norm : TGY → R+ given in Corollary 3.3 (which also
grants that this map is Borel, so that the integrals below are well-defined) we have∫∫ 1

0

g(γt)|γ̇t|dπ̂(γ, t) =

∫∫ 1

0

g(e(γ, t))Norm(RightDer(γ, t)) dπ̂(γ, t).

Therefore we have ∫
g|b|dµ =

∫∫ 1

0

g(e(γ, t))Norm(RightDer(γ, t)) dπ̂(γ, t)

(by (6.9)) =

∫
g(x)

∫
Norm(RightDer(γ, t)) dπ̂x(γ, t) dν(x)

(by definition of nx) =

∫
g(x)

∫
Norm(y, v) dnx(y, v) dν(x)

=

∫
g(x)

∫
|v|x dnx(v) dν(x).

(6.10)

As mentioned above, in the last step we made the slight abuse of notation in considering nx as a
measure on TxY. In particular, choosing g ≡ 1, we get∫∫

|v|x dnx(v) dν(x) =

∫
|b|dµ <∞,

which implies that nx ∈P1(TxY) for ν-a.e. x. Let us define

B(x) := Bar(nx) ∈ TxY for ν-a.e. x.

Now set, for brevity, Φ(x) :=
∫
|v|dnx(v) and notice that the regularity granted by the disintegra-

tion theorem ensures that Φ is Borel. Also, the fact that π is concentrated on curves whose speed
is constant and non-zero tells that Norm(RightDer(γ, t)) > 0 for π̂-a.e. (γ, t) and hence that Φ > 0
ν-a.e.. Now notice that (6.10) and the arbitrariness of g yield |b|µ = Φν, so that the positivity of
Φ implies ν � µ. Hence it holds that |b|µ = Φ dν

dµµ, i.e.

(6.11) |b|(x) =
dν

dµ
(x)

∫
|v|x dnx(v) µ-a.e. x.

Let x̄ ∈ Y and ȳ ∈ Brx̄(x̄) and denote f := distȳ. Thus f is Lipschitz and semiconvex on Brx̄(x̄).
Then, for g ∈ LIPb(Y) with support in Brx̄(x̄), we have, by the same considerations as before to
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justify the computations (and writing df(x, v) for dxf(v)):∫
gb(f) dµ =

∫∫ 1

0

g(e(γ, t)) df(RightDer(γ, t)) dπ̂(γ, t)

(by (6.9)) =

∫
g(x)

∫
df(RightDer(γ, t)) dπ̂x(γ, t) dν(x)

(by definition of nx) =

∫
g(x)

∫
df(y, v) dnx(y, v) dν(x)

=

∫
g(x)

∫
dxf(v) dnx(v) dν(x).

By the arbitrariness of g, it follows that

(6.12) b(distȳ)(x) =
dν

dµ
(x)

∫
dxdistȳ(v) dnx(v) µ-a.e. x ∈ Brx̄(x̄).

By the Jensen inequality recalled in Subsection 2.5 and the convexity and continuity of dxf
(Proposition 2.16) this gives

(6.13) b(distȳ)(x) ≥ dν

dµ
(x) dxdistȳ(B(x)) µ-a.e. x ∈ Brx̄(x̄).

Now we let x̄ vary in a countable set so that the balls Brx̄(x̄) cover the whole Y (such set can be
found by the Lindelöf property of Y) and for each such x̄ we let ȳ vary in a countable dense set
in Brx̄(x̄): taking the infimum in (6.13) among these x̄, ȳ and recalling Proposition 2.17(ii) and
Proposition 5.5, we deduce

−|b|(x) ≥ −dν

dµ
(x)|B(x)|x µ-a.e. x ∈ Y.

Hence taking into account (6.11) we obtain

|B(x)|x ≥
∫
|v|x dnx(v) ν-a.e. x ∈ Y.

