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Abstract. In this paper we prove a C1,α regularity result in dimension two for almost-minimizers
of the constrained one-phase Alt-Caffarelli and the two-phase Alt-Caffarelli-Friedman functionals
for an energy with variable coefficients. As a consequence, we deduce the complete regularity
of solutions of a multiphase shape optimization problem for the first eigenvalue of the Dirichlet
Laplacian, up to the boundary of a fixed domain that acts as a geometric inclusion constraint.
One of the main ingredient is a new application of the epiperimetric inequality of [22] up to the
boundary of the constraint. While the framework that leads to this application is valid in every
dimension, the epiperimetric inequality is known only in dimension two, thus the restriction on
the dimension.

1. Introduction

In this paper we prove the regularity of the free boundary of solutions to variational one-phase
and two-phase free boundary problems in dimension two. In particular, we consider the case when
the support of the solution is constrained in certain region D ⊂ R2 with smooth (C1,β-regular,
for some β > 0) boundary and we show that the free boundaries must be C1,α-regular up to
the points of contact with the boundary of the region D. Our arguments strongly rely on the
epiperimetric inequality for the one-phase and the two-phase Bernoulli free boundary functionals
(see [22]). The only obstruction to the generalization of our results to any dimension comes from
the fact that the epiperimetric inequality is only known in dimension two. Since our methods
are of purely variational nature, we are able to obtain the regularity of the free boundaries of
almost-minimizers (even in the presence of a geometric constraint D). Precisely, we prove the
following results.

(OP) The C1,α-regularity of the boundaries of the almost-minimizers of the one-phase Alt-Caffarelli
functional for an operator with variable coefficients, which may also satisfy a further geometric
inclusion constraint (Theorem 1.1 and Corollary 1.3);

(TP) The C1,α-regularity of the boundaries (of each phase) of the almost-minimizers of the two-
phase Alt-Caffarelli-Friedman functional for an operator with variable coefficients (Theorem 1.5).
In particular, this is a problem left open in [12].

In the second part of the paper, we apply our regularity results for almost-minimizers to the
solutions of multiphase shape optimization problems, where the variables are n-uples of different
disjoint domains (phases). Precisely, we consider the model case in which the variational cost
functional is given by the sum of the first eigenvalue (of the Dirichlet Laplacian) and the area
of each domain. In Theorem 1.11, we show that if the family of domains (Ω1, . . . ,Ωn) is a
solution to such a multiphase problem, then the boundaries ∂Ωi are C1,α-regular; thus we solve
the (regularity) problem left open in [3].

The regularity of the free boundaries arising in the context of shape optimization problems
involving Dirichlet eigenvalues is a topic that received a lot of attention recently (we refer for
instance to the recent papers [20, 18, 19, 10]). The multiphase shape optimization problem we
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consider is part of this general framework and was studied in [8] and [3]. It is related to the
regularity of the optimal sets (in a box) for the second Dirichlet eigenvalue, which is expected
to have common qualitative properties with the solutions to the multiphase problem in the case
n = 2. We also notice that our almost-minimality conditions naturally arise in shape optimization
problems involving Dirichlet eigenvalues (see for instance [20], [7] and Section 7). The geometric
inclusion constraints are also very common in this framework (see for instance [6], [4] and the
books [17], [5]). For instance, they are often used to provide the compactness necessary for
the existence of optimal shapes. Thus, our regularity results and techniques can be applied not
only to the solutions of the multiphase problem studied in [8] and [3], but to a variety of shape
optimization problems, for instance, on manifolds or for operators with variable coefficients.

The regularity of the one-phase free boundaries was first studied by Alt and Caffarelli in [1]
who prove that in any dimension the (local) minimizers of the one-phase functional have smooth
free boundaries up to a small singular set, while in dimension two, they show that the entire free
boundaries are C∞ smooth. The regularity of almost-minimizers of the one-phase functional was
addressed by David and Toro in [13] and by David, Engelstein and Toro in [12], where they prove
the C1,α regularity of the free boundary up to a singular set, which is empty in dimension two;
the same result was recently obtained by De Silva and Savin [15] by a different method based on
a non-infinitesimal notion of viscosity solution. In [?] and [15], the authors consider only the case
of the Laplacian, but it is clear that their proof can be generalized to an operator with variable
coefficients.

With our approach, working with a functional with variable coefficients, instead of constant
ones, leads only to minor variations in the proof. We also stress that there is no way to reduce
the non-constant-coefficients case to the constant-coefficients one. In fact, if u is a minimizer
(or almost-minimizer) of a functional with variable coefficients, then for any point x, there is a
change of coordinates, for which the new function becomes an almost-minimizer for a functional
involving only the Dirichlet energy (see Lemma 3.2). This change of coordinates, on the other
hand, depends on the point. It is also responsible for the anisotropic optimality condition on the
free boundary (see (1.5)).

The regularity of minimizers for the one-phase functional subjected to a geometric inclusion
constraint was studied by Chang-Lara and Savin in [11], where, using the approach of De Silva
[14], the authors prove that in a neighborhood of the contact set (with the boundary of the
constraint) the free boundary is C1,α regular in any dimension. In Theorem 1.1 we consider
almost-minimizers satisfying an inclusion constraint, which combines the difficulties from [12]
and [11]: the lack of equation ([12]) and the presence of a geometric constraint ([11]). In fact,
our approach allows to treat these two situations at once.

The two-phase problem was first studied by Alt, Caffarelli and Friedman in [2] (see Remark
1.6) but the regularity of the free boundary (for minimizers) was achieved only recently in [22].
In [12], David, Engelstein and Toro address the question of the regularity of almost-minimizers
of the two-phase functional and prove the rectifiability of the free boundary in any dimension.
In Theorem 1.5 we prove the C1,α regularity of the free boundaries of almost-minimizers for
two-phase functional. We notice that, since each phase acts as a geometric obstacle for the
other one, and in view of the Chang-Lara-Savin result ([11]), the C1,α-regularity is optimal even
for minimizers, the best α being 1/2. We also notice that, in the two-phase case, an additional
(smooth) geometric inclusion constraint does not affect the regularity of the free boundaries. In
fact, a two-phase free boundary cannot touch the boundary of the constraint. This is a simple
consequence of the three-phase monotonicity formula introduced in [23] and [8], just as in the
case of the multiphase shape optimization problem (1.10) (see [3] and Section 7).

1.1. Regularity for almost-minimizers. Throughout this paper we will use the following no-
tations.
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Let Sym+
k be the family of the real positive symmetric k× k matrices. We fix a matrix-valued

function A = (aij)ij : B2 → Sym+
2 , for which there are constants δA, CA,MA > 0 such that

|aij(x)− aij(y)| ≤ CA|x− y|δA for every i, j and x, y ∈ B2 ;

M−1
A |ξ|2 ≤ ξ ·A(x)ξ =

2∑
i,j=1

ξiξjaij(x) ≤MA|ξ|2 for every x ∈ B2 and ξ ∈ R2. (1.1)

We fix Qop, Q+
tp and Q−tp to be Hölder continuous functions on B2, for which there are constants

δQ, CQ, MQ > 0 such that for any Q = Qop, Q+
tp or Q−tp, we have

|Q(x)−Q(y)| ≤ CQ|x− y|δQ for every x, y ∈ B2 ;

M−1
Q ≤ Q(x) ≤MQ for every x ∈ B2 .

Finally, for every function u : R2 → R, we will use the following standard notations

u±(x) := max{±u(x), 0} , Ωu := {u 6= 0} , Ω+
u := {u > 0} and Ω−u := {u < 0}.

We are now in position to state our main free boundary regularity results.
The one-phase free boundaries. For every u ∈ H1(B2), x0 ∈ B1 and r ∈ (0, 1), we define the
one-phase functional

Jop(u, x0, r) =

∫
Br(x0)

(∑
i,j

aij(x)
∂u

∂xi

∂u

∂xj
+Qop(x)1{u>0}

)
dx.

Here and after Br(x) denotes the ball with center x ∈ R2 and radius r > 0 and we will write
Br := Br(0). Let A+(Br) be the admissible set

A+(Br) =
{
u ∈ H1(Br) : u ≥ 0 in Br , u = 0 on Br \B+

r

}
,

where H stands for the upper half-plane H :=
{

(x, y) ∈ R2 : y > 0
}

and B+
r := Br ∩H. We say

that the nonnegative function u : B2 → R is a almost-minimizer of the one-phase functional Jop

in the upper half-disk B+
2 , if u ∈ A+(B2) and there are constants r1 > 0, C1 > 0 and δ1 > 0 such

that, for every x0 ∈ B1 ∩ ∂Ωu and r ∈ (0, r1), we have

Jop(u, x0, r) ≤
(
1 + C1r

δ1
)
Jop(v, x0, r) + C1r

2+δ1 , (1.2)

for every v ∈ A+(B2) such that u = v on B2 \Br(x0).

We have the following result for the almost-minimizers of the one-phase Alt-Caffarelli functional
Jop constrained in the upper half-disk B+

2 .

Theorem 1.1 (Regularity of the constrained one-phase free boundaries). Let B2 ⊂ R2 and
u : B2 → R be a non-negative and Lipschitz continuous function. If u is a almost-minimizer
of the functional Jop in A+(B2), then the free boundary B1 ∩ ∂Ωu is locally the graph of a C1,α

function. Moreover, u satisfies the optimality condition{
|A1/2

x0∇u|(x0) = Q
1/2
op (x0) for every x0 ∈ ∂Ω+

u ∩B2 ∩ {x2 > 0},
|A1/2

x0∇u|(x0) ≥ Q1/2
op (x0) for every x0 ∈ ∂Ω+

u ∩B2 ∩ {x2 = 0}.
(1.3)

Remark 1.2. The Hölder continuity of the (exterior) normal vector nΩ is the best regularity result
that one can expect. Indeed, recently Chang-Lara and Savin [11] showed that even for minimizers

the regularity of the constrained free boundaries cannot exceed C1,1/2. Moreover, we notice that
the result analogous to Theorem 1.1 was proved in any dimension in [11], by a viscosity approach,
but only for minimizers of the functional Jop.
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Analogously, we say that the nonnegative function u : B2 → R is a almost-minimizer of the
one-phase functional Jop in B2, if u ∈ H1(B2) and there are constants r1 > 0, C1 > 0 and δ1 > 0
such that, for every x0 ∈ B1 ∩ ∂Ωu and r ∈ (0, r1), we have

Jop(u, x0, r) ≤
(
1 + C1r

δ1
)
Jop(v, x0, r) + C1r

2+δ1 , (1.4)

for every v ∈ H1(B2) such that u = v on B2 \Br(x0).

The regularity of the unconstrained one-phase free boundary ∂Ωu follows directly by Theorem
1.1. For the sake of completeness, we give the precise statement in Corollary 1.3 below.

Corollary 1.3 (Regularity of the unconstrained one-phase free boundaries). Let B2 ⊂ R2 and
u : B2 → R be a non-negative and Lipschitz continuous function. If u is a almost-minimizer of
the functional Jop in B2, then the free boundary B1 ∩ ∂Ωu is locally the graph of a C1,α function.
Moreover, u satisfies the optimality condition

|A1/2
x0∇u|(x0) = Q

1/2
op (x0) for every x0 ∈ ∂Ω+

u ∩B2. (1.5)

Remark 1.4. The regularity of the free boundaries of the one-phase (unconstrained) almost-
minimizers was proved in [12] in every dimension, by a different approach.

The two-phase free boundaries. For every u ∈ H1(B2), x0 ∈ B1 and r ∈ (0, 1), we define the
two-phase functional

Jtp(u, x0, r) =

∫
Br(x0)

(∑
i,j

aij(x)
∂u

∂xi

∂u

∂xj
+Q+

tp(x)1{u>0} +Q−tp(x)1{u<0}

)
dx.

