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Abstract. We consider energies modelling the interaction of two media pa-

rameterized by the same reference set, such as those used to study interactions

of a thin film with a stiff substrate, hybrid laminates, or skeletal muscles. An-
alytically, these energies consist of a (possibly non-convex) functional of hy-

perelastic type and a second functional of the same type such as those used in

variational theories of brittle fracture, paired by an interaction term governing
the strength of the interaction depending on a small parameter. The overall

behaviour is described by letting this parameter tend to zero and exhibiting a

limit effective energy using the terminology of Gamma-convergence. Such en-
ergy depends on a single state variable and is of hyperelastic type. The form of

its energy function highlights an optimization between microfracture and mi-

croscopic oscillations of the strain, mixing homogenization and high-contrast
effects.

1. Introduction

The subject of this paper is the analysis of a model of interacting media governed
by coupled energies in the context of the theory of homogenization for hyperelastic
energies. In the simplest “classical” setting homogenization theory studies the
effective behaviour of energies for a single medium, that can be written as an
integral

Fε(u) =

∫
Ω

f
(x
ε
,∇v

)
dx.

defined on a reference configuration Ω in Rn (n = 2 or 3 in the physical cases)
and depending on a function v taking values in some Rm. The assumed periodicity
of the function f in the first variable describes the microstructure of the medium.
The parameter ε is the scale of the microstructure and is assumed to be small with
respect to the size of the sample. The overall behaviour of these energies can be
then approximately described by letting ε tend to 0 and computing the Γ-limit
of the energies, which is a homogeneous integral functional whose energy function
takes the form

fhom(z) = lim
T→+∞

1

Tn
inf
{∫

(−T2 ,
T
2 )n

f(y,Dv)dy : v(x) = zx on ∂
(
−T

2
,
T

2

)n}
where the inf is taken over all v in a Sobolev space depending on the growth con-
ditions of f . This formula provides the description of the overall behaviour of the
energies Fε for small ε. First, it highlights that for a given macroscopic “strain” z
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the microscopic behaviour depends only on z and is obtained by optimization of os-
cillations at scale of order ε. Second, that the relevant (microscopic) period of these
oscillations is at the same scale ε but may be much larger that the minimal period
of the microsctructure. This is a characteristic behaviour of non-convex energies:
oscillations with the same period as that of the microstructure are optimal only for
convex energies. Third, the existence of the limit shows that oscillations stabilize,
so that the behaviour is not greatly influenced by ε as long as ε is small (in math-
ematical terms, the asymptotic behaviour of Fε does not depend on subsequences
of ε). We note that the problem of the computation of the overall behaviour of the
energy makes sense also when there is no microstructure; i.e., when the function f
does not depend on the first variable. In that case we refer to the problem as that
of relaxation of a single functional, and the effective energy is still determined by
oscillations, which nevertheless are not constrained to a precise period. We refer to
the monograph [1] for an introduction to homogenization and relaxation.

We will examine coupled hyperelastic media both in a homogenization and a
relaxation context. The energies that we consider depend on two functions u and v
defined on the common reference configuration Ω. While interpreting such energies
in the continuum may seem confined to special modelling issues, from an atomistic
standpoint they are quite natural. Indeed, we may think of a lattice model mixing
strong and weak molecular interactions. Sublattices of molecules linked by strong
bonds can be separately approximated by continuum elastic energies (see e.g. [2]).
The weak interactions are instead approximated by an integral term coupling the
energies, which depends on the characteristic intermolecular distance ε. Such cou-
pled systems are typical of high-constrast systems described by “double-porosity”
energies (see e.g. [3]; for a different geometric setting see [4]). In our model we may
consider more general microscopic energies than just elastic ones, letting the energy
depending on the variable u allow for fracture. More precisely, we interpret u as
the deformation of a (possibly, brittle) hyperelastic material governed by Griffith
fracture energies, such as those used in recent analyses of crack propagation [5], of
the form ∫

Ω

f(∇u)dx+ kHn−1(S(u)),

where S(u) is the fracture site of u and Hn−1 denotes the n− 1-dimensional Haus-
dorff surface measure. The parameter k describes the fracture toughness of the
material. The relevant case is when k is small, since in that case it models the
possibility of “diffuse” micro-cracks, which may be homogenized. In the context of
a passage from discrete to continuum theories for systems of Lennard-Jones inter-
actions, k is proportional to the characteristic intermolecular distance ε (see [6, 7]).
With this molecular interpretation in mind we can include more general Griffith-
type fracture energies than just the Hausdorff measure of the crack set, of the form

ε
∫
S(u)

ϕ
(
u+−u−

ε

)
dHn−1, with u± the traces of u on both sides of the crack. In the

same reference configuration Ω, we consider a second function v that we may in-
terpret as the deformation of a hyperelastic material, with energy function g. The
two materials are coupled by an integral penalizing u and v far apart, governed
by a second small parameter δ. The complete form of the energy we are going to
consider is then

(1) Fδ,ε(u, v) =

∫
Ω

(
f(∇u) + g(∇v) + h

(u− v
δ

))
dx+ ε

∫
S(u)

ϕ
(u+ − u−

ε

)
dHn−1,
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for some function h. In this expression the function v belongs to an appropriate
Sobolev space, while the correct space for the variable u is the space of special func-
tions with bounded variation SBV (Ω;Rm), commonly used in theories of fracture
mechanics [5, 8].

In a one-dimensional setting, energies of the form (1) have been used for the
description of different mechanical problems. For instance, Baldelli et al. ([9], see
also previous work by Marigo and Truskinovsky [10]) have investigated fracture
and debonding processes of a thin film on a stiff substrate with an elastic-brittle
interface. In such a model, an additional dissipative energetic term is considered,
representing the brittle fracture energy (delamination) of the interface. Instead, the
pseudo-ductile response of thin-ply hybrid laminates has been captured by Alessi
et al. [11, 12] by considering cohesive interface laws, possibly with a softening part,
and an elastic-brittle behavior for both layers, with their corresponding additional
energetic terms. We refer to those papers for more physical insight and graphical
representation of the energies we will consider (see e.g. Fig. 1 and 3 in [9]). In all
theses cases, the relevant scaling for the energies Fδ,ε is indeed δ = ε, and we will
then consider only that case; i.e. energies

(2) Fε(u, v) =

∫
Ω

(
f(∇u) + g(∇v) + h

(u− v
ε

))
dx+ ε

∫
S(u)

ϕ
(u+ − u−

ε

)
dHn−1

(see Section 3, (e)). More in general, we may consider inhomogeneous energies
with also an oscillating spatial dependence, but it is interesting to note that the
interaction of the two media requires a homogenization process also with no spatial
inhomogeneity. For such energies we will describe the asymptotic behaviour as
ε → 0. For an interpretation of δ as a characteristic intermolecular length scale,
as mentioned above, we refer to the discrete models in[13, 14], from which the
relevance of the scaling δ = ε can also be directly derived.

Note that as a particular case we may consider the one where both media are
elastic, in which case we consider, with a slight abuse of notation, energies as

(3) Fδ(u, v) =

∫
Ω

(
f(∇u) + g(∇v) + h

(u− v
δ

))
dx,

thus ruling out the possibility of fracture for the medium described by u. These
energies are defined on pairs of Sobolev spaces. If h blows up at infinity we expect
the interaction term to force u = v in the limit as δ tends to zero. However, for
homogeneous energies (3) the effect of h is restricted to the fact that the effective
energy may be described by some type of elastic energy governed by a single pa-
rameter v, and the resulting effective energy can be simply described by relaxation
arguments (see Section 3, (c)). This is due to the fact that oscillations necessary
for relaxation can be performed at an arbitrary scale.

For the general energies Fε in (2), it must be noted that superlinear growth
conditions on g immediately imply that sequences {vε} such that Fε(uε, vε) is equi-
bounded are weakly precompact in some Sobolev space (up to the addition of con-
stants), so that in that case we may assume that vε weakly converge to v in some
W 1,p. Moreover, growth conditions on h give that (uε − vε)/ε must be bounded in
some Lebesgue space, so that actually also uε converge to the same v (e.g., in L1).
Note that in general uε may not weakly converge in any Sobolev space, and that
the Hn−1-measure of the sets S(uε) may diverge; nevertheless, the limit of uε is a
Sobolev function. This remark justifies the description of the limit by using only
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the variable v, integrating out the effects of u also in the case of coupling with a
brittle medium.

