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Abstract

In this paper we characterize sparse solutions for variational problems of the form
minu∈X φ(u) + F (Au), where X is a locally convex space, A is a linear continuous oper-
ator that maps into a finite dimensional Hilbert space and φ is a seminorm. More precisely,
we prove that there exists a minimizer that is “sparse” in the sense that it is represented as
a linear combination of the extremal points of the unit ball associated with the regularizer φ
(possibly translated by an element in the null space of φ). We apply this result to relevant
regularizers such as the total variation seminorm and the Radon norm of a scalar linear dif-
ferential operator. In the first example, we provide a theoretical justification of the so-called
staircase effect and in the second one, we recover the result in [36] under weaker hypotheses.

1 Introduction

One of the fundamental tasks of inverse problems is to reconstruct data from a small number of
usually noisy observations. This is of capital importance in a huge variety of fields in science and
engineering, where typically one has access only to a fixed and small number of measurements
of the sought unknown. However, in general, this type of problem is underdetermined and
therefore, the recovery of the true data is practically impossible. One common way to obtain
a well-posed problem is to make a priori assumptions on the unknown and, more precisely, to
require that the latter is sparse in a certain sense. In this case, the initial data can often be
recovered by solving a minimization problem with a suitable regularizer of the form

(1) inf
u∈X

φ(u) subjected to Au = y ,

where φ is the regularizer, A : X → H, H finite-dimensional Hilbert space, models the finite
number of observations (that is small compared to the dimension of X) and y ∈ H is noise-free
data.
When the domain X is finite-dimensional and the regularizer is the `1 norm, the problem falls
into the established theory of compressed sensing [11, 19] that has seen a huge development in
recent years. In this case, sparsity is intended as a high number of zero coefficients with respect
to a certain basis of X.
In an infinite dimensional setting, when the domain X is usually a Banach space, there has been
a clear evidence that the action of the regularizers is promoting different notions of sparsity, but
there have not been a comprehensive theory explaining this effect.
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Nevertheless, the effect of sparsity plays a crucial role in the field of image processing and
computer vision: in many cases, the recovered image in a variational model can be interpreted
as sparse with respect to a notion of sparsity that is depending on the regularizer. For example,
for classical total variation (TV) denoising [32]

(2) inf
u∈BV (Ω)

TV (u) +
λ

2
‖u− g‖2L2(Ω) ,

it has been observed that minimizers are characterized by the so called staircase effect (see for
example [13, 15, 29]) which corresponds to the gradient of the considered image having small
support. Another classical example of sparsity-promoting regularizers is `1-penalization. In [17]
the authors study the `p regularizer with 1 ≤ p ≤ 2 in Hilbert spaces and they note that the
case p = 1 promotes sparsity with respect to a given basis of the Hilbert space which means
that only a finite number of coefficients in the respective basis representation is non-zero. In
[7], `1-regularization is used in the framework of the least error method to recover a sparse
solution with a fixed bound on the number of non-zero coefficients. Finally, it has been noted
that suitable `1-type regularizers enforce sparsity when data are represented in a wavelet basis
(see for example [3, 20]).
The intrinsic sparsity of infinite-dimensional variational models with finite-dimensional data has
been investigated by various authors in specific cases and in different contexts. One of the most
important instances can be found in [16]: here, the authors notice that the regularizer is linked
to the convex hull of the set of sparse vectors that we aim to recover. This was also noticed
in optimal control theory (see, for example, [12]) and used in practice for developing efficient
algorithms to solve optimization problems that are based on the sparsity of the minimizers
[9, 10, 31].

More recently, several authors have investigated deeply the connection between regularizers and
sparsity. In 2016, Unser, Fageot and Ward in [36] have studied the case where φ(u) = ‖Lu‖M,
L is a scalar linear differential operator and ‖ · ‖M denotes the Radon norm. They showed
the existence of a sparse solution, namely a linear combination of counterimages of Dirac deltas
which can be expressed using a fundamental solution of L. Also, the work of Flinth and Weiss [26]
is worth mentioning, where they give an alternative proof of the result in [36] with less restrictive
hypotheses. In both works, however, the case of a vector-valued differential operator was not
treated and therefore, problems involving the total variation regularizer were not covered. After
this manuscript was finalized, we discovered a recent preprint [5] where the authors study a
similar abstract problem and apply it, in particular, to the TV regularizer in order to justify the
staircase effect. We remark that [5] and the present paper were developed independently and
differ in terms of the proofs as well as the applications.

In this paper, we provide a theory that characterizes sparsity for minimizers of general linear
inverse problems with finite-dimensional data constraints. More precisely, we choose to work
with locally convex spaces in order to deal, in particular, with weak* topologies. The latter is
necessary in order to treat variational problems with TV regularization or Radon-norm regular-
ization. We consider the following problem:

(3) inf
u∈X

φ(u) + F (Au) ,

where X is a locally convex space, φ : X → [0,+∞] is a lower semi-continuous seminorm,
A : X → H is a linear continuous map with values in a finite-dimensional Hilbert space H
and F is a proper, convex, lower semi-continuous functional. (Notice that this generality allows
problems of the type (1) for noise-free data as well as soft constraints in case of noisy data.)
Additionally we ask that A(domφ) = H (see Assumption [H0] below) and that φ is coercive

2



when restricted to the quotient space of X with the null-space of φ that we denote by N (see
Assumption [H1] below). Under these hypotheses we prove that there exists a sparse minimizer
of (3), namely a minimizer that can be written as a linear combination of extremal points of the
unit ball associated to φ (in the quotient space X/N ). More precisely, we obtain the following
result:

Theorem (Theorem 3.3). Under the previous hypotheses there exists u ∈ X, a minimizer of
(3) such that:

(4) u = ψ +

p∑
i=1

γiui ,

where ψ ∈ N , p ≤ dim (H/A(N )), γi > 0 with
∑p

i=1 γi = φ(u) and

ui +N ∈ Ext ({u+N ∈ X/N : φ(u) ≤ 1}) .

Notice that our result completely characterizes the sparse solution u of (3) and relates the notion
of sparsity with structural properties of the regularizer φ. Moreover, our hypotheses are minimal
for having a well-posed variational problem (3).
The strategy to prove the previous theorem relies on the application of Krein–Milman’s theorem
and Carathéodory’s theorem in the quotient space of A(X) that allows to represent any element
in the image by A of the unit ball of the regularizer as a convex combination of the extremal
points (see Theorem 3.3). In order to prove minimality for the element having the desired
representation, we derive optimality conditions for Problem (3) (Proposition 2.12). For this
purpose, we need to prove a no gap property in the quotient space between primal and dual
problem. In locally convex vector spaces this is not straightforward and requires the notion of
Mackey topology [34].

