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Abstract

We study the graphs of maps u : Ω→ R3 whose curl is an integral 1-current with
coefficients in Z3. We characterize the graph boundary of such maps under suitable
summability property. We apply these results to study a three-dimensional single
crystal with dislocations forming general one-dimensional clusters in the framework of
finite elasticity. By virtue of a variational approach, a free energy depending on the
deformation field and its gradient is considered.

The problem we address is the joint minimization of the free energy with respect to
the deformation field and the dislocation lines. We apply closedness results for graphs
of torus-valued maps, seen as integral currents and, from the characterization of their
graph boundaries we are able to prove existence of minimizers.
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1 Introduction

One of the longstanding problems in the theory of dislocations is to understand the three-
dimensional configuration of the clusters associated to minimizers of the elastic energy.
One of the main difficulty to deal with is the singularity of the stress and strain in the
vicinity of dislocation lines, that implies their non-square integrability, as opposed to the
traditional models of elasticity. Indeed, the standard approach of regularizing the fields by
introducing a small tubular neighborhood of the dislocation core is often adopted, in the
framework of linear elasticity. The different approach consisting in proposing an energy
functional with less-than quadratic growth in the framework of nonlinear elasticity is here
adopted, as suggested in the pioneering paper by Müller and Palombaro [26], itself based
on the framework proposed by Ortiz in [28]. Even the mere existence of minimizers for such
an energy is a very challenging problem, whose preliminary solutions have been proposed
by the authors in a series of papers [31–33]. In these contributions the problem has
been generalized as to consider as variables a deformation tensor field and the dislocation
density, in contrast with [26] where the dislocation is a fixed circular loop (and hence
not subjected to joint optimization together with F ). In the present paper we propose a
complete solution of the minimization problem in the case where the dislocation cluster
is generated by one Burgers vector. As a refinement of the results of [33], where a strong
hypothesis related to a regularizing term in the energy was made, here we relax such
hypothesis into a weaker one, that we call “physical” (see the subsequent discussion for
details and the content of the main results in Section 5). To prove existence of minimizers,
the main mathematical tool used is Federer’s theory of currents [17] (with the aid of
Cartesian currents theory as well, see, e.g., [21]) to describe both the deformation and
the dislocation lines, together with Ball’s variational approach to finite elasticity [7]. The
use of currents has shown to be very useful recently to model dislocations. Treating these
objects as integral currents provides strong closedness principles which are not available
for measures, and the notion of convergence for vector-valued measures is too weak to
fit. Furthermore, the theory of currents with coefficients in a group [18, 40] is used to
describe dislocations with Burgers vectors constrained to stay in a prescribed lattice. A
consequence of this constraint, as we will see, is that the displacement can equivalently be
seen as a torus-valued map, and hence the theory of currents on non-Euclidean spaces [14]
turns out to be crucially helpful.

This analysis is a necessary prerequisite to study the evolution of dislocation clusters,
in particular at the quasistatic regime. A first contribution as a sequel of this work has
been given in [34].
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The crystal with dislocations in finite elasticity

A single crystal is represented by a three-dimensional body Ω ⊂ R3 with a smooth bound-
ary. We denote by L ⊂ Ω̄ the set of dislocation lines. The basic kinematic variable is
the tensor F ∈ R3×3 which represents the state of deformation of the body. The physical
interpretation of the chosen kinematical variable F in terms of deformation (to or from the
current configuration) is discussed in Section 5.4 as based on the physical insight of Acharya
contributions [1, 2, 4] and sometimes in contrast with [28]. In our approach we prefer not
to mention any reference configuration, since this notion is ambiguous in the presence of
dislocation singularities. Following Ph. Ciarlet’s and coauthors [11] intrinsic approach,
we rather consider F as an intrinsic quantity, namely through the differential-geometric
metric tensor C = F TF, (Cij = F li δlkF

k
j ). Further, the basic dislocation variable is its

density tensor, i.e., the finite tensor-valued Radon measure

ΛL := τ ⊗ bH1
bL. (1.1)

In this formula b is the Burgers vector, a vector defined on L and constant on each
isolated loop of L, τ is the unit tangent vector of the Lipschitz curve L defined H1

bL-

almost everywhere, where H1
bL denotes the one-dimensional Hausdorff measure restricted

to L. In our approach the deformation field F and the dislocation density are linked by
the constraint

−Curl F = ΛTα .

The main problem we study in this work is the minimization of an energy functionalW
representing the internal energy of a deformed single crystal in the presence of dislocations.
The available free energyW is assumed to be a function of some invariant (under Euclidean
transformations) tensors describing the mechanical as well as the dislocation-induced de-
formations, the tensor C, and the dislocation density ΛL. Since the dislocation cluster is
a micro-structure, we will also assume that W depends on an appropriate second-order
deformation related to C and the gradient of C, called the material connexion Γ.1

The variational problem

The energy W depends on C,Γ, and ΛL. In order to address the minimization problem
while complying to classical principles of rational mechanics, we assume that the energy is
a function of the first- and second-order invariant tensors related to F and DF . It is shown
in Section 2 how this dependence can be written in terms of M(F ) := (F, cof F, det F )
(the vector of all subdeterminants of the matrix F ), Curl F , and Div F . Therefore the
energy reads

W(F,DF ) =We (M(F )) +Wd( Div F ) +Wdislo(ΛL), (1.2)

where

We (M(F )) =

∫
Ω
We(F (x), cof F (x), det F (x))dx,

1 This object, following [8] (under the physical interpretation that F is the classical deformation tensor
from a reference to the current configuration), is the correct thermodynamical quantity to be considered
in finite elasticity. The skew-symmetric part of Γ is related to the dislocation density tensor introduced by
Noll in the context of continuum bodies with dislocations [27]. We emphasize that this geometric object
has been used for a long time in the literature, since the works of E. Kröner in the fifties until recently
(see for instance [24,30,36,41]).
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with We lower semicontinuous with respect to the weak convergence of M(F ); Wdislo is
a functional on the space of Radon measures Mb(Ω,R3×3) which is lower semicontinuous
with respect to the weak-? convergence, and

Wd( Div F ) =

∫
Ω
Wd( Div F (x))dx,

is a weakly lower semi-continuous functional on Lr(Ω,R3), r ≥ 1. Note that Wd( Div F )
can be also seen as a perturbation of the energy We + εWdislo for some small parameter ε
related to the micro-structure (see [19]). Even if often We is taken polyconvex in order to
supply for weakly lower semicontinuity, we emphasize that in our minimization problem it
can be general, for it suffices to be L1-lower semicontinuous in M(F ). Let us also remark
that this approach allows us to consider an elastic energy that depends on F and F−1, as
discussed in Section 5.4; the quantity F−1 is indeed of crucial meaning in many dislocation
classical models (see for instance [1–4]) in contrast with the approach of [26, 28] that we
follow. Even though the variable F−1 can be expressed as combination of the entries
of M(F ) (namely, F−1 = ( cof F )T /det F ), at the present stage we cannot address the
existence of a minimization problem involving only the variable F−1 in the stored-elastic
part, since we still need some control on cof F and det F , and hence energy dependence
on these variables (see Section 5.4).

We will make the following crucial coercivity assumption,

(H) W(F,DF ) ≥ C
(
‖F‖pLp + ‖ cof F‖qLq + δ‖det F‖sLs + ‖Div F‖rLr

)
+ c|ΛL|(Ω)− γ,

for some constitutive positive constants γ, C, and c, and δ ≥ 0. We assume 1 < p < 2,
q, r, s > 1 and −Curl F = ΛL ∈ Mb(Ω), a bounded Radon measure. Note that if W is
independent of det F (and hence δ = 0), we can infer boundedness of det F by control of
F and cof F .

Let Ω ⊂ Ω̂, with Ω and Ω̂ simply connected and smooth. Let b ∈ 2πZ3 a fixed
Burgers vector. We fix a boundary condition α̂ for the dislocation (see Section 5 for the
specific notation) and a map F̂ ∈ Lp(Ω̂;R3×3) with −Curl F̂ = ΛTα = b ⊗ α̂ on Ω̂, and
Div F̂ ∈ Lr(Ω̂;R3) with r > 1. Then we define the class of admissible functions as

Fb := {F ∈ Lp(Ω̂;R3×3) : cof F ∈ Lq(Ω̂;R3×3), det F ∈ Ls(Ω̂), Div F ∈ Lr(Ω̂;R3),

− Curl F = ΛTL = b⊗ L for some closed integral 1-current L,
and F = F̂ on Ω̂ \ Ω}.

We are interested in the variational problem

min
F∈Fb

W(F,DF ). (1.3)

Note that both F and L are unknown. The following theorem was proved in [33].

Theorem 1.1 (Existence result with regularization term [33]). Let 1 < p = q = s <
2, r > 3. There exists a solution F ∈ Fb of the minimum problem (1.3).

We remark that the original problem was formulated in [26] with L fixed, F assumed
to be locally the gradient of a Cartesian map away from L, and with Wd = 0 (and Wdislo

constant, the dislocation being fixed). Then, with F and L unknown, the variational
problem was first solved in [32] withWd = 0 but, in place, with an energy term accounting
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either for the number and length of generating dislocation loops, or equivalently, the
number of connected components of a 1-set containing L. This kind of assumptions are
in the spirit of similar done for variational problems in fracture, see, e.g., [13]. The main
novelty in [33] is the replacement of these energetic terms by Wd, the latter having the
physical interpretation of a higher-order term related to the invariants of the gradient of
the tensor C. However it is remarkable the necessity of the condition r > 3, which is
physically unjustified since the natural ambient space for F is Lp with p < 2. In this
work we relax this assumption in order to have r < 2 as well. We call this assumption
“physical”.

The existence results

As anticipated, we would like to avoid the rather strong condition r > 3 in Theorem
1.1 which is presumably too strong with respect to the singular forces exerted by the
dislocations. It turns out that if we consider the hypothesis cof F ∈ L2, we are able to
weaken considerably the assumption r > 3 and in particular find a range for the exponent
r which accounts, as for p, for the case r < 2. The first existence result of the present
paper (see Theorem 5.2 in Section 5) is the following.

Theorem 1.2 (For general dislocation clusters with one Burgers vector). Let 1 < p <
2, q ≥ 2, s > 1, and r > 12

7 . Under suitable hypotheses on the coefficients (see Theorem
5.2) there exists a minimizer F ∈ Fb of W.

In Section 2 we will see that F can be written as the sum of the gradient of two
maps, u and v, the first one with values in the 3-dimensional flat torus T3. The proof of
Theorem 1.2 relies on analyzing the graph Gu+v of the deformation maps u and v, seen as
an integer-multiplicity current. Then, a characterization of the boundary of the graph of
u+ v is required. Here the theory of currents in metric spaces (the flat torus in our case)
and its link with the theory of integral currents with coefficients in Z3 becomes crucial.
Specifically, suitable closure and compactness theorems are required; these can be obtained
by application of the theory developed by Fleming [18] and the rectifiability property of
flat chains [40], together with the adaptation of classical compactness theorems by Federer
to the case of metric spaces, whose solid basis has been recently developed by De Pauw
and Hardt [14,15]. Let us here stress that the use of currents in the space Ω×T3 is a direct
consequence of the choice Z3 for the lattice where the Burgers vectors are constrained.
The dislocation currents are treated as classical flat chains, namely 1-integral currents
with coefficients in the group Z3.

A general expression for the boundary of Gu+v is given in Theorem 4.2 of Section 4,
and this expression reduces to a current representing the dislocation density, i.e.,

∂Gu+v ≡ L⊗ b,

in the case q ≥ 2. In the latter case, we will show that, due to the high integrability of
cof F , in the region close to the dislocation cluster it must hold

∇u×∇v = 0. (1.4)

In the more general case of linearly independent Burgers vectors, a characterization of the
graphs Gu+v is currently far from reach, but can be addressed in some specific geometric
setting. For instance, it is possible to show that if the three dislocation clusters associ-
ated to the Burgers vectors e1, e2, e3 are disjoint (which takes place in many observed
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situations, as in the case of parallel dislocation lines, or when the clusters are constrained
to lie on parallel slip planes) then the graph Gu+v associated to the deformation F is
an integer-multiplicity current (see Theorem 4.13). Moreover, also in this setting, if the
cofactor is square integrable, then the boundary ∂Gu+v still coincides with the dislocation
density (see Theorem 4.14). This allows us to solve a more general minimization problem.
However, since we are yet not able to characterize ∂Gu+v in every geometric setting, we
must appeal to an extra hypothesis on the admissible class of deformations. Specifically,
we denote by Li the dislocation current associated to the Burgers vector ei, i = 1, 2, 3. A
deformation showing general dislocation densities satisfies

−Curl F = ΛTL1
+ ΛTL2

+ ΛTL3
= e1 ⊗ L1 + e2 ⊗ L2 + e3 ⊗ L3. (1.5)

We then assume that

(?) The graph Gu+v is an integral current and its boundary writes as

∂Gu+v ≡ L1 ⊗ e1 + L2 ⊗ e2 + L3 ⊗ e3, (1.6)

(see Section 4). Let us again emphasize that property (?) holds true under some specific
geometric assumptions but at the present stage we do not know if it also holds in the
general case. The class of admissible deformation fields reads

F? = {F ∈ Lp(Ω̂,R3×3) : cof F ∈ Lq(Ω̂;R3×3), det F ∈ Ls(Ω̂), Div F ∈ Lr(Ω̂;R3),

− Curl F =
3∑
i=1

ΛTLi for integral 1-currents Li, F = F̂ on Ω̂ \ Ω,

and F satisfies (?)}. (1.7)

Then, our second existence result is the following (see Theorem 5.3 in Section 5).

Theorem 1.3 (For general Burgers vectors). Let 1 < p < 2, q > 1, s > 1, and r > 12
7 .

Under suitable hypotheses on the coefficients (see Theorem 5.3) there exists a minimizer
F ∈ F? of W.

Notice that once condition (?) is satisfied, then we can also drop the hypothesis q ≥ 2.
We conjecture that condition (?) holds true whenever q ≥ 2.

The main result: characterization of the graph boundary

In order to prove the two aforementioned existence results, as said, we need to characterize
the boundary of the displacement field u seen as a map with values in the three-dimensional
torus. Hence, the major part of the paper is devoted to this effort, yielding the following
theorem that we believe relevant as a stand-alone result.

Theorem 1.4 (Characterization of the boundary, cf. Theorem 4.11). Let u ∈ SBV (Ω;R3)∩
W 1,p(Ω;T3) be the harmonic map given in Theorem 3.4 below, satisfying (3.12) with
b ∈ 2πZ3. Let v ∈W 2,r(Ω;R3), if

r >
12

7
, p < 2, and

6− 2r

3r
+

1

p
≤ 1, (1.8)
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then the current given by the graph of u+v with values in T3, namely Gu+v ∈ D3(Ω×T3),
is a rectifiable integer-multiplicity current with finite mass whose boundary is given by the
formula

∂Gu+v(ω) =
1

2π

∫ 2π

0

∫
St

〈dω(x,
bθ

2π
+ v(x)), (s1,

∂v

∂s1
(x)) ∧ (s2,

∂v

∂s2
(x)) ∧~b〉dH2(x)dθ,

(1.9)

for all ω ∈ D2(Ω × T3) and a.e. t ∈ [0, 2π). Here St is the level set w = t of the map
defined by b

2πw = u.
Moreover, if F = ∇u + ∇v satisfies cof F ∈ L2(Ω;R3×3), then the graph Gu+v is

integral and its boundary is a 2-dimensional integral current given by

∂Gu+v(ω) = L ∧ b(ω) =
1

2π

∫ 2π

0

∫
St

〈dω(x,
bθ

2π
+ v(x)), (s1, 0) ∧ (s2, 0) ∧~b〉dH2(x)dθ,

(1.10)

for all ω ∈ D2(Ω× T3) and a.e. t ∈ [0, 2π).

