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Abstract. In this paper, using variational approaches, we investigate the first order planning
problem arising in the theory of mean field games. We show the existence and uniqueness of weak
solutions of the problem in the case of a large class of Hamiltonians with arbitrary superlinear
order of growth at infinity and local coupling functions. We require the initial and final measures
to be merely summable. As an alternative way, we show that solutions of the planning problem can
be approximated, via a Γ-convergence procedure, by solutions of standard mean field games with
suitable penalized final couplings. In the same time (relying on the techniques developed recently
in [GM18]), under stronger monotonicity and convexity conditions on the data, we obtain Sobolev
estimates on the solutions of mean field games with general final couplings and the planning problem
as well, both for space and time derivatives.
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1. Introduction

The purpose of this article is to study the first order planning problem in mean field game theory,
which can be formulated as a system of nonlinear partial differential equations:

(1.1)


−∂tu+H(x,∇u) = f(x,m), in (0, T )× Td,
∂tm−∇ · (DξH(x,∇u)m) = 0, in (0, T )× Td,
m(0, ·) = m0, m(T, ·) = mT , in Td.

The data consist of probability measures m0,mT ∈P(Td), a fixed time horizon T > 0, a coupling
function f : Td × [0,+∞)→ R and a Hamiltonian H : Td ×Rd → R. Our aim is to find conditions
on the data for which weak solutions to (1.1) can be shown to exist and are unique.

The theory of Mean Field Games (briefly MFG in what follows) was thrust into the limelight
by the works of J.-M. Lasry and P.-L. Lions on the one hand (see [LL06a, LL06b, LL07]) and M.
Huang, R. Malhamé and P. Caines on the other (see [HMC06]). Their main motivation was to
study limits of Nash equilibria of (stochastic or deterministic) differential games when the number
of players tends to infinity. Since then, it has become a very lively and active branch of the theory
nonlinear partial differential equations. In addition to studying Nash equilibria, Lions [Lio] proposed
a corresponding planning problem, in which a central planner would like to steer a population to a
predetermined final configuration while still allowing individuals to choose their own strategies.

Let us give a simple, brief interpretation of System (1.1) in terms of large numbers of interacting
agents. The solution of the Hamilton-Jacobi Equation (1.1)(i) is supposed to be the value function
for an optimal control problem of the form

(1.2) inf
α

{∫ T

t

[
L(x(s), α(s)) + f(x(s),m(s, x(s)))

]
ds+ u(T, x(T ))

}
=: u(t, x)

subject to {
x′(s) = α(s), s ∈ (t, T ]
x(t) = x ∈ Td.

Here the Lagrangian L : Td × Rd → R is the Legendre-Fenchel transform of H w.r.t. the second
variable. Formally the optimal strategy is given in feedback form, hence for the agent it is optimal
to play −DξH(x(s),∇u(s, x(s))). Having this velocity field as a drift, the evolution of the agents’
density is given by the solution of the second equation in (1.1). Then the coupling of the equations
in (1.1) implies that every player is acting optimally with respect to the competing choices, i.e. the
game is in equilibrium. We underline the fact that when considering ‘standard’ mean field games,
typically, the final cost u(T, ·) = uT is treated as given, along with an initial population density
m(0, ·) = m0. For the planning problem, however, we fix a target population density m(T, ·) = mT ,
leaving u(T, ·) as an adjustable variable by which a central planner may determine the final outcome.
Thus in the above control problem in particular u(T, ·) is part of the problem itself.

As in many studies of mean field games, we restrict our attention to the case where f(x,m) is
an increasing function in the m variable, namely ∂mf(x, ·) > 0 for all x ∈ Td. We interpret this to
mean that agents have a preference for low-density regions, i.e. they want to avoid congestion.

In spite of the large number of studies available on MFG, the literature on System (1.1) is sparse.
The cases when f is increasing and D2

ξξH(x, ·) > 0 (and both are smooth) are well-understood in the
literature for both first order and second order non-degenerate models. In his lectures P.-L. Lions
showed how to transform (1.1) into a uniformly elliptic system (thanks to smoothness assumptions
on f and H) on space-time, and he showed the existence of classical solutions. One can summarize
these results as follows.

Theorem 1.1. [Lio] Let m0,mT be strictly positive probability densities of class C1,α(Td) (0 < α <
1), let moreover f and H be smooth such that ∂mf(x, ·) > 0 for all x ∈ Td and D2

ξξH(x, ·) > 0.
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Then, there exists a unique solution (u,m) ∈ C2,α([0, T ]×Td)×C1,α([0, T ]×Td) to (1.1) (here the
uniqueness of u has to be understood modulo constants). Moreover, (u,m) ∈ C∞((0, T ) × Td) ×
C∞((0, T )× Td).

Similar results can be achieved for the case of nondegenerate second order model as well, for
purely quadratic Hamiltonians, or which are close at infinity to purely quadratic ones. The tech-
niques used in this case are slightly different and they rely on the Hopf-Lax transformation, which
is possible because of the quadratic Hamiltonian structure.

Existence of weak solutions to (1.1) in this latter case of nondegenerate second order models were
obtained by A. Porretta in [Por13, Por14] using energy methods. These results can be summarized
as follows.

Theorem 1.2. ([Por14, Theorem 1.3], [Por13, Theorem 2]) Let us consider the nondegenerate
diffusive model and let f(x,m) be continuous, and nondecreasing w.r.t. the m variable. Let H(x, ξ)
be C1 and convex in ξ with quadratic growth. Let m0,mT ∈ C1(T d) be strictly positive probability
densities. Then there exists a weak solution (u,m) ∈ L2([0, T ];H1(Td)) × C0([0, T ];L1(Td)) to
(1.1). Moreover, if H is strictly convex in the p variable, the solution is unique (modulo constants
in the case of u).

In the recent paper [OPS] C. Orrieri, A. Porretta and G. Savaré study weak solutions of System
(1.1) set on the whole space Rd with Hamiltonians of quadratic growth and couplings with general
growth. Their analysis relies on the variational structure of the problem and on a suitable weak
theory – which they develop in the paper – of distributional sub-solutions and their traces of
Hamilton-Jacobi equations with summable right hand sides.

In [GS], D.A. Gomes and T. Seneci explore displacement convexity properties, introduced by the
Benamou-Brenier formulation for optimal transport, in order to obtain a priori estimates for solu-
tions of (1.1). Finally, some numerical aspects of the mean field planning problem were investigated
by Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta in [ACCD12].

Our goal in this paper is to prove the existence and uniqueness of solutions of (1.1) for general
Hamiltonians H and with as few assumptions as possible on the initial/final conditions. In order
to accomplish this, we will make use of variational methods, which have proved to be very useful
in mean field games, both to prove existence of weak solutions [Car15, CG15, CGPT15, CMS16]
and also to establish additional regularity [GM18, PS17]. The main idea behind this point of view
(which is also exploited in [OPS]) is that System (1.1) can be seen formally as first order necessary
optimality conditions of two convex optimization problems in duality, cf. [LL07, Section 2.6].

The first problem is a control problem associated to the continuity equation, i.e.

inf
(m,w)

∫ T

0

∫
Td

[mH∗(x,−w(t, x)/m(t, x)) + F (x,m(t, x))] dxdt

subject to ∂tm+∇·w = 0 and m(0, ·) = m0, m(T, ·) = mT , where H∗(x, ·) is the Fenchel conjugate
of H(x, ·) and F (x, ·) is the antiderivative of f(x, ·) w.r.t. the second variable.

The formal dual of this problem can be seen as a control problem associated to the Hamilton-
Jacobi equation

inf
u

∫ T

0

∫
Td

F ∗(x,−∂tu+H(x,∇u))dxdt+

∫
Td

u(T, x)dmT (x)−
∫
Td

u(0, x)dm0(x),

where F ∗(x, ·) is the Fenchel conjugate of F (x, ·).
As the first results of our paper, in Section 2 we show the well-posedness of System (1.1) relying

on the duality between the previous two convex optimization problems. To show the existence of a
solution to the dual problem, we relax it in a suitable way and use a sort of ‘renormalization trick’
that was first used in [CCN13].
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At this point, let us remark that in our existence proof for the dual problem, we require a joint
condition on the order of growth of H in the momentum variable and the order of growth of f
in the second variable (similarly as in [Car15, CG15]). This is mainly due to the lack of enough
summability on m. It is worth mentioning that L∞ estimates on m would allow us to drop this joint
condition on H and f . In this context, for the planning problem, in the case of purely quadratic
Hamiltonians and m0,mT ∈ L∞(Td) such L∞ estimates were obtained by Lions in his lectures
(see [Lio]). Using completely different techniques, but still in the quadratic Hamiltonian case, such
L∞ estimates on m were obtained recently for mean field games by Lavenant and Santambrogio
in [LS17]. Since in this paper our aim is to consider as general Hamiltonians and initial and final
measures as possible, we are not pursuing the higher order summability estimates on m. Such
questions would deserve a completely independent study, by themselves.

Coming back to our results, as a second approach, we use one similar in spirit to that of Porretta
in [Por14]. We first prove existence of solutions for a mean field game in which the final cost is also
given by a coupling function. Thus, we show the well-posedness of mean field games of the form

(1.3)


−∂tu+H(x,∇u) = f(x,m), in (0, T )× Td,
∂tm−∇ · (DξH(x,∇u)m) = 0, in (0, T )× Td,
m(0, ·) = m0, u(T, ·) = g(·,m(T, ·)), in Td.

Then, we choose a sequence gε such that as ε→ 0, the corresponding solutions mε and a renormal-
ized version of uε converge to a solution of the planning problem (1.1). Unlike Porretta, however,
we use variational methods; in particular we show a sort of Γ-convergence of certain auxiliary prob-
lems to the optimal control problem and its dual given above. All these are achieved in Section 3.
In a sense, then, our paper acts also as a companion to [Car15, CG15] and [CGPT15], generalizing
the approaches developed there. Because of the lack of such general results in the literature, we
prove all the results on System (1.3). To keep the current paper at a reasonable length, we study
the MFG system (1.3) tailored to the particular class of penalizations gε that we choose. However,
we emphasize the fact that all those results remain valid in more general scenarios, and their proofs
would not require additional effort. In order to apply this second approach we need to require higher
Lp summability (for some p > 1) for the final measure mT (instead of mere integrability), however
the interest of this approach resides in giving an approximation result useful for the numerical
analysis of the Problem (1.1), see [ACCD12].

Moreover, in contrast to [Car15, CG15] and [CGPT15], we also address questions of regularity of
weak solutions, based on techniques developed in the recent work [GM18] by the first two authors.
The inspiration for these results comes from the alternative interpretation of the planning problem
in terms of optimal mass transport. Indeed, the variational formulation of both the planning
problem and mean field games has its roots in the dynamic formulation of the Monge-Kantorovich
optimal transport problem (see [BB00]). In the same way, such convex variational problems are
underneath other models studying weak solutions to the incompressible Euler equations (see for
instance [Bre99, AF08]). The strong convexity present in these problems led Y. Brenier to develop
a regularity theory for the pressure field in his model. Inspired by these techniques, the very
same ideas were used later successfully to obtain Sobolev regularity for weak solutions of mean
field games (see [PS17, San18, GM18]). After this series of results it is not unexpected that such
results should be obtained for the solutions of the planning problem. This fact also motivates our
title, i.e. the planning problem can be seen as a ‘regularized’ optimal transport problem, where the
presence of the coupling and convexity of the Hamiltonian imply immediate Sobolev estimates on
the distributional weak solutions. We think that these regularity results in particular could have
further impacts on other problems arising in optimal transportation. In this context, let us also
mention the very recent paper [LL] where the authors observe a different (but similar in spirit)
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regularization effect for very similar optimal transport type problems, in the presence of strong
‘mean field interaction effects’.

The organization of the paper is as follows.
Next, in Section 2, we show the well-posedness of System (1.1) via the ‘direct’ variational ap-

proach, relying on the two convex optimization problems in duality. While the existence and
uniqueness of a solution to the control problem associated to the continuity equation is a simple
consequence of the well-known Fenchel-Rockafellar duality theorem, showing the existence of a
solution to the other problem is more challenging. Inspired from some previous works in the liter-
ature (see [CCN13]) we find an interesting class of convex Hamiltonians, allowing general order of
growth at infinity, for which we are able achieve this task. Then, solutions to the two optimization
problems are shown to be equivalent to weak solutions of the planning problem. We emphasize
the fact that our well-posedness results stand for initial and final distributions chosen merely in
L1(Td). This generality, however, requires some constraints on the growth of the coupling term f .

In Section 3 we consider the existence and uniqueness of solutions to mean field games with final
costs given by coupling functions. The arguments more or less follow those developed in [CGPT15],
cf. [Car15, CCN13, CG15, Gra14, CMS16]. However, there are a few technical assumptions which
we were able to relax, and this turns out to be crucial for our application to the planning problem.
In particular, we were able to improve the uniqueness proof in [CGPT15], which is valid now for
System (1.3) with final coupling. Also, another significant improvement consists in relaxing all the
previous technical assumptions on the initial density m0, which is assumed to be any general L1

probability measure on Td. In the same time, we rely on all the assumptions on H and f as in
Section 2. We end this section by showing that solutions to the planning problem can be obtained
(via a Γ-convergence type procedure) as limits of solutions of mean field games with final coupling
functions chosen as Lp-type penalizations.

We also consider additional regularity of weak solutions of both Systems (1.3) and (1.1) in
Section 4. These estimates, which are interesting independently of existence and uniqueness for
the planning problem, are based on the recent work in [GM18]. Here, unlike in [GM18] we present
also general local in time Sobolev estimates for time derivatives, which complete in some sense
the results from [GM18]. Similar results on time derivatives in the particular cases of quadratic
Hamiltonians without space dependence were obtained for the m variable in [PS17]. In contrast to
these, a nontrivial adaptation of the techniques from [GM18] allow us to obtain estimates on the
u variable as well, under fairly general conditions on the Hamiltonian and the coupling function.
We also observe that the regularity estimates obtained on the weak solutions of System (1.3) are
in some sense inherited by weak solutions to the planning problem.

Finally, in Section 5 we conclude with some open questions and ideas for further research. Let
us finish this introduction by summarizing our main results.

Our results on the planning problem are given in Section 2, Section 3 and Section 4.3, and can
be informally summarized as follows.

Theorem 1.3 (Theorem 2.6, Proposition 2.8). Let m0,mT ∈ L1(Td) be probability densities.
Then under suitable growth and regularity assumptions on H and f (we refer to Section 2 for the
precise hypotheses) we have that System (1.1) has a weak solution (in the sense of Definition 2.5).
Moreover, if f is strictly increasing in its second variable, then m is unique and if H is strictly
convex in the momentum variable, ∇u is unique on spt(m).

In the same way, the well-posedness result on (1.3) and the convergence result to the solutions
of (1.1) can be summarized as follows.

Theorem 1.4 (Theorem 3.7, Theorem 3.11). Let m0 ∈ L1(Td) be a probability density. Under
standard growth and regularity assumption on H, f and g (we refer to Section 2 for the precise
conditions), System (1.3) has a unique weak solution (understood in the sense of Definition 3.4).
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Then, choosing a suitable class of Lp-type penalizations gε and mT ∈ Lp(Td) (for arbitrary p > 1),
solutions of (3.1) converge as ε ↓ 0 to solutions of (1.1).