In the second part of our paper we apply the main result to specific examples of popular regu-
larizers. First of all we recover the well-known result (see for example [35]) that by minimizing
the Radon norm of a measure under finite-dimensional data constraints, one recovers a min-
imizer that is made of delta peaks. Indeed, according to our theory which applies when the
space of Radon measuresM(Ω) is equipped with the weak* topology, Dirac deltas are extremal
points of the unit ball associated with the Radon norm of a measure and our result applies
straightforwardly (see Section 4.1).
Then, we consider the TV regularizer for BV functions in bounded domains. Also in this case,
our result applies when BV (Ω) is equipped with the weak* topology. This justifies the usage of
locally convex spaces in the general theory. In order to confirm the heuristic observation that
sparse minimizers show a peculiar staircase effect, we characterize the extremal points of the
unit ball associated to the TV norm (in the quotient space BV (Ω)/R). In particular, we extend
a result of [1] and [24] to the case where Ω is a bounded domain. In order to achieve that, we
need an alternative notion of simple sets of finite perimeter (see Definition 4.5). We prove the
following theorem:

Theorem (Theorem 4.8). If X = BV (Ω) and φ(u) = |Du|(Ω) there exists a minimizer u ∈
BV (Ω) of (3) such that

(5) u = c+

p∑
i=1

γi
P (Ei,Ω)

χEi ,

where c ∈ R, p ≤ dim (H/A(R)), γi > 0 with
∑

i γi = |Du|(Ω) and Ei ⊂ Ω are simple sets with
finite perimeter P (Ei,Ω) in Ω.
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Finally, we apply our main result to the setting considered in [36] and [26], i.e., where the
regularizer is given by φ(u) = ‖Lu‖M for a scalar linear differential operator L. We remove the
hypotheses concerning the structure of the null-space of L and we work in the space of finite-order
distributions equipped with the weak* topology. This allows us to have a general framework for
these inverse problems that does not require additional assumptions on the Banach structure of
the minimization domain (see [5] and [26] for comparison). It also justifies once more the usage
of locally convex spaces in the abstract theory. In this setting, as an application of our main
theorem, we are able to recover the same result as in [36] and [26].

Theorem (Theorem 4.14). Let X = Cs0(Ω)∗ (for s sufficiently large, depending only on L and
Ω) and φ(u) = ‖Lu‖M. Then, there exists u a minimizer of (3) such that

(6) u = ψ +

p∑
i=1

γiGxi ,

where ψ ∈ N = {ψ ∈ Cs0(Ω)∗ : Lψ = 0}, p ≤ dim (H/A(N )), x1, . . . , xp ∈ Ω, γ1, . . . , γp ∈
R \ {0} with

∑
i |γi| = ‖Lu‖M (we denote by Gx the fundamental solution of L obtained by the

Malgrange–Ehrenpreis theorem translated by x).

2 Setting and preliminary results

2.1 Basic assumptions on the functionals

Let (X, τ) be a real locally convex space, i.e., the topology is generated by a separating family
of seminorms, and (X∗, τ ′) its topological dual equipped with the weak* topology. Further, let
H be an N -dimensional real Hilbert space and A : X → H a linear continuous operator and we
denote by A∗ : H → X∗ its continuous adjoint, defined thanks to Riesz’s theorem as

〈A∗w, u〉 = 〈w,Au〉

for every u ∈ X and w ∈ H. Notice that we have denoted by 〈·, ·〉 both the scalar product in
the Hilbert space H the duality product between X and X∗.
As anticipated in the introduction we deal with a variational problem of the type

(7) inf
u∈X

φ(u) + F (Au) .

In the remaining part of this section we describe the assumptions on F and φ separately.

- Assumptions on F :

We consider
F : H → (−∞,+∞]

a proper convex function that is coercive, and lower semi-continuous with respect to the topology
of H, which is the standard topology on finite-dimensional spaces.

- Assumptions on φ:

We consider
φ : X → [0,+∞] ,

a seminorm and that is lower semi-continuous with respect to the topology of X. We make the
following additional assumption:

[H0] A(domφ) = H ,

4



where domφ denotes the domain of φ, i.e.

domφ = {u ∈ X : φ(u) < +∞} .

Defining the null-space of φ as N = {u ∈ X : φ(u) = 0}, which is a closed subspace of X, we
consider the following quotient space:

(8) XN := X
/
N ,

endowed with the quotient topology. It is well-known that XN is a locally convex space [33].
We call πN : X → XN the canonical projection onto the quotient space and for simplifying the
notation, given u ∈ X we denote by uN = u +N the image of u in the quotient space by πN .
Likewise, for U ⊂ X, we tacitly identify the Minkowski sum U +N ⊂ X with its image under
πN in XN .
Define then φN : XN → [0,+∞] as

(9) φN (uN ) := φ(u) .

Note that φN is well-defined as φ is constant on the set u+N for every u ∈ X. Moreover, it is
a seminorm in XN .
We assume that

[H1] φN is coercive, i.e. the sublevel sets

S−(φN , α) := {uN ∈ XN : φN (uN ) ≤ α}

are compact for every α > 0.

Remark 2.1. Note that φN is lower semi-continuous in XN : Indeed, as φ is lower semi-
continuous, the superlevel-sets S+(φ, α) = {u ∈ X : φ(u) > α} are open in X for each α. Now,
as φN (uN ) > α if and only if φ(u) > α, we have S+(φN , α) = πN (S+(φ, α)). Since πN is an
open map (X is a topological group with respect to addition), each S+(φN , α) is open in XN
meaning that φN is lower semi-continuous.
As a consequence, in order to obtain [H1], it suffices that each S−(φN , α) is contained in a
compact set.

From now on we assume that A, F and φ satisfy the properties described above.

2.2 Existence of minimizers

We state the following minimization problem:

Problem 2.2 (Minimization problem in X). Given φ, A and F with the assumptions given in
the previous section, define for u ∈ X the following functional:

(10) J(u) := φ(u) + F (Au) .

We aim at solving
min
u∈X

J(u) .

In order to prove the existence of minimizers for Problem 2.2 we state an auxiliary minimization
problem in the quotient space XN .
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Problem 2.3 (Minimization problem in XN ). Given F , φ and A with the assumptions given
in the previous section, we define

(11) J (uN ) = φN (uN ) + inf
ψ∈N

F (A(u+ ψ)) .

We want to solve
min

uN∈XN
J (uN ) .

Note that the functional J is well-defined in XN as both summands in (11) are constant on
u + N for every u ∈ X. We aim at proving existence of minimizers for Problem 2.3. For this
reason we firstly prove a lemma about the coercivity of functionals defined in quotient spaces.

Lemma 2.4. Let Y be a locally convex space and f : Y → (−∞,+∞] be coercive. GivenM⊂ Y
a closed subspace of Y , we define, f̃ : YM → (−∞,+∞] on the space YM = Y/M as

f̃(uM) = inf
v∈M

f(u+ v) .

Then, f̃ is coercive with respect to the quotient topology of YM.

Proof. By coercivity, the sublevel sets S−(f, α) are compact for each α. Since the projection
πM is continuous, each πM(S−(f, α)) is compact in YM. Now,

πM(S−(f, α)) = {uM ∈ YM : there exists v ∈M such that f(u+ v) ≤ α}.

Since, by definition, f̃(uM) ≤ α if and only if for each ε > 0 there exists v ∈ M such that
f(u+ v) ≤ α + ε, the identity S−(f̃ , α) =

⋂
ε>0 πM(S−(f, α + ε)) follows. The right-hand side

is compact as an intersection of compact sets, hence each S−(f̃ , α) is compact, showing the
coercivity of f̃ .

Proposition 2.5. There exists a minimizer for Problem 2.3.

Proof. As F is proper, using Hypothesis [H0] we infer that the infimum of Problem 2.3 is not
+∞. Likewise, since F is convex, lower semi-continuous and coercive, it is bounded from below
such that the infimum of Problem 2.3 is also not −∞. Let us show that the proper and convex
function u 7→ infψ∈N F (A(u + ψ)) is lower semi-continuous in X. For that purpose, observe
that A(N ) is a subspace of the finite-dimensional space H and hence closed. Denote by HN the
quotient space H/A(N ) on which we define FN : HN → (−∞,+∞] according to

FN (wN ) = inf
η∈A(N )

F (w + η)

where wN = w + A(N ). Note that this functional is well-defined on HN as given w1, w2 ∈ H
with w1 − w2 ∈ A(N ) there holds

inf
η∈A(N )

F (w1 + η) = inf
η∈A(N )

F (w2 + η) .

