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Abstract. We characterize the sphere with radius tan2 r = 2n+1 in the complex

projective space CPn as the unique stable hypersurface subject to certain bounds

on the curvatures.

1. Introduction

In [BdCE88] Barbosa, Do Carmo and Eschenburg proved among other results that

the geodesic sphere with radius r ∈ (0, π/2) in the complex projective space CP n,

n ≥ 2, is stable for the area functional with fixed enclosed volume if and only if

tan2 r ≤ 2n + 1. They also computed the stability-intervals for the radius of a

geodesic tube around CP k ⊂ CP n, with 1 ≤ k < n.

The classification of complete oriented stable hypersurfaces in CP n could be an

important step towards the classification of isoperimetric sets in CP n. Indeed, the

boundary of an isoperimetric set, if smooth, is a hypersurface with constant mean

curvature that is stable for variations fixing the volume. Since [BdCE88], there was

apparently no progress on the problem of the classification of stable hypersurfaces in

CP n.

In this paper, we characterize the geodesic sphere with radius tan2 r = 2n + 1 as

the unique stable connected and complete hypersurface subject to a bound either on

the characteristic curvature or on the restriction of the second fundamental form to

the complex tangent space. See Definition 6.1 for the precise definition of stability.

The characteristic curvature κ of a hypersurface Σ ⊂ CP n is the curvature in

direction JN , where N is the normal to Σ and J is the complex structure of CP n,

i.e., κ = h(JN, JN) where h is the second fundamental form of Σ.

For fixed H ∈ R and n ∈ N, let p(·;H,n) be the quadratic polynomial of the real

variable t ∈ R

p(t;H,n) = (2n+ 1)t2 − 2Ht−H2 − 4(n2 − 1). (1.1)

Our first result is the following theorem.
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Theorem 1.1. Let Σ ⊂ CP n, n ≥ 2, be a complete connected stable hypersurface

with constant H = tr(h). If the characteristic curvature κ of Σ satisfies p(κ;H,n) ≥ 0

then Σ is a geodesic sphere of radius r > 0 with tan2 r = 2n+ 1.

Let CTΣ be the complex tangent space of a hypersurface Σ, let T1 and T2 be

nonzero subbundles of CTΣ such that

CTΣ = T1 ⊕ T2, (1.2)

and denote their dimensions by α = dimR(T1) and β = dimR(T2). Then we have

α + β = dimR(CTΣ) = 2(n − 1) and 1 ≤ α < 2(n − 1). Let h1 and h2 be the

restrictions of the second fundamental form h of Σ to T1 and T2, and denote by

H1 = tr(h1) and H2 = tr(h2) their respective traces.

For fixed H ∈ R, n ∈ N with n ≥ 2, and 1 ≤ α < 2(n − 1) let p(·;H,n, α) be the

quadratic convex polynomial of the variables (s, t) ∈ R2

p(s, t;H,n, α) =
s2

α
+
t2

β
+ (s+ t−H)2 +

(s+ t− 2H)2

2(n2 − 1)
− H2

n− 1
− 2n. (1.3)

Our second result is a refined version of Theorem 1.1.

Theorem 1.2. Let Σ ⊂ CP n, n ≥ 3, be a complete connected stable hypersurface with

constant H = tr(h). If for the decomposition (1.2), with 1 ≤ α = dimR(T1) < 2(n−1),

we have p(H1, H2;H,n, α) ≥ 0 then Σ is a geodesic sphere of radius r > 0 with

tan2 r = 2n+ 1.

Both Theorems 1.1 and 1.2 are a consequence of the following geometric inequality

that is implied by stability. Let∇Σ
JNN ∈ TΣ be the covariant derivative of the normal

N to Σ in the direction JN . We denote by hN ∈ CTΣ the projection of ∇Σ
JNN onto

CTΣ. By |h|2 we denote the squared norm of h.

Theorem 1.3. Let Σ ⊂ CP n, n ≥ 2, be a complete stable hypersurface with constant

H = tr(h). Then we have∫
Σ

{
|h|2 +

(H + κ)2 + |hN |2

2(n2 − 1)
− H2

n+ 1
− 2n

}
dµ ≤ 0, (1.4)

where µ is the Riemannian hypersurface measure.

The method for obtaining formula (1.4) starts from an idea contained in the proof

of [BdC84] that geodesic spheres are the unique stable complete hypersurfaces in the

standard sphere. Our first step is the isometric embedding of CP n into Hn+1, the

space of (n + 1) × (n + 1) Hermitian matrices, see [Ros83] and [Tai68]. Once the

hypersurface Σ is embedded in Hn+1, we can consider the position matrix A ∈ Σ and

compute its tangential Laplacian, see Theorem 4.1,

∆A = tr(σ)− σ(N,N)− tr(h)N, (1.5)
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where ∆ is the Laplace-Beltrami operator of Σ and σ : TACP n × TACP n → T⊥A CP n

is the second fundamental form of the immersion CP n ⊂ Hn+1. We shall make

systematic use of the geometric formulas concerning σ proved by Ros in [Ros83] and

[Ros84]. They are reviewed in Section 3.

For a smooth function u : Σ → R, the second variation of the area functional in

the normal direction uN is given by the formula

A ′′(u) = −
∫

Σ

uL u dµ,

where L u = ∆u + (|h|2 + Ric(N))u is the Jacobi operator. When u has zero mean,

the deformation of Σ encloses a region with the same volume as Σ, at the infinitesimal

level.

For any fixed V ∈ Hn+1, the function uV = 〈∆A, V 〉 has zero mean. In Section 6,

we compute the trace of the quadratic form QΣ on Hn+1 defined by QΣ(V ) = A ′′(uV ).

If Σ is stable, this trace is nonnegative and this fact is precisely inequality (1.4).

From (1.5), it is clear that in the computation for L uV we need geometric formulas

for ∆tr(σ), ∆σ(N,N), and ∆N . The computation for ∆N is done in Theorem 4.2.

The formula for ∆tr(σ) follows easily from the formula for the trace of σ, see (3.18).

The difficult task is to compute the tangential Laplacian of σ(N,N). This is done

in Section 5 and the resulting formula is in (5.4). In Section 6, we collect all these

preliminary computations and we finish the proof of Theorem 1.3.

The proof of Theorem 1.1 now follows from Theorem 1.3 using Takagi’s and Cecil-

Ryan’s characterization of the sphere in CP n as the unique hypersurface having

precisely two (constant) different curvatures. The proof of Theorem 1.2 uses Takagi’s

classification of hypersurfaces in CP n, n ≥ 3, having precisely three different constant

curvatures: they are either geodesics tubes around CP k for some k = 1, . . . , n− 1 or

geodesics tubes around the real projective space RP n. The details are in the final

Section 7, while the preliminary results on spheres and tubes are reviewed in Section

2.

In this paper, by “hypersurface” we always mean “embedded hypersurface” in CP n.