The Sobolev regularity estimates on Systems (1.3) and (1.1) can be informally summarized as
follows.

Theorem 1.5 (Propositions 4.1-4.2, Propositions 4.3-4.4). (i) Suppose that m0 ∈ W 2,1(Td) and
suppose further strong convexity and monotonicity conditions on H, f and g respectively (we refer
to Section 4 for the details). Then the solution (u,m) of (1.3) satisfies

‖m
q
2
−1∇m‖L2([0,T ]×Td) ≤ C, ‖m1/2D(j1(∇u))‖L2([0,T ]×Td) ≤ C,

and

‖m(T, ·)
p
2
−1∇m(T, ·)‖L2(Td) ≤ C,

where (q − 1) and (p − 1) are the order of growth of f and g (p, q > 1), respectively, and if

H(x, ·) ∼ | · |r (r > 1), then j1 is a function growing like | · |r/2.

(ii) Under similar assumptions on the data, but no assumptions on m0, using the same notations
as previously, we have

m1/2∂t(j1(∇u)) ∈ L2
loc((0, T );L2(Td))

and

∂t(m
q/2) ∈ L2

loc((0, T );L2(Td)).

(iii) Supposing m0,mT ∈W 2,1(Td), under the same strong convexity and monotonicity on H and
f as before, we have the very same Sobolev estimates on the solutions of (1.1) as for the solutions
of (1.3).

Acknowledgements. The first author was supported by the National Science Foundation
through Grant DMS-1612880. The second author was partially supported by the Air Force under
the grant AFOSR MURI FA9550-18-1-0502. The last two authors were partially supported by
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2018.

2. Well-posedness of the planning problem via two convex optimization problems
in duality

The general outline for the planning problem is largely the same as for variational mean field
games (see e.g. [CCN13, Car15, CG15, CGPT15]): present two optimization problems in duality,
prove that their minimizers are equivalent to solutions to (1.1), and show the existence of mini-
mizers. We perform this last step in two ways: ‘directly’, working at the level of the optimization
problems and ‘indirectly’, meaning that minimizers will be obtained as a limit of solutions to aux-
iliary problems of the form (1.3). The former approach will be done in this section and the latter
one will be done in Section 3.
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2.1. Assumptions. We assume the following.

(H1) (Conditions on the Hamiltonian I) H : Td × Rd → R is continuous in both variables,
convex and differentiable in the second variable ξ, with DξH continuous in both variables.
Moreover, H has superlinear growth in the gradient variable: there exist r > 1 and C > 0
such that

(2.1)
1

rC
|ξ|r − C ≤ H(x, ξ) ≤ C

r
|ξ|r + C, ∀ (x, ξ) ∈ Td × Rd.

We denote by H∗(x, ·) the Fenchel conjugate of H(x, ·), which, due to the above assump-
tions, satisfies

(2.2)
1

r′C
|ζ|r′ − C ≤ H∗(x, ζ) ≤ C

r′
|ζ|r′ + C, ∀ (x, ζ) ∈ Td × Rd,

where we always use the notation s′ := s/(s − 1) to denote the conjugate exponent of a
number s ∈ (1,∞).

(H2) (Conditions on the Hamiltonian II) The Hamiltonian satisfies

H(x, aξ) ≤ aH(x, ξ), ∀ x ∈ Td, ∀ ξ ∈ Rd, ∀a ∈ [0, 1].

A typical Hamiltonian that satisfies (H1) and (H2) is H(x, ξ) = b(x)|ξ|r − c(x) for some
b : Td → R continuous positive function and c : Td → R continuous nonnegative function.

(H3) (Conditions on the coupling) The function f is continuous on Td×(0,∞), strictly increasing
in the second variable. Assume there exist C > 0 and q > 1 such that r > max{d(q− 1), 1}
and

(2.3)
1

C
|m|q−1 − C ≤ f(x,m) ≤ C|m|q−1 + C, ∀ m ≥ 0, ∀ x ∈ Td.

With no real loss of generality, we ask for the following normalization:

(2.4) f(x, 0) = 0 ∀ x ∈ Td.

(H4) (Conditions on the initial and final measures) The probability measures m0 and mT are
absolutely continuous with respect to L d Td, with densities still denoted by m0 and mT ,
respectively.

We define F : Td × R→ R so that F (x, ·) is an antiderivative of f(x, ·) on (0,∞), that is,

(2.5) F (x,m) =

∫ m

0
f(x, s)ds, ∀ m ≥ 0.

For m < 0 we set F (x,m) = +∞. Note that F (x,m) ≥ 0 thanks to hypothesis (2.4). Moreover,
it follows from (H3) that F is continuous on Td × [0,∞), for each x ∈ Td the function F (x, ·) is
strictly convex and differentiable in (0,+∞), and satisfies the growth condition

(2.6)
1

qC
|m|q − C ≤ F (x,m) ≤ C

q
|m|q + C, ∀ m ≥ 0, ∀ x ∈ Td.

We define F ∗(x, ·) : R→ R to be the Fenchel conjugate of F (x, ·), i.e.

F ∗(x, a) = sup
m≥0
{am− F (x,m)} .

Note that F ∗(x, ·) is continuous, increasing and F ∗(x, a) = 0 for all a ≤ 0. We also have

(2.7)
1

q′C
|a|q′ − C ≤ F ∗(x, a) ≤ C

q′
|a|q′ + C, ∀ a ≥ 0, ∀ x ∈ Td.
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2.2. Two optimization problems in duality. The planning problem has a variational formula-
tion analogous to what is introduced in [Car15] in the context of MFGs.

The first optimization problem is described as follows: let us denote K0 = C1([0, T ] × Td) and
define, on K0, the functional

(2.8) A(u) =

∫ T

0

∫
Td

F ∗ (x,−∂tu(t, x) +H(x,∇u(t, x))) dxdt

+

∫
Td

u(T, x)mT (x)dx−
∫
Td

u(0, x)m0(x)dx.

Notice that, F ∗(x, ·) being increasing and convex, for every x ∈ Td the function R× Rd 3 (a, b) 7→
E(x, a, b) := F ∗ (x,−a+H(x, b)) ∈ R is convex and, hence, A is a convex function.

The first optimization problem is given by

(2.9) inf
u∈K0

A(u).

Now, suppose that (m,w) ∈ L1((0, T )×Td)×L1((0, T )×Td;Rd) are such that m(t, x) ≥ 0 for a.e.
(t, x) ∈ [0, T ]× Td and the continuity equation

(2.10) ∂tm+ div(w) = 0 in (0, T )× Td,

is satisfied in the distributional sense, i.e. for all ϕ ∈ C1
c ((0, T )× Td) we have

(2.11)

∫ T

0

∫
Td

[∂tϕm+∇ϕ · w] dxdt = 0.

Let us denote by M (Td) the space of Radon measures over Td and by M+(Td) the subset of
M (Td) given by the non-negative Radon measures over Td. By [DNS09, Lemma 4.1] (see also
the discussion in [CCN13]), if (2.11) holds, then there exists a unique weakly-∗ continuous curve
[0, T ] 3 t 7→ m̃(t) ∈M+(Td) such that for a.e. t ∈ [0, T ] the measure m̃(t) is absolutely continuous
w.r.t. the Lebesgue measure, with density given by m(t, ·), and for all ϕ ∈ C1([0, T ] × Td) the
following equality holds

(2.12)

∫ t2

t1

∫
Td

[∂tϕm+∇ϕ · w] dxdt =

∫
Td

ϕ(t2, x)dm̃(t2)(x)dx−
∫
Td

ϕ(t1, x)dm̃(t1)(x),

for all 0 ≤ t1 < t2 ≤ T .
Define K1 as the set of pairs (m,w) ∈ L1((0, T )×Td)×L1((0, T )×Td;Rd) such that m(t, x) ≥ 0

for a.e. (t, x) ∈ [0, T ] × Td, equation (2.11) is satisfied in the distributional sense and m̃(0) and
m̃(T ) are absolutely continuous with respect to the Lebesgue measure with densities given by m0

and mT , respectively. Note that (2.12) implies that the last two requirements are equivalent to the
fact that (m,w) satisfies

(2.13)

∫ T

0

∫
Td

[∂tϕm+∇ϕ · w] dxdt =

∫
Td

ϕ(T, x)mT (x)dx−
∫
Td

ϕ(0, x)m0(x)dx,

for all ϕ ∈ C1([0, T ]×Td). Notice that if (m,w) ∈ K1, then
∫
Td m0(x)dx = 1 and (2.12) imply that∫

Td m(t, x)dx = 1 for a.e. t ∈ [0, T ]. On K1, let us define

B(m,w) :=

∫ T

0

∫
Td

[
m(t, x)H∗

(
x,−w(t, x)

m(t, x)

)
+ F (x,m(t, x))

]
dxdt,

where, for a = 0 and b ∈ Rd, we impose that

aH∗
(
x,− b

a

)
=

{
+∞ if b 6= 0,
0 if b = 0.
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Under this definition, it is easy to check that for every x ∈ Td, the function R+ × Rd 3 (a, b) 7→
aH∗

(
x,− b

a

)
∈ R ∪ {+∞} is proper, convex and lower-semicontinuous and, hence, B is convex.

The second optimization problem is the following:

(2.14) inf
(m,w)∈K1

B(m,w) .

The following lemma is proved using a similar argumentation as in [CCN13, Proposition 2.1] and
[Car15, Lemma 2]. For the sake of completeness, we provide the details of the proof.

Lemma 2.1. We have

(2.15) inf
u∈K0

A(u) = − min
(m,w)∈K1

B(m,w).

Moreover, there exists a unique (m̄, w̄) ∈ K1 such that B(m̄, w̄) = min
(m,w)∈K1

B(m,w). Setting ` :=

r′q
r′+q−1 > 1, this minimizer also satisfies (m̄, w̄) ∈ Lq((0, T )× Td)× L`((0, T )× Td;Rd) and

(2.16) ‖m̄‖Lq + ‖w̄‖L` ≤ C,

where C > 0 is a constant independent of m0 and mT .

Proof. Let H0 := C0([0, T ] × Td) × C0([0, T ] × Td;Rd) and define the bounded linear operator
Λ : K0 → H0 by Λu = (∂tu,∇u), and the functionals J1 : H0 → R, J2 : K0 → R, respectively, by

J1 (φ1, φ2) =
∫ T
0

∫
Td E (x, φ1(x), φ2(x)) dxdt,

J2(u) =
∫
Td u(T, x)mT (x)dx−

∫
Td u(0, x)m0(x)dx,

where we recall that E(x, a, b) := F ∗(x,−a + H(x, b)) for all x ∈ Td, a ∈ R and b ∈ Rd. Thus,
problem (2.9) can be rewritten as

(2.17) inf
u∈K0

{J1 (Λu) + J2(u)} .

Since

J1

(
Λ

(
u− min

x∈Td
u(T, x)

))
+ J2

(
u− min

x∈Td
u(T, x)

)
= J1(Λu) + J2(u), ∀ u ∈ K0,

we can assume that the infimum in (2.17) is taken over u ∈ K0 such that infx∈Td u(T, x) = 0.
Using this fact, (2.7), estimate (2.37) (proved after Lemma 2.7 below), and setting ā := ‖ − ∂tu+
H(·,∇u)‖Lq′ , we get the existence of c1 > 0, c2 ∈ R and c3 ∈ R (independent of m0 and mT ) such
that

(2.18) J1 (Λu) + J2(u) ≥ c1āq
′
+ c2ā+ c3 ≥ c := inf

τ∈R+

{
c1τ

q′ + c2τ
}

+ c3 > −∞.

This proves that the infimum in (2.17) is finite. Using that J1 and J2 are continuous, by the
Fenchel-Rockafellar theorem (see e.g. [ET76, Chapter 3, Theorem 4.1]) we have that

(2.19) inf
u∈K0

A(u) = −min {J∗1 (−(m,w)) + J∗2 (Λ∗(m,w))| (m,w) ∈ H∗0 } ,

where H∗0 = M ((0, T )× Td))×M ((0, T )× Td)d. Let us provide a more explicit expression of the
right hand side above. By [Roc71, Theorem 5], we have that

J∗1 (m,w) =

∫ T

0

∫
Td

E∗(x,mac, wac)dxdt+

∫ T

0

∫
Td

E∗∞

(
x,

dms

dθ
,

dws

dθ

)
dθ(t, x),

where (mac, wac) and (ms, ws) denote, respectively, the absolutely continuous and singular parts of
(m,w) w.r.t. the Lebesgue measure, θ ∈M ((0, T )×Td) is any Radon measure such that (ms, ws)
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is absolutely continuous w.r.t. θ, and E∗∞(x, ·, ·) is the recession function of E∗(x, ·, ·). We easily
check that

(2.20) E∗(x,m,w) =


−mH∗

(
x,−w

m

)
+ F (−m), if m < 0,

0, if (m,w) = (0, 0),

+∞, otherwise.

Since E∗(x, 0, 0) = 0 < +∞, the recession function can be computed as follows

E∗∞ (x, hm, hw) = lim
λ→+∞

E∗(x, λhm, λhw)

λ
=

{
0, if (hm, hw) = (0, 0),

+∞, otherwise.

In the second equality above, we have used (2.7). We deduce that if (m,w) /∈ L1((0, T ) × Td) ×
L1((0, T )× Td;Rd), then J∗1 (m,w) = +∞. If (m,w) ∈ L1((0, T )× Td)× L1((0, T )× Td;Rd), then

J∗2 (Λ∗(m,w)) = sup
u∈K0

{
〈Λ∗(m,w), u〉K∗0 ,K0 −

∫
Td

u(T, x)mT (x)dx+

∫
Td

u(0, x)m0(x)dx

}
,

where 〈·, ·〉K∗0 ,K0 denotes the duality product between K0 and K∗0. Using that

〈Λ∗(m,w), u〉K∗0 ,K0 = 〈(m,w),Λu〉H∗0,H0 =

∫ T

0

∫
Td

[m∂tu+ w · ∇u] dxdt,

we get that J∗2 (Λ∗(m,w)) < +∞ if and only if J∗2 (Λ∗(m,w)) = 0, which is equivalent to the fact
that (m,w) satisfies (2.13). We conclude that the optimization problem in the r.h.s. of (2.19)
admits a solution (m̄, w̄), is equivalent to problem (2.14) and, hence, (2.15) holds true.

By (2.18), we have B(m̄, w̄) ≤ −c with c independent of m0 and mT . Using this estimate and
arguing as in the proof of [Car15, Lemma 2], we easily obtain (2.16). Finally, the uniqueness of the
solution (m̄, w̄) to (2.14) follows exactly as in the proof of [Car15, Lemma 2]. �

Remark 2.2. The previous proof shows that the results in Lemma 2.1 are valid also when m0 and
mT belong to P(Td), without any summability assumptions.

Now, we consider a relaxation of Problem (2.9). Let K be the set of pairs (u, α) ∈ BV ((0, T )×
Td)× Lq′((0, T )× Td) such that ∇u ∈ Lr((0, T )× Td;Rd), u ∈ L∞((0, T )× Td), the traces u(0, ·),
u(T, ·) of u on {0} × Td and {T} × Td (see e.g. [AFP00, Section 3.8]), respectively, belong to
L∞(Td), and

−∂tu+H(x,∇u) ≤ α
holds in the sense of distributions on (0, T )× Td.