See Lemma 4.8 and Theorem 4.11 for the detailed statement and notation. We remark
that as soon as the field v is sufficiently regular, the condition cof F ∈ Lq with q ≥ 2
implies that the tangential derivative of v along the dislocation line must vanish (that is,
equivalently, that (1.4) holds true). This condition is crucial, since it applies on cof F and
not on v which therefore needs not be C1-regular as was the case in [33] (see Theorems 4.1
and 4.2). Specifically, a condition on cof F is physically easier to check, since it is directly
related to the growth condition of the bulk energy. For this reason the relaxed hypothesis
r > 12

7 and cof F ∈ L2 in place of r > 3 is called “physical”.

2 Model variables

The model deformation variables being C and DF (through the observable Γ) we have
to consider their invariants (under suitable maps), since it is natural to assume that
the energy must depend only on them. More precisely, the metric tensor C := F TF is
known to be invariant under Euclidean transformations, namely it remains unchanged
after superimposing a rigid body motion upon the original motion. Moreover, also the
compatibility connexion is such an invariant [8], since it writes in terms of C as

Γ = C−1DSC,

(
(DSC)ijk =

1

2
(∂kCij + ∂jCik − ∂iCkj)

)
.

In order to comply with material frame-invariance, for an isotropic body the response
laws are given in terms of the invariants of C, namely

I1(C) = trC = F · F, (2.1)

I2(C) = tr cof C = cof F · cof F, (2.2)

I3(C) = det C = ( det F )2. (2.3)

Since in the presence of dislocations we have seen that F never belongs to L2(Ω;R3×3),
the energy has a less than linear growth with respect to the first invariant. As for I2(C),
the cofactor of F is defined as

( cof F )ij = (F � F )ij :=
1

2
εikmεjlnFklFmn. (2.4)
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and the relation tr cof C = cof F · cof F entails that tr cof C ∈ L1(Ω) if cof F ∈
L2(Ω;R3×3). This means that, heuristically, the natural hypothesis that tr cof C is a
summable function requires that cof F is at least a square-integrable function. Moreover,
by the identity

δij det F = Fki( cof F )kj . (2.5)

it follows that, since F ∈ Lp(Ω;R3×3) with p < 2 the control of cof F ∈ Lq(Ω;R3×3) with
q > 2 such that 1

p + 1
q ≤ 1 yields a control of det F ∈ L1(Ω). The hypothesis that the

energy has a more than linear growth with respect to the second invariant will be crucial
in order to get a control on the determinant and to finally prove existence of solutions to
(1.3).

Let us also observe that it is a classical requirement to assume
√
I3(C) as summable,

a condition on the summability of det F . We will see that in the minimization problem,
this condition will not play a crucial role, and one could easily consider the incompressible
case as well.

As for the higher-order model variable, the only linear invariant of DF is, according
to [5, Eq.(2.1)],

Ilin(DF ) = εijk(DF )ijk = εijkF
i
mΓmjk = tr Curl F,

while the third quadratic invariant ofDF , out of eleven independent invariants [5, Eq.(2.3)],
is

Iquad
3 (DF ) = δimδjkδpq(DF )ijk(DF )mpq = Div F · Div F.

Note that in terms of the invariants C and Γ one can write Iquad
3 (DF ) = C · trΓ⊗ trΓ.

In the case of gradient hyper-elasticity with dislocations, we will consider energies of
the form

W(F,DF ) =WISO(I(C), I(DF )) =W1
ISO(I(C)) +W2

ISO(I(DF )),

where I(C) and I(DF ) are the invariants of C and DF . The energyW2
ISO(I(DF )) contains

a term
Wdislo( Curl F ),

accounting for anisotropic energy contributions due to the presence of dislocation loops in
the otherwise perfect crystal.

We remark that the gradient of F plays a role through two independent terms, the
deformation part Div F and the defect part Curl F . It is also noticeable that such a
higher-order term Div F is sometimes considered as a regularization term (as, e.g., in [19])
to first-grade elasticity. Here we regard it simply as the third quadratic invariant of DF .

Let us discuss the assumptions made on the stored elastic energy. For the sake of
discussion F is here given the interpretation of the deformation tensor from a reference
to the current configuration. Let vi be the principal stretches of F , i.e., the eigenvalues
of
√
C. A homogeneous and incompressible Ogden material possesses a stored-energy

function of the form

WOG(F ) =
c1

2

3∑
i=1

(vαi − 3) + c2

3∑
i 6=j=1

(
(vivj)

β − 3
)
,

with α, β ≥ 1 (see [7]). For α = β = 2 this corresponds to the Mooney-Rivlin material
WMR = c1

2 (I1(C)−3)+ c2(I2(C)−3), originally designed for rubber-like materials. Never-
theless Ogden-like energies are also considered for dislocations in finite elasticity (see [42]
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for practical examples). For α ≥ 2 it is known that
∑3

i=1 v
α
i is not in L1(Ω), in the pres-

ence of dislocations (the unsuitability of Mooney materials to describe dislocations was
already reported in [42], since it creates the “paradox on longitudinal force”).

Therefore, in our model we consider an Ogden material with α = p < 2, with the

identity |F |p = (F · F )p/2 = ( trC)p/2 =
(∑3

i=1 v
2
i

)p/2
≤ c

∑3
i=1 v

p
i for some c > 0, simply

meaning that F ∈ Lp(Ω;R3×3) as soon as the energy is bounded. As for the second term
one needs

∑3
i 6=j=1(vivj)

β ∈ L1(Ω) and this is achieved if cof F · cof F = tr cof C =

I2(C) ∈ L1(Ω) and β ≥ 2. Therefore, we are led to the assumption

cof F ∈ Lq(Ω;R3×3), (2.6)

with q ≥ 2. This assumption will replace the more artificial one r > 3.
It is classically known since Rivlin and Saunders’ work [29] that for incompressible

rubber-like materials the bulk energy W satisfies |∂I2W | << |∂I1W |, i.e., the material
response is essentially independent of I2. However, for crystals, to the knowledge of the
authors there is no reason to make this assumption. For a compressible material, the
classical approach is to add to the bulk energy the term f( det F ) with f > 0 convex such
that f(t) → ∞ as t → 0+ and satisfying f(t) ≥ c|t|s for some c > 0 and s > 1. Since
f( det F ) must be in L1(Ω), one requires that

det F ∈ Ls(Ω), (2.7)

with s > 1. An example of stored elastic energy W2
ISO(I(C)) used for dislocations in

a nonlinear context that shows the simultaneous presence of I2 and I3 is the Blatz-Ko
material (see [42, Eq. (3.1.17)]).

As for the term W2
ISO(I(DF )), it is nowadays a classical approach to consider gradient

models (for instance the pioneer work in this respect was [35]) to avoid instabilities in
continua submitted to severe loadings and large deformations (see also [19]).

3 Mathematical formalism

One of the crucial point is that the very nature of the displacement field in the presence
of dislocations is multiple-valued, due to the fact that the value of the displacement field
depends on the number of loops made by a circuit wrapping around the dislocation line and
along which the deformation is integrated (consider the classical Michell-Cesaro formulae
[6]). There are two ways to mathematically address this fact. First, the traditional
approach consists in avoiding any such multiple circuits by “closing” the dislocation loop
L with a surface S enclosed by L. Hence we avoid multivaluedness, but deal with a jump
of the displacement on the surface, where it is of constant amplitude. The second approach
is to define the displacement as a map with values in the three-dimensional torus. Then,
the displacement does not “see” the jumps when loops are made around L. We consider
these two approaches in [33]. Note that, in addition to their mathematical reason to be,
the surface S may be given a physical meaning. Therefore explicit expression of the terms
supported by S were also provided in [33].
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3.1 Generalities about currents and graphs

Basic facts

Let α be a multi-index, i.e., an ordered (increasing) subset of {1, 2, . . . , n}. We denote by
|α| the cardinality (or length) of α, and we denote by ᾱ the complementary set of α, i.e.,
the multi-index given by the ordered set {1, 2, . . . , n} \ α.

For all integers n > 0 and k ≥ 0 with k ≤ n, we denote by ΛkRn the space of k-vectors
and by ΛkRn the space of k-covectors. We denote by Dk(Ω) the space of smooth and
compactly supported k-forms, which is a topological vector space. Any k-form ω ∈ Dk(Ω)
can be written in terms of its components, namely

ω =
∑
|α|=k

ϕαdxα, (3.1)

with ϕα ∈ C∞c (Ω), and dxα denoting the k-covector, k = |α|, dxα = dxα1 ∧ · · · ∧ dxαk .
The external derivative of a form ω ∈ Dk(Ω), k < n, is the form dω ∈ Dk+1(Ω) given by
dω =

∑n
i=1

∑
|α|=k

∂ϕα
∂xi

dxi ∧ dxα, where ω has the form (3.1). Given a function F : U ⊂
Rm → V ⊂ Rn of class C1 and a k-form ω ∈ Dk(V ) the pull-back of ω by F is the form
F ]ω ∈ Dk(U) defined as

〈F ]ω, v1 ∧ · · · ∧ vk〉 = 〈ω, ∂F
∂v1
∧ · · · ∧ ∂F

∂vk
〉,

for any k-vector v ∈ ΛkRm.

The cofactor form

For any real n × n matrix A and for α and β multi-indices with |α| + |β| = n, Mβ
ᾱ (A)

denotes the determinant of the submatrix of A obtained by erasing the i-th columns and
the j-th rows, for all i ∈ α and j ∈ β̄. The symbol M(A) denotes the n-vector in ΛnR2n

given by

M(A) :=
∑

|α|+|β|=n

σ(α, ᾱ)Mβ
ᾱ (A)eα ∧ εβ, (3.2)

where {ei, εi}i≤n is the standard Euclidean basis of R2n, and σ(α, ᾱ) is the sign of the
permutation (α, ᾱ) ∈ S(n). Accordingly, we define

|M(A)| := (1 +
∑

|α|+|β|=n
|β|>0

|Mβ
ᾱ (A)|2)1/2.

For a matrix A ∈ R3×3, the symbols adj A and det A denote the adjugate, i.e., the
transpose of the matrix of the cofactors of A, and the determinant of A, respectively.

Explicitly, M i
j(A) = Aij , M

ī
j
(A) = ( cof A)ij = ( adj A)ji , M

{1,2,3}
{1,2,3} (A) = det A, for

i, j = 1, 2, 3. Moreover, |M(A)| =
(
1 +

∑
i,j A

2
ij +

∑
i,j cof(A)2

ij + det(A)2
)1/2

.

Currents

Let Ω ⊂ Rn be an open set. The dual space of Dk(Ω), denoted by Dk(Ω), is called space
of k-currents in Ω. We will usually denote currents with capital italic letters. A weak
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convergence in Dk(Ω) is defined as follows: we say that Th ⇀ T in the sense of currents
if for every ω ∈ Dk(Ω) we have Th(ω) → T (ω). The boundary of a current T ∈ Dk(Ω) is
the current ∂T ∈ Dk−1(Ω) defined as

∂T (ω) = T (dω), for all ω ∈ Dk−1(Ω).

A closed current is a current with null boundary (as, by definition, every current in
D0(Ω)). The mass of T ∈ Dk(Ω) is the number M(T ) ∈ [0,+∞] given by M(T ) :=

sup
ω∈Dk(Ω), |ω|≤1

T (ω). IfM(T ) < +∞ then T turns out to be a Borel measure inMb(Ω,ΛkRn),

and its total variation coincides with M(T ). It is easily seen that the mass is lower semi-
continuous with respect to the weak topology in Dk(Ω). It is also convenient to introduce
the quantity N(T ) := M(T ) +M(∂T ), for every T ∈ Dk(Ω).

Let U ⊂ Rn and V ⊂ Rm be open sets and F : U → V be a smooth map. Then the
push-forward of a current T ∈ Dk(U) by F is defined as F]T (ω) := T (ζF ]ω) for ω ∈
Dk(V ), where F ]ω is the standard pull-back of ω and ζ is any C∞-function that is equal
to 1 on sptT ∩ sptF ]ω.

Integral currents

Let 0 ≤ k ≤ n and let S ⊂ Rn be a Hk-rectifiable set with approximate tangent space
TxS. If τ : S → Λk(Rn) and θ : S → R are Hk-integrable functions with τ(x) ∈ TxS a
simple unit k-vector for Hk-a.e. x ∈ S, then we can define the current T as

T (ω) =

∫
S
〈ω(x), τ(x)〉θ(x)dHk(x) for ω ∈ Dk(Ω). (3.3)

Every current for which there exists such S, τ , and θ is said to be rectifiable. If also its
boundary ∂T is rectifiable, then we adopt the following notation

T ≡ {S, τ, θ}. (3.4)

The current T ∈ Dk(Ω) is rectifiable with integer multiplicity if it is rectifiable, has
rectifiable boundary, and the function θ in (3.3) is integer-valued. An integer-multiplicity
current T such that N(T ) <∞ is said an integral current. As known, the simplest example
of n-dimensional integral current is the integration over a set of finite perimeter U ⊂ Rn.
This is denoted by [U] ∈ Dn(Rn) and is defined as

[U](ω) =

∫
U
〈ω(x), τ〉dx for all ω ∈ Dn(Rn),

where τ := e1 ∧ · · · ∧ en the standard orientating vector of Rn.
If S = F (U) where F : U ⊂ Rn → Rm is a map smooth enough, we can define the push

forward by F of the current [U], which writes as F][U](ω) = [U](F ]ω) =
∫
U 〈F

]ω, τ〉dx =∫
S〈ω,

∂F
∂x1
∧ · · · ∧ ∂F

∂xn
〉dHn.

An integral current T ∈ DM (Rn) is said indecomposable if there exists no integral
current R such that R 6= 0 6= T −R and

N(T ) = N(R) +N(T −R).

The following theorem provides a decomposition property of every integral current and
the structure characterization of integer-multiplicity indecomposable 1-currents (see [17,
Section 4.2.25]).
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Theorem 3.1 (Federer). For every integral current T there exists a sequence of indecom-
posable integral currents Ti such that

T =
∑
i

Ti and N(T ) =
∑
i

N(Ti).

Suppose T is an indecomposable integer multiplicity 1-current on Rn. Then there exists a
Lipschitz function f : R→ Rn with Lip(f) ≤ 1 such that

fx[0,M(T )] is injective and T = f][[0,M(T )]].

Moreover ∂T = 0 if and only if f(0) = f(M(T )).

In other words, an indecomposable integral 1-current turns out to be a simple Lipschitz
curve.

Graph currents

Let us consider the space Ω× R3. We will use the Euclidean coordinates x = (x1, x2, x3)
for x ∈ Ω and y = (y1, y2, y3) for y ∈ R3. Every 3-form ω ∈ D3(Ω×R3) can be decomposed
as ω =

∑
ωαβdx

α ∧ dyβ, with ωαβ ∈ C∞c (Ω × R3), where the sum is computed over all
multi-indices α and β such that |α|+ |β| = 3.

Let p > 1. We denote by Ap(Ω,R3) the space:

Ap(Ω,R3) := {u ∈ L1(Ω;R3) : u is approx. differentiable a.e. on Ω, and

Mβ
ᾱ (Du) ∈ Lp(Ω) for all |α|+ |β| = 3},

The symbol Mβ
ᾱ (Du) has been introduced in (3.2) with A = Du. If u ∈ Ap(Ω,R3) then

Gu, the current carried by the graph of u, is defined as follows:

Gu := (Id× u)][Ω], (3.5)

where Id× u : R3 → R3 × R3 is given by (Id× u)(x) = (x, u(x)), viz.,

Gu(ω) =

∫
Ω
σ(α, ᾱ)ωαβ(x, u(x))Mβ

ᾱ (Du(x))dx, (3.6)

for all ω = ωαβdx
α ∧ dyβ ∈ D3(Ω× R3). Moreover if u ∈ Ap(Ω,R3) then Gu turns out to

be a integer-multiplicity 3-current in Ω× R3.