2. Geometry of spheres and tubes

The n-dimensional complex projective space is the quotient of the unit sphere

S2n+1 = {z ∈ Cn+1 : |z| = 1} by the Hopf-action of S1, (eiϑ, z) 7→ eiϑz. We denote by

[z] the equivalence class of z ∈ S2n+1. The tangent space of CP n at the point [z] is

T[z]CP
n = {w ∈ Cn+1 : z · w̄ = 0},

where z · w̄ = z1w̄1 + . . .+ zn+1w̄n+1 is the standard Hermitian product of Cn+1. The

complex structure on T[z]CP
n is given by Jw = iw, the standard multiplication by i

of w ∈ T[z]CP
n ⊂ Cn+1.
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The metric 〈ζ, w〉FS = Re(ζ · w̄), with ζ, w ∈ T[z]CP
n, is the Fubini-Study metric of

CP n, that makes the complex projective space a Riemannian manifold. The induced

distance function d : CP n ×CP n → [0, π/2] is d([z], [w]) = arccos |z · w̄|.
Let Σ ⊂ CP n by a C∞-smooth hypersurface oriented by the unit normal N . We

define the second fundamental form h of Σ with the following sign convention

h(X, Y ) = 〈∇Σ
XN, Y 〉, X, Y ∈ T[z]Σ,

where ∇Σ is the Levi-Civita connection of Σ induced by the one of CP n. The char-

acteristic curvature of Σ at the point [z] ∈ Σ is κ = h(JN, JN).

For any fixed [w] ∈ CP n and 0 < r < π/2, the geodesic sphere centered at [w] with

radius r is

Σr =
{

[z] ∈ CP n : |z · w̄| = cos r
}
.

We omit reference to the center. The curvatures of Σr are well-known, see e.g. [CR82,

Example 1 page 493]. Letting t = tan r, they are

λ = cot r =
1

t
, with multiplicity 2(n− 1),

κ = 2 cot(2r) =
1

t
− t, the characteristic curvature.

(2.1)

These two curvatures are constant and distinct for each value of t > 0. In [Tak75a],

Takagi proved that this property characterizes the sphere.

Proposition 2.1. If Σ ⊂ CP n, n ≥ 2, is a connected hyperface with precisely two

distinct constant curvatures, then Σ is a subset of a sphere Σr.

In fact, the constancy assumption on the curvatures can be dropped, see [CR82].

We now discuss tubes around CP k. For k = 1, . . . , n − 1, the natural inclusion

S2k+1 = {z ∈ S2n+1 : zk+2 = . . . = zn+1 = 0} ⊂ S2n+1 induces the inclusion CP k ⊂
CP n. For 0 < r < π/2, we define the tube

T kr = {[z] ∈ CP n : dist([z],CP k) = r}

= {[z] = [(z′, z′′)] ∈ CP n : |z| = 1, z′ ∈ Ck+1, |z′| = cos r}.

The curvatures of T kr are computed in [CR82]. Letting t = tan r, they are

λ1 = cot
(
r − π

2

)
= −t, with multiplicity 2k,

λ2 = cot r =
1

t
, with multiplicity 2` = 2(n− 1− k),

κ = 2 cot(2r) =
1

t
− t, the characteristic curvature.

(2.2)

These three curvatures are constant and distinct for each value of t > 0. In particular,

T kr has constant mean curvature. For r+s = π/2 and k+ ` = n−1 the hypersurfaces

T kr and T `s are congruent.
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The tubes T kr share with the sphere Σr the property of being stable for some value

of r. The following theorem is proved in [BdCE88, Theorem 1.3] using the method

of G-stability.

Theorem 2.2. Let n ≥ 2 and k = 1, . . . , n− 1. Then:

1) The sphere Σr is stable if and only if tan2 r ≤ 2n+ 1.

2) The tube T kr is stable if and only if

2n− 2k − 1

2k + 3
≤ tan2 r ≤ 2n− 2k + 1

2k + 1
.

Finally, we consider geodesics tubes around RP n. We start from the following

embedding of the sphere Sn into S2n+1:

Sn = {z ∈ Cn+1 : |z| = 1, z = z̄} ⊂ S2n+1.

Passing to the quotient, the inclusion Sn ⊂ S2n+1 gives an embedding of RP n into

CP n. The distance of z ∈ S2n+1 from Sn is

dist(z,Sn) =
1

2
arccos

(∣∣∣ n+1∑
j=1

z2
j

∣∣∣),
and it does not depend on the equivalence class of z. The level-sets of this distance

form the isoparametric family of hypersurfaces in S2n+1 studied in [Nom73, Theorem

1]. Hence, the geodesic tube in CP n with radius r around RP n is

Vr =
{

[z] ∈ CP n :
∣∣∣ n+1∑
j=1

z2
j

∣∣∣ = cos 2r
}
.

The curvatures of Vr are computed in [CR82] starting from the formulas in [Nom73]

for the preimage of Vr in S2n+1. Letting t = tan r, they are

λ1 = − cot r = −1

t
, with multiplicity n− 1,

λ2 = − cot
(π

2
− r
)

= t, with multiplicity n− 1,

κ = 2 cot
(π

2
− 2r

)
=

4t

1− t2
, the characteristic curvature.

(2.3)

These three curvatures are constant and distinct for each value of t ∈ (0, 1). We have

a third example of a complete constant mean curvaure hypersurface in CP n. We will

see in Lemma 6.5 that Vr is not stable for any 0 < r < π/4.

In [Tak75b] Takagi proved that the tubes Vr and the tubes T kr are characterized by

the fact of having precisely three distinct and constant curvatures.

Proposition 2.3. Let n ≥ 3. If Σ ⊂ CP n is a connected hyperface with three distinct

constant curvatures, then Σ is a subset of some tube T kr or Vr.
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We shall use Proposition 2.3 and Theorem 2.2 in the proof of Theorem 1.2 in

Section 7.

3. Geometry of the isometric immersion of CP n into Hn+1

Let Hn+1 =
{
A ∈ gl(n+ 1,C) : A = At

}
be the set of (n + 1)-dimensional Her-

mitian matrices. This is a (n + 1)2-dimensional real subspace of gl(n + 1,C). The

standard scalar product on Hn+1 is

〈A,B〉 :=
1

2
tr(AB), A,B ∈ Hn+1. (3.1)

Let Φ : CP n → Hn+1 be the mapping that takes the equivalence class [z] ∈ CP n to

the Hermitian matrix A = Φ([z]) ∈ Hn+1 of the projection of Cn+1 onto the complex

line [z]. The matrix A satisfies A2 = A because it is a projection and tr(A) = 1,

because it projects onto a complex line. It can be checked that Φ is an isometry from

CP n with the Fubini-Study metric into Hn+1 with the metric (3.1). Hence, from now

on we identify the complex projective space with

CP n =
{
A ∈ Hn+1 : A2 = A, tr(A) = 1

}
.

For details on this identification and for the proof of the following lemmas, we refer

the reader to [Ros83]. Our normalization in (3.1) of the scalar product is different

from the one by Ros. Namely, the relation between the metric g used by Ross and

the metric in (3.1) is g(A,B) = 4 〈A,B〉. The isometric embedding Φ was introduced

in [Tai68].

For any A ∈ CP n, we denote by TACP n and T⊥A CP n the tangent space and the

normal space of CP n at the point A ∈ Hn+1, respectively.

