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Abstract

In this paper we make the final step in finding the optimal way to
enclose and separate four planar regions with equal area. In [10] the graph-
topology of the optimal cluster was found reducing the set of candidates to
a one-parameter family of different clusters. With a simple argument we
show that the minimal set has a further symmetry and hence is uniquely
determined up to isometries.

1 Introduction

The problem of enclosing and separating N regions of R2 with prescribed area
and with the minimal possible interface length has been widely analyzed.

The case N = 1 corresponds to the celebrated isoperimetric problem whose
solution, the circle, was known since antiquity.

For N ≥ 1 first existence and partial regularity in Rn was given by Alm-
gren [1] while Taylor [13] describes the singularities for minimizers in R3. Exis-
tence and regularity of minimizers in R2 was proved by Morgan [7] (see also [5]):
the regions of a minimizer in R2 are delimited by a finite number of circular
arcs, or line segments, which meet in “Steiner-triples” at their end-points, with
angles of 2

3π.
Foisy et al. [2] proved that for N = 2 in R2 the two regions of any mini-

mizer are delimited by three circular arcs joining in two points (standard double
bubble) and are uniquely determined by their enclosed areas. Wichiramala [15]
proved that for N = 3 in R2 the three regions of any minimizer are delim-
ited by six circular arcs joining in four points. Lawlor [4] recently proposed a
new simpler proof, which is also valid in the sphere. The minimizer (standard
triple bubble) is uniquely determined by the given enclosed areas, as shown by
Montesinos [6].

Recently, in [10], the case of four regions with equal areas in R2 has been
considered and in this case the graph-topology of minimal clusters has been
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Figure 1: The optimal sets enclosing two, three and four equal areas. The
cluster with four regions has two axes of symmetry. The edge between regions
E1 and E2 is a straight segment while the other four internal edges have a small
curvature so that regions E3 and E4 are actually strictly convex.

determined: the cluster is composed by four connected regions, two among
them, E1 and E2 are quadrangular and are adjacent to each other, whilst the
remaining, E3 and E4, are triangular and are adjacent to both the quadrangular
ones (see Figure 1). It was conjectured that, with this structure, there is a
unique minimizer (up to isometries) which is determined by two orthogonal
axes of symmetry: one symmetry should map E3 and E4 each onto itself whilst
swapping E1 and E2, the other should map E1 and E2 each onto itself whilst
swapping E3 and E4. The conjecture was backed by numerical evidence [11]. In
this paper we present a simple proof of such conjecture thus finally obtaining a
proof of the following Theorem (see next section for notation).

Theorem 1.1. Up to rotation, translation, rescaling, reordering and modifica-
tion by zero measure sets, there is a unique planar minimal cluster (E1, E2, E3,
E4) composed by four regions of equal area. The cluster has two orthogonal axes
of symmetry. Regions E1 and E2 are quadrangular regions: each one is the
mirror-image of the other through one axis. They are adjacent, and the com-
mon edge is a line segment of the other axis. Regions E3 and E4 are strictly
convex triangular regions, and each one is the mirror-image of the other through
the remaining axis (see Figure 1).

The idea of the proof is the following. The minimal cluster is known to
be composed by two triangular regions and two quadrangular regions. If we
remove the two triangular regions we obtain a double bubble which obviously
has a line of symmetry. Since the two triangular regions have the same area
the whole minimal cluster has the same line of symmetry which we suppose is
vertical (Corollary 3.4). To find the horizontal line of symmetry it is enough to
prove that the edge between the two quadrangular regions is a straight segment.
Suppose by contradiction that instead this edge is curved. By means of a circle
inversion we are able to transform the two quadrangular regions into two con-
gruent regions: the area of the original regions can be obtained by integrating
the jacobian of the transformation on the transformed regions. It turns out that
the jacobian, in one region, is pointwise larger than the jacobian on the other
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region, hence we obtain a contradiction.