Since |v|x = dx(v, 0), by the rigidity statement in Proposition 2.27 we deduce that nx is concen-
trated on a half-line starting from 0 ∈ TxY for ν-a.e. x. For any x for which this is true, it is easy
to check (see also [41, Example 5.2]) that any positively 1-homogeneous function h : TxY → R
satisfies ∫

h(v) dnx(v) = h(B(x)).

Applying this identity to h := dxdistȳ, from (6.12) we get

b(distȳ)(x) =
dν

dµ
(x) dxdistȳ(B(x)) = dxdistȳ

(dν

dµ
(x)B(x)

)
µ-a.e. x ∈ Brx̄(x̄),

which by the arbitrariness of ȳ means that v(x) := dν
dµ (x)B(x) satisfies (6.5), and thus concludes

the proof for b ∈ Der1,1(Y;µ).
For the case b ∈ Der2,2(Y;µ) we argue as follows. Fix x̄ ∈ Y and let (ηn) be a sequence of

Lipschitz functions with bounded support such that ηn ≡ 1 on Bn(x̄). Then, by the Leibniz rule
for the divergence (cf. [14, Lemma 7.1.2]), we see that ηnb ∈ Der1,1(Y;µ). Thus we have the
existence of vn ∈ L2(TGY;µ) satisfying (6.5) for bn. In particular, by (6.6), we have that

(6.14) |vn(x)|x = |bn|(x) = |b|(x) µ-a.e. x ∈ Bn(x̄).

From the weak locality of derivations it follows that vn = vm on Bn(x̄) for every m ≥ n, hence
the Borel section v of TGY given by

v(x) := vn(x) for µ-a.e. x ∈ Bn(x̄), ∀n ∈ N

is well-defined and, by (6.14) and the assumption |b| ∈ L2(µ), belongs to L2(TGY;µ). Then again
the weak locality of derivations ensures that v satisfies (6.5), thus concluding the proof. �
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Definition 6.3. For b ∈ Der2,2(Y;µ) we shall denote by F (b) the section v ∈ L2(TGY;µ) given
by Theorem 6.2. Thus we have a map

F : Der2,2(Y;µ)→ L2(TGY;µ), b 7→ F (b).

Then we have:

Corollary 6.4 (‘Linearity’ of F ). Let (Y, d, µ) be a complete and separable local CAT(κ) space
equipped with a Borel measure µ finite on bounded sets and b1, b2 ∈ Der2,2(Y;µ). Then µ-a.e. we
have

F (b1 + b2) = F (b1)⊕F (b2),

d·(F (b1),F (b2)) = |b1 − b2|,
|F (b1 + b2)|2· + |F (b1 − b2)|2· = 2

(
|F (b1)|2· + |F (b2)|2·

)
.

(6.15)

Proof. The statement is local in nature, thus up to using a countable cover of Y with balls of the
form Brx(x), we can assume that Y is a separable CAT(κ) space with diameter < Dκ.

Now let (yn) ⊂ Y be countable and dense and put for brevity fn := distyn . For every n ∈ N we
have

|(b1 − b2)(fn)| = |b1(fn)− b2(fn)| (6.5)
= |d·fn(F (b1))− d·fn(F (b2))| ≤ d·

(
F (b1),F (b2)

)
µ-a.e., having used the fact that dxfn is 1-Lipschitz in the last step (Proposition 2.16). Passing
to the supremum in n we obtain

(6.16) |b1 − b2| ≤ d·
(
F (b1),F (b2)

)
µ-a.e..

On the other hand, using the convexity and positive 1-homogeneity of dxfn (Proposition 2.16) we
have

dxfn
(
F (b1)(x)⊕F (b2)(x)

)
≤ dxfn

(
F (b1)(x)

)
+ dxfn

(
F (b2)(x)

)
= b1(fn)(x) + b2(fn)(x)

= (b1 + b2)(fn)(x)

= dxfn
(
F (b1 + b2)(x)

)(6.17)

for µ-a.e. x. By Proposition 2.17(iii) and the arbitrariness of n this implies

(6.18)
∣∣F (b1 + b2)

∣∣
· ≤

∣∣F (b1)⊕F (b2)
∣∣
· µ-a.e..