3.2 Graphs of maps with values in T3

The flat torus T is defined as T ∼= R/ ∼, with ∼ the equivalent relation given by

a ∼ b if and only if a− b ∈ 2πZ. (3.7)

In [33] (see also [32]) we studied the graphs of maps u : Ω → T3 seen as currents in
D3(Ω×T3). This space can be seen as the dual of the topological vector space D3(Ω×T3),
consisting of all compactly supported smooth 3-forms in Ω×T3. By (3.7) it can be easily
deduced that D3(Ω× T3) coincides with the class of smooth 3-forms in Ω×R3 which are
2π-periodic in the last three variables. As a consequence, there is a natural embedding
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from the space of currents in D3(Ω×R3) with compact support in Ω̄×R3 to D3(Ω×T3),
obtained by restricting T ∈ D3(Ω × R3) to the space of 3-forms in Ω × R3 which are
2π-periodic in the last three variables. More precisely, if T ∈ D3(Ω × R3) has compact
support in Ω̄× R3 then the following current T (T ) ∈ D3(Ω× T3) is well defined as

T (T ) := T xD3(Ω×T3),

where D3(Ω×T3) denotes the class of 3-forms in Ω×R3 which are 2π-periodic in the last
three variables. Since in general smooth functions in Ω × R3 are not periodic in the last
three variables, it is easily seen that M(T (T )) ≤M(T ).

The procedure of embedding a current in D3(Ω×R3) into D3(Ω× T3) can be applied
to graphs of functions u ∈ Ap(Ω,R3); we define T (u) : Ω → T3 using the projection
πT : R→ T, namely T (ui) := πT (ui) for i = 1, 2, 3. Since πT is a smooth functions, GT (u)

turns out to be 3-rectifiable current in Ω × T3 whenever Gu is a 3-rectifiable current in
Ω× R3. Furthermore it holds GT (u) = T (Gu).

We introduce the space Ap(Ω,T3) as follows:

Ap(Ω,T3) := {u ∈ L1(Ω;T3) : u is approx. differentiable a.e. on Ω, and

Mβ
ᾱ (Du) ∈ Lp(Ω) for all |α|+ |β| = 3}, (3.8)

where L1(Ω;T3) coincides with the space of measurable functions u : Ω→ T3.
A weak convergence is defined on Ap(Ω,T3). Namely, we say that a sequence uk ∈

Ap(Ω,T3) weakly converges to u ∈ Ap(Ω,T3) if uk → u strongly in L1(Ω;T3), and

Mβ
ᾱ (Duk) ⇀Mβ

ᾱ (Duk) weakly in Lp(Ω) for all multi-indices |α|+ |β| = 3 (see [21, Section
3.3.3]).

Following the classical theory of Cartesian currents (see, [20], [21]), it is straightforward
that if u ∈ Ap(Ω,T3) then the graph Gu is a integer multiplicity 3-current. Moreover, since
the mass of a current does not increase by composition with T , if there exists ū ∈ Ap(Ω,R3)
such that T (ū) = u and Gū is an integral current, then Gu is an integral current.

Lemma 3.2. Let uk, u ∈ Ap(Ω,T3) be such that uk ⇀ u weakly in Ap(Ω,T3), then
Guk ⇀ Gu as currents.

The following closure Theorem is a standard adaptation of Theorem 2 of [21, Section
3.3.2].

Theorem 3.3 (Federer-Fleming). Let uk be a sequence in Ap(Ω,T3) such that uk →
u strongly in Lp(Ω;T3) and suppose that there exist functions vβᾱ ∈ Lp(Ω) such that

Mβ
ᾱ (Duk) ⇀ vβᾱ weakly for all multi-indices α and β with |α|+ |β| = 3. If

M(∂Guk) < C < +∞ (3.9)

for all k > 0, then u ∈ Ap(Ω,T3) and vβα = Mβ
ᾱ (Du).

Let us remark that the original proof of the closure result on which the last theorem
is based is due to Federer and Fleming, but that was only established for currents in
Euclidean spaces. The theory for the flat torus can be obtained as adaptation of the more
general theory for G chains developed first by Fleming, and then by White, De Pauw and
Hardt (see for instance [14,15] and references therein).
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3.3 The displacement and the dislocation-induced deformation: basic
results

Let us start with a technical result. Let Ω̂ be a bounded open set with smooth boundary,

let g ∈ C1,α(∂Ω̂;R3) be such that

∫
∂Ω̂
gdH2 = 0, and let v ∈ C2,α(Ω̂;R3) be the zero-

average-value solution to {
∆v = 0 in Ω̂

∂Nv = g on ∂Ω̂,
(3.10)

then ‖v‖C2,α ≤ C‖g‖C1,α , with C = C(Ω̂) (see [22, Theorem 6.30 and Theorem 6.31]).

Theorem 3.4 (Harmonic map [37]). Let L be a Lipschitz closed curve in R3 and S a
bounded Lipschitz surface with boundary L and unit normal N . Let b ∈ R3. The solution
of the system 

∆u = 0 in R3 \ S
[u] := u+ − u− = b on S

[∂Nu] := ∂Nu
+ − ∂Nu− = 0 on S,

(3.11)

is given by (up to a harmonic map in R3)

ui(x) = −bi
∫
S
∂NΦ(x′ − x)dH2(x′), (3.12)

for x ∈ R3 \ S, where Φ is the the fundamental solution of the Laplacian in R3, namely
∆Φ = δ0.

In the following theorem the symbol BV p denotes the space of functions with bounded
variation whose absolutely continuous part of the gradient belongs to Lp, p ≥ 1.

Theorem 3.5 (Nature of the displacement field [33]). Let L be a closed Lipschitz curve in
Ω and let b ∈ 2πZ3. Then for any Lipschitz surface S with boundary L, every solution u to
(3.11) belongs to BV p(Ω;R3) with p = 3

2 , satisfies Div ∇au = 0 and −Curl ∇au = b⊗ L
as distributions (here ∇au is the part of the gradient of u that is absolutely continuous
with respect to the Lebesgue measure). Moreover if the curve L is of class C2, then ∇au ∈
Lp(Ω;R3×3) for all 1 ≤ p < 2. As a consequence, u can be seen with values in T3, in which
case it happens that T (u) ∈W 1,p(Ω;T3), and ∇T (u) = ∇au. Furthermore, T (u) does not
depend on the specific surface S enclosing L, but only depends on L.

We will often consider u as torus-valued, thus dropping the symbol T and denoting
T (u) by u as well. As a consequence, in the sequel the identification

∇u ≡ ∇au

will mean that the gradient of the torus-valued map u equals to the absolutely continuous
part of the distributional derivative of the vector-valued SBV -map u.

Remark 3.6. Let us emphasize that the integral in (3.12) (and then the content of
Theorem 3.5) can be extended, by Federer decomposition Theorem 3.1, to any integer
multiplicity 2-current S ⊂ R3. Indeed, if L is an integral 1-current, it can be decomposed
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as sum of simple Lipschitz curves Li, each of which having a surface Si enclosing it. Then
formula (3.12) can be generalized as the sum of the same integral on all Si. It is easy to
see that the absolutely continuous part of the gradient of the resulting u does not depend
on the choice of the surfaces Si.

If S has boundary L an integral 1-current, then it follows that

−Curl ∇u = b⊗ L.

This will be used in our main result (Theorem 4.11).

Theorem 3.7 (Biot-Savart [9,33]). Let Ω̂ ⊂ R3 be an open simply connected and smooth
set. Let µ be a tensor-valued Radon measure such that µ ∈Mdiv(Ω̂;R3×3) (where the label
div stands for divergence-free). Then there exists a unique F ∈ L1(Ω̂;R3×3) solution of

−Curl F = µ in Ω̂

Div F = 0 in Ω̂

FN = 0 on ∂Ω̂.

(3.13)

Moreover F belongs to Lp(Ω̂;R3×3) for all p with 1 ≤ p ≤ 3/2 and for all such p there
exists a constant C > 0 satisfying

‖F‖p ≤ C|µ|(Ω̂). (3.14)

In the case that µ = b⊗ τ H1xL, for some b ∈ R3 and a C2-closed curve L in Ω̂ with unit
oriented tangent vector τ , then the solution F belongs to Lp(Ω̂;R3×3) for all p < 2.

Note that improved regularity for F applies, as discussed in Section 5.4.

An archetypal result

Let L be a closed loop (or in general a closed integral 1-current) and let η be a field defined
on Ω. Let ui be the map introduced in (3.12) with bi = 2π, and consider it as torus-valued,
namely ui ∈W 1,p(Ω;T). To prove several of the following results we will use the following
coarea formula ∫ 2π

0

∫
{ui=t}

η(x)dH2(x)dt =

∫
Ω
η(x)|∇ui(x)|dx. (3.15)

Now, if
∫
{ui=t} η(x)dH2(x) is proved to be independent of t ∈ [0, 2π), then one also has

the following identity: ∫
{ui=t}

η(x)dH2(x) =
1

2π

∫
Ω
η(x)|∇ui(x)|dx.

The following Lemma is proved by means of this formula.

Lemma 3.8. Let L ∈ D1(Ω) be an integral closed 1-current supported in Ω, and let
w ∈ W 1,3/2(Ω;T) be the harmonic map given by formula (3.12) with bi = 2π. Let St :=
{x ∈ Ω : w(x) = t}. Then for a.e. t ∈ [0, 2π) the surface St is the support of an integral
2-current St in D2(Ω) such that ∂St = L.
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Proof. Let L be the support set of the 1-current L. Let ϕ ∈ C∞c (Ω;R3) be arbitrary, we
have ∫

L
ϕ · τdH1 = −

∫
Ω

Curl ϕ · ∇wdx = −
∫

Ω
Curl ϕ · ∇w

|∇w|
|∇w|dx

= −
∫ 2π

0

∫
St

Curl ϕ ·NtdH2dt =

∫ 2π

0

∫
∂St

ϕ · τtdH1dt, (3.16)

where Nt = ∇w
|∇w| is the unit normal to St, and in the last equality we have employed

the Stokes Theorem. By arbitrariness of ϕ we deduce that the distribution given by
ϕ 7→

∫ 2π
0

∫
∂St

ϕ · τtdH1dt coincides with τH1xL, which implies the thesis.

As a consequence of the preceding lemma, and adopting the notation in (3.4), it follows
that for a.e. t ∈ [0, 2π) the integer multiplicity current

St = {St, τ = Nt, θ = 1}, (3.17)

is integral with boundary ∂St = L. In particular the multiplicity of St is 1.

3.4 Preliminaries on dislocations at the continuum scale

We call a dislocation loop any simple closed curve L in Ω which has an associated Burgers
vector b ∈ 2πZ3. We say that a R3×3-valued field F is a deformation in the presence of
dislocation L and Burgers vector b if it satisfies the condition

−Curl F = ΛTLb := b⊗ τH1xL,

where τ is an oriented tangent vector to L defined H1 almost everywhere. Given any
b ∈ 2πZ3 we call a b-dislocation current a closed integral 1-current Lb with associated
Burgers vector b, and its corresponding density, denoted by ΛLb ∈ Mb(Ω,R3×3), is the
divergence-free measure satisfying

〈ΛLb , w〉 = Lb((wb)∗), (3.18)

for every w ∈ C∞c (Ω,R3×3), where in the right-hand side (wb)∗ is the covector writing
(wb)∗ := wkjbjdxk (with Einstein convention on repeated indices). We will employ the
following notation:

ΛLb = Lb ⊗ b = τ b ⊗ bθb H1xL, (3.19)

with θb the multiplicity of the vector b (see [32] for details). Notice that the dislocation
density can be identified with the dislocation current if seen as integral currents with
coefficients in Z3; we however prefer to use the label “dislocation density” when we treat
it as a Radon measure.

Definition 3.9 (Regular dislocation). We denote by B := 2πZ3 the lattice of admissible
Burgers vectors. A regular dislocation is a sequence of b-dislocation currents L := {Lb}b∈B.
To each dislocation is associated a dislocation current, still denoted by L :=

∑
b∈B Lb, and

the associated dislocation density ΛL :=
∑

b∈B ΛLb .

Given a regular dislocation L it is possible to split it on the canonical basis of R3,
L = L1 + L2 + L3, in such a way that Li has 2πei as associated Burgers vector and
satisfies

ΛL = ΛL1 + ΛL2 + ΛL3 = 2π

3∑
i=1

Li ⊗ ei. (3.20)
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Moreover, as proved in [32], one has |Li|Ω ≤ c|ΛL|Mb(Ω), for some constant c > 0 indepen-
dent of i and Ω.

A tensor F ∈ Lp(Ω;R3×3), with p > 1, is called a deformation field in the presence of
the regular dislocation L if it satisfies

−Curl F = ΛTL = ΛTL1
+ ΛTL2

+ ΛTL3
= 2π

3∑
i=1

ei ⊗ Li. (3.21)

3.5 Properties of the dislocation-induced deformation

By Helmholtz decomposition we can write any deformation field F ∈ Lp(Ω;R3×3) in the
presence of the regular dislocation L as the sum of a compatible and a incompatible part

F = ∇ṽ + F 0, (3.22)

where F 0 is the unique solution of
−Curl F 0 = ΛTL in Ω

Div F 0 = 0 in Ω

F 0N = 0 on ∂Ω.

(3.23)

By Theorem 3.7 and Lemmas 3.4 and 3.5, it is easy to see that the incompatible field F 0

is, up to a harmonic map, given by the sum of three fields ∇aui, i = 1, 2, 3, where ui is
the map given by (3.12) with b = 2πei and S being the support of an arbitrary integral
2-current S ∈ D2(Ω) with boundary ∂S = Li, i = 1, 2, 3. Namely, there exists a smooth
harmonic map u0 ∈ C∞(Ω̄;T3) such that

F 0 = ∇u0 +

3∑
i=1

∇ui, (3.24)

with ui ∈ W 1,3/2(Ω;T3) given by (3.12) with b = 2πei, i = 1, 2, 3. Moreover, if F 0 ∈
Lp(Ω;R3×3) with p ∈ (3/2, 2), then, since u0 is regular on Ω, we infer ui ∈W 1,p(Ω;T3) for
i = 1, 2, 3. The compatible part of F , we have that ṽ in (3.22) satisfies −∆ṽ = −Div F ,
so that if −Div F ∈ Lr(Ω;R3) then ṽ ∈ W 2,r(Ω;R3). As for u0, this is harmonic and
smooth. We denote by v := ṽ + u0.

In summary, we can always decompose a deformation field F ∈ Lp(Ω;R3×3) as sum of
three gradients

F = ∇ṽ +∇u0 +∇u = ∇v +∇u, (3.25)

where the function v = ṽ + u0 has values in R3 and u in T3. Furthermore, by standard
projection v can be in turn identified with a torus-valued map. Starting from this key
representation, we can consider the graph Gu+v of the map v + u ∈ W 1,p(Ω;T3) as an
integer multiplicity 3-current in the space Ω × T3, and, up to characterize its boundary
∂Gu+v, it is possible to adapt standard closure results for Cartesian currents to our case,
thus getting compactness principles for minimizing sequences of the problem (1.3).
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It is worth here to emphasize the strict connection between this representation and
the fact that the Burgers vectors are constrained to stay in the lattice B. Actually,
in [32, 33] it was proved that whenever a field F ∈ Lp(Ω;R3×3) satisfies (3.21) then it
can be decomposed as in (3.25). The fact that u and v can be seen as maps with values
in the flat torus is a direct consequence of equation (3.21), and such correspondence can
be obtained by the procedure described in Section 3.2. This procedure only consists in
identifying the displacement modulo a vector in 2πZ3; in turn, this identification consists,
when we look at u and v, in restricting their graph currents to the space of 3-forms which
are 2π-periodic in the second variable. A complete theory of closedness for this class of
currents is then provided by the corresponding results for G chains [14,15].