Our first result is a general homogenization theorem that states that the Γ-limit
of the energies above is a local functional that can be written as a usual hyperelastic
energy

(4) Fhom(v) =

∫
Ω

fhom(∇v) dx.

The energy density is characterized by the asymptotic homogenization formula

fhom(z) = lim
T→+∞

1

Tn
inf
{∫

(−T2 ,
T
2 )n

(
f(∇u) + g(∇v) + h(u− v))

)
dx

+

∫
S(u)∩(−T2 ,

T
2 )n

ϕ(u+ − u−)dHn−1 : u = v = zx on ∂
(
−T

2
,
T

2

)n}
,(5)

where the inf is taken over all u in SBV p(Ω;Rm) and v ∈ W 1,p(Ω;Rm). This
formula highlights that minimizing behaviours are obtained by optimizing among
microgeometries with interacting oscillations and discontinuities. Note that this
formula mixes the asymptotic analysis typical of nonlinear periodic media with the
interaction between terms depending on the gradient and ‘lower-order terms’ typical
of double-porosity phenomena. Indeed, we may view the scaling of the surface part
as playing the same role as that of singularly perturbed gradient terms in theories
of high-contrast media.

An interesting remark is that formula (5) is optimal, in the sense that homog-
enization arguments must be used even though no periodicity is present in the
original functional. Optimal configurations with average gradient z tend to be pe-
riodic with a precise period even in absence of an underlying microgeometry, and
the period depends on z itself. An example with an explicit computation is de-
scribed in Remark 14, with the corresponding period T (z) = 1/S(z) depicted also
in Figure 2. Note that the optimal value for the infima above in general is achieved
only as T → +∞ since affine Dirichlet boundary conditions may be incompatible
with oscillations at an optimal scale. In the scalar case m = 1 (anti-plane case) and
isotropic energies we show that optimal patterns are locally one-dimensional; i.e.,
optimal sequences have discontinuities and oscillations that arrange in the direction
of the gradient, and we may restrict to considering the homogenization formula for
one-dimensional problems. Note that in this case the direction of optimal cracks or
oscillations is locally determined by the orientation of the limit ∇v.

The analysis of a prototypical one-dimensional energy allows to highlight more in
detail the effect of fractures and oscillations at the microscopic level. We concentrate
on the effect of fracture by choosing f, g and h even and convex, and ϕ constant
with value k > 0. Then fhom(z) is obtained by minimizing

(6) min
{ 1

S

∫ S

0

(
f(u′) + g(v′) + h(u− v)

)
dx+

k

S
: v(0) = 0, v(S) = Sz

}
for S > 0. The minimum in (6) is performed on u and v which are regular on (0, S),
and represents the average energy of periodic optimal arrangements with u having
consecutive discontinuities at distance S in the unscaled variables. The case S =∞
corresponds to no fracture, for which the minimal u and v are equal and affine and
the minimum is f(z) + g(z) + minh. In the case of quadratic f , g and h we can
compute fhom(z) explicitly and highlight that
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• fhom(z) is strictly convex;
• there exists z∗ such that fhom(z) = f(z) + g(z) if |z| ≤ z∗ (no fracture);
• for large values of z, fhom(z)− g(z) scales as z2/3 and the optimal spacing of

microfracture S(z) scales as z−2/3.
This example already shows interesting issues as the onset of microscopic fracture
at a specific positive threshold z∗ and the optimal arrangements of cracks following
a scaling which is reminiscent of that appearing in the study of periodic minimizing
sequences of singularly perturbed non-convex energies (see e.g. [15, 16]).

The plan of the paper is a follows. In Section 2 we prove the general homog-
enization Theorem 2, where we also include a possible highly oscillating periodic
dependence in the energy densities. This generalization allows to include cases
when the limit process is non trivial also when no possibility of fracture is taken
into account. In Section 4 we consider isotropic energies, for which we show that
optimal sequences have a one-dimensional structure. Section 5 contains the analy-
sis of one-dimensional functionals in the case of Griffith fracture, and the explicit
computation for quadratic energy densities hinted at above.

2. A general convergence result via homogenization

Before stating our convergence result, we briefly recall some notation. The letter
capital C will denote a positive constant depending on the fixed parameters of
the problem under consideration, which we will mention explicitly when relevant,
and whose value may vary at each its appearance. The cardinality of a set A is
denoted by #A. We use standard notation for Sobolev spaces W 1,p(Ω;Rm) of Rm-
valued maps defined on an open subset Ω of Rn. We will also use the space of
special functions of bounded variation SBV p(Ω;Rm) whose approximate gradient
is p-integrable. For such a function u we denote by S(u) the jump set of u, on which
a measure-theoretical normal νu is defined Hn−1-almost everywhere, where Hn−1

denotes the n− 1-dimensional Hausdorff surface measure, as well as the traces u±

on both sides of S(u). For a precise definition of all these quantities we refer to [8],
and for an interpretation within the Griffith theory of brittle fracture to [17, 5].

Let f, g : Rn×Rn×m → [0,+∞), h : Rn×Rm → [0,+∞) and ϕ : R×R×Sn−1 →
[0,+∞] be such that

(H1) 1
c (|z|p − 1) ≤ f(y, z), g(y, z), h(y, z) ≤ c(|z|p + 1);

(H2) ϕ(y, tw, ν) ≤ c ϕ(y, w, ν) for |t| ≤ 1;
(H3) f, g, h, ϕ are Carathéodory functions, 1-periodic with respect to their first

variable and continuous with respect to the other ones.

Given a bounded open set Ω ⊂ Rn with Lipschitz boundary, for u ∈ SBV p(Ω;Rm),
v ∈W 1,p(Ω;Rm), and ε > 0 we define:

Fε(u, v; Ω) =

∫
Ω

(
f
(x
ε
,∇u

)
+ g
(x
ε
,∇v

)
+ h
(x
ε
,
u− v
ε

))
dx

+ε

∫
S(u)∩Ω

ϕ
(x
ε
,
u+− u−

ε
, νu
)
dHn−1.(7)

Note that in (7) we have supposed that the scale of the possible inhomogeneities
is the same as that of the fracture toughness and the interaction distance ε. This
is coherent with the interpretation of ε as an intermolecular distance, and with
the derivation of the energies Fε from atomistic models. Note that considering



6 BRAIDES, CAUSIN AND SOLCI

homogenous energies (no dependence on x/ε) does not bring any simplification to
the proofs. Conversely, the treatment of inhomogeneities at other scales can be
performed by a multi-scale analysis (see (d), Section 3).

Remark 1 (Compactness). Let uε, vε be such that Fε(uε, vε; Ω) ≤ C < +∞.
Then in particular ∇vε is bounded in Lp(Ω;Rm×n) so vε weakly converges to some
v in W 1,p(Ω;Rm) (up to subsequences and addition of constants). The growth
conditions on h ensure that also uε converges to the same v in Lp(Ω;Rm). This
remark justifies the choice of the convergence uε, vε → v in Lp in the following
result.

Theorem 2 (Homogenization). The functionals Fε Γ-converge with respect to the
convergence uε, vε → v in Lp(Ω;Rm) to the functional F defined on W 1,p(Ω;Rm)
by

(8) Fhom(v) =

∫
Ω

fhom(∇v) dx,

where

(9) fhom(z) = lim
T→+∞

1

Tn
inf
{
F1(u, v;QT ) : u = v = zx in ∂QT

}
,

where QT = (−T2 ,
T
2 )n. In (9) F1 denotes Fε with ε = 1 and the inf is taken over

all (u, v) in the domain of F1 satisfying the boundary conditions in the sense of
inner traces.