Moreover, FN is proper and convex. As F is assumed to be coercive, applying Lemma 2.4 yields
that FN is also coercive and lower semi-continuous in particular. Now,

inf
ψ∈N

F (A(u+ ψ)) = (FN ◦ πA(N ) ◦ A)(u)

where the right-hand side is a composition of continuous linear maps and a lower semi-continuous
functional and hence, lower semi-continuous. Obviously, replacing u by u+ ϕ, ϕ ∈ N does not
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change the value of this functional, so by the same argument as in Remark 2.1, we deduce that
uN 7→ infψ∈N F (A(u+ ψ)) and consequently J , is lower semi-continuous.
Notice now that

S−(J , α) := {uN ∈ XN : J (uN ) ≤ α} ⊂ S−(φN , α− inf F ) .

Therefore, as J is lower semi-continuous and φN is coercive due to Hypothesis [H1], we infer
that S−(J , α) is compact for every α ∈ R.
We want to prove that J admits a minimizer inXN . Notice that the collection {S−(J , α)}α>inf J

has the finite intersection property. As the set S−(J , α0) is compact for an arbitrary α0 > inf J
and each S−(J , α) is closed, we infer that⋂

inf J<α≤α0

S−(J , α) 6= ∅ .

Choosing uN ∈
⋂

inf J<α≤α0
S−(J , α) we notice that it is a minimizer of J as

J (uN ) ≤ inf
uN∈XN

J (uN ) .

We are now in position to prove the existence of minimizers for Problem 2.2.

Theorem 2.6. Given uN = u+N a minimizer for Problem 2.3, there exists ψ ∈ N such that
u+ ψ is a minimizer for Problem 2.2.

Proof. Notice that for every ψ ∈ N we have

(12) inf
u∈X

φ(u) + F (Au) = inf
u∈X

φ(u) + F (A(u+ ψ)) .

Hence taking the infimum with respect to ψ ∈ N on both sides we obtain that Problem 2.2 and
Problem 2.3 have the same infimum. Let uN be a minimizer for Problem 2.3. Then consider
the following minimization problem:

inf
η∈A(N )

F (Au+ η) .

As F is proper, convex, lower semi-continuous and coercive as well as A(N ) is finite-dimensional
and hence closed in H, the infimum is realized and finite. Denoting by η a minimizer, we choose
ψ ∈ N such that Aψ = η. Then, v := u+ ψ is a minimizer for Problem 2.2. Indeed,

φ(v) + F (Av) = φ(u) + inf
η∈A(N )

F (Au+ η)

= φ(u) + inf
ψ∈N

F (A(u+ ψ))

= J (uN ) .

Then, as the two minimization problems have equal infimum, we conclude.

Remark 2.7. The converse of Theorem 2.6 holds true. Namely, if u a minimizer for Problem
2.2, then uN = u+N is a minimizer of Problem 2.3. Indeed, for every vN = v+N and denoting
by ψ a minimizer of ψ 7→ F (A(v+ψ)) in N (that exists for similar arguments as in the previous
proof) we have

J (uN ) ≤ φ(u) + F (Au) ≤ φ(v + ψ) + F (A(v + ψ)) = φN (vN ) + inf
ψ∈N

F (A(v + ψ)) .
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2.3 Optimality conditions

In this section we want to obtain optimality conditions for Problem 2.3 deriving a dual formu-
lation and showing that under our hypotheses we have no gap between the primal and the dual
problem.

In order to perform this analysis we need to endow the space X∗N equipped with the weak*-
topology with the associated Mackey topology. For the reader’s convenience we remind the
definition of the Mackey topology and we refer to [34] for a comprehensive treatment. Given a
real locally convex space Y , define the following family of seminorms on Y ∗:

(13) ρA(u∗) = sup{|〈u, u∗〉| : u ∈ A}

for every A ⊂ Y absolutely convex and weakly compact. This family of seminorms generates a
locally convex topology on Y ∗ that is called Mackey topology and it is denoted by τ(Y ∗, Y ). It
is the strongest topology on Y ∗ such that Y is still the dual of Y ∗ (see Theorem 9 in Section
A.4 of [4]).
Further, we need the notion of Fenchel conjugate functionals which are defined as follows. Given
a real locally convex space Y and a proper function f : Y → (−∞,+∞] we denote by f∗ : Y ∗ →
(−∞,+∞] the conjugate of f defined as

f∗(x∗) = sup
x∈Y

[
〈x∗, x〉 − f(x)

]
.

In order to obtain the optimality conditions we will use the following well-known proposition
(see Proposition 5 in Section 3.4.3 of [4]).

Proposition 2.8. Let Y be a real locally convex space. Given a proper, lower semi-continuous,
convex function f : Y → (−∞,+∞], the following statements are equivalent:

i) f∗ is continuous in zero for the Mackey topology τ(Y ∗, Y ).

ii) for every α ∈ R, the sublevel-set

S−(f, α) := {x ∈ Y : f(x) ≤ α}

is compact with respect to the weak topology.

Remark 2.9. In the next proposition, we will apply this result for f = φN , a proper and lower
semi-continuous seminorm. In this case, the proof of Proposition 2.8 is straightforward. Indeed,
φ∗N = I{ρS(u∗)≤1} where I is the indicator function and S = {u : φN (u) ≤ 1}. Hence, if S is
weakly compact, then thanks to the definition of the Mackey topology, φ∗N is continuous in zero.
Conversely, if φ∗N is continuous in zero, then there exist absolutely convex, weakly compact sets
A1, . . . , An ⊂ XN and ε1, . . . , εn > 0 such that ρAi(u

∗) ≤ εi for i = 1, . . . , n implies ρS(u∗) ≤ 1.
This, however, means that S ⊂ ε−1

1 A1 + . . . + ε−1
n An. Indeed, if this were not the case, one

could separate a u ∈ S from the absolutely convex and weakly compact set ε−1
1 A1 + . . .+ ε−1

n An
by a u∗ ∈ X∗N such that 〈u∗, u〉 > 1 as well as 〈u∗,

∑n
i=1 ε

−1
i ui〉 ≤ 1 for ui ∈ Ai. In particular,

ρAi(u
∗) ≤ εi for each i = 1, . . . , n leading to the contradiction ρS(u∗) ≤ 1. Due to lower semi-

continuity of φN , S is a closed convex subset of a weakly compact set and hence weakly compact.
By positive homogeneity of φN , the sets S−(φN , α) are compact for all α ∈ R.

For the following, it is convenient to define the linear operator AN : XN → HN := H/A(N ) as

(14) ANuN = Au+A(N ) .
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Remark 2.10. Notice that AN is well-defined in XN as given u1, u2 ∈ X with u1 − u2 ∈ N
it also holds that Au1 −Au2 ∈ A(N ). Moreover, it is continuous in XN ; indeed, the following
diagram commutes:

X

πN
��

A // H

πA(N )

��
XN

AN // HN

and the projections on the quotients are continuous and open.

We denote by A∗N : HN → X∗N its adjoint that has finite-dimensional image and is hence
continuous for each topology that makes X∗N a topological vector space. Given w ∈ H, we
denote by wN := w +A(N ) an element of HN .
We can equivalently write

(15) J (uN ) = φN (uN ) + FN (AN (uN )) ,

where
FN (wN ) = inf

η∈A(N )
F (w + η) .

Remark 2.11. Notice again that FN is proper, convex and, applying Lemma 2.4 with f = F
and M = A(N ), it is also coercive in HN .

We now derive optimality conditions for Problem 2.3. For that purpose, recall that given a
functional f : Y → (−∞,+∞] on a real locally convex space Y , the element x∗ ∈ Y ∗ is called a
subgradient of f in x ∈ Y , if

f(x) + 〈x∗, y − x〉 ≤ f(y)

for each y ∈ Y . In this case, we denote x∗ ∈ ∂f(x).

Proposition 2.12 (Optimality conditions). It holds that uN ∈ XN is a minimizer for Problem
2.3 if and only if there exists wN ∈ HN such that

i) A∗NwN ∈ ∂φN (uN ),

ii) ANuN ∈ ∂F ∗N (−wN ).