We say that the function u ∈ H1(B2) is a almost-minimizer of the two-phase functional Jtp in
B2, if there are constants r2 > 0, C2 > 0 and δ2 > 0 such that, for every x0 ∈ B1 ∩ ∂Ωu and
r ∈ (0, r2), we have

Jtp(u, x0, r) ≤
(
1 + C2r

δ2
)
Jtp(v, x0, r) + C2r

2+δ2 , (1.6)

for every v ∈ H1(B2) such that u = v on B2 \Br(x0).

Then, we have the following result:

Theorem 1.5 (Regularity of the two-phase free boundaries). Let B2 ⊂ R2 and let u : B2 → R
be Lipschitz continuous and such that the functions u± are solutions of the PDEs

−div (A∇u±) = f± in Ω±u ∩B2, (1.7)

where:

(a) the functions f± : Ω
±
u → R are bounded and continuous;

(b) the matrix-valued function A : B2 → Sym+
2 satisfies (1.1) and has C1-regular coefficients.

Under these conditions, if u is a almost-minimizer of the two-phase functional Jtp in B2, then
the free boundaries B1 ∩ ∂Ω+

u and B1 ∩ ∂Ω−u are locally graphs of C1,α functions, for some α > 0.
Moreover, u satisfies the optimality condition (on ∂Ω+

u ){
|A1/2

x0∇u+|(x0) =
(
Q+

op(x0)
)1/2

for every x0 ∈ ∂Ω+
u \ ∂Ω−u ∩B2,

|A1/2
x0∇u+|(x0) ≥

(
Q+

op(x0)
)1/2

for every x0 ∈ ∂Ω+
u ∩ ∂Ω−u ∩B2.

(1.8)

Remark 1.6 (Regularity of the two-phase free boundaries for minimizers). Alt, Caffarelli and
Friedman were the first to study the two-phase free boundaries in (see [2]). Precisely, they
studied the local minimizers of the functional

Jacf(u, x0, r) =

∫
Br(x0)

(
|∇u|2 + q2(x)λ2(u(x))

)
dx,

where q is Hölder continuous and bounded away from zero and λ is the function

λ2(u) = λ2
1 if u > 0 and λ2(u) = λ2

2 if u < 0.
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In the case, λ(0) = λ1, they prove that the free boundary ∂{u > 0} is C1 and that the two free
boundaries ∂{u > 0} and ∂{u < 0} coincide (this means that the set {u = 0} has empty interior).
On the other hand, the case

0 ≤ λ2(0) < min{λ2
1, λ

2
2}, (1.9)

where branching points may appear, was left completely open in [2]. We notice that our Theorem
1.5 covers this case, by setting

Q+(x) = q2(x)
(
λ2

1 − λ2(0)
)

and Q−(x) = q2(x)
(
λ2

2 − λ2(0)
)
.

Precisely, Theorem 1.5 implies that, if u is a minimizer of Jacf in a ball Br and (1.9) holds, then
the free boundaries ∂Ω+

u ∩ Br and ∂Ω−u ∩ Br are C1,α-regular. This result (for minimizers in
the constant-coefficient case and in dimension two) was first proved by the first and the third
author in [22]. In particular, it concludes the analysis of the free boundary for minimizers of the
functional Jacf, which was started in [2].

Remark 1.7 (Remark on the Lipschitz continuity of u). In Theorem 1.3 and Theorem 1.5 we
assume that the function u is Lipschitz continuous. In the case of the Laplacian, David and Toro
[13] proved that the Lipschitz continuity is a consequence of the the almost-minimality condition.
It is, of course, natural to expect that the same will hold if the operator involved has variable
coefficients. We will not address this question in the present paper since our main motivation
comes from the application to shape optimization problems as (1.10), for which the Lipschitz
continuity is often already known. Actually, in the case of (1.10), the Lipschitz continuity of the
eigenfunctions is used to deduce the almost-minimality (see Section 7).

We notice that, just from the fact that u is almost-minimizer of the two-phase functional Jtp,
without using the additional assumption (1.7), we can still deduce that u is differentiable at points
of the free boundary and that the optimality condition (1.8) holds. We summarize the regularity
properties, that can be obtained just from the almost-minimality, in the following proposition.

Proposition 1.8. Let B2 ⊂ R2 and let u : B2 → R be Lipschitz continuous almost-minimizer of
the two-phase functional Jtp in B2. Then, for every free boundary point x0 ∈ ∂Ω+

u ∩B1 (the case
x0 ∈ ∂Ω−u ∩B1 is symmetric), the following claims hold true.

(i) For every x0 ∈ ∂Ω+
u , there is a unique blow-up limit u+

x0 = lim
r→0

u+
r,x0, where u+

r,x0 is the

rescaling u+
r,x0(x) =

1

r
u+(x0 + rx) and the convergence is uniform on every ball BR ⊂ R2.

(ii) The blow-up limit is of the form

u+
x0(x) = µ+(x0) max

{
0, x ·A−1/2

x0 [ν̃x0 ]
}
,

where µ+(x0) is a positive real number and ν̃x0 ∈ R2 is a unit vector.
(iii) There are universal constants C > 0 and α > 0, and a radius r(x0) > 0, such that

‖u+
r,x0 − u

+
x0‖L∞(B1) ≤ Crα for every 0 < r < r(x0).

(iv) u is differentiable at x0, up to the boundary of Ω+
u , that is,

u(x) = (x− x0) · ∇u+(x0) +O
(
|x− x0|α

)
for every x ∈ Ω+

u ,

and the gradient at x0 is given by

∇u+(x0) = µ+(x0)A−
1/2

x0 [ν̃x0 ],

where ν̃x0 is the unit vector from (ii).
(v) If x0 is a one-phase point, x0 ∈ ∂Ω+

u \ ∂Ω−u , then

µ+(x0)2 = Q+
tp(x0) and r(x0) depends on the point x0.

(vi) If x0 is a two-phase point, x0 ∈ ∂Ω+
u ∩ ∂Ω−u , then

µ+(x0)2 ≥ Q+
tp(x0) and r(x0) = r0,

where r0 may depend on u, but not on x0.
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This statement is contained in Proposition 4.3, Lemma 6.1, Lemma 6.2 and Lemma 6.3. As a
corollary of Proposition 1.8, we obtain the following corollary, whose proof is standard and is, in
fact, similar to the proof of Theorem 1.1.

Corollary 1.9. Let B2 ⊂ R2 and let u : B2 → R be Lipschitz continuous almost-minimizer of the
two-phase functional Jtp in B2. Then, for every x0 ∈ ∂Ω+

u ∩∂Ω−u ∩B1, there exists a neighborhood
Ux0 such that the two-phase free boundary ∂Ω+

u ∩ ∂Ω−u ∩ Ux0 is contained in a single C1,α-regular
embedded curve.

We notice that the result from Theorem 1.5 is stronger (but requires the additional technical
assumption (1.7)). In fact, if the set Ω+

u , then the two-phase boundary ∂Ω+
u ∩ ∂Ω−u is (obviously)

contained in a C1,α curve. We believe that the C1,α regularity of the sets Ω+
u and Ω−u still

holds without the additional assumption (1.7), but at the moment, we cannot remove it from our
argument. This is mainly due to the fact that we use a combination of viscosity and variational
techniques. We give more details on the use of (1.7) in the following remark.

Remark 1.10 (On the role of the additional assumption (1.7) in Theorem 1.5). In order to conclude
the proof of Theorem 1.5, we will use Proposition 1.8 and the assumption (1.7). Indeed, the C1,α

regularity of ∂Ω+
u ∩B1 follows from the following two claims:

(1) The function µ+ : ∂Ωu → R is Hölder continuous.
(2) Suppose that u+ : B1 → R is also a (viscosity) solution to

−div (A∇u+) = f in Ω+
u ∩B1, |A1/2∇u+| = Q on ∂Ω+

u ∩B1,

where f is bounded, A is C1 and Q is Hölder continuous and bounded from below and above.
Then ∂Ω+

u ∩B1 is C1,α regular for some α > 0.

The first claim is proved in Lemma 6.4. We notice that in order to prove the continuity of µ+, we
use an argument by contradiction, in which we consider a sequence of the form un := u+

xn,rn , which
converges to some function u∞. At this point, we need that the boundary condition on ∂{un > 0}
passes to the limit (in viscosity sense). It is not at the present clear how to overcome this difficulty
if u is just an almost-minimizer. The second claim follows by the De Silva ε-regularity theorem
(see Theorem A.1). Also in this case we need that u solves an elliptic equation inside the positivity
set Ω+

u .

1.2. Multiphase shape optimization problem for the first eigenvalue. As a consequence
of Theorem 1.1 and Theorem 1.5, we prove a regularity result for the solutions of the following
multiphase shape optimization problem:

min
{ n∑
i=1

(
λ1(Ωi) + qi|Ωi|

)
: Ω1, . . . ,Ωn are disjoint open subsets of D

}
, (1.10)

where, we will use the following notations:
• 1 ≤ n ∈ N, and 0 < qi ∈ R, for every i = 1, . . . , n;
• D ⊂ R2 is a bounded open set with C1,β-regular boundary, for some β > 0;
• |Ω| denotes the Lebesgue measure of Ω;
• λ1(Ω) is the first eigenvalue of the Dirichlet Laplacian on Ω.

Theorem 1.11. Let (Ω1, . . . ,Ωn) be a solution of (1.10). Then, each set Ωi, i = 1, . . . , n, is a
bounded open set with C1,α regular boundary, for some α > 0.

We notice that, in the above theorem, we prove that the entire boundary ∂Ωi, i = 1, . . . , n, is
C1,α-regular. In particular, this holds at the contact points of Ωi with the other phases Ωj , j 6= i,
and also at the contact points of ∂Ωi with the boundary of the box ∂D.

In the special case n = 1, (1.10) reduces to the classical (one-phase) shape optimization problem

min
{
λ1(Ω) + Λ|Ω| : Ω open, Ω ⊂ D

}
. (1.11)
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The existence of a solution in the class of open sets and the regularity of the free boundary
(precisely, of the part contained in the open set D) was proved by Briançon and Lamboley in [4].
As a direct corollary of our Theorem 1.11, we obtain that the entire boundary is C1,α regular.

Corollary 1.12 (Regularity of the optimal sets for the first eigenvalue). Let D ⊂ R2 be a bounded
open set of class C1,β, for some β > 0, and let Λ > 0. Then, there is α ∈ (0, 1) such that every
solution Ω ⊂ D of (1.11) is C1,α regular.

1.3. Organization of the paper. In Section 2 we recall the definitions of the Weiss’ boundary
adjusted energies and the statements of the epiperimetric inequalities. Moreover, we show how to
use the monotonicity formula and the epiperimetric inequality to deduce the rate of convergence
of the blow-up sequences and the uniqueness of the blow-up limits. In Section 3 we prove a
technical lemma that reduces the one-phase and two-phase problems to the case of the Laplacian,
which allows us to apply the results of Section 2. Section 4 is dedicated to the classification of
the blow-up limits for the one-phase and the two-phase problems. In Section 5 and Section 6 we
prove Theorem 1.1 and Theorem 1.5, respectively. In Section 7 we prove that the (eigenfunctions
associated to the) solutions of the multiphase problem (1.10) are locally almost-minimizers of the
one-phase or the two-phase problems, and we prove Theorem 1.11.

2. Boundary adjusted energy and epiperimetric inequality

All the arguments in this section hold in every dimension d ≥ 2, except the epiperimetric
inequalities Theorem 2.2 and Theorem 2.3, which are known only in dimension two.

2.1. One-homogeneous rescaling and excess. Let d ≥ 2 and u ∈ H1
loc(Rd). For r > 0 and

x0 ∈ Rd, we define the one-homogeneous rescaling of u as

ux0,r(x) :=
u(x0 + rx)

r
for every x ∈ Rd. (2.1)

Then, ux0,r ∈ H1
loc(Rd) and for almost every r > 0, E(ux0,r) is well defined, where we set

E(v) :=

∫
∂B1

|x · ∇v − v|2 dHd−1, (2.2)

where x ∈ ∂B1 is the exterior normal derivative to ∂B1 at the point x ∈ Rd and Hd−1 stands
for the (d− 1)-dimensional Hausdorff measure. The excess function e(r) = E(ux0,r) controls the
asymptotic behavior, as r → 0+, of the one parameter family ux0,r ∈ L2(∂B1). Precisely, we have
the following elementary estimate.