We extend the functional A to K by setting

A(u, α) =

∫ T

0

∫
Td

F ∗(x, α(t, x))dxdt+

∫
Td

u(T, x)mT (x)dx−
∫
Td

u(0, x)m0(x)dx ∀ (u, α) ∈ K.

We consider the following relaxation of Problem (2.9):

(2.21) inf
(u,α)∈K

A(u, α)

Proposition 2.3. We have

(2.22) inf
u∈K0

A(u) = inf
(u,α)∈K

A(u, α) = − min
(m,w)∈K1

B(m,w).

The proof of Proposition 2.3 follows easily once we have the following technical lemma.
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Lemma 2.4. Let (u, α) ∈ K and (m,w) ∈ K1. Assume that mH∗(·,−w/m) ∈ L1((0, T ) × Td),
m ∈ Lq((0, T ) × Td), and m0, mT ∈ L1(Td). Then αm ∈ L1((0, T ) × Td), and for almost all
t ∈ (0, T ) we have

(2.23)

∫
Td

(u(T )mT − u(t)m(t))dx+

∫ T

t

∫
Td

m
[
α+H∗

(
x,−w

m

)]
dxdt ≥ 0,

and

(2.24)

∫
Td

(u(t)m(t)− u(0)m0)dx+

∫ t

0

∫
Td

m
[
α+H∗

(
x,−w

m

)]
dxdt ≥ 0.

Moreover, if equality holds in the inequality (2.23) for t = 0, then w = −mDξH(·,∇u) a.e. and

−∂tuac(t, x) +H(x,∇u(t, x)) = α(t, x) for m-a.e. (t, x) ∈ (0, T )×Td, where ∂tu
ac is the absolutely

continuous part of the measure ∂tu.

Proof. The proof is an adaptation of the argument seen in [CG15, Lemma 2.4]. We will prove
(2.23); the proof of (2.24) is analogous.

We first extend (m,w) to R × Td by setting (m,w) = (m0, 0) on (−∞, 0) × Td and (m,w) =
(m(T ), 0) on (T,+∞) × Td. Note that we still have ∂tm + div w = 0 on R × Td. For ε > 0, let
ξε(t, x) be a sequence of smooth convolution kernels that we will define below. Define mε := ξε ∗m
and wε := ξε ∗ w. Then mε and wε are C∞ smooth, mε > 0, and

(2.25) ∂tmε + div wε = 0.

Recalling that −∂tu+H(x,∇u) ≤ α in the sense of distributions, we deduce

(2.26)

∫
Td

u(t)mε(t)dx−
∫
Td

u(T )mε(T )dx ≤
∫ T

t

∫
Td

[−wε · ∇u−mεH(x,∇u) +mεα] dxdt

≤
∫ T

t

∫
Td

[
mεH

∗
(
x,−wε

mε

)
+mεα

]
dxdt

for any t ∈ (0, T ). As ε → 0, we have that mε → m in Lq((0, T ) × Td), and in particular
mε(t) → m(t) in Lq(Td) for almost every t ∈ (0, T ), while mεα → mα in L1((0, T ) × Td) since

α ∈ Lq′((0, T ) × Td). Thus as u ∈ L∞((0, T ) × Td), we get
∫
Td u(t)mε(t)dx →

∫
Td u(t)m(t)dx for

almost every t ∈ (0, T ). On the other hand, by the argument given in [CG15, Lemma 2.4], we have

(2.27) lim
ε→0

∫ T

t

∫
Td

mεH
∗
(
x,−wε

mε

)
dxdt =

∫ T

t

∫
Td

mH∗
(
x,−w

m

)
dxdt.

Then

(2.28)

∫
Td

u(t)m(t)dx ≤ lim sup
ε→0

∫
Td

u(T )mε(T )dx+

∫ T

t

∫
Td

[
mH∗

(
x,−w

m

)
+mα

]
dxdt.

To conclude, we just need to show that

(2.29)

∫
Td

u(T )mε(T )dx→
∫
Td

u(T )mT dx, ε ↓ 0.

Since u(T ) ∈ L∞(Td), it is enough to show mε(T )→ mT in L1(Td) as ε ↓ 0. For this we choose a
particular construction of the convolution kernel ξε.

Let η : R → (0,∞) and ψ : Rd → (0,∞) be even convolution kernels, each with compact
support in the unit ball, δ > 0 and set ηδ(t) = δ−1η(t/δ) and ψε(x) = ε−dψ(x/ε). We will
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choose ξε(t, x) = ηδ(t)ψε(x) where δ = δ(ε) will be determined by the following calculations. Set
mT,ε = ξε ∗mT . Our first observation is that

(2.30)

∫
Td

|mε(T, x)−mT (x)|dx ≤
∫
Td

∣∣∣∣∫ T+δ

T−δ

∫
Td

ηδ(T − s)ψε(x− y)(m(s, y)−mT (y))dyds

∣∣∣∣ dx

+

∫
Td

∣∣∣∣∫ T+δ

T−δ

∫
Td

ηδ(T − s)ψε(x− y)(mT (y)−mT (x))dyds

∣∣∣∣ dx

=

∫
Td

∣∣∣∣∫ T+δ

T−δ

∫
Td

∫ T

s
ηδ(T − s)∇ψε(x− y) · w(τ, y)dydτ ds

∣∣∣∣ dx+

∫
Td

|mT,ε(x)−mT (x)| dx

≤ C

εd+1

∫ T

T−δ

∫
Td

|w(τ, y)|dτ dy +

∫
Td

|mT,ε(x)−mT (x)| dx.

We set δ = δ(ε) small enough such that C
εd+1

∫ T
T−δ

∫
Td |w(τ, y)|dτ dy ≤ ε. Then (2.30) proves that

mε(T, ·)→ mT in L1 as ε→ 0. The proof of (2.23) is complete.
�

Proof of Proposition 2.3 . Fixing t ∈ (0, T ) such that (2.23) and (2.24) hold, by adding both in-
equalities we get that

(2.31)

∫
Td

(u(T )mT − u(0)m(0))dx+

∫ T

0

∫
Td

m
[
α+H∗

(
x,−w

m

)]
dxdt ≥ 0,

for every (u, α) ∈ K and (m,w) ∈ K1 satisfying the assumptions of Lemma 2.4. Thus,

A(u, α) ≥ −
∫ T

0

∫
Td

[
m
(
α+H∗

(
x,−w

m

))
− F ∗(x, α)

]
dxdt

≥ −
∫ T

0

∫
Td

[
H∗
(
x,−w

m

)
m+ F (x,m)

]
dxdt,

from which we deduce that inf(u,α)∈KA(u, α) ≥ −min(m,w)∈K1
B(m,w). Therefore, (2.22) follows

from the inequalities

− min
(m,w)∈K1

B(m,w) = inf
u∈K0

A(u, α) ≥ inf
(u,α)∈K

A(u, α) ≥ − min
(m,w)∈K1

B(m,w).

�

2.3. Weak solutions and minimizers. The definition of weak solutions for the planning problem
is analogous to that of the mean field game system (see [Car15, CG15]).

Definition 2.5. Let (u,m) ∈ BV ((0, T ) × Td) × Lq((0, T ) × Td). We say that (u,m) is a weak
solution to (1.1) if

(i) the following integrability conditions hold:

∇u ∈ Lr((0, T )× Td;Rd), u ∈ L∞((0, T )× Td),

the traces u(0, ·), u(T, ·) belong to L∞(Td),

mH∗(·, DξH(·,∇u)) ∈ L1((0, T )× Td), mDξH(·,∇u)) ∈ L1((0, T )× Td;Rd).

(ii) Equation (1.1)-(i) holds in the following sense: inequality

(2.32) − ∂tu+H(x,∇u) ≤ f(x,m) in (0, T )× Td

holds in the sense of distributions.
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(iii) Equation (1.1)-(ii) holds:

(2.33) ∂tm− div(mDξH(x,∇u))) = 0 in (0, T )× Td, m(0) = m0, m(T ) = mT

in the weak sense (2.13); and, finally,

(iv) the following equality holds:

(2.34)

∫ T

0

∫
Td

m(t, x) [f(x,m(t, x)) +H∗(x,DξH(x,∇u)(t, x))] dxdt

+

∫
Td

[mT (x)u(T, x)−m0(x)u(0, x)] dx = 0.

To prove the existence of weak solutions, we will use the fact that they are equivalent to min-
imizers of the two optimization problems presented in Section 2.2. In Section 2.4 below we will
show the existence of minimizers for problem (2.21), and, hence, the existence of solutions to (1.1).

Theorem 2.6. Let (m̄, w̄) ∈ K1 be a minimizer of (2.14) and (ū, ᾱ) ∈ K be a minimizer of
(2.21). Then (ū, m̄) is a weak solution of the planning problem (1.1) and w̄ = −m̄DξH(·,∇ū),
while ᾱ = f(·, m̄) a.e.

Conversely, any weak solution (ū, m̄) of (1.1) is such that the pair (m̄,−m̄DξH(·,∇ū)) is the
minimizer of (2.14) while (ū, f(·, m̄)) is a minimizer of (2.21).

Proof. Let (m̄, w̄) ∈ K1 be a minimizer of Problem (2.14) and (ū, ᾱ, ) ∈ K be a minimizer of
Problem (2.21). Due to Proposition 2.3, we have∫ T

0

∫
Td

[
F ∗(x, ᾱ) + F (x, m̄) + m̄H∗

(
x,− w̄

m̄

)]
dxdt+

∫
Td

[ū(T )mT − ū(0)m0] dx = 0.

We show that ᾱ = f(x, m̄). Indeed, by the definition of Legendre transform,

(2.35) F ∗(x, ᾱ(t, x)) + F (x, m̄(t, x)) ≥ ᾱ(t, x)m̄(t, x),

hence ∫ T

0

∫
Td

[
ᾱ(t, x)m̄(t, x) + m̄H∗

(
x,− w̄

m̄

)]
dxdt+

∫
Td

[ū(T )mT − ū(0)m0] dx ≤ 0.

Thanks to Lemma 2.4, the above inequality is in fact an equality, w̄ = −m̄DξH(·,∇ū) a.e. and
Equation (2.35) becomes equality a.e. Therefore, by the convexity and differentiability of F ,

(2.36) ᾱ(t, x) = f(x, m̄(t, x))

almost everywhere and (2.34) holds for (ū, m̄). In particular, m̄H∗(·, DξH(·,∇ū)) ∈ L1((0, T )×Td).
Moreover, since (ū, ᾱ) ∈ K and Equation (2.36) holds, we have −∂tū+H(x,∇ū) ≤ f(x, m̄) in the
sense of distributions. Furthermore, since (ū, ᾱ) ∈ K and w̄ = −m̄DξH(·,∇ū), we have that

m̄DξH(·,∇ū) ∈ L1((0, T )×Td;Rd) and (2.33) holds in the sense of distributions. Therefore (ū, m̄)
is a solution in the sense of Definition 2.5.

Suppose now that (ū, m̄) is a weak solution of (1.1) as in Definition 2.5. Set w̄ = −m̄DξH(·,∇ū),

ᾱ(t, x) = f(x, m̄(t, x)). By definition of weak solution (w̄, ᾱ) ∈ L1((0, T )×Td;Rd)×L1((0, T )×Td),
m̄ ∈ Lq((0, T ) × Td), and ū ∈ L∞((0, T ) × Td). Moreover, since m̄ ∈ Lq((0, T ) × Td), the growth

condition (2.3) implies that ᾱ ∈ Lq′((0, T )× Td). Therefore (m̄, w̄) ∈ K1 and (ū, ᾱ) ∈ K.
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It remains to show that (ū, ᾱ) minimizes A and (m̄, w̄) minimizes B. Let (ū′, ᾱ′) ∈ K. By the
convexity and differentiability of F ∗ in the second variable, we have

A(ū′, ᾱ′) =

∫ T

0

∫
Td

F ∗(x, ᾱ′(t, x))dxdt+

∫
Td

[
ū′(T, x)mT (x)− ū′(0, x)m0(x)

]
dx

≥
∫ T

0

∫
Td

[
F ∗(x, ᾱ(t, x)) + ∂αF

∗(x, ᾱ(t, x))(ᾱ′(t, x)− ᾱ(t, x))
]

dxdt

+

∫
Td

[
ū′(T, x)mT (x)− ū′(0, x)m0(x)

]
dx

=

∫ T

0

∫
Td

[
F ∗(x, ᾱ(t, x)) + m̄(t, x)(ᾱ′(t, x)− ᾱ(t, x))

]
dxdt

+

∫
Td

[
ū′(T, x)mT (x)− ū′(0, x)m0(x)

]
dx

= A(ū, ᾱ) +

∫ T

0

∫
Td

m̄(t, x)(ᾱ′(t, x)− ᾱ(t, x))dxdt

+

∫
Td

(ū′(T, x)− ū(T, x))mT (x)dx+

∫
Td

(ū(0, x)− ū′(0, x))m0(x)dx

= A(ū, ᾱ) +

∫ T

0

∫
Td

[
m̄(t, x)ᾱ′(t, x) + m̄(t, x)H∗

(
x,− w̄(t, x)

m̄(t, x)

)]
dxdt

+

∫
Td

ū′(T, x)mT (x)dx−
∫
Td

ū′(0, x)m0(x)dx

where the last equality follows from Equation (2.34). Applying Lemma 2.4 applied to (ū′, ᾱ′) and
(m̄, w̄), we deduce

A(ū′, ᾱ′) ≥ A(ū, ᾱ),

and so (ū, ᾱ) is a minimizer of A.
The argument for (m̄, w̄) is similar. Let (m̄′, w̄′) be a competitor for B. Then because F is

convex and differentiable in the second variable, we have, using Equation (2.34),

B(m̄′, w̄′) =

∫ T

0

∫
Td

[
m̄′H∗

(
x,− w̄

′

m̄′

)
+ F (x, m̄′)

]
dxdt

≥
∫ T

0

∫
Td

[
m̄′H∗

(
x,− w̄

′

m̄′

)
+ F (x, m̄) + f(x, m̄)(m̄′ − m̄)

]
dxdt

=

∫
Td

[ū(T )mT − ū(0)m0] dx

+

∫ T

0

∫
Td

[
m̄′H∗

(
x,− w̄

′

m̄′

)
+ m̄H∗

(
x,− w̄

m̄

)
+ F (x, m̄) + ᾱm̄′

]
dxdt

= B(m̄, w̄) +

∫
Td

[ū(T )mT − ū(0)m0] dx+

∫ T

0

∫
Td

[
m̄′H∗

(
x,− w̄

′

m̄′

)
+ ᾱm̄′

]
dxdt

≥ B(m̄, w̄).

Here we applied Lemma 2.4 to (ū, ᾱ) and (m̄′, w̄′) in the last line. Therefore (m̄, w̄) is a minimizer
of B.

�

2.4. Existence of solutions by direct method. We will now show that Problem (2.21) admits
at least one solution. We will need the following preliminary result proved in [CG15, Lemma 2.7].
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Lemma 2.7. Let α be a continuous function, and set

ν =
r − d(q − 1)

d(q − 1)(r − 1) + rq
,

which by Hypothesis (H3) is positive. Then there exists C > 0 such that for any smooth subsolution
of −∂tu+H(x,∇u) ≤ α,

u(t1, x) ≤ u(t2, y) + C
[
|x− y|r′(t2 − t1)1−r

′
+
(

(t2 − t1)ν ∧ 1 + T 1/q
) (
‖α+‖q′ + 1

)]
for all 0 ≤ t1 < t2 ≤ T and x, y ∈ Td.

