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Abstract. We establish a quantitative rigidity estimate for two-well frame-indifferent nonlinear en-

ergies, in the case in which the two wells have exactly one rank-one connection. Building upon this
novel rigidity result, we then analyze solid-solid phase transitions in arbitrary space dimensions, under

a suitable anisotropic penalization of second variations. By means of Γ-convergence, we show that, as

the size of transition layers tends to zero, singularly perturbed two-well problems approach an effective
sharp-interface model. The limiting energy is finite only for deformations which have the structure of a

laminate. In this case, it is proportional to the total length of the interfaces between the two phases.

1. Introduction

Solid-solid phase transitions are often observed in nature, both in basic phenomena (e.g., change
between different ice forms under high pressure, or transformation from graphite to diamond in carbon
under very elevated temperature and pressure) as well as in advanced materials such as shape-memory
alloys (see, e.g., [9, 16]). In this paper we contribute to the theory of solid-solid phase transitions by
presenting a novel quantitative two-well rigidity estimate and its application to singularly perturbed two-
well problems. In particular, we extend the results about sharp-interface limits obtained by S. Conti
and B. Schweizer [19, 20] in dimension two to the higher-dimensional framework and, as a byproduct,
we provide a simplified convergence proof in the two-dimensional setting.

Assume that Ω ⊂ Rd, d ∈ N, is a bounded Lipschitz domain, denoting the reference configuration of a
nonlinearly elastic material undergoing a solid-solid phase transition between two phases A,B ∈ Md×d.
Its behavior is then classically encoded by means of a nonlinear elastic energy functional of the form

y ∈ H1(Ω;Rd)→
ˆ

Ω

W (∇y) dx, (1.1)

where W : Md×d → [0,+∞) is a nonlinear, frame-indifferent, elastic energy whose zero set has the
following two-well structure

{F ∈Md×d : W (F ) = 0} = SO(d)A ∪ SO(d)B, (1.2)

where SO(d) denotes the set of proper rotations in Md×d. It is well known that, in the presence of rank-
one connections between A and B, low energy sequences for generic boundary value problems exhibit
infinitely fine oscillations.

In order to remedy the issue of unphysical, highly oscillatory behavior, second order perturbations
may be added to (1.1). Then, macroscopic transitions between the two wells SO(d)A and SO(d)B can
be described via the minimization of a diffuse interface model of the form

y ∈ H2(Ω;Rd)→ Iε(y) :=
1

ε2

ˆ
Ω

W (∇y) dx+ ε2

ˆ
Ω

|∇2y|2 dx. (1.3)

In the formula above, ε > 0 is a smallness parameter introducing a length scale into the problem.
Roughly speaking, ε2 describes the width of the transition layers between different phases (see, e.g.,
[6, 8, 12, 41, 51]), so that, as ε tends to zero, the behavior of Iε approaches that of a sharp-interface model.
(We prefer to use the parameter ε with exponent 2 in the above formula since this will have notational
advantages in the following.) We remark that a number of different possible higher order regularizations
is used in the literature, both of diffuse and sharp-interface type. They all have the common feature
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that they can be interpreted as surface energies penalizing the transition between different energy wells.
Although the above described continuum models are only “phenomenological”, they have remarkable
success in predicting microstructures and material patterns.

Singularly perturbed nonconvex functionals of the form

Gε(u) :=
1

ε2

ˆ
Ω

W (u) dx+ ε2

ˆ
Ω

|∇u|2 dx (1.4)

have also been extensively studied in connection with the theory of minimal surfaces and the modeling
of liquid-liquid phase transitions. Starting from the seminal works by L. Modica, S. Mortola, and
M. E. Gurtin [35, 49, 50], a thorough analysis of energy functionals as in (1.4) has been performed
both in scalar [10, 53] and in vectorial settings [7, 29, 57, 58]. We also refer to [42] for an analysis of
local minimizers and to [2, 4] for extensions to the situation in which W has more than two wells. In
particular, a limiting description of the functionals Gε has been identified by Γ-convergence (see [11, 22]
for an overview), and shown to be proportional to the length of the interfaces between the different
phases.

The corresponding Γ-convergence analysis in the solid-solid setting, addressing the passage from a
diffuse to a sharp-interface model, has been open until the early 2000s until a breakthrough was achieved
by S. Conti, I. Fonseca, and G. Leoni in [18], in the case in which frame-indifference is neglected.
In dimension two, the analysis was extended to the frame-indifferent linearized setting by S. Conti and
B. Schweizer in [20] who also accomplished the characterization of the fully nonlinear framework (1.3)
for d = 2 in the two subsequent papers [19, 21]. Recently, some related microscopic models for two-
dimensional martensitic transformations as well as their discrete-to-continuum limits have been analyzed
in [38, 39].

As highlighted, e.g., in [55], when studying solid-solid diffuse models having the structure in (1.3),
two nonlinear phenomena need to be tackled simultaneously, namely a material nonlinearity due to the
two-well structure of the energy, and a geometric nonlinearity, generated by the SO(d)-frame-indifference
of the model. This, together with the PDE constraint “curl = 0” on the admissible fields entering
the nonconvex densities W , renders the analysis much more delicate in comparison with liquid-liquid
counterparts as in (1.4).

A preliminary crucial observation concerning the material nonlinearity is the fact that the mathemat-
ical description of the model strongly depends on the presence or the absence of rank-one connections
between the two phases A and B in (1.2). Indeed, sequences with uniformly bounded energy (1.3) which
converge to non-affine limiting configurations (i.e., exhibiting phase transitions) only exist if A and B are
rank-one connected. (This is often called the Hadamard compatibility condition for layered deformations,
see [6].) Admissible limiting deformations are necessarily piecewise affine and interfaces are planes (see
Figure 1).

Thus, the limiting sharp-interface problem is very rigid, and hence the analysis seems to be simplified
compared to liquid-liquid phase transitions where minimal surfaces have to be considered. However, it
turns out that the above-mentioned PDE constraint on the admissible fields presents various difficulties
for the derivation of the Γ-limsup inequality.

In particular, in the construction of recovery sequences approximating a limit with multiple flat inter-
faces, suitable quantitative two-well rigidity estimates are needed to deal with the geometric nonlinearity
of the model. The main challenge appears to be the fact that for generic small-energy functions, even
if one phase is predominant in a certain region, there might be small inclusions of the other phase, so-
called minority islands. S. Conti and B. Schweizer dealt with this problem by showing that still the
deformation is H1/2-rigid on many lines (see [19, Section 3.3]). It seems, however, that their specific
geometric arguments cannot be extended easily to higher dimensions.

In the present paper, we overcome the issue of the dimension by means of a novel quantitative two-well
rigidity result for a model where the two wells have exactly one rank-one connection: after rotation, we
may suppose without restriction that B−A = κed⊗ ed for κ > 0. We analyze a slightly modified version
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Figure 1. A limiting deformation whose gradient takes values in {A,B}, in the case in
which A and B have exactly one rank-one connection.

of the model in (1.3) in which the energy is augmented by an anisotropic perturbation:

y ∈ H2(Ω;R2)→ Eε,η(y) := Iε(y) + η2

ˆ
Ω

(
|∇2y|2 − |∂2

ddy|2
)
dx (1.5)

for η > 0. We point out that the additional anisotropic perturbation penalizes only transitions in the
direction orthogonal to the rank-one connection ed⊗ed. This guarantees that the behavior of the energies
Eε,η is qualitatively the same as that of the functionals Iε, see Remark 4.5. At the same time, from a
technical point of view, it is expectable that low-energy sequences of Eε,η might be more rigid compared
to the ones of Iε. We remark that similar anisotropic perturbations have already been used in the
literature for related problems (see, e.g., [40, 61]), and that this anisotropy is the reason why we restrict
our analysis to the case of exactly one rank-one connection.

The additional higher order penalization situates our analysis within the framework of nonsimple
materials, whose characteristic feature is an elastic stored energy density dependent on second order
derivatives of the deformations. Starting from the seminal works by R.A. Toupin [59, 60], these mate-
rials have been the subject of an intense research activity in nonlinear elasticity due to their enhanced
compactness properties [5, 48, 54]. On the one hand, the penalization factor η will be chosen “large
enough” to exploit the second order regularization also in the present two-wells setting. On the other
hand, the factor η will be “small enough” to guarantee that (1.5) shows the same qualitative behavior
as the unperturbed problem (1.3), at least asymptotically when passing to a linearized strain regime. A
formal asymptotic expansion, in fact, shows that, by considering deformations y of the form y = id + εu,
for a smooth displacement u, the energy Eε,η(y) rewrites as

Eε,η(y) = Eε,η(id + εu) =
1

ε2

ˆ
Ω

W (Id + ε∇u) dx+ ε4

ˆ
Ω

|∇2u|2 dx+ η2ε2

ˆ
Ω

(
|∇2u|2 − |∂2

ddu|2
)
dx

∼ 1

2

ˆ
Ω

D2W (Id)∇u : ∇u dx+ O(ε4) + O(η2ε2), (1.6)

where id denotes the identity function and Id its derivative. Thus, to ensure that our anisotropic penal-
ization does not perturb the qualitative small-strain behavior of (1.3), it is essential that η � ε−1. Let
us mention that related problems in the framework of nonsimple materials have recently been studied in
the settings of viscoelasticity [33] and multiwell energies [1]. There, under strong penalization of the full
second gradient, rigorous counterparts of the formal linearization (1.6) are performed by Γ-convergence.

The first part of the paper is devoted to a quantitative rigidity estimate for two-wells energies of the
form (1.5), see Theorem 3.1. Here, we formulate a simplified version illustrating the core of our result.
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Theorem 1.1. (Simplified statement of Theorem 3.1) Let ηε,d = ε−1+α(d), where α(d) > 0 is a suitable
exponent, only depending on the space dimension d (see Remark 3.2(iv) for its explicit expression). Let
Ω = (−h, h)d be a cube, and W = dist2(·, SO(d){A,B}). Let E > 0. Then there exists a constant
C = C(h,A,B,E) > 0 such that for every y ∈ H2(Ω;Rd) with Eε,ηε,d(y) ≤ E we can find a rotation
R ∈ SO(d) and a phase indicator M∈ BV (Ω; {A,B}) satisfying

‖∇y −RM‖L2(Ω) ≤ Cε and |DM|(Ω) ≤ C. (1.7)

We point out that our rigidity result holds for general dimensions d ∈ N, d ≥ 2, for every η > 0, a
large class of domains Ω and energy densities W , and a range of integrability exponents depending on
the space dimension d. We refer to the statement of Theorem 3.1 for the precise assumptions.

The novelty with respect to previous contributions in the literature is the presence of the phase
indicator M that allows to quantify the distance of the deformation gradient from the two wells by
keeping track of which phase is “active” in each region of Ω. Previous quantitative rigidity estimates for
two-well or multiwell energies with rank-one connections measure the distance of ∇y from a single matrix
in one of the wells. The sharpest results in that direction either only guarantee an L2-control in terms
of
√
ε (and not of ε), or require the passage to a weaker norm. Interestingly, a construction involving

specific minority islands shows that the scaling
√
ε is sharp, see Remark 3.9. Thus, introducing a phase

indicator is indispensable in order to obtain the optimal ε-scaling in (1.7). We refer to Subsection 3.1 for
a literature overview on multiwell rigidity estimates and for a comparison to our result.

The main idea in our proof is to replace the actual gradient of the deformation ∇y, which satisfies
∇y ≈ SO(d){A,B}, by∇yB−1 on a set of finite perimeter associated to the B-phase region. The resulting
field γ then satisfies γ ≈ SO(d)A, but is in general incompatible (i.e., not curl-free). Estimate (1.7) is then
achieved by controlling carefully the curl of γ and using one-well rigidity estimates for incompatible fields
[14, 43, 52]. A similar strategy of reducing a multiwell problem to an incompatible single-well setting
has been adopted in [37] for proving compactness and structure results for a discrete, frame-indifferent
multiwell problem. The added value of our argument is the combination of rigidity estimates for fields
with non-zero curl and a decomposition of the domain into phase regions (see Proposition 3.7).

It turns out that the curl of the introduced incompatible field γ has both a bulk and a surface part.
The delicate step is to control the surface curl. As in [37], our strategy departs from the remark that a
control on the length of the interfaces between different phases allows to provide a bound on the surface
curl. Our further step is the proof that the surface curl can be estimated in dependence of the normal
vector of the interface, see Lemma 3.5. Remarkably, it turns out that the surface curl vanishes if the
normal vector coincides with the direction of the rank-one connection. This observation together with
the anisotropic perturbation in (1.5) then guarantees that the surface curl of such fields γ is of order ε.

The second part of the paper is devoted to an application of Theorem 3.1 to the Γ-convergence analysis
(see [11, 22] for a comprehensive introduction to the topic) of the model in (1.5). In particular, we show
that, as ε→ 0, the behavior of the energy functionals in (1.5) approaches that of the sharp-interface limit

E0(y) :=

{
KHd−1(J∇y) if ∇y ∈ BV (Ω;R{A,B}) for some R ∈ SO(d),

+∞ otherwise in L1(Ω;Rd),

where K corresponds to the energy of optimal transitions between the two phases (see (4.8)). We now
give the exact statement of our second main result.

Theorem 1.2 (Identification of a sharp-interface limit). Let ηε,d = ε−1+β(d), where β(d) > 0 is a suitable
exponent, only depending on the space dimension d (see (4.5) for its explicit expression). Let Ω ⊂ Rd
be a bounded strictly star-shaped Lipschitz domain. Let W satisfy assumptions H1.–H5. Then Eε,ηε,d
Γ-converges to E0 in the strong L1-topology.

We refer to Section 2 for the precise assumptions on the energy density W , and to Subsection 4.1 for
the definition of strictly star-shaped domains, as well as for an overview of the relevant existing results
on solid-solid phase transitions.
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The proof is divided into two steps, relying first on the identification of a lower bound, the liminf
inequality (see Proposition 4.3), and then on the proof of its optimality, the limsup inequality (see
Theorem 4.4).

The proof of the liminf inequality follows the strategy in [18, Proof of Theorem 4.1], and is based on a
d-dimensional analysis of the properties of the optimal-profile energy K (see Proposition 4.6). The main
novelty of our result lies in the proof of the optimality of the lower bound identified in Proposition 4.3
in any dimension d ≥ 3. As a byproduct of our analysis, we also provide a simplified construction of
recovery sequences in the two-dimensional setting. In the seminal paper [19], indeed, the identification
of deformations approximating energetically a limit with multiple flat interfaces relies on the notion of
H1/2-rigidity on lines (see [19, Section 3.3]), which requires deeply geometrical and technical constructions
currently non-available in dimension d > 2. By means of our quantitative rigidity estimate, instead, we
overcome this issue by directly obtaining a control on the W 1,p-norm of the restriction of deformations
to (d − 1)-dimensional slices, for suitable exponents p in a range depending on the dimension d (see
Proposition 4.12). Once this control on slices is established, we may follow the lines of [19, 20] to “glue
together” several interfaces and to construct recovery sequences. We include the statements and the
proofs of these technical lemmas from [19, 20] in order to keep the paper self contained. This allows us
to develop a comprehensive argument valid in any dimension d ≥ 2.

As a final remark, we point out that a second application of the rigidity estimate in Theorem 3.1
will be provided in the companion paper [23]. There, again departing from a singularly perturbed two-
well problem of the form (1.5), we will perform a simultaneous sharp-interface and small-strain limit,
complementing recent results about the linearization of multiwell energies [1, 56]: we will identify an
effective linearized model defined on suitably rescaled displacement fields which measure the distance to
simple laminates.

The structure of the paper is the following: in Section 2 we describe the setting of the problem
and collect the main constitutive assumptions. Section 3 contains an overview of quantitative multiwell
rigidity estimates, as well as the exact statement and the proof of our two-well rigidity result. Section 4
is devoted to the proof of the variational convergence of our diffuse model to a sharp-interface limit.

Notation. We will omit the target space of our functions whenever this is clear from the context. For
d ∈ N, we denote by e1, . . . , ed the standard basis. In what follows, Id denotes the identity matrix and
eij , i, j = 1, . . . , d, the standard basis in Md×d. Given two vectors v, w ∈ Rd, their tensor product is
denoted by v ⊗w and is defined as the matrix (v ⊗w)ij = viwj for i, j = 1, . . . , d. For every set S ⊂ Rd,
we indicate by χS its characteristic function, defined as

χS(x) :=

{
1 if x ∈ S
0 otherwise.

The d-dimensional Lebesgue and Hausdorff measure of a set will be indicated by Ld and Hd, respectively.
We use standard notation for Sobolev spaces and BV functions.

2. The model

In this section we introduce our model. Let d ∈ N, d ≥ 2, and let Ω ⊂ Rd be a bounded Lips-
chitz domain. To any deformation y ∈ H1(Ω;Rd), we associate the elastic energy

´
Ω
W (∇y) dx, where

W : Md×d → [0,+∞) represents a stored-energy density satisfying the following properties:

H1. (Regularity) W is continuous;
H2. (Frame indifference) W (RF ) = W (F ) for every R ∈ SO(d) and F ∈Md×d;
H3. (Two-well rigidity) W (A) = W (B) = 0, where A = Id, and B = diag(1, . . . , 1, 1 + κ) ∈Md×d for

κ > 0;
H4. (Coercivity) there exists a constant c1 > 0 such that

W (F ) ≥ c1dist2(F, SO(d){A,B}) for every F ∈Md×d.
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Assumptions H1.-H4. are standard requirements on stored-energy densities in nonlinear elasticity.
Given two matrices A,B ∈ Md×d with det(A),det(B) > 0 such that SO(d){A,B} contains at least one
rank-one connection, i.e., rank(B − RA) = 1 for some R ∈ SO(d), one can always assume (after an
affine change of variables) that A = Id and B = diag(λ, 1, . . . , 1, µ) for λ, µ > 0 with λµ ≥ 1. (See
[26, Discussion before Proposition 5.1 and Proposition 5.2] for a proof.) In particular, depending on the
values of λ and µ, the set SO(d){A,B} contains exactly two, one, or no rank-one connections (up to
rotations), see [26, Proposition 5.1]. In the present contribution, we focus on the case of exactly one
rank-one connection, see H3.: the only solution of B − RA = a ⊗ ν with R ∈ SO(d), a, ν ∈ Rd, and
|ν| = 1 is given by R = Id, ν = ed, and a = κed.