Therefore, µ-a.e. we have

|b1 − b2|2 + |b1 + b2|2 ≤ d2
·
(
F (b1),F (b2)

)
+
∣∣F (b1 + b2)

∣∣2
· by (6.16),(6.5)

≤ d2
·
(
F (b1),F (b2)

)
+
∣∣F (b1)⊕F (b2)

∣∣2
· by (6.18)

≤ 2
∣∣F (b1)

∣∣2
· + 2

∣∣F (b2)
∣∣2
· by (2.12g)

= 2 |b1|2 + 2 |b2|2 by (6.5).

Writing this for b1 + b2, b1 − b2 in place of b1, b2 we see that all the inequalities that we used are
in fact equalities.

In particular the last inequality is an equality, thus proving the last identity in (6.15). The
equality in (6.16) is the second in (6.15). Finally, the equality in (6.18) and Proposition 2.17(iii)
imply the first identity in (6.15). This completes the proof. �

We can now easily prove our main result. We restrict ourselves to the separable setting for the
moment, and postpone the technical differences to deal with in non-separable spaces to the next
section.

Proof of Theorem 1.1 for separable spaces. By Proposition 5.10 we have∥∥|Df |∥∥
L2(µ)

= ‖Lf‖B = sup

{∫
Lf (b) dµ : b ∈ Der2,2(Y;µ), ‖b‖2 ≤ 1

}
.
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Since the space

(6.19) D :=
(
Der2,2(Y;µ), ‖ · ‖2

)
is (pre)Hilbert by Theorem 6.2 and Corollary 6.4 (in particular by the third in (6.15)), it follows
that its dual is a Hilbert space (note that Lf ∈ D∗ = B in the notation of Proposition 5.10). Thus∥∥|D(f + g)|

∥∥2

L2(µ)
+
∥∥|D(f − g)|

∥∥2

L2(µ)
= ‖Lf+g‖2B + ‖Lf−g‖2B
= ‖Lf + Lg‖2B + ‖Lf −Lg‖2B
= 2 ‖Lf‖2B + 2 ‖Lg‖2B
= 2

∥∥|Df |∥∥2

L2(µ)
+ 2

∥∥|Dg|∥∥2

L2(µ)
.

This completes the proof. �

In fact, as we shall see shortly, the completion of the space D defined in (6.19) is isomorphic to
the L2-tangent module. This is the content of Proposition 6.5 below. We briefly introduce some
additional machinery before stating the proposition.

Recall the space of L2-derivations

Der2(Y;µ) =
{
b ∈ Der(Y;µ) : |b| ∈ L2(µ)

}
which, by [14, Section 7.1.1], is complete when equipped with the norm ‖·‖2. Since D ⊂ Der2(Y;µ),
the completion D of D under ‖ · ‖2 is a Banach space and satisfies D ⊂ Der2(Y;µ). In particular,
there is a pointwise norm | · | : D → L2(µ) given by the norm of a derivation (see Lemma 5.3).
Using the fact that D is a LIPbs(Y)-module (cf. [14, Lemma 7.1.2]), Lemma 5.11 and the dominated
convergence theorem, we see that D is an L∞(µ)-module. Thus

(
D, ‖ · ‖2, | · |

)
is an L2(µ)-normed

L∞(µ)-module. We refer to [19] for the theory of normed L∞(µ)-modules.
The estimate (5.4) implies that, given f ∈ W 1,2(Y, d, µ), the module-homomorphism Lf :

Der2,2(Y;µ) → L1(µ) extends to a L∞(µ)-linear bounded map Lf : D → L1(µ) satisfying the
bound

(6.20)
∣∣Lf (b̄)

∣∣ ≤ |Df ||b̄|, b̄ ∈ D.