Lemma 3.1. For any A ∈ CP n, we have:

TACP n =
{
X ∈ Hn+1 : XA+ AX = X

}
, (3.2)

T⊥A CP n =
{
Z ∈ Hn+1 : AZ = ZA

}
. (3.3)

For the proof see [Ros83]. We easily see that A, I ∈ T⊥A CP n, where I is the identity

matrix. We call the matrix A0 ∈ CP n

A0 :=

(
1 0

0 0

)
the origin of CP n. This is the projection onto the complex line of the versor e0 =

(1, 0, . . . , 0) ∈ Cn+1. At the point A0, an orthonormal basis for the tangent space of

CP n is given by the matrices X1, . . . , Xn, X̂1, . . . , X̂n, where for j = 1, . . . , n

Xj =

(
0 ej
etj 0

)
and X̂j =

(
0 −iej
ietj 0

)
. (3.4)
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We will see that X̂j = JXj.

For any point A ∈ CP n there exists a (non-unique) unitary transformation Q ∈
U(n + 1) such that A = QA0Q

−1. The conjugation TQ : Hn+1 → Hn+1, TQX =

QXQ−1, preserves the metric of Hn+1:

〈TQX,TQY 〉 =
1

2
tr(QXYQ−1) =

1

2
tr(XY ) = 〈X, Y 〉, X, Y ∈ Hn+1.

In particular, TQ maps isometrically the tangent space TA0CP
n onto TACP n. We will

use isometries to reduce computations of isometric-invariant quantities to the origin

A0.

By elementary computations based on the projection equation A2 = A and on the

equation X = AX + XA for tangent vectors, it is possible to check the following

algebraic identities.

Lemma 3.2. For any point A ∈ CP n and for any vector fields X, Y ∈ TACP n, we

have:

AXY = XYA, (3.5)

AXA = 0, (3.6)

X(I − 2A) = −(I − 2A)X, (3.7)

(I − 2A)2 = I, (3.8)

(I − 2A)XY = XY (I − 2A). (3.9)

Using the isometric identification Φ, the natural complex structure on T[z]CP
n ⊂

Cn+1 can be taken to TACP n ⊂ Hn+1. The resulting mapping is described in the

following proposition.

Proposition 3.3. For any A ∈ CP n, the mapping JA : TACP n → TACP n defined

by the formula

JAX = i(I − 2A)X, (3.10)

satisfies the following properties:

i) it is an isometry;

ii) it satisfies J2
A = −Id, where Id is the identity mapping;

iii) it commutes with the isometries TQ, i.e., for any A,B ∈ CP n with A = TQB

for some Q ∈ U(n+ 1), and for any X ∈ TBCP n, we have

JATQX = TQJBX. (3.11)

We compute the mean curvature of the immersion of CP n into Hn+1. For any A ∈
CP n we define the orthogonal projections π>A : Hn+1 → TACP n and π⊥A : Hn+1 →
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T⊥A CP n. Explicit formulas for π> and π⊥ can be expressed using the symmetric

product π : Hn+1 ×Hn+1 → Hn+1

π(X, Y ) = XY + Y X.

Notice that by (3.3) and (3.5), we have π : TACP n × TACP n → T⊥A CP n.

Lemma 3.4. For any A ∈ CP n and X ∈ Hn+1, we have

π>A(X) = π(A,X)− 2AXA, (3.12)

π⊥A(X) = X − π(A,X) + 2AXA. (3.13)

Proof. The mapping defined by formula (3.12) is linear and is the identity on TACP n.

Indeed, for any X ∈ TACP n, by (3.6) and (3.2) we have π>A(X) = AX + XA = X.

We claim that π>A(X) ∈ TACP n for any X ∈ Hn+1. Indeed, we have

π>A(X)A+ Aπ>A(X) = AXA+XA− 2AXA+ AX + AXA− 2AXA

= π(A,X)− 2AXA = π>A(X),

where we used A2 = A.

Then formula (3.12) defines the projection onto TACP n. Formula (3.13) follows

from (3.12). �

We split the standard connection ∇ of Hn+1 into the part that is tangent to CP n

and the part that is normal. Namely, for X ∈ Γ(TCP n), Y ∈ Γ(THn+1), and

A ∈ CP n we let ∇>XY (A) = π>A(∇XY ), and ∇⊥XY (A) = π⊥A(∇XY ). By (3.12) and

(3.13), we have the formulas

∇>XY = π(A,∇XY )− 2A(∇XY )A, (3.14)

∇⊥XY = ∇XY − π(A,∇XY ) + 2A(∇XY )A. (3.15)

The second fundamental form of the immersion of CP n into Hn+1 is the mapping

σA : TACP n×TACP n → T⊥A CP n, A ∈ CP n, defined by σA(X, Y ) = ∇⊥XY (A). When

no confusion arises, we drop the subscript A and write σ = σA.

The non-normalized mean curvature vector of the immersion is the trace of σ, i.e.,

H = tr(σ) =
2n∑
i=1

σ(Xi, Xi), (3.16)

where X1, . . . X2n is any orthonormal frame of TACP n.

Proposition 3.5. For any A ∈ CP n and X, Y ∈ TACP n we have

σ(X, Y ) = π(X, Y )(I − 2A), (3.17)

and the trace of σ is

H = 4 (I − (n+ 1)A) , A ∈ CP n. (3.18)
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Proof. For a proof of (3.17) see [Ros83, Proposition 1.4]. Here, we prove (3.18). It is

enough to verify the identity at A0. We use the orthonormal basis (3.4). We denote

by Ejj ∈ Hn+1 the matrix with 1 at the entry jj and 0 elsewhere, so that E00 = A0.

By (3.17), for any j = 1, . . . , n we get

σ(Xj, Xj) = 2XjXj(I − 2A0) = 2(Ejj − A0), (3.19)

and, moreover, σ(X̂j, X̂j) = σ(Xj, Xj). So we obtain

H = 4
n∑
j=1

(Ejj − A0) = 4
(
(I − A0)− nA0

)
= 4
(
I − (n+ 1)A0

)
.

�

Remark 3.6. Using (3.17) and (3.10), it is possible to check the following identity

for any X, Y, V,W ∈ TACP n:

〈σ(X, Y ), σ(V,W )〉 =2 〈X, Y 〉 〈V,W 〉+ 〈X,W 〉 〈Y, V 〉+ 〈X, V 〉 〈Y,W 〉+

+ 〈X, JW 〉 〈Y, JV 〉+ 〈X, JV 〉 〈Y, JW 〉 .
(3.20)

The Weingarten endomorphism of the immersion is the mapping Λ : TACP n ×
T⊥A CP n → TACP n, A ∈ CP n, defined by the formula Λ(X,Z) = ΛZ(X) = −∇>XZ.

Proposition 3.7. For any A ∈ CP n, X ∈ TACP n, and Z ∈ T⊥A CP n we have

ΛZ(X) = (XZ − ZX)(I − 2A). (3.21)

For the proof see [Ros83, Proposition 1.4]. We establish some identities linking Λ

and σ. Let X1, . . . , X2n be an orthonormal frame for TCP n and we use the notation

N = X2n. In the sequel, we also let

πij = π(Xi, Xj) and πi,N = π(Xi, N),

σij = σ(Xi, Xj) and σi,N = σ(Xi, N).