Lemma 2.1. Let u ∈ H1
loc(Rd) and x0 ∈ Rd. Suppose that there are constants r0 > 0, γ ∈ (0, 1)

and I > 0 such that ∫ r0

0

E(ux0,r)

r1+γ
dr ≤ I. (2.3)

Then, there is a unique function ux0 ∈ L2(∂B1) such that

‖ur,x0 − ux0‖2L2(∂B1) ≤ γ
−1I rγ for every r ∈ (0, r0).

Proof. We set for simplicity, x0 = 0 and ur := ux0,r. Let 0 < r < R ≤ r0. Notice that, for any
x ∈ ∂B1, we have

u(Rx)

R
− u(rx)

r
=

∫ R

r

(
x · (∇u)(sx)

s
− u(sx)

s2

)
ds =

1

s

∫ R

r

(
x · ∇us(x)− us(x)

)
ds.
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Thus, by the Cauchy-Schwartz inequality, we obtain∫
∂B1

|uR − ur|2 dHd−1 ≤
∫
∂B1

(∫ R

r

1

s
|x · ∇us − us| ds

)2

dHd−1

≤
∫
∂B1

(∫ R

r
sγ−1ds

)(∫ R

r

1

s1+γ
|x · ∇us − us|2ds

)
dHd−1

≤ Rγ − rγ

γ

∫ R

r

E(us)

s1+γ
ds ≤ Rγ

γ

∫ r0

0

E(us)

s1+γ
ds,

which implies the claim by a standard argument. �

2.2. The one-phase boundary adjusted energy. Let d ≥ 2 and u ∈ H1(B1). For any Λ > 0,
we define the one-phase Weiss’ boundary adjusted energy as

Wop(u) :=

∫
B1

|∇u|2 dx−
∫
∂B1

u2 dHd−1 + Λ
∣∣{u > 0} ∩B1

∣∣. (2.4)

Let r > 0, x0 ∈ R2 and u ∈ H1
loc(Rd). The relation between Wop and the excess E is given by the

following formula, which holds for any function u and can be obtained by a direct computation
(see [24] and [20]).

∂

∂r
Wop(ux0,r) =

d

r

(
Wop(zx0,r)−Wop(ux0,r)

)
+

1

r
E(ux0,r), (2.5)

where zx0,r denotes the one-homogeneous extension of the trace of ux0,r in B1, that is,

zx0,r(x) := |x|ux0,r (x/|x|) =
|x|
r
u (rx/|x|) , for every x ∈ B1. (2.6)

In [22], the first and the third author proved the following epiperimetric inequality for the
Weiss’ energy Wop.

Theorem 2.2 (Epiperimetric inequality for Wop). Let d = 2. Let C0 > 0 be a given con-
stant. There exists a constant ε > 0 such that: for every non-negative c ∈ H1(∂B1) satisfying∫
∂B1

c dH1 ≥ C0, there exists a non-negative function h ∈ H1(B1) such that h = c on ∂B1 and

Wop(h)− Λ
π

2
≤ (1− ε)

(
Wop(z)− Λ

π

2

)
, (2.7)

where Wop is given by (2.4) and z ∈ H1(B1) denotes the one-homogeneous extension of c into
B1. Moreover, the competitor h has the following properties:

(a) There is a universal numerical constant C > 0 such that ‖h‖H1(B1) ≤ C‖c‖H1(∂B1).

(b) If Hx0,ν :=
{
x ∈ R2 : (x − x0) · ν ≥ 0

}
, for some x0 ∈ R2 and ν ∈ ∂B1, is a half-plane

such that

0 ∈ Hx0,ν and z = 0 on R2 \Hx0,ν , (2.8)

then we can choose the competitor h : B1 → R such that h = 0 on R2 \Hx0,ν .

2.3. The two-phase boundary adjusted energy. For every Λ1,Λ2 > 0 and v ∈ H1(B1), we
define the two-phase Weiss’ boundary adjusted energy as

Wtp(v) =

∫
B1

|∇v|2 dx−
∫
∂B1

v2 dHd−1 + Λ1

∣∣{v > 0} ∩B1

∣∣+ Λ2

∣∣{v < 0} ∩B1

∣∣. (2.9)

As in the one phase case, we have

∂

∂r
Wtp(ux0,r) =

d

r

(
Wtp(zx0,r)−Wtp(ux0,r)

)
+

1

r
E(ux0,r), (2.10)

where zx0,r is given by (2.6).
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Theorem 2.3 (Epiperimetric inequality for Wtp). Let d = 2. For every C0 > 0 there is ε > 0

such that: for every c ∈ H1(∂B1) such that

∫
∂B1

c+ dH1 ≥ C0 and

∫
∂B1

c− dH1 ≥ C0, there exists

a function h ∈ H1(B1) with h = c on ∂B1 such that

Wtp(h)− (Λ1 + Λ2)
π

2
≤ (1− ε)

(
Wtp(z)− (Λ1 + Λ2)

π

2

)
, (2.11)

where z ∈ H1(B1) is the one-homogeneous extension of the trace of c to B1. Moreover, there is
a universal numerical constant C > 0 such that ‖h‖H1(B1) ≤ C‖c‖H1(∂B1).

2.4. Almost-monotonicity and almost-minimality. Let u ∈ H1
loc(Rd) and x0 ∈ Rd. For any

r > 0, the function ux0,r and zx0,r are defined as in (2.1) and (2.6), respectively. In the next
lemma we will show that a almost-minimality of u, with respect to radial perturbations, implies
that the function r 7→W�(ux,r) is monotone up to a small error term (� stands for op or tp).

Lemma 2.4 (Monotonicity of W�). Let u ∈ H1
loc(Rd) and x0 ∈ Rd. Suppose that there are

constants r0 > 0, C > 0 and δ > 0 such that

W�(ux0,r) ≤W�(zx0,r) + Crδ for every r ∈ (0, r0), (2.12)

where � stands for op or tp. Then, the function

r 7→W�(ux0,r) +
Cd

δ
rδ, (2.13)

is non-decreasing on the interval (0, r0).

Proof. Using (2.5) for � =op (resp. (2.10) for � =tp), and the condition (2.12) we get

∂

∂r
W�(ux0,r) ≥

d

r

(
W�(zx0,r)−W�(ux0,r)

)
≥ Cd rδ−1,

which gives (2.13). �

2.5. Epiperimetric inequality and energy decay. In this section we show how to use the
epiperimetric inequality to obtain at once the decay for the energy W�(ux0,r) and the convergence
of ux0,r in L2(∂B1). The argument is very general and we treat the cases � = op and � = tp
simultaneously.

Lemma 2.5. Let u ∈ H1
loc(Rd), x0 ∈ Rd and W� be as in (2.4), if � = op, and (2.9), if � = tp.

Suppose that there are constants r0 ∈ (0, 1), C > 0, δ > 0 and ε ∈ (0, δ
2d+δ ) such that:

(a) (2.12) holds and the limit Θ� := lim
r→0

W�(ux0,r) (which exists due to Lemma 2.4) is finite;

(b) for every r ∈ (0, r0) there is a function hx0,r ∈ H1(B1) such that

W�(ux0,r) ≤W�(hx0,r) + Crδ, (2.14)

and we have the epiperimetric inequality

W�(hx0,r)−Θ� ≤ (1− ε)
(
W�(zx0,r)−Θ�

)
. (2.15)

Then, there is a unique function ux0 ∈ L2(∂B1) such that

‖ur,x0 − ux0‖2L2(∂B1) ≤ γ
−1I rγ for every r ∈ (0, r0),

where γ = dε
1−ε and I = r−γ0

(
W�(ux0,r0)−Θ�

)
+

dC

δ − γ
rδ−γ0 .
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Proof. We use (2.5) for � =op (resp. (2.10) for � =tp), then the epiperimetric inequality (2.15)
and the almost-minimality condition (2.14).

∂

∂r

(
W�(ux0,r)−Θ�

)
≥ d

r

((
W�(zx0,r)−Θ�

)
−
(
W�(ux0,r)−Θ�

))
≥ d

r

( 1

1− ε
(
W�(hx0,r)−Θ�

)
−
(
W�(ux0,r)−Θ�

))
≥ d

r

( ε

1− ε
(
W�(ux0,r)−Θ�

)
− Crδ

)
,

which implies that the function

f(r) =
W�(ux0,r)−Θ�

rγ
+

dC

δ − γ
rδ−γ

is non-decreasing on (0, r0) for γ = dε
1−ε , where we notice that γ ≤ δ

2 due to the choice ε ≤ δ
2d+δ .

In particular, using again (2.5) (resp. (2.10)), we get

f ′(r) ≥ 1

rγ+1
E(ux0,r),

which integrated gives

f(r0)− f(s) ≥
∫ r0

s

1

rγ+1
E(ux0,r) dr,

for every s ∈ (0, r0). Now, notice that, up to choosing a bigger constant C in (2.14), Lemma 2.4
implies that f(s) ≥ 0 for every s > 0. Thus, we get

f(r0) ≥
∫ r0

0

1

rγ+1
E(ux0,r) dr,

which is precisely (2.3) with I := f(r0). �

3. Change of variables and freezing of the coefficients

The arguments of the previous section, the monotonicity formula and the decay of the blow-up
sequences, can be applied only in the case when the operator in Jop (resp. Jtp) is the identity.
Thus, in order to prove the regularity results Theorem 1.1 and Theorem 1.5 we need to change
the coordinates and reduce to the case A = Id. We prove the main estimate of this section in
Lemma 3.2 below, but before we will introduce several notations.

Let A = (aij)ij : B2 → Sym+
2 and Qop, Q

+
tp, Q

−
tp : B2 → R+ be as in the Introduction and note

that we have
‖A1/2

x ‖ ≤M
1/2
A and ‖A−1/2

x ‖ ≤M 1/2
A for every x ∈ B2,

where ‖A‖ = sup
{
|Au| : u ∈ R2, |u| = 1

}
and MA is a constant (as in Subsection 1.1).

Remark 3.1. We recall that if the (real) matrix A is symmetric and positive (A ∈ Sym+
d ),

then there is an orthogonal matrix P such that PAP t = diag(λ1, . . . , λd), where P t is the
transpose of P and diag(λ1, . . . , λd) is the diagonal matrix with eigenvalues λ1, . . . , λd. We set

D = diag(
√
λ1, . . . ,

√
λd) and define A1/2 := P tDP .

We now fix x0 ∈ B2 and, for any r > 0, we define the functionals

Jx0op (v, r) :=

∫
Br

(
|∇v|2 +Qop(x0)1{v>0}

)
dx ;

Jx0tp (v, r) :=

∫
Br

(
|∇v|2 +Q+

tp(x0)1{v>0} +Q−tp(x0)1{v<0}

)
dx .

For every x0 ∈ B1, we define the function

Fx0(x) := x0 +A
1/2
x0 (x) (3.1)

and the half-plane Hx0 :=
{
x ∈ R2 : Fx0(x) · e2 > 0

}
, where e2 = (0, 1).
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Lemma 3.2. Let L > 0. There are constants C > 0 and r0 ∈ (0, 1) (depending only on the
constants CA, CQ, MA, MQ, δA, δQ, δ1, C1 and L defined in Subsection 1.1) and δ = min{δA, δQ, δ1}
such that: if u ∈ H1(B1) is a nonnegative L-Lipschitz continuous function and a almost-minimizer
of Jop in B+

2 , x0 ∈ Br0 ∩ ∂Ωu and ū = u ◦ Fx0 (Fx0 is defined in (3.1) above), then for every
r ∈ (0, r0),

Jx0op (ū, r) ≤ (1 + Crδ)Jx0op (v̄, r) + Cr2+δ, (3.2)

for every v̄ ∈ H1(Br) such that ū− v̄ ∈ H1
0 (Br) and v̄ = 0 on R2 \ Hx0.

