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ABSTRACT. On four-dimensional closed manifolds we introduce a class of canonical Rie-
mannian metrics, that we call weak harmonic Weyl metrics, defined as critical points in the
conformal class of a quadratic functional involving the norm of the divergence of the Weyl
tensor. This class includes Finstein and, more in general, harmonic Weyl manifolds. We
prove that every closed four-manifold admits a weak harmonic Weyl metric, which is the
unique (up to dilations) minimizer of the corresponding functional in a suitable conformal
class. In general the problem is degenerate elliptic due to possible vanishing of the Weyl
tensor. In order to overcome this issue, we minimize the functional in the conformal class
determined by a reference metric, constructed by Aubin, with nowhere vanishing Weyl ten-
sor. Moreover, we show that anti-self-dual metrics with positive Yamabe invariant can be

characterized by pinching conditions involving suitable quadratic Riemannian functionals.
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1. INTRODUCTION

Given a closed (i.e., compact without boundary) smooth manifold M, it is a natural problem
to study canonical Riemannian metrics g on M. Many of them can be defined as critical points
of certain functionals defined on the space of metrics. Perhaps the most notable one is the
FEinstein-Hilbert action

n—2
S(g) == Volg(M)_n/ R, dVy,
M

where Vol,(M) and R, denote the volume of M and the scalar curvature of g, respectively.
All stationary points of &(g) are Einstein metrics, i.e. metrics whose Ricci curvature satisfies
Ricy = A g, for some A € R. While the existence of Einstein metrics as critical points of &(g)
is not guaranteed (for instance in dimension four due to topological restrictions [3, Theorem
6.35]), a constrained version of the problem always admits a solution. More precisely, Yamabe,
Aubin, Trudinger, and Schoen (see [22]) showed that the Yamabe invariant

Y(M, [g]) := inf &(g)

g€lg]
1
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is always attained in the conformal class [g] of a reference metric g. Moreover, every critical
point in the conformal class of the normalized functional has constant scalar curvature.

In the last decades several curvature conditions generalizing Einstein’s have been inves-
tigated by many authors (see for instance the classical Besse’s book [3], the book [7] and
references therein). In particular, important examples arise as critical points of functionals
which are quadratic in the curvatures (see for instance [9, 18, 1]). In general, the associ-
ated Euler-Lagrange equation is of fourth order in the metric, hence obtaining a satisfactory
existence theory can be challenging.

An important class of metrics which generalizes the Einstein condition are harmonic Weyl
metrics, i.e. metrics with divergence-free Weyl tensor, §,WW, = 0 (see again [3] and [11]). In
fact, it is well known that all Einstein metrics have harmonic Weyl tensor and that, on four
dimensional closed manifolds, there are topological obstructions to the existence of harmonic
Weyl metrics with constant scalar curvature (see [4, 12]). For other results concerning the
existence of canonical metrics on four manifolds see, for instance, [24, 20] and references
therein.

From now on, let M* be a four-dimensional closed smooth manifold. Observe that all

harmonic Weyl metrics are critical points of the quadratic scaling-invariant functional
1
D(g) := Vol, (M)? /M 16, W,[2 V.

while the viceversa does not hold in general. Note that conformal variations give rise to a
second order Euler-Lagrange equation, since the transformation law of JW (see [3]) is given
by

0GW5 = 6,W + Wy(Vgu,-,-,-)

for every conformal metric § = e?“g € [g]. Thus, in the same spirit of the Yamabe problem,
it seems natural to define the conformal invariant
D(M, [g]) := inf D(g).
g€lgl

The main purpose of this paper is to study the existence of minimizers in a given conformal
class for the functional g — D(g). In general the problem is degenerate elliptic due to the
possible vanishing of the Weyl tensor. In order to overcome this issue, we minimize the
functional in the conformal class determined by a reference metric, constructed by Aubin,
with nowhere vanishing Weyl tensor. On the contrary, for the Yamabe problem the existence
of minimizers is guaranteed in every conformal class.

Besides the aforementioned variational point of view, there is another geometric motivation
for studying constrained critical points of g — ©(g). Indeed, it was proved by Derdzinski [11]
that, on four manifolds, harmonic Weyl metrics satisfy the nice Weitzenbock formula

1 1
(1.1) G AW = VW[ 4 S RIW [ = 8 WijaWijng Whipg
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(see the next section for the precise notation). On the other hand, Chang, Gursky and Yang
[10] showed that, on every closed four-manifold (M4%, g), the following integral formula holds
(see Corollary 2.3):

1
(1.2) / (NW\? — 4|6W | + 5R\W|2 -3 Wijklwiquwklpq) AV =0.
M

A simple consequence is that, on a closed four-manifold M?,
oWy =0 = Equation (1.1) holds on (M?,g).

In Section 3.1 we show that a metric is critical in the conformal class for the functional
g — D(g) if and only if it satisfies the Weitzenbock formula

1 1 4
(1.3) 5A|W|2 = |[VW|? + §R|W|2 — 3WijaiWiipaWhipg — 8|OW|? + Vol(31) /M |SW2dV .
Note that this equation reduces to (1.1) if §W = 0. Hence we are led to give the following

Definition 1.1. Let M* be a closed four-dimensional manifold. A Riemannian metric g on
M* is a weak harmonic Weyl metric if the Weitzenbéck equation (1.3) holds on (M*,g).

Clearly, harmonic Weyl metrics (and Einstein metrics) are weak harmonic Weyl metrics. We
explicitly observe that integrating equation (1.3) we obtain the identity (1.2) and this gives
no a priori obstructions to the existence of weak harmonic Weyl metrics, contrary to what
happens with (1.1).

Our first main result is the following

Theorem 1.2. On every closed four-dimensional manifold there exists a weak harmonic Weyl

metric.

Remarks:

1. Aubin [2] proved that every closed Riemannian manifold admits a constant negative
scalar curvature metric, while Lohkamp [23], generalizing Gao and Yau result [13]
concerning dimension three, showed that there exist constants a(n) > b(n) > 0 such
that each n-manifold M carries a metric g whose Ricci curvature Ric, satisfies —a(n) <
Ricy < —b(n). Besides these ones, to the best of our knowledge, Theorem 1.2 is
one of the few existence results of a canonical metric, which generalizes the Einstein
condition, on every four-dimensional Riemannian manifold, without any topological
obstructions.

2. To be more precise, the metric in Theorem 1.2 is constructed as follows: first, thanks
to a result of Aubin [2, Section 4], on every four-dimensional manifold M* we can
choose a reference metric gy with |[Wy|g, > 0. Then, we prove that on (M4, go)
the infimum D(M, [go]) is attained by a conformal metric g € [go], which is a weak
harmonic Weyl metric. Moreover, we show that every critical point in the conformal

class [go] is necessarily a minimum point.
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3. From both the geometric and the analytic point of view, it would be interesting to
understand which conformal classes of metrics contain a weak harmonic Weyl repre-
sentative.