Remark 3 (convergence of minimum problems). As an application of Theorem
2 we obtain, for example, that minima and minimizers of problems of the form
(fi ∈ Lp(Ω;Rm), φ ∈W 1,p(Ω;Rm))

min
{
Fε(u, v) +

∫
Ω

(〈f1, u〉+ 〈f2, v〉) dx : v = φ on ∂Ω
}

(or, equivalently, v = u = φ on ∂Ω) converge to the corresponding minumum and
minimizers of

min
{
Fhom(v) +

∫
Ω

〈f1 + f2, v〉 dx : v = φ on ∂Ω
}
.

This is immediately obtained by Remark 1, the continuity of the second integral,
and the compatibility of Γ-convergence with the addition of boundary conditions.
The latter follows from a cut-off argument close to the boundary for unconstrained
recovery sequences, and is performed explicitly in the first part of the proof of
Theorem 2 when Ω is a cube.

In the following, we will use the notation

fThom(z) =
1

Tn
inf
{
F1(u, v;QT ) : u = v = zx in ∂QT

}
.

Unless otherwise indicated, the infima and minima in the sequel are taken over all
(u, v) in the domain of the corresponding functionals.

Remark 4. The existence of the limit in (9) can be proved by an usual argument
of subadditivity (see [1, Prop. 14.4]). Following the same type of arguments, if
f, g, h and ϕ do not depend on the spatial variable y, we can prove that

(10) fhom(z) = inf
T>0

fThom(z).



HOMOGENIZATION OF INTERACTING ELASTIC AND BRITTLE MEDIA 7

Indeed, we fix δ > 0; for any T > 0 let uT , vT such that uT = vT = zx in ∂QT and

1

Tn
F1(uT , vT ;QT ) < fThom(z) + δ.

For S > T we consider the set of indices IS = {i ∈ Zn : QT + Ti ⊂ QS} and define
u and v in QS by setting u(x) = uT (x − Ti) + zT i, v(x) = vT (x − Ti) + zT i if
x ∈ QT + Ti, i ∈ IS , and u(x) = v(x) = zx in QS \

⋃
i∈IS (QT + Ti). Hence

1

Sn
F1(u, v;QS) ≤ 1

Sn

⌊S
T

⌋n
F1(uT , vT ;QT ) +

CTnSn−1

Sn
≤ fThom(z) + δ +

CTn

S
.

Taking the limit for S → +∞ we get fhom(z) ≤ fThom(z) + δ; this proves (10) since
δ > 0 is arbitrary.

Proof of Theorem 2. Lower bound. We prove the lower inequality by using the
blow-up technique introduced by Fonseca and Müller (see [18, 19]).

Let uε, vε be such that Fε(uε, vε; Ω) ≤ C and uε, vε → v in Lp, and let uj = uεj
and vj = vεj be subsequences such that

lim inf
ε→0

Fε(uε, vε; Ω) = lim
j→+∞

Fεj (uj , vj ; Ω).

We define the measures µj by setting µj(A) = Fεj (uj , vj ;A); since the family {µj}
is equibounded, we can assume that µj

∗
⇀ µ up to subsequences. The lower bound

follows if we show that

dµ

dLn
(x0) ≥ fhom(∇v(x0)) for almost all x0 ∈ Ω

where dµ
dLn denotes the Radon-Nikodym derivative of the measure µ with respect

to the Lebesgue measure (see for instance [8, Section 1.1]).
We first remark that, for almost every x0 ∈ Ω, we have that

1) x0 is a Lebesgue point for µ with respect to the Lebesgue measure, so that
dµ

dLn
(x0) = lim

%→0

µ(Q%(x0))

%n
, where Q%(x0) = (x0 − %

2 , x0 + %
2 )n;

2) x0 is such that
( 1

%n

∫
Q%(x0)

|v(x)− v(x0)−∇v(x0)(x− x0)|p dx
) 1
p

= o(%)%→0

since v ∈W 1,p(Ω;Rm) (see for instance [20, Th. 6.2]).
It is not restrictive to fix x0 = 0 and v(x0) = 0. For every % except for a

countable set we have µ(Q%) = limj→+∞ Fεj (uj , vj ;Q%), where Q% = Q%(0). Note

that in particular limj
1
%nFεj (uj , vj ;Q%) is equibounded with respect to %.

As a first step, following a classical method introduced by De Giorgi for matching
boundary values (see [21] and [22, Sec. 4.2.1]), we show that, by modifying vj and
uj near the boundary of Q%, it is not restrictive to assume that their boundary
value is exactly ∇v(0)x. Indeed, fixed δ ∈ (0, 1) and N ∈ N, for any i = 0, . . . N
we define Qi = Q%−δ%+i δ%N

. For i ≥ 1, let ψi be a non-negative Lipschitz function

such that ψi(x) = 0 in Q% \ Qi, ψi(x) = 1 in Qi−1 and |∇ψi| ≤ 2N
δ% . Setting

uij = ψiuj +(1−ψi)∇v(0)x and vij = ψivj +(1−ψi)∇v(0)x, the growth hypotheses
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on f give∫
Q%

f
( x
εj
,∇uij

)
dx =

∫
Qi−1

f
( x
εj
,∇uij

)
dx+

∫
Q%\Qi

f
( x
εj
,∇uij

)
dx

+

∫
Qi\Qi−1

f
( x
εj
,∇uij

)
dx

≤
∫
Q%

f
( x
εj
,∇uj

)
dx+ C(|∇v(0)|p + 1)δ%n

+
CNp

δp%p

∫
Qi\Qi−1

|uj −∇v(0)x|p dx

+C

∫
Qi\Qi−1

f
( x
εj
,∇uj

)
dx,

where C denotes a positive constant depending only on p, n and c. Hence

N∑
i=1

∫
Q%

f
( x
εj
,∇uij

)
dx ≤ CN(|∇v(0)|p + 1)δ%n + (N + C)

∫
Q%

f
( x
εj
,∇uj

)
dx

+
CNp

δp%p

∫
Q%

|uj − v|p dx+
CNp

δp%p

∫
Q%

|v −∇v(0)x|p dx

and correspondingly for
∑N
i=1

∫
Q%
g
(
x
εj
,∇vij

)
dx thanks to the growth hypotheses

on g. Moreover, the assumptions on h and ϕ give

N∑
i=1

∫
Q%

h
( x
εj
,
uij − vij
εj

)
dx =

N∑
i=1

∫
Q%

h
( x
εj
, ψi

uj − vj
εj

)
dx

≤ CNh(0)δ%n +N

∫
Q%

h
( x
εj
,
uj − vj
εj

)
dx+ C

∫
Q%

h
( x
εj
,
uj − vj
εj

)
dx,

N∑
i=1

∫
Q%∩S(uij)

ϕ
( x
εj
,

(uij)
+ − (uij)

−

εj
, νuij

)
dx

=

N∑
i=1

∫
Q%∩S(uij)

ϕ
(x
ε
, ψi

(uj)
+ − (uj)

−

εj
, νuj

)
dx

≤ N

∫
Q%∩S(uj)

ϕ
( x
εj
,
u+
j − u

−
j

εj
, νuj

)
dx+ C

∫
Q%∩S(uj)

ϕ
( x
εj
,
u+
j − u

−
j

εj
, νuj

)
dx.

Therefore,

1

N

N∑
i=1

Fεj (u
i
j , v

i
j ;Q%) ≤ Fεj (uj , vj ;Q%) +

C

N
Fεj (uj , vj ;Q%) + Cδ%n

+
CNp

δp%p

∫
Q%

(
|uj − u|p + |vj − u|p + 2|u−∇u(0)x|p

)
dx,

where now C stands for a positive constant depending also on ∇v(0) and h(0). We

choose i such that Fεj (u
i
j , v

i
j ;Q%) ≤ 1

N

∑N
i=1 Fεj (u

i
j , v

i
j ;Q%) and we set ûj = u

i
j and

ûj = v
i
j .
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Since 1
%nFεj (uj , vj ;Q%) is equibounded, the convergence of uj , vj → u in Lp and

the properties of the point x0 = 0 ensure that for any δ ∈ (0, 1) and N ∈ N

lim
%→0

1

%n
lim

j→+∞
Fεj (ûj , v̂j ;Q%) ≤ lim

%→0

1

%n
lim

j→+∞
Fεj (uj , vj ;Q%) +

C̃

N
+ Cδ.