In the following, we will call A and B the phases. Regions of the domain where ∇y is in a neighborhood
of SO(d)A will be called the A-phase regions of y and accordingly we will speak of the B-phase regions.

In order to model solid-solid phase transitions, we analyze a nonlinear energy given by the sum of a
suitable rescaling of the elastic energy, a singular perturbation, and a higher-order penalization in the
direction orthogonal to the rank-one connection. To be precise, for ε, η > 0 we consider the functional

Eε,η(y) :=
1

ε2

ˆ
Ω

W (∇y) dx+ ε2

ˆ
Ω

|∇2y|2 dx+ η2

ˆ
Ω

(
|∇2y|2 − |∂2

ddy|2
)
dx (2.1)

for every y ∈ H2(Ω;Rd).
The parameter ε in the definition above represents the typical order of the strain, whereas ε2 is related

to the size of transition layers [6, 8, 12, 41, 51]. The first term on the right-hand side of (2.1) favors
deformations y whose gradient is close to the two wells of W , whereas the second and third terms penalize
transitions between two different values of the gradient. The choice η = 0 corresponds to the model for
solid-solid phase transitions investigated by S. Conti and B. Schweizer [19] in dimension two. For
η > 0, the third term compels transitions to happen preferably in the direction of the rank-one connection.
The basic idea of our contribution is that this additional anisotropic perturbation allows us to prove a
stronger rigidity estimate and to extend the findings in [19] to a multidimensional setting.

Although the additional penalization term renders our model more specific, we emphasize that it does
not affect the qualitative behavior of the sharp-interface limit obtained in [19], see Remark 4.5. We
note that this anisotropy is the reason why we restrict our study to the case of exactly one rank-one
connection. We also mention that anisotropic singular perturbations have already been used in related
problems, see, e.g., [40, 61].

3. Two-well rigidity

This section is devoted to a quantitative rigidity estimate for the two-well energies in (2.1), with
densities W satisfying H1.-H4. We first formulate the main theorem.

Theorem 3.1 (Two-well rigidity estimate). (a) Let Ω be a bounded, simply connected Lipschitz domain in
R2 and let η ≥ ε > 0. Then there exists a constant C = C(Ω, κ, c1) > 0 such that for every y ∈ H2(Ω;R2)
there exist a rotation R ∈ SO(2) and a phase indicator M∈ BV (Ω; {A,B}) satisfying

‖∇y −RM‖L2(Ω) ≤ Cε
√
Eε,η(y) + C

( ε
η

+
ε1/2

η3/2

)
Eε,η(y) and |DM|(Ω) ≤ CEε,η(y).

(b) Let Ω be a bounded Lipschitz domain in Rd with d ∈ N, d ≥ 3. Let 1 ≤ p ≤ 2, p 6= d
d−1 , and let

η ≥ ε > 0. Then for each Ω′ ⊂⊂ Ω there exists a constant C = C(Ω,Ω′, κ, p, c1) > 0 such that for every
y ∈ H2(Ω;Rd) there exist a rotation R ∈ SO(d) and a phase indicator M∈ BV (Ω; {A,B}) satisfying

‖∇y −RM‖Lp(Ω′) ≤ Cε
√
Eε,η(y) + C

(( ε
η

+
ε1/2

η3/2

)
Eε,η(y)

)r(p,d)

and |DM|(Ω) ≤ CEε,η(y), (3.1)

where r(p, d) = min{1, d
p(d−1)}.

Remark 3.2 (Different exponents, sets, and simplified formulations). (i) The difference in the formula-
tions in two and arbitrary space dimensions, concerning the exponents and the assumptions on the sets,
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are due to the application of rigidity estimates for vector fields with nonzero curl, see Lemma 3.3 below.
Although we neglect the case p = d

d−1 in (b), we point out that our argument could be extended to also

cover that scenario, by replacing Lemma 3.3 below with the results for p = d
d−1 in [43, Theorem 4].

(ii) In (b), if Ω is a paraxial cube, the statement holds on the entire domain.

(iii) For general sets Ω, we point out that for p > d
d−1 the rigidity estimates for vector fields with

nonzero curl in Lemma 3.3(b) hold on the whole set (see Remark 3.4). Nevertheless, the passage to a
subdomain is still needed for Theorem 3.1 due to a combination of covering and isoperimetric arguments
in Step II of the proof. We are aware of the possibility to formulate Theorem 3.1(b) on the whole set
Ω for a more general class of sets having suitable geometrical properties. Nonetheless, we have decided
not to dwell on this point, both to keep the exposition from becoming too technical, and as it is only of
marginal interest for the applications that we will treat in this paper and in [23]. Note that the constant
C in the theorem is invariant under uniformly Lipschitz reparametrizations of the domain.

(iv) Consider the special case η = ε−1+4/(3d) for deformations y ∈ H2(Ω;Rd) with Eε,η(y) ≤ E for
some E > 0. Then, when Ω is a paraxial cube, the statement reduces to that of Theorem 1.1 choosing
α(d) = 4/(3d).

The section is organized as follows. In Section 3.1 we first provide a brief literature overview of quan-
titative rigidity estimates for multiwell energies and situate Theorem 3.1 within this context. In Section
3.2 we then recall rigidity estimates for vector fields with nonzero curl, which are the main ingredient in
our approach. Section 3.3 is devoted to some preliminary estimates concerning the decomposition of the
domain into the phase regions of A and B. Finally, Section 3.4 contains the proof of Theorem 3.1 and
some further remarks on the result.

3.1. Theorem 3.1 in the context of quantitative rigidity estimates for multiwell energies.
Theorem 3.1 is related to a variety of quantitative rigidity estimates for multiwell energies. Roughly
speaking, all these results control the distance of the deformation gradient from a single matrix in one of
the wells in a suitable norm. We recall the most important theorems in that direction. In the sequel, y
denotes a deformation satisfying

´
Ω
W (∇y) dx ≤ Cε2.

If the two wells are strongly incompatible in the sense of [47], it was proven in [15, 24] that there exist
R ∈ SO(d) and M ∈ {A,B} such that

‖∇y −RM‖L2(Ω) ≤ Cε, (3.2)

even without imposing a second order penalization. For multiple wells with possible rank-one connections,
it was shown in [1] that an estimate of the form (3.2) still holds if a sufficiently strong second-order penal-
ization is assumed. Both results, however, are not relevant for our applications, since phase transitions
are excluded by incompatibility of the wells or by too strong second-order penalizations.

Concerning two-well problems with rank-one connections allowing for phase transitions, the first results
have been derived in [19, 46] in dimension two. These estimates have been generalized later in [17, 36] to
arbitrary space dimensions for multiple wells satisfying suitable connectivity conditions. More precisely,
in the case of two wells, the result is as follows: for y ∈ H2(Ω;Rd) with ‖∇2y‖L1(Ω) ≤ a for some small
a > 0, there exist R ∈ SO(d) and M ∈ {A,B} such that

‖∇y −RM‖L2(Ω′) ≤ C
√
ε, (3.3)

where Ω′ is subdomain of Ω. In this context, the assumption that a is small is essential since it guarantees
that the M -phase region is predominant. Still, it does not exclude the occurrence of phase transitions
near the boundary. Indeed, (3.3) is generally not true if Ω′ = Ω. Moreover, a construction in [20, Example
6.1] shows that the scaling

√
ε is sharp, see also Remark 3.9 below. The scaling

√
ε is insufficient for our

applications to solid-solid phase transitions since the strain is typically of order ε, see Remark 4.15.

We recall that in [19] also variants for the weak L1-norm are discussed. In particular, it is shown that
there exist R ∈ SO(d) and M ∈ {A,B} such that

‖∇y −RM‖w−L1(Ω′) ≤ Cε. (3.4)
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Although the scaling in terms of ε corresponds to the typical order of the strain, the fact that the estimate
only holds in the weak L1-norm prohibits application of this estimate in Section 4, see Remark 4.15.

We remark that all the results mentioned above follow the same strategy: one shows that the vol-
ume of the phase region different from M is asymptotically small in ε. This is either induced by the
incompatibility of the wells or by a second order penalization. For 1 ≤ p ≤ 2 this yields the estimate

‖dist(∇y, SO(d)M)‖Lp(Ω) ≤ C‖dist(∇y, SO(d){A,B})‖Lp(Ω) + CV 1/p
ε ≤ Cε+ V 1/p

ε , (3.5)

where Vε denotes the volume of the phase region different from M . Afterwards, one applies the seminal
one-well rigidity estimate [34] (cf. also [19, Section 2.4]) to obtain (3.2)-(3.4) in the various settings.

Our approach is quite different as we establish a rigidity estimate which takes the presence of both
phases into account. This is reflected by the phase indicator M and is inspired by piecewise rigidity
results [30, 32] in other settings. In particular, Theorem 3.1 complements the existing results in the
following ways: (1) For the derivation of rigidity results, no smallness assumption on the full second
derivative is needed; (2) Identifying the different phase regions by means of M allows to improve the
scaling in (3.3), cf. Remark 3.2(iv) and Theorem 1.1; (3) If the domain is two-dimensional or a paraxial
cube in higher dimensions, the estimate holds on the entire set Ω. (The necessity of taking a subset in
higher dimensions is not due to the presence of different phases, but due to a combination of covering
and isoperimetric arguments in the proof, see Remark 3.2(iii) for a discussion.)

Note that for technical reasons we need to take an anisotropic penalization into account, see (2.1).
This, however, does not affect the qualitative behavior of the sharp-interface limit derived in Section 4,
see Remark 4.5.

3.2. Rigidity estimates for vector fields with nonzero curl. The main idea in our approach will
be the usage of rigidity estimates for vector fields with nonzero curl established in [14, 37, 52] (see also
[43]). We first define the curl and recall the relevant results. Let γ ∈ L1(Ω;Rd). The distribution curl γ
is formally equal to the matrix (∂iγj − ∂jγi)1≤i,j≤d and is defined as

〈curl γ, ϕ〉 =

d∑
i,j=1

ˆ
Ω

γi(x)∂j(ϕij(x)− ϕji(x)) dx (3.6)

for all ϕ ∈ C∞c (Ω;Md×d). If γ is a matrix-valued vector field, then curl γ is a distribution taking values
in Rd ×Md×d, and formally defined as (curl γ)kij = ∂iγkj − ∂jγki for every 1 ≤ k, i, j ≤ d.

Lemma 3.3 (Rigidity estimates for vector fields with nonzero curl). (a) Let Ω be a bounded, simply
connected Lipschitz domain in R2. Then there exists a constant C = C(Ω) > 0 satisfying the following
property: for every γ ∈ L2(Ω;M2×2) such that curl γ is a bounded measure there exists R ∈ SO(2) for
which

‖γ −R‖L2(Ω;M2×2) ≤ C
(
‖dist(γ, SO(2))‖L2(Ω) + |curl γ|(Ω)

)
.

(b) Let Ω be a bounded Lipschitz domain in Rd with d ∈ N, d ≥ 3, and let 1 ≤ p ≤ 2, p 6= d
d−1 . Then

for each Ω′ ⊂⊂ Ω there exists a constant C = C(Ω,Ω′, p) > 0 satisfying the following property: for every
γ ∈ Lp(Ω;Md×d) such that curl γ is a bounded measure, there exists R ∈ SO(d) for which

‖γ −R‖Lp(Ω′;Md×d) ≤ C
(
‖dist(γ, SO(d))‖Lp(Ω) + (|curl γ|(Ω))r(p,d)

)
, (3.7)

where r(p, d) = min{1, d
p(d−1)}.

Proof. Assertion (a) is proven in [52, Theorem 3.3]. The proof of assertion (b) for p < d
d−1 is essentially

contained in [14, Proposition 5.1] if the domain is a cube. For general Ω′ ⊂⊂ Ω, we use a standard
covering argument (see, e.g., [13, Proof of Theorem 1] or [31, Proof of Theorem 1.1]): we cover Ω′ with
a finite number of open cubes {Qi}Ni=1 and apply [14, Proposition 5.1] on each of the cubes to obtain
rotations {Ri}Ni=1 such that (3.7) holds on Qi for a constant Ci dependent on Qi. The difference between
rotations in neighboring cubes is then controlled in terms of a constant which only depends on d, N , and
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min{Ld(Qi ∩Qj) : Qi ∩Qj 6= ∅}. Assertion (b) for p > d
d−1 follows directly by [37, Theorem 3] if Ω′ is

a ball, and by a covering argument analogous to the one described above for more general Ω′ ⊂⊂ Ω. �

Remark 3.4 (Role of the subdomain). As a direct consequence of the proof of Lemma 3.3(b), for
1 ≤ p < d

d−1 and for Ω coinciding with a cube, we do not have to take a subset of the domain. Additionally,

for p > d
d−1 the statement can also be proven for general Lipschitz sets Ω without passing to subdomains.

This follows from the scaling invariance of the rigidity estimate for incompatible fields in [37, Theorem 3]
and by a classical covering argument (see, e.g., [34, Proof of Theorem 3.1]). The same argument does not
apply to Lemma 3.3(b) for 1 ≤ p < d

d−1 as the estimate in [14, Proposition 5.1] is not scaling invariant.

Our strategy to prove Theorem 3.1 is to replace the gradient ∇y, which satisfies ∇y ≈ SO(d){A,B},
by an associated vector field γ with γ ≈ SO(d)A. This will be done by changing ∇y to ∇yB−1 on a set
of finite perimeter associated to the B-phase regions. A similar strategy to replace a multiwell problem
by an incompatible one-well problem has been used in [37]. In contrast to [37], we provide a finer control
on the curl of the incompatible vector field. To this end, we investigate the curl of vector fields which
are SBV functions. We recall that γ ∈ L1(Ω;Rd) lies in SBV (Ω;Rd) if its distributional derivative Dγ
is an Rd×d-valued finite Radon measure on Ω such that

Dγ = ∇γLd + [γ]⊗ νγHd−1bJγ , (3.8)

where ∇γ = (∂1γ, . . . , ∂dγ) denotes the approximate differential, νγ is a normal of the jump set Jγ and
[γ] := γ+ − γ− with γ± being the one-sided limits of γ at Jγ (see [3, Chapter 4]). The following lemma
yields a control on curl γ. For related curl-estimates for SBV functions we refer to [14, Theorem 3.1].

Lemma 3.5 (Curl for SBV vector fields). Let γ = (γ1, . . . , γd) ∈ SBV (Ω;Rd). Then, curl γ is a measure
on Ω satisfying

|curl γ|(Ω) ≤ d
ˆ

Ω

|(∇γ)T −∇γ| dx+

ˆ
Jγ

|[γ]⊗ νγ − νγ ⊗ [γ]| dHd−1.

Proof. For each ϕ ∈ C∞c (Ω;Md×d) we have by (3.6) and (3.8)

〈curl γ, ϕ〉 =

d∑
i,j=1

ˆ
Ω

γi(x)∂j(ϕij(x)− ϕji(x)) dx

= −
d∑

i,j=1

ˆ
Jγ

([γ]⊗ νγ)ij(x)(ϕij(x)− ϕji(x)) dHd−1(x)−
d∑

i,j=1

ˆ
Ω

∂jγi(x)(ϕij(x)− ϕji(x)) dx

= −
d∑

i,j=1

ˆ
Jγ

([γ]⊗ νγ − νγ ⊗ [γ])ij(x)ϕij(x) dHd−1(x)−
d∑

i,j=1

ˆ
Ω

ϕij(x)(∂jγi(x)− ∂iγj(x)) dx.

This implies that

|〈curl γ, ϕ〉| ≤ ‖ϕ‖L∞(Ω)

(∑d

i,j=1

ˆ
Ω

|∂iγj − ∂jγi| dx+

ˆ
Jγ

|[γ]⊗ νγ − νγ ⊗ [γ]| dHd−1
)

for every ϕ ∈ C∞c (Ω;Md×d), and concludes the proof of the lemma. �

3.3. Decomposition into phases. We adopt the notation V (F ) = dist2(F, SO(d){A,B}) for brevity.
We introduce the truncated geodesic distance dV (F,G) of F,G ∈ Md×d induced by V , which is defined
by

dV (F,G) = inf

{ˆ 1

0

min{
√
V (g(s)), 1} |g′(s)| ds : g ∈ C1([0, 1];Md×d), g(0) = F, g(1) = G

}
. (3.9)

Clearly, we have dV (A,B) > 0. For later purposes, we state some elementary properties.
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Lemma 3.6 (Relation between euclidian distance and geodesic distance). Let δ > 0. There exist C1 ≥ 1
and 0 < C2 < 1 depending only on δ such that for M ∈ {A,B}

(i) dV (F, SO(d)M) ≤ dist(F, SO(d)M) for every F ∈Md×d,

(ii) dist(F, SO(d)M) ≤ C1dV (F, SO(d)M) for every F ∈Md×d such that dV (F, SO(d)M) ≥ δ.

(iii) dist(F, SO(d)M) ≤ C2 for every F ∈Md×d such that dV (F, SO(d)M) < δ.

Moreover, there holds C2 → 0 when δ → 0.

Proof. Item (i) follows directly from the definition of the geodesic distance. For the proof of (ii) and (iii)
we refer to [1, Lemma 2.5 and Lemma 2.6]. The last assertion is a consequence of the proof of [1, Lemma
2.6]. Note that the definition of the geodesic distance in [1] is slightly different from (3.9), but that [1,
Lemma 2.5 and Lemma 2.6] still hold up to very minor proof adaptations. �

B

B

A

B

A

ε/η

Figure 2. Condition (iv) for d = 2 can be interpreted as follows: it guarantees that
phase transitions occur inside cylindrical layers of height ε/η. Additionally, ε/η is an
upper bound on the height of minority islands in the ed-direction. In higher dimensions,
a similar interpretation is possible, up to higher order terms.