We briefly recall that the cotangent module L2(T∗Y;µ) (see [19]) is an L2(µ)-normed L∞(µ)-
module, equipped with an exterior derivative

d : W 1,2(Y, d, µ)→ L2(T∗Y;µ)

whose image generates L2(T∗Y;µ) as a module. The tangent module L2(TY;µ) is defined to be
the module dual of L2(T∗Y;µ). A vector field X ∈ L2(TY;µ) is said to have Sobolev divergence
if there exists a function g ∈ L2(µ) such that∫

fg dµ = −
∫

df(X) dµ, f ∈W 1,2(Y, d, µ).

The function g, if it exists, is unique, and denoted by divSX. We denote by D(divS) the vector
space of elements of L2(TY;µ) that have Sobolev divergence. See [19] for the details.

Proposition 6.5. Let (Y, d, µ) be an infinitesimally Hilbertian metric measure space. Then the
map

A : L2(TY;µ)→ Der(Y;µ), X 7→ X ◦ d|LIPb(Y)

takes values in D and provides an isomorphism of modules between L2(TY;µ) and D.

Proof. It is easy to see that, if X ∈ L2(TY;µ) has divergence divSX ∈ L2(µ), then A(X) has
divergence in the sense of (5.1), and

divSX = divA(X)

µ-almost everywhere. Since W 1,2(Y, d, µ) is a Hilbert space, [19, Proposition 2.3.17] implies that
L2(TY;µ) is a Hilbert module. As a simple consequence of [19, Proposition 2.3.14 and (2.3.13)],
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the space D(divS) is dense in L2(TY;µ). Thus since we already noticed that A(D(divS)) ⊂ D, we
also get that A(L2(TY;µ)) ⊂ D. We will prove that A is a module isomorphism L2(TY;µ)→ D.

For each f ∈ LIPb(Y), g, h ∈ L∞(µ) and V,W ∈ L2(TY;µ), we have

A(gV + hW )(f) = (gV )(df) + (hW )(df) = gV (df) + hW (df) =
(
gA(V ) + hA(W )

)
(f),

establishing that A is a L∞(µ)-linear module homomorphism L2(TY;µ)→ D. Note that∣∣A(V )
∣∣ = ess sup

{
V (df) : f ∈ LIPb(Y), Lip(f) ≤ 1

}
≤ |V |∗,

so that A is bounded. By definition, we have that

|V |∗ = ess sup

{
m∑
i=1

χEi
∣∣V (dfi)

∣∣ :

m∑
i=1

χEi |dfi| ≤ 1, f1, . . . , fm ∈W 1,2(Y, d, µ)

}
.

Since W 1,2(Y, d, µ) is a Hilbert space, using Theorem 5.9 and Mazur’s lemma, it is easy to see
that LIPbs(Y) is dense in W 1,2(Y, d, µ) (see also [21, Corollary 2.9]). From this and Theorem 5.9,
it follows that

|V |∗ = ess sup

{
m∑
i=1

χEi
∣∣V (dfi)

∣∣ :

m∑
i=1

χEi lipafi ≤ 1, f1, . . . , fm ∈ LIPbs(Y)

}
.

Thus we have

|V |∗ = ess sup

{
m∑
i=1

χEi
∣∣V (dfi)

∣∣ :

m∑
i=1

χEi lipafi ≤ 1

}

= ess sup

{
m∑
i=1

χEi
∣∣A(V )(fi)

∣∣ :

m∑
i=1

χEi lipafi ≤ 1

}

≤ ess sup

{
m∑
i=1

χEi
∣∣A(V )

∣∣lipa(fi) :

m∑
i=1

χEi lipafi ≤ 1

}
=
∣∣A(V )

∣∣.
We have established that A : L2(TY;µ)→ D is an L∞(µ)-module homomorphism satisfying∣∣A(V )

∣∣ = |V |∗
pointwise µ-almost everywhere, for every V ∈ L2(TY;µ). To show it is an isometric module
isomorphism, it suffices to prove that it is onto.