This inequality allows us to assume that uj = vj = ∇v(0)x on ∂Q%.
Now, setting uj(x) = 1

εj
uj(εjx) and vj(x) = 1

εj
vj(εjx), we get

1

%n
Fεj (uj , vj ;Q%) =

εn

%n

(∫
Q %
ε

f(y,∇uj) + g(y,∇vj) + h(y, uj − vj) dy

+

∫
Q %
ε
∩S(uj)

ϕ(y, v+
j − v

−
j ) dHn−1

)
≥ f%/εhom(∇v(0)).

The result then follows by taking the limit as ε→ 0.

Upper bound. We first prove that the function fhom is continuous. We fix z ∈ Rm×n.

For any T > 0 and δ ∈ (0, 1) let uT,δ, vT,δ be such that
1

Tn
F1(uT,δ, vT,δ;QT ) ≤

fThom(z) + δ, and uT,δ = vT,δ = zx in ∂QT . For any z′ we extend uT,δ and vT,δ to
Q(1+δ)T as ũT,δ(x) = ṽT,δ(x) = ψT,δ(x)z′x+(1−ψT,δ(x))zx in Q(1+δ)T \QT , where
ψT,δ is a non-negative Lipschitz function such that ψT,δ = 0 in QT , ψT,δ = 1 in
Rn\Q(1+δ)T and |∇ψT,δ| ≤ 2

Tδ . Hence, ũT,δ, ṽT,δ are test functions for the minimum
problem for F1 in Q(1+δ)T ; note that S(uT,δ)∩QT = S(ũT,δ)∩Q(1+δ)T . The growth
conditions on f and g give

f
(1+δ)T
hom (z′) ≤ 1

(1 + δ)nTn
F1(ũT,δ, ṽT,δ; [0, (1 + δ)T ]n)

≤ 1

Tn
F1(uT,δ, vT,δ; [0, T ]n)

+C
δ1−pTn

(1 + δ)nTn
|z − z′|p + C

δTn

(1 + δ)nTn

(
|z − z′|p + |z|p + h(0)

)
≤ fThom(z) + δ + C

δ1−p

(1 + δ)n
|z − z′|p + C

δ

(1 + δ)n
(|z|p + h(0)),

where the positive constant C depends only on n and on the growth of f e g. If
|z − z′| < δ we get

fhom(z′) = lim
T→+∞

f
(1+δ)T
hom (z′) ≤ lim

T→+∞
fThom(z) + Cδ(1 + |z|p + h(0))

≤ fhom(z) + Cδ(1 + |z|p + h(0))

By exchanging the roles of z and z′ the argument above gives the inequality

fhom(z) ≤ fhom(z′) + Cδ(1 + |z′|p + h(0)),

and hence the continuity of fhom.
Now, let v ∈ W 1,p(Ω;Rm) and wε be piecewise-affine continuous functions such

that wε → v as ε→ 0 in W 1,p(Ω;Rm). The continuity of fhom and the dominated
convergence give limε→0 Fhom(wε) = Fhom(v). Hence, it is sufficient to construct
a recovery sequence for piecewise-affine continuous v. We start by considering the
function v(x) = zx on a n-dimensional open simplex S. We fix δ > 0. Let Tε ∈ N
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such that Tε → +∞ and εTε → 0 as ε→ 0. Let ũε, ṽε be defined on QTε and such

that
1

Tnε
F1(ũε, ṽε;QTε) ≤ f

Tε
hom(z) + δ.

For i ∈ εTεZn we set Qiε = i+QεTε . Let Iε be the set of the indices i ∈ εTεZn

such that Q
i

ε ⊂ S and define the recovery sequences by setting

uε(x) =

{
εũε
(
x−i
ε

)
+ zi if x ∈ Qiε, i ∈ Iε

zx if x ∈ S \
⋃
i∈Iε Q

i
ε

and correspondingly vε. Note that uε, vε → v in Lp(S;Rm) and S(uε) ∩ S =
S(uε) ∩

⋃
i∈Iε Q

i
ε. Since |S \

⋃
i∈Iε Q

i
ε| → 0 as ε → 0, recalling that f, g, h and ϕ

are 1-periodic with respect to the first variable, and that Tε ∈ N, we get

lim sup
ε→0

Fε(uε, vε;S) ≤ lim sup
ε→0

(∣∣S \ ⋃
i∈Iε

Qiε
∣∣(f(z) + g(z)) + Fε(uε, vε;

⋃
i∈Iε

Qiε)
)

≤ lim sup
ε→0

#IεεnF1(ũε, ṽε;QTε)

≤ lim sup
ε→0

∣∣ ⋃
i∈Iε

Qiε
∣∣ 1

Tnε
F1(ũε, ṽε;QTε)

≤ |S| lim
ε→0

fTεhom(z) + δ|S| = |S|fhom(z) + δ|S|

= Fhom(v) + δ|S|.

Thanks to the arbitrariness of δ > 0, (uε, vε) is a recovery sequence for v = zx.
Since uε(x) = vε(x) = zx in a neighbourhood of ∂S and since the functionals are
defined up to translations, this inequality ensures that the upper estimate holds for a
piecewise-affine and continuous v by repeating the construction in each simplex. �

3. Discussion on the convergence result

(a) As a particular case, we can take ϕ(y, w, ν) = +∞ if w 6= 0 (and equal to 0 if
w = 0 for completeness. Note that the value w = 0 is never taken into account). In
this case, Fε is finite only if Hn−1(S(u)∩Ω) = 0 or, equivalently, u ∈W 1,p(Ω;Rm)
and

Fε(u, v; Ω) =

∫
Ω

(
f
(x
ε
,∇u

)
+ g
(x
ε
,∇v

)
+ h
(x
ε
,
u− v
ε

))
dx.

(b) Given an integer M ≥ 1 we may consider more in general energies defined for
ui ∈ SBV p(Ω;Rm), i ∈ {1, . . . ,M} and v ∈W 1,p(Ω;Rm) by

Fε(u, v; Ω) =

M∑
i=1

∫
Ω

(
fi
(x
ε
,∇u

)
+ hi

(x
ε
,
ui − v
ε

))
dx+

∫
Ω

g
(x
ε
,∇v

)
dx

+ε

M∑
i=1

∫
S(ui)∩Ω

ϕi
(x
ε
,
u+
i − u

−
i

ε
, νui

)
dHn−1,(11)

where u = (u1, . . . , uM ), and fi, hi and ϕi satisfy the same assumptions as f, h and
ϕ, respectively. Theorem 2 can then be proved without major changes in the proof.
Note that even more in general, we may also add a term of the form∫

Ω

∑
i 6=j

hij
(x
ε
,
ui − uj

ε

)
dx.
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We will not discuss the various hypotheses that one can impose to hi and hij so
that the compactness arguments in Remark 1 still hold.

(c) If we take into account homogeneous energies as in (a), i.e. of the form

Fε(u, v; Ω) =

∫
Ω

(
f(∇u) + g(∇v) + h

(u− v
ε

))
dx,

then the homogenized energy density is simply given by fhom(z) = Qf(z)+Qg(z)+
minh, where Q denotes the quasiconvexification operator (see e.g. [1]). Indeed,
the energy with density the right-hand side is clearly a lower bound (after taking
into account Remark 1). To check that this is also an upper bound, by the integral
representation in Theorem 2 it suffices to consider the case of a linear target function
v(x) = zx. This can be seen by taking sequences uε, vε converging to v such that∫

Ω

f(∇uε) dx→ |Ω| Qf(z) and

∫
Ω

g(∇vε) dx→ |Ω| Qg(z)

up to an arbitrarily small error, and with uε− vε = ζ0 + o(ε), where h(ζ0) = minh.
This can be done remarking that we may take recovery sequences converging to v
in L∞ by a truncation argument in the target space (see e.g. [23]).