The following lemma identifies the regions where the deformation gradient is near SO(d)A and SO(d)B,
respectively. We recall that |B − A| = κ, see H3. Moreover, let c1 be the constant of H4. For basic
properties of sets of finite perimeter we refer to [3, Section 3.3].

Proposition 3.7 (Decomposition into phases). Let η ≥ ε. There exist 0 < α < β ≤ 1/2 and a constant
c = c(κ, d, c1) > 0 such that for every y ∈ H2(Ω;Rd) there exists an associated set T ⊂ Ω of finite
perimeter satisfying

(i) {x ∈ Ω : dist(∇y(x), SO(d)A) ≤ ακ} ⊂ T ⊂ {x ∈ Ω : dist(∇y(x), SO(d)A) ≤ βκ},

(ii) Hd−1(∂∗T ∩ Ω) ≤ cEε,η(y),

(iii)

ˆ
∂∗T∩Ω

|〈νT , ej〉| dHd−1 ≤ c ε
η
Eε,η(y) for j = 1, . . . , d− 1,

(iv)

ˆ ∞
−∞
Hd−2

((
Rd−1 × {t}

)
∩ ∂∗T ∩ Ω

)
dt ≤ c ε

η
Eε,η(y), (3.10)

where νT denotes the outer normal to T , ∂∗T its essential boundary, and Eε,η is the energy functional
defined in (2.1). Moreover, if Q = x0+(−h, h)d is a cube contained in Ω and one considers a corresponding
decomposition by (Ql)

n−1
l=−n with n = bη/εc, and Ql := x0 + (lh/n)ed + (−h, h)d−1 × (0, h/n) we find∑n−1

l=−n
min{Ld(Ql ∩ T ),Ld(Ql \ T )} ≤ ch ε

η
Eε,η(y). (3.11)
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Roughly speaking, the sets T and Ω \ T represent the A and B-phase regions, respectively. Later in
the proof of Theorem 3.1 we will introduce a vector field which differs from ∇y exactly on the set Ω \ T .
We refer to Figure 2 for an illustration and an explanation of property (3.10)(iv).

Proof of Proposition 3.7. We first fix some constants which will be needed in the following. Depending
on κ, we choose δ in Lemma 3.6 so small that

C2 = C2(δ) ≤ κ

2
. (3.12)

Let C1 = C1(δ) ≥ 1 be the corresponding constant (depending on δ, and hence on κ) provided by Lemma
3.6(ii). We define

h(x) = dV (∇y(x), SO(d)A) for every x ∈ Ω,

where dV is the truncated geodesic distance introduced in (3.9). The main idea of the proof consists in
choosing the set T as a suitable level set of the map h, selected by performing an ε/η-rescaling of h in
its first d− 1 variables (see (3.15)).

Step I: Definition of T . We first observe that, in view of the definition of dV and by Young’s inequality,
we obtainˆ

Ω

|∂ih(x)| dx ≤
ˆ

Ω

√
V (∇y(x))

d∑
j=1

|∂jiy(x)| dx ≤ 1

2εη

ˆ
Ω

V (∇y(x)) dx+
εη

2

ˆ
Ω

( d∑
j=1

|∂jiy(x)|
)2

dx

for i = 1, . . . , d− 1. Thus, H4., the definition of V , and (2.1) imply

‖∂ih‖L1(Ω) ≤
(1/c1 + d

2

) ε
η
Eε,η(y) for i = 1, . . . , d− 1. (3.13)

Analogously, the definition of dV and Young’s inequality yield
ˆ

Ω

|∂dh(x)| dx ≤ 1

2ε2

ˆ
Ω

V (∇y(x)) dx+
ε2

2

ˆ
Ω

( d∑
j=1

|∂jdy(x)|
)2

dx,

which implies

‖∂dh‖L1(Ω) ≤
(1/c1 + d

2

)
Eε,η(y). (3.14)

We introduce the rescaled function

hη(x′, xd) := h(ηx′/ε, xd), (3.15)

defined on
Ωη := {(x′, xd) : (ηx′/ε, xd) ∈ Ω},

where for brevity we adopt the notation x′ = (x1, . . . , xd−1). By the change of variables formula and
(3.13)-(3.14) this yields

‖∇hη‖L1(Ωη) ≤ c(ε/η)d−1Eε,η(y)

for c = c(d, c1). Consequently, by the coarea formula we find t ∈
(
κ/(4C1), κ/(2C1)

)
, where C1 ≥ 1 is

the constant introduced below (3.12), such that the set Tη := {hη ≤ t} has finite perimeter, with

Hd−1(∂∗Tη ∩ Ωη) ≤ 4C1

κ

ˆ κ
2C1

κ
4C1

Hd−1(∂∗{hη ≤ s} ∩ Ωη) ds ≤ 4C1

κ
‖∇hη‖L1(Ωη) ≤ c(ε/η)d−1Eε,η(y),

(3.16)

where c depends on κ, d, and c1. We define T := {h ≤ t}. We claim that T satisfies properties (i)-(iv).

Step II: Properties of T . First, since t > κ/(4C1), by Lemma 3.6(i) we have that for all x ∈ Ω with
dist(∇y(x), SO(d)A) ≤ κ/(4C1), there holds

h(x) ≤ κ

4C1
< t.

This yields x ∈ T and implies that the first inclusion in (i) holds with α = 1/(4C1). Note that, since
C1 ≥ 1, we have α ≤ 1/4.
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To prove the second inclusion in (i), suppose that x ∈ T . Let δ be as in (3.12). If h(x) < δ, there holds

dist(∇y(x), SO(2)A) ≤ C2 ≤
κ

2

by Lemma 3.6(iii) and (3.12). On the other hand, if δ ≤ h(x) ≤ t, we obtain

dist(∇y(x), SO(2)A) ≤ C1h(x) ≤ C1t ≤
κ

2

by Lemma 3.6(ii) and the definition of t. Setting β = 1
2 , this concludes the proof of (i).

We now address properties (ii) and (iii). For each j = 1, . . . , d, denote by πj the hyperplane {x ∈ Rd :
xj = 0}. We use the coarea formula (see [3, Theorem 2.93] with E = ∂∗T ∩ Ω, N = d − 1, k = d − 1,
f(x) = (x1, . . . , xj−1, xj+1, xd)) to findˆ

∂∗T∩Ω

|〈νT , ej〉| dHd−1 =

ˆ
πj

H0
(
(z + Rej) ∩ ∂∗T ∩ Ω

)
dHd−1(z). (3.17)

Similar identities hold for ∂∗Tη ∩ Ωη in place of ∂∗T ∩ Ω. The transformation formula yields for j =
1, . . . , d− 1ˆ

πj

H0
(
(z + Rej) ∩ ∂∗T ∩ Ω

)
dHd−1(z) = (η/ε)d−2

ˆ
πj

H0
(
(z + Rej) ∩ ∂∗Tη ∩ Ωη

)
dHd−1(z), (3.18)

and, in a similar fashion, we obtain for j = dˆ
πd

H0
(
(z + Red) ∩ ∂∗T ∩ Ω

)
dHd−1(z) = (η/ε)d−1

ˆ
πd

H0
(
(z + Red) ∩ ∂∗Tη ∩ Ωη

)
dHd−1(z). (3.19)

Combining (3.17)–(3.19) we findˆ
∂∗T∩Ω

|〈νT , ej〉| dHd−1 = (η/ε)d−2

ˆ
∂∗Tη∩Ωη

|〈νTη , ej〉| dHd−1 for j = 1, . . . , d− 1,

ˆ
∂∗T∩Ω

|〈νT , ed〉| dHd−1 = (η/ε)d−1

ˆ
∂∗Tη∩Ωη

|〈νTη , ed〉| dHd−1.

This along with (3.16) yieldsˆ
∂∗T∩Ω

|〈νT , ej〉| dHd−1 ≤ (η/ε)d−2Hd−1(∂∗Tη ∩ Ωη) ≤ c ε
η
Eε,η(y) for j = 1, . . . , d− 1,

ˆ
∂∗T∩Ω

|〈νT , ed〉| dHd−1 ≤ (η/ε)d−1Hd−1(∂∗Tη ∩ Ωη) ≤ cEε,η(y). (3.20)

The first line in (3.20) yields property (iii). To see (ii), we also use (3.20) and η ≥ ε, and we compute

Hd−1(∂∗T ∩ Ω) ≤
∑d

j=1

ˆ
∂∗T∩Ω

|〈νT , ej〉| dHd−1 ≤ c(1 + ε/η)Eε,η(y) ≤ cEε,η(y).

To prove (iv), we use the coarea formula (see [3, Theorem 2.93] with E = ∂∗T ∩ Ω, f(x) = 〈x, ed〉,
N = d− 1, k = 1) to findˆ

∂∗T∩Ω

√
1− |〈νT , ed〉|2 dHd−1 =

ˆ ∞
−∞
Hd−2

(
(Rd−1 × {t}) ∩ ∂∗T ∩ Ω

)
dt.

Consequently, (iv) follows from property (iii).

Step III: Proof of (3.11). First, define Qη = {(x′, xd) : (ηx′/ε, xd) ∈ Q} and Qηl = {(x′, xd) : (ηx′/ε, xd) ∈
Ql} for l ∈ {−n, . . . , n − 1}. Note that Qηl are identical cuboids and each of their sidelengths lies in
[h/n, 2hε/η]. We apply the the relative isoperimetric inequality (see [27, Theorem 2, Section 5.6.2]) on
each Qηl to find

min{Ld(Qηl ∩Tη),Ld(Qηl \Tη)} ≤ chε
η

min{(Ld(Qηl ∩Tη))
d−1
d , (Ld(Qηl \Tη))

d−1
d } ≤ chε

η
Hd−1(∂∗Tη ∩Qηl ),
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where c depends only on the dimension d. (Note that the theorem in the reference above is stated and
proved in a ball, but that the argument only relies on Poincaré inequalities, and thus easily extends to
bounded Lipschitz domains.) Summing over all l and using (3.16) we get∑n−1

l=−n
min{Ld(Qηl ∩ Tη),Ld(Qηl \ Tη)} ≤ chε

η
Hd−1(∂∗Tη ∩ Ωη) ≤ chε

η
(ε/η)d−1Eε,η(y).

This along with the fact that Ld(Qηl ∩ Tη) = (ε/η)d−1Ld(Ql ∩ T ) and Ld(Qηl \ Tη) = (ε/η)d−1Ld(Ql \ T )
yields (3.11) and concludes the proof. �

We point out that the results in Proposition 3.7 are sharp in terms of the scaling in ε and η. We refer
to Remark 3.9 for some explicit examples of A-phase regions with small B-phase inclusions.

3.4. Proof of Theorem 3.1. We now prove Theorem 3.1.

Proof of Theorem 3.1. We start with a preliminary observation concerning the phase regions T and Ω\T
identified in Proposition 3.7. Then we proceed with the proof of case (b) on a cube and address the case
of general domains afterwards. Finally, we briefly indicate the necessary adaptions for case (a).

Step I: Phases. Let y ∈ H2(Ω;Rd). Recall the definitions A = Id and B = diag(1, . . . , 1, 1 + κ), and the
fact that this implies |A − B| = κ and dist(SO(d)A,SO(d)B) = κ. We apply Proposition 3.7 to obtain
a corresponding set of finite perimeter T . We claim that

(i) dist(∇y(x), SO(d)B) ≤
(

1 +
1

α

)
dist(∇y(x), SO(d){A,B}) for a.e. x ∈ Ω \ T ,

(ii) dist(∇y(x), SO(d)A) ≤ 1

1− β
dist(∇y(x), SO(d){A,B}) for a.e. x ∈ T (3.21)

with 0 < α < β ≤ 1/2 from Proposition 3.7. First, by Proposition 3.7(i), for a.e. x ∈ Ω \ T there holds

dist(∇y(x), SO(d)A) ≥ ακ.
Recalling that |A−B| = κ we find

dist(∇y(x), SO(d)B) ≤ dist(∇y(x), SO(d)A) + κ ≤
(

1 +
1

α

)
dist(∇y(x), SO(d)A).

This yields (3.21)(i). Analogously, for a.e. x ∈ T , by Proposition 3.7(i) we get dist(∇y(x), SO(d)A) ≤ βκ.
As dist(SO(d)A,SO(d)B) = κ, we obtain

dist(∇y(x), SO(d)B)≥(1− β)κ

for a.e. x ∈ T , and hence

dist(∇y(x), SO(d)A)≤βκ ≤ κ ≤ (1− β)−1dist(∇y(x), SO(d)B)

for a.e. x ∈ T . This yields (3.21)(ii).

Step II: Proof of (b) for cubes. We first treat the case in which Ω = x0 + (−h, h)d is a cube. The main
idea is to replace ∇y by a suitable incompatible vector field γ with γ ≈ SO(d)A and then to apply
Lemma 3.3. It turns out that one also needs to define γ on an appropriately scaled version of Ω in order
to control the curl of γ.

Our starting point is (3.11) applied for Q = Ω: we find a decomposition (Ql)
n−1
l=−n of Ω with n = bη/εc.

We choose Ml = A if Ld(Ql \T ) ≤ Ld(Ql ∩T ) and Ml = B otherwise, i.e., Ml indicates the predominant
phase in each cuboid Ql. By (3.11) this implies∑

l:Ml=A
Ld(Ql \ T ) +

∑
l:Ml=B

Ld(Ql ∩ T ) ≤ c ε
η
Eε,η(y), (3.22)

where c depends on h and thus on Ω. Let Ψ ∈ H1(Ω;Rd) be a homeomorphism with ∇Ψ = Ml on each
Ql. We let U = Ψ(Ω) and note that U is a paraxial cuboid. In the following, we will use the notation
x̄ = Ψ(x) for x ∈ Ω. We also define Ul = Ψ(Ql) for all l ∈ {−n, . . . , n− 1}.

We consider the vector field γ ∈ L2(U ;Md×d) defined by

γ :=
(
∇yχT +∇yB−1χΩ\T

)
◦Ψ−1. (3.23)
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In view of (3.23) and the fact that ∇Ψ−1 = M−1
l on Ul, we obtain by the transformation formula

‖dist(γ, SO(d)A)‖2L2(U) ≤ C
ˆ
T

dist2(∇y, SO(d)A) dx+ C

ˆ
Ω\T

dist2(∇y, SO(d)B) dx, (3.24)

where C only depends on κ. Using the definition of the energy Eε,η (see (2.1)) and H4., by combining
(3.21) and (3.24) we conclude that

‖dist(γ, SO(d)A)‖2L2(U) ≤ Cε
2Eε,η(y), (3.25)

where C = C(c1, κ).

Our goal is to apply Lemma 3.5 and therefore we first check that γ ∈ SBV (U ;Md×d). As y ∈
H2(Ω;Rd), the jump set Jγ of γ is contained in {x̄ ∈ U : Ψ−1(x̄) ∈ ∂∗T ∩ Ω}. Without restriction, we
choose the normal νγ to the jump set such that νγ(x̄) = νT (Ψ−1(x̄)) for Hd−1-a.e. x̄ ∈ Jγ , where νT
denotes the outer normal to T . An elementary calculation yields

[γ](Ψ(x)) = ∇y(x)B−1 −∇y(x)A =
−κ

1 + κ
∇y(x) edd =

−κ
1 + κ

∂dy(x)⊗ ed ∈Md×d (3.26)

for x ∈ ∂∗T ∩Ω, where ∇y on ∂∗T ∩Ω has to be understood in the sense of traces, see [3, Theorem 3.77].
By (3.10)(i) we find |∇y(x)| ≤ c for Ld-a.e. x ∈ T for a constant c > 0 only depending on the dimension.
Therefore, [3, Theorem 3.77] yields

|∇y(x)| ≤ c for Hd−1-a.e. x ∈ ∂∗T ∩ Ω. (3.27)

This along with (3.26) shows |[γ](x̄)| ≤ c for Hd−1-a.e. x̄ ∈ Jγ and then [3, Theorem 3.84] implies that
γ ∈ SBV (U ;Md×d).

We now determine curl γ. We first address the bulk term. The main observation is that on each Ul the
vector field γ defined in (3.23) can be written as the sum of a gradient and a small perturbation. More
precisely, an elementary computation shows

γ = ∇(y ◦Ψ−1)(χT ◦Ψ−1) +∇(y ◦Ψ−1)B−1(χΩ\T ◦Ψ−1) = ∇(y ◦Ψ−1) + zA(χΩ\T ◦Ψ−1)

on Ul with Ml = A, where

zA := ∇(y ◦Ψ−1)(B−1 −A) =
−κ

1 + κ
(∇y ◦Ψ−1) edd =

−κ
1 + κ

(∂dy ◦Ψ−1)⊗ ed.

In a similar fashion, we have

γ = ∇(y ◦Ψ−1)B(χT ◦Ψ−1) +∇(y ◦Ψ−1)(χΩ\T ◦Ψ−1) = ∇(y ◦Ψ−1) + zB(χT ◦Ψ−1),

on Ul with Ml = B, where zB := κ(∂dy ◦Ψ−1)⊗ ed = −(1 + κ)zA.

On each Ul with Ml = A, we compute using the transformation formula and Hölder’s inequality∑d

i,j,k=1

ˆ
Ul

|∂iγkj − ∂jγki| dx̄ ≤ C
∑d

i,j,k=1

ˆ
Ql\T

|δdj ∂2
ijyk − δdi ∂2

jiyk| dx

≤ C
∑d−1

i=1

ˆ
Ql\T

|∂2
idy| dx ≤ C(Ld(Ql \ T ))1/2

∑d−1

i=1
‖∂2
idy‖L2(Ql),

where δid denotes the Kronecker delta. Similarly, on each Ul with Ml = B, we deduce∑d

i,j,k=1

ˆ
Ul

|∂iγkj − ∂jγki| dx̄ ≤ C
∑d−1

i=1

ˆ
Ql∩T

|∂2
idy| dx ≤ C(Ld(Ql ∩ T ))1/2

∑d−1

i=1
‖∂2
idy‖L2(Ql).