We stress out that the domain Ω × T3 for the graphs associated to u and v is not a
convenient choice but is required by the choice of the lattice B = 2πZ3, since, as already
said, u and v have values in T3 as a consequence of (3.21). A different choice of the lattice
B would give rise to a different target space for u and v.

Let us now focus on the mechanical induced deformation v. A control of the Lr-
norm of Div F provides us the control of the W 2,r-norm of v. Indeed, Div F = ∆v ∈
Lr(Ω;R3), so that v ∈ W 2,r(Ω;R3), ∇v ∈ W 1,r(Ω;R3×3) and ∇2v ∈ Lr(Ω;R3×3×3).
By Sobolev embedding, ∇v ∈ Ls(Ω;R3×3) with s = 3r

3−r . Now, one has by (2.4) that
( Curl cof ∇v)ij = εilk(vl,jvk,nn+vl,jnvk,n), and hence by Hölder inequality Curl cof ∇v ∈
Lt(Ω;R3×3) with t = 3r

6−r . Thus Curl Curl cof ∇v = −∆ cof ∇v ∈ W−1,t(Ω;R3×3) (by

the identity Div cof ∇v = 0) and hence cof ∇v ∈ W 1,t(Ω;R3×3), that is, once more by
Sobolev embedding, cof ∇v ∈ Lh(Ω;R3×3) with h = 3r

6−2r . By (2.5) we have I det ∇v =

∇T v cof ∇v, hence by Hölder again det ∇v ∈ Lm(Ω) with m = r
3−r . Thus we state the

following result:

Lemma 3.10. Let Ω ⊂ R3 be a bounded Lipschitz open set. Let v ∈ W 2,r(Ω;R3), then
cof ∇v ∈W 1,t(Ω;R3×3) with t = 3r

6−r .

Owing once again to the decomposition (3.25), and assuming that the dislocation-
induced deformation ∇u is generated by a single Burgers vector b (that, without loss of
generality, we assume b = e1), the term det F can be written as the sum

det F = det (∇v +∇u) = det

∇v1

∇v2

∇v3

+ det

∇u1

∇v2

∇v3

 . (3.26)

Hence, since det ∇v ∈ L
r

3−r (Ω) and since cof ∇v ∈ L
3r

6−2r (Ω;R3×3), in order that det F ∈
L1(Ω) it suffices, again by Hölder, that 6−2r

3r + 1
p ≤ 1, that is

r ≥ 6p

5p− 3
. (3.27)

Since p < 2 this entails the natural requirement r > 12
7 . Note that r may still be less than

2.
In particular the preceding discussion yields the following Lemma:

Lemma 3.11. Let F ∈ Lp(Ω;R3×3) be such that (3.25) holds true with v ∈ W 2,r(Ω;R3)
and let u ∈ W 1,p(Ω;T3) be the solution of (3.11) with b = e1. Suppose p < 2 and r > 12

7
be such that (3.27) holds true. Then det F ∈ Ls(Ω) with

1

s
=

6− 2r

3r
+

1

p
. (3.28)
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4 Boundary of graphs

4.1 Preliminary results

Let L be a Lipschitz closed and simple curve, let b ∈ 2πZ3 be a fixed Burgers vector, and
let v ∈ C1(Ω;R3). We introduce the currents L∧ b and Cu+v belonging to D2(Ω×T3) and
defined as follows:

L ∧ b(ω) =
1

2π

∫ 2π

0

∫
L
〈ω(x,

bθ

2π
+ v(x)), ~τ(x) ∧~b〉dH1(x)dθ,

Cu+v(ω) =
1

2π

∫ 2π

0

∫
L
〈ω(x,

bθ

2π
+ v(x)),

∂~v

∂τ
(x) ∧~b〉dH1(x)dθ, (4.1)

for all ω ∈ D2(Ω × T3). Here τ(x) ∈ R3 is the tangent vector to L at the point x,
~τ := (τ, 0) ∈ Λ1R6, ~b := (0, b) ∈ Λ1R6, ~v = (0, v) ∈ Λ1R6. From this point on we will use
the arrow to distiguish b (and similarly the other vectors), which belongs to R3, from the
1-vector ~b := (0, b) ∈ Λ1R6.

The following result [33, Theorem 4.1] shows that the boundary of the graph of the
torus-valued displacement field u is related to the dislocation density.

Theorem 4.1 (Dislocation density as a graph boundary [33]). Let S be a simple Lipschitz
surface in Ω whose boundary is L, a simple Lipschitz and closed curve in Ω. Let b =
(b1, b2, b3) ∈ 2πZ3, let u = (u1, u2, u3) : Ω→ R3 be the map given by (3.12), and let v = 0.

Then u ∈ W 1, 3
2 (Ω;T3) and Gu is an integral current in D3(Ω × T3) whose boundary is

given by
∂Gu(ω) = L ∧ b(ω), (4.2)

for all ω ∈ D2(Ω× T3). In particular |∂Gu| = |L ∧ b| = |L ⊗ b|.

The following result [33, Theorem 4.6.] gives a representation of the boundary of the
graph of a torus-valued displacement field u when it is perturbed by a regular displacement
v (i.e., associated to the compatible deformation ∇v).

Theorem 4.2. Let S, L, b and u be as in Theorem 4.1, and let v ∈ C1(Ω̄,R3). Then Gu+v

is the integral current in D3(Ω× T3) given by

∂Gu+v(ω) = L ∧ b(ω) + Cu+v(ω), (4.3)

for all ω ∈ D2(Ω× T3), with Cu+v defined in (4.1). In particular, it holds

M(∂Gu+v) ≤ C(1 + ‖Dv‖L∞)|L ⊗ b|(Ω), (4.4)

for some general constant C > 0.

4.2 Weak form of the graph boundaries

The aim here is to express the graph boundaries in (4.3) as integrals over a suitable current
S with boundary L (by Stokes Theorem, or equivalently, by definition of boundary for
currents). This will provide a weak formulation of (4.1) valid for less regular fields v.
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Introducing the map Φ : Ω× [0, 2π] → Ω× R3 given by Φ(x, θ) = (x, bθ2π + v(x)), it is
easy to see that the current Jv := L ∧ b+ Cu+v can be written as

Jv(ω) =

∫ 2π

0

∫
L
〈Φ]ω, ~τ ∧ ~t〉dH1(x)dθ = [L× [0, 2π]](Φ]ω)

= Φ][L× [0, 2π]](ω), ∀ω ∈ D2(Ω× T3), (4.5)

where ~t is the tangent vector to the segment [0, 2π) ⊂ Ω × [0, 2π) (and with abuse of
notation now ~τ is the tangent vector to L × [0, 2π) ⊂ Ω × [0, 2π), hence ~τ ,~t ∈ Λ1R4).
Using the fact that the form ω is 2π-periodic in the second variable, this can be rewritten
by definition of boundary as

Jv(ω) = ∂(Φ][S × [0, 2π]])(ω) = Φ][S × [0, 2π]](dω)

=
1

2π

∫ 2π

0

∫
S
〈dω(x,

bθ

2π
+ v(x)), (s1, ∂s1v(x)) ∧ (s2, ∂s2v(x)) ∧~b〉dH2(x)dθ, (4.6)

where S is a Lipschitz simple surface with boundary L and with orienting simple vector
s1 ∧ s2, s1, s2 ∈ TS and with ∂av := ∇v · a for a vector a ∈ R3.

Explicitly, we can decompose Jv with respect to a (local) orthonormal coordinate sys-
tem: let us denote s3 = s1 × s2 so that {s1, s2, s3} is an orthonormal basis of R3 with
associated coordinates {ξ1, ξ2, ξ3}. Since s3 = N the unit normal to the surface S, it is
evident that this system of coordinates is local; we will still denote by {x1, x2, x3} the
standard coordinates system associated to the Euclidean basis {e1, e2, e3}. The noncon-
stant change-of-basis matrix will be denoted by A ∈ R3×3, so that a vector a ∈ R3 has
coordinates aNi := Aijaj with respect to the basis {s1, s2, s3}. The matrix Aij = Aij(x)
depends on x ∈ S ⊂ Ω, and since it is unitary, its L∞-norm is bounded in Ω, namely

Aij ∈ L∞(Ω;R3×3).

Let {b/|b|, b⊥1 , b⊥2 } be an orthonormal basis of R3 with {y1, y2, y3} as associated Cartesian
system. Let us first consider the i1-component of Jv, for i ∈ {1, 2, 3}. This, recalling that
dxi = Aikdξk, is

Jv(ϕdxi ∧ dy1) = J i,1v (ϕ) =

=
1

2π

∫ 2π

0

∫
S
〈 ∂ϕ
∂xj

(x,
bθ

2π
+ v(x))AjkAildξk ∧ dξl ∧ dy1, N

b
v〉dH2(x)dθ

+
1

2π

∫ 2π

0

∫
S
〈 ∂ϕ
∂yj

(x,
bθ

2π
+ v(x))Aildξl ∧ dy1 ∧ dyj , N b

v〉dH2(x)dθ, (4.7)

where
N b
v = (s1, ∂s1v(x)) ∧ (s2, ∂s2v(x)) ∧~b.

It is now easy to compute

〈dξk ∧ dξl ∧ dy1, N
b
v〉 =


|b| for k = 1, l = 2,

−|b| for l = 1, k = 2,

0 otherwise,
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while

〈dξl ∧ dy1 ∧ dyj , N b
v〉 =

{
(−1)l|b| ∂vj∂ξlc

for l ∈ {1, 2}, j 6= 1,

0 otherwise,

where, in the last expression, lc := {1, 2} \ {l}. Eventually, from (4.7) we have

Jv(ϕdxi ∧ dy1) = J i,1v (ϕ) =

|b|
2π

∫ 2π

0

∫
S

∂ϕ

∂xj
(x,

bθ

2π
+ v(x))(Aj1(x)Ai2(x)−Aj2(x)Ai1(x))dH2(x)dθ

+
|b|
2π

∫ 2π

0

∫
S

∂ϕ

∂yj
(x,

bθ

2π
+ v(x))

(∂vj
∂ξ1

(x)Ai2(x)− ∂vj
∂ξ2

(x)Ai1(x)
)
dH2(x)dθ, (4.8a)

A similar computation yields the following expression

Jv(ϕdy1 ∧ dyi) = J 0,1i
v (ϕ) =

=
(−1)i|b|

2π

∫ 2π

0

∫
S

∂ϕ

∂yic
(x,

bθ

2π
+ v(x))

(∂v2

∂ξ1

∂v3

∂ξ2
− ∂v3

∂ξ1

∂v2

∂ξ2

)
(x)dH2(x)dθ

− |b|
2π

3∑
j=1

∫ 2π

0

∫
S

∂ϕ

∂xj
(x,

bθ

2π
+ v(x))

(
Aj1(x)

∂vi
∂ξ2

(x)−Aj2(x)
∂vi
∂ξ1

(x)
)
dH2(x)dθ, (4.8b)

valid for ω = ϕdy1 ∧ dyi (i = 2, 3), ϕ ∈ C∞c (Ω×T3). In the expression for J 0,1i
v , i ∈ {2, 3},

we have denoted by ic = {2, 3}\{i}. From (4.1) it is evident that the current Jv is nonzero
only if computed on forms of the type ω = ϕdxi ∧ dy1 (i = 1, 2, 3) or ω = ϕdy1 ∧ dyi
(i = 2, 3), since all the other components turn out to be identically zero. Namely, we have

Jv(ϕdxi ∧ dxj) = J ij,0v (ϕ) = 0,

Jv(ϕdy2 ∧ dy3) = J 0,23
v (ϕ) = 0. (4.8c)

Moreover the currents L ∧ b and Cu+v act on different components. More precisely, from
(4.1) we infer the following properties:

L ∧ b(ω) = 0 if ω 6= ϕdxi ∧ dy1 for some i = 1, 2, 3,

Cu+v(ω) = 0 if ω 6= ϕdy1 ∧ dyj for some j = 2, 3, (4.9)

which implies that

Jv(ϕdxi ∧ dy1) = L ∧ b(ϕdxi ∧ dy1),

Jv(ϕdy1 ∧ dyj) = Cu+v(ϕdy1 ∧ dyj). (4.10)

4.3 Case of a single dislocation

Weak expression of the graph boundary

The following lemma gathers some properties of graph boundary related to a single dislo-
cation loop.

Lemma 4.3. Let L be a simple Lipschitz closed curve in Ω, let u = (u1, u2, u3) ∈
SBV (Ω;R3) ∩W 1,p(Ω;T3) be the harmonic map of Theorem 3.4, satisfying (3.12) with
b ∈ 2πZ3. The following assertions hold true:
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(a) Let v ∈ C1(Ω̄;R3). Then Gu+v is an integral current in D3(Ω× T3) whose boundary
is given by

∂Gu+v(ω) = Jv(ω) =

=
1

2π

∫ 2π

0

∫
S
〈dω(x,

bθ

2π
+ v(x)), (s1,

∂v

∂s1
(x)) ∧ (s2,

∂v

∂s2
(x)) ∧~b〉dH2(x)dθ,

for all ω ∈ D2(Ω× T3).

(b) The current Jv does not depend on the Lipschitz surface S in the formula in (a)
which encloses L. Moreover the value Jv(ω) does depend only on the value of ω ∈
D2(Ω × T3) in a neighborhood of L. In particular, if ω and ω̃ coincide in such a
neighborhood, then Jv(ω − ω̃) = 0.

(c) Let r > 12
7 and p < 2 be such that

6− 2r

3r
+

1

p
≤ 1, (4.11)

and assume ∇u ∈ Lp(Ω;R3×3). Let v ∈ W 2,r(Ω;R3), and let vn ∈ C∞(Ω̄;R3) be
a sequence of functions such that vn → v strongly in W 2,r(Ω;R3). Then for all
ω ∈ D2(Ω× T3) we have

Jvn(ω)→ Jv(ω), (4.12)

where

Jv(ω) :=
1

2π

∫ 2π

0

∫
St

〈dω(x,
bθ

2π
+ v(x)), (s1,

∂v

∂s1
(x)) ∧ (s2,

∂v

∂s2
(x)) ∧~b〉dH2(x)dθ

=
1

(2π)2

∫ 2π

0

∫
Ω
〈dω(x,

bθ

2π
+ v(x)), (s1,

∂v

∂s1
(x)) ∧ (s2,

∂v

∂s2
(x)) ∧~b|∇w(x)|〉dxdθ,

where w has values in T and is defined by w b
2π := u, and St := {w = t} is an

arbitrary level set of w, t ∈ [0, 2π) (notice that the last expression is well defined
thanks to the fact that ∇v ∈W 1,r has pointwise meaning H2-a.e. on St since r > 1).
In particular, the value of Jv(ω) does not depend on the specific surface St, namely
does not depend on t ∈ [0, 2π), and depends only on the values of ω in a neighborhood
of L× T3.

Proof. Step 0: Statement (a) is the content of Theorem 4.2. The expression of the bound-
ary is obtained by application of Stokes Theorem as in (4.5) and (4.6), where S is an
arbitrary simple Lipschitz surface enclosed by L. Thanks to the fact that Jv = L∧b+Cu+v

has the expression given in (4.1), also statement (b) follows straightforwardly.
Let us prove assertion (c). To demonstrate (4.12) we will show that any component of

Jvn as in (4.8a) converges to the correspondent component of Jv. We have to treat the
two components in (4.8a) and (4.8b).