Moreover, there is a numerical constant C0 > 0, such that

Wop(ūr) ≤

{
Wop(z̄r) + C0(MAL

2 +MQ)Crδ,

Wop(h̄r) + C0(MAL
2 +MQ)Crδ,

for every r ∈ (0, r0), where C is the constant from (3.2), ūr(x) := 1
r ū(rx), z̄r is the 1-homogeneous

extension of ūr in B1, h̄r is the competitor from Theorem 2.2 and Λ = Qop(x0), as in (2.4).

Proof. Let x0 ∈ ∂Ωu∩B1 be fixed. For r > 0, we set ρ = M
1/2
A r. Notice that we have the inclusion

Fx0(Br) ⊂ Bρ(x0). Let ū = u ◦ Fx0 and v̄ = v ◦ Fx0 . Then, using the Hölder continuity of A and
Q := Qop, and the ellipticity of A, we estimate

J̃op(u, x0, ρ) :=

∫
Bρ(x0)

(
aij(x0) ∂iu ∂ju+Q(x0)1{u>0}

)
dx ≤ Jop(u, x0, ρ)

+ CAMAρ
δA

∫
Bρ(x0)

aij(x) ∂iu ∂ju dx+ CQMQρ
δQ

∫
Bρ(x0)

Q(x)1{u>0} dx

≤ (1 + Crδ)Jop(u, x0, ρ),

for some positive constant C > 0. Analogously, we get the following estimate from below:

J̃op(v, x0, ρ) ≥ (1− Crδ)Jop(v, x0, ρ). (3.3)

Putting the two estimates together and using the almost-minimality of u, we get

J̃op(u, x0, ρ) ≤ 1 + Crδ

1− Crδ
(1 + C1ρ

δ1)J̃op(v, x0, ρ) + C1(1 + Crδ)ρ2+δ1 .

Now, notice that by the choice of the function Fx0 we have the identity

|∇ū|2(x) = aij(x0) ∂iu(Fx0(x)) ∂ju(Fx0(x)) for every x ∈ B
M
−1/2

A
.

Therefore, a change of coordinates and the estimate (3.3) give∫
F−1
x0

(Bρ(x0))

(
|∇ū|2 +Q(x0)1{ū>0}

)
dx = det

(
A−

1/2
x0

)
J̃op(u, x0, ρ)

≤ (1 + Crδ)

∫
F−1
x0

(Bρ(x0))

(
|∇v̄|2 +Q(x0)1{v̄>0}

)
dx+ Cr2+δ,

for some other positive constant C > 0. Finally, since Br ⊂ F−1
x0 (Bρ(x0)) and ū = v̄ outside Br,

we can rearrange the terms of the above estimate to obtain

Jx0op (ū, r) ≤ (1 + Crδ)Jx0op (v̄, r) + Cr2+δ + CrδJx0op (ū,M
−1/2
A r),

which gives (3.2) since ū is Lipschitz continuous with Lipschitz constant ‖∇ū‖L∞ = M
1/2
A L.

We next notice that we have the scaling

Jx0op (ūr, 1) =
1

r2
Jx0op (ū, r).

Thus, the almost-minimality inequality (3.2) translates in

Jx0op (ūr, 1) ≤ (1 + Crδ)Jx0op (v̄r, 1) + Crδ. (3.4)
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Let CE > 0 be the constant from Theorem 2.2. Then, since ū is Lipschitz continuous, we have∫
B1

|∇h̄r|2 dx ≤ CE

∫
∂B1

(
|∇ūr|2 + ū2

r

)
dx ≤ C0MAL

2,

where C0 is a numerical constant and h̄r is the competitor from Theorem 2.2. Taking h̄r as a
competitor in (3.4), we obtain

Jx0op (ūr, 1) ≤ Jx0op (h̄r, 1) + Crδ
(∫

B1

|∇h̄r|2 dx+Q(x0)|B1|
)

+ Crδ

≤ Jx0op (h̄r, 1) + Crδ
(
C0MAL

2 +MQ|B1|
)

+ Crδ,

which concludes the proof, the case v̄r = z̄r being analogous. �

An analogous result, with essentially the same proof holds in the two-phase case.

Lemma 3.3. Let L > 0. There are constants C > 0 and r0 ∈ (0, 1) (depending only on CA, CQ,
MA, MQ, δA, δQ, δ1, C2 and L) and δ = min{δA, δQ, δ2} such that: if u ∈ H1(B1) is a L-Lipschitz
continuous function and a almost-minimizer of Jtp in B2, x0 ∈ Br0 ∩ ∂Ωu and ū = u ◦ Fx0, then
we have that for every r ∈ (0, r0),

Jx0tp (ū, r) ≤ (1 + Crδ)Jx0tp (v̄, r) + Cr2+δ, (3.5)

for every v̄ ∈ H1(Br) such that ū− v̄ ∈ H1
0 (Br).

Moreover, there is a numerical constant C0 > 0 such that

Wtp(ūr) ≤

{
Wtp(z̄r) + C0(MAL

2 +MQ)Crδ,

Wtp(h̄r) + C0(MAL
2 +MQ)Crδ,

for every r ∈ (0, r0), where C is the constant from (3.5), ūr(x) := 1
r ū(rx), z̄r is the one homo-

geneous extension of ūr in B1, h̄r is the competitor given by Theorem 2.3 and Λ1 = Q+
tp(x0),

Λ2 = Q−tp(x0) are as in (2.9).

Remark 3.4 (On the non-degeneracy). In [13] David and Toro proved that Lipschitz continuous
almost-minimizers to the one-phase and the two-phase functionals for the Laplacian are non-
degenerate (see [13, Theorem 10.1]). Note that their definition of almost-minimizer is slightly
different from ours. However, their proof still holds in our case with small changes which come
from the additional term Cr2+δ of our definition. It follows from Lemma 3.2 and Lemma 3.3 that
if u is a almost-minimizer of the functional Jop (resp. u is a almost-minmizer of Jtp) then u (resp.
u±) is non-degenerate with respect to A in the sense of the following definition.

Definition 3.5 (Non-degeneracy). Let d ≥ 2 and A : Rd → Sym+
d be a given function. We

say that the non-negative function u ∈ H1(B2) is non-degenerate (with respect to A), if there are
constants η > 0, ε ∈ (0, 1) and r0 > 0 such that, for every x0 ∈ B1 and r ∈ (0, r0), the following
implication holds:∫

∂Br

u ◦ Fx0 dHd−1 < η rd ⇒ u ◦ Fx0 ≡ 0 in Bεr(x0),

where Fx0(x) := x0 +A
1/2
x0 (x).

4. Blow-up sequences and blow-up limits

Let u ∈ H1(B2) be a Lipschitz continuous function. Let (xn)n≥1 be a sequence of points in
B1 ∩ ∂Ωu converging to some x0 ∈ B1 ∩ ∂Ωu, and (rn)n≥1 be an infinitesimal sequence in (0, 1).
Then, the sequence uxn,rn is uniformly Lipschitz in every compact subset of R2. Thus, up to
extracting a subsequence, there is a Lipschitz continuous function u0 : R2 → R such that

lim
n→∞

uxn,rn = u0, (4.1)

where urn,xn is defined in (2.1) and the convergence is uniform on every compact subset of R2.
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Definition 4.1. If (4.1) holds, we will say that uxn,rn is a blow up sequence (with fixed center,
if xn = x0, for every n ≥ 1). If the center is fixed, we will say that u0 is a blow-up limit at x0.

We summarize the main properties of the blow-up sequences and the blow-up limits in the
following two propositions. We notice that Proposition 4.2 below holds in every dimension d ≥ 2,
while Proposition 4.3 is known to hold only for 2 ≤ d ≤ 4.

Proposition 4.2 (Convergence of the blow-up sequences). Let u ∈ H1(B2) be as in Theorem
1.1 or Theorem 1.5 and let un := urn,xn be a blow-up sequence converging to some u0 ∈ H1

loc(R2).
Then:

(i) the sequence un converges to u0 strongly in H1
loc(R2);

(ii) the sequences of characteristic functions 1{un>0} and 1{un<0} converge strongly in L1
loc(R2)

to the characteristic functions 1{u0>0} and 1{u0<0}, respectively.

Proposition 4.3 (Classification of the blow-up limits). Let u ∈ H1(B2) be as in Theorem 1.1 or
Theorem 1.5. Let x0 ∈ ∂Ωu ∩B1 and u0 ∈ H1

loc(R2) be a blow-up limit of u at x0.

(OP) If u is as in Theorem 1.1 and x0 ∈ ∂Ωu ∩B+
1 , then u0 is of the form

u0(x) = Q
1/2
op (x0) max

{
0, x ·A−1/2

x0 [ν]
}
, where ν ∈ ∂B1. (4.2)

(OP-c) If u is as in Theorem 1.1 and x0 ∈ ∂Ωu ∩ ∂H ∩B1, then u0 is of the form

u0(x) = µmax
{

0, x ·A−1/2
x0 [ν]

}
, (4.3)

where µ ≥ Q1/2
op (x0) and ν ∈ ∂B1 is such that A

−1/2
x0 [ν] is the (interior) normal to ∂H.

(TP) If u is as in Theorem 1.5 and x0 ∈ ∂Ω+
u ∩ ∂Ω−u ∩B1, then u0 is of the form

u0(x) = µ+ max
{

0, x ·A−1/2
x0 [ν]

}
+ µ−min

{
0, x ·A−1/2

x0 [ν]
}
, (4.4)

for some ν ∈ ∂B1 and some µ+, µ− > 0 such that

µ2
+ ≥ Q+

tp(x0) µ2
− ≥ Q−tp(x0) and µ2

+ − µ2
− = Q+

tp(x0)−Q−tp(x0).

The proof of Proposition 4.2 follows by a standard variational argument that only uses the
almost-minimality of u; for more details, we refer to [1] (see also [20]). Proposition 4.3 follows by
the optimality of the blow-up limits and the Weiss’ monotonicity formula (Lemma 2.4). We will
need the following definition.

Definition 4.4 (Global solutions). Let u : R2 → R, u ∈ H1
loc(R2) be given.

(OP) We say that u is a global solution of the one-phase Bernoulli problem, if: u ≥ 0 and, for
every ball B := BR(x0) ⊂ R2, we have∫
B
|∇u|2 dx+ Λ|{u > 0} ∩B| ≤

∫
B
|∇v|2 dx+ Λ|{v > 0} ∩B|,

for every v ∈ H1(B) such that u− v ∈ H1
0 (B).

(4.5)

(OP-c) We say that u is a global solution of the one-phase constrained Bernoulli problem
in the half-plane H, if u ≥ 0 on H, u = 0 on R2 \ H and (4.5) holds, for every ball
B := BR(x0) ⊂ R2 and every v ∈ H1(B) such that u− v ∈ H1

0 (B) and {v > 0} ⊂ H.
(TP) We say that u is a global solution of the two-phase Bernoulli problem if, for every ball

B := BR(x0) ⊂ R2, we have∫
B

(
|∇u|2 + Λ11{u>0} + Λ21{u<0}

)
dx ≤

∫
B

(
|∇v|2 + Λ11{v>0} + Λ21{v<0}

)
dx, (4.6)

for every v ∈ H1(B) such that u− v ∈ H1
0 (B).

Lemma 4.5 (Optimality of the blow-up limits). Let u ∈ H1(B2) be as in Theorem 1.1 or Theorem
1.5 and let un := urn,x0 be a blow-up sequence converging to the blow-up limit u0 ∈ H1

loc(R2).
Then, we have:
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(OP) If u is as in Theorem 1.1 and x0 ∈ ∂Ωu ∩ B+
1 , then u0 ◦ A

1/2
x0 is a global solution of the

one-phase problem with Λ = Qop(x0).

(OP-c) If u is as in Theorem 1.1 and x0 ∈ ∂Ωu ∩ ∂H ∩B1, then, up to a rotation, u0 ◦A
1/2
x0 is a

global solution of the constrained one-phase problem with Λ = Qop(x0).