As a consequence of the previous lemma, we have that, for any x ∈ Td,

u(0, x) ≤ u(T, y) + C
[
|x− y|r′T 1−r′ +

(
T ν ∧ 1 + T 1/q

) (
‖α+‖q′ + 1

)]
∀ y ∈ Td,

and since x and y belong to a bounded set, up to redefining C, we get

(2.37) u(0, x) ≤ inf
y∈Td

u(T, y) + C
[
T 1−r′ +

(
T ν ∧ 1 + T 1/q

) (
‖α+‖q′ + 1

)]
∀ x ∈ Td.

Proposition 2.8. Problem (2.21) admits at least one solution (u, α). The function u is Hölder
continuous in [0, T )×Td, α ≥ 0 a.e. and there exists C > 0, independent of m0 and mT , such that

(2.38) sup
(t,x)∈[0,T ]×Td

|u(t, x)|+ ‖∇u‖Lr + ‖∂tu‖M + ‖α‖Lq′ ≤ C,

where ‖ · ‖M denotes the usual norm of M as dual space of C0([0, T ]× Td).

Proof. Consider a smooth minimizing sequence (un)n for Problem (2.9). Using that A(un) =
A(un+ c) for all c ∈ R, by subtracting minx∈Td un(T, x) we can suppose that minx∈Td un(T, x) = 0.

For all x ∈ Td, t ∈ [0, T ], let

αn(t, x) := −∂tun(t, x) +H(x,∇un(t, x)).

Then, inequality (2.37) applies to all un giving

(2.39) un(0, x) ≤ C
[
T 1−r′ +

(
T ν ∧ 1 + T 1/q

) (
‖(αn)+‖Lq′ + 1

)]
∀ x ∈ Td.

Moreover, Proposition 2.3 implies that (un, αn)n is a minimizing sequence for Problem (2.21).
Hence, since Hypothesis (H2) and F ∗(x, a) = 0 for all a ≤ 0, imply A(0) = 0, we have

0 ≥
∫ T

0

∫
Td

F ∗(x, αn)dxdt+

∫
Td

un(T, x)dmT (x)−
∫
Td

un(0, x)dm0(x)(2.40)

≥ 1

q′C
‖(αn)+‖q

′

Lq′ − C
(
T 1−r′ +

(
T ν ∧ 1 + T 1/q

) (
‖(αn)+‖Lq′ + 1

))
,

where we used the growth condition (2.7) on F ∗, inequality (2.39), un(T, ·) ≥ 0 and
∫
Td m0(x)dx =

1. We deduce that ((αn)+)n is a bounded sequence in Lq
′
([0, T ] × Td) uniformly with respect to

m0 and mT . Moreover, there exists a constant C1 > 0 such that un(0, x) ≤ C1 for all x ∈ Td.
In order to obtain uniform bounds on (un)n, we need to modify the sequence. Let η ∈ C1(R)

such that 0 ≤ η′ ≤ 1, |η| ≤ 2C1 and η(s) = s if |s| ≤ C1, and set ũn := η ◦ un. Since un is Lipschitz
continuous, we have that ũn is Lipschitz continuous and, therefore,

−∂tũn +H(x,∇ũn) ≤ η′(ũn) (−∂tun +H(x,∇un))

≤ η′(ũn)(αn)+

≤ (αn)+,

where we have used that 0 ≤ η′ ≤ 1 and assumption (H2).
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Thus, (ũn, (αn)+)n ∈ K, ‖ũn‖L∞ ≤ 2C1, i.e. (ũn)n is uniformly bounded, and (ũn, (αn)+)n is
a minimizing sequence. In fact, we have that ũn(0, ·) ≥ un(0, ·) and ũn(T, ·) ≤ un(T, ·) because
η(a) ≥ a for all a < 0, η(0) = 0 and η(a) ≤ a for all a > 0 (recall un(0, x) ≤ C1 and un(T, x) ≥ 0
for all x ∈ Td). Moreover we can prove that (∂tũn)n is bounded in L1([0, T ] × Td) and (∇ũn) is
bounded in Lr([0, T ]×Td;Rd) uniformly w.r.t. m0 and mT . Indeed, by the growth condition (2.1)
on H, for a.e. (t, x), we have

∂tũn(t, x) + (αn)+(t, x) + C ≥ 1

Cr
|∇ũn|r ≥ 0.

Therefore, since |∂tũn| − |(αn)+ + C| ≤ |∂tũn + (αn)+ + C|, we have∫ T

0

∫
Td

|∂tũn|dxdt ≤
∫ T

0

∫
Td

(αn)+dxdt+

∫ T

0

∫
Td

(∂tũn(t, x) + (αn)+ + C) dxdt

≤ C +

∫
Td

(ũn(T, x)− ũn(0, x)) dx

≤ C,

where we used the fact that ((αn)+)n is bounded in Lq
′
([0, T ]× Td), hence in L1([0, T ]× Td), and

that (ũn)n is uniformly bounded. Moreover,∫ T

0

∫
Td

|∇ũn(t, x)|rdxdt ≤ Cr
∫ T

0

∫
Td

(∂tũn(t, x) + (αn)+(t, x) + C) dxdt ≤ C.

Summarizing all the estimates, we have

(2.41) ‖ũn‖L∞ + ‖∇ũn‖Lr + ‖∂tũn‖L1 + ‖(αn)+‖Lq′ ≤ C,

with C > 0 independent of m0 and mT . From this estimate we immediately deduce that, up to
some subsequence, (∇ũn)n weakly converges in Lr([0, T ] × Td;Rd), (∂tũn)n weakly-* converges to

a measure and ((αn)+)n weakly converges in Lq
′
([0, T ]× Td).

Thanks to [Car15, Lemma 1] (see also [CS12, Theorem 1.3]), we have that (ũn)n is a sequence
of locally uniformly Hölder continuous functions on [0, T ) × Td. Therefore, by the Arzelà-Ascoli
theorem, we have that (ũn)n uniformly converges to u ∈ C0([0, T ) × Td) on any compact set of
[0, T ) × Td. From (2.41) we get that u ∈ BV ((0, T ) × Td) and (∂tu,∇u) is the weak-* limit of
(∂tũn,∇ũn)n.

Let α ∈ Lq′([0, T ]×Td) be a weak limit of ((αn)+)n in Lq
′
([0, T ]×Td). Note that α ≥ 0 a.e. and,

since q′ > 1, α is also a weak-* limit of ((αn)+)n in L1([0, T ] × Td). As a consequence of the last
assertion, the pair (u, α) satisfies (2.38) for some C > 0. Now, take ϕ a nonnegative test function
in C∞c ([0, T ]× Td), then for all n, we have∫ T

0

∫
Td

−∂tũn(t, x)ϕ(t, x)dxdt+

∫ T

0

∫
Td

ϕ(t, x)H(x,∇ũn)dxdt ≤
∫ T

0

∫
Td

ϕ(t, x)(αn)+(t, x)dxdt.

The first integral on the left hand side converge by the weak* convergence of (∂tũn)n and the integral

on the right hand side converge due to the weak convergence of ((αn)+)n in Lq
′
([0, T ]× Td), while

thanks to the convexity of H in the gradient variable, we have∫ T

0

∫
Td

ϕ(t, x)H(x,∇u)dxdt ≤ lim inf
n→∞

∫ T

0

∫
Td

ϕ(t, x)H(x,∇ũn)dxdt.

Therefore, (u, α) satisfies

−∂tu+H(x,∇u) ≤ α
in the sense of distributions and in particular, (u, α) ∈ K.
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Let us now prove that (u, α) is a minimizer. Thanks to the convexity of F ∗, we have the lower
semicontinuity

(2.42)

∫ T

0

∫
Td

F ∗(x, α(t, x))dxdt ≤ lim inf
n→∞

∫ T

0

∫
Td

F ∗(x, (αn)+(t, x))dxdt.

The uniform convergence of (ũn)n on any compact set of [0, T )×Td implies that (ũn(0, ·))n converges
uniformly to u(0, ·), thus ‖u(0, ·)‖L∞ ≤ C and

(2.43)

∫
Td

u(0, x)dm0(x) = lim
n→∞

∫
Td

ũn(0, x)dm0(x).

The pointwise convergence of (ũn(T, ·))n is not ensured. However, since (‖ũn(T, ·)‖∞)n is uniformly
bounded by C, there exists g ∈ L∞(Td) such that ‖g‖∞ ≤ C and, up to some subsequence, un(T, ·)
converges to g in the weak-∗ topology σ(L∞, L1). Therefore,

(2.44)

∫
Td

φ(x)g(x)dx = lim
n→∞

∫
Td

φ(x)un(T, x)dx ∀ φ ∈ L1(Td).

Now, let φ ∈ C0(Td). We have that

(2.45)

∫
Td

φ(x)un(T, x)dx =

∫
Td

∫ T

0
φ(x)∂tun(t, x)dtdx+

∫
Td

φ(x)un(0, x)dx

→
∫
Td

∫ T

0
φ(x)∂tu(dt, dx) +

∫
Td

φ(x)u(0, x)dx.

Using that the trace u(T, ·) ∈ L1(Td) of u at {T} × Td satisfies∫
Td

∫ T

0
φ(x)∂tu(dt, dx) =

∫
Td

φ(x)u(T, x)dx−
∫
Td

φ(x)u(0, x)dx,

relations (2.44) and (2.45) imply that g = u(T, ·). Combining this result with (2.42) and (2.43), we
deduce that (u, α) solves Problem (2.21). The result follows. �

Now, for ε > 0 let us consider two probability densities mε
0 and mε

T ∈ L1(Td) and denote by

(mε, wε) the unique solution to problem (2.14) with m0 and mT replaced by mε
0 and mε

T ∈ L1(Td),
respectively. Likewise, we denote by (uε, αε) ∈ K a solution to the corresponding problem (2.21)
such that (2.38) holds true.

The following stability result is a consequence of Γ-convergence and it follows easily from the
statement and the proof of Proposition 2.8.

Corollary 2.9. Suppose that, as ε → 0+, (mε
0)ε and (mε

T )ε converge in L1(Td) to m0 and mT ,
respectively. Then, the following assertions hold true:

(i) (mε, wε) converges weakly in Lq((0, T )×Td)×L
r′q

r′+q−1 ((0, T )×Td;Rd) to (m,w), the unique
solution to (2.14).

(ii) Up to some subsequence, uε → u uniformly on every compact subset of [0, T )×Td, uε(T, ·)→
u(T, ·) weakly-* in L∞(Td), and (∂tuε,∇uε, αε)→ (∂tu,∇u, α) weakly* in M ((0, T )×Td)×
Lr((0, T )×Td;Rd)×Lq′((0, T )×Td), where (u, α) is a solution to (2.21) satisfying (2.21).

Proof. For (u, α) ∈ K let us define

Aε(u, α) :=

∫ T

0

∫
Td

F ∗(x, α(t, x))dxdt+

∫
Td

u(T, x)mε
T (x)dx−

∫
Td

u(0, x)mε
0(x)dx.

Define also Kε1 as K1 with m0 and mT replaced by mε
0 and mε

T , respectively.
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Notice that Proposition 2.8 implies that for all ε > 0 we have

(2.46) inf
(u,α)∈K

Aε(u, α) = inf {Aε(u, α) | (u, α) ∈ K, ‖u(0, ·)‖L∞ ≤ C, and ‖u(T, ·)‖L∞ ≤ C} .

Using that

|Aε(u, α)−A(u, α)| ≤ C (‖mε
0 −m0‖L1 + ‖mε

T −mT ‖L1) ,

for all (u, α) ∈ K such that ‖u(0, ·)‖L∞ ≤ C and ‖u(T, ·)‖L∞ ≤ C, relation (2.46) implies that

lim
ε→0+

− min
(m,w)∈Kε

1

B(m,w) = lim
ε→0+

inf
(u,α)∈K

Aε(u, α) = inf
(u,α)∈K

A(u, α) = − min
(m,w)∈K1

B(m,w).

Arguing as in the proof of Proposition 2.8, we have the existence of (u, α) ∈ K such that, up to
some subsequence, (uε, αε)ε converges to (u, α) in the sense of (ii), and

A(u, α) ≤ lim
ε→0+

Aε(u, α) = inf
(u,α)∈K

A(u, α),

which implies (ii). In addition, Lemma 2.1 yields that (mε, wε) is uniformly bounded in Lq((0, T )×
Td)×L`((0, T )×Td;Rd), where ` := r′q

r′+q−1 . Then, the lower semicontinuity of the convex functional

B implies that any weak limit point (m,w) of ((mε, wε))ε satisfies

B(m,w) ≤ lim
ε→0
B(mε, wε) = min

(m′,w′)∈K1

B(m′, w′).

Since (mε, wε) satisfies (2.13) with initial and final conditions given by mε
0 and mε

T , respectively,
we can pass to the limit in that equation to obtain that (m,w) also satisfies (2.13) with initial and
final conditions given by m0 and mT , respectively. Finally, since mε ≥ 0 a.e. we also get that
m ≥ 0 a.e., which implies that (m,w) ∈ K1. Therefore, (m,w) is the unique solution to (2.14) and
the whole sequence (mε, wε)ε converges to (m,w) weakly in Lq((0, T )× Td)× L`((0, T )× Td;Rd).
The result follows. �

2.5. Uniqueness. In this subsection address uniqueness of solutions to the planning problem. Let
(ū, m̄) be a weak solution to (1.1). In light of Theorem 2.6, the pair (m̄, w̄) = (m̄,−m̄DξH(·,∇ū))
is the minimizer of (2.14) while (ū, f(·, m̄)) is a solution of (2.21). In particular, m̄ and w̄ are
unique because of the uniqueness of the solution of (2.14).

On the other hand, if H is strictly convex in the second variable, then uniqueness of w̄ implies
that ∇ū is unique on the set {m̄ > 0} (Cf. the statement of Theorem 6.15 in [OPS]).

3. The planning problem as limit of penalized MFG

Consider the following system of equations, corresponding to a mean field game:

(3.1)


−∂tu+H(x,∇u) = f(x,m), in (0, T )× Td,

∂tm−∇ · (DξH(x,∇u)m) = 0, in (0, T )× Td,

m(0, ·) = m0, u(T, ·) = gε(·,m(T, ·)), in Td,

with the final coupling given by

(3.2) gε(x,m(T )) =
|m(T )−mT (x)|p−2(m(T )−mT (x))

ε
,

where p > 1 is fixed and ε > 0 is a fixed small parameter that we will take ε ↓ 0 later. This
corresponds to a final cost of

(3.3) Gε(x,m(T )) =
|m(T )−mT (x)|p

pε
.
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Its Fenchel conjugate is

G∗ε(x, b) = bmT (x) + ε
p′
p

1

p′
|b|p′ .

The goal of this section is twofold. First we prove existence and uniqueness of solutions for
System (3.1). Then we prove that the solution uε,mε converges in a suitable sense to a solution of
the planning problem.