Proof. We start with transforming Problem 2.3 into the problem (P∗) for which the dual prob-
lem in terms of Fenchel–Rockafellar duality (see Remark III.4.2 in [22]) will turn out to be
equivalent to the original problem:

(P∗) inf
wN∈HN

[
φ∗N (A∗NwN ) + F ∗N (−wN )

]
.

We now endow X∗N with the Mackey topology τ(X∗N , XN ). Notice that φ∗N is convex, proper and
weakly* lower semi-continuous and hence it is lower semi-continuous with respect to τ(X∗N , XN )
as well. As previously mentioned, the adjoint A∗N : HN → X∗N is linear and continuous with
respect to any vector space topology and in particular, the weak* topology of X∗N as well as
the Mackey topology τ(X∗N , XN ). Moreover, thanks to Remark 2.11, F ∗N is convex, proper and
lower semi-continuous in HN .
Notice that as φN satisfies Hypothesis [H1] (that implies in particular that the sublevel sets of
φN are weakly compact), using Proposition 2.8, we have that φ∗N is continuous in zero. Hence,
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applying Theorem III.4.1 in [22], the problem (P∗) has zero gap to its dual which coincides, as
the dual space of X∗N is XN and φ∗∗N = φN as well as F ∗∗N = FN , with Problem 2.3, i.e.,

inf
uN∈XN

J (uN ) = inf
uN∈XN

[
φN (uN ) + FN (ANuN )

]
= − inf

wN∈HN

[
φ∗N (A∗NwN ) + F ∗N (−wN )

]
.

In order to establish the optimality conditions, we want to prove now that the problem (P∗)
has a minimizer, since the existence of a minimizer for Problem 2.3 has already been established
in Theorem 2.5. Notice that at this point there is no more need to consider the Mackey topology
on X∗N and we can use the weak* topology on X∗N .
The functional φ∗N ◦ A∗N + F ∗N ◦ (− id) is convex, proper and lower semi-continuous. We aim at
showing that it is also coercive. It is enough to prove that φ∗N ◦ A∗N is the indicator function of
a compact convex set as F ∗N is proper, convex and lower semi-continuous.
Notice that

(φ∗N ◦ A∗N )(wN ) = sup
uN∈XN

〈uN ,A∗NwN 〉 − φN (uN )

= sup
uN∈XN

〈ANuN , wN 〉 − φN (uN )

= sup
vN∈HN ,ANuN=vN

〈vN , wN 〉 − φN (uN )

= sup
vN∈HN

[
〈vN , wN 〉 − inf

ANuN=vN
φN (uN )

]
=

[
vN 7→ inf

ANuN=vN
φN (uN )

]∗
(wN ) .(16)

We prove that the map G : HN → (−∞,+∞] defined as

G(vN ) = inf
ANuN=vN

φN (uN )

is convex, proper and coercive in HN . For this purpose, notice that, as a consequence of
Hypothesis [H0] and the definition of AN , we have

AN (domφN ) = AN (domφ+N ) = A(domφ) +A(N ) = H +A(N ) = HN .

Hence, domG = HN and AN is surjective. With A0 : XN / ker(AN )→ HN defined via A0(uN +
ker(AN )) = ANuN which is bijective and hence, continuously invertible, we can write G(vN ) =
φ0(A−1

0 vN ) where
φ0(uN + ker(AN )) = inf

ψN∈ker(AN )
φN (uN + ψN ) .

By Hypothesis [H1], φN is coercive, so Lemma 2.4 yields that φ0 is coercive. As φN is a semi-
norm, φ0 is proper and convex. It follows that G is proper, convex and lower semi-continuous.
As domG = HN , convexity implies that G is continuous everywhere in HN and in particular,
in zero. Consequently, G∗ = φ∗N ◦A∗N is coercive. It follows that G∗ is the indicator function of
a compact convex set as G is one-homogeneous. Hence, applying the direct method of calculus
of variations in HN we infer that Problem (P∗) has a minimizer that we denote by wN ∈ HN .
We now derive the optimality conditions for this problem. Applying Proposition III.4.1 in [22]
we infer that

φN (uN ) + FN (ANuN ) + φ∗N (A∗NwN ) + F ∗N (−wN ) = 0 = 〈uN ,A∗NwN 〉+ 〈ANuN ,−wN 〉 .

Therefore, we get with the help of the Fenchel inequality that

(17) φN (uN ) + φ∗N (A∗NwN )− 〈uN ,A∗NwN 〉 = 0 and
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(18) FN (ANuN ) + F ∗N (−wN ) + 〈ANuN , wN 〉 = 0 .

Finally, Equations (17) and (18) are equivalent to

(19) A∗NwN ∈ ∂φN (uN ) and ANuN ∈ ∂F ∗N (−wN )

as we wanted to prove.
Vice versa, if there exist wN and uN that satisfy the optimality conditions i) and ii), applying
again Proposition III.4.1 in [22] we deduce that uN is a minimizer of Problem 2.3 and wN is a
minimizer of (P∗).

Remark 2.13. Defining the set

K := {u∗N ∈ X∗N : 〈u∗N , uN 〉 ≤ φN (uN ) for every uN ∈ XN } ,

condition i) of Proposition 2.12 is equivalent to

i) A∗NwN ∈ K,

ii) 〈A∗NwN , uN 〉 = φN (uN ).

3 Abstract main result: existence of a sparse minimizer

Define
B := {u ∈ X : φ(u) ≤ 1}

and BN := B +N ⊂ XN .

Definition 3.1 (Extremal points). Given a convex set K of a locally convex space we define
the extremal points of K as the points k ∈ K such that if there exists t ∈ (0, 1), k1, k2 ∈ K such
that

k = tk1 + (1− t)k2 ,

then k = k1 = k2.
The set of extremal points of K will be denoted by Ext(K).

First we need a lemma about the behaviour of extremal points under a linear mapping.

Lemma 3.2. Let K be a convex set in a locally convex space X. Given Y a real topological
vector space and a linear map L : X → Y the following statements hold:

i) If L is continuous and K is compact, then Ext(LK) ⊂ LExt(K).

ii) If L is injective, then Ext(LK) = LExt(K) .

Proof. To prove i) let us consider k ∈ K such that Lk is an extremal point of LK. We want to
show that there exists k ∈ Ext(K) such that Lk = Lk which proves the first claim.
Consider the set (k+ kerL)∩K. As this is a non-empty compact convex set in a locally convex
space (kerL is closed by the continuity of L), by the Krein–Milman theorem, it admits an
extremal point denoted by k ∈ (k+ kerL)∩K. In order to conclude the proof we need to prove
that k ∈ Ext(K). Assume the convex combination

(20) k = tk1 + (1− t)k2
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for k1, k2 ∈ K and t ∈ (0, 1). Then applying the linear operator L we obtain that

Lk = tLk1 + (1− t)Lk2 .

As Lk ∈ Ext(LK) and Lk = Lk we infer that Lk = Lk1 = Lk2 and so k1, k2 ∈ (k + kerL) ∩K.
From (20) and the extremality of k it follows that k = k1 = k2.
Let us prove ii). To show that Ext(LK) ⊂ LExt(K) take Lk ∈ Ext(LK) and assume the
convex combination

k = tk1 + (1− t)k2

for k1, k2 ∈ K, t ∈ (0, 1). Applying L to both sides and using that Lk ∈ Ext(LK) we obtain
that Lk = Lk1 = Lk2. Then the injectivity of L implies that k = k1 = k2, thus k ∈ Ext(K).
To prove the opposite inclusion let us consider k ∈ Ext(K). Assume the convex combination

Lk = tLk1 + (1− t)Lk2

for k1, k2 ∈ K and t ∈ (0, 1). As L is injective and using that k ∈ Ext(K) we conclude that
k = k1 = k2 and hence Lk = Lk1 = Lk2.