4. We can also consider the (anti-)self-dual functional
0% (g) == Vol, (M)} [ 15, W3 av;.
M

and define weak half harmonic Weyl metrics its critical points in the conformal class.
In particular we can prove that, given a closed four-manifold (M*, go) with |W;§ lgo >0,
there exists a weak half harmonic Weyl metric g € [go]. However, we do not know
whether the aforementioned result by Aubin can be extended to the (anti-)self-dual
Weyl tensor W+,

In order to prove this theorem, we endow a closed four-manifolds M* with the metric g

constructed by Aubin and we consider the functional

1
2 1
D(v) :=D(v %go) = </ U_4dV> / <4!W|Q|Vv|2 + [6W P0? — (v)? WsijkWpijk,p> v,
M M

where all the geometric quantities are referred to gy and the function v belongs to the convex

cone

H(M) = {ue HY (M) :u>0 ae. and/ utdv < oo} .
M

The condition |W| > 0 is crucial, as it implies the uniform ellipticity of the problem. A
variational argument, combined with some spectral analysis and maximum principles, shows
that v — ©(u) admits a minimum point v in H(M). Consequently, v is a (weak) solution of

the Euler-Lagrange equation

1 , =32
- div(|[W|*Vo) + ([6W? + div(WeijxsWpijkp)) v = D (v) (/ v‘4dV) 5
M
which is a uniformly elliptic semilinear equation with singular nonlinearity. Here, again, all

the geometric quantities are referred to gg. Hence, by standard elliptic regularity theory,
v e C®(M) and

D(M = i £3) = i ) .
(M, [go]) 1L (u) i (u)
Therefore
g:=v"2go

is a weak harmonic Weyl metric on M*.

In the second part of the paper, we prove a characterization of anti-self-dual four-dimensional
manifolds, i.e. (M*,g) with W; = 0, assuming the positivity of the Yamabe invariant, a

pinching condition on the conformal invariant

+ R —+12
WH(, [g]) == /M W2 v,
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and the non-positivity of the modified functional
1 5 — 9«
ot = Vo, 00t ([ gy -2 [ mpwgzav,)
M M

defined for a given a € [0, 2]. In the same spirit we define D (g). Note that DE(g) = DH(g).
9

More precisely, we have the following

Theorem 1.3. Let (M*,g) be a closed Riemannian manifold with positive Yamabe invariant
Y(M,[g]) > 0. Then (M*,g) is anti-self-dual, i.e. W = 0 if and only if there exists a € [0, 3]
such that

Oé2

1N+UWJQ)§*gJKﬂLMDZ and  D;(9) <0 for some g € [g].

The same result holds for the anti-self-dual part W~ of the Weyl tensor. As a consequence
we can prove the following lower bound for W (M, [g]):

Corollary 1.4. Let (M*,g) be a closed Riemannian manifold with positive Yamabe invariant
Y(M,[g]) > 0. Suppose that there exists o € [0, 5] such that

DG <0 for some G e [g].
Then either ng =0 or

(2x(M) £ 37(M)) ,

302 1672
1+ 2a2 3

WM. [g]) > (

where x(M) and 7(M) denote the Euler characteristic and the signature of M, respectively.

Remarks:
1. Gursky [16] proved that, if SW* =0, i.e. @zét(g) <0, on a four-manifold (M4, g) with

9
positive Yamabe invariant, then either ng =0or

WL, [g]) = 2

(2x(M) £371(M)) .

The conclusion in this case is stronger than the one in Corollary 1.4. Ideed, the
harmonic Weyl condition implies the validity of the pointwise Weitzenbock formula
(1.1) which allows to conclude by using a clever Yamabe-type argument.

2. The same estimate as in Corollary 1.4 with « = % appeared in [5, Theorem 4.1]. The
authors proved the lower bound on W* (M, [g]), assuming (M?, g) being a gradient
shrinking Ricci soliton satisfying

1
/MWWW§/MWWW;
M 12

ie. @jf(g) < 0. Note that in Corollary 1.4 we do not assume any curvature condition

3
on the Ricci tensor.
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3. We conjecture that Theorem 1.3 and Corollary 1.4 hold only assuming one of the

conformally invariant conditions
Dy (M, [g]) := inf D5 (9) <0.
g€lgl

The conjecture would follow, if one could show that the infimum DX (M, [g]) is achieved.
This could be obtained by arguments similar to those used in the proof of Theorem
1.2, further assuming |W§i]§ > 0 for some g € [g]. Without such an extra condi-
tion, the functional and the associated Euler-Lagrange equation are degenerate, thus
a completely different analysis has to be performed.

The paper is organized as follows. Section 2 is devoted to the geometric preliminaries: we
give the relevant definitions, we prove a general Weitzenbock formula for the Weyl tensor and
we recall (and define) some Riemannian functionals. In Section 3 we derive the Euler-Lagrange
equation satisfied by critical points in the conformal class of the functional g — ©(g). The
existence of solutions to the elliptic equation and the proof of Theorem 1.2 are given in Section
4. Section 5 is devoted to the proof of a new quantitative Kato inequality for the Weyl tensors
W# which is used, in Section 6, to prove the rigidity results Theorem 1.3 and Corollary 1.4.

2. PRELIMINARIES

The (1, 3)-Riemann curvature tensor of an (oriented) Riemannian manifold (M™, g) is de-
fined by
R(X,Y)Z =VxVyZ -VyVxZ -V xyZ

(see e.g. [21]). Throughout the article, the Einstein convention of summing over repeated
indices will be adopted. In a local coordinate system the components of the (1,3)-Riemann
curvature tensor are given by Réjk% = R(%, a%)% and we denote by Riem its (0,4)
version with components by R;jx = gimRﬁl. The Ricci tensor is obtained by the contraction
Ry = gleZ-jkl and R = g”“RZ-k will denote the scalar curvature (gij are the coefficient of the

o o
inverse of the metric g). Moreover, we will denote by (Ric);x = Rix = Rix— %R gix the traceless
Ricci tensor. The so-called Weyl tensor is then defined by the following decomposition formula
in dimension n > 3,
Wije = Rijli —

—3 (Rirgjt — Rugjr + Rjugi — Rjrga)

(2.1) +(n1)}§n2) (9ik9jt — gugjk) -

The Weyl tensor shares the symmetries of the curvature tensor. Moreover, as it can be easily
seen by the above formula , all of its contractions with the metric are zero, i.e. W is totally
trace-free. In dimension three, W is identically zero on every Riemannian manifold, whereas,

when n > 4, the vanishing of the Weyl tensor is a relevant condition, since it is equivalent
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to the local conformal flatness of (M™,g). We also recall that in dimension n = 3, local
conformal flatness is equivalent to the vanishing of the Cotton tensor