Our method of proving existence and uniqueness derives mainly from [Car15, CG15]. There are
serious technical difficulties in establishing existence under the same weak hypotheses as in the
previous section, namely m0,mT only in L1(Td). Although the convex minimization problem is
“relaxed” in the sense that the constraint m(T ) = mT is weakened, we actually impose an extra
integrability criterion m(T ) ∈ Lp(Td) for some arbitrary p > 1.

Based on the results of this section and similarly to [GM18], we provide in Section 4 some
Sobolev regularity of solutions of (3.1). Thus the present section has some intrinsic interest besides
its application to the planning problem. Nevertheless, its primary purpose for this article will be
to serve as a way to generate approximating solutions to System (1.1).

Throughout this section we assume that all the hypotheses from Section 2 are in force, with the
following additional assumption:

(H5) mT ∈ Lp(Td), for a given p > 1.

3.1. Two optimization problems in duality. In this subsection too, we rely on the fact that
our problem can be studied as an optimality condition between two problems in duality.

The first optimization problem is described as follows: let us denote Kε0 = C1([0, T ]× Td) = K0

and define on it the functional

(3.4) Aε(u) =

∫ T

0

∫
Td

F ∗ (x,−∂tu(t, x) +H(x,∇u(t, x))) dxdt

+

∫
Td

G∗ε(x, u(T, x))dx−
∫
Td

u(0, x)m0(x)dx.

Notice that

Aε(u) := A(u) + ε
p′
p

1

p′

∫
Td

|u(T, x)|p′ dx.

The problem consists in optimizing

(3.5) inf
u∈Kε

0

Aε(u) .

For the second optimization problem, let Kε1 be the set of pairs (m,w) ∈ L1((0, T ) × Td) ×

L1((0, T )×Td;Rd) such that m(t, x) ≥ 0 a.e., with

∫
Td

m(t, x)dx = 1 for a.e. t ∈ (0, T ), and which

satisfy in the sense of distributions the continuity equation

(3.6) ∂tm+ div(w) = 0 in (0, T )× Td, m(0) = m0.

On the set Kε1, let us define the following functional

Bε(m,w) =

∫ T

0

∫
Td

[
m(t, x)H∗

(
x,−w(t, x)

m(t, x)

)
+ F (x,m(t, x))

]
dxdt+

∫
Td

Gε(x,m(T, x))dx

where, for m(t, x) = 0, we impose that

m(t, x)H∗
(
x,−w(t, x)

m(t, x)

)
=

{
+∞ if w(t, x) 6= 0
0 if w(t, x) = 0

.
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Since H∗ and F are bounded from below and m ≥ 0 a.e., the first integral in B(m,w) is well defined
in R ∪ {+∞}. Notice that

Bε(m,w) := B(m,w) +

∫
Td

Gε(x,m(T ))dx.

The second optimal control problem is the following:

(3.7) inf
(m,w)∈Kε

1

Bε(m,w) .

Lemma 3.1. We have

inf
u∈Kε

0

Aε(u) = − min
(m,w)∈Kε

1

Bε(m,w).

Moreover, the minimum in the right-hand side is achieved by a unique pair (m,w) ∈ Kε1 satisfying

(m,w) ∈ Lq((0, T )× Td)× L
r′q

r′+q−1 ((0, T )× Td;Rd) and m(T ) ∈ Lp(Td).

The proof closely resembles that of Lemma 2.1, so we omit it.

3.2. Analysis of the optimal control of the HJ equation. Let Kε be the set of triples
(u, α, β) ∈ BV ((0, T ) × Td) × Lq

′
((0, T ) × Td) × Lp

′
(Td) such that u ∈ L∞((0, T ) × Td), ∇u ∈

Lr((0, T )× Td;Rd), the traces u(0, ·), u(T, ·) belong to L∞(Td), and

−∂tu+H(x,∇u) ≤ α, u(T, x) ≤ β(x) (t, x) ∈ (0, T )× Td,

holds in the sense of distributions.
We extend the functional Aε to Kε by setting

Aε(u, α, β) =

∫ T

0

∫
Td

F ∗(x, α(t, x))dxdt+

∫
Td

G∗ε(x, β(x))dx−
∫
Td

u(0, x)m0(x)dx, ∀(u, α, β) ∈ K.

The next proposition explains that the problem

(3.8) inf
(u,α,β)∈Kε

Aε(u, α, β)

is the relaxed problem of (3.5).

Proposition 3.2. We have

inf
u∈Kε

0

Aε(u) = inf
(u,α,β)∈Kε

Aε(u, α, β).

The proof requires the following inequality:

Lemma 3.3. Let (u, α, β) ∈ Kε and (m,w) ∈ Kε1. Assume that mH∗(·,−w/m) ∈ L1((0, T )× Td),
m ∈ Lq((0, T )× Td), and m(T ) ∈ Lp(Td). Then for a.e. t ∈ [0, T ],

(3.9)

∫
Td

(βm(T )− u(t)m(t))dx+

∫ T

t

∫
Td

m
[
α+H∗

(
x,−w

m

)]
dxdt ≥ 0

and ∫
Td

(u(t)m(t)− u(0)m0)dx+

∫ t

0

∫
Td

m
[
α+H∗

(
x,−w

m

)]
dxdt ≥ 0.

Moreover, if equality holds in the inequality (3.9) for t = 0, then w = −mDξH(x,∇u) a.e.
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Proof. We may use the same argument as in the proof of Lemma 2.4. The only difference is that,
when we introduced the regularization mε, we need to show mε(T ) → m(T ) in Lp(Td). This is
almost the same as showing the L1 convergence as before:

(3.10)∫
Td

|mε(T, x)−m(T, x)|pdx ≤ 2p−1
∫
Td

∣∣∣∣∫ T+δ

T−δ

∫
Td

ηδ(T − s)ψε(x− y)(m(s, y)−mT (y))dyds

∣∣∣∣p dx

+ 2p−1
∫
Td

∣∣∣∣∫ T+δ

T−δ

∫
Td

ηδ(T − s)ψε(x− y)(mT (y)−m(T, x))dyds

∣∣∣∣p dx

= 2p−1
∫
Td

∣∣∣∣∫ T+δ

T−δ

∫
Td

∫ T

s
ηδ(T − s)∇ψε(x− y) · w(τ, y)dydτ ds

∣∣∣∣p dx+2p−1
∫
Td

|mT,ε(x)−m(T, x)|p dx

≤ C

εd+1

(∫ T

T−δ

∫
Td

|w(τ, y)|dτ dy

)p
+ 2p−1

∫
Td

|mT,ε(x)−m(T, x)|p dx.

Letting δ(ε) be small enough, we see that the right-hand side goes to zero as ε → 0. In a similar
manner, mε(0)→ m(0) in L1(Td), which is sufficient because u(0) ∈ L∞(Td). The other estimates
are exactly as in the proof of Lemma 2.4, so we omit them. �

Proof of Proposition 3.2. The argument is almost exactly the same as the proof of Proposition 2.3,
so we omit it. �

3.3. Existence of a solution for the relaxed problem. The next proposition explains the
interest of considering the relaxed problem (3.8) instead of the original one (3.5).

Proposition 3.4. The relaxed problem (3.8) has at least one solution (u, α, β). The function u is
Hölder continuous in [0, T ) × Td, α ≥ 0 a.e., and there exists C > 0, independent of m0,mT and
ε, and Cε > 0, independent of m0 and mT , such that

(3.11) sup
(t,x)∈[0,T ]×Td

|u(t, x)|+ ‖∇u‖Lr + ‖∂tu‖M ≤ Cε and ‖α‖Lq′ + ε
p′
p ‖β‖Lp′ ≤ C,

where ‖ · ‖M denotes the usual norm of M as dual space of C0([0, T ]× Td).

Proof. Consider a minimizing sequence (un)n for Problem (3.5). Observe that if

cn := min
x∈Td

un(T, x) > 0,

then

Aε(un−cn) = A(un−cn)+ε
p′
p

1

p′

∫
Td

(un(T, x)−cn)p
′
dx ≤ A(un)+ε

p′
p

1

p′

∫
Td

un(T, x)p
′
dx = Aε(un).

where we have used the fact that A(un − cn) = A(un) and un(T, x)− cn ≤ un(T, x) being cn > 0.
Therefore, by replacing un with un− cn whenever cn > 0, without loss of generality we may assume
cn = minx∈Td un(T, x) ≤ 0.

We set

(3.12) αn(t, x) = −∂tun(t, x) +H(x,∇un(t, x)), βn(x) = un(T, x).

Proposition 3.2 implies that (un, αn, βn)n is a minimizing sequence for Problem (3.8). Moreover,
inequality (2.37) applies to all un giving

(3.13) un(0, x) ≤ cn + C
[
T 1−r′ +

(
T ν ∧ 1 + T 1/q

) (
‖(αn)+‖Lq′ + 1

)]
∀ x ∈ Td.
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Now since Aε(0) = 0, we can assume without loss of generality that

0 ≥
∫ T

0

∫
Td

F ∗(x, αn)dxdt+
ε

p′
p

p′

∫
Td

|βn(x)|p′ dx+

∫
Td

βn(x)dmT (x)−
∫
Td

un(0, x)dm0(x)

(3.14)

≥ 1

q′C
‖(αn)+‖q

′

Lq′ +
ε

p′
p

p′
‖βn‖p

′

Lp′ − C
(
T 1−r′ +

(
T ν ∧ 1 + T 1/q

) (
‖(αn)+‖Lq′ + 1

))
,

where we used the growth condition (2.7) on F ∗, inequality (3.13), un(T, ·) = βn(x) ≥ cn and∫
Td m0(x)dx =

∫
Td mT (x)dx = 1. We deduce that ((αn)+)n is a bounded sequence in Lq

′
([0, T ]×

Td), and (βn)n is a bounded sequence in Lp
′
(Td) uniformly with respect to m0 and ε. Moreover,

there exists a constant C1 > 0, independent of m0 and ε, such that un(0, x) ≤ C1 for all x ∈ Td.
By Young’s inequality and the lower bound on F ∗, we deduce from (3.14) that

(3.15) −
∫
Td

un(0, x)m0(x)dx ≤ C + Cε‖mT ‖pLp .

Integrating (3.13) against m0(x) over Td we obtain

(3.16) cn ≥ −Cε‖mT ‖pLp − C
[
1 + T 1−r′ +

(
T ν ∧ 1 + T 1/q

) (
‖(αn)+‖Lq′ + 1

)]
≥ −C̃ε.

By increasing C̃ε if necessary, we will assume it is larger than C1. In analogy with the proof of
Proposition 2.8, let ηε ∈ C1(R) such that 0 ≤ η′ε ≤ 1, |ηε| ≤ 2C̃ε and ηε(s) = s if −C̃ε ≤ s ≤ C1,
and set ũn := ηε ◦ un, then ũn is Lipschitz continuous. We again deduce that

(3.17) − ∂tũn +H(x,∇ũn) ≤ (αn)+.

On the other hand, we have that ũn(0, ·) ≥ un(0, ·) and ũn(T, ·) ≤ un(T, ·) because ηε(a) ≥ a for

all a < 0, ηε(0) = 0 and ηε(a) ≤ a for all a > 0 (recall un(0, x) ≤ C1 and un(T, x) ≥ cn ≥ −C̃ε for
all x ∈ Td), in particular ũn(T, ·) ≤ βn. It follows that Aε(ũn, (αn)+, βn) ≤ Aε(un, (αn)+, βn) and
(ũn, (αn)+, βn) ∈ Kε is a new minimizing sequence. We note that (ũn)n is uniformly bounded in

L∞ by 2C̃ε.
Proceeding as in the proof of Proposition 2.8, we obtain

(3.18) ‖ũn‖L∞ + ‖∇ũn‖Lr + ‖∂tũn‖L1 ≤ Cε
for some constant Cε depending on ε. It remains to show that (ũn, (αn)+, βn) has an accumulation
point (u, α, β) ∈ Kε that minimizes Aε. The argument is exactly as in Proposition 2.8, and we omit
the details. �

Corollary 3.5. Let (u, α, β) be the minimizer obtained in Proposition 3.4. Then there exists
(v, α) ∈ K such that A(v, α) ≤ A(u, α) and the following estimates hold uniformly with respect to
ε (and m0 and mT ):

(3.19) ‖v‖L∞ + ‖∇v‖Lr + ‖∂tv‖L1 ≤ C.

Furthermore, v is locally Hölder continuous on [0, T )×Td, and there exists a constant c ≤ 0 possibly
depending on ε such that c ≤ infx u(T, x) and such that v satisfies

v = η(u− c)

for some smooth function η as in the proof of Proposition 2.8, satisfying 0 ≤ η′ ≤ 1 and |η| ≤ 2C1.

We stress that (v, α, β) is not necessarily a minimizer of Aε, and it need not even be an element
of Kε. We can think of v as a “regularized modification” of u.
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Proof. Let (un)n be the same minimizing sequence as in the proof of Proposition 3.4 and again set

(3.20) αn(t, x) = −∂tun(t, x) +H(x,∇un(t, x)), cn = min
x∈Td

un(T, x) ≤ 0.

Define ũn as in the previous proof so that (3.17), (3.21) hold as well as ‖(αn)+‖Lq′ ≤ C for some C
independent of ε. Note also that cn = minx∈Td ũn(T, x). Let vn = ũn − cn. Then A(ũn, (αn)+) =
A(vn, (αn)+) (we do not claim anything about Aε(vn)!). As in the proof of Proposition 2.8, let
η ∈ C1(R) such that 0 ≤ η′ ≤ 1, |η| ≤ 2C1 and η(s) = s if |s| ≤ C1 (where now C1 > 0 is such that
vn(0, ·) ≤ C1), and set ṽn := η ◦ vn. By the same argument as in that proof, we obtain

−∂tṽn +H(x,∇ṽn) ≤ (αn)+ a.e.,

A(ṽn, (αn)+) ≤ A(vn, (αn)+) = A(ũn, (αn)+), (since, again ṽn(T, ·) ≤ vn(T, ·), ṽn(0, ·) ≥ vn(0, ·))
and

(3.21) ‖ṽn‖L∞ + ‖∇ṽn‖Lr + ‖∂tṽn‖L1 + ‖(αn)+‖Lq′ ≤ C,

where C is uniform in n, m0,mT , and ε. Here we have used the uniform estimate on ‖(αn)+‖Lq′

obtained in the proof of Proposition 3.4.
From this estimate we deduce that, up to some subsequence, (∇ṽn)n weakly converges in

Lr([0, T ] × Td;Rd), (∂tṽn)n weakly-* converges to a measure, and ((αn)+)n converges weakly to

α in Lq
′
([0, T ]×Td) (the same as in the proof of Proposition 3.4). Again, thanks to [Car15, Lemma

1], we have that (ṽn)n is a sequence of locally uniformly Hölder continuous functions on [0, T )×Td,
and so (ṽn)n uniformly converges to v ∈ C0([0, T )× Td) on any compact subset of [0, T )× Td. By
(3.21) we have v ∈ BV ((0, T ) × Td) and (∂tv,∇v) is the weak-* limit of (∂tṽn,∇ṽn)n. As before
we deduce that (v, α) satisfies

−∂tv +H(x,∇v) ≤ α
in the sense of distributions. As in the proof of Proposition 2.8, we also have ṽn(T, ·) ⇀ v(T, ·), as
n→ +∞ in the weak-∗ topology σ(L∞, L1). In particular, (v, α) ∈ K.