Then, taking the sum over all l, and using (2.1), (3.22), as well as the discrete Hölder inequality we get∑d

i,j,k=1

ˆ
U

|∂iγkj − ∂jγki| dx̄ ≤ C
( ε
η
Eε,η(y)

)1/2∑d−1

i=1
‖∂2
idy‖L2(Ω) ≤ Cε1/2η−3/2Eε,η(y). (3.28)

We now estimate the surface part of curl γ. In view of (3.26)–(3.27) and the fact that νγ = νT ◦Ψ−1,
denoting by [γ]k the k-th row of [γ], we obtain∣∣([γ]k ⊗ νγ − νγ ⊗ [γ]k

)
◦Ψ
∣∣ =

κ

1 + κ
|∂dyk(ed ⊗ νT − νT ⊗ ed)| ≤ cκ|ed ⊗ νT − νT ⊗ ed|
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Hd−1-a.e. on ∂∗T ∩ Ω for every k = 1, . . . , d, where c is the constant of (3.27). This then implies by
Proposition 3.7(iii) that for every k = 1, . . . , d

ˆ
Jγ

∣∣[γ]k ⊗ νγ − νγ ⊗ [γ]k
∣∣ dHd−1 ≤ C

d−1∑
j=1

ˆ
∂∗T∩Ω

|〈νT , ej〉| dHd−1 ≤ C ε
η
Eε,η(y). (3.29)

Consequently, Lemma 3.5 (applied on each row of the vector field γ) and (3.28)–(3.29) yield

|curl γ|(U) ≤ Cε1/2η−3/2Eε,η(y) + Cεη−1Eε,η(y) (3.30)

for C = C(Ω, κ, d, c1). Consider a smaller cube Ω′ ⊂⊂ Ω and let U ′ = Ψ(Ω′). Let 1 ≤ p ≤ 2 with
p 6= d

d−1 . From Lemma 3.3(b) we then get a rotation R ∈ SO(d) such that by (3.25), (3.30), and Hölder’s
inequality

‖γ −R‖Lp(U ′) ≤ C
(
‖dist(γ, SO(d)A)‖L2(U) + (|curl γ|(U))r(p,d)

)
≤ Cε

√
Eε,η(y) + C

(
ε1/2η−3/2Eε,η(y) + εη−1Eε,η(y)

)r(p,d)

, (3.31)

where the constant also depends on Ω, Ω′, and p. Let M ∈ BV (Ω; {A,B}) be the function defined by
M = AχT +BχΩ\T . Clearly,

|DM|(Ω) ≤ |A−B|Hd−1(∂∗T ∩ Ω) ≤ CEε,η(y)

by Proposition 3.7(ii). Recalling (3.23) we compute, again using the transformation formula

‖∇y −RM‖Lp(Ω′) = ‖∇y −R‖Lp(Ω′∩T ) + ‖∇yB−1 −R‖Lp(Ω′\T ) ≤ C‖γ −R‖Lp(U ′). (3.32)

This along with (3.31) shows (3.1). We conclude this part of the proof by mentioning that, taking also
Remark 3.4 into account, the passage to the subcube Ω′ is actually not necessary. This in turn yields
Remark 3.2(ii).

Step III: Proof of (b) for general domains. We perform a covering argument exactly as in the proof of
Lemma 3.3: given Ω′ ⊂⊂ Ω, we cover Ω′ with a finite number of paraxial cubes {Qi}Ni=1 such that smaller
cubes Q′i ⊂⊂ Qi still cover Ω′. We apply Step II on each Qi and obtain an estimate of the form (3.32)
on each Q′i with a rotation Ri. The difference of the rotations can be controlled as explained in the proof
of Lemma 3.3.

Step IV: Proof of (a). The essential difference is that we do not apply (3.11) to obtain a decomposition of
Ω with property (3.22). However, we define a decomposition into (in general not rectangular) sets (Ql)l
of height approximately ε/η, set Ml = A if Ld(Ql \ T ) ≤ Ld(Ql ∩ T ) and Ml = B otherwise, and observe
that (3.22) follows from (3.10)(iv) (see Figure 2). The rest of the argument remains unchanged with the
only difference that we use part (a) of Lemma 3.3 instead of part (b). �

Remark 3.8. For later purposes, we note that by the construction of the phase indicator M in the
previous proof, the set {M = A} coincides with the set T considered in Proposition 3.7.

Remark 3.9 (Examples of minority islands and their sharpness). We provide prototype configurations
with a small B-phase region completely contained in the A-phase region. These illustrate sharpness of
the estimates in Proposition 3.7. We follow the 2d-example in [20, Remark 6.1] and take the occasion to
present a d-dimensional analog here.

Let Ω = (−2, 2)d and let 0 < r < 1. Consider the polyhedron P consisting of the vertices ed, −red,
and (x′, 0), x′ ∈ {−1, 1}d−1. By F we denote the 2(d− 1) faces of dimension (d− 2) in [−1, 1]d−1 × {0}
obtained by setting one of the first (d − 1) components equal to ±1. Observe that the polyhedron P
consists of 4(d − 1) convex polyhedra with 2d−2 + 2 vertices each: 2(d − 1) polyhedra with vertex in 0,
vertex in ed, and the 2d−2 vertices of a face in F (we denote their union by P 1), as well as 2(d − 1)
polyhedra with vertex in 0, vertex in −red, and the 2d−2 vertices of a face in F (we denote their union
by P 2). See Figure 3 for an illustration in dimension 3. Observe that Ld(P ) ≤ c and Ld(P 2) ≥ cr for a
dimensional constant c > 0.

Set u = 0 outside P . At the origin we set u(0) = κred and let u be affine on each of the 4(d − 1)
polyhedra contained in P . Define v = id + u ∈ H1(Rd;Rd). In view of B = A + κedd = Id + κedd, this
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P

Ω

Figure 3. The set Ω and the polyhedron P .

implies |∇v − A| ≤ cr on P 1 ∪ (Rd \ P ) and |∇v − B| ≤ cr on P 2, where c = c(d, κ) > 0. In particular,
for r small enough we find T = Ω \ P 2 with T from Proposition 3.7. In view of Ld(P 2) ≥ cr, a short
calculation yields (assuming that W is smooth)ˆ

Rd
W (∇v) dx ≤ cr2, min

F∈SO(d){A,B}

ˆ
Ω

|∇v − F |2 dx ≥ cr.

We now mollify v. To this end, denoting by [∇v] the jump of the gradient, we observe that

x ∈ ∂P 1 \ ∂P 2 : |[∇v](x)| ≤ cr,
x ∈ ∂P 2 : |[∇v](x)edd| ≤ c, |[∇v](x)e| ≤ cr for all e ∈ {eij : i, j = 1, . . . , d} \ {edd}.

We define y = v ∗ ρε2 ∈ H2(Ω;Rd), where ρε2 is a mollification kernel on the scale ε2. After some
calculations we obtainˆ

Ω

W (∇y) dx ≤ c(r2 + ε2),

ˆ
Ω

|∇2y|2 dx ≤ cε−2,

ˆ
Ω

(
|∇2y|2 − |∂2

ddy|2
)
dx ≤ cr2ε−2 (3.33)

and

min
F∈SO(d){A,B}

ˆ
Ω

|∇y − F |2 dx ≥ cr − Cε2 (3.34)

for some C = C(d, κ) > 0 sufficiently large. Therefore, recalling (2.1) and using (3.33) we observe

Eε,η(y) ≤ c+ cr2ε−2(1 + η2)

which is uniformly controlled in ε when r(1 + η) ≤ cε. Thus, for all 0 ≤ η ≤ 1 the critical scaling for r
is r ∼ ε. Observe that (3.34) (for r = ε) shows that the estimate (3.3) obtained in [19] is sharp. (The
model considered there corresponds to the case η = 0.)

On the other hand, for η > 1, in order to have bounded energy, the critical scaling for r is r ∼ ε/η.

Note that in this regime we find
´ 2

−2
Hd−2

(
(Rd−1 × {t}) ∩ ∂∗P 2 ∩ Ω

)
dt ≥ cr ∼ cε/η, which illustrates

the sharpness of estimate (3.10)(iv). We also mention that (3.34) shows that the scaling in an estimate
of the form (3.3) (for the model considered in (2.1)) cannot be better than

‖∇y −RM‖L2(Ω′) ≤ C
√
ε/η.

Thus, for all η � 1
ε , introducing a phase indicator is indispensable to obtain the ε-scaling in Theorem 1.1.

(Recalling the discussion in (1.6), the choice η � 1
ε is essential to ensure that our perturbed model has

the same qualitative behavior as the unperturbed problem (1.3), at least asymptotically when passing to
a linearized strain regime.)
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Remark 3.10 (Necessity of the curl estimates for p = 2). Our fine estimates on the curl of incompatible
vector fields are necessary in order to obtain the rigidity estimate in any dimension d ∈ N, d ≥ 2, for
p = 2, see Theorem 1.1. Indeed, without passing to incompatible fields, by combining directly Proposition
3.7 with an argument along the lines of (3.5), one can show that an inequality of the form

‖∇y −RM‖Lp(Ω) ≤ C
(
ε
√
Eε,η(y) +

( ε
η
Eε,η(y)

) 1
p
)

(3.35)

holds. For a map y with bounded energy, this provides the rigidity estimate

‖∇y −RM‖Lp(Ω) ≤ Cε,

only if η ≥ ε1−p. As highlighted in the discussion above Theorem 1.1, see (1.6), it is necessary to impose
that η � 1

ε . For p < 2, estimate (3.35) would still allow to guarantee η � 1
ε , although in general

providing a less sharp estimate on η compared to the one of Theorem 3.1. For p = 2, (3.35) would lead
to consider η ≥ 1

ε , which would modify the qualitative behavior of the model.

4. Solid-solid phase transitions

In this section we present an application of the quantitative two-well rigidity estimate proved in
Theorem 3.1 to the theory of solid-solid phase transitions. We start by recalling the literature representing
the departure point of our analysis (see Subsection 4.1) and then present a sharp-interface limit for
energies of the form (2.1) as ε tends to zero (see Subsection 4.2). Subsection 4.3, Subsection 4.4, and
Subsection 4.5 contain the proofs of our results.

In the following let d ∈ N, d ≥ 2, and let Ω ⊂ Rd be a bounded Lipschitz domain. We consider the
energy functionals defined in (2.1), with stored-energy densities W : Md×d → [0,+∞) satisfying H1.–H4.
and additionally

H5. (Growth condition from above) there exists a constant c2 > 0 such that

W (F ) ≤ c2dist2(F, SO(d){A,B}) for every F ∈Md×d.

4.1. A sharp-interface limit for a model of solid-solid phase transitions. A standard singularly
perturbed two-well problem takes the form

Iε(y) :=
1

ε2

ˆ
Ω

W (∇y) dx+ ε2

ˆ
Ω

|∇2y|2 dx (4.1)

for every y ∈ H2(Ω;Rd). This corresponds to the choice η = 0 in (2.1). The restriction of the functional
to a subset Ω′ ⊂ Ω will be denoted by Iε(y,Ω

′). In this subsection, we recall the results obtained by
S. Conti and B. Schweizer [19] about the sharp-interface limit of this model as ε tends to zero. We
again concentrate on compatible wells with exactly one rank-one connection (see assumption H3.), but
mention that in [19] also the case of two rank-one connections is addressed.

Denote by Y(Ω) the class of admissible limiting deformations, defined as

Y(Ω) :=
⋃

R∈SO(d)

YR(Ω), where YR(Ω) :=
{
y ∈ H1(Ω;Rd) : ∇y ∈ BV (Ω;R{A,B})

}
for R ∈ SO(d).

(4.2)

Analogously, for every open subset Ω′ ⊂ Ω, let Y(Ω′) be the corresponding set of admissible deformations
on Ω′. The following compactness result has been proven in [19, Proposition 3.2].

Lemma 4.1 (Compactness). Let d ∈ N, d ≥ 2, and let Ω ⊂ Rd be a bounded Lipschitz domain. Let W
satisfy assumptions H1.–H4. Then, for all sequences {yε}ε ⊂ H2(Ω;Rd) for which

sup
ε>0

Iε(y
ε) < +∞,

there exists a map y ∈ Y(Ω) such that, up to the extraction of a (non-relabeled) subsequence, there holds

yε − 1

Ld(Ω)

ˆ
Ω

yε(x) dx→ y strongly in H1(Ω;Rd).
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Here and in the sequel, we follow the usual convention that convergence of the continuous parameter
ε → 0 stands for convergence of arbitrary sequences {εi}i with εi → 0 as i → ∞, see [11, Definition
1.45]. The limiting deformations y have the structure of a simple laminate. Indeed, G. Dolzmann and
S. Müller [26] have shown that for y ∈ YR(Ω) the essential boundary of the set T := {x ∈ Ω : ∇y(x) ∈
RA} consists of subsets of hyperplanes that intersect ∂Ω and are orthogonal to ed, and that y is affine
on balls whose intersection with ∂T has zero Hd−1-measure.

We now introduce the limiting sharp-interface energy. We denote by Q = (− 1
2 ,

1
2 )d the d-dimensional

unit cube centered in the origin and with sides parallel to the coordinate axes. Consider the optimal-profile
energy

K0 := inf
{

lim inf
ε→0

Iε(y
ε, Q) : lim

ε→0
‖yε − y0‖L1(Q) = 0

}
, (4.3)

where y0 ∈ H1
loc(Rd;Rd) is the continuous function with y0(0) = 0 and

∇y0 = Aχ{xd>0} +Bχ{xd<0}. (4.4)

The parameter K0 represents the energy of an optimal profile transitioning from phase A to B. We point
out that K0 is invariant under reflection of the two phases A and B, i.e., one could replace y0 in (4.3) by a
continuous function with gradient Bχ{xd>0}+Aχ{xd<0}. Let I0 : L1(Ω;Rd)→ [0,+∞] be the functional

I0(y) :=

{
K0Hd−1(J∇y) if y ∈ Y(Ω),

+∞ otherwise.

The following characterization of I0 by means of Γ-convergence has been proven in [19, Theorem 3.1] in
the two-dimensional setting. For an exhaustive treatment of Γ-convergence we refer the reader to [11, 22].

Theorem 4.2 (Γ-convergence). Let d = 2, let Ω ⊂ R2 be a bounded, strictly star-shaped Lipschitz
domain, and let W satisfy H1.–H5. Then

Γ− lim
ε→0

Iε = I0

with respect to the strong L1-topology.

We recall that an open set Ω is strictly star-shaped if there exists a point x0 ∈ Ω such that

{tx+ (1− t)x0 : t ∈ (0, 1)} ⊂ Ω for every x ∈ ∂Ω.

This assumption on the geometry of Ω simplifies the construction of recovery sequences . We refer to [18]
for a related problem where more general domains are considered. We point out that assumption H5. is
not compatible with the impenetrability condition

W (F )→ +∞ as detF → 0+, W (F ) = +∞ if detF ≤ 0,

which is usually enforced to model a blow-up of the elastic energy under strong compressions. Assumption
H5. is not required for the proof of the liminf inequality in Theorem 4.2, but is instrumental for the
construction of recovery sequences. We note that, by means of a more elaborated construction performed
in [21], assumption H5. may be dropped.

The above result is limited to the two-dimensional setting due to the limsup inequality: the definition
of sequences with optimal energy approximating a limit that has multiple flat interfaces relies on a deep
technical construction. This so-called H1/2-rigidity on lines (see [19, Section 3.3]) is only available in
dimension d = 2. We overcome this issue for our model (2.1) by means of the rigidity estimate proven in
Section 3.

4.2. The limiting sharp-interface model in the present setting. In this subsection we describe
our limiting sharp-interface model and present our main Γ-convergence result. Consider the energy
functionals defined in (2.1), under the choice

η = ηε,d = ε
(rd−2)

3rd , (4.5)

where rd := min{1, d2

2(d−1)2 }.
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We point out that
rd = r(pd, d), (4.6)

where r(·, d) is the quantity defined in the statement of Theorem 3.1(b), and

pd :=

{
2 if d = 2,

2(d− 1)/d if d > 2,
(4.7)

is the exponent for which the embedding W 1,p ↪→ H1/2 holds in dimension d−1. (See, e.g., [44, Theorem
14.32, Remark 14.35, Proposition 14.40] and [45, Theorem 7.1, Proposition 2.3] for the embedding results
in the whole space Rd−1 for d > 2 and d = 2, respectively. Bounded Lipschitz domains in Rd−1 can be
reduced to the setting above by means of a Sobolev extension.)

For simplicity, we write Eε(y) instead of Eε,ηε,d in the following. Similarly to the energies in the
previous subsection, we denote the restriction of the functional to a subset Ω′ ⊂ Ω by Eε(y,Ω′). We first
introduce the optimal-profile energy associated to our model by

K := inf
{

lim inf
ε→0

Eε(yε, Q) : lim
ε→0
‖yε − y0‖L1(Q) = 0

}
, (4.8)

where Q = (− 1
2 ,

1
2 )d, and y0 is defined in (4.4). We again point out that K is invariant under reflection

of the two phases A and B. Note that (4.8) corresponds to (4.3), and that we have the relation

K ≥ K0. (4.9)

Indeed, this is immediate from the definition of the optimal-profile energy and the fact that the penal-
ization in (2.1) (with η = ηε,d) is stronger than the one in (4.1).

Recall Y(Ω) in (4.2). We introduce the sharp-interface limit E0 : L1(Ω;Rd)→ [0,+∞] by

E0(y) :=

{
KHd−1(J∇y) if y ∈ Y(Ω),

+∞ otherwise.

We now state the main results of this section.

Proposition 4.3 (Liminf inequality). Let d ∈ N, d ≥ 2, and let Ω ⊂ Rd be a bounded Lipschitz domain.
Let W satisfy assumptions H1.–H4., let y ∈ L1(Ω;Rd), and let {yε}ε ⊂ H2(Ω;Rd) be such that yε → y
strongly in L1(Ω;Rd). Then

lim inf
ε→0

Eε(yε) ≥ E0(y).

Theorem 4.4 (Limsup inequality). Let d ∈ N, d ≥ 2, and let Ω ⊂ Rd be a bounded, strictly star-shaped
Lipschitz domain. Let W satisfy assumptions H1.–H5. and let y ∈ Y(Ω). Then, there exists a sequence
{yε}ε ⊂ H2(Ω;Rd) such that yε → y strongly in L1(Ω;Rd) and

lim sup
ε→0

Eε(yε) ≤ E0(y).