Let b̄ ∈ D. Define the linear map

L : W 1,2(Y, d, µ)→ L1(µ), f 7→ Lf (b̄).

By (6.20) and [19, Proposition 1.4.8], L extends to a vector field X ∈ L2(TY;µ) satisfying

X ◦ d|W 1,2(Y,d,µ)
= L.

In particular, for f ∈ LIPbs(Y), we have

A(X)(f) = X(df) = L(f) = Lf (b̄) = b̄(f).

This implies the surjectivity of A, and concludes the proof. �

See [15] for more on preduals of the Sobolev spaces.

Proof of Theorem 1.2. Let (Y, d) be a complete and separable CAT(κ)-space, and µ a Borel
measure on Y, which is finite on bounded sets. By the proof above of Theorem 1.1 in the separable
case, we have that W 1,2(Y, d, µ) is a Hilbert space. From Theorem 6.2 and Corollary 6.4 it follows
that the space D admits an isometric embedding

F ′ : D→ L2(TGY;µ)

satisfying (6.15). Thus the claim follows directly from Proposition 6.5 by precomposing F ′ with
the isometric module isomorphism A : L2(TY;µ)→ D. �
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7. The non-separable case

In defining derivations and Sobolev functions we assumed, following [14], that the underlying
metric space is separable. Yet, as noted in the introduction, from a purely geometric perspective
it is quite unnatural to impose a separability condition when dealing with CAT(κ) spaces. In this
section we discuss how to remove the condition of separability, the relevant result being Theorem
7.1. Let us remark that we shall continue to assume that the measure µ on Y has separable
support, or equivalently that it is tight: the discussion here concerns the definition of Sobolev
functions itself, in this setting.

One of the reasons for the success of the theory of Sobolev calculus on metric measure spaces
is that there are many different definitions of Sobolev spaces in such environment which turn out
to be equivalent. In trying to extend such an equivalence result to the non-separable setting one
could either re-run all the arguments and check that they work even in the more general framework
(this is possible – and works – but is quite tedious) or argue as below.

Out of the several definitions of Sobolev functions, there are two ‘extremal’ ones introduced
in [5]: the one obtained by relaxation of the asymptotic Lipschitz constant (we shall denote the

corresponding space and notion of minimal relaxed upper gradient by W 1,2
rel (Y, d, µ) and |df |rel)

and the one obtained by duality with test plans (we shall denote the corresponding space and

notion of minimal weak upper gradient by W 1,2
tp (Y, d, µ) and |df |tp). These produce in some

sense the ‘biggest’ and ‘smallest’ weak notion of upper gradient and it is easy to check from the
definitions that

(7.1) W 1,2
rel (Y, d, µ) ⊂W 1,2

tp (Y, d, µ) with |df |tp ≤ |df |rel µ-a.e. ∀f ∈W 1,2
rel (Y, d, µ).

One of the main results in [5] is the proof that the two spaces and the two notions of upper gradients
coincide. This fact is used by the first author in [14] to prove that the notion of Sobolev space

obtained by duality with derivations coincides with W 1,2
rel (Y, d, µ) = W 1,2

tp (Y, d, µ) and induces the
same upper gradient.

We add the following ingredient to the discussion above:

Theorem 7.1. Let (Y, d, µ) be a complete and separable metric space equipped with a positive
Radon measure which is finite on bounded sets. Let Y1,Y2 ⊂ Y be closed sets on which µ is
concentrated. Set di := d|Yi×Yi

, µi := µ|Yi , i = 1, 2 and notice that the identity on the support of

µ induces an isomorphism ι : L2(Y1, µ1)→ L2(Y2, µ2). Then:

i) ι induces an isomorphism from W 1,2
rel (Y1, d1, µ1) to W 1,2

rel (Y2, d2, µ2) which respects |d · |rel,

ii) ι induces an isomorphism from W 1,2
tp (Y1, d1, µ1) to W 1,2

tp (Y2, d2, µ2) which respects |d · |tp.