Step 1: Convergence of (4.8b). We have to prove that

J 0,12
vn (ϕ)→ J 0,12

v (ϕ), (4.13)

for any ϕ ∈ C∞c (Ω × R3) that is 2π-periodic in the second variable. First we observe
that, thanks to point (b) the value of J 0,12

vn (ϕ) does not depend on the specific surface S
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chosen in (4.8b). Thanks to Lemma 3.8 we can take S = St, a level surface of the function
w ∈ W 1,p(Ω;T), which is defined in such a way that u = b

2πw (note that u, by (3.12), is
always parallel to b), namely St := {x ∈ Ω : w(x) = t ∈ [0, 2π)}. By (4.8b) it holds

J 0,12
vn (ϕ) =

|b|
2π

(∫ 2π

0

∫
St

∂ϕ

∂y3
(x,

bθ

2π
+ vn(x))

(∂(vn)2

∂ξ1

∂(vn)3

∂ξ2
−
∂(vn)3

∂ξ1

∂(vn)2

∂ξ2

)
(x)dH2(x)dθ

−
3∑
j=1

∫ 2π

0

∫
St

∂ϕ

∂xj
(x,

bθ

2π
+ vn(x))

(∂(vn)1

∂ξ2
(x)Aj1(x)−

∂(vn)2

∂ξ1
(x)Aj2(x)

)
dH2(x)dθ

)
.

(4.14)

Since this expression does not depend on t ∈ [0, 2π), we also have

J 0,12
vn (ϕ) =

1

2π

∫ 2π

0
J 0,12
vn (ϕ)dt =

|b|
(2π)2

(∫ 2π

0

∫ 2π

0

∫
St

∂ϕ

∂y3
(x,

bθ

2π
+ vn(x))

(∂(vn)2

∂ξ1

∂(vn)3

∂ξ2
−
∂(vn)3

∂ξ1

∂(vn)2

∂ξ2

)
(x)dH2(x)dθdt

−
3∑
j=1

∫ 2π

0

∫ 2π

0

∫
St

∂ϕ

∂xj
(x,

bθ

2π
+ vn(x))

(∂(vn)1

∂ξ2
(x)Aj1(x)−

∂(vn)2

∂ξ1
(x)Aj2(x)

)
dH2(x)dθdt

)
.

(4.15)

Let us show the convergence of the first line, which is the most involved (the other two
lines are treated similarly, see the following remark). For all θ ∈ [0, 2π), we observe that
the quantity∫ 2π

0

∫
St

∂ϕ

∂y3
(x,

bθ

2π
+ vn(x))

(∂(vn)2

∂ξ1

∂(vn)3

∂ξ2
− ∂(vn)3

∂ξ1

∂(vn)2

∂ξ2

)
(x)dH2(x)dt. (4.16)

coincides, by coarea formula, with∫
Ω

∂ϕ

∂y3
(x,

bθ

2π
+ vn(x))

(∂(vn)2

∂ξ1

∂(vn)3

∂ξ2
− ∂(vn)3

∂ξ1

∂(vn)2

∂ξ2

)
(x)|∇w(x)|dx. (4.17)

We now observe that the term Dn :=
(∂(vn)2

∂ξ1

∂(vn)3

∂ξ2
− ∂(vn)3

∂ξ1

∂(vn)2

∂ξ2

)
|∇w| coincides with

Dn =
2π

|b|
det

 ∇ξu1

∇ξ(vn)2

∇ξ(vn)3

 , (4.18)

with ∇ξ standing for the gradient in the local basis. Remark also that det

 ∇xu1

∇x(vn)2

∇x(vn)3

 =

det

 ∇ξu1

∇ξ(vn)2

∇ξ(vn)3

At

 = det

 ∇ξu1

∇ξ(vn)2

∇ξ(vn)3

. Hence, recalling that u1, (vn)2 and (vn)3 are

expressed in the basis {b/|b|, b⊥1 , b⊥2 }, it follows that the value of Dn does not depend on the

local basis {s1, s2, s3}. To prove (4.18), observe that Pn := ∂(vn)2

∂ξ1

∂(vn)3

∂ξ2
− ∂(vn)3

∂ξ1

∂(vn)2

∂ξ2
=

( cof ∇vn)13 =
(
( cof ∇vn)s3

)
1
, where s3 corresponds to the vector N . Moreover ∇u1 =
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|b|
2π∇w and ∇w = |∇w|N , so that Dn = ( cof ∇vn)1 · ∇w from which (4.18) follows. Now,
by Lemma 3.10 we have cof ∇vn ∈ W 1,t(Ω;R3×3) with t = 3r

6−r ; by Sobolev embedding

cof ∇vn ∈ Lq(Ω;R3×3) with q ≤ 3r
6−2r , and since u1 ∈ Lp(Ω;R3), by (4.11) we infer that

Dn → D := 2π
|b| det

∇u1

∇v2

∇v3

 in L1(Ω). From this we conclude that the quantity in

(4.17) converges to∫
Ω

∂ϕ

∂y3
(x,

bθ

2π
+ v(x))

(∂v2

∂ξ1

∂v3

∂ξ2
− ∂v3

∂ξ1

∂v2

∂ξ2

)
(x)|∇w(x)|dx, (4.19)

thanks to the fact that ∂ϕ
∂y3

is of class C∞ (the component with coordinate y3 is not local),

and vn converges to v in L∞(Ω;R3) (since r > 3/2). Moreover, by Hölder inequality, it is
easy to see that the quantity in (4.17) is bounded by a constant independent of θ ∈ [0, 2π).
We have hence proved, by dominated convergence Theorem, that the first line in (4.15)
converges to

|b|
(2π)2

∫ 2π

0

∫
Ω

∂ϕ

∂y3
(x,

bθ

2π
+ v(x))

(∂v2

∂ξ1

∂v3

∂ξ2
− ∂v3

∂ξ1

∂v2

∂ξ2

)
(x)|∇w(x)|dxdθ. (4.20)

The second line in (4.15) can be proved to converge to

− |b|
(2π)2

3∑
j=1

∫ 2π

0

∫
Ω

∂ϕ

∂xj
(x,

bθ

2π
+ vn(x))

(∂v1

∂ξ2
(x)Aj1(x)− ∂v2

∂ξ1
(x)Aj2(x)

)
dxdθ. (4.21)

Since the argument is very similar to the previous one, we omit the details here and refer
to Remark 4.4 below. Summarizing we have shown that the term in (4.15) converges to
the sum of (4.20) and (4.21), that we denote by

∫ 2π
0

∫
ΩQθ|∇w(x)|dxdθ. It remains to

show that ∫ 2π

0

∫
Ω
Qθ|∇w(x)|dxdθ = 2π

∫ 2π

0

∫
St

QθdH2(x)dθ, (4.22)

for any t ∈ [0, 2π). This will conclude the proof of (4.13) together with the fact that
J 0,12
v (ϕ) does not depend on t ∈ [0, 2π). We will prove that the first line in (4.14)

converges to

|b|
2π

∫ 2π

0

∫
St

∂ϕ

∂y3
(x,

bθ

2π
+ v(x))

(∂v2

∂ξ1

∂v3

∂ξ2
− ∂v3

∂ξ1

∂v2

∂ξ2

)
(x)dH2(x)dθ.

The argument above provides that we can use the dominated convergence Theorem, so it
suffices to show that for all fixed θ ∈ [0, 2π)∫

St

∂ϕ

∂y3
(x,

bθ

2π
+ vn(x))

(∂(vn)2

∂ξ1

∂(vn)3

∂ξ2
−
∂(vn)3

∂ξ1

∂(vn)2

∂ξ2

)
(x)dH2(x),

tends to ∫
St

∂ϕ

∂y3
(x,

bθ

2π
+ v(x))

(∂v2

∂ξ1

∂v3

∂ξ2
− ∂v3

∂ξ1

∂v2

∂ξ2

)
(x)dH2(x).

24



We recall that Pn = ( cof ∇vn)N · s1. Since by Lemma 3.10 cof ∇vn ∈ W 1,t(Ω;R3×3)

with t = 3r
6−r by a trace theorem on St we have Pn ∈ W 1− 1

t
,t(St;R3×3), and by Sobolev

embedding, Pn ∈ Lq(St;R3×3) for any q ≤ 9r
24−7r . Moreover ∂ϕ

∂y3
(·, bθ2π + vn(·)) converges to

∂ϕ
∂y3

(·, bθ2π + v(·)) in W 2− 1
r
,r(St;R) and hence in Ls(St;R) with s = 3r

4−2r . Now the claim

follows by Hölder inequality since r > 12
7 > 18

11 .
The treatment of the second and third lines in (4.14) is similar (see also Remark 4.4).
Step 2: Convergence of (4.8a). We have to prove that for all ϕ ∈ C∞c (Ω× T3) it holds

J i,1vn (ϕ)→ J i,1v (ϕ). (4.23)

As for the previous step, we claim that

J i,1vn (ϕ) =
|b|
2π

(∫ 2π

0

∫
St

∂ϕ

∂xj
(x,

bθ

2π
+ vn(x))

(
Aj1(x)Ai2(x)−Aj2(x)Ai1(x)

)
dH2(x)dθ

+

∫ 2π

0

∫
St

∂ϕ

∂yj
(x,

bθ

2π
+ vn(x))

(∂(vn)j
∂ξ1

(x)Ai2(x)− ∂(vn)j
∂ξ2

(x)Ai1(x)
)
dH2(x)dθ

)
,

converges to

|b|
(2π)2

(∫ 2π

0

∫
Ω

∂ϕ

∂xj
(x,

bθ

2π
+ v(x))

(
Aj1(x)Ai2(x)−Aj2(x)Ai1(x)

)
|∇w(x)|dxdθ

+

∫ 2π

0

∫
Ω

∂ϕ

∂yj
(x,

bθ

2π
+ v(x))

(∂vj
∂ξ1

(x)Ai2(x)− ∂vj
∂ξ2

(x)Ai1(x)
)
|∇w(x)|dxdθ

)
. (4.24)

Emulating the arguments of Step 1, the convergence of the first line is straightforward. To

treat the second line, we observe that the quantity (En)ij :=
∂(vn)j
∂ξ2

(x)Ai1(x)−∂(vn)j
∂ξ1

(x)Ai2(x)
satisfies the relation

(En)ij = (ei ×∇(vn)j) ·N = (∇(vn)j ×N) · ei. (4.25)

Indeed it suffices to recall that ei = Aiksk, i.e., ei has coordinates Aik in the basis
{s1, s2, s3}, and to notice that (En)ij coincides with the third component of the vector
ei ×∇(vn)j , we recall that the third component of {s1, s2, s3} is parallel to N .

To prove the desired convergence it now suffices to argue as in Step 1. Moreover, (4.24)
is seen to coincides with

J i,1v (ϕ) =
|b|
2π

(∫ 2π

0

∫
St

∂ϕ

∂xj
(x,

bθ

2π
+ v(x))

(
Aj1(x)Ai2(x)−Aj2(x)Ai1(x)

)
dH2(x)dθ

+

∫ 2π

0

∫
St

∂ϕ

∂yj
(x,

bθ

2π
+ v(x))

(∂vj
∂ξ1

(x)Ai2(x)− ∂vj
∂ξ2

(x)Ai1(x)
)
dH2(x)dθ

)
, (4.26)

for any t ∈ [0, 2π).
Step 3. Let us finally see that the value of Jv(ϕ) does depend only on the value of

ϕ in a neighborhood of L × T3. This also follows from point (b) and the fact that, if ϕ̃
coincides with ϕ in a neighborhood of L× T3, then

Jv(ϕ− ϕ̃) = lim
n→+∞

Jvn(ϕ− ϕ̃) = 0.
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Remark 4.4. To see the convergence of the second line in (4.15) the argument is very
similar to the one adopted for the first line, with the difference that this term have to be
treated as for the last line in (4.24). Indeed the term

∂(vn)2

∂ξ2
Aj1 −

∂(vn)2

∂ξ1
Aj2

is recognized as the quantity (∇(vn)2×N)·ej . Then it suffices to follow the argument in the
proof of step 1 considering that ∇(vn)2 ∈W 1,r(Ω;R3) and ∇ϕ(·, θb2π +vn(·)) ∈W 2,r(Ω;R3)
thanks to the regularity of vn.

The fundamental lemma

In order to prove the following Lemma we need to introduce some additional notation. Let
L be a simple Lipschitz loop in Ω and introduce the distance function d(x) := dist(x, L)
which is a Lipschitz function whose differential satisfies for a.e. x ∈ Ω, |∇d(x)| = 1. Given
a function v ∈W 2,r(Ω;R3), we also introduce the current L ∧ b ∈ D2(Ω× T3) defined as

L ∧ b(ω) =
1

2π

∫ 2π

0

∫
S
〈dω(x,

bθ

2π
+ v(x)), (s1, 0) ∧ (s2, 0) ∧~b〉dH2(x)dθ, (4.27)

for all ω ∈ D2(Ω×T3). In the formula above S is an arbitrary Lipschitz surface enclosing
L, while, as usual, ~b = (0, b) ∈ Λ1R6.

Lemma 4.5. Let L be a closed simple Lipschitz loop, and let u = (u1, u2, u3) ∈ SBV (Ω;R3)∩
W 1,p(Ω;T3) be the harmonic map satisfying (3.12) with b ∈ 2πZ3. Let w ∈ W 1,p(Ω;T)
be defined by w b

2π = u. Let v ∈ W 2,r(Ω;R3) and assume that ∇u ∈ Lp(Ω;R3×3), with
6−2r

3r + 1
p ≤ 1. If the following condition holds true:

lim
ε→0

1

ε

∫
St∩{d≤ε}

|∇v ×N |dx = 0 for a.e. t ∈ [0, 2π), (4.28)

where N = ∇w
|∇w| is the unit normal to St, then

Jv(ω) = L ∧ b(ω). (4.29)

Proof. We shall prove that condition (4.28) has the property of nullifying some components
of Jv(ω). In particular, using the coordinates system introduced in (4.8), we will show
that J 0,1i

v (ϕ) = Jv(ϕdy1 ∧ dyi) = 0, for all ϕ ∈ C∞c (Ω× T3), for i = 2, 3. This will imply
the thesis, thanks to the fact that the only nonzero components of Jv are those in (4.10)
(compare with (4.9)). Let us recall that

Jv(ϕdy1 ∧ dyi) = J 0,1i
v (ϕ) =

|b|
2π

(
(−1)i

∫ 2π

0

∫
St

∂ϕ

∂yic
(x,

bθ

2π
+ v(x))

(∂v2

∂ξ1

∂v3

∂ξ2
− ∂v3

∂ξ1

∂v2

∂ξ2

)
(x)dH2(x)dθ

−
3∑
j=1

∫ 2π

0

∫
St

∂ϕ

∂xj
(x,

bθ

2π
+ v(x))

(
Aj1(x)

∂vi
∂ξ2

(x)−Aj2(x)
∂vi
∂ξ1

(x)
)
dH2(x)dθ

)
, (4.30)

for an arbitrary t ∈ [0, 2π). Thanks to Lemma 4.3 (c) this expression does not depend on
the value of ϕ outside the neighborhood {d ≤ ε}×T3 of L×T3. Hence we consider a smooth
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cut-off function ηε : R→ [0,∞) which is even and such that ηε = 1 in [0, ε/2], vanishes in
[ε,∞), and its derivatives satisfies |η′ε| < 3/ε. Then we set ϕ(x, y) = ψ(x, y)ηε(d(x)) with
ψ ∈ C∞c (Ω× T3) in the expression above and we estimate

|J 0,1j
v (ϕ)| ≤ |b|

2π

∫ 2π

0

∫
St

ηε(d(x))| ∂ψ
∂yic

(x,
bθ

2π
+ v(x))|

∣∣∂v2

∂ξ1

∂v3

∂ξ2
− ∂v3

∂ξ1

∂v2

∂ξ2

∣∣(x)dH2(x)dθ

+

3∑
j=1

|b|
2π

∫ 2π

0

∫
St

ηε(d(x))| ∂ψ
∂xj

(x,
bθ

2π
+ v(x))|

∣∣Aj1(x)
∂vi
∂ξ2

(x)−Aj2(x)
∂vi
∂ξ1

(x)
∣∣dH2(x)dθ

+
3∑
j=1

3|b|
2πε

∫ 2π

0

∫
St∩{d<ε}

|ψ(x,
bθ

2π
+ v(x))|

∣∣Aj1(x)
∂vi
∂ξ2

(x)−Aj2(x)
∂vi
∂ξ1

(x)
∣∣dH2(x)dθ.