1
(2.2) Cijk = Rijr — R j — W(ngij — R;gi) ,

where R;;, = ViR;; and R, = ViR denote, respectively, the components of the covari-
ant derivative of the Ricci tensor and of the differential of the scalar curvature. By direct

computation, we can see that the Cotton tensor C satisfies the following symmetries
(2.3) Cijk = —Cikjs Ciji + Cjpi + Crij = 0,

moreover it is totally trace-free,

(2.4) 97 Cij1, = g"*Ciji = ¢*Cijr = 0,

by its skew—symmetry and Schur’s lemma. We recall that, for n > 4, the Cotton tensor can
also be defined as one of the possible divergences of the Weyl tensor:

n—2 n—2 n—2
(2.5) Cijk = <n — 3>Wtikj,t = —<n — 3>Wtijk,t = 3(5W)z‘jk:'

A computation shows that the two definitions coincide (see e.g. [3]).
We say that an n-dimensional, n > 3, Riemannian manifold (M", g) is an Einstein manifold
if the Ricci tensor satisfies

Ric = Ag,

for some A € R. In particular R = nA € R and the Cotton tensor C' vanishes. If n > 4,
equation (2.5) implies that the divergence of the Weyl tensor and thus of the Riemann tensor
are identically null, i.e.

(2.6) Wiijke = 0, Rijre =0

on every Einstein manifold. Manifolds satisfying these curvature conditions are said to have
harmonic Weyl curvature or harmonic curvature, respectively. The Hessian V? of some tensor

T of local components T”Zjll""j; will be denoted by

(va)pq = quprjl'”jl — T]ljl

1.0 11.-.9k,Pq

and similarly V¥ for higher-order derivatives. The (rough) Laplacian of a tensor T is given

by AT}t = gpaT)t %t | . The Riemannian metric induces norms on all the tensor bundles,

and in coordinates the squared norm is given by

le...lenl...nl

2 _ iaimg LM . .
|T| =4g g Gjina « - i Ly qp tmy.my, -
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2.1. Dimension four. In this subsection we recall some known identities involving the Weyl
tensor on four dimensional Riemannian manifold. First we recall that, if T = {TUM} is
a tensor with the same symmetries of the Riemann tensor (algebraic curvature tensor), it
defines a symmetric operator, T': A2 — A? on the bundle of two-forms A by

1
(2.7) (Tw = S Tijhwis

with w € A%, Hence we have that X is an eigenvalue of T if Tijriwi; = 2Awyy, for some
0 # w € A?; note that the operator norm on A? satisfies ||T|3, = 1|T|*.

The key feature is that A%, on an oriented Riemannian manifold of dimension four (M4, g),
decomposes as the sum of two sub-bundles A*, i.e.

(2.8) A=At A.
These subbundles are by definition the eigenspaces of the Hodge operator
x: A% — A2
corresponding respectively to the eigenvalue 1. In the literature, sections of A™ are called
self-dual two-forms, whereas sections of A~ are called anti-self-dual two-forms. Now, since

the curvature tensor Riem may be viewed as a map R : A? — A2, according to (2.8) we have
the curvature decomposition

W++1%I\ Ric
Ric \W—+%I

(2.9) R =

where

W=W+4+Ww-
and the self-dual and anti-self-dual W* are trace-free endomorphisms of A*, I is the identity
map of A? and Rc;c represents the trace-free Ricci curvature Ric — %g.

Following Derdzinski [11], for z € M*, we can choose an oriented orthogonal basis w™, 7T, 6+
(respectively, w™,n~,07) of AT (respectively, A7), consisting of eigenvectors of W¥ such that
W] = | = 6] = V2 and, at z,

(2.10) Wt = %()\iwi Qwt + T ot + 0t Hi)
where A\t < y* < vF are the eigenvalues of WF. Since W are trace-free, one has A\* + p& +
v* = 0. By definition, we have

1
W22 = (V) + (05)* + () = W=

We recall that the orthogonal basis w®,n*, % forms a quaternionic structure on T, M (see

[11, Lemma 2]), namely in some local frame

+ £+ _ £ _ pEptx _ 5.

WipWpj = Mipllp; = iplp; = ~0j
+ + _ pE = - + £ _ +
Wipllpy = Vi Mipbpy = Wi iy =15
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The following identity on the Weyl tensor in dimension four is known (see [11])
=+ =+ + +

As far as the covariant derivative of Weyl is concerned, it can be shown that (see again

[11]), locally, one has

(2.12) VIWE = (d\EF@wt + O\ —pH)ct o+ 0F - A e i) ew
+ (dp* @0 + (OF = pH)F @w® + (1 —vHaF @ 0F) @1
+ (dv* @ 6% + (VF = NF @ w® + (1 — vF)a* @ nF) @ 6*F

for some one forms a*,b*, ¢*. By orthogonality, we get
IVWIRe = IVWHIRe + VW R

and
(2.13)
VW32 = [dNF P+ ]dp P+ [dv™ P +2(pF —vF)?|a™ P+ 2(AF =) b5 P+ 2(AF — )2 P

where |[VIWE[2, = L[VIWE|2,
Finally, the following identity holds (see [6])

Lemma 2.1. On every n-dimensional, n > 4, Riemannian manifold one has
Wzgkl th]ktl - 7‘VW| ‘6W‘
In particular, on a four-manifold one has
+ +2 +2
(214) W’ijlthgktl |VW } B ‘5W ’ :
2.2. A general Weitzenbock formula for the Weyl tensor. In this subsection, we prove

that on every n-dimensional Riemannian manifold, n > 4, the Weyl tensor satisfies a nice

Weitzenbock formula. Namely we have

Lemma 2.2. Let (M™,g), n >4, be a n-dimensional Riemannian manifold. Then

1 n—2
(2.15) §A|W|2 = [VW[* - 2<n — 3> W2 + 2Rpg Wit Wi
(2.16) -2 (2Wijklw/z‘pkqw/jplq + %Wijsziquszpq> = 2(WijtCirr); -

Proof. From the second Bianchi identity for the Weyl tensor (see for instance [10, 8]) we have

~Witijmm — Wiimi jm + Winjktim = Yijkl,

1
\Ijijkl = m(cljm,méki + Clmi,m(;kj + Clij,k Ck:jm m(S li Ck:mz m(S Ckzy l)
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The previous relation can be rewritten as

Witijmm = Wmjktmi — Wiikimg) — Yajkt + Whimg,im — Wiimjmi) — Whimi,jm — Wimi,mg)

n—3
= (n — 2) (Ciktj — Cikrg) — Yijkt + Whimjim — Wiimgmi) — Wiimi jm — Whimimg)-

Using the commutation relation for the second covariant derivative of the Weyl tensor (see
[8]) to expand the two terms Wiimjim — Wiimjmi and Wiimi jm — Whimi,m;, and also the first
Bianchi identity for W, we deduce

n—3
AWiji = (n — 2> (Cikt,j — Ciri) = Yijhi
+ RipWikt — RipWpikt — 2(WipjgWpaki — WipgWipak + Wipgke Wipqt)
1
+ 5 [RypWhint — RipWpjkt — Bip(Whirj — Wjki) — Bip(Wygii — W]

1
+ 5 BpaWhiqij = WajqiOri + Wing0tj — WjigOis)-

Contracting with Wj;i; and exploiting again the first Bianchi identity, we obtain formula
(2.2). O

In dimension four, using identity (2.11) and the orthogonality of W=, the formula simplifies
to the following

Corollary 2.3. Let (M*,g) be a four dimensional Riemannian manifold. Then
1 1
5Aywy? = VW |? — 4)oW > + 5R\Wy? — 3WijtaWijpaWitpg — 2(WijuaCina), -
As a consequence, if M is closed one has the integral identity (see [10]):
1
/M (|VW|2 — 4|6W |2 + §R|W|2 — 3WijleiquWklpq) v =0.
Moreover, we have

1
/ (|vwi\2 — AW+ SRIWE = 3WE, W
M

1jpq

+
Wiky) AV =0.