(d) We may consider η = η(ε) and generalize the energies Fε in (7) to∫
Ω

(
f
(x
η
,∇u

)
+ g
(x
η
,∇v

)
+ h
(x
η
,
u− v
ε

))
dx+ ε

∫
S(u)∩Ω

ϕ
(x
η
,
u+− u−

ε
, νu
)
dHn−1.

If η is at the same scale as ε then we may reduce to the case ε/η constant and then
apply Theorem 2. Otherwise, we may apply a separation-of-scale argument using
Theorem 2 and classical homogenization results in the proper order. As a result, if
η << ε then the Γ-limit is that formally obtained first using homogenization results
keeping ε fixed, and then applying Theorem 2 to the functional with the resulting
homogeneous energy densities, while if ε << η the Γ-limit is obtained by first
applying Theorem 2 keeping x/η as a parameter, and then applying homogenization
results to the resulting integral. These processes are rather technical and will not
be dealt with here. We refer to [24] for a similar argument mixing homogenization
and the theory of phase transitions.

(e) As remarked in the Introduction, more in general we may consider energies of
the form (1) also depending on a parameter δ. We do not treat this general case
since it would involve additional multi-scale arguments which are not central in
our analysis (we refer to e.g. [25, 26] for similar multi-scale problems in different
contexts). However, in the homogeneous case this analysis simplifies and we note
the following.

1) if δ << ε then the interaction term forces u − v = O(δ) << ε. This makes
the introduction of jump points energetically non-favorable, so that the analysis of
Fδ,ε simply reduces to that of

(12)

∫
Ω

(
f(∇u) + g(∇v) + minh

)
dx,

with u = v + δζ0 + o(δ), where h(ζ0) = minh. This energy can be analyzed by
relaxation methods as in (c) above;

2) if ε << δ then the condition u − v = O(δ) >> ε allows the minimization of
the interaction term without influencing the rest of the energy, and the analysis of
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Fδ,ε simply reduces to that of the decoupled energies

(13)

∫
Ω

f(∇u) dx+ ε

∫
S(u)

ϕ
(u+ − u−

ε

)
dHn−1 +

∫
Ω

(
g(∇v) + minh

)
dx.

In this case, the part of the energy depending on u trivializes since we may approx-
imate all u with piecewise-affine discontinuous functions jumping on a scale much
larger than ε, and we reduce the analysis to that of

(14)

∫
Ω

(
g(∇v) + minh+ min f

)
dx.

4. One-dimensional behaviour of homogeneous isotropic energies

In this section we consider a particular case of the Γ-convergence result of The-
orem 2, with additional hypotheses of isotropy on f, g, h, ϕ ensuring that the limit
is essentially locally one-dimensional. In particular, within this class fall energies
that can be reduced to the examples contained in the next section.

Let f, g, h : [0,+∞)→ [0,+∞) and ϕ : [0,+∞)→ [0,+∞) be such that

(H1′) 1
c (|z|p − 1) ≤ f(z), g(z), h(z) ≤ c(|z|p + 1);

(H2′) ϕ(tw) ≤ c ϕ(w) for 0 ≤ t ≤ 1;
(H3′) f, g are monotone not decreasing,

and consider the functionals
(15)

Gε(u, v; Ω) =

∫
Ω

(
f(|∇u|)+g(|∇v|)+h

( |u− v|
ε

))
dx+ε

∫
S(u)∩Ω

ϕ
( |u+ − u−|

ε

)
dHn−1

defined for u ∈ SBV p(Ω) and v ∈ W 1,p(Ω). The hypotheses (H1′) and (H2′) on

f, g, h, ϕ ensure that the functions f̃(y, z) = f(|z|), g̃(y, z) = g(|z|), h̃(y, z) = h(|z|)
and ϕ̃(y, z, ν) = ϕ(|z|) satisfy the hypotheses of Theorem 2, hence the Γ-limit of
Gε with respect to the convergence u, v → v in Lp(Ω) is given by

Ghom(v) =

∫
Ω

ghom(∇v) dx,

where

ghom(z) = lim
T→+∞

1

Tn
inf{G1(u, v;QT ) : u = v = zx in ∂QT }.

In the one-dimensional case; i.e., when n = 1, in order to highlight the depen-
dence on the dimension, we denote ghom as
(16)

g1,hom(z) = lim
T→+∞

1

T
inf
{∫ T

0

(f(|u′|) + g(|v′|) + h(|u− v|)) dx+
∑

S(u)∩Ω

ϕ(|u+ − u−|)

: u(0) = v(0) = 0, u(T ) = v(T ) = Tz
}
.

Note that g1,hom(z) = g1,hom(|z|). The following result holds.

Theorem 5. If f, g, h, ϕ satisfy (H1′)-(H3′), then

Ghom(v) =

∫
Ω

g1,hom(|∇v|) dx.
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Remark 6. The fact that the energy function of Ghom depends only on the norm of
the gradient and is expressed through g1,hom highlights that optimal sequences for
a given strain are given by “one-dimensional oscillations” (oriented in the direction
of the gradient).

Proof. Lower bound. We prove the lower bound by using a slicing argument (see [8,
Sec. 4.1], [22, Sec. 3.4]). For each ξ ∈ Sn−1 we consider the orthogonal hyperplane
passing through 0; that is, Πξ = {x ∈ Rn : x · ξ = 0}. Given a bounded subset A of
Ω, for each y ∈ Πξ we define the one-dimensional set Aξ,y = {t ∈ R : y + tξ ∈ A},
and for w defined on Ω we denote by wξ,y the one-dimensional function wξ,y(t) =
w(y+tξ), defined on Ωξ,y. Note that if v ∈W 1,p(A) and u ∈ SBV p(A), then for any
ξ the function vξ,y belongs to W 1,p(Aξ,y), the function uξ,y belongs to SBV p(Aξ,y)
for almost all y ∈ Πξ, and that S(uξ,y) = {t ∈ R : y + tξ ∈ S(u)} (see for instance
[8, Th. 4.1]).

Let I be a bounded open subset of R; for u ∈ SBV p(I) and v ∈ W 1,p(I) we
define

Gξ,yε (u, v; I) =

∫
I

(
f(|u′|) + g(|v′|) + h

( |u− v|
ε

))
dt+ ε

∑
t∈S(u)∩I

ϕ
( |u+ − u−|

ε

)
.

By Theorem 2 applied in dimension one, the Γ-limit of Gξ,yε is given by

Gξ,y(v; I) =

∫
I

g1,hom(v′) dt =

∫
I

g1,hom(|v′|) dt.

Now, setting for v ∈W 1,p(A) and u ∈ SBV p(A)

Gξε(u, v;A) =

∫
Πξ

Gξ,yε (uξ,y, vξ,y;Aξ,y) dHn−1(y)

by an application of Fubini’s Theorem we get

Gξε(u, v;A) =

∫
A

(
f(|∇u · ξ|) + g(|∇v · ξ|) + h

( |u− v|
ε

))
dx

+ε

∫
S(u)∩A

ϕ
( |u+ − u−|

ε

)
|νu · ξ| dHn−1

≤
∫
A

(
f(|∇u|) + g(|∇v|) + h

( |u− v|
ε

))
dx

+ε

∫
S(u)∩A

ϕ
( |u+ − u−|

ε

)
dHn−1

= Gε(u, v;A).

thanks to the monotonicity of f and g. Now, let uε, vε → v as ε → 0 in Lp(Ω).
Note that, again by Fubini’s Theorem, uξ,yε , vξ,yε → vξ,y in Lp(Ωξ,y) for almost all
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y ∈ Πξ. Applying Fatou’s Lemma we get

lim inf
ε→0

Gε(uε, vε;A) ≥ lim inf
ε→0

Gξε(uε, vε;A)

= lim inf
ε→0

∫
Πξ

Gξ,yε (uξ,yε , vξ,yε ;Aξ,y) dHn−1(y)

≥
∫

Πξ

lim inf
ε→0

Gξ,yε (uξ,yε , vξ,yε ;Aξ,y) dHn−1(y)

≥
∫

Πξ

∫
Aξ,y

g1,hom(|v′ξ,y|) dt dHn−1(y)

=

∫
A

g1,hom(|∇v · ξ|) dx.