Lemma 3.8. Let X1, . . . , X2n−1, N be an orthonormal frame of CP n. Then for any

i, j = 1, . . . , 2n− 1 we have

Λσj,N (Xi) = π(πj,N , Xi) = 2πj,NXi − σ (σij, N)− σ (Xj, σi,N) . (3.22)

Proof. We prove the identity on the left of (3.22). By (3.17), (3.21), (3.7), and (3.8)

we get

Λσj,N (Xi) = (Xiσj,N − σj,NXi) (I − 2A)

=
(
Xiπj,N(I − 2A)− πj,N(I − 2A)Xi

)
(I − 2A)

= Xiπj,N + πj,NXi = π(πj,N , Xi).

(3.23)
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Now we check the identity on the right. Using (3.7) and (3.8) we have:

2πj,NXi − [π(σij, N) + π (Xj, σi,N)] (I − 2A)

= − (πij(I − 2A)N +Nπij(I − 2A) +Xjπi,N(I − 2A)+

+πi,N(I − 2A)Xj) (I − 2A) + 2πj,NXi

= πijN −Nπij −Xjπi,N + πi,NXj + 2πj,NXi

= XiXjN +NXjXi +XjNXi +XiNXj

= Xiπj,N + πj,NXi

= π (Xi, πj,N) .

�

Lemma 3.9. For any orthonormal frame X1, . . . , X2n−1, N of CP n we have

2n−1∑
i=1

Λσi,N (Xi) = 2(n− 1)N. (3.24)

Proof. It is enough to verify (3.24) at the point A0 ∈ CP n, with the frame (3.4)

where N = X̂n. Using formula (3.21) for Λ and the identities (3.7) and (3.8), for any

i = 1, . . . , n and j = 1, . . . , n− 1 we find

Λσ(Xi,N)(Xi) = δin

(
N − 2X̂i

)
+N,

Λσ(X̂j ,N)(X̂j) = δjn

(
2X̂j +N

)
+N = N.

Summing up, we obtain (3.24).

�

4. Laplacian of position and normal

Let Σ ⊂ CP n be a hypersurface oriented by the unit normal N . In the following

we adopt the short notation σN = σ(N,N) and πN = π(N,N). In this section, we

compute ∆A and ∆N , where ∆ is the Laplace-Beltrami operator of Σ.

We denote by ∇Σ the restriction of ∇> to Σ. The second fundamental form of Σ

is the mapping h : TAΣ × TAΣ → R, h(X, Y ) = 〈∇>XN, Y 〉, and we denote its trace

by H = tr(h).

Notation. From now on, we will omit the symbol of sum over repeated indices.

The repeated index alway runs from 1 to 2n− 1. In the other cases, we will write the

sum.

Theorem 4.1. Let Σ ⊂ CP n be an oriented hypersurface with normal N . The

position matrix A satisfies the equation

∆A = tr(σ)− σN − tr(h)N, A ∈ Σ, (4.1)
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where σ is the second fundamental form of the immersion CP n ⊂ Hn+1.

Proof. Without loss of generality we can assume that A0 ∈ Σ and we check formula

(4.1) at the point A0. Let X1, . . . , X2n−1 be a frame of vector fields tangent to Σ

given by normal coordinates at A0. Namely, for all i, j = 1, . . . , 2n− 1, we have

∇Σ
Xi
Xj(A0) = 0. (4.2)

In the next line and in the rest of the paper, we shall use the identity

∇XA = X.

With sum over repeated indeces for j = 1, . . . , 2n− 1, we have

∆A|A=A0 = ∇Xj
∇Xj

A|A=A0 = ∇Xj
Xj(A0) =

= ∇>Xj
Xj(A0) + σA0(Xj, Xj).

In the last equality, we used the definition of the second fundamental form σ. Again

in A0, by (4.2) we obtain

∇>Xj
Xj = 〈∇>Xj

Xj, N〉N = −〈Xj,∇>Xj
N〉N = −tr(h)N.

Since X1, . . . , X2n−1, N is an orthonormal frame of CP n, from the definition (3.16) of

H we have σ(Xj, Xj) = H − σN , and this ends the proof. �

In the next theorem, we compute a formula for ∆N . The second fundamental form

h of Σ can be identified with a linear operator on TAΣ. The restriction of σ to TAΣ

can be identified with a linear operator from TAΣ to End(TAΣ, T⊥A CP n). Hence, the

composition σh = σ◦h is a linear operator from TAΣ to End(TAΣ, T⊥A CP n). Namely,

for any X, Y ∈ TAΣ we have σh(X)[Y ] = σ
(
h(X), Y

)
. We denote its trace by

tr(σh) = σh(Xi)[Xi] = σ (hijXj, Xi) = hijσij ∈ T⊥A CP n,

where σij = σ(Xi, Xj) and hij = h(Xi, Xj) for any orthonormal frame X1, . . . , X2n−1

of TAΣ.

Theorem 4.2. Let Σ ⊂ CP n be an oriented hypersurface with constant mean curva-

ture. The normal N to the hypersurface satisfies the equation

∆N = 2tr(σh)−
(
|h|2 + 2(n− 1)

)
N − tr(h)σN . (4.3)

The proof is preceded by a numbers of lemmas. We are using a frame of vector

fields satisfying (4.2).

Lemma 4.3. Let Σ ⊂ CP n be an orientable hypersurface with constant mean cur-

vature. At the center A0 ∈ Σ of normal coordinates, the entries of the second funda-

mental form hij = h(Xi, Xj) satisfy for each j = 1, . . . , 2n− 1 the equations

Xihij = 0, (4.4)
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with sum over the repeated index.

Proof. By the Codazzi’s equations, we have the identities for i, j, ` = 1, . . . , 2n− 1

Xjhi` −Xihj` = 〈R(Xi, Xj)N,X`〉+ 〈∇>Xj
N,∇>Xi

X`〉 − 〈∇>Xi
N,∇>Xj

X`〉+

− 〈N,∇>[Xi,Xj ]X`〉,

where N is the normal to Σ and R is the Riemann curvature tensor of CP n. Since

∇> has vanishing torsion, at the point A0 we have by (4.2)

[Xi, Xj] = ∇>Xi
Xj −∇>Xj

Xi = 0.

Thus, at the point A0 the previous identity reduces to

Xjhi` −Xihj` = 〈R(Xi, Xj)N,X`〉

Letting i = `, summing up in i = 1, . . . , 2n−1 , and using the fact that Σ has constant

mean curvature, we obtain

Xihij = −〈R(Xi, Xj)N,Xi〉 = −Ric(Xj, N).

The last equality follows from the standard symmetries of the curvature operator.

In fact, we have 〈R(N,Xj)N,N〉 = 〈R(Xj, N)N,N〉 = −〈R(N,Xj)N,N〉 and thus

〈R(N,Xj)N,N〉 = 0. The complex projective space is a Kähler manifold, and thus

it is an Einstein manifold. From the orthogonality of Xj and N it follows that

Ric(Xj, N) = 0. �

Lemma 4.4. Let Σ ⊂ CP n be an orientable hypersurface with normal N and H =

tr(h). At the center of normal coordinates, we have the identity

∇Xi
σ(Xi, N) = tr(σh)− 2(n− 1)N −HσN . (4.5)

Proof. By (3.17), (3.21) and the definition of second fundamental form σ we have

∇Xi
σ(Xi, N) = ∇Xi

πi,N(I − 2A) + πi,N∇Xi
(I − 2A)

= σ(∇Xi
Xi, N) + σ(Xi,∇Xi

N)− 2πi,NXi

= −hiiσN + σ(σii, N) + hijσij + σ(Xi, σi,N)− 2πi,NXi.