2.3. Some Riemannian functionals. Let (M*, g) be a closed four-dimensional Riemannian
manifold. First of all we recall the Chern-Gauss-Bonnet formula and the Hirzebruch signature
formula (see [3, Equation 6.31])

o 1
(2.17) /M <|W+\2 + W™ 2 = 2|Ric|* + 632) dV =327y (M) ,

(2.18) /M (IWT]2 = W™ ?) dV = 48r°7(M).
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If we denote with o2(A) the second elementary function of the eigenvalues of the Schouten
tensor A := % (Rz’c — %Rg), it is easy to see that
1 1 ©
A) = — 2 - - 12
o2(A) %R S | Ric|
and the Chern-Gauss-Bonnet formula reads
/ (WH? + W2 + 1602(A)) dV = 3202y(M) .
M
In particular, using (2.18), we get

(2.19) 8 /M oo (A) dV = /M WER AV + 872 (2x(M) + 7(M)) .

Observing that the L?-norms of the Weyl tensors W in dimension four are conformally

invariant we define

WH(M / (W2 dv,.
In particular, it follows that the integral of o3(A) is conformally invariant too. We denote
by Y(M, [g]) the Yamabe invariant associated to (M*, g) (here [g] is the conformal class of g)
defined by

Rav; Vul? dV Ru?dV.
V(M [g]) = ¢ Ju Ry P g JuVuPdV gy Ru

[9] Vol ( )2 weW1.2(M) (fM ut dV)

It is well known that, on a closed manifold, Y (M, [g]) is positive (respectively zero or negative)

if and only if there exists a conformal metric in the conformal class [g] with everywhere positive
(respectively zero or negative) scalar curvature. We recall the following lower bound for the
Yamabe invariant which was proved by Gursky [14].

Lemma 2.4. Let (M*, g) be a closed four-dimensional manifold. Then, the following estimate
holds

Y(M,[g]))* > 96 /

2(A) dV, :/ R2dvg—12/ |Ric|? AV, .
M M M

FEquivalently,
V(M [g])> = 12W*(M, [g]) + 967° (2x(M) £ 7(M)) .

Moreover, the inequality is strict unless (M*,g) is conformal to an Einstein manifold.

As anticipated in the Introduction, we now define the quadratic, scale-invariant functionals
given by
D*(g) = Vol ( %/ 16, W2V,

Let also
D(g) =Dt (9) + D (g) = Voly(M %/ 16, W, |2 dV,.

We also set

D*(M, [g]) = inf D*(g)
g€lgl
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and

D(M, [g]) Zgig[g]@@-

It is clear that if [g] contains a metric with §W* = 0, then D*(M, [g]) = 0. For example, if
(M*, g) is Kéhler with positive scalar curvature R, then g = R;Q g satisfies 5§W§+ =0 and
thus Dt (M, [g]) = 0.

Finally, for a € [0, g] we define the Riemannian functionals

5 — 9
</M5gW;E|§dVg—24 /MR9|W;E|§dvg> :

D (M, [g]) = inf D5 ().
g€lg]

D=

D5 (9) = Voly(M)

and its infimum

Note that
D3 (9) =D*(g).

9

3. THE EULER-LAGRANGE EQUATION

Let M* be a closed smooth manifold. In this section we derive the Euler-Lagrange equations

satisfied, respectively, by a critical metric in the conformal class of the functional
1
g+ D(g) = Voly(M)2 / |0 W2 dV
M
and by the conformal factor.

3.1. Critical metrics. Let U € C*°(M) and u(z,t) : M x R — M be a 1-parameter family

of smooth functions such that u(z,0) = 0, dufg’t) = U(x); for a conformal change of the
=0

metric of the form

(3.1) g(t) = ey,

from the formula for the conformal change of 6W (see [3]) we easily deduce that
(3.2) U TOW, i = Wing + wi(z, ) Wijn

du(z,t)

Since, for n = 4, we have dVg;) =e dVy, we obtain

~ 1
D(1)) = Vol (M)F [ 15300 Wato By Vi
(3.3)

1
2
- < / e4u(f¢>dvg> / 6*2“<x»t>(|5gwg|2 + fus (2, ) Wi |2 +2u5(x,t)wsijkwpijk,p) A
M M
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Letting V' := Voly (M), a simple computation shows that
dD (§(t) 1 ww))
— =3 / etu(@0) / 4U dV, / EALAR
t=0 M M M
+ W/ (—2U16,W, 2 + 20 Woiie Wiy ) 4V,
M

dt
= 2{/M [Vl/Q </M ‘59W‘z d‘@) - Vl/Q’fng@ - Vl/Q(Wsijk,stijk)p} Udvy};

thus we deduce that g is a critical point in the conformal class of the functional, i.e.

dEO) _y yrecewn
dt £=0 ’
if and only if
1 2 2
3.4 Wsi'k,sWi'k:/ 0W 2 dVy — 2|0,
( ) JR,Sp 7T Pt VOlg(M) M| g9 |g g | g |g

Now, exploiting the algebraic properties of the curvature in dimension four, we show that
(3.4) is equivalent to the condition defining weak harmonic Weyl metrics (see Definition 1.1).