(TP) If u is as in Theorem 1.5 and x0 ∈ ∂Ω+
u ∩ ∂Ω−u ∩B1, then u0 ◦A

1/2
x0 is a global solution of

the two-phase problem with Λ1 = Q+
tp(x0) and Λ2 = Q−tp(x0).

Recall that the function ū = u ◦ Fx0 , where Fx0 is as in (3.1), is an almost-minimizer of the
functional Jx0op (Lemma 3.2). We then refer to Lemma 4.6 in [20] applied to ū for the proof of
Lemma 4.5. It is also worth mentioning that the strong convergence of the blow-up sequences
and the optimality of the blow-up limits are equivalent.

Lemma 4.6 (Homogeneity of the blow-up limits). Let u ∈ H1(B2) be as in Theorem 1.1 or
Theorem 1.5. Let x0 ∈ B1 ∩ ∂Ωu and let ux0,rn be a blow-up sequence converging to a blow-up
limit u0. Then, u0 is one-homogeneous.

Proof. Assume that x0 = 0 and set ū = u ◦ Fx0 . Then

ux0,r = ūr ◦A−
1/2

x0 , where ūr(x) :=
ū(rx)

r
.

We first notice that by Lemma 3.2, Lemma 2.4 and the Lipschitz continuity of u, we get that the
limit Θ� := lim

r→0
W�(ūr), � = op,tp, exists and is finite. Now the strong convergence of ūrn to

ū0 := u0 ◦A
1/2
x0 (Proposition 4.2) implies that, for every s > 0, we have

Θ� := lim
r→0

W�(ūr) = lim
n→∞

W�(ūrn) = lim
n→∞

W�(ūrns) = lim
n→∞

W�((ūrn)s) = W�((ū0)s).

In particular, s 7→ W�(ū0, s) is constant. Now, since ū0 is a global solution (Lemma 4.5), (2.5)
and (2.10) imply that E((ū0)s) = 0, for every s > 0. Thus we have x · ∇ū0 = ū0 in R2, which
implies that ū0 (and thus, u0) is one-homogeneous. �

Proof of Proposition 4.3. We now notice that ū0 = u0 ◦ A
1/2
x0 : B1 → R is one-homogeneous

and harmonic on the cone B1∩{ū0 6= 0}. Thus, the trace of ū0 on the sphere satisfies the equation

−∆Sū0 = (d− 1)ū0 on Sd−1 ∩ {ū0 6= 0},
where in dimension two the spherical Laplacian ∆S is simply the second derivative and d−1 = 1.
Thus, ū0 is of the form ū0(θ) = sin(θ + θ0), θ ∈ S2, for some constant θ0. This implies that
{ū0 6= 0} is a union of intervals of length π. In the one-phase case, since u is non-degenerate (see
Remark 3.4), this implies that ū0 is of the form (4.2), for some constant µ(x0). Now, an internal

variation argument (see [1]) implies that µ(x0) = Q
1/2
op (x0), if x0 ∈ H ∩B+

1 , and µ(x0) ≥ Q1/2
op (x0),

if x0 ∈ ∂H∩B1. The two-phase case follows again by an internal variation argument (see [2]). �

Finally, we prove a uniqueness result for the one- and two-phase (Theorem 1.1 and Theorem
1.5) blow-up limits. This is the only result of this section that cannot be immediately extended
to higher dimension. This is due to the fact that the epiperimetric inequality (Theorem 2.2 and
Theorem 2.3) is known (for the moment) only in dimension two.

Proposition 4.7 (Uniqueness of the blow-up and rate of convergence of the blow-up sequences).
Let u : B2 → R be as in Theorem 1.1 or Theorem 1.5. There are constants C > 0, γ > 0 and
r0 > 0 such that the following claims do hold.

(OP) If u is as in Theorem 1.1, then for every x0 ∈ ∂Ωu ∩ B1, there is a unique blow-up
ux0 : R2 → R (of the form (4.2) or (4.3)) such that

‖ux0,r − ux0‖L∞(B1) ≤ Crγ for every r ∈ (0, r0). (4.7)

(TP) If u is as in Theorem 1.5, then for every x0 ∈ ∂Ω+
u ∩ ∂Ω−u ∩B1, there is a unique blow-up

ux0 : R2 → R (of the form (4.4)) such that

‖ux0,r − ux0‖L∞(B1) ≤ Crγ for every r ∈ (0, r0). (4.8)
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Proof. Let u be as in (OP) and x0 ∈ ∂Ωu ∩ B1. We set ū = u ◦ Fx0 and ūr(x) := ū(rx)
r , and we

notice that ūr = ux0,r ◦ A
1/2
x0 . By Lemma 3.2 and Lemma 2.4, r 7→ Wop(ūr) + Crδ is monotone.

On the other hand, the homogeneity of the blow-up limits, imply that

Θop := lim
r→0

Wop(ūr) =
π

2
Qop(x0).

Thus, by the epiperimetric inequality (Theorem 2.2), Lemma 3.2 and Lemma 2.5, we have that
there exists a one-homogeneous function ū0 such that, for r > 0 small enough,

‖ūr − ū0‖L2(∂B1) ≤ Crγ0/2,
where γ0 is the constant from Lemma 2.5. Integrating in r, we get that

‖ūr − ū0‖L2(B1) ≤ Crγ0/2.

Now, since ūr = ux0,r ◦A
1/2
x0 and A

1/2
x0 is invertible, we get

‖ux0,r − ux0‖L2(B1) ≤ Crγ0/2,

where ux0 = ū0 ◦ A
1/2
x0 . Finally, we notice that the Lipschitz continuity of u implies that there

is an universal bound on ‖∇ux0,r‖L∞(B1) and ‖∇ux0‖L∞(B1). Thus, we get (4.7) with γ = γ0/4.
The proof of (TP) is analogous. �

Remark 4.8. We notice that the above result does not hold at the one-phase points x0 ∈ ∂Ω+
u \∂Ω−u

of the solutions u of the two-phase problem (Theorem 1.5). This is due to the fact that the
positive part u+ is not a solution of the one-phase problem in the balls Br(x0) that have non-
empty intersection with the negative phase Ω−u . In fact, the blow-up limit ux0 (of u at x0) is still
unique, but the decay estimate (4.7) holds only for r < 1

2dist(x0,Ω
−
u ).

5. Regularity of the one-phase free boundaries. Proof of Theorem 1.1

Let u ∈ H1(B2), u ≥ 0, be as in Theorem 1.1. By Proposition 4.7 we have that, for every
x0 ∈ ∂Ωu ∩B1, there is a unique blow-up limit of u at x0. We denote it by

ux0(x) = µ(x0) max{0, νx0 · x},

where νx0 is of the form A
1/2
x0 [ν], for some ν ∈ ∂B1; and µ(x0) satisfies the inequalities

Qop(x0) ≤ µ2(x0) ≤MAL
2,

where L is the Lipschitz constant of u. We also notice that

µ(x0) = Q
1/2
op (x0) whenever x0 ∈ ∂Ωu ∩B+

1 .

Moreover, for every point x0 ∈ ∂Ωu ∩B1, we define the half-plane

Hx0 := {x ∈ R2 : x · νx0 > 0}.
We first prove the following:

Lemma 5.1. Let u be as in Theorem 1.1. There are constants C > 0, γ > 0 and r0 > 0 such
that, for every x0 ∈ ∂Ωu ∩B1, we have

Ωx0,r ∩B1 ⊃ {x ∈ B1 : x · νx0 > Crγ} and Ωx0,r ∩ {x ∈ B1 : x · νx0 < −Crγ} = ∅, (5.1)

for every r ∈ (0, r0), where Ωx0,r := {ux0,r > 0}.

Proof. The first part of (5.1) follows by the uniform convergence of the blow-up sequence ux0,r
(Proposition 4.7, equation (4.7)) and the form of the blow-up limit ux0 . The second part of (5.1)
follows again by (4.7), the fact that ux0 ≡ 0 on B1 \Hx0 and by the non-degeneracy of u, which
can be written as

If ux0,r(y0) > 0 , then ‖ux0,r‖L∞(Bs(y0)) ≥ Cs , for every s ∈ (0, 1),

for some C > 0. �
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Lemma 5.2. Let u be as in Theorem 1.1. There are constants R,α ∈ (0, 1) and C > 0 such that,
for every x0, y0 ∈ ∂Ωu ∩BR, we have

|νx0 − νy0 | ≤ C|x0 − y0|α and |µ(x0)− µ(y0)| ≤ C|x0 − y0|α. (5.2)

Proof. Let γ ∈ (0, 1) be the exponent from Proposition 4.7 and let α := γ
1+γ . Let x0, y0 ∈

BR ∩∂Ωu, where we choose R such that (2R)1−α ≤ r0, where r0 is the constant from Proposition
4.7. We set r := |x0 − y0|1−α. Recall that u is Lipschitz continuous and set L = ‖∇u‖L∞ . Then,
for every x ∈ B1, we have

|ux0,r(x)− uy0,r(x)| = 1

r
|u(x0 + rx)− u(y0 + rx)| ≤ L |x0 − y0|

r
= L|x0 − y0|α.

and then, by an integration on B1, we get

‖ux0,r − uy0,r‖L2(B1) ≤ |B1|
1/2L|x0 − y0|α.

On the other hand, by the choice of R, we have that r ≤ r0; applying Proposition 4.7, we get

‖ux0,r − ux0‖L2(B1) ≤ Crγ and ‖uy0,r − uy0‖L2(B1) ≤ Crγ .

Thus, by the triangular inequality and the fact that rγ = |x0 − y0|α, we obtain

‖ux0 − uy0‖L2(B1) ≤
(
|B1|

1/2L+ 2C
)
|x0 − y0|α. (5.3)

The conclusion now follows by a general argument. Indeed, for any pair of vectors v1, v2 ∈ R2,
we have

|v1 − v2| =
(

2

π

∫
B1

|v1 · x− v2 · x|2 dx
)1/2

≤
(∫

B1

|(v1 · x)+ − (v2 · x)+|2 dx
)1/2

+

(∫
B1

|(v1 · x)− − (v2 · x)−|2 dx
)1/2

(5.4)

= 2

(∫
B1

|(v1 · x)+ − (v2 · x)+|2 dx
)1/2

.

Applying the above estimate to v1 = µ(x0)νx0 and v2 = µ(y0)νy0 , and using (5.3), we get (5.2). �

Proof of Theorem 1.1. We first claim that, for every ε > 0, there exists ρ > 0 such that, for
x0 ∈ ∂Ωu ∩Bρ we have

u > 0 on C+(x0, ε) ∩Bρ(x0) and u = 0 on C−(x0, ε) ∩Bρ(x0), (5.5)

where

C±(x0, ε) :=
{
x ∈ R2\{0} : ±νx0 · (x− x0) ≥ ε|x− x0|

}
.

Indeed, the flatness estimate (5.1) implies (5.5) by taking ρ such that Cργ ≤ ε, where C and γ
are the constants from Lemma 5.1.

We now fix x0 ∈ B1 ∩ ∂Ωu. Without loss of generality we can suppose that x0 = 0 and
Hx0 = {(s, t) ∈ R2 : t > 0}. Now, let ε ∈ (0, 1) and ρ > 0 as in (5.5) and set δ = ρ

√
1− ε2. By

(5.5) we have for every s ∈ (−δ, δ)
• the set Ss+ := {t ∈ (−δ, δ) : u(s, t) > 0} contains the interval (ρε, δ);
• the set Ss0 := {t ∈ (−δ, δ) : u(s, t) = 0} contains the interval (−δ,−ρε).