Finally, by lower semicontinuity arguments as before, we get A(v, α) ≤ A(u, α). To see this, note
that ∫

Td

v(0, x)m0(x)dx = lim
n→∞

∫
Td

ṽn(0, x)m0(x)dx

and ∫
Td

v(T, x)mT (x)dx = lim
n→∞

∫
Td

ṽn(T, x)mT (x)dx

by the same proof as in Proposition 2.8, and so

A(v, α) =

∫ T

0

∫
Td

F ∗(x, α)dxdt+

∫
Td

v(T, x)mT (x)dx−
∫
Td

v(0, x)m0(x)dx

= lim inf
n→∞

∫ T

0

∫
Td

F ∗(x, (αn)+)dxdt+

∫
Td

ṽn(T, x)mT (x)dx−
∫
Td

ṽn(0, x)m0(x)dx

≤ lim inf
n→∞

∫ T

0

∫
Td

F ∗(x, (αn)+)dxdt+

∫
Td

vn(T, x)mT (x)dx−
∫
Td

vn(0, x)m0(x)dx

= lim inf
n→∞

∫ T

0

∫
Td

F ∗(x, (αn)+)dxdt+

∫
Td

ũn(T, x)mT (x)dx−
∫
Td

ũn(0, x)m0(x)dx

=

∫ T

0

∫
Td

F ∗(x, α)dxdt+

∫
Td

u(T, x)mT (x)dx−
∫
Td

u(0, x)m0(x)dx = A(u, α).
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Also from the uniform estimates on cn derived in Proposition 3.4, we can assume (again, up to

a subsequence) that cn → c ∈ [−C̃ε, 0]. We can see that c ≤ infx u(T, x), since∫
Td

(u(T, x)− c)φ(x)dx = lim
n→∞

∫
Td

(un(T, x)− cn)φ(x)dx ≥ 0

for all integrable functions φ ≥ 0, so u(T, x) ≥ c a.e. It follows that

v(t, x) = lim
n→∞

η(vn(t, x)) = lim
n→∞

η(ũn(t, x)− cn) = η(max{u(t, x)−c; 0}) ∀t ∈ [0, T ),∀x ∈ Td,

using the local uniform convergence ṽn → v and ũn → u to in [0, T )× Td.
�

3.4. Definition of weak solutions. The variational method described above provides weak so-
lutions for the MFG system. By a weak solution, we mean the following:

Definition 3.6. Let (u,m) ∈ BV ((0, T ) × Td) × Lq((0, T ) × Td) with u ∈ L∞((0, T ) × Td) and
u(0, ·), u(T, ·) ∈ L∞(Td). We say that (u,m) is a weak solution to (3.1) if

(i) the following integrability conditions hold:

∇u ∈ Lr((0, T )× Td;Rd), mH∗(·, DξH(·,∇u)) ∈ L1((0, T )× Td), m(T ) ∈ Lp(Td),
and

mDξH(·,∇u)) ∈ L1((0, T )× Td;Rd).
(ii) Equation (3.1)-(i) holds in the following sense: inequality

(3.22) − ∂tu+H(x,∇u) ≤ f(x,m) in (0, T )× Td,
with u(T, ·) ≤ gε(·,m(T, ·)), holds in the sense of distributions,

(iii) Equation (3.1)-(ii) holds:

(3.23) ∂tm− div(mDξH(x,∇u)) = 0 in (0, T )× Td, m(0) = m0

in the sense of distributions,
(iv) The following equality holds:

(3.24)

∫ T

0

∫
Td

m(t, x) [f(x,m(t, x)) +H∗(x,DξH(x,∇u)(t, x))] dxdt

+

∫
Td

[m(T, x)gε(x,m(T, x))−m0(x)u(0, x)] dx = 0.

Our main result for this section is the following existence and uniqueness theorem:

Theorem 3.7. There exists a weak solution (u,m) to the MFG system (3.1). Moreover this solution
is unique in the following sense: if (u,m) and (u′,m′) are two solutions, then m = m′ a.e. and
u = u′ in {m > 0}.

Remark 3.8. Let us underline the fact that unlike the planning problem, we can expect m-
a.e. uniqueness of the adjoint state u.

3.5. Existence of a weak solution. The first step towards the proof of Theorem 3.7 consists in
showing a one-to-one equivalence between solutions of the MFG system and the two optimization
problems (3.7) and (3.8).

Theorem 3.9. Let (m̄, w̄) ∈ Kε1 be a minimizer of (3.7) and (ū, ᾱ, β̄) ∈ Kε be a minimizer of (3.8).
Then (ū, m̄) is a weak solution of the mean field games system (3.1) and w̄ = −m̄DξH(·,∇ū), while
ᾱ = f(·, m̄) and β̄ = gε(·, m̄(T, ·)) a.e.

Conversely, any weak solution (ū, m̄) of (3.1) is such that the pair (m̄,−m̄DξH(·,∇ū)) is the
minimizer of (3.7) while (ū, f(·, m̄), gε(·, m̄(T, ·)) is a minimizer of (3.8).
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Proof. The argument is very similar to the proof of Theorem 2.6, so we omit it. �

3.6. Uniqueness. In this subsection we prove the uniqueness part of Theorem 3.7. Let (ū, m̄) be
a weak solution to (3.1). In light of Theorem 3.7, the pair (m̄,−m̄DξH(·,∇ū)) is the minimizer of
(3.7) while (ū, f(·, m̄)) is a solution of (3.8). In particular, m̄ is unique because of the uniqueness
of the solution of (3.7).

Thus we assume that (u1, m̄), (u2, m̄) are two weak solutions of (3.1). Set ᾱ = f(·, m̄) and
β̄ = gε(·, m̄(T, ·)). To show that u1 = u2 on the set {m̄ > 0}, it is sufficient to show that
ū := max{u1, u2} satisfies

(3.25) − ∂tū+H(x,∇ū) ≤ ᾱ

and

(3.26) ū(T, ·) ≤ β̄

in the sense of distributions. This is because (ū, ᾱ, β̄) can be seen to minimize the cost∫ T

t

∫
Td

F ∗(x, α)dxdt+

∫
Td

G∗ε(x, β)− m̄(t)u(t)dx

for any t, and so
∫
Td m̄(t)ū(t)dx =

∫
Td m̄(t)u1(t)dx, which implies u1 = ū a.e. in {m̄ > 0}

(cf. [CGPT15, Section 5.3]). The same argument applies with u2 in place of u1.
Our goal is to show that ū satisfies (3.25) and (3.26), in the sense of distributions. Let us notice

immediately that (3.26) is automatically satisfied. Let ε > 0. Introduce the following translation
and extension of (uk, ᾱ), k = 1, 2:

(3.27) ũk(t, x) =

{
uk(t+ 2ε, x) if t ∈ [−2ε, T − 2ε),
0 if t ∈ [T − 2ε, T + 2ε]

and

(3.28) α̃(t, x) =

{
ᾱ(t+ 2ε, x) if t ∈ [−2ε, T − 2ε),
H(x, 0) if t ∈ [T − 2ε, T + 2ε].

Then we have that

(3.29) − ∂tũk +H(x,∇ũk) ≤ α̃+ β̄(x)∂t1[T−2ε,T+2ε](t)

in the sense of distributions on (−2ε, T + 2ε)× Td.
Fix a smooth vector field ψ on [0, T ]× Td. Notice that

(3.30) − ∂tũk + ψ · ∇ũk ≤ α̃+H∗(x, ψ) + β̄(x)∂t1[T−2ε,T+2ε](t)

in the sense of distributions on (−2ε, T + 2ε) × Td. Let ηε(t, x) = ηεx(x)ηεt (t) be the product of
standard convolution kernels, one in the x variable and the other in the t variable. Then set
αε = ηε ∗ α̃, uεk = ηε ∗ ũk, uε = max{uε1, uε2}, and βε = ηεx ∗ β̄. Then for each k = 1, 2,

(3.31) − ∂tuεk + ψ · ∇uεk ≤ αε + ηε ∗H∗(·, ψ) + βε(x)∂t(η
ε
t ∗ 1[T−2ε,T+2ε])(t) +Rε

in a pointwise sense on [0, T ]× Td, where

Rε := [ψ, ηε](∇ũk), k = 1, 2,

where we have used the commutator notation from DiPerna-Lions [DL89] (cf. LeBris-Lions [LBL08]
where this is applied to the Fokker-Planck equation). By [DL89, Lemma II.1], we have Rε → 0 in
Lr((0, T )× Td). Now, since the maximum of two subsolutions is itself a subsolution, we have

(3.32) − ∂tuε + ψ · ∇uε ≤ αε + ηε ∗H∗(·, ψ) + βε(x)∂t(η
ε
t ∗ 1[T−2ε,T+2ε])(t) +Rε
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in a viscosity sense on [0, T ] × Td, hence also in the sense of distributions by the result of Ishii
([Ish95], see also [CGPT15, Section 6.3]). Here we also use the fact that uε1(T ) = uε2(T ) = 0. In
other words,

(3.33)

∫ T

0

∫
Td

uε∂tζ + ζψ · ∇uεdxdt

≤
∫ T

0

∫
Td

ζ(αε+ηε∗H∗(·, ψ))dxdt+

∫
Td

ζ(T )βεdx−
∫ T

0

∫
Td

∂tζβ
εηεt ∗1[T−2ε,T+2ε]dxdt+

∫ T

0

∫
Td

Rεζdxdt

for any non-negative test function ζ ∈ C1
c ((0, T ] × Td). As ε → 0, a routine check shows that, at

least up to a subsequence, uε → ū pointwise and in Lγ([0, T ] × Td) for any γ ≥ 1, ∇uε ⇀ ∇ū
weakly in Lr([0, T ] × Td), ηε ∗ H∗(·, ψ) → H∗(·, ψ) uniformly, βε → β in Lp(Td) and αε → α in

Lq
′
([0, T ]× Td). Finally, to see that the penultimate integral vanishes, we observe that

(3.34)

∣∣∣∣∫ T

0

∫
Td

∂tζβ
εηεt ∗ 1[T−2ε,T+2ε]dxdt

∣∣∣∣ =

∣∣∣∣∫ T

0

∫
Td

∫ ε

−ε
∂tζβ

εηεt (s)1[T−2ε,T+2ε](t− s)dsdxdt

∣∣∣∣
≤
∫ T

0

∫
Td

∫ ε

−ε
|∂tζ||βε|ηεt (s)1[T−3ε,T+3ε](t)dsdxdt =

∫ T

T−3ε

∫
Td

|∂tζ||βε|dxdt→ 0.

Thus, letting ε→ 0 in (3.33) we get

(3.35) −
∫
Td

ζ(T )βdx+

∫ T

0

∫
Td

ū∂tζ + ζψ · ∇ūdxdt ≤
∫ T

0

∫
Td

ζ(α+H∗(x, ψ))dxdt.

Finally, taking a sequence of such ψ converging to DξH(x,∇ū) in Lr
′
((0, T )× Td;Rd), we get the

desired inequality. The proof is complete.

3.7. The limit as ε→ 0.

Lemma 3.10 (Uniform bounds in ε > 0). Let ε > 0 and (uε,mε) be the solution of System (3.1)
with αε = f(·,mε), βε = gε(·,mε(T )) as coupling, where (uε, αε, βε) and (mε, wε) are minimizers of
the variational problems (3.8) and (3.7), respectively. Then

(i)
(∫

Td Gε(x,mε(T ))dx
)
ε>0

is uniformly bounded and (ε1/pβε)ε>0 is uniformly bounded in

Lp
′
(Td), and in particular mε(T )→ mT strongly in Lp(Td);

(ii) (mε, wε)ε>0 is uniformly bounded in Lq([0, T ]× Td)× L
r′q

r′+q−1 ([0, T ]× Td;Rd);
(iii) (αε)ε>0 = (f(·,mε))ε>0 is uniformly bounded below by 0 and in Lq

′
([0, T ]× Td).

Proof. Using the assumptions on H∗ and F , one sees that

(3.36) 0 ≤
∫
Td

Gε(x,mε(T ))dx ≤ C + Bε(mε, wε) = C + inf
Kε

1

Bε.

Taking any fixed pair (m̃, w̃) ∈ K1 for the functional B, we can use this pair as a competitor in Bε
to reveal

(3.37) inf
Kε

1

Bε ≤
∫ T

0

∫
Td

[
m̃H∗

(
x,− w̃

m̃

)
+ F (x, m̃)

]
dxdt,

where we use the fact that m̃(T ) = mT . Thus
∫
Td Gε(x,mε(T ))dx is bounded uniformly in ε. From

the definition of Gε, it follows that
∫
Td |mε(T )−mT |pdx ≤ pεC → 0, i.e. mε(T )→ mT in Lp(Td).

Furthermore, by the definition of gε, ε
1/pgε(·,mε(T )) is uniformly bounded in Lp

′
(Td). Thus (i)

follows.
The previous arguments and (ii) imply also that

∫ T
0

∫
Td F (·,mε)dxdt is uniformly bounded,

which by the growth condition on F implies that (mε)ε is uniformly bounded in Lq([0, T ] × Td).
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From Lemma 3.1 one deduces also that (wε)ε is uniformly bounded in L
r′q

r′+q−1 ([0, T ]×Td;Rd). Thus
(ii) follows.

Part (iii) follows from Proposition 3.4. �

Theorem 3.11 (Approximation of minimizers in the optimization problems (2.14) and (2.21)).
For ε > 0 let (uε,mε) be the solution of System (3.1) with gε(·,mε(T )) as final coupling, where
(uε, αε, βε) and (mε, wε) are the minimizers of the variational problems (3.8) and (3.7), respectively.
Let moreover vε be constructed as in Corollary 3.5, satisfying the uniform estimate (3.19).

Then there exist (m,w) ∈ Lq([0, T ]× Td)×L
r′q

r′+q−1 ([0, T ]× Td) and (u, α) ∈ (L∞((0, T )× Td) ∩
BV ((0, T ) × Td)) × Lq′([0, T ] × Td) such that choosing a suitable positive vanishing sequence that
we denote only by ε, (mε, wε) ⇀ (m,w) and (vε, αε) ⇀ (u, α) as ε ↓ 0 in the corresponding spaces.
Moreover, (u, α) and (m,w) are optimizers in (2.21) and (2.14) respectively.

Proof. Let us once more recall that there exists at least one competitor (m̂, ŵ) ∈ K1 in (2.14) and
this infimum is finite.

The existence of (m,w), (u, α) and the previously mentioned weak convergences are consequences
of Lemma 3.10 and Corollary 3.5. In fact, let us notice that by Corollary 3.5 (since the estimates
on (vε)ε are uniform in ε), we have that there exists u ∈ BV ((0, T ) × Td) ∩ L∞((0, T ) × Td) with
∇u ∈ Lr((0, T ) × Td;Rd) such that possibly passing to a subsequence again with ε, we have that
vε ⇀ u as ε ↓ 0 and the convergence is also locally uniform on [0, T ) × Td. Then we use once
more the same argument as in Proposition 2.8 to see that vε(T, ·) converges to u(T, ·) in the weak∗

topology on σ(L∞, L1). The convergence of (mε, wε) is straightforward.
Let us show that (m,w) is an optimizer in (2.14). For this, take (m̂, ŵ) ∈ K1 any competitor.