Remark 4.5 (Comparison to the model in Subsection 4.1). We emphasize that the additional penaliza-
tion term in (2.1) with respect to (4.1) does not affect the qualitative behavior of the sharp-interface limit,
only the constant may change, cf. (4.9). Note that for the physically relevant dimensions d = 2, 3 there
holds rd = 1, and thus ηε,d = ε−1/3. For d > 3, the fact that 1

2 < rd < 1 implies that ε−1/3 � ηε,d � ε−1.
This guarantees that, also asymptotically when passing to a linearized strain regime, our perturbed model
behaves qualitatively as the unperturbed problem (see the discussion above Theorem 1.1). We remark
that our results still hold up to very minor proof adaptations if ηε,d is replaced by any η ∈ [ηε,d, 1/ε].

The proof of Proposition 4.3 is similar to [18, Theorem 4.1] and [19, Proposition 3.3]. We will, however,
present the main steps for completeness and will particularly highlight the adaptions which are necessary
due to the anisotropic singular perturbations. The main point of our contribution is Theorem 4.4: the
novelty is that we can prove the optimality of the lower bound identified in Proposition 4.3 in dimension
d ≥ 3. As a byproduct, we also exhibit a simplified construction of recovery sequences in the two-
dimensional setting. In contrast to [21], for simplicity, we work with assumption H5. and we do not
address the issue of dropping this condition.
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The next three subsections are devoted to the proof of our Γ-convergence result. In Subsection 4.3
we prove Proposition 4.3 and Theorem 4.4. The proof of the liminf inequality essentially relies on the
properties of the optimal-profile energy (see Proposition 4.6), which are the subject of Subsection 4.4.
The crucial idea in the proof of Theorem 4.4 is a novel construction of local recovery sequences (see
Proposition 4.7), which is detailed in Subsection 4.5.

4.3. Proof of the Γ-convergence result. This subsection is devoted to the proof of Proposition 4.3
and Theorem 4.4. As a preparation, we introduce some notation: the function y0 introduced in (4.4)
is denoted by y+

0 in the following. Similarly, we let y−0 ∈ H1
loc(Rd;Rd) be the continuous function with

y−0 (0) = 0 and

∇y−0 = Bχ{xd>0} +Aχ{xd<0}. (4.10)

We now state some properties of the optimal-profile energy given in (4.8). Consider ω ⊂ Rd−1 open,
bounded and let h > 0. For brevity, we introduce the notation of cylindrical sets

Dω,h := ω × (−h, h). (4.11)

We define the optimal-profile energy function

F(ω;h) = inf
{

lim inf
ε→0

Eε(yε, Dω,h) : lim
ε→0
‖yε − y0‖L1(Dω,h) = 0

}
(4.12)

for every ω ⊂ Rd−1 and h > 0. Here and in the following, we again use the shorthand notation Eε =
Eε,ηε,d for the energy introduced in (2.1) and ηε,d from (4.5). Letting Q′ = (− 1

2 ,
1
2 )d−1 we observe that

K = F(Q′; 1
2 ), where K is the constant defined in (4.8).

We note that the optimal-profile energy is independent of the direction in which the transition between
the two phases A and B occurs. Indeed, since the energy functionals Eε are invariant under the operation
Ty(x) = −y(−x), there holds (see, e.g., [20, Lemma 3.2] for details)

F(ω;h) = inf
{

lim inf
ε→0

Eε(yε, Dω,h) : lim
ε→0
‖yε − y−0 ‖L1(Dω,h) = 0

}
, (4.13)

where y−0 is the function defined in (4.10). Some crucial properties of the function F are summarized in
the following proposition.

Proposition 4.6 (Properties of the optimal-profile energy function). The function F introduced in (4.12)
satisfies for all h > 0 and all open, bounded sets ω ⊂ Rd−1 with Hd−1(∂ω) = 0:

(i) F(αω;αh) ≥ αd−1F(ω;h) for all 0 < α < 1.
(ii) F(ω;h) = Hd−1(ω)F(Q′;h), where Q′ := (− 1

2 ,
1
2 )d−1.

(iii) F(ω;h) = F(ω; 1
2 ) = KHd−1(ω).

We defer the proof of Proposition 4.6 to Subsection 4.4 below and now proceed with the proof of
Proposition 4.3.

Proof of Proposition 4.3. The proof follows the strategy in [18, Proof of Theorem 4.1]. If the liminf is
infinite, there is nothing to prove. Otherwise, we apply Lemma 4.1 to find that the limit y lies in Y(Ω).
Without restriction, we can assume that y ∈ YId(Ω), see (4.2). As Ω has Lipschitz boundary, we can
decompose the jump set of ∇y as

J∇y =
⋃∞

i=1
ωi × {αi},

∑∞

i=1
Hd−1(ωi × {αi}) < +∞,

where the sets ωi ⊂ Rd−1 are open, bounded, connected, and have Lipschitz boundary. Let δ > 0. We
can find I ∈ N such that

Hd−1(J∇y)− δ ≤
∑I

i=1
Hd−1(ωi × {αi}) (4.14)

and corresponding hi > 0, i = 1, . . . , I, such that αj /∈ (αi − hi, αi + hi) for all j ∈ N, j 6= i, i.e., the
cylindrical sets αied + Dωi,hi (see (4.11)) contain exactly one interface. The latter is possible since the
interfaces (ωi × {αi})i>I can only accumulate at ∂Ω, see [20, Proof of Proposition 3.1] for details, and
the lower part of Figure 1 for an illustration.
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Choose ω′i ⊂⊂ ωi with Lipschitz boundary such that

Hd−1(ωi × {αi}) ≤ Hd−1(ω′i × {αi}) + δ/I (4.15)

for i = 1, . . . , I, and such that αied + Dω′i,hi
is compactly contained in Ω (possibly passing to a smaller

hi). Now for any sequence {yε}ε ⊂ H2(Ω;Rd) satisfying yε → y strongly in L1(Ω;Rd), by (4.12)–(4.13),
Proposition 4.6, and the fact that the sets αied +Dω′i,hi

are pairwise disjoint we obtain

lim inf
ε→0

Eε(yε) ≥
∑I

i=1
lim inf
ε→0

Eε(yε, αied +Dω′i,hi
) ≥

∑I

i=1
F(ω′i;hi) = K

∑I

i=1
Hd−1(ω′i),

where we used that yε converges (up to a translation) to y+
0 or y−0 on each set αied +Dω′i,hi

. The result

follows from (4.14)-(4.15) and the arbitrariness of δ. �

We now address the limsup inequality. We first describe the local structure of recovery sequences
around a single interface. To this end, recall the definition of the functions y+

0 and y−0 introduced in (4.4)
and (4.10), respectively, and the structure of cylindrical sets in (4.11).

Proposition 4.7 (Local recovery sequences). Let d ∈ N, d ≥ 2. Let h > 0 and let ω ⊂ Rd−1 open,
bounded with Lipschitz boundary. Then there exist sequences {w+

ε }ε, {w−ε }ε ⊂ H2(Dω,h;Rd) with

w±ε → y±0 in H1(Dω,h;Rd), (4.16)

such that
lim
ε→0
Eε(w±ε , Dω,h) = KHd−1(ω), (4.17)

and for ε sufficiently small we have

w±ε =

{
I±1,ε ◦ y

±
0 if xd ≥ 3h/4,

I±2,ε ◦ y
±
0 if xd ≤ −3h/4,

(4.18)

where {I+
1,ε}ε, {I

+
2,ε}ε, as well as {I−1,ε}ε and {I−2,ε}ε are sequences of isometries which converge to the

identity as ε→ 0.

We emphasize that Proposition 4.7 means that for any sequence {εi}i converging to zero a local
recovery sequence can be constructed. The crucial point is that the sequence {w±ε }ε is rigid away from
the interface. This will allow us to appropriately glue together local recovery sequences around different
interfaces. We defer the proof of Proposition 4.7 to Subsection 4.5 below and continue with the proof of
the limsup inequality.

Proof of Theorem 4.4. Without loss of generality, we can assume that y ∈ YId(Ω). For convenience of
the reader, we subdivide the proof of the theorem into three steps.

Step I: Reduction to a finite number of interfaces. Exploiting the star-shapeness of the domain (say, with
respect to the origin), one can replace y by a slightly rescaled version yρ defined by yρ(x) = ρy(x/ρ),
ρ > 1, where E0(yρ) → E0(y) as ρ → 1. One can show that for each ρ > 1 the jump set J∇yρ consists
only of a finite number of subsets of hyperplanes that intersect ∂Ω and are orthogonal to ed. We refer
to [20, Proof of Proposition 5.1] for the details of this rescaling. The geometrical intuition is that, since
infinitely many interfaces can only occur close to the boundary (see also Figure 1), a rescaling allows to
reduce the study to a finite number of interfaces. It suffices to construct recovery sequences for yρ since
a recovery sequence for y can then be obtained by a diagonal argument. Thus, in the following it is not
restrictive to assume that J∇y consists only of a finite number of interfaces.

Step II: Local recovery sequence. In view of Step I, we can suppose that J∇y has the form J∇y =⋃J
j=1(ωj × {αj}), where ωj ⊂ Rd−1 are open, bounded, and with Lipschitz boundary. Let δ > 0. As ∂Ω

has Lipschitz boundary and the J interfaces intersect ∂Ω, we can choose ω′j ⊃⊃ ωj open with Lipschitz

boundary and h > 0 such that the sets ∂ω′j × (αj −h, αj +h) do not intersect Ω, the different cylindrical
sets αjed +Dω′j ,h

= ω′j × (αj − h, αj + h) are pairwise disjoint, and one has

Hd−1(ω′j) ≤ Hd−1(ωj) + δ/J. (4.19)
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We write Dj := αjed +Dω′j ,h
for brevity. Note that on each Dj ∩ Ω the function y coincides with y+

0 or

y−0 up to a translation. Thus, by Proposition 4.7 we can find {w+
ε }ε or {w−ε }ε such that (4.17)–(4.18) are

satisfied and the sequence converges to y in L1(Dj ∩ Ω;Rd). For convenience, we denote this sequence
by {wjε}ε ⊂ H2(Dj ;Rd) for j = 1, . . . , J .

Step III: Global recovery sequence. Using that Ω is star-shaped, we find that Ω\
⋃J
j=1Dj consists of J+1

components which we denote by {Bj}J+1
j=1 . Applying Proposition 4.7, one can select isometries {Ijε}Jj=1

and {Îjε}J+1
j=1 , such that the functions yε : Ω→ Rd defined by

yε = Ijε ◦ wjε on Dj ∩ Ω, yε = Îjε ◦ y on Bj

are in H2(Ω;Rd), and all isometries converge to the identity as ε → 0. These isometries can be chosen
iteratively, and we refer to [19, Proof of Proposition 3.5] for details. Since wjε converges to y in L1(Dj ∩
Ω;Rd) and all isometries converge to the identity, we obtain yε → y in L1(Ω;Rd). The construction also

implies that on
⋃J+1
j=1 Bj there holds ∇yε ∈ SO(d){A,B} and ∇2yε = 0. Therefore, by Proposition 4.7

and (4.19) we deduce

lim sup
ε→0

Eε(yε) ≤ lim sup
ε→0

∑J

j=1
Eε(wjε, Dj) = K

∑J

j=1
Hd−1(ω′j)

≤ K
∑J

j=1
Hd−1(ωj) +Kδ = KHd−1(J∇y) +Kδ.

Letting δ → 0 and using a standard diagonal argument we obtain the thesis. �

4.4. Properties of optimal-profile energy. In this subsection we prove Proposition 4.6. Additionally,
we show in Proposition 4.8 that a sequence of optimal profiles in (4.12) can be found independently of
the specific choice of the sequence {εi}i. As a byproduct, we also get that the energy of optimal-profile
sequences (i.e., sequences of deformations whose energies asymptotically converge to the value of the
optimal-profile energy) concentrates near the interface, see Corollary 4.10.

Proof of Proposition 4.6. We first observe that for all h > 0

(a) F(x′ + ω;h) = F(ω;h) for all x′ ∈ Rd−1,

(b) F(ω1;h) ≤ F(ω2; τ) if ω1 ⊂ ω2 and h ≤ τ ,
(c) F(ω1 ∪ ω2;h) ≥ F(ω1;h) + F(ω2;h) if ω1 ∩ ω2 = ∅. (4.20)

These elementary properties follow from the fact that Eε is nonnegative and invariant under translations,
and the observation that sequences in (4.12) on Dω2,τ are still admissible on Dω1,h, whenever ω1 ⊂ ω2

and h ≤ τ .

As a preparation for the proof of (i), we perform a standard rescaling argument for a configuration
y ∈ H2(αDω,h;Rd) with 0 < α < 1. We define ȳ ∈ H2(Dω,h;Rd) by ȳ(x) = y(αx)/α, and observe
that ∇ȳ(x) = ∇y(αx) and ∇2ȳ(x) = α∇2y(αx) for all x ∈ Dω,h. The fact that the sequence {ηε,d}ε is
increasing as ε→ 0 (see (4.5)) implies η2√

αε,d
≥ αη2

ε,d. Thus, we obtain by (2.1)

E√αε(y, αDω,h) ≥ 1

αε2

ˆ
αDω,h

W (∇y) dx+ αε2

ˆ
αDω,h

|∇2y|2 dx+ αη2
ε,d

ˆ
αDω,h

(|∇2y|2 − |∂2
ddy|2) dx

=
αd−1

ε2

ˆ
Dω,h

W (∇ȳ) dx+ αd−1ε2

ˆ
Dω,h

|∇2ȳ|2 dx+ αd−1η2
ε,d

ˆ
Dω,h

(|∇2ȳ|2 − |∂2
ddȳ|2) dx

= αd−1Eε(ȳ, Dω,h). (4.21)

We now prove (i). Let 0 < α < 1. By (4.12), for a given δ > 0, we can choose sequences {εi}i and
{yεi}i ⊂ H2(αDω,h;Rd) with ‖yεi − y0‖L1(αDω,h) → 0 and

lim inf
i→∞

E√αεi(y
εi , αDω,h) ≤ F(αω;αh) + δ. (4.22)
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Let {ȳεi}i ⊂ H2(Dω,h;Rd) be the rescaled functions defined before (4.21). Note that ‖ȳεi−y0‖L1(Dω,h) →
0, which follows from a scaling argument and the fact that the function ȳ0 defined by ȳ0(x) := y0(αx)/α
coincides with y0. The definition of F , (4.21), and (4.22) imply

δ + F(αω;αh) ≥ lim inf
i→∞

E√αεi(y
εi , αDω,h) ≥ αd−1 lim inf

i→∞
Eεi(ȳεi , Dω,h) ≥ αd−1F(ω;h).

Since δ > 0 was arbitrary, (i) follows.

The proof of properties (ii) and (iii) is similar to the one in [18, Lemma 4.3]. We present the main
steps here for convenience of the reader. We show (ii). We use a covering theorem (see, e.g., [28, Remark
1.148(ii)]) to decompose ω =

⋃
i∈N(ai + δiQ

′)∪N0 into pairwise disjoint sets ai + δiQ
′, for ai ∈ Rd−1 and

0 < δi < 1, where Hd−1(N0) = 0, Q′ =
(
− 1

2 ,
1
2

)d−1
, and∑∞

i=1
δd−1
i = Hd−1(ω). (4.23)

Then (4.20) and (i) imply for all I ∈ N

F(ω;h) ≥
∑I

i=1
F(δiQ

′;h) ≥
∑I

i=1
F(δiQ

′; δih) ≥
∑I

i=1
δd−1
i F(Q′;h).

Letting I → ∞ and using (4.23) we conclude that F(ω;h) ≥ Hd−1(ω)F(Q′;h). The reverse inequality
follows by interchanging the roles of ω and Q′ in the above argument, see [18, Lemma 4.3] for details.

We finally prove (iii). The second identity in (iii) follows from (ii) and the fact that K = F(Q′; 1
2 ),

see (4.8). We show the first identity. To this end, it suffices to prove that

F(Q′; τ) = F(Q′; γτ) for all τ > 0 and for all γ ∈ N. (4.24)

Indeed, by (4.20)(b) we get F(Q′; τ) ≤ F(Q′; 1
2 ) ≤ F(Q′; γτ) for all 0 < τ < 1

2 and γ ∈ N such that

γτ ≥ 1
2 . This along with (4.24) then implies F(Q′; τ) = F(Q′; 1

2 ) for all 0 < τ < 1
2 . Using (4.24) once

more, we get F(Q′;h) = F(Q′; 1
2 ) for all h > 0. The statement follows with (ii).

Let us now show (4.24). We decompose γQ′ into the union

γQ′ =
⋃γd−1

i=1
(ai +Q′) ∪N0

consisting of pairwise disjoint hypercubes, where Hd−1(N0) = 0. By (i) (with ω = γQ′, h = γτ , and
α = 1/γ) we find F(Q′; τ) ≥ γ−(d−1)F(γQ′; γτ). Thus, using (4.20) we compute

F(Q′; τ) ≥ γ−(d−1)F(γQ′; γτ) ≥ γ−(d−1)
∑γd−1

i=1
F(ai +Q′; γτ) ≥ F(Q′; γτ) ≥ F(Q′; τ).

This concludes the proof of the proposition. �

We now show that a sequence of optimal profiles can be chosen independently of the particular choice
of {εi}i. To this end, similar to the function F defined in (4.12), we introduce the function G, given by

G(ω;h) = inf
{

lim sup
ε→0

Eε(yε, Dω,h) : lim
ε→0
‖yε − y0‖L1(Dω,h) = 0

}
for every ω ⊂ Rd−1 and h > 0.

Proposition 4.8 (F = G). We have F(ω;h) = G(ω;h) for all ω ⊂ Rd−1 open, bounded with Hd−1(∂ω) =
0 and all h > 0.

For the proof of Proposition 4.8 we need the following technical lemma. Recall κ = |A − B| and the
constant c1 from H4. Recall also the definition of Eε,η in (2.1).