We are now in the position to prove our main theorem.

Theorem 3.3. There exists u ∈ X, a minimizer of Problem 2.2 with the representation:

(21) u = ψ +

p∑
i=1

γiui ,

where ψ ∈ N , p ≤ dimHN , ui +N ∈ Ext(BN ) and γi > 0 with
∑p

i=1 γi = φ(u).

Proof. We apply Proposition 2.5 and Proposition 2.12 to find uN ∈ XN a minimizer of Problem
2.3 and wN ∈ HN such that properties i) and ii) in Proposition 2.12 hold. If φN (uN ) = 0, then
applying Theorem 2.6, we infer that there exists ψ ∈ N such that ψ is a minimizer of Problem
2.2. Therefore, Equation (21) holds with p = 0. Hence, we suppose without loss of generality
that uN /∈ N , i.e. φN (uN ) > 0.
Notice that ANBN = AB +A(N ) ⊂ HN and

(22) BN = {uN ∈ XN : φN (uN ) ≤ 1} .

Hence, using Hypothesis [H1] we infer that BN is compact and thanks to Remark 2.10 we
have that ANBN is compact in HN as well. As 1

φN (uN )AN (uN ) ∈ ANBN ⊂ HN , by the
Krein–Milman theorem and Carathéodory theorem, we have that

(23)
1

φN (uN )
AN (uN ) =

p∑
i=1

αiwi ,

where αi > 0 for i = 1, . . . , p,
∑p

i=1 αi = 1, wi ∈ Ext(ANBN ) and p ≤ dimHN + 1. We can
assume that p is minimal, in the sense that it is the minimal number such that a decomposition
like (23) holds.
Thanks to part i) in Lemma 3.2 we have that there exist vi ∈ Ext(BN ) such that

(24)
1

φN (uN )
AN (uN ) =

p∑
i=1

αiAN vi .
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We want to prove that p ≤ dimHN . We claim that for every i = 1, . . . , p we have that

(25) 〈AN vi, wN 〉 = 1 .

Indeed, thanks to Remark 2.13 we have

1 = 〈A∗NwN ,
uN

φN (uN )
〉 = 〈wN ,

AN (uN )

φN (uN )
〉

=

p∑
i=1

αi〈wN ,AN vi〉 .

Moreover for all uN ∈ BN we have 〈ANuN , wN 〉 = 〈uN ,A∗NwN 〉 ≤ φN (uN ) ≤ 1. Therefore, as
vi ∈ BN for every i = 1, . . . , p, the claim stated in Equation (25) follows. Hence, {AN vi}i is
contained in a dimHN − 1 dimensional Hilbert space (obviously, wN 6= 0 in this case). Then,
applying Carathéodory’s theorem again, we deduce that p ≤ dimHN as a consequence of the
minimality of p.
Define then

(26) vN = φN (uN )

p∑
i=1

αivi =

p∑
i=1

γivi ,

where γi = φN (uN )αi. From (23) and the linearity of AN we infer that

(27) AN vN = ANuN

and in particular AN vN ∈ ∂F ∗N (−wN ). In order to deduce that vN is a minimizer for Problem
2.3 using Proposition 2.12, it remains to prove that

φN (vN ) = 〈A∗NwN , vN 〉 .

Indeed, using φN (vi) ≤ 1 for each i = 1, . . . , p, Equation (27) and Remark 2.13, we obtain

φN (vN ) = φN (uN )φN

( p∑
i=1

αivi

)
≤ φN (uN )

p∑
i=1

αiφN (vi)

≤ 〈A∗NwN , uN 〉 = 〈wN ,ANuN 〉
= 〈wN ,AN vN 〉 = 〈A∗NwN , vN 〉 .

On the other hand as A∗NwN ∈ K (see Remark 2.13) we have also that

〈vN ,A∗NwN 〉 ≤ φN (vN ) .

Thus, as a consequence of Proposition 2.12, vN is a minimizer for Problem 2.3. To conclude,
notice that there exist u1, . . . , up ∈ X such that ui +N = vi and therefore from (26) we have

vN =

p∑
i=1

γi(ui +N ) =

p∑
i=1

γiui +N .

Then applying Theorem 2.6 we infer that there exists u ∈ X such that u+N = vN and u is a
minimizer of Problem 2.2. From the equality

u+N =

p∑
i=1

γiui +N

we obtain the existence of a ψ ∈ N such that (21) holds.
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Remark 3.4. Let us point out similarities and differences to the work [5], where a theorem
similar to Theorem 3.3 has been shown. First, instead of seminorms, [5] deals with general
convex regularizers. Moreover, in [5], the existence of minimizers for the considered variational
inverse problem is assumed a priori, with the goal of disentangling the main result (which is
purely geometric) from the topology chosen on X. In contrast, we make suitable assumptions
that ensure existence of minimizers for the inverse problem and that the set of extremal points
of the balls of the regularizer is non-empty. In such a way, we provide an operative result with
hypotheses that can be easily checked.

It is worth to notice that both our result and [5] do not provide a sparse representation for every
minimizer of the variational inverse problem. However, the points of view are complementary.
In [5], the authors characterize, with a help of a theorem by Dubins and Klee [21, 28], the
minimizers belonging to the finite-dimensional faces of the set of the solutions (we refer to [5]
for the definition of the face of a convex set). In particular, when the dimension of a face is zero,
i.e., the face is an extremal point, it is possible to obtain a sparse representation of the minimizer
in terms of the extremal points and extremal rays of a certain sublevel set of the regularizer (see
Section 2 in [5] for the definition of extremal ray). This is still true when the dimension of the
face is larger than zero and finite (see Theorem 1 in [5]). Existence of extremal points is then,
e.g., obtained by Klee’s extension of the Krein–Milman theorem [27] in case of regularizers whose
sublevel sets are closed, convex and locally compact in an appropriate locally convex space. On
the contrary, our theorem always provides the existence of a minimizer represented as a convex
combination of extremal points of the ball of the regularizer. Due to the different techniques
used, such a sparse minimizer does not necessarily belong to a finite-dimensional face of the set
of the solutions.

Finally, let us point out that in order to obtain sparse representations for solutions of the general
variational problem (3), the authors of [5] consider solutions of the optimization problem

(28) min
u∈X

φ(u) subjected to Au = y ,

i.e., are forced to pass from (3) to (28), then apply Klee–Dubins’ theorem, and afterwards use
sparse solutions of (28) to construct sparse solutions of (3). We remark that due to the use of
different techniques, such a procedure is not required in our paper.

4 Examples of sparsity for relevant regularizers

In this section we study the structure of the extremal points for relevant regularizers, in order
to applying the results of the previous section. The first example is about the Radon norm in
the space of measures.

4.1 The Radon norm for measures

Given Ω ⊂ Rd a non-empty, open, bounded set, we set X = M(Ω) the set of Radon measures
on Ω. We choose φ(u) = ‖u‖M defined as

‖u‖M = sup

{ˆ
Ω
ϕdu : ϕ ∈ Cc(Ω), ‖ϕ‖∞ ≤ 1

}
.

Moreover we consider F : H → (−∞,+∞] satisfying the hypothesis given in Section 2.1 and
a linear continuous and surjective operator A : M(Ω) → H, where H is a finite dimensional
Hilbert space.
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Under these choices we want to apply Theorem 3.3 to Problem 2.2. In this case

B = {u ∈M(Ω) : ‖u‖M ≤ 1}

and N = {0} such that XN = X and B = BN . It is standard to check that with these choices,
all the hypotheses of Theorem 3.3 are verified.
In order to get more information from Theorem 3.3 we need to characterize the extremal points
of B. This result is well-known, but we go through it for the reader’s convenience.