= −hiiσN + hijσij + (∗),

where (∗) = σ(σii, N) + σ(Xi, σi,N) − 2πi,NXi. Using (3.22) in the particular case

when i = j, we deduce that (∗) = −Λσi,N (Xi).

Hence, we proved that

∇Xi
σ(Xi, N) = −hiiσN + hijσij − Λσi,N (Xi), (4.6)

and our claim (4.5) follows from (3.24). �
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Remark 4.5. Starting from

∇Xi
σ(Xi, N) = ∇>Xi

σ(Xi, N) +∇⊥Xi
σ(Xi, N) = −Λσi,N (Xi) +∇⊥Xi

σi,N ,

and using (4.6) we obtain

∇⊥Xi
σ(Xi, N) = −HσN + hijσij. (4.7)

Proof of Theorem 4.2. We check formula (4.3) using normal coordinates at the point

A0 ∈ Σ. Using |N |2 = 1 and ∇⊥Xi
N = σ(Xi, N) we obtain

∆N = ∇Xi
∇Xi

N = ∇Xi
(∇⊥Xi

N +∇>Xi
N) = ∇Xi

{
σ(Xi, N) + hijXj

}
. (4.8)

From (4.4) and (4.2), we deduce that, at the point A0,

∇Xi
(hijXj) = hij∇Xi

Xj = hij
{
σij − hijN

}
= −|h|2N + hijσij.

By (4.5) we have

∇Xi
σ(Xi, N) = −HσN + hijσij − 2(n− 1)N,

and then ∆N = − (|h|2 + 2(n− 1))N + 2hijσij −HσN . �

5. Laplacian of σN

Let A be the position matrix. In the second variation of the area of a hypersurface

Σ we shall use normal deformations associated with the coordinate-functions of the

matrix u = ∆A. In our formula (4.1) for ∆A there is the term σN and thus to know

∆u we need ∆σN . In this section we compute this crucial quantity.

Let X1, . . . , X2n−1 be an orthonormal frame of TΣ such that Xn+j = JXj for all

j = 1, . . . , n− 1. Then we have Xn = −JN , where N is the normal to Σ and J is the

complex structure. The tangent vector

hN =
2n−1∑

j=1,j 6=n

h(JN,Xj)Xj ∈ CTΣ

does not depend on the given frame. The vector hN is the projection onto CTΣ of

∇Σ
JNN . So, we have hN = 0 if and only if ∇Σ

JNN = κJN with κ = h(JN, JN), i.e.,

JN is a principal direction with characteristic curvature κ.

Lemma 5.1. Let Σ ⊂ CP n be an oriented hypersurface with normal N , characteristic

curvature κ, and H = tr(h). Then we have

hijΛσ(Xj ,N)(Xi) = (H − κ)N + JhN . (5.1)
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Proof. The proof is a computation based on the following relation between the second

fundamental form σ and the Weingarten endomorphism, that is a consequence of

(3.20):

Λσ(X,Y )(V ) = 2 〈X, Y 〉V + 〈Y, V 〉X + 〈X, V 〉Y + 〈JY, V 〉 JX + 〈JX, V 〉 JY, (5.2)

for every X, Y, V ∈ TACP n. For details see [Ros84, Section 1] and recall the normal-

ization g(A,B) = 4〈A,B〉.
Indeed, by (5.2) we get:

Λσ(Xj ,N)(Xi) = δijN − δinJXj, j = 1, . . . , n;

Λσ(JXj ,N)(Xi) = −δijJN + δinXj, j = 1, . . . , n− 1,

for any i = 1, . . . , n, and

Λσ(Xj ,N)(JXi) = δijJN, j = 1, . . . , n;

Λσ(JXj ,N)(JXi) = δijN, j = 1, . . . , n− 1,

for every i = 1, . . . , n− 1. So, adding up appropriately we prove the thesis. �

The following lemma is a technical computation.

Lemma 5.2. Let Σ ⊂ CP n be an oriented hypersurface with normal N . Letting, for

any orthonormal frame of TΣ,

S1 = σ(σi,N , σi,N)− 4π(σi,N , N)Xi and S2 = −π(N,N)∆A,

we have the identity

S1 + S2 = 2tr(h)N − tr(σ) + 2(n− 1)σN . (5.3)

The proof is postponed at the end of the section. In the previous section we

introduced the linear operator σh : TAΣ→ End(TAΣ, T⊥A CP n). In the same way, we

define the linear operator σh2(X)[Y ] = σ
(
h2(X), Y

)
, for X, Y ∈ TAΣ. Its trace is

tr(σh2) = σh2(Xj)[Xj] = σ (hijh(Xi), Xj) = hijhikσjk ∈ T⊥A CP n.

Now we are ready to prove the main formula of this section.

Theorem 5.3. Let Σ ⊂ CP n be an orientable hypersurface with constant mean

curvature and normal N . Then we have

∆σN = 4κN + 2tr(σh2 − σ)− 2|h|2σN − 4JhN , (5.4)

where κ is the characteristic curvature of Σ.
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Proof. We check formula (5.4) using normal coordinates at the point A0 ∈ Σ. Using

(4.3), (3.17) and the short notation πN = π(N,N) we have

∆σN = ∇Xi
∇Xi

σN = ∇Xi
(2π(∇Xi

N,N)(I − 2A)− 2πNXi)

= 2
{
σ(∇Xi

∇Xi
N,N) + σ(∇Xi

N,∇Xi
N)− 4π(∇Xi

N,N)Xi − πN∇Xi
Xi

}
= 2
{
σ(∆N,N) + 2σ

(
hijXj + σi,N , hikXk + σi,N

)
+

−4π
(
hijXj + σi,N , N

)
Xi − πN (−hiiN + σii)

}
= −2

(
|h|2 + 2(n− 1)

)
σN + 2hijhikσjk+

+ 4hij {(σ(σij, N) + σ(Xj, σi,N)) −2πj,NXi}

+ 2(σ(σi,N , σi,N) −4π(σi,N , N)Xi)− 2πN∆A.

We used the identity σ(σN , N) = 0. By (3.22) and (5.3), we have

∆σN = −2
(
|h|2 + 2(n− 1)

)
σN + 2hijhikσjk − 4hijΛσ(Xj ,N)(Xi)

+ 4(n− 1)σN − 2tr(σ) + 4tr(h)N

= 4tr(h)N − 2tr(σ)− 2|h|2σN + 2hijhikσjk − 4hijΛσ(Xj ,N)(Xi).

By (5.1), this ends the proof.

�

Proof of Lemma 5.2. We check the formula at the point A0 ∈ Σ. Using the formulas

(3.8), (3.9), and (3.7) we obtain

S1 = 2π(Xi, N)(I − 2A)π(Xi, N)(I − 2A)2 − 4π(σ(Xi, N), N)Xi

= 2
[
π2
i,N(I − 2A)− 2 (πi,N(I − 2A)N+ Nπi,N(I − 2A))Xi]

= 2
{[
π2
i,N − 2 (πi,NN −Nπi,N)Xi

]
(I − 2A)

}
.