Lemma 4.9 (Zooming to the interface). Let {εi}i be an infinitesimal sequence and let ηεi ≥ ε
− 1

3
i for every

i ∈ N. Let Q′ ⊂ Rd−1 be a cube. Let Q ⊂ Rd be the cube whose orthogonal projection on Rd−1×{0} is Q′.
Let {hi}i ⊂ R+. For every i ∈ N, let yi ∈ H2(Q ∪DQ′,hi ;Rd) with Eεi,ηεi (y

i,Q ∪DQ′,hi) ≤ M < +∞,
and assume that

h−1
i ‖∇y

i −∇y0‖2L2(DQ′,hi )
→ 0. (4.25)
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Then there exists c = c(M,κ, c1,Q′) ∈ (0, 1) such that for every bounded sequence {τi}i ⊂ R+ with

τi ≤ chi, τiηεi/εi →∞, τi/ε
1+ 1

d
i →∞ (4.26)

we find a sequence {αi}i ⊂ R with αied +DQ′,τi ⊂ DQ′,hi , and a sequence of isometries {Ii}i such that
the maps {vi}i ⊂ H2(DQ′,τi ;Rd), defined by

vi(x) = Ii ◦ yi(x+ αied) for every x ∈ DQ′,τi , (4.27)

satisfy

τ−1
i ‖∇v

i −∇y0‖2L2(DQ′,τi )
→ 0. (4.28)

Assumption (4.25) means that asymptotically a big portion of DQ′,hi∩{xd > 0} and DQ′,hi∩{xd < 0},
respectively, is contained in the A and B-phase region, respectively. The lemma states that one may find
cylindrical sets inside DQ′,hi with (much) smaller heights (satisfying suitable assumptions, cf. (4.26)) such
that a similar property holds on these cylindrical sets, see (4.28) and Figure 4. Loosely speaking, the
result shows that the interface between the A and B-phase regions becomes asymptotically flat, where
the nonflatness can be quantified in terms of the sequence {τi}i.

A

B A

B

Figure 4. The interface between the A and B-phase regions becomes asymptotically flat.

For the proof of Proposition 4.8, we will need this lemma only for τi ∼ 1 and ηεi = ηεi,d. However,
we prefer to present this more general version since this will be instrumental in the companion work [23].
We also remark that the assumption τiηεi/εi →∞ on τi is sharp in order to obtain the above result.

We postpone the proof of the lemma and proceed with the proof of Proposition 4.8.

Proof of Proposition 4.8. For convenience of the reader, we subdivide the proof into three steps. In Step
I we show how the problem can be reduced to the case in which ω is a cube. In Step II and III we
then address this special setting. Here, we will use Lemma 4.9 and also some arguments inspired by [20,
Proposition 5.5].

Step I: Reduction to a cube. We first observe that the essential point is to prove

F(Q′;h) = G(Q′;h) for all cubes Q′ ⊂ Rd−1 and all h > 0. (4.29)

Once this is established, we may conclude as follows. Given ω ⊂ Rd−1 open, bounded, withHd−1(∂ω) = 0,
we select a cube Q′ ⊂ Rd−1 containing ω. Suppose by contradiction that the statement was wrong, i.e.,
δ := 1

2 (G(ω;h) − F(ω;h)) > 0. Let {εi}i be a sequence such that for any {vεi}i ⊂ H2(Dω,h;Rd) with
‖vεi − y0‖L1(Dω,h) → 0 one has

lim inf
i→∞

Eεi(vεi , Dω,h) ≥ G(ω;h). (4.30)

In view of (4.29), for this specific sequence {εi}i, we can find a sequence of functions {yεi}i ⊂
H2(DQ′,h;Rd) such that ‖yεi − y0‖L1(DQ′,h) → 0 and

lim sup
i→∞

Eεi(yεi , DQ′,h) ≤ G(Q′;h) + δ = F(Q′;h) + δ. (4.31)

Using (4.12), Proposition 4.6(ii), (4.30), and the equality 2δ = G(ω;h)−F(ω;h) we derive

lim inf
i→∞

Eεi(yεi , DQ′,h) ≥ lim inf
i→∞

Eεi(yεi , DQ′,h \Dω,h) + lim inf
i→∞

Eεi(yεi , Dω,h) ≥ F(Q′ \ ω;h) + G(ω;h)
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= F(Q′ \ ω;h) + F(ω;h) + 2δ = F(Q′;h) + 2δ.

This, however, contradicts (4.31).

Step II: Construction of an admissible sequence on increasing cylindrical sets. It remains to prove (4.29).
To this end, let {εi}i be a sequence converging to zero such that (4.30) holds (for ω = Q′). Let δ > 0.
Choose {ε̃j}j and {ỹε̃j}j ⊂ H2(DQ′,h;Rd) such that ‖ỹε̃j − y0‖L1(DQ′,h) → 0 and

lim sup
j→∞

Eε̃j (ỹε̃j , DQ′,h) ≤ F(Q′;h) + δ. (4.32)

By Lemma 4.1 we may also assume that ‖ỹε̃j − y0‖H1(DQ′,h) → 0. After passing to a subsequence, we

may also suppose that {ε̃j}j is monotone. For each i, we let j(i) > i be the smallest index such that

ε̃j(i) < εi/i. We now rescale ỹε̃j(i) using (4.21): letting αi = (ε̃j(i)/εi)
2, we find ȳi ∈ H2(α−1

i DQ′,h;Rd)
such that

αdi ‖∇ȳi −∇y0‖2L2(α−1
i DQ′,h)

→ 0 (4.33)

and

αd−1
i Eεi(ȳi, α−1

i DQ′,h) ≤ E√αiεi(ỹ
ε̃j(i) , DQ′,h) = Eε̃j(i)(ỹ

ε̃j(i) , DQ′,h).

We can (almost) cover α−1
i DQ′,h by bα−1

i cd−1 pairwise disjoint translated copies of DQ′,hi , where we

define hi = α−1
i h. This implies that for every i ∈ N we can find zi ∈ Rd−1×{0} such that by a De Giorgi

argument there holds

(i) Eεi(ȳi, zi +DQ′,hi) ≤
(1 + δ)

bα−1
i cd−1

Eεi(ȳi, α−1
i DQ′,h) ≤ (1 + δ)

(bα−1
i cαi)d−1

Eε̃j(i)(ỹ
ε̃j(i) , DQ′,h),

(ii) ‖∇ȳi −∇y0‖2L2(zi+DQ′,hi )
≤ Cδ−1αd−1

i ‖∇ȳi −∇y0‖2L2(α−1
i DQ′,h)

. (4.34)

By the definition of αi there holds α−1
i ≥ i2, thus we get αibα−1

i c → 1. This along with (4.32) and
(4.34)(i) yields

lim sup
i→∞

Eεi(ȳi, zi +DQ′,hi) ≤ (1 + δ)(F(Q′;h) + δ). (4.35)

Moreover, by (4.33), (4.34)(ii), and hi = α−1
i h we obtain h−1

i ‖∇ȳi −∇y0‖2L2(zi+DQ′,hi )
→ 0.

Step III: Construction of an admissible sequence on a fixed cylindrical set. The goal is now to choose a
cylindrical set of height h inside zi + DQ′,hi such that ȳi converges to y0 on this cylindrical set. After

a translation it is not restrictive to assume that zi = 0 in the following. Recall that hi = α−1
i h ≥ hi2.

We apply Lemma 4.9 for {ȳi}i, {hi}i, and τi = h. (Note that (4.26) clearly holds for i sufficiently large
in view of hi → ∞ and (4.5). Similarly, we find DQ′,hi ⊃ Q for i large enough.) We find a sequence of
functions vi ∈ H2(DQ′,h;Rd) with

(i) lim sup
i→∞

Eεi(vi, DQ′,h) ≤ lim sup
i→∞

Eεi(ȳi, DQ′,hi), (ii) h−1‖∇vi −∇y0‖2L2(DQ′,h) → 0. (4.36)

By (4.35), (4.36)(i), and Lemma 4.1 we find a (non-relabeled) subsequence and a map v ∈ Y(DQ′,h) such
that, up to translations, vi → v in H1(DQ′,h;Rd). Due to (4.36)(ii), the limit v can be identified with
y0. As the limit is independent of the particular subsequence, we then get that ‖vi − y0‖L1(DQ′,h) → 0

for the whole sequence {εi}i. Thus, {vi}i is an admissible sequence in (4.30) (for ω = Q′) and we find
by (4.35)–(4.36)

G(Q′;h) ≤ lim sup
i→∞

Eεi(vi, DQ′,h) ≤ (1 + δ)(F(Q′;h) + δ).

Since δ > 0 was arbitrary, we conclude that G(Q′;h) ≤ F(Q′;h). As G(Q′;h) ≥ F(Q′;h) trivially holds,
the proof of (4.29) is completed. �

We proceed with a consequence of Proposition 4.6 and Proposition 4.8, namely that the energy of
optimal-profile sequences concentrates near the interface.
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Corollary 4.10 (Concentration of the energy near the interface). Let ω ⊂ Rd−1 open, bounded with
Hd−1(∂ω) = 0 and let h > 0. Let {εi}i be an infinitesimal sequence. Then there exists {yεi}i ⊂
H2(Dω,h;Rd) such that

lim
i→∞

Eεi(yεi , Dω,h) = KHd−1(ω), Eεi(yεi , Dω,h \Dω,h/4)→ 0, ‖yεi − y0‖H1(Dω,h) → 0.

Proof. Using Lemma 4.1, Proposition 4.6, and Proposition 4.8 we let {yεi}i ⊂ H2(Dω,h;Rd) be a sequence
with

lim
i→∞

Eεi(yεi , Dω,h) = F(ω, 1
2 ) = KHd−1(ω), ‖yεi − y0‖H1(Dω,h) → 0.

By Proposition 4.6 we also get lim infi→∞ Eεi(yεi , Dω,h/4) ≥ KHd−1(ω). This in turn implies
Eεi(yεi , Dω,h \Dω,h/4)→ 0. �

Remark 4.11. Using Lemma 4.9 one can also show the following generalization, whose proof is deferred
to [23]: for each sequence {τi}i satisfying

τi ≤ h/4, τiηεi,d/εi →∞, τi/ε
1+ 1

d
i →∞,

there exists {yεi}i ⊂ H2(Dω,h;Rd) such that

lim
i→∞

Eεi(yεi , Dω,h) = KHd−1(ω), Eεi(yεi , Dω,h \Dω,τi)→ 0, τ−1
i ‖∇y

εi −∇y0‖2L2(Dω,4τi )
→ 0.

This means that the energy is concentrated in a τi-neighborhood around ω × {0}.

To conclude the proof of Proposition 4.8, we need to show Lemma 4.9.

Proof of Lemma 4.9. We proceed in two steps. We first define the cylindrical sets and then find suitable
isometries such that the functions defined in (4.27) satisfy (4.28). For brevity, let Ωi = Q ∪DQ′,hi . Let
{τi}i be a sequence satisfying (4.26) (for a constant c ∈ (0, 1) to be specified below).

Step I: Definition of the cylindrical sets. In view of (4.26), we can choose {λi}i ⊂ (0, 1/4) such that

λi → 0, τiηεiλi/εi →∞. (4.37)

We use Proposition 3.7 for yi ∈ H2(Ωi;Rd) to find a corresponding set Ti with properties (3.10). Recall
that Ti corresponds to the A-phase regions and Ωi \ Ti to the B-phase regions of the function yi. Let

T iA =
{
t ∈ (−hi, hi) : Hd−1((Q′ × {t}) ∩ Ti) ≥ (1− λi)Hd−1(Q′)

}
,

T iB =
{
t ∈ (−hi, hi) : Hd−1((Q′ × {t}) \ Ti) ≥ (1− λi)Hd−1(Q′)

}
. (4.38)

Note that for i sufficiently large (i.e., λi small) the relative isoperimetric inequality on Q′ × {t} in
dimension d− 1, cf. [27, Theorem 2, Section 5.6.2], shows that, if Hd−2((Q′×{t})∩∂∗Ti) ≤ λiHd−1(Q′),
then t ∈ T iA ∪ T iB . Indeed, by the relative isoperimetric inequality we get

min
{
Hd−1((Q′ × {t}) ∩ Ti), Hd−1((Q′ × {t}) \ Ti)

}
≤ C(λiHd−1(Q′))

d−1
d−2 .

(The theorem in the reference above is stated and proved in a ball, but the argument only relies on
Poincaré inequalities, and thus easily extends to bounded Lipschitz domains.) By (4.37), this in turn
implies

min
{
Hd−1((Q′ × {t}) ∩ Ti), Hd−1((Q′ × {t}) \ Ti)

}
≤ λiHd−1(Q′)

for i large enough, and gives the claim. Thus, by (3.10)(iv) and Eεi,ηεi (y
i,Ωi) ≤M we obtain

H1((−hi, hi) \ (T iA ∪ T iB)) ≤ cMεiη
−1
εi (λiHd−1(Q′))−1. (4.39)

By the coarea formula, cf. (3.17), we get for H1-a.e. tA ∈ T iA, tB ∈ T iB

Hd−1
(
∂∗Ti ∩ (Q′ × (tA, tB))

)
≥
ˆ
∂∗Ti∩(Q′×(tA,tB))

|〈νTi , ed〉| dHd−1

=

ˆ
πd

H0
(
(z + (tA, tB)ed) ∩ ∂∗Ti ∩ (Q′ × (tA, tB))

)
dHd−1(z),
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where πd = Rd−1 × {0}. In view of (4.38) and λi ≤ 1
4 , it follows thatˆ

πd

H0
(
(z + (tA, tB)ed) ∩ ∂∗Ti ∩ (Q′ × (tA, tB))

)
dHd−1(z) ≥ 1

2
Hd−1(Q′). (4.40)

Define the indicator function ψ : (−hi, hi) → {A,B} by ψ(t) = A if sup{t′ ≤ t, t′ ∈ T iA ∪ T iB} ∈ T iA and
ψ(t) = B else. By using (4.40) it is elementary to see that ψ jumps at most

Ni := b2Hd−1(∂∗Ti ∩ Ωi)/Hd−1(Q′)c+ 1 (4.41)

times. Using (3.10)(ii), we note that

Ni ≤ 2cM (Hd−1(Q′))−1 + 1.

Hence, we have that N := supiNi < +∞ only depends on the constant c from Proposition 3.7, M , and
Q′. We now show that

H1(T iA) ≥ hi/2 and H1(T iB) ≥ hi/2 (4.42)

for all i sufficiently large. In fact, we observe that limi→∞ h−1
i H1((−hi, hi) \ (T iA ∪ T iB)) = 0 by (4.37),

τi ≤ hi, and (4.39). Using assumption (4.25), choose i0 ∈ N such that H1((−hi, hi)\ (T iA∪T iB)) ≤ hi
4 and

‖∇yi −∇y0‖2L2(DQ′,hi )
≤ (1− β)2κ2

16
Hd−1(Q′)hi (4.43)

for all i ≥ i0, where β is given in Proposition 3.7 and κ = |B − A|. Now assume by contradiction that,
e.g., H1(T iB) < hi/2 for some i ≥ i0. We then get H1(T iA) ≥ 5

4hi. By (4.38) and λi ≤ 1
4 this implies

Ld(Ti ∩ {xd < 0}) ≥ 1

4
hi(1− λi)Hd−1(Q′) ≥ 3

16
hiHd−1(Q′).

By (3.10)(i) and (4.4) we also have ‖∇yi − ∇y0‖2L2(Ti∩{xd<0}) ≥ (1 − β)2κ2Ld(Ti ∩ {xd < 0}). The

previous two estimates contradict (4.43).

In view of (4.41)–(4.42), we find c ∈ (0, 1) (only depending on N and thus only depending on
M,κ, c1,Q′) and αi ∈ (−hi, hi) such that (possibly after a rotation by π corresponding to the trans-
formation y 7→ −y(−x)) we have

(αi − chi, αi + chi) ∩ T iA ⊂ {t ≥ αi}, (αi − chi, αi + chi) ∩ T iB ⊂ {t ≤ αi}. (4.44)

(The idea is to choose αi as one of the jump points of ψ.) Suppose now that {τi}i satisfies (4.26) for
this constant c, i.e., τi ≤ chi. We define Di := Q′ × (αi − τi, αi + τi) = αied +DQ′,τi . By (4.38), (4.39),
(4.44), and τi ≤ chi we get

τ−1
i L

d({x ∈ Di : xd ≥ αi} \ Ti) ≤ τ−1
i

(
H1((−hi, hi) \ (T iA ∪ T iB)) + τi λi

)
Hd−1(Q′)

≤ Cεi(ηεiτiλi)−1 + λiHd−1(Q′)→ 0 (4.45)

as i→∞, where in the last step we used λi → 0 and (4.37). In a similar fashion, we find

τ−1
i L

d({x ∈ Di : xd ≤ αi} ∩ Ti)→ 0. (4.46)

Step II: Construction of the maps vi. Since Ωi contains a cube and {τi}i is a bounded sequence, we
observe that Di can be covered with a bounded number of cubes contained in Ωi. Suppose first that
there exists one cube Q̃i ⊂ Rd with Di ⊂⊂ Q̃i ⊂ Ωi. We apply Theorem 3.1 (for p = d+1

d < d
d−1 ),

Remark 3.2(ii), and Remark 3.8 to find Ri ∈ SO(d) such that

‖∇yi −RiA‖Lp(Di∩Ti) + ‖∇yi −RiB‖Lp(Di\Ti) ≤ Cεi + C(εi/ηεi) + C(ε
1
2
i /η

3
2
εi) ≤ Cεi (4.47)

where in the last step we used ηεi ≥ ε
− 1

3
i , and where C depends on M . This estimate remains true if more

than one cube is needed to cover Di since the difference of the corresponding rotations can be controlled,
cf. the proof of Lemma 3.3. We now prove (4.28) for isometries Ii whose derivative is given by RTi .
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Let Ei = Di ∩ {|∇yi| ≤ L}, where L ≥
√
d is sufficiently large such that dist(F, SO(d){A,B}) ≥

|F −RM |/2 for all F ∈Md×d with |F | ≥ L, R ∈ SO(d), and M ∈ {A,B}. Using H4. we observe that

‖∇yi −RiA‖2L2(Di\Ei) + ‖∇yi −RiB‖2L2(Di\Ei) ≤ C
ˆ
Di

W (∇yi) dx ≤ Cε2
i , (4.48)

where C depends on c1. We now consider the behavior on Ei. First, we calculate by (4.47) and the
definition of Eiˆ
{x∈Ei: xd≥αi}

|RTi ∇yi −A|2 dx ≤
ˆ
Ei∩Ti

|∇yi −Ri|2 dx+

ˆ
{x∈Ei: xd≥αi}\Ti

|∇yi −Ri|2 dx

≤ (2L)2−p
ˆ
Di∩Ti

|∇yi −Ri|p dx+ (2L)2Ld({x ∈ Di : xd ≥ αi} \ Ti)

≤ Cεpi + (2L)2Ld({x ∈ Di : xd ≥ αi} \ Ti).