Proof. We can assume Y2 = Y.
(i) Given that for any f : Y → R we have lipa(f)(x) ≥ lipa(f |Y1

)(x), we see that W 1,2
rel (Y, d, µ) ⊂

W 1,2
rel (Y1, d1, µ1) with |df |rel,Y1

≤ |df |rel,Y for any f ∈W 1,2
rel (Y, d, µ). To prove the other inclusion

and inequality, by the definition of W 1,2
rel (Y, d, µ) it is sufficient to prove that for any Lipschitz

function f : Y → R we have

|df |rel,Y ≤ lipa(f |Y1
) µ-a.e..

Fix a Lipschitz function f : Y → R and ε > 0. For any x ∈ Y1, let r > 0 be such that
Lip(f |Y1∩Br(x)

) ≤ lipa(f |Y1
) + ε. By the McShane extension lemma there is a Lipschitz function

g : Y → R coinciding with f on Y1 ∩ Br(x) such that Lip(g) = Lip(f |Y1∩Br(x)
). By the locality

property of relaxed upper gradients we see that

|df |rel,Y = |dg|rel,Y µ-a.e. on {f = g} ⊃ Y1 ∩Br(x).

Keeping in mind that |dg|rel,Y ≤ Lip(g) and the construction we deduce that

(7.2) |df |rel,Y ≤ lipa(f |Y1
) + ε µ-a.e. on Y1 ∩Br(x).
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Repeat this argument for every x ∈ Y1 and then use the Lindelöf property of Y1 to deduce that,
as x varies in a countable dense set, the balls Br(x) as above cover the whole Y1. Then (7.2) gives

|df |rel,Y ≤ lipa(f |Y1
) + ε µ-a.e.

and the conclusion follows by letting ε ↓ 0.
(ii) It is sufficient to check that a test plan on Y is also a test plan on Y1 and vice versa. The
‘vice versa’ is obvious by the inclusion C([0, 1]; Y1) ⊂ C([0, 1]; Y). For the other implication it
is sufficient to show that any test plan π on Y is concentrated on C([0, 1]; Y1). To see this, let
et : C([0, 1]; Y) → Y be defined by et(γ) := γt and notice that for any dense set (tn) ⊂ [0, 1] the
inclusion

C([0, 1]; Y) \ C([0, 1]; Y1) =
⋃
n

e−1
tn (Y \Y1)

holds. Since (et)∗π � µ and µ are concentrated on Y1, we have that π
(
e−1
tn (Y \Y1)

)
= 0 for every

n. The claim follows. �

Thanks to this result we can now give the following definition:

Definition 7.2 (Sobolev spaces on non-separable metric spaces). Let (Y, d, µ) be a complete, not
necessarily separable, metric space equipped with a non-negative and non-zero Radon measure µ
giving finite mass to bounded sets.

Then the Sobolev space W 1,2(Y, d, µ) (and the corresponding notion of upper gradient |df |) is
defined as W 1,2(Y1, d1, µ1), where Y1 is any closed and separable subspace of Y on which µ is
concentrated, while d1 := d|Y1×Y1

and µ1 := µ|Y1
.

The role of Theorem 7.1 is to prove that this definition is consistent with the case of separable
spaces. By the fact that most of the notions of Sobolev spaces in mm-spaces (including those of

Cheeger [13], [40] and the first author [14]) are naturally ‘chained’ between W 1,2
rel and W 1,2

tp and,
since these latter spaces coincide as already remarked, we see that Theorem 7.1 implies that all
these notions remain unchanged when passing from Y1 to Y2, as in Theorem 7.1. This is why we
do not specify the definition of Sobolev space we are referring to in Definition 7.2: they all agree.