Proposition 3.1. Let M* be a closed smooth manifold. Then a metric g is critical in the
conformal class for the functional ©(g) if and only if g is a weak harmonic Weyl metric, i.e.
it satisfies the formula

1 1 4
5) =AW = VW24 =RIW? = 3W, i, WiinaWitng — 8|6W |2 / W24y

Proof. We now perform our computation for the self dual part W™*. Since W;; jkW;’ ik =
1|W 45, by equation (2.11), we have

1 2
+ ot _ +
(3'6) (WsijkWpijk>ps - iA}W ‘ :
On the other hand,
- + + 2
(W;i_jkWp—gjk>pS - W;jk,pswpijk + ijis7ij'—i/;ip,s + ‘5W+‘ + W;jkW;jk,sp7
which implies
1 2 2
W Wi =0+ ZA]Wﬂ AW Wokips — [SWF[,
where O := W;jk SpW;gjk - W;.rjk pstt.jk; thus, using (3.4) and Lemma 2.1 we deduce
1 4
(3.7) SO = |VW+\2—8|5W+\2+V/ oW |?av — 20.
M

Now, using formulas (3.16)-(3.22) and Lemma 3.4 in [10], a computation shows that
R
20 = 3(W*)? - Z|wH ",

thus completing the proof for W*. The same computation gives the formula for W~ and, by
the matrix decomposition (2.9), (3.5) follows. O
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3.2. The PDE for the conformal factor. Let now gg be a fixed Riemannian metric on
M* and let v := e~ for some u € C°°(M*). Then, equation (3.3) yields

1
2 1
D(v) :=D(v 2gy) = (/ v4dV> / <4|I/V|2|Vv\2 + [6W 202 — (v?), WszjkWpijk,p> v,
M M
where all the geometric quantities are referred to the fixed metric go. Clearly we have

DO [g]) = inf D).

To simplify the notation, now let
= LW, By = W, d = [§W?
a = 4’ ‘ 5 s = sijk YWpijk,p an Cy = | | .

Then the previous relation rewrites as

D(v) = (/M v‘4dV>é /M (a| Vol + cov? — (B, V(v2))) dV .

Imposing that v is critical for the functional v — D(v), i.e.

dD (v + typ)

— oo (M
o 0 VYOo<pelC™®M),

t=0

we obtain the FEuler-Lagrange equation

A
(3.8) —div (aVv) +cv = 1550),
with
~3/2
c=cy+divB and A(v) :==D(v) </ v_4dV> .
M

In particular, the metric v=2gq is a weak harmonic Weyl metric, i.e. it satisfies (3.5).

4. EXISTENCE RESULTS AND PROOF OF THEOREM 1.2
4.1. Proof of Theorem 1.2. Consider the uniformly elliptic self-adjoint operator
(4.1) Ly := —div (aVv) 4+ cv

whit a € C*®°(M), a > 0 and ¢ € C*°(M). Note that no sign conditions are required on the
coefficient ¢. We assume that the first eigenvalue of L, i.e.

Vul? 2) dv
A= inf R(u) = inf fM (a\ Y ;—cu )
wEH (M), uz0 wEH (M), uz0 [y u?dv

)

is non-negative. We will show the existence of positive solutions to the equation
A(v)

Lv =
55
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Av) = D(v) (/Mv—4dv>_g, D(v) = (/Mv—‘ldv>é /M (a|Vv]* + cv?) aV

and that any two such solutions are proportional. More precisely, the solutions v that we find

with

satisfy

D) =D
where
4.2 D:= inf D(u).
(42) 0<ueC (1) ()

Now let (M*, go) be a closed Riemannian manifold where gy is the metric of Aubin (see

the Introduction) satisfying

(4.3) (Wyol2 >0 on M.

2
|90

Note that the previous assumptions on the operator L are satisfied in the case of the
geometric one defined in Section 3 with the choice a := $|Wy,|g0? and ¢z, = (co)g, +divg, By,-
Therefore the conformal metrics v~2gg have weak harmonic Weyl curvature and the proof of

Theorem 1.2 is completed.

4.2. Preliminary results. From now on, all geometric quantities are referred to the metric
go and we omit to write their dependence. Let

H(M) := {uEHl(M):u>0a.e. and/ u_4dV<oo}
M

and define

D:= inf D(u).
ueH (M)

By standard elliptic theory, there exists a smooth, positive, first eigenfunction ¢ of L, i.e. a
solution of

Lor = M1
a ’LL2 cu2
NOte that i):{((pl) = )\1 (I‘ecall that m(u) fM( |v I + )dV

T w2 dv )-
maximum principle.

We have the following weak

Lemma 4.1. Let \; > 0. Under the previous assumptions, if u € H*(M) satisfies Lu > 0 in
the weak sense, then u >0 a.e. on M.

Moreover, using Lemma 4.1, one can prove the following strong maximum principle.

Lemma 4.2. Let A\; > 0. Under the previous assumptions, if u € H*(M) satisfies Lu > 0 in
the weak sense, then either u =0 a.e. on M or essinfy; u > 0.

We have a two-sided estimate on D in terms of Ay
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Lemma 4.3. Under the previous assumptions, we have
Juetdv
(S ot dv)

Proof. By Jensen’s inequality, for every u € H(M)

Vol(M)3 A\ <D < Ar

[NIE

1

= < / d[/ V()I(M) 2.,

[w

A < R(u) <D(u) Vol(M)~

and the first inequality follows. Moreover, for every u € H(M) we have

D(u) = %(U)M .
(fyutdv)?
Then
2 2
D <D(p1) = R(p1) fMSOldV T = fM(pldV T A1
(fM @f4 dV) ’ (IM ‘Pf4 dV) :

0

Consequently, by Lemma 4.1 and Lemma 4.2, maximum principles hold whenever D > 0
and D = 0 if and only if Ay = 0.

4.3. Existence. In this subsection we prove that the functional u — D (u) admits a minimum
vin H(M), that v satisfies the associated Euler-Lagrange equation and it is smooth.

Lemma 4.4. Suppose that uw € H(M) and that ©(u) = D > 0. Then Lu > 0 in the weak
sense, 1i.e.

/M {a(Vu, V) + cup}dV >0 for any ¢ € CL(M), o >0.
Proof. By contradiction, assume that there exists ¢ € C1'(M), p > 0 such that
/M {a(Vu, Vo) + cup}dV < 0.
For every v € H'(M) define
Qv) := /M {a|Vv]* + cv?} dV .

Note that
Qv) = Milvl|72 -
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Take any t € R with |¢| small enough. We have that
D(u+tp) —D(u)

_ ( /M(u + tcp)4dV> : Qu + ty) — ( /M u4dV> : Q(u)
()

+ < /M u_4dV> : [Q(u + t) — Qu)] .

Q(u + tp)

Furthermore,
Qu+tp) >0,
1 1
2 2
</ (u+t<p)4dV> = </ u4dV> <0 forany t>0,,
M M
and
Qu+tp) — Qu) = Q' (w)[plt +o(t) as t —0,

where

Q' (u)[p] = Q/M{a<Vu, V) + cuptdV < 0.

Thus, for ¢t > 0 sufficiently small,

1
2
D(u+tp) —D(u) < </ u4dV> {Q'(u)[g]t + o(t)} < 0.
M
So,
D(u+tp) < D(u)
with u +tp > 0 a.e., u + tp € H(M). This is a contradiction, since

D(u)=D.

Corollary 4.5. Suppose that u € H(M) and that ©®(u) =D > 0. Then essinfyr u > 0.

Proof. The thesis follows from Lemmas 4.2 and 4.4.