The fact that εpi /τi → 0 (recall p = d+1
d and see (4.26)) and (4.45) now imply

τ−1
i

ˆ
{x∈Ei: xd≥αi}

|RTi ∇yi −A|2 dx→ 0. (4.49)

In a similar fashion, using (4.46) instead of (4.45), we obtain

τ−1
i

ˆ
{x∈Ei: xd≤αi}

|RTi ∇yi −B|2 dx→ 0. (4.50)

Combining (4.48)–(4.50) and using that ε2
i /τi → 0, we conclude the proof of (4.28), when we define vi

as in (4.27) with an isometry with derivative RTi . �

4.5. Local construction of recovery sequences. This subsection is devoted to the proof of Proposi-
tion 4.7. Let h > 0 and ω ⊂ Rd−1 open, bounded with Lipschitz boundary. Our goal is to suitably modify
functions with optimal-profile energy, see (4.8), such that they have the structure given in (4.18). As a
preparation, we introduce the following notion for y ∈ H2(Dω,h;Rd), where Dω,h denotes the cylindrical
set defined in (4.11): for ε, η > 0 and for 0 < τ ≤ h/4 we define the (ε, η)-closeness of y to the limiting
map y+

0 by

δε,η(y;ω, h, τ) := Eε,η(y,Dω,h \Dω,τ ) + (Ld(Dω,4τ ))−1‖∇y −∇y+
0 ‖2L2(Dω,4τ ), (4.51)

where y+
0 = y0 is the map defined in (4.4).

In the following, we will use that by Corollary 4.10, for given ω ⊂ Rd−1, h > 0, and {εi}i converging to
zero, there exists a sequence {yεi}i ⊂ H2(Dω,h;Rd) of deformations attaining the optimal-profile energy
K (see (4.8)) such that

δεi,ηεi,d(yεi ;ω, h, h/4)→ 0 as i→∞.

More generally, the existence of such a sequence is still guaranteed when τ = h/4 is replaced by a sequence

{τi}i with τiηεi,d/εi →∞ and τi/ε
1+1/d
i →∞, see Remark 4.11. Although we only need the case τ = h/4

and η = ηεi,d for the proof of Proposition 4.7, we formulate the definition of (ε, η)-closeness and some
statements below in a more general way as this will be needed in the companion paper [23].

The proof strategy for Proposition 4.7 is as follows: relying on the quantitative rigidity estimate in
Theorem 3.1, we first show in Proposition 4.12 and Corollary 4.14 that it is possible to find two (d− 1)-
dimensional slices on which the energy of y and the Lp-distance of ∇y from suitable rotations of ∇y+

0 can
be quantified in terms of δε,η(y;ω, h, τ). In Lemma 4.20, for each of the slices identified above we construct
a transition to a rigid movement, where the energy can again be quantified in terms of δε,η(y;ω, h, τ).
The latter construction relies on suitable extensions and gluing of functions. These auxiliary estimates
are given in Lemma 4.18 and Lemma 4.19.

We emphasize that the main novelties of our approach are the estimates in Proposition 4.12 and
Corollary 4.14 which build upon the rigidity estimates of Section 3. For the construction of the transitions
we follow closely the argumentation in [20, Section 5]. However, we will work out the main points of
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the arguments in order to (a) detail the adaptions necessary with respect to [19, 20] due to anisotropic
surface energies and to (b) provide a self-contained presentation.

We begin by collecting the main properties of (d−1)-dimensional slices. Recall pd in (4.7), κ = |A−B|,
and c1 in H4.

Proposition 4.12 (Properties of (d− 1)-dimensional slices). Let d ∈ N, d ≥ 2. Let h > 0, 0 < τ ≤ h/4,
and let ω, ω̂ ⊂ Rd−1 be Lipschitz domains such that ω ⊂⊂ ω̂. Then there exist ε0 = ε0(ω, ω̂, h, κ, c1, τ) ∈
(0, 1) and C = C(ω, ω̂, h, κ, c1) > 0 with the following properties:
For all 0 < ε ≤ ε0, for every η with ηε,d ≤ η ≤ 1

ε , and for each y ∈ H2(Dω̂,h;Rd) with δε,η(y; ω̂, h, τ) ≤
(κ/64)2 we can find two rotations R+, R− ∈ SO(d) and two constants s+ ∈ (τ, 2τ), s− ∈ (−2τ,−τ) such
that

(i)

ˆ
Γ+

|∇y −R+A|p dHd−1 +

ˆ
Γ−
|∇y −R−B|p dHd−1 ≤ C

τ
(δε,η(y; ω̂, h, τ))p/2 εp for all 1 ≤ p ≤ pd,

(ii) ‖∇y −A‖2L2(s+ed+Dω,ε2 ) + ‖∇y −B‖2L2(s−ed+Dω,ε2 ) ≤ Cε
2δε,η(y; ω̂, h, τ),

(iii) ε2

ˆ
Γ+∪Γ−

|∇2y|2 dHd−1 + η2

ˆ
Γ+∪Γ−

(|∇2y|2 − |∂2
ddy|2) dHd−1 ≤ C

τ
δε,η(y; ω̂, h, τ),

(iv) Eε,η
(
y, s+ed +Dω,ε2

)
+ Eε,η

(
y, s−ed +Dω,ε2

)
≤ Cε2

τ
δε,η(y; ω̂, h, τ),

(v) |R+ − Id|2 + |R− − Id|2 ≤ Cδε,η(y; ω̂, h, τ),

where we set Γ± = ω × {s±} for brevity.

B

B

B

A

{xd = s}

Figure 5. The slice {xd = s} (in green) is contained in the A-phase region (in white)
except for a small set lying in the B-phase region (in blue).

Proof. For notational convenience, we write δ(y) instead of δε,η(y; ω̂, h, τ). Without restriction, we only
select the rotation R+ ∈ SO(d) and the constant s+ ∈ (τ, 2τ), and establish the corresponding properties
(i)–(v). The selection of R−, s− is analogous. For convenience of the reader we subdivide the proof into
three steps. We first discuss some consequences of the two-well rigidity estimate (Step I) and identify a
proportion of (d− 1)-dimensional slices which are contained in the A-phase region except for a small set
(Step II), see Figure 5. Finally, in Step III we select s+ by means of a De Giorgi argument and show
properties (i)–(v).
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Step I: Consequences of the two-well rigidity estimate. Recall the definition of r(p, d) in (3.1) and note
that r(p, d) ≥ 1/2 for d ≥ 2 and p ≤ 2. We first observe that for all 1 ≤ p ≤ pd there holds( ε
η
δ(y) +

√
ε

η3/2
δ(y)

)r(p,d)

≤ C(δ(y))1/2
( ε
η

+

√
ε

η3/2

)r(p,d)

≤ 2C(δ(y))1/2
( √ε
η

3/2
ε,d

)r(p,d)

≤ 2C(δ(y))1/2ε
r(p,d)
r(pd,d)

≤ C(δ(y))1/2ε. (4.52)

for C = C(κ). Here, in the first inequality we used δ(y) ≤ (κ/64)2 and r(p, d) ≥ 1/2. In the second
one, we used ηε,d ≤ η ≤ 1

ε . In the third, we exploited that the definition of ηε,d in (4.5)–(4.6) implies

ε/η3
ε,d = ε2/r(pd,d). Finally, the fact that r(p, d) is decreasing in p implies the fourth inequality.

For notational convenience, we define Fω,τ = ω× (τ, h) and Fω̂,τ = ω̂× (τ, h). We now apply Theorem
3.1 for p = pd on Fω̂,τ . (Note that for d = 2 we can apply version (a) since Fω̂,τ is a rectangle and thus
simply connected.) In view of (4.51)–(4.52), Proposition 3.7(iv), and Remark 3.8, we find a rotation
R+ ∈ SO(d) and a set of finite perimeter T ⊂ Fω̂,τ such that

(i) ‖∇y −R+A‖Lp(Fω,τ∩T ) + ‖∇y −R+B‖Lp(Fω,τ\T ) ≤ C0(δ(y))1/2ε for all 1 ≤ p ≤ pd,

(ii)

ˆ h

−h
Hd−2

(
(Rd−1 × {t}) ∩ ∂∗T ∩ Fω̂,τ

)
dt ≤ Cδ(y)ε/η ≤ C0(δ(y))

d−2
d−1 ε1/rd (4.53)

for C0 = C0(ω, ω̂, h, κ, c1, pd) > 0. Here, (i) follows first for p = pd and then for p < pd by Hölder’s
inequality. Note that the constant C0 is independent of τ ≤ h/4 since all sets Fω̂,τ are uniformly Lipschitz
equivalent to ω × (0, h), see Remark 3.2(iii). In the second inequality of (ii) we used δ(y) ≤ (κ/64)2,
η ≥ ηε,d, and the definitions of ηε,d and rd in (4.5). (See (4.52) for a similar computation.)

Step II: Slices of the phase region T . We now show that, for ε sufficiently small, at least for one-
half of the s ∈ (τ, 2τ) the set ω × {s} ‘mostly lies in T ’, see Figure 5. More precisely, there exist
ε0 = ε0(ω, ω̂, h, κ, c1, τ) ∈ (0, 1) and C̄ = C̄(ω, ω̂, h, κ, c1) > 0 such that for all ε ≤ ε0 and at least for
one-half of the s ∈ (τ, 2τ) there holds

Hd−1
(
(ω × {s}) \ T

)
≤ C̄τ−1δ(y)εpd , (4.54)

where pd is defined in (4.7). To see this, we first observe by (4.53)(ii) that there exists S ⊂ (τ, 2τ) with
L1(S) ≥ 3

4τ such that for all s ∈ S there holds

Hd−2
(
∂∗T ∩ (ω × {s})

)
≤ 4τ−1C0(δ(y))

d−2
d−1 ε1/rd .

Using (d − 2)pd < (d − 1)/rd, see (4.6)–(4.7), we find some ε′0 ∈ (0, 1) sufficiently small depending on τ
and d such that

Hd−2
(
∂∗T ∩ (ω × {s})

)
≤ 4τ−1C0(δ(y))

d−2
d−1 ε1/rd ≤ C0(τ−1δ(y)εpd)

d−2
d−1 ,

for all s ∈ S and ε ≤ ε′0. By applying the relative isoperimetric inequality in dimension d − 1, cf. [27,
Theorem 2, Section 5.6.2], we deduce that all s ∈ S satisfy

min
{
Hd−1((ω × {s}) ∩ T ), Hd−1((ω × {s}) \ T )

}
≤ C̄τ−1δ(y)εpd (4.55)

for some C̄ = C̄(ω, ω̂, h, κ, c1) > 0. (Note that the theorem in the reference above is stated and proved
in a ball, but that the argument only relies on Poincaré inequalities, and thus easily extends to bounded
Lipschitz domains.) Define ε0 = ε0(ω, ω̂, h, κ, c1, τ) > 0 by

ε0 = min
{ τHd−1(ω)

16(C̄κ2 + C0)
, ε′0,

h

2
, τ
}
, (4.56)

where C0 is the constant from (4.53).

We now show that for at least one-half of the s ∈ (τ, 2τ) property (4.54) holds for the constants C̄ and
ε0. Suppose by contradiction that the statement was wrong. In view of (4.55), we get that for at least
one-fourth of the s ∈ (τ, 2τ) there holds

Hd−1
(
T ∩ (ω × {s})

)
≤ C̄τ−1δ(y)εpd .
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Then, setting Gω,τ := ω × (τ, 2τ), we obtain by (4.51), Hölder’s inequality, and (4.53)(i) for p = 1

τ

4
(Hd−1(ω)− C̄τ−1δ(y)εpd)|A−R+B| ≤ ‖A−R+B‖L1(Gω,τ\T )

≤ ‖∇y −A‖L1(Gω,τ ) + ‖∇y −R+B‖L1(Gω,τ\T )

≤ 8τ Hd−1(ω) (δ(y))1/2 + C0(δ(y))1/2ε

≤
(
τHd−1(ω)/8 + C0ε

)
|A−B|,

where in the last inequality we used that δ(y) ≤ (κ/64)2, and the fact that |A−B| = κ. As |A−R+B| ≥
|A−B|, this implies

τHd−1(ω)/8 ≤ C̄δ(y)εpd/4 + C0ε ≤ (C̄κ2 + C0)ε.

This, however, contradicts the choice of ε0 in (4.56) and ε ≤ ε0. Thus, (4.54) holds.

Step III: Selection of s+ and proof of the statement. In view of (4.51), (4.53)(i), and (4.54), we can use
a De Giorgi argument to select s+ ∈ (τ, 2τ) such that

(i) Hd−1(Γ+ \ T ) ≤ C̄τ−1δ(y)εp,

(ii)

ˆ
Γ+∩T

|∇y −R+A|p dHd−1 +

ˆ
Γ+\T

|∇y −R+B|p dHd−1 ≤ Cτ−1(δ(y))p/2εp,

(iii) (Ld(Dω,4τ ))−1

ˆ
Γ+

|∇y −A|2 dHd−1 + Eε,η
(
y,Γ+

)
≤ Cτ−1δ(y),

(iv) (Ld(Dω,4τ ))−1‖∇y −A‖2L2(s+ed+Dω,ε2 ) + Eε,η
(
y, s+ed +Dω,ε2

)
≤ Cτ−1ε2δ(y) (4.57)

for all 1 ≤ p ≤ pd and ε ≤ ε0, where Γ+ := ω × {s+}. Here, we have also used that 2τ ≤ h/2 and
ε2 ≤ h/2 (see (4.56)) to guarantee that s+ed +Dω,ε2 ⊂ Dω,h. We emphasize that the constants C and C̄
are independent of τ .

Properties (ii)–(iv) of the statement are immediate from (4.57)(iii)–(iv) and definition (2.1). We now
show item (i) of the statement. First, in view of (4.57)(ii), the integral on Γ+ ∩ T is controlled and we
therefore only need to consider the integral on Γ+ \ T . By (4.57)(i),(ii) we getˆ

Γ+\T
|∇y −R+A|p dHd−1 ≤ 2p−1

ˆ
Γ+\T

|∇y −R+B|p dHd−1 + 2p−1|A−B|pHd−1(Γ+ \ T )

≤ 2p−1C(δ(y))p/2εpτ−1 + 2p−1C̄κpδ(y)εpτ−1

for all 1 ≤ p ≤ pd. This along with δ(y) ≤ C(δ(y))p/2 and (4.57)(ii) shows (i). We finally observe that
(v) holds. This follows by combining property (i) of the statement with (4.57)(iii) and noting ε0 ≤ τ , see
(4.56). �

Remark 4.13 (Amount of “good” slices). By the proof of Proposition 4.12 it follows that the statement of
the proposition holds for slices in sets S+ ⊂ (τ, 2τ) and S− ⊂ (−2τ,−τ), respectively, with L1(S±) ≥ cτ ,
where 0 < c < 1 is a suitable ratio.

Based on Proposition 4.12(i), one can also derive an H1/2-estimate on the (d− 1)-dimensional slices.

Corollary 4.14 (H1/2-estimate). Consider the setting of Proposition 4.12. Then, there exist t+, t− ∈ Rd
such that

‖y(·, s+)−R+A(·, s+)T − t+‖2H1/2(ω) + ‖y(·, s−)−R−B(·, s−)T − t−‖2H1/2(ω) ≤ Cε
2δε,η(y; ω̂, h, τ)

(4.58)

for a constant C = C(ω, ω̂, h, κ, c1, τ) > 0.

Proof. We only provide the estimate on ω × {s+}. By Proposition 4.12(i) and by a (d− 1)-dimensional
Poincaré inequality we find t+ ∈ Rd such that there holds

‖y(·, s+)−R+A(·, s+)T − t+‖W 1,pd (ω) ≤
Cε(δε,η(y; ω̂, h, τ))1/2

τ1/pd
.
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By the definition of pd (see (4.7)) and by classical Besov embeddings (see, e.g., [44, Theorem 14.32 and
Remark 14.35] and [45, Theorem 7.1, Proposition 2.3]), we observe that the H1/2-norm can be controlled
in terms of the W 1,pd -norm. This concludes the proof. �

Remark 4.15 (The role of the quantitative rigidity estimate). The quantitative estimate in terms of ε
provided by (4.58) is the fundamental ingredient to construct transitions to rigid movements in Lemma
4.20 below. Its derivation relies on the rigidity result of Section 3, a careful choice of (d− 1)-dimensional
slices, and an embedding into H1/2. Let us emphasize that other quantitative two-well rigidity estimates
(see Subsection 3.1) cannot be used in the proof of Proposition 4.12: applying (3.3) would lead to ε
instead of ε2 on the right hand side of (4.58). Although (3.4) would give a correct scaling in terms of ε,
no embedding into H1/2 would be possible since only the weak L1-norm of the derivative is controlled.

Remark 4.16 (The assumption η ≤ 1
ε ). Let us mention that Proposition 4.12 holds true also without

the assumption η ≤ 1
ε . It will only be crucial in the construction of transitions, see Lemma 4.20 below.