2 Notation and Tools

We follow the notation introduced in [10]. We denote the outer Lebesgue mea-
sure of a subset A of R2 by |A| (the area of A) and by P (A) its Caccioppoli
perimeter (which is the length of the boundary ∂A if A is sufficiently regular).
We say that two subsets A,B of R2 are adjacent if P (A ∪ B) < P (A) + P (B)
(the common boundary has positive length). If E has finite perimeter we say
that a Lebesgue measurable set C is a component of E if |C| > 0, |C \ E| = 0
and P (E) = P (C) + P (E \ C). Moreover we say that E is connected (in the
measure theoretic sense) if it has no component C of measure |C| < |E|. Let us
denote with E = (E1, . . . , EN ) an N -uple of measurable subsets of R2 such that
|Ei ∩ Ej | = 0 for i 6= j. We will say that E is a cluster and that E1, . . . , EN are
its regions. We define the external region E0 as

E0 = R2 \
N⋃
i=1

Ei.

The sets E0, E1, . . . , EN are hence a partition of the whole plane R2.
We define the perimeter of the cluster as

P (E) =
1

2

N∑
i=0

P (Ei)

The perimeter of the cluster would represent the total length of the interfaces
between the regions. In fact, up to a set of zero length (in the sense of H1 Haus-
dorff measure) every point in the union of the reduced boundaries of the regions
(the reduced boundary is the measure theoretic boundary of a Caccioppoli set)
belongs to exactly two different boundaries (see [5]), hence the factor 1

2 in the
previous definition.

We are interested in the problem of finding the clusters with minimal perime-
ter among all clusters with prescribed areas. Such clusters will be called minimal
clusters.

The following result states the existence of minimal clusters (see [1], [7]
and [5]).

Theorem 2.1 (existence of minimal clusters). Given (a1, . . . , aN ) ∈ RN+ there
exists a cluster E in Rn such that |Ei| = ai, 1 ≤ i ≤ N , and such that

P (E) ≤ P (F)

for all F such that |Fi| = ai, 1 ≤ i ≤ N .

Minimal clusters have very good regularity properties. In particular the
structure of minimal clusters has been widely studied when the ambient space
is R2 (see [7]) or R3 (see [13]). We recall the regularity result for the planar
case.

3



Theorem 2.2 (regularity of planar minimal clusters). Let E be a minimal
cluster in R2. Then, up to redefining each region on a zero measure set, each
region Ek of E is composed by a finite number of connected components. Each
connected component is delimited by a finite number of circular arcs or straight
line segments. Each arc separates two components of different regions. The arcs
meet in triples at their end points (which we call vertices) with equal angles of
2
3π. The sum of the signed curvatures1 of the three arcs joining in a vertex is
zero.

A cluster E satisfying the regularity properties stated in the previous theo-
rem will be called stationary.

Lemma 2.3. Stationarity is preserved under isometries and rescalings of the
plane. Stationarity is also preserved by circle inversion.

The first part of the previous Lemma is trivial, for the second part see [14],
[6], [16], [12]. Recall that circle inversion has the well known property of being a
conformal mapping transforming circles and straight lines into circles or straight
lines.

To further investigate the geometry of minimal clusters we point out a gen-
eral result which can be stated for a triangular region of any stationary cluster
(see [16]).

Theorem 2.4 (removal of triangular components). Let T be a triangular com-
ponent of a region of a stationary cluster E. Consider the three oriented arcs not
edges of T and each concurrent to one among the three vertices of T . The sum
of the signed curvatures of these three arcs is zero. Moreover, if prolonged inside
T , these arcs meet in a point P inside T with equal angles of 2

3π. Hence, if we
remove the triangle T and prolong the three arcs, we obtain a new stationary
cluster.

Currently it is not known if the regions of every minimal cluster are con-
nected (see [7, introduction]). In the case of four equal areas this was proved in
[10] where the topology of the minimal clusters is determined.