Theorem 4.6. There exists v € C*°(M),v > 0 such that

Moreover v satisfies

17
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Proof. First we suppose that

By Lemma 4.3, Ay = 0. Moreover,

_ fM@%dV R(or) — A1 fM@%dV
(ertav)? (¢r*dv)*

Since p; € C*°(M), we have that also D = 0. Hence

D(p1)

D(p))=D=D=0.

From now on we suppose that D > 0. Let {v,, }neny C H(M) be a sequence of functions such
that ©(v,) — D. Since the functional ® is scaling invariant, without loss of generality, we
can assume that fM v;2dV = 1. Since D > 0, in view of Lemma 4.3, we have that A\; > 0.

In addition,
/ {a|Vv,|* + cv2}aV > )\1/ v2dV .
M M

Clearly, for any n € N sufficiently large,
0<D<D(v,) <D+1.
Hence
A1 / v2dV
M

< [ {alvunf? + citjav
M

1
= </ v;4dV>2/ {a|Vv,|* + cv2}dV
M M

=D(vy) <D+1.
So, {v,} is bounded in L?(M). Moreover, for any n € N sufficiently large,

(min a) / |V, |2dV
M M

S/ a|an|2dV:CD(vn)—/ cv2dV
M M

< D(vn) + [lellzeelvnlZ:
D+1

(4.4)

<D+1+4|clr=

So, {Vuv,} is bounded in L?(M), and {v,} is bounded in H'(M). Consequently, there exist
a subsequence of {v,}, which will be still denoted by {v,}, and a function v € H'(M) such
that

v, — v in HY(M),

n—oo

v, — v in L*(M),

n—oo
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v, — v a.e.in M.

n—oo
Therefore,
v;4 — v ae in M;
n—oo
here we assumed that v,,,v : M — [0, +oo] and 5 =0, % = 00. By Fatou’s lemma,
/ vV = / liminf v, *dV < liminf/ v 4V =1.
Thus

/ vV < 400.
M

This implies that v > 0 a.e. in M. Hencev € H(M),v > 0 a.e. in M, fM v=4dV < 1. Using
the fact that v, — vin H' (M) and v, — v in L?(M), we can infer that
n—oo n—oo

1
_ —4 2 2 2
D<D() = </ v dV> / {a|Vv|* 4+ cv”}dV
M M
g/ {a|Vv]* + cv?}dV
M
n—oo n—oo

< liminf/ {a|Vv,|* + cv2}dV = liminf D (v,) = D.
M

So,
Dw)=D>0.

From Lemma 4.2 it follows that essinf v > 0. Take any ¢ € C1(M). Since D(v) = D, we get
d [D(v+ te)] | 0.
v =
dat P lt=0 =
Consequently, for any ¢ € C*(M), we have

/M{a<Vv, Vo) + copldV =D < / 4dv>

3

m\o,

/
M

Lv="D (/ U_4dV> i v 9 = f weakly in M.
M

Since essinf v > 0, we have that f € L>°(M). Therefore, by standard elliptic regularity theory,
veC®(M),v>0in M. We can therefore infer that

D<D(w)=D<D.

Hence,
D(w)=D="D.

This completes the proof. ]
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Remark 4.7. From the proof of Theorem /.6 we can deduce that D = 23, S0

4.5 Lv——ﬁ vV 22)5 m M.
( )
M

4.4. Uniqueness. Observe that equation (4.5) is scaling invariant, in the sense that if u;
solves (4.5), then u; := Bus, with 8 € RT, satisfies

Lugzﬁ( / u2_4dV> uy® i M.
M

Therefore, uniqueness for equation (4.5) does not hold. However, we have the following result.

(VI

Theorem 4.8. Suppose that both uy and uz are solutions of equation (4.5) and that uy >
0,ug > 0 in M. Then there exists 3 € R™ such that

U1:ﬁUQ mn M.

1 1
W= </ u14dV>4, v = (/ u24dV>4.
M M

Y=gy, w = yug

/ YAV _/ w iV =1.
M M

Ly =Dy™® in M,
Lw=Dw™® in M.

Proof. Let

So, the functions

satisfy

Then

We choose a > 0 such that
Y —aw >0 and mj\/i[n{d)fozw} =0.
Since M is compact, we can find a minimum point g € M of the continuous function ¢ — aw,
so that ¢(xg) = aw(zp) . First assume that D > 0. We have that
L —aw) =D —aw™) in M.
In particular, at xy we obtain

~ _ D(1 — ab)
5 5 _
0>DW°(x0) — aw °(xg)) = P (zg)
This yields @ > 1, and so,

Y >aw>w in M.

By repeating the same argument interchanging the role of ¥ and w, we get

w >y in M.
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Hence
pur =Y =w=~vyuz in M.
Thus, we obtain the thesis with g = %
Now, assume that D = 0. Since ¢ — aw > 0, if we take M > |||/, then we have

L(Yp —aw)+ M) —aw) >0 in M,
and minys {1 — aw} = 0. Observe that
ML+ MId)=M(L)+M=DM>0.

Thus, by Lemma 4.2 applied to the operator L + MId for the function 1 — aw, we obtain
1) = aw. Therefore,

Uy = 10411/2 in M.
1
The proof is now complete. O

Remark 4.9. The proof of Theorem 4.8 in the case D=0 is equivalent to the proof that
A1(L) is simple.

Consider equation

Njw

(4.6) Lu = D(u) < /M u4dV> i M.

Observe that D (u) = D(Bu) for any € RT. Furthermore, equation (4.6) is scaling invariant
as before, so uniqueness for equation (4.6) does not hold. However, we have the following
result.

Theorem 4.10. Suppose that both uy and uy are solutions to equation (4.6), and that uy >
0,ug > 0 in M. Then there exists 3 € R™ such that

up = PBus  in M.

Proof. First assume that ©(u;) > 0,9 (ug) > 0. Let

o= </Mu1_4dV>ifD(u1), v = </M u2_4dV>}l’D(u2).

So, the functions
Y i= QU W= YU
satisfy
Ly =45 in M,
Lw=w" in M.
Hence the conclusion follows as in the proof of Theorem 4.8, when D> 0. Also, in the case

D(uy) = D(uz) = 0, the thesis is obtained by the same arguments as in the proof of Theorem
4.8, when D = 0.
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We claim that the case ®(u;) > 0 and ©(u2) = 0 cannot happen. Indeed, by contradiction
assume that ®(u;) > 0 and D(uz) = 0. Define

Y= puy, W= ug.
We choose a > 0 such that
Y —aw >0 and m]vi[n{w—ozw} =0.

Since M is compact, we can find a minimum point g € M of the continuous function ¢ — aw,
so that ¥ (xg) = cw(xp) . We have that

L( — aw) =¢~° in M.

In particular, at xy we obtain
0> (xg) > 0.

This is a contradiction. The proof is now complete. ]

Corollary 4.11. Every critical point of the functional u — D(u), defined in H(M), is a

minimum point.