The first term tends to 0 since |J | :=
∣∣∂v2
∂ξ1

∂v3
∂ξ2
− ∂v3

∂ξ1
∂v2
∂ξ2

∣∣ belongs to L1(St) while ηε ↓ 0

H2-a.e. and ∇ψ is bounded. Indeed, J is recognized as the determinant of the matrix0 0 1
∇v2

∇v3

 = ( cof ∇v)N · s1. By the regularity of the cofactor we find ( cof ∇v)N ∈ L1(St)

by standard theorem of traces for Sobolev spaces.
As for the other terms in (4.31), they also tend to zero, keeping into account condition

(4.28). The product Aj1(x) ∂vi∂ξ2
(x) − Aj2(x) ∂vi∂ξ1

(x) coincides with (∇vi × N) · ej , so the

claim follows by the fact that the latter belongs to L1(St) and by (4.28).
In a similar way it is possible to prove that also the second line in (4.8a) vanishes.

Hence we arrive at the following characterization of the current Jv; namely, written in
components, this reads

Jv(ϕdxi ∧ dy1) =
|b|
2π

∫ 2π

0

∫
St

∂ϕ

∂xj
(x,

bθ

2π
+ v(x))

(
Aj1(x)Ai2(x)−Aj2(x)Ai1(x)

)
dH2(x)dθ,

Jv(ϕdxi ∧ dxj) = Jv(ϕdy1 ∧ dyi) = Jv(ϕdy2 ∧ dy3) = 0. (4.31)

Now it suffices to recognize that this expression entails that Jv coincides with the expres-
sion in (4.27), by definition.

Looking back at (4.10) we find out that L ∧ b is exactly L ∧ b when v is of class C1.
Arguing by approximation of v by smooth maps vn we easily infer that the current (4.29)
is well defined and its mass does not increase after approximation, since for every n it
coincides with |L||b|, i.e.,

M(L ∧ b) = |L||b|. (4.32)

Not to overburden notation we will still denote L ∧ b by L ∧ b itself. We have obtained
the following corollary:

Corollary 4.6. In the hypotheses of Lemma 4.5, it holds

M(∂Gu+v) = M(L ∧ b).

As a consequence Gu+v is an integral current in D3(Ω× T3).

Remark 4.7. For a physical viewpoint condition (4.28) seems to be difficult to check.
However, as we will see in the next section, this is strictly related to the summability of
the cofactor of ∇u.
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4.4 Main result 1: characterization of the graph boundary for clusters
with a single Burgers vector

In this section, instead of a single line, we study dislocation clusters associated with a
single Burgers vector b ∈ 2πZ3. Let L be a Lipschitz closed loop in Ω. We know that the
Minkowski content of L tends to the 1-dimensional Hausdorff measure of L, that is

|{x ∈ Ω : d(x, L) < r}|
πr2

→ H1(L), as r → 0. (4.33)

Let now L be a countable union of closed Lipschitz curves Li ⊂ Ω such that H1(L) =∑∞
i=1H1(Li) < +∞. For any i ∈ N, by (4.33), there is a non-negative real number ri such

that, if r < ri, then it holds true

|{x ∈ Ω : d(x, Li) < r}|
πr2

< 2H1(Li). (4.34)

Now, choose a sequence of non-negative real numbers δi, i ∈ N, as

δi := min{2−1−i, ri} < 1, (4.35)

so that
∑∞

i=0 δi ≤ 1. For ε > 0, let us define the open set Dε as

Dε := ∪i∈NDi
ε, Di

ε = {x ∈ Ω : d(x, Li) < εδi}. (4.36)

By (4.34), one has

|Di
ε|

πε2δ2
i

< 2H1(Li) ∀i ∈ N,

|Dε| ≤
∞∑
i=0

|Di
ε| ≤ 2πε2(

∞∑
i=0

δ2
iH1(Li)) ≤ 2πε2H1(L),

|Dε| → 0 as ε→ 0. (4.37)

Let L be a closed integral current in D1(Ω). By Theorem 3.1 we infer that there is
a sequence of indecomposable 1-currents Li supported on Lipschitz loops Li such that
L =

∑∞
i=0 Li. Moreover there exists an integral 2-current S ∈ D2(Ω) with ∂S = L that,

again by decomposition Theorem, can be written as S =
∑∞

i=0 Si with Si undecomposable
integral 2-currents with ∂Si = Li. We will now analyze the boundary of the graph of
deformations of the form ∇u+∇v with u being the solution to (3.12) with the cluster L
in place of the simple loop L. It will be easy to see, in the case v is of class C1, that the
boundary ∂Gu+v will take the form

Jv(ω) =
1

2π

∫ 2π

0

∫
S
〈dω(x,

bθ

2π
+ v(x)), (s1,

∂v

∂s1
(x)) ∧ (s2,

∂v

∂s2
(x)) ∧~b〉dH2(x)dθ, (4.38)

for all ω ∈ D2(Ω × T3) (see Lemma 4.8 below). Moreover we will see that the integral
(4.38) does not depend on the specific current S. Indeed, if v is of class C1, we can apply
Stokes Theorem as in (4.5) and (4.6).

Let us now characterize the boundary of Gu+v for general fields v ∈W 2,r(Ω;R3).
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Lemma 4.8. Let L ∈ D1(Ω) be a closed integral 1-current in Ω, let u ∈ SBV (Ω;R3) ∩
W 1,p(Ω;T3) be the harmonic map of Theorem 3.4, satisfying (3.12) with b ∈ 2πZ3. Let
v ∈W 2,r(Ω;R3) and assume

r >
12

7
, p < 2, and

6− 2r

3r
+

1

p
≤ 1. (4.39)

Then the current given by the graph of u+v with values in T3, namely Gu+v ∈ D3(Ω×T3),
is an integer multiplicity current with finite mass and with boundary given by

∂Gu+v(ω) =
1

2π

∫ 2π

0

∫
St
〈dω(x,

bθ

2π
+ v(x)), (s1,

∂v

∂s1
(x)) ∧ (s2,

∂v

∂s2
(x)) ∧~b〉dH2(x)dθ,

(4.40)

for all ω ∈ D2(Ω × T3) and a.e. t ∈ [0, 2π). Here St ∈ D2(Ω) is an integral 2-current
whose boundary is L and whose support is St, the level set of the map w ∈ W 1,p(Ω;T),
which, as in Lemma 4.3, is defined by b

2πw = u.

Proof. The fact that the current Gu+v is rectifiable with integer multiplicity is an easy
consequence of the fact that the graph

Gu+v = {(x, y) ∈ Ω× T3 : y = u(x) + v(x)}

is a 3-rectifiable set (see Theorem 4 in [21, Section 3.1.5] and Proposition 1 in [21, Section
3.2.1]). Moreover it has finite mass since all the minors of ∇u +∇v are integrable, as a
consequence of condition (4.39), taking into account that ∇u is of rank 1.

Let us prove that the boundary of Gu+v takes the form (4.40). Let vn ∈ C∞(Ω̄;R3) be
a sequence such that vn → v strongly in W 2,r(Ω;R3). Let us write L as a countable sum
of undecomposable components, L =

∑
i Li, where Li is a simple closed Lipschitz curve in

Ω for all i. Accordingly let us decompose St in indecomposable components (St)i in such
a way that ∂(St)i = Li (we recall that by Lemma 3.8 it holds ∂St = L for a.e. t ∈ [0, 2π),
and that moreover the multiplicity of St is 1 for a.e. t ∈ [0, 2π)). We will first show that
for all n > 0 the graph Gu+vn has boundary given by

Jvn(ω) :=
1

2π

∫ 2π

0

∫
St

〈dω(x,
bθ

2π
+ vn(x)), (s1,

∂vn
∂s1

(x)) ∧ (s2,
∂vn
∂s2

(x)) ∧~b〉dH2(x)dθ,

(4.41)

where St = {w = t ∈ [0, 2π)} is an arbitrary level set of w. To see this we proceed as

follows. Let ui be the function in SBV (Ω;R3) ∩ W 1, 3
2 (Ω;T3) given by (3.12) with St

replaced by (St)i, whose boundary is Li, so that −Curl (∇ui) = b⊗ Li. It is easy to see

that um :=
∑m

i=0 ui converges to u strongly in W 1, 3
2 (Ω;T3), as m→∞; indeed we easily

see that

∇um → ∇u in L
3
2 (Ω;R3×3), (4.42)

and thus, by Poincaré’s inequality for torus-valued maps, um → u strongly in L
3
2 (Ω;T3)

as m→∞.
Furthermore it is easy to see that Gum+vn converges to Gu+vn in the sense of currents

as m→∞, thanks to the fact that vn is smooth, ∇um has rank 1 (i.e. that the cofactors
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and determinants are null), and the strong convergence of um. Defining

Jmvn (ω) :=
1

2π

∫ 2π

0

∫
Smt

〈dω(x,
bθ

2π
+ vn(x)), (s1,

∂vn
∂s1

(x)) ∧ (s2,
∂vn
∂s2

(x)) ∧~b〉dH2(x)dθ,

(4.43)

where Smt = {wm = t} (wm is defined via b
2πw

m = um), we claim that Jmvn (ω) converges
to Jvn(ω) in (4.41) for all ω ∈ D2(Ω×T3) as m→ +∞. Indeed, using the coarea formula
as in (4.16) and (4.17) we see that

Jmvn (ω) =
1

2π

∫ 2π

0
Jmvn (ω)dt =

1

(2π)2

∫ 2π

0

∫
Ω
〈dω(x,

bθ

2π
+ vn(x)), (s1,

∂vn
∂s1

(x)) ∧ (s2,
∂vn
∂s2

(x)) ∧~b〉|∇wm(x)|dxdθ.

(4.44)

Thanks to convergence (4.42), the smoothness of vn and (4.39), this converges as m→∞
to

1

(2π)2

∫ 2π

0

∫
Ω
〈dω(x,

bθ

2π
+ vn(x)), (s1,

∂vn
∂s1

(x)) ∧ (s2,
∂vn
∂s2

(x)) ∧~b〉|∇w(x)|dxdθ =

1

2π

∫ 2π

0
Jvn(ω)dt = Jvn(ω), (4.45)

where in the first equality we have used again the coarea formula and in the last equality
the fact that the integral in (4.41) does not depend on t ∈ [0, 2π), thanks to the regularity
of vn (we can apply Stokes Theorem together with Lemma 3.8). Now we want to pass to
the limit Jvn(ω) as n tends to∞. Using again the coarea formula, as in the last expression
we have

Jvn(ω) =
1

(2π)2

∫ 2π

0

∫
Ω
〈dω(x,

bθ

2π
+ vn(x)), (s1,

∂vn
∂s1

(x)) ∧ (s2,
∂vn
∂s2

(x)) ∧~b|∇w|〉dxdθ.

Thanks to the condition on the coefficients (4.39), this tends to

1

(2π)2

∫ 2π

0

∫
Ω
〈dω(x,

bθ

2π
+ v(x)), (s1,

∂v

∂s1
(x)) ∧ (s2,

∂v

∂s2
(x)) ∧~b|∇w|〉dxdθ,

which again by coarea formula equals

Jv(ω) :=

1

(2π)2

∫ 2π

0

∫ 2π

0

∫
St

〈dω(x,
bθ

2π
+ v(x)), (s1,

∂v

∂s1
(x)) ∧ (s2,

∂v

∂s2
(x)) ∧~b〉dH2(x)dtdθ, (4.46)

where St := {w = t}, t ∈ [0, 2π).
Let us now show that the quantity

Jt :=

∫ 2π

0

∫
St

〈dω(x,
bθ

2π
+ v(x)), (s1,

∂v

∂s1
(x)) ∧ (s2,

∂v

∂s2
(x)) ∧~b〉dH2(x)dθ

does not depend on t ∈ [0, 2π). This will demonstrate that

Jv(ω) =
1

2π

∫ 2π

0

∫
St

〈dω(x,
bθ

2π
+ v(x)), (s1,

∂v

∂s1
(x)) ∧ (s2,

∂v

∂s2
(x)) ∧~b〉dH2(x)dθ,
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for a.e. t ∈ [0, 2π).
For a.e. t̄ ∈ [0, 2π), by Lemma (3.8) the surface St̄ has boundary L, and by decompo-

sition writes as St̄ =
∑

i(St̄)i with ∂(St̄)i = Li. Setting

J it̄ :=

∫ 2π

0

∫
(St̄)i

〈dω(x,
bθ

2π
+ v(x)), (s1,

∂v

∂s1
(x)) ∧ (s2,

∂v

∂s2
(x)) ∧~b〉dH2(x)dθ,

it follows that Jt̄ =
∑

i J
i
t̄ , and J it̄ is recognized as Jv(ω)i, the boundary of Gui+v, which

by Lemma 4.3 does not depend on the specific surface (St̄)i. In particular we infer J it̄ =
Jv(ω)i = J it , so that it follows Jt̄ =

∑
i J

i
t̄ =

∑
i J

i
t = Jt. The thesis follows.

We will now refine Lemma 4.5.

Lemma 4.9. Let L ∈ D1(Ω) be a closed integral current in Ω, let u = (u1, u2, u3) ∈
SBV (Ω;R3) ∩ W 1,p(Ω;T3) be the harmonic map satisfying (3.12) with b ∈ Z3, and let
w ∈ W 1,p(Ω;T) be defined by b

2πw = u. Let v ∈ W 2,r(Ω;R3) and assume that (4.39)
is satisfied. Let L decompose as L =

∑∞
i=0 Li, with Li simple Lipschitz closed curves in

Ω, let {δi}i∈N the sequence of non-negative numbers in (4.35), and define Dε by (4.36).
Assume that

lim
ε→0

1

ε

∫
St∩Dε

|∇v ×N |dH2(x) = 0, (4.47)

for a.e. t ∈ [0, 2π), where N = ∇w
|∇w| is the unit normal to the level set St = {w = t}. Then

Jv(ω) = L ∧ b(ω) =
∑
i

Li ∧ b(ω), (4.48)

for all ω ∈ D2(Ω×T3). As a consequence Gu+v is an integral current in D3(Ω×T3) whose
boundary is L ∧ b.

Proof. From Lemma 4.8 we infer that, if (4.48) holds true, then Gu+v is an integral current
whose boundary is ∂Gu+v = L∧ b. Then we have only to prove that (4.47) implies (4.48).
We will achieve this by means of Lemma 4.5. The current St can be decomposed as follows:

St = ∪∞i=0(St)i with ∂(St)i = Li, (4.49)

and, thanks to (3.17), (St)i are essentially disjoint surfaces for a.e. t ∈ [0, 2π). Hence we
deduce that

Jv(ω) =
∞∑
i=0

J iv(ω), (4.50)

with

J iv(ω) =
1

2π

∫ 2π

0

∫
(St)i
〈dω(x,

bθ

2π
+ v(x)), (s1,

∂v

∂s1
(x)) ∧ (s2,

∂v

∂s2
(x)) ∧~b〉dH2(x)dθ,

for all ω ∈ D2(Ω× T3). We will prove that

J iv = Li ∧ b ∀i ∈ N, (4.51)
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which will achieve the thesis. To see (4.51) we estimate, for fixed i ∈ N,∫
(St)i∩Diε

|∇v ×N |dH2(x) ≤
∫
St∩Dε

|∇v ×N |dH2(x), (4.52)

and thus, by (4.47),

1

ε

∫
(St)i∩Diε

|∇v ×N |dH2(x)→ 0 as ε→ 0. (4.53)

This allows us to employ the same argument of Lemma 4.5 which provides (4.51), and the
thesis follows.

Remark 4.10. We emphasize the intrinsic difficulty to check, from a practical viewpoint,
the assumption (4.47). The surface St a priori has not a direct physical interpretation.
However, as we will see, condition (4.47) is readily guaranteed as soon as the cofactor of
the deformation F is at least square integrable. This will be clear in the following theorem.