Proposition 4.1. Given B defined as above we have that

(29) Ext(B) = {σδx : x ∈ Ω, σ ∈ {−1, 1}} .

Proof. Let us prove that δx,−δx ∈ Ext(B) for every x ∈ Ω. Indeed, let us suppose that there
exists u1, u2 ∈ B such that

δx = tu1 + (1− t)u2

for t ∈ (0, 1). Separating the positive part and negative part of u1 and u2, we can suppose
without loss of generality that u1 ≥ 0 and u2 ≥ 0. Then suppu1 ⊂ {x} and hence u1 = δx.
Similarly one can prove that −δx ∈ Ext(B) for every x ∈ Ω.
On the other hand we prove that there are not other extremal points different from the Dirac
deltas. Suppose by contradiction that there exists an extremal point u not supported on a
singleton. Then ‖u‖M = 1 and there exists a measurable set A ⊂ Ω such that 0 < |u|(A) < 1.
We have

u = |u|(A)

[
1

|u|(A)
u A

]
+ |u|(Ω \A)

[
1

|u|(Ω \A)
u (Ω \A)

]
,

which implies that u is not an extremal point. Hence all the extremal points of B are of the
form aδx where a ∈ R and x ∈ Ω. As the extremal points of B have unit Radon norm we deduce
immediately that |a| = 1.

From Proposition 4.1 we obtain immediately the following theorem:

Theorem 4.2. Under the previous choices of X, φ, A and F , there exists a minimizer of
Problem 2.2 denoted by u ∈ X such that

u =

p∑
i=1

γiδxi ,

where p ≤ dimH, γ1, . . . , γp ∈ R \ {0}, x1, . . . , xp ∈ Ω and
∑p

i=1 |γi| = ‖u‖M.

4.2 The total variation for BV functions

Let Ω ⊂ Rd be a non-empty, bounded Lipschitz domain. We want to apply the result of the
previous section for X = BV (Ω) and φ(u) = |Du|(Ω), where

(30) |Du|(Ω) := sup

{ˆ
Ω
udivϕdx : ϕ ∈ C1

c (Ω), ‖ϕ‖∞ ≤ 1

}
.

This is a relevant setting for inverse problems in image processing as φ(u) = |Du|(Ω) is the
classical TV regularizer which has widely been studied and used in applications. We refer to [2]
for the basic definitions regarding BV functions and sets of finite perimeter that we will use.
We equip X with the weak* topology for BV functions by interpreting BV (Ω) as a dual space
(see, for instance [2, Remark 3.12]). As in the previous example we consider a linear, continuous
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and surjective map A : BV (Ω) → H and F : H → (−∞,+∞] that satisfies the assumptions
given in Section 2.1. Under these choices we want use Theorem 3.3 to characterize the sparse
solutions of Problem 2.2.
Notice that with the chosen topology on X, the functional φ(u) = |Du|(Ω) is a lower semi-
continuous seminorm and A satisfies assumption [H0]. Therefore in order to apply Theorem
3.3 we just need to verify Hypothesis [H1] that is the content of the next lemma. Notice that
in this specific case, we have N = R as Ω is connected.

Lemma 4.3. Defining φN (uN ) := |Du|(Ω), the sublevel sets

S−(φN , α) := {uN ∈ XN : φN (uN ) ≤ α}

are compact for every α > 0.

Proof. We first remark that the metrizability of the space XN on bounded sets is not straight-
forward to show. Therefore we work with nets instead of sequences (we refer to Sections 1.3,
1.4, 1.6 in [30] for the basic properties of nets).

Consider a net (uβN )β ⊂ XN such that |Duβ|(Ω) ≤ α. Using the Poincaré inequality for BV
functions (see Theorem 3.44 in [2]) we deduce that there exists cβ ∈ R such that

(31) ‖uβ + cβ‖BV = ‖uβ + cβ‖L1 + |Duβ|(Ω) ≤ C(Ω)|Duβ|(Ω) + |Duβ|(Ω) ≤ α(C(Ω) + 1)

for every β. Recall now that bounded sets of BV functions are compact with respect to weak*
convergence of nets (as mentioned earlier, the space of BV functions is isomorphic to the dual of
a separable Banach space according to Remark 3.12 in [2]; this implies compactness of weak*-
closed bounded sets by the Banach–Alaoglu theorem). So, thanks to (31), there exists a subnet
(not relabelled) (uβ + cβ)β in BV (Ω) and u ∈ BV (Ω) such that uβ + cβ → u in L1(Ω) and

Duβ
∗
⇀ Du in M(Ω,Rd) in the sense of nets (see Theorem 1.6.2 in [30]). By the continuity of

the projection on the quotient we obtain that

uβ +N → u+N in XN ,

see Proposition 1.4.3 in [30]. Then, by the lower semi-continuity of |Du|(Ω) we have that the
sublevel sets of |Du|(Ω) are weak*-closed. This implies that u ∈ S−(φN , α) (Proposition 1.3.6
in [30]).

In order to have an explicit representation for the sparse minimizer we aim to characterize the
extremal points of the set

(32) BN = {u ∈ BV (Ω) : |Du|(Ω) ≤ 1}+N ⊂ XN .

The result is known for Ω = Rd and it was proved in [24] for d = 2 and then extended to all
dimensions in [25] and in a slighly different setting in [1]. Our plan is to modify the approach
in [1] for the case of Ω bounded. The first definition is taken from [1] and it is a suitable
modification of the classical definition for currents given in [23]. Recall that a set of finite
perimeter is a measurable set A ⊂ Ω such that χA ∈ BV (Ω) for the characteristic function χA
of A. In this case, we call P (A,Ω) = |DχA|(Ω) the perimeter of A.

Definition 4.4 (Decomposable set). A set of finite perimeter E ⊂ Ω is decomposable if there
exists a partition of E in two sets A, B with |A| > 0 and |B| > 0 such that P (E,Ω) =
P (A,Ω) + P (B,Ω). A set of finite perimeter is indecomposable if it is not decomposable.

In [1], the notion of saturated set is introduced that is suitable in the case Ω = Rd. In our case
of bounded domains, we do not need this requirement, but we ask that both the set and its
complement are indecomposable.
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Definition 4.5 (Simple set). We say that a set of finite perimeter E is simple if both E and
Ω \ E are indecomposable.

In what follows we denote by E1 the measure theoretic interior of E defined as

E1 :=

{
x ∈ Rd : lim

r→0

|E ∩Br(x)|
|Br(x)|

= 1

}
and by E0 the measure theoretic exterior:

E0 :=

{
x ∈ Rd : lim

r→0

|E ∩Br(x)|
|Br(x)|

= 0

}
.

The essential boundary of E is then defined as ∂∗E = Rd \ (E0 ∪ E1).
We will also need the following result due to Dolzmann and Müller [18].

Lemma 4.6 (Constancy theorem). Given u ∈ BV (Ω) and E ⊂ Ω an indecomposable set such
that

|Du|(E1) = 0 ,

then there exists c ∈ R such that u(x) = c almost everywhere in E.

With the following theorem we are able to characterize the extremal points of BN in a rather
straightforward way without relying on indecomposability results for the reduced boundary as
in [25].

Theorem 4.7. We have that

Ext(BN ) =

{
χE

P (E,Ω)
+N : E simple

}
.

Proof. We start to prove that

Ext(BN ) ⊂
{

χE
P (E,Ω)

+N : E simple

}
.

Taking uN ∈ Ext(BN ) and choosing u ∈ BV (Ω) such that u +N = uN , we have clearly that
|Du|(Ω) = 1. We want to show that u assumes two values almost everywhere. In order to do
that we define

F (s) =

ˆ s

−∞
P ({u(x) ≤ t},Ω) dt .