The functionals Gε are local, hence the set function µ(A) = Γ- lim infε→0Gε(v;A) is
super-additive on open sets with disjoint compact closure. Let {ξi} be a countable
dense subset of Sn−1. Since µ(A) ≥

∫
A
ψi dλ for all i, where λ = Ln and ψi(x) =

g1,hom(|∇v(x)·ξi|), it follows that µ(A) ≥
∫
A

supi g1,hom(|∇v·ξi|) dx (see [22, Lemma
3.1]). The continuity of g1,hom gives

Γ- lim inf
ε→0

Gε(v;A) ≥
∫
A

g1,hom(|∇v|) dx.

Upper bound. Since Theorem 2 holds, it is sufficient to construct a recovery sequence
for an affine function w = αξ · x in a n-dimensional open simplex S, with α ∈ R
and ξ ∈ Sn−1.

We fix δ > 0. Let T > 0, u ∈ SBV p(0, T ), and v ∈ W 1,p(0, T ) be such that
u(0) = v(0) = 0, u(T ) = v(T ) = |α|T , and

1

T
G1(u, v; (0, T )) < g1,hom(|α|) + δ.

Given a bounded interval [a, b] we set Mε = b b−aεT c and consider the intervals a +
εT [m,m+1) for any m = 0, . . . ,Mε−1. We introduce the one-dimensional function
ũε : [a, b]→ R given by

ũε(t) = εu
( t− εTm− a

ε

)
+ (a+ εTm)|α| for t ∈ a+ εT [m,m+ 1)

and ũε(t) affine in [a+εTMε, b] with ũε(a+εTMε) = εTMε+a|α| and ũε(b) = b|α|.
We define ṽε correspondingly. We get

(17) Gε(ũε, ṽε; (a, b)) ≤ ε
Mε−1∑
m=0

G1(u, v; (0, T )) +Cε ≤ (b− a)g1,hom(|α|) + δ+Cε,

where C depends only on α, a, b and h(0). For a given y ∈ Πξ, if {tξ + y : t ∈
R} ∩ S 6= ∅ then there exist a(y), b(y) with a(y) < b(y) and such that {tξ + y : t ∈
R} ∩ S = {tξ + y : a(y) < t < b(y)}. Hence, setting

(18) uε(x) = ũε((x− y) · ξ) and vε(x) = ṽε((x− y) · ξ)
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it follows that uε, vε → w in Lp(S) and, thanks to (17)

Gε(uε, vε;S) =

∫
Sξ

∫ b(y)

a(y)

f(|ξũ′ε(t)|) + g(|ξũ′ε(t)|) + h
( |ũε − ṽε|

ε

)
dt dHn−1(y)

+

∫
Sξ
ε

∑
t∈S(ũε)∩(a(y),b(y))

ϕ
( |ũ+

ε − ũ−ε |
ε

)
dHn−1(y)

=

∫
Sξ
Gε(ũε, ṽε; (a(y), b(y))) dHn−1(y)

≤
∫
Sξ

(
(b(y)− a(y))g1,hom(|α|) + δ + Cε

)
dHn−1(y)

=

∫
S

g1,hom(|∇w|) dx+ |S|δ + |S|Cε,

where Sξ denotes the set of y ∈ Πξ such that {tξ + y : t ∈ R} ∩ S 6= ∅. Thanks to
the arbitrariness of δ > 0, it follows that the sequence (uε, vε) defined in (18) is a
recovery sequence for the Γ-limit. �

Example 7 (Bi-stable energy density). As a particular case of a non-convex energy
without a jump part, we may consider f(z) = (|z| − 1)2, g(z) = h(z) = z2 and
ϕ = +∞. By Section 3(c) and Theorem 5 we have

g1,hom(z) =

{
z2 if |z| ≤ 1

2z2 − 2|z|+ 1 if |z| > 1.

Note the difference with the corresponding result in [13], where similar energies
are considered in the discrete setting where fast oscillations are not allowed, and
optimal sequences such as those in (c), Section 3 cannot be constructed.

5. A prototypical one-dimensional example

We analyze fracture-type non convex energies, for which the effective behaviour
is determined by an optimal periodic arrangement of discontinuities.

We consider a particular case of the sequence of functional defined in (15) in the
one-dimensional frame, with f, g, h not depending on the space variable, h even and
strictly convex, f and g strictly convex and ϕ constant; that is,

(19) Gε(u, v; I) =

∫
I

(
f(u′) + g(v′) + h

(u− v
ε

))
dx+ kε#S(u).

Applying Theorem 2 we get that the Γ-limit of Gε with respect to the convergence
uε, vε → v in Lp(I) is given by

Ghom(v) =

∫
I

g1,hom(v′) dx,

where g1,hom is defined in (16). In the sequel, we denote by G̃ε(u, v; I) the functional

(20) G̃ε(u, v; I) =

∫
I

(
f(u′) + g(v′) + h

(u− v
ε

))
dx

again defined for v ∈W 1,p(I) and u ∈ SBV p(I). The following proposition holds.
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Proposition 8. If f, g, h are even and strictly convex and ϕ is the positive constant
k, then

(21) g1,hom(z) = inf
S>0

{
ψ(S, z) +

k

S

}
,

where

(22) ψ(S, z) =
1

S
min

{
G̃1(u, v; (0, S)) : u, v ∈W 1,p(0, S), v(0) = 0, v(S) = Sz

}
.

Remark 9. A special case is when the minimum points of f and g coincide. Then,
denoting by z∗ the common minimum point, we have ψ(S, z∗) = f(z∗)+g(z∗)+h(0),
independent of S, so that g1,hom(z) = f(z∗) + g(z∗) + h(0), and the infimum (21)
is achieved for S → +∞.

Before giving the proof of Proposition 8 we state some preliminary properties.

Remark 10 (Symmetry properties of minimizers of ψ(S, z)). Note that the mini-
mum in (22) is achieved by the application of the direct method of the calculus of
variations. The strict convexity of f, g and h gives the uniqueness of the minimum
point. We observe that, by the strict convexity of f, g and h, if (u, v) realizes the
minimum in (22) then

(23) u
(S

2

)
= v
(S

2

)
=
Sz

2
.

Indeed, otherwise assume by contradiction that (u, v) solve the problem (22) and
do not satisfy (23). We then set

ũ(t) =
1

2

(
u(t)− u(S − t) + Sz

)
, ṽ(t) =

1

2

(
v(t)− v(S − t) + Sz

)
so that (ũ, ṽ) is admissible for (22) and satisfies (23). Note that ũ(S) − ũ(0) =
u(S)− u(0). Then, the convexity of f, g and h and the symmetry of h ensure that

G̃1(ũ, ṽ; (0, S)) =

∫ S

0

(
f(ũ′) + g(ṽ′) + h(ũ− ṽ)

)
dt

=

∫ S

0

f
(1

2
(u′(t) + u′(S − t))

)
dt+

∫ S

0

g
(1

2
(v′(t) + v′(S − t))

)
dt

+

∫ S

0

h
(1

2
(u(t)− v(t)) +

1

2
(v(S − t)− u(S − t))

)
dt

≤
∫ S

0

(
f(u′) + g(v′) + h(u− v)

)
dt.

The uniqueness of the minimum point implies that ũ = u and ṽ = v, giving the
contradiction.

Moreover, consider z not equal to the (possible) common minimum point of f
and g, and (u, v) solving (22). Then u(t) = v(t) = zt if and only if t = S

2 . Indeed, if

there exists σ < S
2 such that u(σ) = v(σ) = σz, then by the minimality we deduce

u = v = zt in [σ, S2 ]. Denoting by [a, b] the larger interval containing [σ, S2 ] such
that u = v = zt in [a, b], if a > 0 we construct a new pair (ũ, ṽ) by setting

ũ(t) =

 zt if 0 ≤ t ≤ b− a
u(t− (b− a)) + z(b− a) if b− a ≤ t ≤ b
u(t) if b ≤ t ≤ S
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and in the same way ṽ. Since G̃1(ũ, ṽ; (0, S)) = G̃1(u, v; (0, S)), by uniqueness we
deduce that ũ = u and ṽ = v. Hence, u(t) = v(t) = zt in [0, b] which gives a
contradiction since a > 0 and [a, b] is maximal. If a = 0 and b < S, a completely
similar construction allows to prove that u(t) = v(t) = zt in the whole interval
(0, S), which gives a contradiction since the affine and equal functions do not solve
the minimum problem (22), where the boundary values are imposed only on v, and
z does not coincide with the (possible) common minimum point of f and g.