However, we prefer to formulate the proposition with this slightly stronger assumption since ηε,d ≤ η ≤ 1
ε

is the interesting regime. In fact, if η ≥ 1
ε , the proof is much simpler and no rigidity estimates are needed:

property (i) in Proposition 4.12 can simply be derived by using property (iii) and a Poincaré inequality.

Remark 4.17 (Sharpness of the argument). Alternatively, an H1/2-estimate on the traces could have
been obtained without Besov embeddings by working directly with p = 2 in Proposition 4.12. In this
case, however, ηε,d in (4.5) has to be chosen larger. We have preferred to perform the estimates for p ≤ pd
in order to obtain a sharpest definition of ηε,d which leads to a sufficient H1/2-control of the traces of the
deformations.

The next lemmas address suitable H2-extensions of functions. We point out that the proof arguments
follow closely [20, Lemma 5.3, Lemma 5.4]. We work out the main points of the proof for convenience of
the reader. In the following, we will frequently write x′ = (x1, . . . , xd−1) for brevity.

Lemma 4.18 (Extension of functions defined on (d−1)-dimensional slices). Let ω ⊂ Rd−1 open, bounded
with Lipschitz boundary. Let ε, η, θ > 0. Let u ∈ H2(ω;Rd) be such that

1

ε2
‖u‖2H1/2(ω) + η2‖u‖2H2(ω) ≤ θ. (4.59)

Then, for any τ > 0 there exists z ∈ H2(ω × (0,∞);Rd) such that z(x′, 0) = u(x′) for all x′ ∈ ω, z is
constant on ω × (τ,∞) and

1

ε2

ˆ
ω×(0,∞)

|∇z|2 dx+ η2

ˆ
ω×(0,∞)

|∇2z|2 dx ≤ Cθ (4.60)

for some constant C = C(ω, τ) > 0. In a similar fashion, an extension to ω×(−∞, 0) can be constructed.

Proof. We extend u from ω to a cube in Rd−1 such that (4.59) still holds up to multiplying θ with a
constant depending on ω. (For an extension operator in H1/2 we refer to [25, Theorem 5.4].) Without loss
of generality, after scaling we can assume that the cube is the unit cube in Rd−1 and τ = 1. Periodically
extending u to Rd−1 and using a Fourier representation of u, we have

u(x′) =
∑

α∈2πZd−1

uαe
ix′·α,

where the Fourier coefficients {uα}α satisfy∑
α∈2πZd−1

( |α|
ε2

+ η2|α|4
)
|uα|2 ≤ Cθ (4.61)

for a constant C only depending on ω. Let ψ : [0,+∞) → R be a smooth cut-off function satisfying
0 ≤ ψ ≤ 1, ψ(0) = 1, and ψ(t) = 0 for t ≥ 1. Setting

z(x′, xd) := u0 +
∑

α∈2πZd−1, α 6=0

uαe
ix′·αψ(|α|xd),
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it is immediate to see that z(x′, 0) = u(x′) for all x′ ∈ ω and that z(x′, xd) = u0 for xd > 1. Using (4.61)
we calculate

‖∇z‖2L2(ω×(0,∞)) ≤
∑

α∈2πZd−1

α6=0

ˆ 1/|α|

0

|α|2|uα|2
(
ψ(|α|xd) + ψ′(|α|xd)

)2
dxd ≤ C

∑
α∈2πZd−1

|α||uα|2 ≤ Cε2θ,

where C depends on ‖ψ‖∞ and ‖ψ′‖∞, and similarly

η2‖∇2z‖2L2(ω×(0,∞)) ≤ Cη
2

∑
α∈2πZd−1

|α|3|uα|2 ≤ Cη2
∑

α∈2πZd−1

|α|4|uα|2 ≤ Cθ,

where C depends additionally on ‖ψ′′‖∞. This shows property (4.60). �

For convenience, in the next lemmas we use the following notation: for D ⊂ Rd, ε, η > 0, and
u ∈ H2(D;Rd) we define

E∗ε,η(u,D) :=
1

ε2

ˆ
D

|∇u|2 dx+ ε2

ˆ
D

|∇2u|2 dx+ η2

ˆ
D

(
|∇2u|2 − |∂2

ddu|2
)
dx. (4.62)

Lemma 4.19 (H2-extension). Let h, τ > 0 with τ ≤ h/4 and let ω ⊂ Rd−1 open, bounded with Lipschitz
boundary. Let η, ε, θ > 0 with ε2 ≤ τ and ε ≤ η. Let u ∈ H2(Dω,h;Rd) and 0 < s < 2τ be such that

1

ε2
‖u(·, s)‖2H1/2(ω) + η2‖u(·, s)‖2H2(ω) + E∗ε,η(u, ω × (s, s+ ε2)) ≤ θ. (4.63)

Then there exists a map v ∈ H2(ω×(0,∞);Rd) such that v = u on ω×(0, s), v is constant on ω×(s+τ,∞),
and

E∗ε,η(v, ω × (s,∞)) ≤ Cθ
for a constant C = C(ω, τ) > 0. If (4.63) holds for some −2τ < s < 0, one can construct a map
v ∈ H2(ω × (−∞, 0);Rd) in a similar fashion.

Proof. Let ẑ ∈ H2(ω×(0,∞)) be the function obtained by Lemma 4.18 applied on u(·, s) ∈ H2(ω;Rd) and
define z = ẑ(·− sed) ∈ H2(ω× (s,∞)). We note that z is constant on ω× (s+ τ,∞), that z(·, s) = u(·, s)
on ω, and that

E∗ε,η(z, ω × (s,∞)) = E∗ε,η(ẑ, ω × (0,∞)) ≤ C(1 + ε2η−2)θ ≤ Cθ, (4.64)

where in the last step we have used that ε ≤ η.

Let ψ : R → R be a smooth cut-off function with 0 ≤ ψ ≤ 1, ψ(t) = 0 for t ≤ s, and ψ(t) = 1 for
t ≥ s+ ε2, and satisfying ‖ψ‖L∞(R) + ε2‖ψ′‖L∞(R) + ε4‖ψ′′‖L∞(R) ≤ C. We define the map

v(x′, xd) := z(x′, xd)ψ(xd) + u(x′, xd)(1− ψ(xd))

on ω× (0,∞). Clearly, v coincides with z on ω× (s+ ε2,∞) and with u on ω× (0, s). Since ε2 ≤ τ and z
is constant on ω × (s+ τ,∞), we get that also v is constant on ω × (s+ τ,∞). Additionally, there holds

∇v(x′, xd) = ∇z(x′, xd) + (∇u(x′, xd)−∇z(x′, xd))(1− ψ(xd)) +
(
0, (z(x′, xd)− u(x′, xd))ψ

′(xd)
)
,

and

∂2
ijv(x′, xd) = ∂2

ijz(x
′, xd)ψ(xd) + ∂2

iju(x′, xd)(1− ψ(xd)),

∂2
idv(x′, xd) = ∂2

idz(x
′, xd)ψ(xd) + ∂2

idu(x′, xd)(1− ψ(xd)) + (∂iz(x
′, xd)− ∂iu(x′, xd))ψ

′(xd),

∂2
ddv(x′, xd) = ∂2

ddz(x
′, xd)ψ(xd) + ∂2

ddu(x′, xd)(1− ψ(xd)) + 2(∂dz(x
′, xd)− ∂du(x′, xd))ψ

′(xd)

+ (z(x′, xd)− u(x′, xd))ψ
′′(xd),

for i, j ∈ {1, . . . , d − 1}. We set F εω := ω × (s, s + ε2) for brevity. Using the one-dimensional Poincaré
inequality in the ed-direction for each x′, and exploiting the fact that u(·, s) = z(·, s) and ∂iu(·, s) =
∂iz(·, s) for every i = 1, . . . , d− 1, we obtainˆ

F εω

|z − u|2 dx ≤ Cε4

ˆ
F εω

|∂dz − ∂du|2 dx ≤ Cε6
(
E∗ε,η(u, F εω) + E∗ε,η(z, F εω)

)
,
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ˆ
F εω

|∂iz − ∂iu|2 dx ≤ Cε4

ˆ
F εω

|∂idz − ∂idu|2 dx ≤ Cε4η−2
(
E∗ε,η(u, F εω) + E∗ε,η(z, F εω)

)
,

for all i ∈ {1, . . . , d−1}. After some elementary, but tedious computations, using (4.63)–(4.64) and ε ≤ η,
we get

E∗ε,η(v, F εω) ≤ CE∗ε,η(z, F εω) + CE∗ε,η(u, F εω) ≤ Cθ.
The statement now follows from (4.64) and the fact that v = z on ω × (s+ ε2,∞). �

The following lemma deals with the transition between a (d−1)-dimensional slice and a rigid movement.
Recall the definitions of the constants c1 and c2 in H4. and H5., respectively.

Lemma 4.20 (Transition to a rigid movement). Let d ∈ N, d ≥ 2. Let h, τ, ε, η > 0 and ω ⊂⊂ ω̂ ⊂
Rd−1 satisfy the assumptions of Proposition 4.12. Assume that the elastic energy density W satisfies
assumptions H1.–H5. Let y ∈ H2(Dω̂,h;Rd) with δε,η(y; ω̂, h, τ) ≤ (κ/64)2 and let R+, R− ∈ SO(d),
s+ ∈ (τ, 2τ), s− ∈ (−2τ,−τ) be the associated rotations and constants provided by Proposition 4.12.
Then there exist a map yA+ ∈ H2(ω × (0,∞);Rd) and a constant bA+ ∈ Rd such that

(i) yA+ = y on ω × (0, s+), yA+(x) = R+Ax+ bA+ for all x ∈ ω × (s+ + τ,∞),

(ii) ‖∇yA+ −R+A‖2L2(ω×(s+,∞)) ≤ Cε
2δε,η(y; ω̂, h, τ),

(iii) Eε,η(yA+, ω × (s+,∞)) ≤ Cδε,η(y; ω̂, h, τ) (4.65)

where C = C(ω, ω̂, h, τ, κ, c1) > 0. Analogously, there exist a map vB− ∈ H2(ω × (−∞, 0);Rd) and a

constant bB− ∈ Rd for which (4.65) holds with B, s−, and R− in place of A, s+, and R+, respectively.

Proof. We only show the construction of the map yA+, the proof strategy for proving the existence of

yB− is analogous. As in the proof of Proposition 4.12, we write δ(y) instead of δε,η(y; ω̂, h, τ) for brevity.
All constants in the following may depend on ω, ω̂, h, τ , c1, and κ. For convenience of the reader, we
subdivide the proof into two steps.

Step I: Transition to a constant function. Using Proposition 4.12(i) for p = 1 and Corollary 4.14 we have

‖∇y(·, s+)−R+A‖2L1(ω) + ‖y(·, s+)−R+A(·, s+)T − t+‖2H1/2(ω) ≤ Cε
2δ(y). (4.66)

By a (d−1)-dimensional Poincaré inequality on ω, we find M+ ∈ Rd×d such that by Proposition 4.12(iii)
there holds

‖∇y(·, s+)−M+‖2L2(ω) ≤ C
d−1∑
i=1

d∑
j=1

‖∂2
ijy(·, s+)‖2L2(ω) ≤ Cη

−2δ(y). (4.67)

Moreover, by Proposition 4.12(ii),(v) we also find

‖∇y −R+A‖2L2(ω×(s+,s++ε2)) ≤ C‖∇y −A‖
2
L2(s+ed+Dω,ε2 ) + CLd(Dω,ε2)|R+A−A|2

≤ Cε2δ(y). (4.68)

Using (4.66)–(4.67) and the triangle inequality, we derive |R+A − M+|2 ≤ C(ε2 + η−2)δ(y). Thus,
defining u(x) := y(x) − R+Ax − t+ for x ∈ Dω,h we obtain by (4.66)–(4.67), Proposition 4.12(iii), and
the assumption ε ≤ 1/η

‖u(·, s+)‖2H1/2(ω) ≤ Cε
2δ(y), ‖u(·, s+)‖2H2(ω) ≤ Cη

−2δ(y).

Recalling (4.62), by Proposition 4.12(iv) and (4.68) we deduce that

E∗ε,η(u, ω × (s+, s+ + ε2)) ≤ Cδ(y).

Observe that ε2 ≤ ε ≤ ε0 ≤ τ , see (4.56), and ε ≤ η, see (4.5). Applying Lemma 4.19 to the function
u ∈ H2(Dω,h;Rd) and s+ ∈ (0, 2τ), we obtain a map v ∈ H2(ω × (0,∞);Rd) such that

v = u on ω × (0, s+), v is constant on ω × (s+ + τ,∞), (4.69)

and
E∗ε,η(v, F+

ω ) ≤ Cδ(y), (4.70)
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where for brevity we set F+
ω := ω × (s+,∞).

Step II: Transition to a rigid movement. We define yA+(x) := v(x) + R+Ax + t+ for x ∈ ω × (0,∞).
Property (4.65)(i) follows from (4.69) and the fact that u(x) := y(x) − R+Ax − t+ for x ∈ Dω,h. By
(4.70) we obtain

‖∇yA+ −R+A‖2
L2(F+

ω )
= ‖∇v‖2

L2(F+
ω )
≤ Cε2E∗ε,η(v, F+

ω ) ≤ Cε2δ(y).

This yields (4.65)(ii). By H5. and (4.70) we derive the estimateˆ
F+
ω

W (∇yA+) dx ≤ C
ˆ
F+
ω

dist 2(∇yA+, SO(d){A,B}) dx ≤ C‖∇yA+ −R+A‖2
L2(F+

ω )
≤ Cε2δ(y) (4.71)

on the nonlinear elastic energy. Similarly, as ∇2yA+ = ∇2v, by (4.70) we get

ε2

ˆ
F+
ω

|∇2yA+|2 dx+ η2

ˆ
F+
ω

(
|∇2yA+|2 − |∂2

ddy
A
+|2
)
dx ≤ E∗ε,η(v, F+

ω ) ≤ Cδ(y). (4.72)

Combining (4.71)–(4.72) gives (4.65)(iii) and concludes the proof of the lemma. �

We are now finally in the position to prove Proposition 4.7.

Proof of Proposition 4.7. We perform the construction for y+
0 . The strategy for y−0 is analogous. Let

h > 0 and let ω ⊂ Rd−1 open, bounded with Lipschitz boundary. Let ρ > 0 and choose a Lipschitz
domain ω̂ ⊃⊃ ω with Hd−1(ω̂ \ ω) ≤ ρ. We first observe that by Corollary 4.10 there exists a sequence
{yε}ε ⊂ H2(Dω̂,h;Rd) such that

lim
ε→0
Eε(yε, Dω̂,h) = KHd−1(ω̂), lim

ε→0
Eε(yε, Dω̂,h \Dω̂,h/4) = 0, lim

ε→0
‖yε − y+

0 ‖H1(Dω̂,h) = 0. (4.73)

In view of Corollary 4.10, the existence of a sequence {yεi}i satisfying (4.73) is guaranteed for every
{εi}i with εi → 0. Hence, in what follows, for notational simplicity we directly work with the continuous
parameter ε.

Fix τ = h/4. Recalling the (ε, η)-closeness in (4.51) and applying (4.73), we find that

δε,ηε,d(yε; ω̂, h, τ)→ 0 (4.74)

as ε → 0. Without loss of generality, we can assume that ε < ε0, where ε0 is the constant from
Proposition 4.12. Moreover, by (4.74) we may assume that δε,ηε,d(yε; ω̂, h, τ) ≤ (κ/64)2. We also observe
that ηε,d ≤ 1/ε by (4.5). We now apply Proposition 4.12 on {yε}ε. Let {R+

ε }ε, {R−ε }ε ⊂ SO(d) and let
{s+
ε }ε ⊂ (τ, 2τ), {s−ε }ε ⊂ (−2τ,−τ) be the associated sequences of rotations and constants. Additionally,

let yA,ε+ and yB,ε− be the functions provided by Lemma 4.20, and associated to yε.

Let now w+
ε ∈ H2(Dω,h;Rd) be defined as

w+
ε (x) =


yB,ε− (x) if xd ≤ s−ε ,
yε(x) if s−ε ≤ xd ≤ s+

ε ,

yA,ε+ (x) if xd ≥ s+
ε .

Using τ = h/4, |s+
ε |, |s−ε | ≤ 2τ = h/2, (4.4), and (4.65)(i), we get that w+

ε = I+
1,ε ◦ y

+
0 on {xd ≥ 3

4h} and

w+
ε = I+

2,ε ◦ y
+
0 on {xd ≤ − 3

4h}, where I+
1,ε and I+

2,ε are isometries. This shows (4.18).

By Proposition 4.12(v), (4.65)(ii), (4.73), and (4.74) we also get limε→0 ‖∇w+
ε − ∇y+

0 ‖2L2(Dω,h) = 0.

Using w+
ε ∈ H2(Dω,h;Rd) and again (4.73), this yields w+

ε → y+
0 in H1(Dω,h;Rd), i.e., (4.16) holds.

Combining (4.16) and (4.18) we also see that the isometries I+
1,ε and I+

2,ε converge to the identity as
ε→ 0.

It remains to prove (4.17). The inequality lim infε→0 Eε(w+
ε , Dω,h) ≥ KHd−1(ω) is clear by Proposition

4.6. We prove the reverse inequality. By (4.65)(iii) we obtain

Eε(w+
ε , Dω,h) ≤ Eε(yε, Dω,2τ ) + Eε(yB,ε− , ω × (−∞, s−ε )) + Eε(yA,ε+ , ω × (s+

ε ,∞))

≤ Eε(yε, Dω̂,h) + Cδε,ηε,d(yε; ω̂, h, τ).
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Using (4.73)–(4.74) and Hd−1(ω̂ \ ω) ≤ ρ we find

lim sup
ε→0

Eε(w+
ε , Dω,h) ≤ KHd−1(ω̂) ≤ KHd−1(ω) +Kρ.

Property (4.17) then follows by letting ρ→ 0 and using a diagonal argument. �

Remark 4.21 (Independence of the two constructions above and below the interface). Notice that the
constructions of the maps w±ε in the sets {xd ≥ 3h/4} and {xd ≤ −3h/4}, respectively, are independent
from each other.
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