A simple computation gives

π(Xi, N)2(I − 2A0) = −δin(Ein + Eni) + Enn + Eii,

π(X̂j, N)2(I − 2A0) = Enn + Ejj,

and also

(
π(N,Xi)NXi −Nπ(Xi, N)Xi

)
(I − 2A0) = −δinEni + Eii + (1− δin)A0,(

π(N, X̂j)NX̂j −Nπ(X̂j, N)X̂j

)
(I − 2A0) = Ejj + A0.
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Therefore at A0 we have

S1 = 2
n∑
i=1

[−δin(Ein + Eni) + Enn + Eii − 2 (−δinEni + Eii + (1− δin)A0)]+

+ 2
n−1∑
i=1

[Enn + Eii − 2 (Eii + A0)]

= 2 [2nEnn − 2(I − A0) + (4− 4n)A0]

= 4nEnn − 4I + (12− 8n)A0.

Moreover, using (3.18) and σN = 2(Enn −A0), we have 4I = tr(σ) + 4(n+ 1)A0 and

2Enn = σN + 2A0, and hence we get

S1 = 2nσN − tr(σ) + 8(1− n)A0. (5.5)

Now, we compute S2 at A0. Using π(N,N)N = 2N , π(N,N)tr(σ) = −8nA0+8Enn,

and π(N,N)σN = −4A0 + 4Enn, we get

S2 = −π(N,N) (−tr(h)N + tr(σ)− σN)

= − (−2tr(h)N − 8nA0 + 8Enn + 4A0 − 4Enn)

= 2tr(h)N − 8(1− n)A0 − 2σN .

Adding S1 and S2 we get the claim. �

6. Trace of the second variation of the area

Let Σ be a C∞ hypersurface with normal N and without boundary and let u ∈
C∞(Σ) be a function with zero mean:∫

Σ

u dµ = 0, (6.1)

where µ is the Riemannian hypersurface measure in CP n. For t ∈ R and p ∈ Σ

let t 7→ γp(t) be the curve (geodesic) in CP n solving ∇>γ̇ γ̇ = 0 with γ(0) = p and

γ̇(0) = u(p)N(p). For small t, the hypersurface Σ(t;u) = {γp(t) ∈ CP n : p ∈ Σ} is

well defined and we denote its area by A (t;u) = µ(Σ(t;u)). If we have

dA (t;u)

dt

∣∣∣∣
t=0

= 0

for any u ∈ C∞(Σ) satisfying (6.1) then Σ has constant mean curvature. If Σ(t;u)

is the boundary of a region with volume V (t), then condition (6.1) implies that

V ′(0) = 0.

The second variation of the area functional is given by the formula

A ′′(u) =
d2A (t;u)

dt2

∣∣∣∣
t=0

= −
∫

Σ

uL u dµ, (6.2)
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where

L u = ∆u+ (|h|2 + Ric(N))u

is the Jacobi operator, see e.g. [BdCE88]. The quantity Ric(N) is the Ricci curvature

of CP n in the direction N .

Definition 6.1 (Stability). We say that an oriented hypersurfaces Σ without bound-

ary and with constant mean curvature is stable if A ′′(u) ≥ 0 for any u ∈ C∞(Σ)

satisfying (6.1).

It is well known that the quantity Ric(N) in the formula for the second variation

is a geometric constant in CP n. We need the precise value of this constant. The

sectional curvature of CP n is

K(X ∧ Y ) = 1 + 3〈JX, Y 〉2, (6.3)

where X, Y ∈ TACP n is an orthonormal basis of the 2-plane X ∧ Y and J is the

complex structure of TACP n. Let X1, . . . , Xn, X̂1, . . . , X̂n−1, N be an orthonormal

basis of TACP n. Then the Ricci curvature Ric(N) is

Ric(N) =
n∑
j=1

K(N,Xj) +
n−1∑
j=1

K(N, X̂j). (6.4)

By the fact that N = JXn, one has:

K(N,Xj) = 1 + 3〈JN,Xj〉2 = 1 + 3〈Xn, Xj〉2 =
{ 1, for j 6= n

4, for j = n

K(N, X̂j) = 1 + 3〈JN, X̂j〉2 = 1 + 3〈Xn, X̂j〉2 = 1,

because j ≤ n− 1. Thus formula (6.4) yields Ric(N) = 2n+ 2.

On Σ we consider the matrix valued function u = ∆A, where A is the position

matrix. For any V ∈ Hn+1, we define the scalarization uV = 〈u, V 〉. By the divergence

theorem, the function uV satisfies the zero-mean condition (6.1) because Σ has no

boundary.

The mapping QΣ : Hn+1 → R defined by QΣ(V ) = A ′′(uV ) is a quadratic form.

If the surface Σ is stable then QΣ is positive semidefinite, i.e., QΣ(V ) ≥ 0 for any

V ∈ Hn+1. It follows that tr(QΣ) ≥ 0. In the next theorem we compute an explicit

expression for this trace.

Theorem 6.2. Let Σ be an oriented complete hypersurface with constant mean cur-

vature. The trace of the quadratic form QΣ is

tr(QΣ) = 4

∫
Σ

{
2(n+ 1)H2 + 2(n2 − 1)

(
2n− |h|2

)
− (H + κ)2 − |hN |2

}
dµ. (6.5)
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Proof. For any orthonormal basis V of Hn+1, we have

tr(QΣ) =
∑
V ∈V

QΣ(V ) = −
∫

Σ

∑
V ∈V

uV L uV dµ

= −
∫

Σ

{
〈u,∆u〉+ (|h|2 + 2(n+ 1))|u|2

}
dµ.

We compute first the norm of u. By formula (4.1) we have:

|u|2 = |∆A|2 = 〈H − σN − tr(h)N,H − σN − tr(h)N〉

= H2 + |H |2 − 2 〈H , σN〉+ |σN |2,

because the matrices N and H − σN are orthogonal. Using the identity σ(X, Y ) =

σ(JX, JY ) for any X, Y ∈ TACP n (see [Ros83, Proposition 1.6]), we obtain

|H |2 =
2n∑
i,j=1

〈σii, σjj〉 = 4
n∑

i,j=1

〈σii, σjj〉.

Now by (3.20) we have for any i, j = 1, . . . , n

〈σii, σjj〉 = 2(1 + δij), (6.6)

and hence

|H |2 = 4
n∑

i,j=1

2(1 + δij) = 8
(
n2 +

n∑
i,j=1

δij

)
= 8(n2 + n) = 8n(n+ 1).