We will now prove the following crucial result:

Theorem 4.11 (Main result). Let L ∈ D1(Ω) be a closed integral current, let u =
(u1, u2, u3) ∈ SBV (Ω;R3) ∩ W 1,p(Ω;T3) be the harmonic map satisfying (3.12) with
b ∈ 2πZ3. Let v ∈W 2,r(Ω;R3) and suppose ∇u ∈ Lp(Ω;R3×3) with

6− 2r

3r
+

1

p
≤ 1.

Finally, let F = ∇u+∇v and assume that cof F ∈ L2(Ω;R3×3). Then the graph Gu+v is
an integral current in D3(Ω× T3) whose boundary is given by

∂Gu+v(ω) = L ∧ b(ω) =

1

2π

∫ 2π

0

∫
St

〈dω(x,
bθ

2π
+ v(x)), (s1, 0) ∧ (s2, 0) ∧~b〉dH2(x)dθ, (4.54)

for all ω ∈ D2(Ω× T3) and a.e. t ∈ [0, 2π).

Proof. In order to prove Theorem 4.11 we will show that the property cof F ∈ L2(Ω;R3×3)
implies that condition (4.47) holds true, and hence the thesis will follow by virtue of Lemma
4.9. Let us define the sequence {δi}i∈N and the set Dε as in (4.35) and (4.36); we write
for any j = 1, 2, 3,

1

2πε

∫ 2π

0

∫
St∩Dε

|∇vj ×N |dH2(x)dt =
1

2πε

∫ 2π

0

∫
St∩Dε

|∇vj ×
∇w
|∇w|

|dH2(x)dt =

1

2πε

∫
Dε

|∇vj ×∇w|dx ≤
1

2πε

∫
Dε

| cof F |dx, (4.55)

where in the second equality we employed the coarea formula, while in the last one we
used that |∇vj ×∇w| ≤ | cof F | for any j = 1, 2, 3. Now, by Schwarz inequality,

1

2πε

∫
Dε

| cof F |dx ≤ 1

2πε
|Dε|1/2(

∫
Dε

| cof F |2dx)1/2 ≤ C(

∫
Dε

| cof F |2dx)1/2, (4.56)
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with C :=

√
2πH1(L)

2π and where we have used (4.37). Now, since cof F ∈ L2(Ω;R3×3)
and |Dε| → 0 as ε → 0, we conclude that the quantity in the right-hand side of (4.56),
and hence also 1

2πε

∫ 2π
0

∫
St∩Dε |∇v × N |dH2(x)dt, by (4.55), vanishes as ε → 0. As a

consequence we infer that for a.e. t ∈ [0, 2π)

lim
ε→0

1

ε

∫
St∩Dε

|∇v ×N |dH2(x) = 0,

and the thesis follows.

Let us go back to (4.1) and (4.8). For regular field v, we have seen that

Cu+v(ϕdy1 ∧ dyi) =
|b|
2π

∫ 2π

0

∫
L
ϕ(x,

bθ

2π
+ v(x))

∂vi
∂τ

(x)dH2(x)dθ, i ∈ {2, 3} (4.57)

for any ϕ ∈ C∞(Ω× R3) which is 2π-periodic in the second variable. In particular we get
the following Corollary:

Corollary 4.12. Assume the hypotheses of Lemma 4.9 and suppose v is of class C1(Ω̄;R3).
Then it holds

∂v

∂τ
× b = 0 on L. (4.58)

In particular, this happens under the hypotheses of Theorem 4.11 and v ∈ C1(Ω̄;R3).

4.5 Main result 2: characterization of the graph boundary for clusters
with general Burgers vectors

In this section we study generalizations of some results in the previous Section to deforma-
tions whose curl is a dislocation measure with associated Burgers vectors spanning whole
2πZ3. Determining the current associated to the graph of such deformations is a hard
task that we currently consider as far from reach. However it is possible to prove that this
graph is an integral current in some specific cases.

Let L1, L2, L3 ∈ D1(Ω) three closed integral currents and let L be the regular disloca-
tion current whose components are Li, i = 1, 2, 3, according to (3.20). This is equivalent
to say that Li is the dislocation cluster associated to the Burgers vector 2πei, i = 1, 2, 3.
In particular we set

ΛL :=
3∑
i=1

Λi = 2π
3∑
i=1

Li ⊗ ei, (4.59)

and assume that ui : Ω → T3 is the displacement field generating Λi, i.e. ui is the map
given by (3.12) with b = 2πei and L replaced by Li, so that

−Curl ∇ui = ΛTi . (4.60)

Let us denote by u = u1 +u2 +u3. We introduce the following currents J iv+u ∈ D2(Ω×T3),
i = 1, 2, 3,

J iv+u(ω) :=

∫ 2π

0

∫
Sit

〈dω(x, eiθ + ûi(x)), (s1,
∂ûi
∂s1

(x)) ∧ (s2,
∂ûi
∂s2

(x)) ∧ ~ei〉dH2(x)dθ,

(4.61)
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for any ω ∈ D2(Ω × T3), where Sit = {wi = t} is any level set of the function wi defined
via eiwi = ui (i = 1, 2, 3), and where we have set

ûi := u+ v − ui, i = {1, 2, 3}. (4.62)

In (4.61) we have denoted ~ei = (0, ei) ∈ Λ1R6 as usual.

Theorem 4.13. Let Li ∈ D1(Ω), i = 1, 2, 3, be closed integral currents whose supports Li
are disjoint. In particular, let us assume that d(Li, Lj) > 0 for i 6= j; for i = 1, 2, 3 let
ui ∈ W 1,p(Ω;T3) be the harmonic map given by (3.12) with L = Li and b = 2πei, and let
v ∈W 2,r(Ω;R3). Suppose that

r >
12

7
, p ∈ (

3

2
, 2) and

6− 2r

3r
+

1

p
≤ 1. (4.63)

Then Gu+v is an integer multiplicity current whose boundary satisfies

∂Gu+v(ω) =
3∑
i=1

J iv+u(ω), (4.64)

for any ω ∈ D2(Ω× T3).

Proof. This is a straightforward consequence of Lemma 4.8. In fact, let Ui ⊃ Li, i = 1, 2, 3,
be three disjoint open sets, neighborhoods of the supports Li (which exist thanks to the
hypothesis d(Li, Lj) > 0 for i 6= j). Hence the graph of u + v is the sum of the following
restrictions

Gu+v = Gu+vxU1+Gu+vxU2+Gu+vxU3+Gu+vxUc , (4.65)

with U c = Ω \ (∪3
i=1Ui). Let us focus on U1 (similarly we will argue for U2 and U3); we

know that u2 and u3 are smooth in Ū1, so that û1 = u2 + u3 + v ∈ W 2,r(U1;R3). In
particular this function can be extended to a (non-relabeled) function û1 ∈ W 2,r(Ω;R3)
and Lemma 4.8 applies, implying that

∂Gu+vxU1(ω) =

∫ 2π

0

∫
S1
t ∩U1

〈dω(x,
bθ

2π
+ û1(x)), (s1,

∂û1

∂s1
(x)) ∧ (s2,

∂û1

∂s2
(x)) ∧ ~e1〉dH2(x)dθ,

for any ω ∈ D2(Ω × T3). Since the value of this expression depends only on the value of
ω in U1 the thesis easily follows, by (4.65).

Theorem 4.14. Under the hypotheses of Theorem 4.13, let us assume in addition that
the tensor field F :=

∑3
i=1∇ui +∇v ∈ W 1,p(Ω;R3×3) satisfies the property that cof F ∈

L2(Ω;R3×3). Then the graph Gu+v is an integral current in D3(Ω×T3) whose boundary is

∂Gu+v(ω) = 2π

3∑
i=1

Li ∧ ei(ω) =

3∑
i=1

∫ 2π

0

∫
Sit

〈dω(x, eiθ + ûi(x)), (s1, 0) ∧ (s2, 0) ∧ ~ei〉dH2(x)dθ,

for all ω ∈ D3(Ω× T3).

Proof. This is an easy consequence of Theorem 4.11; indeed, arguing as in Theorem 4.13,
we focus on the open set U1 and establish that the boundary of Gu+v restricted to U1 is
exactly 2πL1∧ e1. The same holds true on the other sets U2 and U3. Notice that it is here
crucial to assume that d(Li, Lj) > 0 for i 6= j.
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5 Minimization problems

5.1 The minimization setting

The mechanical setting is the following: we assume Ω to be a bounded and simply con-
nected open set in R3 which represents a single crystal. Let Ω̂ be another bounded open
set such that Ω ⊂⊂ Ω̂. We fix a dislocation density on ∂Ω by prescribing a kinematical
boundary condition accordingly in terms of the deformation tensor F̂ in Ω̂. No other
traction boundary condition is assumed. We then consider dislocation microstructures as
resulting from a variational problem with these boundary conditions in a unloaded regime.
Let us emphasize that the external field F̂ is not necessarily in equilibrium. Indeed this
boundary condition is equivalent to a Dirichlet boundary condition, since we can always
write the external field F̂ as the gradient of a suitable torus-valued map ũ, and then fixing
F̂ corresponds to fix ũ, as done in [34]. It was shown in [31, Section 5.4] that (essentially
due to the solenoidal property of the dislocation density) the solution is not the trivial
one (i.e., the absence of dislocations in Ω).

Boundary conditions. We will prescribe Dirichlet boundary conditions for the
deformation field F and for the dislocation cluster as follows. We fix a tensor field
F̂ ∈ Lp(Ω̂;R3×3) and a regular dislocation current α̂ having support in Ω̂ and such that

−Curl F̂ = ΛTα̂ , (5.1)

where Λα̂ is the dislocation density measure introduced in Definition 3.9. Then we say
that a field F ∈ Lp(Ω̂;R3×3) is admissible for the boundary condition if

(i) F = F̂ on Ω̂ \ Ω,

(ii) there is a dislocation current α such that α = α̂ on Ω̂ \ Ω and − Curl F = ΛTα .

Energy. We consider an energy functional which depends on the tensor field F and
on its derivatives as follows. The stored-elastic energy is represented by a functional
We(M(F )), with M(F ) the vector of minors of F as introduced in (3.2). The total elastic
energy is given by the integral over Ω of We(M(F )), namely

We(M(F )) =

∫
Ω
We(M(F ))dx. (5.2)

We assume that

(A1) We is lower semi-continuous with respect to the convergence of F , cof F , and det F
in Lp(Ω;R3×3), Lq(Ω;R3×3), and Ls(Ω), respectively.

We will also assume the following growth condition on We: there are constants C, c > 0,
and δ ≥ 0 such that

(A2) We(M(F )) ≥ C(|F |p + | cof F |q + δ| det F |s)− c,

for some coefficient p, q, s > 1 to be specified later. Notice that in order to guarantee (A1)
we can assume We polyconvex, i.e. We is a convex function of M(F ) (see, e.g., [7, 12]).

The total energy of the system also contains higher order terms, depending on the
derivatives of F . The defect part of the energy encodes the quantity of dislocation sin-
gularities. This is an energetic term denoted by Wdislo which depends on the dislocation
density of F , i.e. on Curl F . We will make the following assumption on Wdislo
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(A3) Wdislo is l.s.c. with respect to the weak star convergence of measures,

and the following growth condition

(A4) Wdislo(ΛL) ≥ C|ΛL|(Ω)− c,

for some positive constants C and c. We will also assume that the total energy de-
pends on Div F via the following high order term Wd which satisfies Wd( Div F ) =∫

ΩWd( Div F )dx, and

(A5) Wd is l.s.c. with respect to the weak convergence of Lr(Ω;R3),

(A6) Wd( Div F ) ≥ C|Div F |r − c,

for some positive constants C and c. The total energy of a deformation field F reads

W(F,∇F ) =We(M(F )) +Wdislo( Curl F ) +Wd( Div F ), (5.3)

and satisfies the coercivity condition

W(F,∇F ) ≥ C
(
‖F‖pLp + ‖ cof F‖qLq + δ‖det F‖sLs + ‖Div F‖rLr

)
+ c|ΛL|(Ω)− γ, (5.4)

for suitable positive constant C, c, γ, and δ ≥ 0, depending on the material properties.
In the case that the dislocation cluster is associated with a single Burgers vector, by

Lemma 3.11 it follows that even if δ = 0, the energy satisfies the following coercivity
condition with respect to the determinant of F ,

W(F,∇F ) ≥ C̃‖ det F‖tLt − γ̃, (5.5)

with 1
t := 6−2r

3r + 1
p < 1, for some positive constants C̃ and γ̃. By formula

I det F = F T cof F, (5.6)

it can be seen that the same coercivity (5.5) holds true also in the case 6−2r
3r + 1

p = 1, by

assuming 1
t := 1

p + 1
q < 1.

Remark 5.1. The presence of the energetic term Wdislo together with the boundary
condition α̂ for the dislocation prevents the following minimum problem to have trivial
solutions where the dislocation cluster of the minimizer is null. Indeed in the definition of
admissibility it is required that any competitor for the minimum problem has a suitable
dislocation cluster where Curl F concentrates. What might happen is that such disloca-
tion cluster moves, along a minimizing sequence, up to the boundary of the crystal, hence
provoking that the minimizer has a cluster concentrated on ∂Ω. However, according to the
geometry of the crystal, this solution often is excluded because energetically inconvenient.
In [32, Section 5.4] we show that in the most relevant cases the boundary condition forces
the dislocation cluster of the minimizer to remain inside the crystal.
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5.2 Problem 1: dislocation clusters with linearly dependent Burgers
vectors

In this section we study a minimization problem among a class of deformations around
dislocation clusters whose Burgers vectors are all multiple of a fixed Burgers vector b ∈
2πZ3. In this case, thanks to the results obtained in Section 4.3 it is seen that, under
suitable conditions on the coefficients related to the growth of the energy (5.4), such
deformations can all be seen as gradients of suitable maps with values in the torus T3

and whose graph is an integral current in the space Ω × T3. As a consequence we can
rely to Theorem 3.3 in order to get compactness of minimizing sequences in this class of
deformations, and hence to show the existence of minimizers.

Introduce the class of admissible deformation fields as follows:

Fb := {F ∈ Lp(Ω̂;R3×3) satisfying conditions (1), (2), (3) below}. (5.7)

(1) cof F ∈ Lq(Ω̂;R3×3), det F ∈ Ls(Ω̂), Div F ∈ Lr(Ω̂;R3);

(2) −Curl F = b ⊗ L for some integral closed and compactly supported current L ∈
D1(Ω̂);

(3) F = F̂ on Ω̂ \ Ω,

with F̂ standing for the deformation boundary condition as introduced in (5.1), for any
prescribed dislocation α̂ within Ω̂. First, let us observe that F can be always written as

F = ∇u+∇v,

for some functions u ∈ W 1,p(Ω̂;T3) and v ∈ W 2,r(Ω̂;R3). This can be easily seen by
Helmholtz decomposition, as shown in [33] and discussed in (3.25). We insist on this point
since it is crucial for the proof of our existence results. As described in (3.22) and (3.24),
we first decompose F = ∇w + F 0 with ∆w = Div F ∈ Lr(Ω;R3) and ∂Nw = 0 on ∂Ω̂,
and then F 0 = ∇u0 +∇u with u be the harmonic function given by (3.12), and u0 being a
harmonic function in Ω̂ with boundary conditions ∂Nu0 = F ·N − ∂Nu = g − ∂Nu. Since
by assumption g ∈ C1,α and since the dislocation current L is compactly supported inside
Ω̂, it turns out that ∂Nu is of class C∞(∂Ω̂;R3), so that g − ∂Nu is of class C1,α and by

problem (3.10) it follows that u0 ∈ C2,α(
¯̂
Ω;R3). In particular setting v := w + u0 entails

v ∈W 2,r(Ω̂;R3), with boundary condition

∂Nv = g − ∂Nu. (5.8)

Now, Theorem 4.11 ensures that if F ∈ Fb has coefficients satisfying

r >
12

7
, p < 2, (5.9)

6− 2r

3r
+

1

p
≤ 1, (5.10)

s > 1, (5.11)

q ≥ 2, (5.12)
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then F is such that the graph of u+ v, seen as a current Gu+v ∈ D3(Ω̂× T3), is integral.
Moreover its boundary takes the form

∂Gu+v(ω) = L ∧ b(ω) =

1

2π

∫ 2π

0

∫
S
〈dω(x,

bθ

2π
+ v(x)), (s1, 0) ∧ (s2, 0) ∧~b〉dH2(x)dθ, (5.13)

for all ω ∈ D2(Ω̂ × T3), where S is the support of the integral 2-current S with ∂S = L,
which is a level set of ũ (defined by b

2π ũ := u), and {s1, s2} is an orthonormal basis for its
tangent plane.