This will be a competitor also in the problem for Bε and in particular Gε(·, m̂(T )) = 0. By the
definition of Gε, we have Gε ≥ 0, thus one obtains

B(m̂, ŵ) = Bε(m̂, ŵ) ≥ Bε(mε, wε) ≥ B(mε, wε) ≥ lim inf
ε↓0

B(mε, wε) ≥ B(m,w),

where we have used the optimality of (mε, wε) in (3.7), the fact that Bε(m̄, w̄) ≥ B(m̄, w̄) for
each admissible (m̄, w̄) and the weak l.s.c. of B. Notice that by Lemma 3.10(1), we have that
mε(T ) → mT strongly in Lp(Td) as ε ↓ 0, which together with the previous chain of inequalities
imply that (m,w) is a solution to (2.14).

Let us show now that (u, α) is a minimizer in (2.21). Take a competitor (û, α̂). By duality and
by the fact that (m,w) is a minimizer in (2.14), one has

A(û, α̂) ≥ −B(m,w) ≥ − lim inf
ε↓0

B(mε, wε) = lim sup
ε↓0

(−B(mε, wε)) ≥ lim sup
ε↓0

(−Bε(mε, wε))(3.38)

= lim sup
ε↓0

Aε(uε, αε, βε) ≥ lim sup
ε↓0

A(uε, αε) ≥ lim sup
ε↓0

A(vε, αε)

≥ lim sup
ε↓0

{∫ T

0

∫
Td

F ∗(x, αε)dxdt+

∫
Td

[vε(T, x)mT (x)− vε(0, x)m0(x)] dx

}
≥
∫ T

0

∫
Td

F ∗(x, α)dxdt+

∫
Td

[u(T, x)mT (x)− u(0, x)m0(x)] dx

= A(u, α),

using the convergence outlined above.
It is routine to verify that (u, α) is actually an element of K. Indeed, since the estimates in

Corollary 3.5 are uniform in ε, using the convexity of H in its second variable, passing to the limit
as ε ↓ 0 in the constraint inequality

−∂tvε +H(x,∇vε) ≤ αε,
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one obtains also that (u, α) fulfills the constraint inequality in K, thus (u, α) is a minimizer for the
problem (2.21). �

4. Sobolev regularity of weak solutions

In this section, by applying the techniques used in [GM18], we prove some additional a priori
regularity for the weak solutions for both the planning problem (1.1) and the mean field game (3.1).
(The definition of weak solution is given in Sections 2.3 and 3.4.) We will start with the mean field
game; our arguments are easily adapted then to the planning problem. Let us underline the fact
that all the estimates below apply to general mean field games with final couplings. However,
we mainly emphasize the case of our penalized problem. To simplify the notation, we drop the
subscript ε in the definition of g. For general mean field games, we need to assume the following
hypotheses.

Additional assumptions

(H6) (Conditions on the coupling) Let f, g be continuous on Td × (0,∞), strictly increasing in
the second variable, satisfying (2.3), (3.2). Moreover, we will assume that f(x,m), g(x,m)
are Lipschitz with respect to x, specifically

(4.1) |f(x,m)− f(y,m)| ≤ C(mq−1 + 1)|x− y| ∀x, y ∈ Td, m ≥ 0

and

(4.2) |g(x,m)− g(y,m)| ≤ C(mp−1 + 1)|x− y| ∀x, y ∈ Td, m ≥ 0.

To ensure that (4.2) holds, in the particular case of gε, it suffices to assume that mT is
Lipschitz on Td and p ≥ 2.

We also assume that f(x,m), g(x,m) are strongly monotone in m. That is, we assume
there exist cf , cg > 0 such that

(4.3) (f(x, m̃)− f(x,m)) (m̃−m) ≥ cf min{m̃q−2,mq−2}|m̃−m|2 ∀m̃,m ≥ 0, m̃ 6= m

and

(4.4) (g(x, m̃)− g(x,m)) (m̃−m)

≥ cg min{|m̃−mT (x)|p−2, |m−mT (x)|p−2}|m̃−m|2 ∀m̃,m ≥ 0, m̃ 6= m.

Equation (4.4) actually follows from (3.2), where cg ∼ ε−1. If q < 2 one should interpret 0q−2

as +∞ in (4.3). In this way, when m̃ = 0, for instance, (4.3) reduces to f(x,m)m ≥ cfmq,
as in the more regular case q ≥ 2. An analogous remark holds for p < 2 in (4.4). This
has to be imposed only when we consider general final coupling functions for which we can
allow a growth order of 1 < p < 2. For our particular choice of penalization gε, this remark
is irrelevant.

(H7) (Coercivity assumptions.) There exist j1, j2 : Rd → Rd and cH > 0 such that

(4.5) H(x, ξ) +H∗(x, ζ)− ξ · ζ ≥ cH |j1(ξ)− j2(ζ)|2.

In particular, and in light of our restriction (2.1), we will have that j1(ξ) ∼ |ξ|r/2−1ξ and

j2(ζ) ∼ |ζ|r′/2−1ζ.
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4.1. Global space regularity. By using arguments analogous to those in [GM18, Proposition
4.3], we get

Proposition 4.1. In addition to all the previous assumption, we assume that m0 ∈W 2,1(Td), and
assume that H∗ is twice continuously differentiable in x with

(H8) |D2
xxH

∗(x, ζ)| ≤ C|ζ|r′ + C.

Then ‖m
q
2
−1∇m‖L2([0,T ]×Td) ≤ C, ‖m1/2D(j1(∇u))‖L2([0,T ]×Td) ≤ C and

‖m̃(T, ·)
p
2
−1∇m̃(T, ·)‖L2(Td) ≤ C,

where m̃ := m−mT .

Proof. We give only a sketch, leaving the reader to find the remaining details in [GM18, Proposition
4.3]. Let (un, αn, βn) be an approximating sequence of the minimizer (u, f(·,m), g(·,m(T )), cf. the
proof of Proposition 3.4. Fix δ ∈ Td. Denoting uδn(t, x) = un(t, x+ δ), etc. we deduce

(4.6)

∫ T

0

∫
Td

(H(x+ δ,∇uδn) +H∗(x+ δ,−w/m) +∇uδn · w/m)mdxdt

+

∫ T

0

∫
Td

(H(x− δ,∇u−δn ) +H∗(x− δ,−w/m) +∇u−δn · w/m)mdxdt

=

∫
Td

(
βδn + β−δn − 2βn

)
m(T )dx−

∫
Td

(un(0)(mδ
0 +m−δ0 )− 2u(0)m0)dx

+

∫ T

0

∫
Td

(
αδn + α−δn − 2f(m)

)
mdxdt+

∫ T

0

∫
Td

∫ 1

0

∫ −s
s
〈D2

xxH
∗(x+τδ,−w/m)δ, δ〉mdτ dsdxdt.

Equation (4.6) can be obtained by using uδn as a test function in (3.1)(ii) and un as a test function
in the same equation with m replaced by mδ, then using the optimality condition (3.24). Notice
that in the proof of [GM18, Proposition 4.3] we replace∫

Td

(
uδT + u−δT − 2uT

)
m(T )dx

with ∫
Td

(
βδn + β−δn − 2βn

)
m(T )dx.

Letting n→∞ in (4.6), following the arguments given in [GM18, Proposition 4.3], we get

(4.7)

∫ T

0

∫
Td

(H(x+ δ,∇uδ) +H∗(x+ δ,−w/m) +∇uδ · w/m)mdxdt

+

∫ T

0

∫
Td

(H(x− δ,∇u−δ) +H∗(x− δ,−w/m) +∇u−δ · w/m)mdxdt

≤
∫
Td

(
gδ(mδ(T )) + g−δ(m−δ(T ))− 2g(m(T ))

)
m(T )dx−

∫
Td

u(0)(mδ
0 +m−δ0 − 2m0)dx

+

∫ T

0

∫
Td

(
f δ(mδ) + f−δ(m−δ)− 2f(m)

)
mdxdt+ C|δ|2

∫ T

0

∫
Td

(|w/m|r′ + 1)mdxdt,
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where we have used Hypothesis (H8). We have (using the same arguments as in [GM18])

(4.8)

∫
Td

(
gδ(mδ(T )) + g−δ(m−δ(T ))− 2g(m(T ))

)
m(T )dx

≤ C|δ|2
(

1 +

∫
Td

min{|m̃δ(T )|, |m̃(T )|}pdx

)
−cg

2

∫
Td

min{|m̃δ(T )|p−2, |m̃(T )|p−2}|m̃δ(T )−m̃(T )|2dx

and similarly for f . Combining these estimates with assumption (4.5), we get

(4.9)

cH
2

∫ T

0

∫
Td

(
|j1(∇uδ)− j1(∇u−δ)|2

)
mdxdt+

cf
2

∫ T

0

∫
Td

min{(mδ)q−2,mq−2}|mδ −m|2dxdt

+
cg
2

∫
Td

min{|m̃δ(T )|p−2, |m̃(T )|p−2}|m̃δ(T )− m̃(T )|2dx

≤ C|δ|2
(

1 +

∫
Td

min{|m̃δ(T )|, |m̃(T )|}pdx+

∫ T

0

∫
Td

(|w/m|r′ + 1)mdxdt

)
+ C|δ|2

(
T +

∫ T

0

∫
Td

min{mδ,m}qdxdt

)
+ C|δ|2‖m0‖W 2,1‖u(0)‖∞,

where we have used the L∞ estimate on u(0) from Proposition 3.4. Since also

lim
δ→0

∫
Td

min{|m̃δ(T )|, |m̃(T )|}pdx+

∫ T

0

∫
Td

(|w/m|r′ + 1)mdxdt ≤ CB(m,w) + C <∞

we conclude that there exists some C such that

(4.10)

cH
2

∫ T

0

∫
Td

(
|j1(∇uδ)− j1(∇u−δ)|2

)
mdxdt+

cf
2

∫ T

0

∫
Td

min{(mδ)q−2,mq−2}|mδ −m|2dxdt

+
cg
2

∫
Td

min{|m̃δ(T )|p−2, |m̃(T )|p−2}|m̃δ(T )− m̃(T )|2dx ≤ C|δ|2.

Dividing by |δ|2 and letting δ → 0, we easily obtain the result. �

4.2. Local time regularity. We rely on very similar arguments as those found in [GM18, Propo-
sition 4.3], but applied to time rather than space. Our translations in time will be localized so as
to avoid conflict with the initial-final conditions.

Let ε ∈ R be small and η : [0, T ]→ [0, 1] be smooth and compactly supported on (0, T ) such that
|ε| < min {dist(0, spt(η)); dist(T, spt(η))} . For competitors (u, α, β) of the minimization problem
for A, let us define

uε(t, x) := u(t+ εη(t), x); αε(t, x) := (1 + εη′(t))α(t+ εη(t), x).

Notice that by construction, if t ∈ {0, T} then u(t, x) = uε(t, x) and α(t, x) = αε(t, x).
Similarly, for competitors (m,w) of minimization problem for B, we define

mε(t, x) := m(t+ εη(t), x); wε(t, x) := (1 + εη′(t))w(t+ εη(t), x)

and here as well if t ∈ {0, T} then m(t, x) = mε(t, x) and w(t, x) = wε(t, x).
We define moreover perturbations on the data as

f ε(t, x,m) := (1 + εη′(t))f(x,m); F ε(t, x,m) := (1 + εη′(t))F (x,m),

from which the Legendre transform w.r.t. the last variable satisfies

(F ε)∗(t, x, α) := (1 + εη′(t))F ∗(x, α/(1 + εη′(t))).
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Finally, we define

Hε(t, x, ξ) := (1 + εη′(t))H(x, ξ), thus (Hε)∗(t, x, ζ) := (1 + εη′(t))H∗(x, ζ/(1 + εη′(t))).

We refer to Aε as the functional A in Section 3.1 with the data Hε, (F ε)∗ and to Bε as the functional
B in Section 3.1 with data (Hε)∗, F ε.

A very important remark is that by construction (u, α, β) is a minimizer of the problem for A if
and only if (uε, αε, β) is a minimizer of the problem for Aε. Similarly, (m,w) is a minimizer of the
problem for B if and only if (mε, wε) is a minimizer of the problem for Bε. Cf. [GM18, Section 4.1].

In the same spirit as Proposition 4.1, we can formulate

Proposition 4.2. Let the same monotonicity/coercivity assumptions as for the space regularity be
fulfilled and let us suppose moreover that

(H9) |DζH
∗(x, ζ) · ζ| ≤ C|ζ|r′ + C, |D2

ζζH
∗(x, ζ)| ≤ C|ζ|r′−2 a.e. ζ ∈ Rd.

If in addition j2 : Rd → Rd satisfies

(H10) |Dζj2(ζ) · ζ|2 ≤ C|ζ|r′ + C, a.e. ζ ∈ Rd,

then

m1/2∂t(j1(∇u)) ∈ L2
loc((0, T );L2(Td)).

We also have (only assuming the monotonicity condition on f and g and not (4.1) and (4.2))

∂t(m
q/2) ∈ L2

loc((0, T );L2(Td)),

and the two previous bounds depend only on the data.

Proof of Proposition 4.2. The proof closely follows the steps of [GM18, Proposition 4.3], but with
translations in time rather than space.

Step 0. Preparatory step. Take a smooth minimizing sequence (un)n≥0 in the problem for A,
defining

αn = −∂tun +H(x,∇un).

Now use un as test function for ∂tm
ε +∇ ·wε = 0. In the same way, use uεn (defined as uε) as test

function for ∂tm+∇ · w = 0.
Then on the one hand one has

(4.11)

∫
Td

[un(T )m(T )− un(0)m0] dx =

∫ T

0

∫
Td

[wε · ∇un + (H(x,∇un)− αn)mε] dxdt.

On the other hand, one gets

(4.12)

∫
Td

[un(T )m(T )− un(0)m0] dx =

∫ T

0

∫
Td

[w · ∇uεn + (Hε(t, x,∇uεn)− αεn)m] dxdt.

Combining (4.12) with (3.24) one obtains∫
Td

[un(T )− g(x,m(T ))]m(T )− [un(0)− u(0)]m0dx(4.13)

=

∫ T

0

∫
Td

[Hε(t, x,∇uεn) +H∗(x,−w/m) +∇uεn · w/m+ f(x,m)− αεn]mdxdt

=

∫ T

0

∫
Td

[Hε(t, x,∇uεn) + (Hε)∗(t, x,−w/m) +∇uεn · w/m+ f(x,m)− αεn]mdxdt

+

∫ T

0

∫
Td

[H∗(x,−w/m)− (Hε)∗(t, x,−w/m)]mdxdt.