Theorem 2.5. Let E = (E1, E2, E3, E4) be a cluster with N = 4 regions in the
plane which is minimal with prescribed equal areas (a, a, a, a), a > 0. Then all
the four regions are connected. Moreover two of them (say E1 and E2) have
four edges and two of them (say E3 and E4) have three edges (see Figure 2).

3 Proof of Theorem 1.1

We are going to prove that up to isometries, rescalings, reorderings and modifi-
cations by zero measure sets there is at most one stationary cluster E with the

1If the three arcs are oriented so that the vertex is the end point of each of the three arcs,
then the orientation defines a normal vector ν (for example by rotating the tangent vector
counter-clockwise) on the three arcs and the signed curvature k is defined by k = k · ν where
k is the curvature vector. Clearly k is constant on each circular arc or line segment.
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Figure 2: In bold lines the edges of the cluster E, and E′. In solid lines the
edges of the cluster F. The dotted circle is used for circle inversion. The two
dotted lines have equations y = 0 and x = 1/2.
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topology described in Theorem 2.5 and with equal areas |E1| = |E2| = |E3| =
|E4| = a > 0 and that such cluster E has all the properties stated in the claim
of Theorem 1.1. In view of Theorems 2.2 and 2.5 this is enough to obtain the
main Theorem.

Let E = (E1, E2, E3, E4) be a any stationary cluster with the topology de-
scribed in Theorem 2.5. Up to relabeling we may suppose that E1 and E2 are
the quadrangular regions while E3 and E4 are the triangular ones. The cluster
contains six vertices: let w0, w1, w2 be the three vertices of E3 where the first is
the vertex in common with both E1 and E2, the second the vertex in common
only with E1, and the third in common only with E2. Similarly label w3, w4, w5

the vertices of E4 (see Figure 2).
By Theorem 2.4 if we remove the two triangular regions and extend the

remaining three edges we obtain a stationary cluster E′ = (E′1, E
′
2) (a double

bubble) with E′1 ⊃ E1, E′2 ⊃ E2. So every stationary cluster E with the topology
given by Theorem 2.5 can be obtained by a double bubble. Notice that E′ is
symmetric with respect to the axis of the common chord of the three arcs.

Up to translation, rotation and rescaling we might and shall suppose that
the two vertices of E′ are the points (0, 0) and (1, 0) with (0, 0) ∈ E4 and
(1, 0) ∈ E3. From now on we will identify R2 with C so that the two vertices of
E′ are represented by the complex numbers 0 and 1 (see Figure 2). The known
axis of symmetry of E′ is Rew = 1

2 . Either E′1 or E′2 is convex: without loss
of generality we assume that such region is E′2. Up to reflection we can also
suppose that E′1 (and hence E1) is contained in the upper half-space Imw ≥ 0.

Let θ ≥ 0 be the angle between the circular edge separating E′1 and E′2 and
the line segment joining 0 and 1. By construction of E′ and the Steiner angle
condition we have θ < π/3. On the other hand, given any such angle, up to
isometries and rescaling, there is just one double bubble with θ equal to the
given angle.

We will consider the cluster F obtained from E by the circle inversion T (w) =

w/ |w|2 = 1/w. We know by Lemma 2.2 that stationarity is preserved under
inversion so F = (F1, F2, F3, F4) is also stationary. The region E4 contains 0 so
the corresponding triangular region F4 is unbounded. On the other hand the
exterior of the cluster E goes into a quadrangular bounded region F0 which is
the exterior of F. Let z0, . . . , z5 be the six vertices of F: zj = T (wj).

Under circle inversion the three circular edges of the double bubble E′ joining
0 and 1 become three half lines meeting in the point 1 with equal angles of 2

3π.
In particular the edge of E joining w0 with w3 corresponds to a straight segment
[z0, z3] which is contained in the half line starting from 1 with an angle θ with
respect to the real axis (the angle is preserved because circle inversion is a
conformal mapping). With the previous definitions and notations, we state the
following.