Proof. Let w be a critical point of the functional u — ©(u). Recall that this is equivalent to
requiring that ©'(w) = 0, i.e. w is a solution of equation (4.6). By Theorem 4.6, there exists
a minimum point v of the functional u +— ®(u), which is a solution of equation (4.5). By
Theorem 4.10 with u; = w and us = v we can infer that w = Sv, for some S > 0. Then

D(w) =D(Bv) =D(v)=D.
This is the thesis. U
4.5. Further results. For any 8 > 0 consider equation
(4.7) Lu=pBu™ in M.

Let

= mj\'}ngpl, l:= m]\z}xwl.

Proposition 4.12. Assume that A\; > 0 and > 0. Then there exists a solution u € C*°(M)

of equation (4.7) such that
BNS . _L(B\
— <u<-|— i M .
</\1> _u_l<A1> "

Moreover, if v > 0 is any solution of equation (4.7), then v =wu in M .

o~ e~
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Proof. Define

U= a1, U= o,

‘ oY=

where o, @ are positive constants to be chosen. It is easily seen that if o < = T then u is a
subsolution of equation (4.7), that is .

Lu < ,8@75 in M.
In fact,

Lu= Mayp < fu™® = Bap;® in M,

provided that a < %. It is similarly seen that if & > *3—%%, then @ is a supersolution of
equation (4.7), that igl L/\l

Lu>pu?® in M.
Clearly, 0 < a < @. Define

Lu = —div (aVu).
Hence equation (4.6) is equivalent to
(4.8) Lu= f(u) in M,
where f(u) := —cu +u~°. We have shown that u is a subsolution of equation (4.8), while u

is a supersolution. Moreover,
O<al<u<u<al in M,

and f € C([al,al]). Hence by the standard sub— and supersolutions method, we can infer
that there exists a weak solution to equation (4.8), and hence to equation (4.7), satisfying

u<u<u in M.

By standard regularity theory it follows that u € C°°(M). Moreover, by the same arguments
as in the proof of Theorem 4.8 when D > 0 we can infer that if v > 0 is any solution of
equation (4.7), then v = u. This completes the proof. O

Proposition 4.13. Suppose that D > 0. Let v be a solution of equation (4.5). Then

o\ E 1 _ ~\ L
D\° 1 D\°

() <w </ v4dV> < - <) n M.
A1 M L\

Proof. Let v be a solution of equation (4.5). Then, v is also a solution of equation (4.7) with
~ _3
8=D (fM v_4dV) 2. Hence, by Proposition 4.12, the thesis follows. O

~|| |o~
~

o~
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5. A QUANTITATIVE IMPROVED KATO INEQUALITY

We recall that, given any tensor T, at every point where |T'| # 0, one has the classical Kato
inequality

VT > VT

It was proved by Gursky and Lebrun [17], that on a four-manifold (M*, g) with half harmonic
Weyl metric, i.e. §W=* = 0, there holds

VWE? > g\wwi\}?

if |Wi\ = 0. In this section we prove a new quantitative version of the classical Kato inequality
for the Weyl tensors W*. In particular, we recover the sharp Kato inequality established in
[17].

Lemma 5.1. Let (M*,g) be a four dimensional Riemannian manifold. Then at a point where
|W*| # 0 it holds

8(k—1)

VWP > k|VIWE||? — 222w )2

VWA = kT -

for every k € [O, %) In particular, if SW* =0, then at a point where |W*| # 0, it holds

5
VWP = SV

Remark 5.2. As it will be clear from the proof, in the case k = 0, the inequality holds on
the whole M, even at points where |W*| = 0.

Proof. We perform our computations for the self-dual case; first recall that (see equation
(2.13))

IVWENZ = N2+ Jdp P+ v P+ 200" —vF)?Ja® P20 o) [0F P+ 2(0F — )22,

In the rest of the proof we omit the “+” on A, u, v, w, , 6 and a, b, ¢ for the sake of simplicity.
We set @ := (u — v)a, b:= (A —v)b and é:= (A — p)c; we also define

X, = —wjjayg, Y] = nijBi7 Zi = —Qijéi.
Then, from the quaternionic structure, we get

(XP=lal, [YP =2 2P =]e?

and

<X, Y> = —Hij[;idj, <X, Z> = —T]ijéidj, <Y, Z> = —wijéibj .
Since A+ p+v =0, |[W|? = L{W|* and |[VW|? = 1| VW|* we have

(5.1) VW = 8(|dA[2 + (A, dv) + [dv]? + | X2 + [Y 2 + | Z])
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and

W = 2a(VAz 2+ a) ‘2

2
]

(2AdA + 2vdy + vd) + Adv)

1
2V A2+ 2 4 v

1 2
= 2\ A\ + (N + 2v)dv|*.
2()\2+V2+)\1/)’( +v)dA + (A + 2v)dv|

Thus
(5.2)

A —— (20 021N + (0 20l + 2027+ 2)(\ + 20)dd .

N+ V2w
Now, since by (2.12) one has
2Wiii s = ()‘twpt + CeMpt — Et@pt)wij
+ (Cowpt + punpt + @iOp) i
+ (—l_?twpt + aMpt + Vtept)eijv
we deduce, after some computations,
6W | = [Awopt + e — bebe|”
+ [Crwpt + penpe + atept|2
+ | —bwpt + Genpr + uteptf
= A + |dp)? + |dv)? + 2(a® + 2] + 2|
+ 2wg (—Cibs + peas + avs)
- 277815(_)\1553 + Ctas — BtVs)
+ 204 (AeCs + Cepis — beis),
and thus
(5.3) 6W | = 2|dA[2 + 2 (AN, dv) + 2|dv|* + 2| X|* + 2]V 2 + 2| Z]?
+2(dX\, X) +2(d\,Y) — 4(d\, Z) + 4 (dv, X) — 2(dv,Y) — 2 (dv, Z)
—2(X,Y) — 2(X, Z) — 2{Y, Z).

25

With respect to the “formal” ordered basis dX\, dv, X, Y and Z, we can express the three

quantities in equations (5.1), (5.2) and (5.3) as quadratic forms, with associated matrices

given by, respectively,

M|VW+|2 -

O O O = @
O O O 0 =~
o O 0w o O
S 0w O O O
co O O O O




26 G. CATINO, P. MASTROLIA, D. D. MONTICELLI, AND F. PUNZO

(2A +v)? CAx+v)(A+2v) 0 0 O
) (22X +v)(\ + 2v) (A + 2v)? 000
0 0 0 0 0
i 0 0 0 0 O_
2 1 1 1 -2
1 2 2 -1 -1
M|6W+|2: 1 2 2 _]. _1 5
1 -1 -1 2 -1

-2 -1 -1 -1 2

Now we define the quantity Q := [VWT|* + ki |[dWT[*2 — ko|V|WF||?, for some k1, ks € R,
with associated matrix Q = M\VW+|2 + k1M|V|W+\|2 — k2M|5W+|2; we have then