(6.7)

In the same way, we have

〈H , σN〉 =
2n∑
i=1

〈σii, σN〉 = 2
n∑
i=1

〈σii, σN〉 = 4
n∑
i=1

(1 + δin) = 4(n+ 1), (6.8)

where we used (6.6) with j = n. Finally, by (6.6) with i = j = n, we have

|σN |2 = 4. (6.9)

Now, by (6.7), (6.8) and (6.9) we get

|u|2 = H2 + 8n(n+ 1)− 8(n+ 1) + 4 = H2 + 8(n+ 1)(n− 1) + 4

= H2 + 8n2 − 8 + 4 = H2 + 4(2n2 − 1).
(6.10)

By formula (3.18) we have ∆H = −4(n + 1)∆A = −4(n + 1)u. Hence, from

formula (4.1) we find

〈u,∆u〉 = 〈u,−H∆N − 4(n+ 1)u−∆σN〉

= −4(n+ 1)|u|2 −H〈u,∆N〉 − 〈u,∆σN〉.
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Since N is orthogonal to H , σN , and σij we have

〈u,∆N〉 = 〈−tr(h)N + H − σN ,−(|h|2 + 2(n− 1))N + 2hijσij − tr(h)σN〉

= H(|h|2 + 2(n− 1)) + 2〈H , tr(σh)〉 −H〈H , σN〉

− 2〈σN , tr(σh)〉+H|σN |2.

By (3.20) we have

〈σ(Xi, Xi), σ(Xj, Xk)〉 = 2(δjk + δikδij), (6.11)

〈σ(Xi, Xi), σ(Xj, JXk)〉 = 0, (6.12)

for every i, j, k = 1, . . . , n. Hence, by (6.11) and (6.12) and also using the notation

h̂k̂ := h(JXj, JXk), we get

〈H , tr(σh)〉 = 2
n∑
i=1

2n−1∑
j,k=1

hjk 〈σii, σjk〉=

= 4
n∑

i,j,k=1

hjk(δjk + δikδij) + 4
n∑
i=1

n−1∑
j,k=1

h̂k̂(δjk + δikδij)

= 4nhjj + 4hii = 4(n+ 1)H.

(6.13)

Again by (6.11) and (6.12),

〈σN , tr(σh)〉 = hij 〈σN , σij〉=2hij(δij + δjnδin) = 2H + 2κ. (6.14)

Finally, using (6.8), (6.9), (6.13) and (6.14) we get

〈u,∆N〉 = H(|h|2 + 2(n− 1)) + 8(n+ 1)H − 4(n+ 1)H − 4(H + κ) + 4H

= (|h|2 + 6n+ 2)H − 4κ,

and so we obtain the formula

〈u,∆N〉 = H
(
|h|2 + 6n+ 2

)
− 4κ. (6.15)

We are left with the computation of 〈u,∆σN〉. By formula (5.4), also using

〈u, hN〉 = 0, we obtain

〈u,∆σN〉 =〈−tr(h)N + H − σN , 4κN − 2H − 2|h|2σN + 2tr(σh2)〉

=− 4κH − 2|H |2 − 2(|h|2 − 1)〈H , σN〉+ 2〈H , tr(σh2)〉+ 2|h|2|σN |2

− 2〈σN , tr(σh2)〉.
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Again by (6.11) and (6.12),

〈
H , tr(σh2)

〉
= 2

n∑
i=1

2n−1∑
`,j,k=1

h`jh`k 〈σii, σjk〉=

= 4
n∑
i=1

2n−1∑
`=1

{
n∑

j,k=1

h`jh`k(δjk + δikδij) +
n−1∑
j,k=1

h`ĵh`k̂(δjk + δikδij)

}

= 4n
2n−1∑
`,j=1

h2
`j + 4

2n−1∑
`,i=1

h2
`i = 4(n+ 1)|h|2.

So, we get 〈
H , tr(σh2)

〉
= 4(n+ 1)|h|2. (6.16)

Moreover, we have〈
σN , tr(σh

2)
〉

= hijhik 〈σN , σjk〉=2hijhik(δjk + δknδjn)

= 2h2
ij + 2h2

in = 2|h|2 + 2
(
|hN |2 + κ2

)
.

(6.17)

Adding (6.7), (6.8), (6.9), (6.16) and (6.17), we get the identity

〈u,∆σN〉 = 4|h|2 − 8(2n− 1)(n+ 1)− 4Hκ− 4κ2 − 4|hN |2. (6.18)

Now, in order to get (6.5), we just have to use the formulas (6.10), (6.15) and (6.18)

and sum them up.

�

In the next lemmas, we test the trace formula (6.5) on geodesic spheres and on the

tubes introduced in Section 2.

Lemma 6.3. For the sphere Σr ⊂ CP n we have tr(QΣr) ≥ 0 if and only if tan2 r ≤
2n+ 1. The trace is zero if and only if tan2 r = 2n+ 1.

Proof. Letting t = tan r, by the formulas (2.1) we have:

|h|2 = (2n− 1)
1

t2
+ t2 − 2,

H2 = (2n− 1)2 1

t2
+ t2 − 2(2n− 1),

(H + κ)2 = 4(n− 1)2 1

t2
+ 4t2 − 8(n− 1).

Inserting these values into the trace formula (6.5) we find

tr(QΣr) = −8n(n− 1)

t2
µ(Σr)

{
t4 − 2nt2 − (2n+ 1)

}
.

Then we have tr(QΣr) ≥ 0 if and only if t4 − 2nt2 − (2n+ 1) ≤ 0, which holds if and

only if t2 ≤ 2n+ 1. In particular, the trace is zero precisely when t2 = 2n+ 1.

�
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Lemma 6.3 shows that the formula (6.5) detects the sharp stability interval for the

radius of a geodesic sphere, see Theorem 2.2. In the next lemma we consider the

tubes T kr .

Lemma 6.4. Let k = 1, . . . , n− 1. For the tubes T kr ⊂ CP n we have:

1) If n = 2k + 1 then tr(QTk
r
) > 0 for any 0 < r < π/2.

2) If n 6= 2k + 1 then tr(QTk
r
) ≥ 0 if and only if tan2 r ≤ d(n, k) for a certain

positive number d(n, k) that satisfies

d(n, k) >
2n− 2k + 1

2k + 1
. (6.19)

Moreover, tr(QTk
r
) = 0 precisely when tan2 r = d(n, k).

Proof. We use the short notation t = tan r and m = 2k + 1. By the formulas (2.2)

we have:

|h|2 = mt2 + (2n−m)
1

t2
− 2,

H2 = m2t2 + (2n−m)2 1

t2
− 2m(2n−m),

(H + κ)2 = (m+ 1)2t2 + (2n−m+ 1)2 1

t2
− 2(m+ 1)(2n−m+ 1).

Inserting these values into the formula (6.5), we get the following expression for the

trace of QTk
r

tr(QTk
r
) =

8µ(T kr )

t2
(at4 + bt2 + c),

where a, b, c are coefficients depending on n and k, and namely

a = m(n+ 1)(m− n+ 1)− 1

2
(m+ 1)2,

b/2 = (n+ 1)[(n2 − 1)−m(2n−m)] +
1

2
(m+ 1)(2n−m+ 1),

c = (n+ 1)(2n−m)(n−m+ 1)− 1

2
(2n−m+ 1)2.

It is easy to check that b = a+c, which means that t2 = −1 is a root of at4+bt2+c = 0.

So we have the decomposition

tr(QTk
r
) =

8µ(T kr )

t2
(t2 + 1)(at2 + c).

Now there are two cases: n = m and n 6= m. When n = m = 2k + 1 then n must

be odd and in this case it is a = c = 1
2
(n2 − 1) > 0. It follows that tr(QTk

r
) > 0 for

any t > 0.