Lemma 3.1. The points z0, z1 and z2 have the same distance ρ > 0 from the
point 1. The points z3, z4, z5 have the same distance R > ρ from the point 1.

Proof. The stationarity condition in the vertex z0 ensures that the arcs z0z1
and z0z2 are symmetric with respect to the line z0z3 (the angles are equal to
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2π/3, and the radii are equal because the sum of the three signed curvatures is
zero but the line has zero curvature). Since 1 is on the line containing z0z3 we
obtain |z1 − 1| = |z2 − 1|.

The same holds in the vertices z1 and z2 hence the points z0, z1, z2 are the
vertices of an equilater triangle with center in the point 1.

The same reasoning can be applied to the arcs joining the vertices z3, z4 and
z5 to find that also these points have equal distance from the point 1.

Thus we can write zj = 1 + ρ · ei(θ+2jπ/3) and zj+3 = 1 +R · ei(θ+2jπ/3) for
some R > ρ > 0 with j = 0, 1, 2. Incidentally the arcs joining the vertices z0,
z1, z2 are each centered in the opposite vertex (they form a so called Reuleaux
triangle) while the arcs joining the vertices z3, z4, z5 are half circles.

Corollary 3.2. The cluster F is symmetric with respect to the line throught z0
and z3.

Clearly the cluster F = F(θ, ρ,R) is uniquely determined by the parameters
θ, ρ andR and so is E = T (F) = E(θ, ρ,R). Moreover the triangular regions only
depend on two parameters: E3 = E3(θ, ρ), E4 = E4(θ,R). Clearly to obtain
a cluster E with the given topology it is necessary not only that 0 < ρ < R,
0 ≤ θ ≤ π

3 but also that 0 is not in the Reuleaux triangle centered in 1 but
belongs to the quadrangular regions which doesn’t touch the angle θ.

Lemma 3.3. We have that E3(θ, ρ) is strictly increasing in ρ, E4(θ,R) is
strictly decreasing in R, E1(θ, ρ,R) and E2(θ, ρ,R) are strictly decreasing in
ρ and strictly increasing in R.

Proof. If we increase ρ it is clear that the Reuleaux triangle F3 is strictly in-
creasing (with respect to set inclusion). Hence the E3 = T (F3) is also strictly
increasing (with respect to set inclusion) and its area is strictly increasing.

Since E1 = E′1 \ (E3 ∪E4) if the area of E3 is increasing the area of E1 must
be decreasing. The same is true for E2 = E′2 \ (E3 ∪ E4).

The argument can be repeated for the regions F4 and E4 when we decrease
R.

In particular given θ and an admissible measure |E3| then ρ is uniquely
determined. Conversely given θ and |E4| then R is uniquely determined.

Corollary 3.4. If |E3| = |E4| the whole cluster E is symmetric with respect to
the line Rew = 1

2 .

Proof. Let σ be the symmetry with respect to the line Rew = 1
2 . If E =

E(θ, ρ,R) the symmetric of E can be written as E(θ, ρ′, R′). But |E3(θ, ρ′)| =
|E4(θ,R)| and if we suppose that |E3(θ, ρ)| = |E4(θ,R)| we obtain ρ = ρ′ in view
of Lemma 3.3. Similarly we can state that R = R′ and hence σ(E3) = E4.

Remark 3.5. One can show (even if we don’t really need it) that R′ = 1/ρ, since
the symmetry of E with respect to Rew = 1/2, conjugated with T , becomes
the inversion with respect to the unit circle centered in z = 1.
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Lemma 3.6. For any given θ there exists at most one value of ρ (and R) such
that |E1| = |E3| = |E4|. The same for |E2| = |E3| = |E4|.