The minimum problem we are interested in is then the following: let F̂ ∈ Fb be fixed,
we want to find a solution to

min
F∈Fb

W(F,∇F ), (5.14)

where W takes the form (5.3). We also make the following technical assumption:

either δ > 0 in (A2) or min{6− 2r

3r
+

1

p
,

1

p
+

1

q
} < 1. (5.15)

We can state our main result:

Theorem 5.2. Fix as dislocation boundary condition a regular dislocation current α̂ hav-
ing support in Ω̂. Let F̂ ∈ Fb be fixed according to (5.1), and assume that the coefficients
appearing in conditions (1) and (2) satisfy (5.9), (5.10), (5.11), and (5.12). Assume W
is a functional on Fb as in (5.3) and satisfying conditions (A1)-(A6) and (5.15). Then
there exists a minimizer F ∈ Fb of the problem (5.14).

The proof of Theorem 5.2 is standard and very similar to the one of Theorem 4.1 (see
Theorems 6.6. and 6.8. in [33]). For this reason we here sketch it without details.

Proof. Let Fn be a minimizing sequence in Fb for the problem (5.14). By (5.4) we infer the
existence of F ∈ Lp(Ω̂;R3×3), A ∈ Lq(Ω̂;R3×3), G ∈ Lr(Ω̂;R3), and ΛL ∈ Mb(Ω̂;R3×3)
such that

Fn ⇀ F weakly in Lp(Ω̂;R3×3), (5.16)

cof Fn ⇀ A weakly in Lq(Ω̂;R3×3), (5.17)

Div Fn ⇀ G weakly in Lr(Ω̂;R3), (5.18)

ΛLn ⇀ ΛL weak* in Mb(Ω̂;R3×3). (5.19)

Moreover we find D ∈ Lm(Ω̂) such that

det Fn ⇀ D weakly in Lm(Ω̂), (5.20)

with m = s > 1 if δ > 0, and m = t > 1 if δ = 0 (by condition (5.5), that in turn is
ensured by (5.15)). Our aim is now to show that A = cof F , D = det F , G = Div F ,
and −Curl F = ΛTL with ΛL being a dislocation density of the form L⊗b for some integral
1-current L. The Dirichlet boundary conditions are easily seen to be satisfied. In order to
see that ΛTL = b⊗L we follows the argument in [33, Theorem 6.6. and 6.8.] which relies on
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the application of compactness theorem for integral currents. The conditions G = Div F ,
and −Curl F = ΛL follow easily from the theory of distributions.

In order to prove that A = cof F , D = det F we first show (once again as in [33,
Theorem 6.6. and 6.8.]) that Fn = ∇vn +∇un and F = ∇v +∇u with vn ∈ W 2,r(Ω̂;R3)
converging to v ∈ W 2,r(Ω̂;R3) weakly in this space and un ∈ W 1,p(Ω̂;T3) converging
weakly to u ∈ W 1,p(Ω̂;T3). Then the conclusion will follow by applying Theorem 3.3,
which can be used thanks to Theorem 4.11 that indeed provides a uniform bound for the
boundaries ∂Gvn+un .

5.3 Problem 2: dislocation clusters with general Burgers vectors

In this Section we address a more general existence result valid for a larger class of de-
formations, which may show a general regular dislocation density, i.e. with general and
possibly linearly independent Burgers vectors. To obtain compactness of minimizing se-
quence, we rely on the closedness of admissible deformations. To this aim, we need an
additional hypothesis on the admissibility, which turns out to be non-necessary in case of
linearly dependent Burgers vectors, where Theorem 4.11 provides such closedness, whereas
in the case of general clusters, a characterization of admissible deformation fields in term
of graphs is yet beyond reach.

The class of admissible deformation fields is the following:

F := {F ∈ Lp(Ω̂;R3×3) satisfying conditions (1b), (2b), (3b), (4b) below}. (5.21)

(1b) cof F ∈ Lq(Ω̂;R3×3), det F ∈ Ls(Ω̂), Div F ∈ Lr(Ω̂;R3);

(2b) −Curl F = ΛTL for some regular dislocation current compactly supported in Ω̂. In
particular, by decomposition, this can be written

−Curl F = ΛTL1
+ ΛTL2

+ ΛTL3
, ΛLi = 2πLi ⊗ ei, i = 1, 2, 3.

(3b) F = F̂ on Ω̂ \ Ω, with F̂ standing for the deformation boundary condition as intro-
duced in (5.1), for any prescribed dislocation α̂ within Ω̂.

(4b) F = ∇u+∇v has the property that Gu+v is an integral current in D3(Ω̂;T3) whose
boundary satisfies

∂Gu+v(ω) = 2π
3∑
i=1

Li ∧ ei(ω)

=

3∑
i=1

∫ 2π

0

∫
Sit

〈dω(x, eiθ + ûi(x)), (s1, 0) ∧ (s2, 0) ∧ ~ei〉dH2(x)dθ,

for all ω ∈ D2(Ω× T3).

Let us recall that ûi has been defined in (4.62) and Sit = {wi = t} with eiwi = ui.
The main result regarding existence of minimizers for (5.14) with general Burgers

vectors is the following:
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Theorem 5.3. Fix as dislocation boundary condition a regular dislocation current α̂ hav-
ing support in Ω̂. Let F̂ ∈ Fb be fixed according to (5.1), and assume that the coefficients
appearing in conditions (1) and (2) satisfy (5.9), (5.11), and q > 1. Assume W is a func-
tional on F as in (5.3) and satisfying conditions (A1)-(A6) with either δ > 0 or 1

p + 1
q < 1.

Then there exists a minimizer F ∈ F of the minimum problem

min
F∈F
W(F,∇F ).

We drop the proof since it is a straightforward adaptation of the one of Theorem 5.2.
As for the case δ = 0, it suffices to observe that the condition 1

p + 1
q =: 1

s < 1 provides

an uniform bound of det F in Ls(Ω) via the identity I det F = F T cof F and by Hölder
inequality.

Remark 5.4. Let us emphasize that once we assume (4b) we no longer need the assump-
tion on the coefficient q ≥ 2. Indeed in the case of the previous section, where the Burgers
vectors are linearly dependent, this condition implies directly expression (5.13) of ∂Gu+v

thanks to Theorem 4.11. In the general case we do not know if this expression takes place
in general, so we have to make the assumption (4b). At the same time we know that (4b)
is satisfied in some specific cases when q ≥ 2 and the dislocations clusters show particular
geometries, as Theorem 4.14 demonstrates.

Remark 5.5 (Admissible geometries). Condition (4b) and hence Theorem 5.3 holds as
soon as the dislocation set consists of clusters (in its most general sense of closed integral
currents) lying on glide planes each of which possesses a single Burgers vector. These
structure are known as prismatic loops [23]. The admissible geometries are such that the
glide planes must be disjoint if they are associated to non-parallel Burgers vectors. Note
that there are at most three independent Burgers vectors and hence three sets of disjoint
planes. Obviously the case of screw or edge dislocations, which are the only straight
parallel dislocations [38], do comply with this condition.

5.4 A problem involving F and F−1 and modeling discussion

In the pioneer paper [26] as based on [28], the meaning of F is that of the elastic part
of the deformation tensor. In contrast, according to Acharya [1, 2, 4], and specifically
discussed in [3], the physical meaning of F should be that of the inverse deformation
tensor, i.e., Fij(t) = ∂Xi

∂xj
(t) with x the position vector in the current configuration Ω

at time t, whereas X stands for the position of the material point in some “reference”
configuration (this standpoint was already considered by the authors in [32]). Indeed, the
dislocation density Λ has a meaning only in Ω, being equal to (the transpose) of −Curl F
(in [3], the meaning of F is that of the inverse of the elastic part of the deformation tensor).
It is the purpose of this section to show that our approach fits the two interpretations. In
particular we propose a variant of the aforementioned minimization problems where the
energy involves the variable

G := F−1.

The general problem of elasticity with dislocations can be formulated, according to [3, Eq.
(4)] and in the absence of body forces, as follows: find F and G such that

Λ = (−Curl F )T , Div P = 0 (+b.c.), P = P̂(G).
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Well posedness for this system is to the knowledge of the authors yet an open problem,
in its full generality. With our approach, we are able to address existence in the case of
a model of hyper-elasticity, i.e., with P = ∂GW̃e(G). Specifically, we consider a general
stored-elastic energy density (strain energy per unit volume of the current configuration)
of the type

W̄e(F,G) = We(F ) + W̃e(G), (5.22)

together with higher-order terms involving DF in the form of its curl, Λ = −( Curl F )T ,
and its divergence, Div F . Thus, we discuss existence results for a variational problem
where the total energy takes the form

W̄(F,DF,G) := W̄e(F,G) +Wdislo( Curl F ) +Wd( Div F ), (5.23)

with W̄e(F,G) :=
∫

Ω W̄e(F,G)dx. To achieve this aim, we first observe that G can be
expressed as combinations of entries of the vector M(F ), namely

G =
( cof F )T

det F
.

Moreover the energy depends on the dislocation density Λ = −( Curl F )T . Therefore, after
considering a minimizing sequence (Fk, Gk), we realize that we need a suitable control of
the variable Fk in order to guarantee that at the limit we have

if Fk ⇀ F, then Λk ⇀ Λ = −( Curl F )T . (5.24)

At the same time we need a sufficiently good control of ( cof F )T and det F in order to
guarantee that

if Gk ⇀ G, then G = F−1 =
( cof F )T

det F
. (5.25)

Hence, the only assumption we require is coercivity in the following sense: there exist
p1, p2, p3, p4, p5 > 1 chosen appropriately (see Subsection 5.2), with in addition p4 > p′2 =
p2

p2−1 such that

W̄(F,DF,G) ≥ C
(
‖F‖p1

p1
+ ‖ cof F‖p2

p2
+ δ‖det F‖p3

p3
+ ‖ det G‖p4

p4
+ ‖Div F‖p5

p5

)
− c,
(5.26)

with δ ≥ 0, and C, c > 0. Moreover we assume W̄e(F,G) as L1-lower semicontinuous (in
particular the energy density depending on M(F ), that is We(F ), might still be assumed
polyconvex, but need not). Note that the energy density depending on G can even be non-
convex and non-polyconvex provided it results that W̄e(F,G) is L1-lower semicontinuous.
Further, to avoid matter interpenetration, it is assumed that W̄ (F,G)→ +∞ as det G→
0 (for, it suffices that We(F )→ +∞ as det F → +∞).

The energy term We(F ) should be understood as specific to our variational model of
nonlinear bodies with dislocations, whereas in the absence of the dislocations the energy
reduces to a term depending on the sole deformation gradient G.

Whereas the issue (5.24) is proved as in the previous variational problems, the main
issue to work with is to prove (5.25). We can prove that

Gk = (Fk)
−1 =

( cof Fk)
T

det Fk
→ G =

( cof F )T

det F
(5.27)
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weakly in L1 as k →∞. To this aim it is required a strong convergence of either ( cof Fk)
T

or det Fk. The remaining part of this section is dedicated to prove that, under suitable
choice of the coefficients p1, p2, p3, p4, p5 > 1 and in the case of a dislocation cluster de-
pending on one fixed Burgers vector, condition (5.27) holds true with

cof Fk → cof F strongly in Lq(Ω;R3×3) for all q < p2. (5.28)

As we have seen the deformation tensor is decomposed as the sum of two gradients,
namely

F = ∇u+∇v, (5.29)

where u ∈W 1,p1(Ω;T3) and v ∈W 2,p5(Ω;R3), satisfy{
Div ∇u = 0
−Curl ∇u = b⊗ L ,

{
∆v = Div F
−Curl ∇v = 0

,

together with suitable boundary conditions. We have seen that u satisfies ‖∇u‖L3/2(Ω) ≤
c|µ|(Ω). Moreover, it was proved in [25] and [39] that2 ∇u ∈W s,p(Ω;R3×3) with 1

p = 2+s
3 ,

1 < p < 3/2, 0 < s < 1 and

‖∇u‖W s,p(Ω) ≤ c|µ|(Ω). (5.30)

Thus by compact embedding theorems [16], any bounded sequence (∇u)k in W s,p(Ω;R3×3)
converges up to a subsequence strongly in L1(Ω;R3×3).

Lemma 5.6. In the case of one Burgers vector, assume the growth condition (5.26),
and assume cof Fk ⇀ cof F weakly in Lp2(Ω;R3×3). Then cof Fk → cof F strongly in
Lq(Ω;R3×3) for every q < p2. As a consequence, (5.27) holds if p4 > p′2 = p2

p2−1 .

Proof. Thanks to the control of Div F we know ∇vk ∈W 1,p5(Ω;R3). By Sobolev embed-
ding ∇vk ∈ L3p5/(3−p5)(Ω;R3×3), so that by Hölder inequality it is easy to see that

∇vk ×∇vk ∈W 1,3p5/(6−p5)(Ω;R3×3).

By compact embedding, one has

∇vk ×∇vk → ∇v ×∇v

strongly in Ll(Ω;R3×3) for l < 3p5/(6− 2p5).
Moreover ∇uk → ∇u strongly in Lm(Ω;R3×3) for all m < 3/2, by virtue of (5.30).

From ∇vk → ∇v strongly in Ls(Ω;R3×3) for all s < 3p5/(3−p5) Hölder’s inequality yields

∇vk ×∇uk → ∇v ×∇u

strongly in Lt(Ω;R3×3) with t such that 1
t >

1
s + 2

3 .
The proof proceeds by recalling the identity cof F = 1

2F � F (recall notation (2.4))
and by virtue of (5.29), with

cof Fk → cof F

strongly in Lq(Ω) with q := min{l, t}. The assumption of a single Burgers vector is here
crucial, since in the above product we have no occurrence of ∇uk �∇uk for which strong
convergence would not hold.

The thesis follows since, by the energy control of cof F in Lp2(Ω;R3×3) we have strong
convergence in Lq(Ω;R3×3) for all q < p2.

2The proof was established with the domain being the whole space Ω = R3, but can be extended for
bounded simply connected domains with smooth boundary as well, using the techniques of [10].
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Due to the presence of both the issues (5.24) and (5.25), at the present stage it seems
a difficult task to deal with a variational problem involving only the variables Curl F and
G. One possibility is to consider an energy depending on M(G) and Curl F , and using
the expression

F T =
cof G

det G
, (5.31)

in order to show that Curl Fk → Curl F . However, if the bulk energy depends on cof G
and det G it is a difficult task to show that

cof Gk → cof G, det Gk → det G. (5.32)

Indeed, these convergences, as for the corresponding convergences of cof F and det F ,
require a suitable regularity on the graph of the displacement w̃, whenever we can write
G = ∇w̃. This requires a suitable theory on the graphs of such functions, which is only
provided in the present paper for the inverse matrix F = G−1, exploiting the condition
on Curl F being a suitable integral current as related to the density of dislocations. The
problem of the analysis of the graphs related to G will be the topic of future investigations.
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