This implies that the function

g(s) := max{t ∈ R : u(s, t) > 0}
is well defined and such that

SQδ ∩ Ωu = {(s, t) ∈ SQδ : g(s) < t} and SQδ \ Ωu = {(s, t) ∈ SQδ : g(s) ≥ t},
where SQδ = (−δ, δ) × (−δ, δ). Now, the flatness condition (5.1) implies that g is differentiable
on (−δ, δ). Furthermore, since ν is Hölder continuous, we deduce that g is a function of class
C1,α. This concludes the proof. �
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6. Regularity of the two-phase free boundaries. Proof of Theorem 1.5

Let u be as in Theorem 1.5. Then, by Proposition 4.7, at every point x0 ∈ ∂Ωu ∩ B1 there is
a unique blow-up limit ux0 given by

ux0(x) = µ+(x0) max{0, x · νx0}, if x0 ∈ Γ+ := (∂Ω+
u \∂Ω−u ) ∩B1;

ux0(x) = µ−(x0) min{0, x · νx0}, if x0 ∈ Γ− := (∂Ω−u \∂Ω+
u ) ∩B1;

ux0(x) = µ+(x0) max{0, x · νx0}+ µ−(x0) min{0, x · νx0}, if x0 ∈ Γtp := ∂Ω+
u ∩ ∂Ω−u ∩B1,

where νx0 ∈ R2 is of the form A
−1/2
x0 [ν], for some ν ∈ ∂B1, and µ+(x0) and µ−(x0) are positive

and such that Q±tp(x0) ≤ µ2
±(x0) ≤MAL

2, where L = ‖∇u‖L∞(B2) is the Lipschitz constant of u,
and

µ2
±(x0) = Q±tp(x0), if x0 ∈ Γ±

µ2
+(x0)− µ2

−(x0) = Q+
tp(x0)−Q−tp(x0), if x0 ∈ Γtp.

Notice that Corollary 1.3 already implies that the one-phase free boundaries Γ+ and Γ− are
C1,α regular. Thus, it remains to prove that ∂Ω+

u and ∂Ω−u are smooth in a neighborhood of Γtp.

Lemma 6.1 (Flatness of the free boundary at the two-phase points). Let u be as in Theorem
1.5. There are constants C > 0, γ > 0 and r0 > 0 such that, for every x0 ∈ ∂Γtp, we have

Ω+
x0,r ∩B1 ⊃ {x ∈ B1 : x · νx0 > Crγ} and Ω−x0,r ∩B1 ⊃ {x ∈ B1 : x · νx0 < −Crγ}, (6.1)

for every r ∈ (0, r0), where Ω+
x0,r := {ux0,r > 0} and Ω−x0,r := {ux0,r < 0}.

Proof. Both the inclusions of (6.5) follow by the uniform convergence of ux0,r (Proposition 4.7,
equation (4.8)) to the blow-up limit ux0 . �

Lemma 6.2. Let u be as in Theorem 1.5. There are constants R,α ∈ (0, 1) and C > 0 such that,
for every x0, y0 ∈ ∂Γtp ∩BR, we have

|νx0 − νy0 | ≤ C|x0 − y0|α and |µ±(x0)− µ±(y0)| ≤ C|x0 − y0|α. (6.2)

Proof. The proof follows step by step the one of Lemma 5.2. �

Reasoning as in the one-phase case, and using Lemma 6.1 and Lemma 6.2, one can prove that
the two-phase free boundary Γtp is contained in a C1,α curve. Unfortunately, this result by itself
is not sufficient to deduce that ∂Ω±u are smooth. We now prove that the function u+ (resp. u−)
is a solution of the one-phase free boundary problem

−div(A∇u+) = f+ in Ω+
u , |A1/2

x0∇u+|(x0) = µ+(x0) for every x0 ∈ ∂Ω+
u (6.3)

where the boundary equation is understood in a classical sense. This is an immediate consequence
of the following lemma which states that u+ is differentiable in Ω+

u up to the boundary.

Lemma 6.3 (Differentiability at points of the free boundary). Let u be as in Theorem 1.5.
We consider two cases.
(OP). For every x0 ∈ (∂Ω+

u \ ∂Ω−u ) ∩ B1, u+ is differentiable at x0 and there is r(x0) > 0 such
that ∣∣u+(x)− µ+(x0)(x− x0) · νx0

∣∣ ≤ C|x− x0|1+γ for every x ∈ Br(x0)(x0) ∩ Ω+
u .

(TP). There exists a universal constant r0 > 0 such that, for every x0 ∈ ∂Ω+
u ∩ ∂Ω−u ∩ B1, the

function u+ is differentiable in Br0(x0) ∩ Ω+
u and∣∣u+(x)− µ+(x0)(x− x0) · νx0

∣∣ ≤ C|x− x0|1+γ for every x ∈ Br0(x0) ∩ Ω+
u . (6.4)

In particular, for every x0 ∈ ∂Ω+
u ∩B1, we have ∇u+(x0) = µ+(x0)νx0.
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Proof. The two cases are analogous. We will prove (TP). By Proposition 4.7, for every r < r0,
we have

‖max{0, ux0,r} −max{0, ux0}‖L∞(B1) ≤ ‖ux0,r − ux0‖L∞(B1) ≤ Crγ .
Thus, using the flatness of the free boundary (Lemma 6.1), we get for every x ∈ B1 ∩ {ux0,r > 0}∣∣max{0, ux0,r(x)} − µ+(x0)x · νx0

∣∣ ≤ ∣∣max{0, ux0,r(x)} −max{0, ux0(x)}
∣∣

+ µ+(x0)
∣∣min{0, x · νx0}

∣∣ ≤ Crγ .
Now, taking r = |x− x0| and rescaling the above inequality, we obtain (6.4) �

We notice that at the two-phase free boundary point the estimate (6.4) holds in a ball whose
radius does not depend on the point. Moreover, on the two-phase free boundary the gradient has
a universal modulus of continuity (see Lemma 6.2). This concludes the proof of Proposition 1.8.

We next show that µ+ is continuous on ∂Ω+
u .

Lemma 6.4. The function µ+ : ∂Ω+
u → R is continuous.

Proof. We start noticing that:

• on the set ∂Ω+
u \ ∂Ω−u , we have µ+ = Q

1/2
+ , where we set Q+ := Q+

tp.
• for every y1, y2 ∈ ∂Ω+

u ∩ ∂Ω−u , we have |µ+(y1)− µ+(y2)| ≤ C|y1 − y2|α.

Thus, it is sufficient to prove that if (xn)n≥1 is a sequence of one-phase points, xn ∈ ∂Ω+
u \ ∂Ω−u ,

converging to a two-phase point y0 ∈ ∂Ω+
u ∩ ∂Ω−u , then µ+(y0) = Q

1/2
+ (y0). Up to a linear change

of coordinates we may suppose that Ay0 = Id.
Denote by yn the projection of xn on the closed set ∂Ω+

u ∩ ∂Ω−u and let rn := |xn − yn|. Since
u is Lipschitz continuous, up to a subsequence, un := u+

xn,rn converges locally uniformly to some
function u∞. The absence of two-phase points in Brn(xn) implies that un is a solution of

−div(An∇un) = rnfn in {un > 0} ∩B1 , |∇un| = qn on ∂{un > 0} ∩B1 ,

where An(x) := A(xn + rnx), fn(x) := f+(xn + rnx) and qn(x) = Q
1/2
+ (xn + rnx)|νxn+rnx|, where

we recall that νxn+rnx is of the form A
1/2
xn+rnx[ν̃], for some ν̃ ∈ ∂B1. Passing to the limit as

n→∞, we obtain that u∞ is a viscosity solution to

−∆u∞ = 0 in {u∞ > 0} ∩B1 , |∇u∞| = Q
1/2
+ (y0)|νy0 | on ∂{u∞ > 0} ∩B1 .

On the other hand, for every ξ ∈ B1, we have

uxn,rn(ξ) = uyn,rn(ξ + ξn) , where ξn :=
xn − yn
rn

∈ ∂B1 ,

and, up to a subsequence, we can assume that ξn converges to some ξ∞ ∈ ∂B1. Since yn ∈
∂Ω+

u ∩ ∂Ω−u , Lemma 6.3 implies that, for every x ∈ B2rn(yn) ∩ {u > 0}, we have

|u(x)− µ+(yn) max{0, (x− yn) · νyn}| ≤ C|x− yn|1+γ ≤ Cr1+γ
n .

After rescaling, this gives∣∣uyn,rn(ξ + ξn)− µ+(yn) max{0, (ξ + ξn) · νyn}
∣∣ ≤ Crγn for every ξ ∈ B1 ∩ {uxn,rn > 0}.

Moreover, by the continuity of µ+ on ∂Ω+
u ∩ ∂Ω−u , we have that, for every ξ ∈ B1,

lim
n→∞

∣∣µ+(yn) max{0, (ξ + ξn) · νyn} − µ+(y0) max{0, (ξ + ξ∞) · νy0}
∣∣ = 0.

Therefore, it follows that uxn,rn(ξ) = uyn,rn(ξ + ξn) converges to

u∞(ξ) = µ+(y0) max
{

0, (ξ + ξ∞) · νy0
}

for every ξ ∈ B1.

Next we claim that ξ∞ · νy0 = 0. Indeed, if ξ∞ · νx0 > 0, then u∞(0) > 0 which is in contradiction
with the uniform convergence of un; on the other hand, if ξ∞ · ex0 < 0, then u∞ ≡ 0 in a
neighborhood of zero, which is in contradiction with the non-degeneracy of un. Thus, we get

u∞(ξ) = µ+(y0) max
{

0, ξ · νy0
}

for every ξ ∈ B1.
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Now since |∇u∞| = µ+(y0), we get that µ+(y0) = Q
1/2
+ (y0). �

In the next lemma we establish the Hölder continuity of µ+.

Lemma 6.5. The function µ+ : ∂Ω+
u → R is Hölder continuous.

Proof. It is sufficient to show that µ+ is Hölder continuous in a neighborhood of every two-
phase point. Let x0 ∈ ∂Ω+

u ∩ ∂Ω−u . Without loss of generality, we can assume that x0 = 0 and
νx0 = (0, 1). For every x = (s, t) ∈ R2, we denote by SQδ(x) the square (s−δ, s+δ)×(t−δ, t+δ).
By Lemma 6.1, for every ε > 0, there exists δ0 > 0 such that the following flatness condition
holds:

For every two-phase point x = (x1, x2) ∈ ∂Ω+
u ∩ ∂Ω−u in the strip (−δ0, δ0) × (−εδ0, εδ0) and

every δ ≤ δ0 we have:{
(x1 − δ, x1 + δ)× (x2 − δ, x2 − εδ) ⊂ Ω−u ∩ SQδ(x),

(x1 − δ, x1 + δ)× (x2 + εδ, x2 + δ) ⊂ Ω+
u ∩ SQδ(x).

(6.5)

Notice that the flatness condition (6.5) implies that for every two-phase point x = (x1, x2) ∈
∂Ω+

u ∩∂ Ω−u and every y = (y1, y2) ∈ ∂Ω+
u , both lying in the strip (−δ0, δ0)× (−εδ0, εδ0), we have

|x1 − y1| ≤ |x− y| =
√

(x1 − y1)2 + (x2 − y2)2 ≤
√

1 + ε2 |x1 − y1|. (6.6)

Next, for every t ∈ (−δ0, δ0) we define the vertical sections

St := {(x1, x2) ∈ SQδ0(0) : x1 = t}, St+ := Ω+
u ∩ St, St− := Ω−u ∩ St.

Let Utp be the set of points t ∈ (−δ0, δ0) such that there is a two-phase point x ∈ SQδ0(0) lying
on the section St. It is immediate to check that Utp is a closed subset of (−δ0, δ0) and that, due
to the flatness condition (6.5), for every t ∈ Utp, there is at most one two-phase point on the
section St. We will denote this point by xt.

Let now x, y ∈ ∂Ω+
u ∩ SQδ0(0). We have three possibilities:

(i) x ∈ ∂Ω+
u ∩ ∂Ω−u and y ∈ ∂Ω+

u ∩ ∂Ω−u ;
(ii) x ∈ ∂Ω+

u \ ∂Ω−u and y ∈ ∂Ω+
u \ ∂Ω−u ;

(iii) x ∈ ∂Ω+
u \ ∂Ω−u and y ∈ ∂Ω+

u ∩ ∂Ω−u .