Proof. Given θ the double bubble E′ is uniquely determined. If there exists E
with the required condition we only need to inflate the two triangular regions
E3 and E4 by increasing ρ and decreasing R, starting from the given E′: ρ =
0, R = +∞ . In this process we can mantain the equality |E3| = |E4| (namely
with the condition ρ = 1

R , keeping the cluster symmetric with respect to the
line z = 1

2 ) and by Lemma 3.3 when ρ increases and R decreases the difference
|E1| − |E3| = |E1| − |E4| is strictly decreasing and hence it can be zero for at
most a single value of ρ and R.

Lemma 3.7. If θ > 0 then we have |E1| > |E2|.

Proof. The geometric idea of the proof is that if θ > 0 the region F1 is “closer”
to 0 than the congruent region F2 and hence by circle inversion the area of E1

would be greater than the area of E2.
We are going to compute the area of E1 and E2 as integrals over F1 and

F2. It is easy to check that the Jacobian determinant of the trasformation of R2

relative to the circle inversion T (w) = w/ |w|2 is 1/ |w|4. Using polar coordinates
centered in w = 1 can we write:

F1 =
{

1 + rei(θ+t) : t ∈
[
0, 23π

]
, r ∈ [ρ · r1(t), R · r2(t)]

}
for suitable continuous functions r1(t) ≤ r2(t). Since, as stated in Corollary 3.2,
F2 is the mirror-symmetric of F1 with respect to the line of angle θ passing
through z0 and z3 we have

F2 =
{

1 + rei(θ−t) : t ∈
[
0, 23π

]
, r ∈ [ρ · r1(t), R · r2(t)]

}
.

So

|E1| − |E2| =
∫∫

F1

1

|x+ iy|4
dxdy −

∫∫
F2

1

|x+ iy|4
dxdy

=

∫ 2
3π

0

∫ R·r2(t)

ρ·r1(t)

[
1∣∣1 + rei(θ+t)

∣∣4 − 1∣∣1 + rei(θ−t)
∣∣4
]
r dr dt.

(1)

Considering that for t ∈ (0, 23π] and θ ∈ (0, π3 ) it holds

sin θ sin t > 0,

by addition formula:
cos(θ + t) < cos(θ − t).

Then, since ∣∣1 + reiα
∣∣2 = 1 + 2r cosα+ r2

it follows

0 <
∣∣∣1 + rei(θ+t)

∣∣∣2 < ∣∣∣1 + rei(θ−t)
∣∣∣2
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hence
1∣∣1 + rei(θ+t)

∣∣4 − 1∣∣1 + rei(θ−t)
∣∣4 > 0.

We have proven that if θ > 0 then, by (1), |E1| > |E2|.

So, the condition |E1| = |E2| = |E3| = |E4| uniquely determines ρ, R = 1
ρ

and θ = 0 and hence there is only one possibile stationary cluster E in the class
considered. Moreover such a cluster has the two stated symmetries.

The proof of Theorem 1.1 is concluded by the following.

Lemma 3.8. If |E1| = |E2| = |E3| = |E4| the region E3 (and hence E4) is
strictly convex.

Proof. Recall that F3 is a Reuleaux triangle obtained as the intersection of three
congruent disks. So E3 = T (F3) is the intersection of the inversion of such disks:
these are disks themselves when the disks of F3 do not touch the point z = 0.
So, if ρ is small enough we know that E3 is strictly convex. As ρ increases the
set E3 remains strictly convex up to a value ρ = ρ0 when the circle containing
the arc z0z1 (which is centered in z2) happens to pass through the point z = 0.
When ρ = ρ0 the edge w0w1 of the cluster E becomes flat (and, by symmetry,
all internal edges are flat) and hence, by stationarity, the curvature of the arc
w2w1 is equal to the curvature of w1w4 (and, by symmetry, all external arcs
have the same curvature). In this particular case it is elementary to check that
|E3| > |E1|.

Since we know that |E1|−|E3| is strictly decreasing as ρ increases and R = 1
ρ

decreases (Lemma 3.3) it is apparent that the value of ρ giving the only cluster
with |E1| = |E3| is smaller than ρ0 and hence that the region E3 remains strictly
convex.
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