[ 84 2k1 — 2kp Bt gy — 2k B ki =2k ]
4 ky — 2k BIIOEM) g oy 0k, OPI ok ok —h
Mg = k1 2k 8+2k1  —k —ky
k1 —kq —kq 8 + 2k —kq

I = —ky “ky —k 8+ 2k |

A computation gives that det(Mg) = 384(8 + 5k1)(8 + bk — 8k — 3k1ka) . Let

8(k—1)
5—-3k

Thus det(Mg) = 0. We claim that the matrix Mg is non-negative definite. In fact, we can

k= kQ and /{?1 =

check that the principal minors of order 2,3 and 4 have determinants, respectively,

144(3 — k)(1 — k)?
(5 — 3k)2 ’

384(1 — k)2((3 + 2k)A* + (3 + k)Av + (3 + k)v?)
(5 —3k)2(\2 + \v + v?) ’

and
3072 k(1 — k)2(2\ + v)?
(5—-3k)2(A2 + A +12)

Since k € [0, %), it is easy to see that all these quantities are nonnegative. Moreover, with
similar computations, one verifies that all the leading minors have non-negative determinants.

Thus Mg is non-negative definite and the inequality is proved. O
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6. RIGIDITY RESULTS: PROOF OF THEOREM 1.3 AND COROLLARY 1.4

In this section we prove Theorem 1.3 and Corollary 1.4. Let (M*, g) be a closed manifold
of dimension four with positive Yamabe invariant, Y(M, [g]) > 0. Assume that (M*, g) is not
anti-self-dual, i.e. W # 0, and satisfies the pinching condition

2

(6.1) WM, [g)) < TY(M,[g))?,

for some « € [0, 8] Obviously, if & = 0 we have a contradiction. Moreover, the case o = g

was already considered in [16] (see also [19]). Hence we can assume « € (0,2). In order to
prove Theorem 1.3, we will show that

D5(g) >0 forevery g€ g].
From Lemma 2.3 we have

1
2 2 2 Wt W
(6.2) / VW2 dv :/ (4|5”+| —§R|W+| -|-3W;kl i;pq Ijlpq

)av.
On the other hand, using the following sharp inequality holds

1 3
(6.3) W Wi Wi, < %|W+| ;

by Hoélder’s inequality, one has

1
+ Wt wt +13
/M W Wit Wi dV < \/é/M|W >dv

() ()

The Yamabe-Sobolev inequality applied to u := |[W ™| yelds

1
1 3
W Wik Wi dv < —————— (/ W”dV) (6/ viw 2dV+/ RW*%W)
§a/ yV\W+H2dV+a/ RW*av,
M 6 Jum
where in the last inequality we have used the assumption (6.1). Let
My :={x e M:|W"|(z) =0}.

Note that, in general, Vol(My) can be strictly positive (by a unique continuation principle,
this is not the case when §W™* = 0, see for instance [15]). Then one has

8]
/M Wijklwgpqw,;;pq AV < a/M IVIWH||2dV + 6/ RIWT|2dV .

\Mo M\ Mo
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Thus, the improved Kato inequality in Lemma 5.1, implies for every k € [0, %)

alk —1)
Wi W Wi dv < — VWT|?dv (/ SWT|?dv
/ ikl ™" pa " klpq k /M\Mo | | * k(5 —3k) Jan, | |
+ a/ RIW*dv .
6 J
On the other hand, by Remark 5.2, on My we have
8
VIR 2 oW,

hence

a/ VW2V + M/ owWH2ay + 2 [ RWHRav > 0.

k Ju, k(5 — 3k) 6 Jag, -
Combining the above inequalities with (6.2), we obtain

k — 3« 4k(5 — 3k) + 24a(k -«
WH2dv < / SWT? — /RW“dV.
o [ rewpay < HE W - =5 [ R
Now choose k£ = 3a and we get
/ SWH2aV > 5_9a/ RIWH2dv,
M M
i.e.
D5 (9) > 0.

If D1 (g) > 0, since all the assumptions are conformally invariant, this estimate holds for
every metric in the conformal class g € [g] and the claim follows. On the other hand, suppose
that ©F(g) = 0. Then

59a

/ oW 2aV = / RW*2av .
M

From a previous estimate, since k = 3o, we obtain

8(3a — 1) a
T WE dv <= Wt12av / SWH]2av / RIWT|2dV
/ z]kl iypq " klpg /M’v ‘ +3(5_9a) M‘ ‘ + 6 v ‘ ’

1 3o —1
:/ vwtzay 4 (2oL, /R|W+|2dv
3/ o "6) /)y

:1/ vwERay 4+ 22 2/ RIWH2dV .
3 ) M

Thus

— 1 -2
/ IVWH2dV < (5 do 1, 9a >/ R|W+\2dv+/ \VWﬂzz/ VW 2av
M 6 2 6 M M M

In particular we have equalities in the previous computations. Equality in the Holder inequal-
ity implies that |WW ™| is constant, while the equality case in the Yamabe-Sobolev inequality
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gives that also the scalar curvature R has to be a positive constant. Substituting in (6.2), we

5—-9 1 1-3
/ |VW+|2dV:< O‘—+O‘>/ RIW*>av = “/ RIW*[>av
" 6 2" 2) 3 Ju

obtain

1 —
_ ( 33O‘> Vol(M)R|W 2.

This implies a < % To conclude we use the fact that we have equality also in the Kato

inequality in Lemma 5.1 with k = 3¢, i.e.
8(1 — 3a)
(5 —9a)

on M*, since [W*| > 0. First of all, by the equality in the algebraic estimate (6.3) we

VW2 = oW PP

know that W has exactly two distinct eigenvalues. Following the proof in Lemma 5.1, since
det(W™) > 0, we can assume that y = X and v = —2X. Thus ¢ = 0 and Z = 0. Substituting
in (5.1) and (5.3), we obtain

VW H|? = 24|dA2 + 8| X|? + 8| |2
OWF[* = 6]dA2 + 2/ X2 + 2|V ] — 6 (d\, Y) + 6 (d\,Y) —2(X,Y) .

Thus

8
WP = = ((9(1 — )N+ 3(1 — Q)| XP +3(1 — a)[Y]?

+6(1 — 3a) (d), X) — 6(1 — 3a) (d\,Y) +2(1 — 3a) (X,Y) ) .

8(1 — 3a)

0= W+2_
VW™l (5 —9)

Following again the notation in Lemma 5.1, the associated matrix is given by

8 9(1 — ) 3(1-3a) —3(1-3a)
M = m 3(1 — 30[) 3(1 — Oé) (1 — 30[)
—-3(1-3a) (1-3a) 3(1-a)
A computation shows that det(M) = 288a(2 — 3«r), which has to be zero. This is a contra-
diction, since 0 < a < % and the proof of Theorem 1.3 is complete.

Corollary 1.4 follows from Theorem 1.3 using the lower bound for the Yamabe invariant
proved in [14] (see Lemma 2.4).
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