In each of this cases we will show that

|µ+(x)− µ+(y)| ≤ C|x− y|α. (6.7)

We set Q+ := Q+
tp. In the case (i), (6.7) follows directly by Lemma 6.2. In the case (ii), we

have that µ+(x) = Q
1/2
+ (x) and µ+(y) = Q

1/2
+ (y), so (6.7) follows by the Hölder continuity of

Q+. It remains to prove (6.7) in the case (iii). Let x = (x1, x2), y = (y1, y2) and, without loss
of generality, suppose that x1 < y1. Let the open interval (a, t) be the connected component
of (−δ0, δ0) \ Utp containing x1. Then, we have that t ∈ Utp and t ≤ y1. Let xt = (t, xt2) be
the two-phase point lying in the section St. Then, by construction of xt, there exists (at least)
one point xs ∈ Ss ∩ Γ+ for every s ∈ (x1, t). Moreover, since xt is a two-phase point, by the
flatness condition (6.5) we have that u(t, s) > 0 for every s > xt2 and u(t, s) < 0 for every s < xt2.

Therefore, the sequence of one-phase point xs converges as s→ t to xt and so, µ+(xt) = Q
1/2
+ (xt).

Thus, using (i), the Hölder continuity of Q+ and (6.6), we have

|µ+(x)− µ+(y)| ≤ |µ+(x)− µ+(xt)|+ |µ+(xt)− µ+(y)|

= |Q1/2
+ (x)−Q1/2

+ (xt)|+ |µ+(xt)− µ+(y)|
≤ C|x− xt|α + C|xt − y|α

≤ C
(√

1 + ε2
)α (

(t− x1)α + (y1 − t)α
)

≤ 2C
(√

1 + ε2
)α

(y1 − x1)α ≤ 2C
(√

1 + ε2
)α
|x− y|α,

which concludes the proof. �
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Theorem 1.5 is now a consequence of (6.3), the Lemma 6.4 and a general result (Theorem A.1)
on the regularity of the one-phase flat free boundaries, which is due to De Silva (see [14]). In the
appendix we state Theorem A.1 in its full generality, for viscosity solutions of the problem (6.3),

but in our case the function u+ is a classical solution, differentiable everywhere on Ω
+
u .

7. Proof of Theorem 1.11

7.1. Preliminary results. In this subsection, we briefly recall the known results on the problem
(1.10). The existence of a solution of (1.10) in the class of the almost-open subsets of D can be
proved by a general variational argument (we refer to [8] and to the book [5] for more details).
In the context of open sets, the existence of an optimal n-uple was proved in [3].

From now on, (Ω1, . . . ,Ωn) will be a solution of (1.10) and ui : Rd → R, for i = 1, . . . , n, will
denote the first normalized eigenfunction of the Dirichlet Laplacian on Ωi, that is,

−∆ui = λ1(Ωi)ui in Ωi , ui = 0 on R2 \ Ωi ,

∫
Ωi

u2
i dx = 1,

where, for every i = 1, . . . , n,

λ1(Ωi) = min
u∈H1

0 (Ωi)\{0}

∫
Ωi
|∇u|2 dx∫

Ωi
u2 dx

=

∫
Ωi
|∇ui|2 dx∫
Ωi
u2
i dx

,

where H1
0 (Ωi) = {u ∈ H1(Rd) : u = 0 on R2\Ωi}. In particular, ui ≥ 0 on R2 and Ωi = {ui > 0}.

Lipschitz continuity. The functions ui : R2 → R are Lipschitz continuous on R2, that is, there is
a universal constant L > 0 such that ‖∇ui‖L∞(R2) ≤ L, for every i = 1, . . . , n. We refer to [8] for
the general case and to [3] for a simplified version in dimension two.

Non-degeneracy. There is a constant C0 > 0 such that, for every i = 1, . . . , n, we have∫
∂Br

ui dH1 ≥ C0r
2 for every x0 ∈ ∂Ωi and r ∈ (0, 1).

Again, we refer to [8] and [3].

Absence of triple points. For every 1 ≤ i < j < k ≤ n, we have that ∂Ωi ∩ ∂Ωj ∩ ∂Ωk = ∅ (see [8]
and [23], and also [3] for a more direct proof in dimension two).

Absence of two-phase points on the boundary of the box. For every 1 ≤ i < j ≤ n, we have that
∂Ωi ∩ ∂Ωj ∩ ∂D = ∅ (see [3]).

As a consequence of the above properties, we have that, for every i ∈ {1, . . . , n}, the boundary
∂Ωi can be decomposed as follows:

∂Ωi =
⋃
k 6=i

(∂Ωi ∩ ∂Ωk) ∪ (∂Ωi ∩ ∂D) ∪ Γop(Ωi),

where Γop(Ωi) is the one-phase free boundary of Ωi, determined by:

x0 ∈ Γop(Ωi)⇔ there exists r > 0 such that Br(x0) ∩
(

(R2 \ D) ∪
⋃
k 6=i

Ωk

)
= ∅.

We notice that already using the the regularity result of Briançon and Lamboley [4], the one-
phase free boundary (lying inside the open set D) is locally a C1,α curve. Thus, in order to prove
Theorem 1.11, it will be sufficient to show that ∂Ωi is C1,α in a neighborhood of the points of
∂Ωi ∩ ∂D (Subsection 7.2) and ∂Ωi ∩ ∂Ωk (Subsection 7.3).
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7.2. One-phase points at the boundary of the box. Let 1 ≤ i ≤ n and x0 ∈ ∂D ∩ ∂Ωi.
Then, there is a neighborhood U of x0 such that U ∩ Ωj = ∅, for every j 6= i. For the sake of
simplicity, in this subsection, we will set

Ω = Ωi , u = ui , x0 = 0 and D = Ωi ∪ (D ∩ U).

It is well known that the eigenvalues of the Dirichlet Laplacian have the following variational
characterization:

λ1(Ω) =

∫
Ω
|∇u|2 dx = min

{∫
Ω
|∇v|2 dx : v ∈ H1

0 (Ω),

∫
Ω
v2 dx = 1

}
.

Moreover, {u > 0} = Ω and u is a solution of the following minimization problem:

min

{∫
D
|∇v|2 dx+ Λ|{v > 0}| : v ∈ H1

0 (D),

∫
D
v2 dx = 1

}
. (7.1)

We will show that the solution u of (7.1) is an almost-minimizer of the one-phase functional Jop.
A result in the same spirit was proved in a more general case in [20, Proposition 2.1].

Lemma 7.1 (Almost-minimality of the eigenfunction). Let u : Rd → R be a Lipschitz continuous

function, L = ‖∇u‖L∞ be the Lipschitz constant of u and λ1(Ωu) =

∫
D
|∇u|2 dx. If u is a

solution of the minimization problem (7.1), then there exists r0 > 0 such that u satisfies the
following almost-minimality condition:

For every r ∈ (0, r0) and x0 ∈ ∂Ωu,∫
Br(x0)

|∇u|2 dx+ Λ|Ωu ∩Br(x0)| ≤
(
1 + C1r

d+2
) ∫

Br(x0)
|∇v|2 dx+ Λ|Ωv ∩Br(x0)|+ C2r

d+2,

for every v ∈ H1
0 (D) such that u = v on D \Br(x0), where C1 = 2L2 and C2 = λ1(Ωu)2L2.

Proof. Let x0 ∈ ∂Ωu, r > 0 and v ∈ H1
0 (D) be such that u = v on D \ Br(x0). Then, define the

renormalization w = ‖v‖−1
L2 v ∈ H1

0 (D) and notice that we have∫
D
|∇w|2 dx =

(∫
D
v2 dx

)−1
∫
D
|∇v|2 dx ≤

(
1−

∫
Br(x0)

u2 dx
)−1

∫
D
|∇v|2 dx

≤ 1

1− L2rd+2

∫
D
|∇v|2 dx ≤

(
1 + 2L2rd+2

)∫
D
|∇v|2 dx,

where for the last inequality, we choose r0 such that 2L2rd+2
0 ≤ 1 and we use the inequality

1

1−X
≤ 1 + 2X, for every X ≤ 1/2, with X = L2rd+2. Now use w as a test function in (7.1) to

get that ∫
D
|∇u|2 dx+ Λ|{u > 0}| ≤

(
1 + 2L2rd+2

) ∫
D
|∇v|2 dx+ Λ|{v > 0}|, (7.2)

from which the claim easily follows since

∫
D\Br(x0)

|∇v|2 dx =

∫
D\Br(x0)

|∇u|2 dx ≤ λ1(Ωu). �

We now notice that the C2 regularity of ∂D implies that there is a constant δ > 0 and a
function g : (−δ, δ)→ R such that

D ∩ SQδ =
{

(x1, x2) ∈ SQδ : g(x1) < x2

}
,

where SQδ = (−δ, δ) × (−δ, δ). Moreover, up to a rotation of the plane, we can assume that
g′(0) = 0. Let ψ : SQδ ⊂ R2 → R2 be the function that straightens out the boundary of D and
let φ = ψ−1 : ψ(SQδ) ⊂ R2 → R2 be its inverse:

ψ(x1, x2) = (x1, x2 − g(x1)), φ(x1, x2) = (x1, x2 + g(x1)).
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We define the matrix-valued function A = (aij)ij : SQδ →M2(R) by

Ax :=

(
a11(x) a12(x)
a21(x) a22(x)

)
=

(
1 −g′(x1)

−g′(x1) 1 + (g′(x1))2

)
for every x = (x1, x2) ∈ SQδ.

We recall that H = {(x1, x2) ∈ R2 : x2 > 0}. By an elementary change of coordinates, we obtain
the following result.

Lemma 7.2. Let u and A be as above. There exist constants C1, C2 > 0 and r0 > 0 such that
B2r0 ⊂ ψ(SQδ) and the function ũ := u ◦ φ satisfies the following almost-minimality condition:

- For every x0 ∈ ∂Ωũ ∩Br0 and r ∈ (0, r0) we have∫
Br(x0)

aij(x)
∂ũ

∂xi

∂ũ

∂xj
dx+ Λ|Ωũ ∩Br(x0)|

≤ (1 + C1r
d+2)

∫
Br(x0)

aij(x)
∂ṽ

∂xi

∂ṽ

∂xj
dx+ Λ|Ωṽ ∩Br(x0)|+ C2r

d+2,

for every ṽ ∈ H1(B2r0) such that ũ = ṽ on B2r0 \Br(x0) and Ωṽ ⊂ H.

Proof. Let x0 ∈ Br0 , r ∈ (0, r0) and ṽ such that ũ = ṽ on B2r0 \ Br(x0). Then, use v ∈ H1
0 (D)

defined by v = ṽ ◦ ψ in ψ−1(B2r0) and v = u otherwise, as a test function in Lemma 7.1 to get∫
Bcφr(y0)

|∇u|2 dx+Λ|Ωu∩Bcφr(y0)| ≤ (1+C1r
d+2)

∫
Bcφr(y0)

|∇v|2 dx+Λ|Ωv ∩Bcφr(y0)|+Crd+2,

where cφ is a positive constant depending only on φ such that φ(Br(x0)) ⊂ Bcφr(y0) and y0 =
φ(x0). Now, with a change of coordinates and noticing that u = v on φ(Br(x0)) we have∫
Br(x0)

aij(x)
∂ũ

∂xi

∂ũ

∂xj
dx+Λ|Ωũ ∩Br(x0)| =

∫
φ(Br(x0))

|∇u|2 dx+ Λ|Ωu ∩ φ(Br(x0))|

≤ (1 + C1r
d+2)

∫
φ(Br(x0))

|∇v|2 dx+ Λ|Ωv ∩ φ(Br(x0))|+ C2r
d+2

= (1 + C1r
d+2)

∫
Br(x0)

aij(x)
∂ṽ

∂xi

∂ṽ

∂xj
dx+ Λ|Ωṽ ∩Br(x0)|+ C2r

d+2,

where C2 = λ1(Ωu)C1 + C. This concludes the proof. �

Proof of Theorem 1.11 (the one-phase boundary points). We are now in position to conclude the
regularity of the free boundary ∂Ωi in a neighborhood of any one-phase boundary point x0 ∈
∂Ωi ∩ ∂D. Indeed, we may assume that x0 = 0 and that ∂D is the graph of a function g.
Reasoning as above, we have that ũi(x1, x2) = ui(x1, x2 + g(x1)) satisfies the almost-minimality
condition from Lemma 7.2 in a neighborhood of the origin. On the other hand, it is immediate
to check that ũi is still Lipschitz continuous. Thus, we can apply Theorem 1.1 obtaining that, in
a neighborhood of zero, ∂Ωi is the graph of a C1,α function. �

7.3. Two-phase points. Let Ωi and Ωj be two different sets from the optimal n-uple (Ω1, . . . ,Ωn),
solution of (1.10). Let ui and uj be the first normalized eigenfunctions, respectively on Ωi and
Ωj . Finally, let x0 ∈ ∂Ωi ∩ ∂Ωj . We know that there is a neighborhood U ⊂ D of x0 such that
U ∩Ωk = ∅, for every k /∈ {i, j}. Setting D := Ωi ∪Ωj ∪ U , we get that the function u := ui − uj
is the solution of the two-phase problem

min
{∫

D
|∇v|2 dx+ qi|Ω+

v |+ qj |Ω−v | : v ∈ H1
0 (D),

∫
D
v2

+ dx =

∫
D
v2
− dx = 1

}
. (7.3)

We next show that the solutions of (7.3) satisfy a almost-minimality condition.