With this said, the proof of our main Theorem 1.1 in the general case is a trivial consequence
of the result established in the separable setting:

Proof of Theorem 1.1 in the general non-separable setting. We need to prove that for
any f, g ∈W 1,2(Y, d, µ) it holds that

(7.3) |d(f + g)|2 + |d(f − g)|2 = 2
(
|df |2 + |dg|2

)
µ-a.e..

Notice that the measure µ is by assumption finite on bounded sets and Radon. Hence it is
concentrated on a countable union Z of compact sets, which is separable. Fix x ∈ Z. We claim
that there exists Ω ⊂ Y with the following properties:

µ(Ω) > 0,(7.4)

Ω̄ is a separable CAT(κ) space,(7.5)

Ω contains a neighbourhood of x in Z̄,(7.6)

Ω is open in the space Ω̄ ∪ Z̄ and in such space has µ-negligible boundary.(7.7)

To construct such a set Ω we start by noticing that the map r 7→ µ(Br(x)) is non-decreasing,
hence continuous except at a countable number of points. Fix a continuity point r < rx, for which
µ(Br(x)) > 0. Since r is a continuity point, we have µ(∂Br(x)) = 0. Let C be the closed convex
hull of Br(x) ∩ Z̄ and define Ω as the interior of C in C ∪ Z̄. (Notice that Ω ⊂ Ω̄ ⊂ C and that,
by convexity of the ball Br(x), C ∩ Z̄ = Br(x) ∩ Z̄.)

Since Ω is the interior of a convex set it follows that Ω, and thus its closure Ω̄, is a CAT(κ)-space.
The set Ω̄ is separable by construction. This establishes (7.5).

Note that Br(x) ∩ Z̄ is open in Z̄. Moreover, Br(x) ∩ Z̄ ⊂ Ω. To see this, let y ∈ Br(x) ∩ Z̄
and let ε > 0 be a radius for which Bε(y) ⊂ Br(x). Then

Bε(y) ∩ (C ∪ Z̄) = (Bε(y) ∩ C) ∪ (Bε(y) ∩ Z̄) = Bε(y) ∩ C ⊂ C
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is a neighbourhood of y in C ∪ Z̄. Thus y is an interior point of C. This proves (7.4) and (7.6).
To show (7.7), note that since Ω is open in C ∪ Z̄, it is open in Ω̄ ∪ Z̄. It suffices to show that

µ(∂C∪Z̄Ω) = 0. This follows from the estimate

µ(∂C∪Z̄Ω) =µ(∂C∪Z̄Ω ∩ Z̄) = µ(∂Z̄Ω) ≤ µ(∂Z̄C)

=µ(∂Z̄(C ∩ Z̄)) = µ(∂Z̄(Br(x) ∩ Z)) ≤ µ(∂Br(x)) = 0.

Thus we have constructed a set Ω with the desired properties.
By [6, Theorem 4.19(i)] applied with X := Ω̄ ∪ Z̄ we see that f |Ω̄ ∈W

1,2(Ω̄) with

(7.8)
∣∣d(f |Ω̄)

∣∣
Ω̄

= |df | µ-a.e. on Ω,

and the same holds for g. Since we know that Theorem 1.1 holds on separable CAT(κ) spaces we
have (see, e.g., also [19, Proposition 2.3.17]) that∣∣d((f + g)|Ω̄

)∣∣2
Ω̄

+
∣∣d((f − g)|Ω̄

)∣∣2
Ω̄

= 2
(∣∣d(f |Ω̄)

∣∣2
Ω̄

+
∣∣d(g|Ω̄)

∣∣2
Ω̄

)
µ-a.e. on Ω.

Then the conclusion (7.3) comes from this identity, (7.8) and the Lindelöf property of Z. �
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[5] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Calculus and heat flow in metric measure spaces and
applications to spaces with Ricci bounds from below. Invent. Math., 195(2):289–391, 2014.
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