We now prove a property of the minimum problem for G̃1(u, v; (0, T )) with fixed
boundary values for v and a fixed number of jump points for u.

Lemma 11. For any T > 0, M ∈ N and z ∈ R different from the (possible)
common minimum point of f and g the following equality holds:

(24)
min{G̃1(u, v; (0, T )) : v(0) = 0, v(T ) = Tz,#S(u) = M}

= min{G̃1(u, v; (0, T )) : (u, v) ∈ EM (T, z)},

where EM (T, z) is the set of pairs (u, v) ∈ SBV p(0, T )×W 1,p(0, T ) satisfying

(25) S(u) =
{ iT

M + 1
: 1 ≤ i ≤M

}
, v
( iT

M + 1

)
=

iTz

M + 1
for 0 ≤ i ≤M + 1.

Proof. We consider the case M ≥ 1 (noting that for M = 0 the thesis is obvi-
ous). We start by proving the existence of the first minimum in (24). Indeed,
by semicontinuity and since the constraint is closed, there exists the minimum of

G̃1(u, v; (0, T )) in

{(u, v) : v(0) = 0, v(T ) = Tz, #S(u) ≤M},

where v ∈W 1,p(0, T ) and u ∈ SBV p(0, T ) as above (see e.g. [8]). Let (u, v) realize
the minimum.

We prove the thesis by showing that #S(u) = M . Set K = #S(u) and suppose
by contradiction thatK < M . Since z does not coincide with the (possible) common
minimum point z∗ of f and g, there exists at least one interval (a, b) ⊂ (0, T ) such
that a, b ∈ S(u) ∪ {0, T}, u ∈ W 1,p(a, b) and v(b) − v(a) = z(b − a) 6= z∗(b − a).
Recalling Remark 10, u(t) = v(t) = v(a) + z(t − a) holds in (a, b) if and only if
t = a+b

2 . Denoting by ũ, ṽ the unique solution of the minimum problem defining

ψ( b−a2 , z), we set

u(t) =


u(t) t ∈ (0, T ) \ (a, b)
u(a) + ũ(t− a) t ∈ (a, a+b

2 )
u(a+b

2 ) + ũ(t− a+b
2 ) t ∈ (a+b

2 , b)

and correspondingly we define v. Since z does not coincide with z∗, then (u, v) 6=
(u, v) in (a, b) and #S(u) = K + 1. The pair (u, v) is admissible as test function
since #S(u) = K + 1 ≤ M , hence by the uniqueness of the solution of ψ( b−a2 , z)
we get

G̃1(u, v; (0, T )) < G̃1(u, v; (0, T ))

which gives a contradiction.

Now we show equality (24) for M = 1. Let (u, v) be such that S(u) = {τ},
v(0) = 0 and v(T ) = Tz. Setting T1 = τ , T2 = T − τ , T1z1 = v(τ) and T2z2 =
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Figure 1. Construction of ũ, ṽ.

Tz−T1z1, for i = 1, 2 we choose (ui, vi) solving the minimum problem for ψ(Ti, zi)
and define

ũ(t) =


u1(t) if t < T1

2

u2

(
t+ T2−T1

2

)
+ T1z1−T2z2

2 if T1

2 ≤ t <
T
2

u2

(
t− T

2

)
+ Tz

2 if T
2 ≤ t <

T
2 + T2

2

u1(t− T2) + T2z2 if T
2 + T2

2 ≤ t ≤ T
In the same way we define ṽ (see Fig. 1).

Since (23) holds in (0, Ti), we deduce that S(ũ) = {T2 } and ṽ
(
T
2

)
= Tz

2 . By

construction, G̃1(ũ, ṽ; (0, T )) = G̃1(u, v; (0, T )) concluding the proof of (25) for
M = 1.

Note that if τ 6= T
2 then (ũ, ṽ) does not solve the minimum problem for ψ(T2 ,

z
2 ).

Indeed, if it were not so, then, recalling Remark 10, both ũ and ṽ would coincide
with the affine function zt in T

4 and T1

2 . As noticed in Remark 10, the strict

convexity of f, g, h would give a contradiction. The same holds if τ = T
2 and

v(τ) 6= Tz
2 , since the previous construction gives a function ṽ such that ṽ(T4 ) 6= Tz

4 ;

hence also in this case (ũ, ṽ) does not solve the minimum problem for ψ(T2 ,
z
2 ).

Then, if (u, v) does not belong to E1(T, z), we can always find u ∈ SBV p(0, T )
with S(u) = {T2 } and v ∈ W 1,p(0, T ) with v(0) = 0, v(T2 ) = Tz

2 and v(T ) = Tz

such that G̃1(u, v; (0, T )) < G̃1(ũ, ṽ; (0, T )).
If M > 1, let (u, v) be such that v(0) = 0 and v(T ) = Tz and S(u) = {τi}Mi=1

with 0 = τ0 < τi < τi+1 < τM+1 = T for any i = 1, . . . ,M − 1. We set Ti =
τi+1 − τi. If (u, v) does not satisfy (25) there exists j such that Tj 6= Tj−1 or

Tj = Tj−1 and v( τi−1+τi+1

2 ) 6= v(τi+1)+v(τi−1)
2 . Since the functionals are invariant by

translations, we can suppose j = 1. The same argument of the case M = 1 allows
to find u ∈ SBV p(0, τ2) with S(u) = { τ22 } and v ∈ W 1,p(0, τ2) with v(0) = 0,

v( τ22 ) = v(τ2)
2 and v(τ2) = v(τ2) such that G̃1(u, v; (0, τ2)) < G̃1(u, v; (0, τ2)). By

defining ũ = u in (0, τ2) and ũ(t) = u(t) in (τ2, T ), and correspondingly ṽ, we

deduce G̃1(ũ, ṽ; (0, T )) < G̃1(u, v; (0, T )), concluding the proof. �

Proof of Proposition 8. For any fixed N ∈ N we consider the minimum problem

(26)
1

T
inf{G̃1(u, v; (0, T )) : u(0) = v(0) = 0, u(T ) = v(T ) = Tz, #S(u) = N}.
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Note that for N = 0 the minimum in (26) is attained in u(t) = v(t) = zt since
f, g, h are even and convex, and

1

T
inf{G̃1(u, v; (0, T )) : u(0) = v(0) = 0, u(T ) = v(T ) = Tz, #S(u) = 0}

= f(z) + g(z) + h(0).

If N ≥ 1, we have
(27)

1

T
inf{G̃1(u, v; (0, T )) : u(0) = v(0) = 0, u(T ) = v(T ) = Tz, #S(u) = N}

≥ 1

T
inf{G̃1(u, v; (0, T )) : v(0) = 0, v(T ) = Tz, #S(u) = N − 1}.