Lemma 7.3. Let D ⊂ Rd, u ∈ H1
0 (D) be a Lipschitz continuous function on Rd and L its

Lipschitz constant. Suppose that u is a solution of the minimization problem (7.3). Then, there
is some r0 > 0 such that u satisfies the following almost-minimality condition:
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For every r ∈ (0, r0) and x0 ∈ ∂Ωu,∫
Br(x0)

|∇u|2 dx+ qi|Ω+
u ∩Br(x0)|+ qj |Ω−u ∩Br(x0)|

≤
(
1 + C1r

d+2
) ∫

Br(x0)
|∇v|2 dx+ qi|Ω+

v ∩Br(x0)|+ qj |Ω−v ∩Br(x0)|+ C2r
d+2,

for every v ∈ H1
0 (D) such that u− v ∈ H1

0 (Br(x0)), where C1 = 2L2 and C2 = C1

∫
D
|∇u|2 dx.

Proof. Follows precisely as in Lemma 7.1. �

We are now in position to complete the proof of Theorem 1.11.

Proof of Theorem 1.11 (the two-phase free boundary). We only need to notice that in a neighbor-
hood of any two-phase point x0∩∂Ωi∩∂Ωj ∩D, Lemma 7.3 implies that u is a almost-minimizer
of Jtp, where the matrix A is the identity, Q+ = qi and Q− = qj . Thus, it is sufficient to apply
Theorem 1.5. �

Appendix A. The flat one-phase free boundaries are C1,α

In this section we discuss a regularity theorem for viscosity solutions of the one-phase problem
(without constraint). We fix the real-valued function f : B2 → R and the matrix-valued A :
B2 → Sym+

d to be as follows:
• f : B2 → R is bounded and continuous;
• A : B2 → Sym+

d is coercive, bounded and has C1-regular coefficients.

Before we state the result, we recall that a Lipschitz continuous nonnegative function u : Rd ⊃
B1 → R is a viscosity solution to

−div(A∇u) = f in Ωu ∩B1,
∣∣A1/2[∇u]

∣∣ = g on ∂Ωu ∩B1, (A.1)

if the first equation holds in the open set Ωu and if, for every x0 ∈ ∂Ωu and every ϕ ∈ C∞(Rd)
touching u◦Fx0 from above (below) at zero, we have that |∇ϕ|(0) ≥ g(x0) (resp. |∇ϕ|(0) ≤ g(x0)).
Recall that touching from above (below) means that ϕ(0) = 0 and ϕ ≥ u ◦Fx0 (resp. ϕ ≤ u ◦Fx0)
in Ωu∩B1. Moreover, we suppose that g is Hölder continuous and that there are constants ηg > 0,
Cg > 0 and δg > 0 such that{

|g(x)− g(y)| ≤ Cg|x− y|δg for every x, y ∈ ∂Ωu ∩B1,

ηg ≤ g(x) for every x ∈ ∂Ωu ∩B1.
(A.2)

The following result follows immediately from the results proved in [14].

Theorem A.1 (Flat free boundaries are C1,α). Suppose that u : B1 → R is a viscosity solution
of (A.1) and that g : ∂Ωu → R satisfies (A.2). Then, there exist ε > 0 and ρ > 0 such that if
x0 ∈ ∂Ωu ∩B1 and u is such that

g(x0) max{0, x · ν − ερ} ≤ u ◦ Fx0(x) ≤ g(x0) max{0, x · ν + ερ} for every x ∈ Bρ,

then ∂Ωu is C1,α in Bρ/2(x0).

Remark A.2. Notice that since in dimension two all the blow-up limits of u+ (given by Theorem
1.5) are half-plane solutions (Proposition 4.3), we have that the flatness assumption of the above
Theorem is satisfied at every point of the free boundary ∂Ω+

u . We also notice that, in our case,
we have g = µ+, which is Hölder continuous by Lemma 6.4.

Definition A.3 (Flatness). Let u : B1 → R be continuous, u ≥ 0 and u ∈ H1(B1). We say that
u is (ε, ν)-flat, if there are a matrix-valued A = (aij)ij : B1 → Sym+

d with Hölder continuous
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coefficients, and a continuous f : B1 → R such that:

−
∑
i,j

aij ∂iju = f in Ωu ∩B1 ; (A.3)

‖f‖L∞(B1) ≤ ε and ‖aij − δij‖L∞(B1) ≤ ε2 for every 1 ≤ i, j ≤ d ; (A.4)

1− ε2 ≤ |∇u| ≤ 1 + ε2 on ∂Ωu ∩B1 ; (A.5)

max{0, x · ν − ε} ≤ u(x) ≤ max{0, x · ν + ε} for every x ∈ B1. (A.6)

Remark A.4. The condition (A.5) is intended in a viscosity sense, that is, for any ϕ ∈ C∞(B1),
we have:

- if ϕ(x0) = u(x0) for some x0 ∈ ∂Ωu ∩B1 and ϕ+ ≥ u in Ωu ∩B1, then |∇ϕ(x0)| ≥ 1− ε2;
- if ϕ(x0) = u(x0) for some x0 ∈ ∂Ωu ∩B1 and ϕ ≤ u in Ωu ∩B1, then |∇ϕ(x0)| ≤ 1 + ε2.

In order to prove Theorem A.1 one has to show that the flatness improves at lower scales, that
is, if u is (ε, ν)-flat, then a rescaling ur of u is (ε/2, ν ′)-flat for some ν ′, which is close to ν. Of
course, the essential (and hardest) part of the proof is to show the improvement of the geometric
flatness (A.6). This was proved by De Silva in [14, Lemma 4.1].

Lemma A.5 (Improvement of the geometric flatness). There are universal constants C > 0,
r0 > 0 and ε0 > 0 such that if u is ε-flat in the direction ν, for some ε ∈ (0, ε0) and ν ∈ ∂B1,
then, for every r ∈ (0, r0) there is some ν ′ ∈ ∂B1 such that |ν − ν ′| ≤ Cε2 and

max
{

0, x · ν ′ − ε

2

}
≤ ur(x) ≤ max

{
0, x · ν ′ + ε

2

}
for every x ∈ B1,

where ur : B1 → R is the one-homogeneous rescaling ur(x) = u(rx)
r .

Proof of Theorem A.1. We will first prove that the flatness condition (A.3)-(A.6) improves at
smaller scales. We fix x0 ∈ ∂Ωu ∩ B1 and we consider the function ũ = 1

g(x0)u ◦ Fx0 (recall that

Fx0(x) = x0 +A
1/2
x0 [x]). Let ε and r0 be the constants from Lemma A.5. We will prove that there

is r1 ≤ r0 such that: if ũ is (ε, ν)-flat, then for every r ≤ r1, ũr is (ε/2, ν ′)-flat, for ν ′ given again
by Lemma A.5. It is sufficient that the conditions (A.3), (A.4) and (A.5) are satisfied for ũr with
the flatness parameter ε/2. We notice that ũ is a viscosity solution of

−div(Ã∇ũ) = f̃ in Ωũ,
∣∣Ã1/2[∇ũ]

∣∣ = g̃ on ∂Ωũ, (A.7)

where Ãx = A
−1/2
x0 AFx0 (x)A

−1/2
x0 , f̃ =

1

g(x0)
f ◦ Fx0 , g̃ =

1

g(x0)
g ◦ Fx0 and Ã

1/2
x = A

1/2
Fx0 (x) ◦ A

−1/2
x0 .

Notice that 0 ∈ ∂Ωũ and set ũr(x) :=
ũ(rx)

r
. Thus, for small enough r > 0, ũr is a viscosity

solution of

−div(Ãr∇ũr) = f̃r in Ωũ ∩B1,
∣∣Ã1/2

r [∇ũr]
∣∣ = g̃r on ∂Ωũ ∩B1, (A.8)

where Ãr(x) := Ã(rx), f̃r(x) = rf̃(rx), g̃r(x) = g̃(rx) and Ã
1/2
r (x) = A

1/2
Fx0 (rx) ◦A

−1/2
x0 .

We set ãrij(x) to be the coefficients of Ãr(x) and b̃r to be the vector with coefficients

b̃ri =
∑
j

∂j ã
r
ij(x). Then, (A.8) can be equivalently written as

−
∑
i,j

ãrij ∂ij ũr = b̃r · ∇ũr + f̃r in Ωũ ∩B1,
∣∣Ã1/2

r [∇ũr]
∣∣ = g̃r on ∂Ωũ ∩B1, (A.9)

Now, if ũ is (ε, ν)-flat, then the Hölder continuity of the coefficients aij and the boundedness
of f imply that (A.4) holds with ε/2 and ũr, for any r ≤ r1, where r1 ≤ r0, is a universal constant
depending on the Hölder norm of aij . Now, in order to get (A.5) for ε/2 and ũr, we suppose that
ϕ ∈ C∞(B1) touches ũr from below at a point y0 ∈ B1 ∩ ∂{ũr > 0}. Thus, we have that∣∣∣A1/2

Fx0 (ry0) ◦A
−1/2
x0 [∇ϕ(y0)]

∣∣∣ ≤ g(Fx0(ry0))

g(x0)
,
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and so, if ‖ · ‖ = ‖ · ‖L(Rd) stands for the space of d× d matrices, we have

|∇ϕ(y0)| ≤
∥∥∥A1/2

x0 ◦A
−1/2
Fx0 (ry0)

∥∥∥ g(Fx0(ry0))

g(Fx0(0))
.

Now, by the Hölder continuity (and the uniform boundedness from below) of g, we can choose r1

such that
g(Fx0(ry0))

g(Fx0(0))
≤ 1 +

ε2

10
.

On the other hand, there are universal constants C and δ > 0, depending only on the Hölder
exponent δA and the norm CA, of the matrix-valued function A, such that∥∥A1/2

x0 ◦A
−1/2
Fx0 (ry0) − Id

∥∥ ≤ ∥∥∥A1/2
x0 −A

1/2
Fx0 (ry0)

∥∥∥ · ∥∥A−1/2
Fx0 (ry0)

∥∥ ≤ C|ry0|δ ≤ Crδ1.

Choosing r1 such that Crδ1 ≤ ε2

10 and using the triangular inequality, we get

|∇ϕ(y0)| ≤
∥∥∥A1/2

x0 ◦A
−1/2
Fx0 (ry0)

∥∥∥ g(Fx0(ry0))

g(Fx0(0))
≤
(

1 +
ε2

10

)2

≤ 1 + (ε/2)2,

which completes the proof of the improvement of flatness for ũ, the case when ϕ touches from
above being analogous. Now, the claim follows by a standard argument, similar to the one we
used in Section 5. �
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Bâtiment IMAG, 700 Avenue Centrale, 38401 Saint-Martin-d’Hères
Email address: bozhidar.velichkov@univ-grenoble-alpes.fr