31



Similarly, combining (4.11) with (3.24) (for the ε-translates) one obtains

∫
Td

[un(T )− g(x,m(T ))]m(T )− [un(0)− u(0)]m0dx

(4.14)

=

∫ T

0

∫
Td

[H(x,∇un) + (Hε)∗(t, x,−wε/mε) +∇un · wε/mε + f ε(t, x,mε)− αn]mεdxdt

=

∫ T

0

∫
Td

[
H−ε(s, x,∇u−εn ) +H∗(x,−w/m) +∇u−εn · w/m

]
mdxds

+

∫ T

0

∫
Td

O(ε2)H(x,∇u−εn )mdxds+

∫ T

0

∫
Td

[f ε(t, x,mε)− αn]mεdxdt

=

∫ T

0

∫
Td

[
H−ε(s, x,∇u−εn ) + (H−ε)∗(s, x,−w/m) +∇u−εn · w/m

]
mdxds

+

∫ T

0

∫
Td

[
H∗(x,−w/m)− (H−ε)∗(s, x,−w/m)

]
mdxds+

∫ T

0

∫
Td

O(ε2)H(x,∇u−εn )mdxds

+

∫ T

0

∫
Td

[f ε(t, x,mε)− αn]mεdxdt

where in the penultimate equation we used the change of variable s = t + εη(t) (which means in
particular that t = s− εη(s) +O(ε2) and 1

1+εη′(t) = 1− εη′(s) +O(ε2)). By slight abuse of notation

we denoted

u−εn (s, x) := un(s− εη(s) +O(ε2), x),

and we use the original notation for H−ε and (H−ε)∗. Adding (4.13) to (4.14) we get

(4.15)

∫ T

0

∫
Td

[
H−ε(t, x,∇u−εn ) + (H−ε)∗(t, x,−w/m) +∇u−εn · w/m

]
mdxdt

+

∫ T

0

∫
Td

[Hε(t, x,∇uεn) + (Hε)∗(t, x,−w/m) +∇uεn · w/m]mdxdt

=

∫ T

0

∫
Td

[αεn − f(x,m)]mdxdt+

∫ T

0

∫
Td

[αn − f ε(t, x,mε)]mεdxdt

+ 2

∫
Td

[un(T )− g(x,m(T ))]m(T )− [un(0)− u(0)]m0dx+Rn(ε)

where the remainder term satisfies

Rn(ε) =

∫ T

0

∫
Td

[
(Hε)∗(t, x,−w/m) + (H−ε)∗(t, x,−w/m)− 2H∗(x,−w/m)

]
mdxdt

+O(ε2)

∫ T

0

∫
Td

H(x,∇u−εn )mdxdt.

Step 1. Error term. Before letting n→∞ let us first show that Rn(ε) = O(ε2) (uniformly in n).
To that end we estimate the terms H∗ − (Hε)∗ and H∗ − (H−ε)∗. By a Taylor expansion, we have

(Hε)∗(t, x, ζ) = (1 + εη′(t))H∗(x, ζ/(1 + εη′(t))) = (1 + εη′(t))H∗(x, (1− εη′(t) +O(ε2))ζ)

= (1 + εη′(t))
[
H∗(x, ζ)− εη′(t)DζH

∗(x, ζ) · ζ +O(ε2)DζH
∗(x, ζ) · ζ

]
+ (1 + εη′(t))

[
εη′(t) +O(ε2)

]2 1

2
D2
ζζH

∗(x, ζ∗ε )ζ · ζ
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where ζ∗ε is a point on the segment between ζ and (1− εη′(t) +O(ε2))ζ. Let us notice that due to
the growth condition (H9) we have that

|D2
ζζH

∗(x, ζ∗ε )ζ · ζ| ≤ C|ζ∗ε |r
′−2|ζ|2,

where, by the comparison (1 − |ε|)|ζ| ≤ |ζ∗ε | ≤ (1 + |ε|)|ζ|, the right-hand side is finite even when
ζ∗ε = 0, and in particular

|D2
ζζH

∗(x, ζ∗ε )ζ · ζ| ≤ C max
{

(1− |ε|)r′−2, (1 + |ε|)r′−2
}
|ζ|r′ .

Therefore, by (H9) we have

(4.16) (Hε)∗(t, x, ζ)− (1 + εη′(t))H∗(x, ζ) + εη′(t)DζH
∗(x, ζ) · ζ

= O(ε2)

[
DζH

∗(x, ζ) · ζ +
1

2
D2
ζζH

∗(x, ζ∗ε )ζ · ζ
]

= O(ε2)(|ζ|r′ + 1).

Using a similar argument, we deduce

(4.17) (H−ε)∗(t, x, ζ)− (1− εη′(t))H∗(x, ζ)− εη′(t)DζH
∗(x, ζ) · ζ = O(ε2)(|ζ|r′ + 1).

Adding together (4.16) and (4.17), setting ζ = −w/m and then integrating against m, we get

(4.18)

∫ T

0

∫
Td

[
(Hε)∗(t, x,−w/m) + (H−ε)∗(t, x,−w/m)− 2H∗(x,−w/m)

]
mdxdt

=

∫ T

0

∫
Td

O(ε2)
∣∣∣w
m

∣∣∣r′mdxdt = O(ε2),

where in the last equation we used the assumption (2.2) and the fact that B(m,w) is finite.
As for what remains of Rn(ε), we use u−εn as a test function in ∂tm + ∇ · w = 0; with the

appropriate change of variable we get

(4.19)

∫ T

0

∫
Td

H(x,∇u−εn )mdxdt

≤ (1+O(ε))

[∫
Td

un(T )+m(T )− un(0)m0dx+

∫ T

0

∫
Td

(αn)+(s− η(s) +O(ε2), x)m(s, x)dxds

]
.

Recalling from the definition of weak solution that m ∈ Lq((0, T )×Td),m(T ) ∈ Lp(Td) while from

the proof of Proposition 3.4 we have that (αn)+ is bounded in Lq
′

and un(T ) is bounded in L∞, it

follows that
∫ T
0

∫
Td H(x,∇u−εn )mdxds is bounded. We can now rewrite (4.15) as

(4.20)

∫ T

0

∫
Td

[
H−ε(t, x,∇u−εn ) + (H−ε)∗(t, x,−w/m) +∇u−εn · w/m

]
mdxdt

+

∫ T

0

∫
Td

[Hε(t, x,∇uεn) + (Hε)∗(x,−w/m) +∇uεn · w/m]mdxdt

=

∫ T

0

∫
Td

[αεn − f(x,m)]mdxdt+

∫ T

0

∫
Td

[αn − f ε(t, x,mε)]mεdxdt

+ 2

∫
Td

[un(T )− g(x,m(T ))]m(T )− [un(0)− u(0)]m0dx+O(ε2).

Step 2. Taking n→∞. We can now proceed exactly as in the proof of [GM18, Proposition 4.3.]
when taking limits as n → +∞ in (4.20). First notice that we have the weak convergence (up to
a subsequence) of ∇u−εn ⇀ ∇u−ε,∇uεn ⇀ ∇uε in Lr((0, T )× Td). Second recall that αn converges

weakly in Lq
′
((0, T )×Td) to f(x,m) on the set where it is bounded below by an arbitrary constant,
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and likewise αεn converges weakly to f ε(t, x,mε). Third recall that un(T ) converges to g(x,m(T ))
in the weak∗ topology σ(L∞, L1), and un(0) → u(0) uniformly (see the proof of Proposition 2.8).
Arguing as in [GM18], we deduce that

(4.21)

∫ T

0

∫
Td

[
H−ε(t, x,∇u−ε) + (H−ε)∗(t, x,−w/m) +∇u−ε · w/m

]
mdxdt

+

∫ T

0

∫
Td

[Hε(t, x,∇uε) + (Hε)∗(t, x,−w/m) +∇uε · w/m]mdxdt

≤ −
∫ T

0

∫
Td

(f ε(t, x,mε)− f(x,m)) (mε −m)dxdt+O(ε2).

Step 3. Time regularity for u.
By the coercivity condition on H and H∗ for any γ > 0 we have that

γH(x, ξ) + γH∗(x, ζ)− γξ · ζ ≥ γcH |j1(ξ)− j2(ζ)|2, ∀x ∈ Td, ξ, ζ ∈ Rd.

In particular, setting ζ̃ := γζ, this implies

γH(x, ξ) + γH∗(x, ζ̃/γ)− ξ · ζ̃ ≥ γcH |j1(ξ)− j2(ζ̃/γ)|2, ∀x ∈ Td, ξ, ζ̃ ∈ Rd.

Therefore, we have∫ T

0

∫
Td

cH(1 + εη′(t))

∣∣∣∣j1(∇uε)− j2(− w

(1 + εη′(t))m

)∣∣∣∣2mdxdt(4.22)

≤
∫ T

0

∫
Td

[Hε(t, x,∇uε) + (Hε)∗(t, x,−w/m) +∇uε · w/m]mdxdt

and similarly

∫ T

0

∫
Td

cH(1− εη′(t))
∣∣∣∣j1(∇u−ε)− j2(− w

(1− εη′(t))m

)∣∣∣∣2mdxdt

(4.23)

≤
∫ T

0

∫
Td

[
H−ε(t, x,∇u−ε) + (H−ε)∗(t, x,−w/m) +∇uε · w/m

]
mdxdt.

By the triangle inequality,∫ T

0

∫
Td

cH
3

min{1 + εη′(t); 1− εη′(t)}
∣∣j1(∇uε)− j1(∇u−ε)∣∣2mdxdt(4.24)

≤ (1 + ε)cH

∫ T

0

∫
Td

∣∣∣∣j1(∇uε)− j2(− w

(1 + εη′(t))m

)∣∣∣∣2mdxdt

+ (1 + ε)cH

∫ T

0

∫
Td

∣∣∣∣j2(− w

(1 + εη′(t))m

)
− j2

(
− w

(1− εη′(t))m

)∣∣∣∣2mdxdt

+ (1 + ε)cH

∫ T

0

∫
Td

∣∣∣∣j1(∇u−ε)− j2(− w

(1− εη′(t))m

)∣∣∣∣2mdxdt,

where it remains to estimate the second term on the right-hand side. For this we note that∣∣j2(ζ/(1 + εη′(t)))− j2(ζ/(1− εη′(t)))
∣∣2 =

∣∣j2(ζ(1− εη′(t) +O(ε2)))− j2(ζ(1 + εη′(t) +O(ε2)))
∣∣2

= |Dζj2(ζ(1− εη′(t) +O(ε2))) · ζη′(t)|2ε2 ≤ C|ζ|r′ε2,
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where the last constant depends only on η′(t) and the constant in the hypothesis (H10). Setting
ζ := −w/m in the previous inequality, we find that the second term on the right-hand side of (4.24)

is O(ε2) since

∫ T

0

∫
Td

|w/m|r
′
mdxdt is finite. Equation (4.21) now becomes

(4.25)
cH
6

∫ T

0

∫
Td

∣∣j1(∇uε)− j1(∇u−ε)∣∣2mdxdt

≤ −
∫ T

0

∫
Td

(f ε(t, x,mε)− f(x,m)) (mε −m)dxdt+O(ε2)

for ε small enough.

Step 4. Time regularity for m.
We have

−
∫ T

0

∫
Td

(f ε(t, x,mε)− f(x,m)) (mε −m)dxdt

= −
∫∫
{mε≤m}

(f ε(t, x,mε)− f(x,mε))(mε −m)dxdt−
∫∫
{mε≤m}

(f(x,mε)− f(x,m))(mε −m)dxdt

−
∫∫
{m<mε}

(f ε(t, x,mε)− f ε(t, x,m))(mε −m)dxdt−
∫∫
{m<mε}

(f ε(t, x,m)− f(x,m))(mε −m)dxdt

≤ C
∫ T

0

∫
Td

|ε|min{(mε)q−1,mq−1}|mε −m|dxdt− c0
∫ T

0

∫
Td

min{(mε)q−2,mq−2}|mε −m|2dxdt

≤ C|ε|2
∫ T

0

∫
Td

min{mε,m}qdxdt− c0
2

∫ T

0

∫
Td

min{(mε)q−2,mq−2}|mε −m|2dxdt,

where, we used Young’s inequality in the last inequality, and the expression min{(mε)q−2,mq−2}|mε−
m|2 is treated as zero whenever mε = m (even in the case q < 2). Since∫ T

0

∫
Td

min{mε,m}qdxdt ≤
∫ T

0

∫
Td

mqdxdt ≤ C,

Equation (4.25) now becomes

cH
6

∫ T

0

∫
Td

∣∣j1(∇uε)− j1(∇u−ε)∣∣2mdxdt+
c0
2

∫ T

0

∫
Td

min{(mε)q−2,mq−2}|mε−m|2dxdt = O(ε2).

Dividing the previous identity by ε2 and letting ε→ 0, we conclude that m1/2∂tj1(∇u), ∂t(m
q/2) ∈

L2
loc((0, T );L2(Td)), with norms estimated by a constant depending only on the data. The proof is

complete. �

4.3. Sobolev estimates for the solution of the planning problem. One can rely on the
same arguments as in Sections 4.1 4.2 to obtain Sobolev estimates for the solutions on the planning
problem. Thus, we are in position to formulate the following results.

Proposition 4.3 (Global in time space regularity). Let m0,mT ∈W 2,1(Td) and let us assume that
the hypotheses of Proposition 4.1 are fulfilled. Then

m
q
2
−1∇m ∈ L2([0, T ]× Td;Rd) and m1/2D(j1(∇u)) ∈ L2([0, T ]× Td;Rd×d),

where the bounds depend only on the data.
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Proof. The proof follows the same lines as the one of Proposition 4.1. We observe that using
the argument of Proposition 2.8 we can construct suitable minimizing sequences (un, αn) for the
problem (2.21) which satisfy (2.38) uniformly in n. The only difference in the proof is to treat
differently one of the time-boundary terms. To estimate the term∫

Td

(
uδn(T ) + u−δn (T )− 2un(T )

)
m(T )dx,

in the proof of Proposition 4.1, we pass the translates to mT . It becomes now∫
Td

un(T )
(
mδ
T +m−δT − 2mT

)
dx,

which, by the assumption on mT and the fact that un(T ) is uniformly bounded, is O(|δ|2).
We can deal with the boundary term at time zero in the exact same way as before, and in

particular no change in the proof is needed there. �

Proposition 4.4 (Local time regularity). Let us assume that the hypotheses of Proposition 4.2 are
fulfilled. Then

m1/2∂t(j1(∇u)) ∈ L2
loc((0, T );L2(Td)),

and

∂t(m
q/2) ∈ L2

loc((0, T );L2(Td)),

and the two previous bounds depend only on the data.

Proof. We use the same proof as in Proposition 4.2, again using an approximating sequence derived
from Proposition 2.8. We only remark that nowhere in the proof of Proposition 4.2 do we need
m(T ) ∈ Lp(Td); here it suffices to have mT ∈ L1(Td). �

5. Open questions and further directions

• An interesting direction of study would be the relaxation of the joint assumption on q and r
(the growth exponent of F and H, respectively) in the case of the planning problem. This should
somehow imply also a more precise link between our work and the results of Orrieri-Porretta-Savaré
in [OPS]. This direction would be strongly related to the search for higher order summability
estimates on the m variable, also in the spirit of [LS17].

• The well-posedness of the second order (degenerate) planning problem is largely open (except
the non-degenerate case with essentially quadratic Hamiltonians in [Lio, Por13, Por14]). Our hope
is that the variational approach developed in the present paper and exploited also in [OPS] will
provide hints to attack the general second order problem.

In this direction the exact controllability problem of the Fokker-Planck equation with general
initial and final conditions (pointed out also by Lions in his lectures) seems to be an interesting
open question, by its own.

• We are aiming to pursue the global in time a priori Sobolev estimates in the time variable
for the solutions of both mean field games and the planning problem, which so far seem to be
inaccessible by relying only on our current techniques.
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