We have F (−∞) = 0 and by the coarea formula for BV functions, F (+∞) = 1. Moreover, the
function t 7→ P ({u(x) ≤ t},Ω) is integrable on R, so there exists an s ∈ R such that F (s) = 1

2 .
Setting

u1 = 2 min(u, s), u2 = 2 max(u− s, 0)

we see that u = 1
2u1 + 1

2u2 as well as |Du1|(Ω) = |Du2|(Ω) = 1, the latter again by the coarea
formula and the choice of s. As uN is an extremal point of BN , it follows that uN = (u1)N =
(u2)N which means that there exist c1, c2 ∈ R such that u = u1 + c1 = u2 + c2. Now, for x ∈ Ω
such that u(x) ≥ s, this implies u(x) = 2s+ c1. Likewise, if u(x) ≤ s, then u(x) = c2. Hence, u
assumes at most two values almost everywhere. However, since |Du|(Ω) = 1, it assumes exactly
two values almost everywhere and 2s + c1 > c2. (Moreover, the set {u(x) = s} must be a null
set.)
Up to change of the representative u of uN , we can suppose that u(x) ∈ {0, a} almost everywhere,
where a > 0. Defining E = {x ∈ Ω : u(x) = a} and using the fact that |Du|(Ω) = 1 one concludes
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that u = χE

P (E,Ω) . Suppose now by contradiction that E is decomposable and let A and B be

the sets of finite perimeter given by Definition 4.4. Then, P (A,Ω) > 0 and P (B,Ω) > 0 and
defining

u1 =
χA

P (A,Ω)
and u2 =

χB
P (B,Ω)

,

we have

(33) u =
χE

P (E,Ω)
=
P (A,Ω)

P (E,Ω)
u1 +

P (B,Ω)

P (E,Ω)
u2 .

Hence by the properties of A and B given by Definition 4.4, Formula (33) is a non-trivial convex
combination of u.
Likewise, suppose by contradiction that Ω\E is decomposable and call A andB its decomposition
according to Definition 4.4. Define

u1 = − χA
P (A,Ω)

and u2 =
1− χB
P (B,Ω)

.

Notice that

(34) u =
χE

P (E,Ω)
=
P (A,Ω)

P (E,Ω)
u1 +

P (B,Ω)

P (E,Ω)
u2 .

So using that {A,B} is a decomposition of Ω \ E and the fact that P (E,Ω) = P (Ω \ E,Ω) we
conclude that (34) is a non-trivial convex combination of u.
Thus, E must be a simple set and the first inclusion is proven.

Let us prove now the opposite inclusion:

Ext(BN ) ⊃
{

χE
P (E ∩ Ω)

+N : E simple

}
.

Given E ⊂ Ω a simple set, let us suppose that there exists u1, u2 ∈ BV (Ω) such that |Du1|(Ω) ≤
1, |Du2|(Ω) ≤ 1 and

χE
P (E,Ω)

+N = λ(u1 +N ) + (1− λ)(u2 +N ) ,

where λ ∈ (0, 1). This means that there exists c ∈ R such that

χE
P (E,Ω)

+ c = λu1 + (1− λ)u2

and so
DχE

P (E,Ω)
= λDu1 + (1− λ)Du2 .

Notice that for every A ⊂ Ω measurable one has

(35)
|DχE |(A)

P (E,Ω)
= λ|Du1|(A) + (1− λ)|Du2|(A) .

Indeed, if there exists A ⊂ Ω such that λ|Du1|(A) + (1−λ)|Du2|(A) > |DχE |(A)
P (E,Ω) we would arrive

at the contradiction

1 =
|DχE |(Ω)

P (E,Ω)
=
|DχE |(A)

P (E,Ω)
+
|DχE |(Ac)
P (E,Ω)

< λ|Du1|(A) + (1− λ)|Du2|(A) +
|DχE |(Ac)
P (E,Ω)

≤ λ|Du1|(A) + (1− λ)|Du2|(A) + λ|Du1|(Ac) + (1− λ)|Du2|(Ac) ≤ 1 .
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As derivative of the characteristic function of a set of finite perimeter, DχE can only be supported
on the reduced boundary ∂∗E. Thus, |DχE |(E0) = |DχE |(E1) = 0 and (35) gives |Du1|(E0) =
|Du2|(E0) = |Du1|(E1) = |Du2|(E1) = 0. Applying Lemma 4.6 with the indecomposable sets
E and Ω \ E then yields that ui = diχE + ci for some ci, di ∈ R, i = 1, 2. By (35), we further
deduce |Du1|(Ω) = |Du2|(Ω) = 1 which implies that |d1| = |d2| = P (Ω, E)−1 > 0. Clearly,
d1 and d2 cannot both be negative. Also, d1 and d2 cannot have opposite sign as in this case,
comparing |DχE |(Ω)/P (E,Ω) and |λDu1 + (1− λ)Du2|(Ω) leads to the contradiction

1 = |λd1 + (1− λd2)|P (E,Ω) < (λ|d1|+ (1− λ)|d2|)P (E,Ω) = 1 .

Hence, d1 = d2 = P (E,Ω)−1 and

χE
P (E,Ω)

+ c =
χE

P (E,Ω)
+ c1 =

χE
P (E,Ω)

+ c2 .

In other words, χE

P (E,Ω) +N = u1 +N = u2 +N , so χE

P (E,Ω) +N is indeed an extremal point.

We have shown the following theorem.

Theorem 4.8. If X = BV (Ω) and φ(u) = |Du|(Ω) there exists a minimizer u ∈ BV (Ω) of
Problem (2.2) such that

(36) u = c+

p∑
i=1

γi
P (Ei,Ω)

χEi ,

where c ∈ R, p ≤ dim (H/A(R)), γi > 0 with
∑p

i=1 γi = |Du|(Ω) and each Ei ⊂ Ω is simple.

4.3 Radon norm of a scalar differential operator

In this section we consider the case where φ(u) = ‖Lu‖M, namely the Radon norm of a linear,
translation-invariant scalar differential operator L. This was already treated in [36] and in [26]
in different settings. Our goal is to show that our theory applies straightforwardly to this case.
We start some useful properties of scalar differential operators that we are going to use. In
what follows we denote by α = (α1, . . . , αd) ∈ Nd a multi-index and we employ the standard
multi-index notation and conventions.

4.3.1 Some technical lemmas

We consider a non-zero differential operator with linear coefficients of order q ∈ N of the form

(37) L =
∑
|α|≤q

cα∂
α ,

where each cα ∈ R and cα 6= 0 for some |α| = q. We also denote by L∗ the operator defined
formally by

(38) L∗ =
∑
|α|≤q

(−1)|α|cα∂
α .

The existence of a fundamental solution G for L is ensured by virtue of the classical Malgrange–
Ehrenpreis theorem (see for example Theorem 8.5 in [33]).
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Theorem 4.9 (Malgrange–Ehrenpreis). Given L a non-zero differential operator with linear
coefficients according to (37) there exists a distribution G ∈ D(Rd)∗ which is a fundamental
solution for L, namely

(39) LG = δ0 in D(Rd)∗ .

Let Ω ⊂ Rd be a non-empty open and bounded set. Let us define the operator T : M(Ω) →
D(Rd)∗ as Tµ = µ̃ ? G, where

µ̃(A) = µ(Ω ∩A)

for every Borel set A ⊂ Rd and ? denotes the convolution of a compactly supported distribution
and a distribution. Notice that T is indeed well-defined because µ̃ is compactly supported on
Rd and µ̃ ? G ∈ D(Rd)∗. Define then TΩ :M(Ω)→ D(Ω)∗ as TΩ(µ) = (Tµ)|Ω .