In the case n 6= m we have a < 0 and c > 0. We conclude that tr(QTk
r
) ≥ 0 if and

only if t2 ≤ d(n, k) := −c/a. After some computations, inequality (6.19) is equivalent

to m > 1, that is k > 0. �
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Lemma 6.4 shows that Theorem 6.5 is not sharp in the case of the tubes T kr . In

fact, when tan2 r = d(n, k) then the trace of QTk
r

is zero but the tube T kr is unstable

by Theorem 2.2 part 2.

We finish this section proving the non-stability of the tubes Vr around RP n.

Lemma 6.5. The tube Vr ⊂ CP n is unstable for any r > 0.

Proof. Using the formulas (2.3) we compute:

|h|2 = (n− 1)
(
t2 +

1

t2

)
+

16t2

(1− t2)2
,

H2 = (n− 1)2 (1− t2)2

t2
+

16t2

(1− t2)2
− 8(n− 1),

(H + κ)2 = (n− 1)2 (1− t2)2

t2
+

64t2

(1− t2)2
− 16(n− 1).

Inserting these values into the formula (6.5), we obtain the value for the trace of QVr

tr(QVr) = −4(n− 1)µ(Vr)
{

(n− 1)
(
t2 +

1

t2

)
+

32nt2

(1− t2)2
+ 2(5n− 1)

}
,

and we see that tr(QVr) < 0 for any t = tan r ∈ (0, 1) and n ≥ 2. We deduce that the

surfaces Vr are not stable. �

7. Proof of Theorems 1.1 and 1.2

In this section, we prove Theorems 1.1 and 1.2. Let Σ ⊂ CP n be a complete stable

oriented hypersurface that is connected.

Proof of Theorem 1.1. We denote by ĥ the restriction of the second fundamental form

h of Σ to the complex tangent space CTΣ and by Ĥ the trace of ĥ. At any point of

Σ, we have the identities

H = Ĥ + κ and |h|2 = |ĥ|2 + 2|hN |2 + κ2,

and the inequalities

|h|2 ≥ |ĥ|2 + κ2 and |ĥ|2 ≥ Ĥ2

2(n− 1)
=

(H − κ)2

2(n− 1)
. (7.1)

Inserting these inequalities and |hN | ≥ 0 into (6.5) we obtain

tr(QΣ) ≤ 4

∫
Σ

{
2(n+ 1)H2 + 2(n2 − 1)

(
2n− κ2 − (H − κ)2

2(n− 1)

)
− (H + κ)2

}
dµ

= −4n

∫
Σ

p(κ;H,n) dµ,

(7.2)

where p(·;H,n) is the polynomial in (1.1). By our assumption p(κ;H,n) ≥ 0 on

Σ, we deduce that tr(QΣ) ≤ 0. On the other hand, the stability of Σ implies that



STABLE HYPERSURFACES 23

tr(QΣ) ≥ 0. We deduce that tr(QΣ) = 0 and that we have equality in (7.2). In turn,

the equality in (7.2) implies that p(κ;H,n) = 0, that

|h|2 = |ĥ|2 + κ2 and |ĥ|2 =
Ĥ2

2(n− 1)
, (7.3)

and also that hN = 0 on Σ.

The equation hN = 0 means that JN is an eigenvector of h. By Maeda’s theorem

[Mae76], this implies that the characteristic curvature κ is constant. This also simply

follows from the fact that κ is one of the roots of p(κ;H,n) = 0. Here we use the fact

that Σ is connected.

The identity in the right-hand side of (7.3) implies that Σ is umbilical in CTΣ,

i.e., each unit vector in CTΣ is an eigenvector of h with eigenvalue λ = Ĥ/2(n− 1).

Moreover, λ is constant on Σ, because Ĥ = H − κ is constant.

The two constants κ and λ are different, because in CP n there are no totally

umbilical hypersurfaces. By Takagi’s theorem, Proposition 2.1, Σ is a geodesic sphere:

up to a suitable choice of the center of the sphere, we have Σ = Σr for some r ∈
(0, π/2). By Lemma 6.3 the equation tr(QΣr) = 0 implies that tan2 r = 2n+ 1.

�

Finally, we prove Theorem 1.2. We shall use Takagi’s characterization of tubes in

Proposition 2.3 and the computations of Lemmas 6.4 and 6.5.

Proof of Theorem 1.2. We have the decomposition CTΣ = T1 ⊕ T2 where, at each

point of Σ, T1 and T2 are subspaces of real dimension α and β = 2(n − 1) − α.

We denote by h1 and h2 the restrictions of h to T1 and T2, respectively, and we let

H1 = tr(h1) and H2 = tr(h2).

We have the identity H = H1 +H2 + κ and the inequalities

|h|2 ≥ |h1|2 + |h2|2 + κ2, |h1|2 ≥
H2

1

α
and |h2|2 ≥

H2
2

β
. (7.4)

Inserting these inequalities and |hN | ≥ 0 into (6.5), we obtain

tr(QΣ) ≤ −8(n2 − 1)

∫
Σ

p(H1, H2;H,n, α) dµ, (7.5)

where p(·;H,n, α) is the polynomial in (1.3). By our assumption p(H1, H2;H,n, α) ≥
0 on Σ, we deduce that tr(QΣ) ≤ 0. On the other hand, the stability of Σ implies

that tr(QΣ) ≥ 0. We deduce that tr(QΣ) = 0 and that we have equality in (7.5). In

turn, the equality in (7.5) implies that p(H1, H2;H,n, α) = 0, that

|h|2 = |h1|2 + |h2|2 + κ2 and |h1|2 =
H2

1

α
, |h2|2 =

H2
2

β
(7.6)

and also that hN = 0 on Σ.
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The equation hN = 0 means that JN is an eigenvector of h. By Maeda’s theorem

[Mae76], the characteristic curvature κ is constant.

The identities in (7.6) imply that T1 is an eigenspace of h for a curvature λ1, and

T2 is an eigenspace of h for a curvature λ2. We clearly have H1 = αλ1 and H2 = βλ2.

From p(H1, H2;H,n, α) = 0 and H1 + H2 =constant, we deduce that λ1 and λ2 are

constant.

Now we have three cases:

1) κ = λ1 = λ2. This case is empty, because in CP n there are no totally umbilical

hypersurfaces.

2) Precisely two of the numbers κ, λ1, and λ2 are equal. By Proposition 2.1, Σ

is a geodesic sphere. Hence, it must be λ1 = λ2 and the radius of the sphere

is tan2 r = 2n+ 1, as explained at the end of the proof of Theorem 1.1.

3) The three numbers κ, λ1, and λ2 are different. By Proposition 2.3, the surface

Σ is either a tube around CP k, Σ = T kr with α = 2k even, or a tube around

RP n, Σ = Vr with α = n−1. The latter case Σ = Vr is excluded because Vr is

unstable for any r > 0, by Proposition 6.5. We are left with the case Σ = T kr
with α = 2k and for some r > 0. The radius is determined by the equation

tr(QTk
r
) = 0. However, this equation either has no solution (this happens in

the case α = β), or its unique solution r > 0 has the property that the tube

T rk is unstable, as shown in Proposition 6.4.

The only possible case is that Σ is a geodesic sphere with radius tan2 r = 2n+ 1.

�
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