Indeed, let u, v be admissible functions for the minimum problem (26), and let
τ ∈ (0, T ) be such that τ ∈ S(u) and u ∈ H1(0, τ). We consider a periodic
extension of the problem and define ũ, ṽ in [0, T ] by setting

ũ(x) =

{
u(x+ τ)− v(τ) if 0 ≤ x < T − τ
u(x+ τ − T )− v(τ) + Tz if T − τ ≤ x ≤ T

and ṽ correspondingly. Hence ṽ(0) = 0, ṽ(T ) = Tz and #S(ũ) = N − 1, and we

get G̃1(u, v; (0, T )) = G1(ũ, ṽ; (0, T )), which proves (27).
Recalling that Lemma 11 ensures that for any N ≥ 1

1

T
inf{G̃1(u, v; (0, T )) : v(0) = 0, v(T ) = Tz, #S(u) = N − 1} ≥ ψ

( T
N
, z
)
,

it follows that

g1,hom(z) = inf
T>0

1

T
{G̃1(u, v(0, T )) + k#S(u) : u(0) = v(0) = 0, u(T ) = v(T ) = Tz}

≥ min
{
f(z) + g(z) + h(0), inf

T>0
inf
N≥1

{
ψ(
T

N
, z) + k

N

T

}}
≥ min

{
f(z) + g(z) + h(0), inf

S>0

{
ψ(S, z) +

k

S

}}
≥ inf

S>0

{
ψ(S, z) +

k

S

}
since f(z) + g(z) + h(0) ≥ infS>0{ψ(S, z) + k

S }.
Now we have to show the opposite inequality. We fix δ > 0; let Sδ be such that

ψ(Sδ, z) +
k

Sδ
< inf
S>0

{
ψ(S, z) +

k

S

}
+ δ

and u, v ∈W 1,p(0, Sδ) solving the minimum problem (22). We set

ũ(x) =

{
u(x+ Sδ

2 )− v(Sδ2 ) if 0 ≤ x < Sδ
2

u(x− Sδ
2 )− v(Sδ2 ) + Sδz if Sδ

2 ≤ x ≤ Sδ
and correspondingly ṽ. Since (23) holds, then ũ(0) = ṽ(0) = 0, ũ(Sδ) = ṽ(Sδ) =
Sδz, and #S(ũ) ≤ 1. We get

ψ(Sδ, z) +
k

Sδ
=

1

Sδ
G̃1(ũ, ṽ; (0, Sδ)) +

k

Sδ

≥ 1

Sδ
inf{G1(u, v; (0, Sδ)) : u(0) = v(0) = 0, u(Sδ) = v(Sδ) = Sδz}

≥ ghom(z).
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Figure 2. The energy ehom(z)− a
2z

2 and the density of fracture 1
S(z) .

Hence inf
S>0

{
ψ(S, z) +

k

S

}
+ δ ≥ g1,hom(z). Since δ > 0 is arbitrary, this proves

(21). �

Example 12. We now compute the homogenized energy density for an explicit
example, which has also been analyzed in [9]. This example will allow us to highlight
the behaviour of ghom close to 0 and at infinity. A similar discrete energy has been
studied in [13]; for a possible future comparison with that paper, we use the same
notation therein: we take f(z) = 1

2z
2, g(z) = a

2z
2, h(z) = b

2z
2, and k = η

2 . With
this choice

(28) Eε(u, v; I) =

∫
I

(1

2
(u′)2 +

a

2
(v′)2 +

b

2

(u− v
ε

)2)
dt+

η

2
ε#S(u),

where I is a bounded interval, v ∈ H1(I) and u ∈ SBV (I). We can apply Proposi-
tion 8, obtaining that the Γ-limit of Eε with respect to the convergence uε, vε → v
in L2(I) is given by

Ehom(w) =

∫
I

ehom(v′) dt

with ehom given by Proposition 8.

Proposition 13 (Explicit representation of ehom). The following equality holds

(29) ehom(z) = inf
S>0

{1

2

(a+ 1)ωS2
ωS
2 + 1

a tanh(ωS2 )
z2 +

η

2S

}
,

where ω2 = (a+1)b
a . Moreover, the function ehom(z) is strictly convex, and

(1) ehom(z) =
a+ 1

2
z2 in [0, zc], where zc =

√
ηωa

2(a+1) ;

(2) for z → +∞ ehom(z) ∼ a

2
z2 + Cz2/3, where C > 0 depends only on a, b, η.

Remark 14. In the proof of the proposition above, we show that for z ≤ zc the
inf in (29) is given by the limit for S → +∞, and the minimum is attained in a
unique S(z) > 0 otherwise. Hence, we can introduce the function

S(z) =


+∞ if z ≤ zc

arg min
{1

2

(a+ 1)ωS2
ωS
2 + 1

a tanh(ωS2 )
z2 +

η

2S
: S > 0

}
if z > zc

representing the optimal distance between fracture points at a given strain. In
Fig. 2 we picture the graph of the “effective” energy ehom(z) − a

2z
2 (given by the

difference between the homogenized density energy and the energy of the elastic
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substrate) and the density of fracture 1
S(z) (see the corresponding pictures in [9,

Fig. 5]).

Proof of Proposition 13. By solving the Euler-Lagrange equations for

Ẽ1(u, v; (0, S)) =
1

2

∫ S

0

((u′)2 + a(v′)2 + b(u− v)2) dt

and by minimizing on the boundary values of u we get the explicit expression for
ψ in (22) as

ψ(S, z) =
1

2

(a+ 1)ωS2
ωS
2 + 1

a tanh(ωS2 )
z2,

where ω2 = (a+1)b
a , proving (29). In order to complete the proof of the proposition,

we simplify the expression of ehom(z) by writing

ehom(z) =
ηω

4
inf
x>0

{2(a+ 1)

ηω
z2 ax

ax+ tanh(x)
+

1

x

}
=
ηω

4
inf
x>0

H
(
x, z

√
2(a+ 1)

ηω

)
,

where H(x, y) = ax
ax+tanh(x)y

2 + 1
x . Since for y ≤

√
a

x2

y2

∂H

∂x
(x, y) =

a tanh(x)− ax(1− tanh2(x))

(ax+ tanh(x))2
x2 − 1

y2
< 0,

the infimum coincides with the limit for x→ +∞, and we get that

(30) ehom(z) =
a+ 1

2
z2 for z ≤ zc =

√
ηωa

2(a+ 1)
.

Now we consider the case z > zc, corresponding to y >
√
a. In this case infx>0H(x, y) =

H(x(y), y), where x = x(y) is implicitly defined by

(31)
a tanhx− ax(1− tanh2 x)

(ax+ tanhx)2
y2 =

1

x2
.

We deduce that x(y) is strictly decreasing, and tends to 0 as y → +∞. Moreover,

again by (31) we get that x(y) ∼ 3

√
3(a+1)2

2a y−
2
3 for y → +∞. Hence,

inf
x>0

H(x, y) = H(x(y), y) ∼ a

a+ 1
y2 + 3

√
2a

3(a+ 1)2
y2/3 for y → +∞

and consequently ehom(z) ∼ a

2
z2 + 3

√
4a

3(a+ 1)ηω
z2/3 for z → +∞.

As for the strict convexity of ehom(z), we prove that (infx>0H(x, y))′ is strictly
increasing. By (31) we get(

inf
x>0

H(x, y)
)′

=
d

dy
H(x(y), y) = 2y

ax(y)

ax(y) + tanhx(y)

which is strictly positive, and it is strictly increasing if and only if
(
(infx>0H(x, y))′

)2
is strictly increasing. Again by (31) we deduce(

2y
x(y)

ax(y) + tanhx(y)

)2

=
4

a tanhx(y)− ax(y)(1− tanh2 x(y))
,
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and
( 4

a tanhx(y)− ax(y)(1− tanh2 x(y))

)′
> 0 since x′(y) < 0, thus concluding

the proof. �

6. Conclusions

We have examined the overall behaviour of two interacting hyperelastic media,
one of which possibly subject to brittle fracture. The corresponding energies de-
pend on two placement fields and on a small parameter ε governing the microscopic
interaction between the two media. The effective description is obtained by com-
puting a limit energy as ε → 0. This energy is a hyperelastic energy depending
on a single placement field, and is described by an asymptotic homogenization for-
mula highlighting the optimization of strain micro-oscillations and microfracture
combined, as ε→ 0. We have provided some alternate formulas in one dimension,
and examined in detail a prototypical example, showing that for a given macro-
stress z micro-patterns tend to be periodic of a period depending on z itself. This
then shows that the homogenization process is triggered by a competition between
bulk energies, fracture energies and the interaction terms, and not by an under-
lying material heterogeneity. It is interesting to note that the behaviour of these
homogenized energies is in many aspects different from that of discrete models of
a seemingly very similar form, where the discreteness translates in constraints on
the fracture sites.

Acknowledgements. This paper directly stems from discussions with Lev
Truskinovsky on some discrete models introduced in two recent companion papers
[13, 14], to which the models in this paper are freely inspired.
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