Remark 4.10. Notice that LTΩµ = µ for every µ ∈M(Ω). Indeed,

(40) LTΩµ = L(Tµ)|Ω = (LTµ)|Ω = (L(µ̃ ? G))|Ω = (µ̃ ? LG)|Ω = µ ,

where in the last equality we use (39).

Lemma 4.11. There exists C ∈ R and s ∈ N such that for every µ ∈M(Ω) one has

|(TΩµ)(ϕ)| ≤ C‖µ‖M sup{|∂αϕ(x)| : x ∈ Ω, |α| ≤ s}

for every test function ϕ ∈ D(Ω). In particular, for each µ ∈ M(Ω), TΩµ can be extended to
a unique element in Cs0(Ω)∗ such that TΩ : M(Ω) → Cs0(Ω)∗ becomes a linear and continuous
mapping.

Proof. Consider a test function ϕ ∈ D(Ω) and denote by ϕ̃ its zero extension to Rd. Then, the
order of G is finite on bounded sets which means that there exists s ∈ N such that

|(TΩµ)(ϕ)| = |Tµ(ϕ̃)| = |(µ̃ ? G)(ϕ)| =
∣∣∣∣G(x 7→ ˆ

Rd

ϕ̃(x+ y) dµ̃(y)

)∣∣∣∣
≤ C sup

{
|∂αψ(x)| : x ∈ Rd, |α| ≤ s

}
,

where we set

ψ(x) =

ˆ
Rd

ϕ̃(x+ y) dµ̃(y) ,

whose support is contained in a compact set that only depends on Ω. Notice now that for every
x ∈ Rd we have

|∂αψ(x)| =
∣∣∣∣ˆ

Rd

∂αϕ̃(x+ y) dµ̃(y)

∣∣∣∣ ≤ ‖µ‖M sup
x∈Ω
|∂αϕ(x)| .

So
|(TΩµ)(ϕ)| ≤ C‖µ‖M sup{|∂αϕ(x)| : x ∈ Ω, |α| ≤ s} ,

meaning that TΩµ can be extended, by density, to an element in Cs0(Ω)∗. The latter also
establishes the claimed continuity of TΩ :M(Ω)→ Cs0(Ω)∗.
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4.3.2 Existence of a sparse minimizer

Recall that we consider the differential operator L given in Equation (37). With s is given
by Lemma 4.11, we set X = Cs0(Ω)∗, the space of distributions of order s equipped with the
weak* topology. From now on we consider the weak differential operator L mapping between
X → Cs+q0 (Ω)∗. Notice that with this definition, L is a continuous operator when X and
Cs+q0 (Ω)∗ are equipped with the weak* topology. Indeed, the adjoint L∗ according to (38) maps
continuously between the spaces Cs+q0 (Ω) → Cs0(Ω) as a classical differential operator. Thus,

considering un
∗
⇀ u in X and ϕ ∈ Cs+q0 (Ω) we have L∗ϕ ∈ Cs0(Ω) and hence,

(41) lim
n→+∞

Lun(ϕ) = lim
n→+∞

un(L∗ϕ) = Lu(ϕ) ,

which establishes the weak*-continuity as due to separability of Cs0(Ω) and Cs+q0 (Ω), it suffices
to consider sequences.

We then define the following functional φ : X → [0,+∞]:

(42) φ(u) :=

{
‖Lu‖M if ‖Lu‖M < +∞
+∞ otherwise .

.

Remark 4.12. Notice that φ is a seminorm and it is lower semi-continuous in X (with respect
to the weak* topology). Indeed, once again, as Cs0(Ω) is separable we know that weak* lower
semi-continuity for L is equivalent to weak* sequential lower semi-continuity. Therefore, we
consider a sequence (un)n ⊂ X such that un

∗
⇀ u in X and we suppose without loss of generality

that
lim inf
n→+∞

‖Lun‖M < +∞ and lim
n→+∞

‖Lun‖M = C .

Then, by weak* sequential compactness of measures there exists v ∈ M(Ω) such that, up to

subsequences, Lun
∗
⇀ v in M(Ω) and in particular in Cs+q0 (Ω)∗. As L is weak*-weak* closed we

infer that v = Lu and from the lower semi-continuity of the Radon norm with respect to weak*
convergence in M(Ω) we conclude that ‖Lu‖M ≤ C.

In order to apply Theorem 3.3, it remains to verify Assumption [H1]. This is the content of
the next proposition. We remind that XN = X +N (equipped with the quotient of the weak*
topology of X) where N is the null-space of L and φN (uN ) = φN (u+N ) := φ(u) (for notational
convenience we denote by L the operator acting on XN in the natural way).

Proposition 4.13. The sublevel sets of φN , i.e.,

S−(φN , α) := {uN ∈ XN : φN (uN ) ≤ α} ,

are compact for every α > 0.

Proof. Similarly to the proof of Lemma 4.3 we employ nets since metrizability of the space XN
does not play a role in this context.
Given uN ∈ S−(φN , α) we have thanks to Remark 4.10 that

LTΩLuN = LuN .

Therefore, there exists ψ ∈ N such that u+ψ = TΩLuN , where u ∈ X is such that u+N = uN .
Moreover, with the help of Lemma 4.11, it follows that

|(u+ ψ)(ϕ)| = |(TΩLuN )(ϕ)| ≤ C‖LuN ‖M sup {|∂αϕ(x)| : x ∈ Ω, |α| ≤ s}
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for every ϕ ∈ Cs0(Ω). Hence,

(43) inf
ψ∈N
‖u+ ψ‖X ≤ C‖LuN ‖M .

Consider now a net (uβN )β ⊂ S−(φN , α). Since φN (uN ) = ‖LuN ‖M, we have

inf
ψ∈N
‖uβ + ψ‖X ≤ Cα .

for every β. Thus, there exists a net (ψβ)β in N and C̃ > 0 such that

‖uβ + ψβ‖X ≤ C̃ .

Applying the Banach–Alaoglu theorem we extract a subnet (not relabelled) of (uβ + ψβ)β that
is converging to u ∈ X in the weak* topology of X (Theorem 1.6.2 in [30]). As the projection
on the quotient is a continuous operation we deduce also that

uβ + ψβ +N → u+N = uN in XN ,

(Proposition 1.4.3 in [30]). It remains to show that uN ∈ S−(φN , α). Thanks to Remarks 4.12
and 2.1, the functional φN : XN → [0,∞] is lower semi-continuous with respect to the quotient
topology in XN and therefore, its sublevel sets are closed. This implies that uN ∈ S−(φN , α)
(Proposition 1.3.6 in [30]).

We are now in position to apply Theorem 3.3. Consider A : X → H a linear continuous operator
such that [H0] holds and F : H → (−∞,+∞] satisfying the assumptions in Section 2.1.
We set the following variational problem:

(44) inf
u∈Cs

0(Ω)∗
‖Lu‖M + F (Au) .

Thanks to Proposition 4.13, Theorem 3.3 is applicable. We can furthermore characterize the
extremal points of the ball associated to φN according to the following theorem. Note that
a similar result was also obtained by [36] and [26] in different settings and more restrictive
hypotheses. For this purpose, for x ∈ Rd, denote by Gx the fundamental solution G translated
by x, i.e., such that LGx = δx.

Theorem 4.14. There exists u ∈ Cs0(Ω)∗ a minimizer of (44) with the following representation:

(45) u = ψ +

p∑
i=1

γiGxi ,

where ψ ∈ Cs0(Ω)∗ with Lψ = 0, p ≤ dimHN , x1, . . . , xp ∈ Ω, and γ1, . . . , γp ∈ R \ {0} with∑
i |γi| = ‖Lu‖M.

Proof. With πN denoting the quotient map X → XN , we have due to Remark 4.10 that

BN = {uN ∈ XN : ‖LuN ‖M ≤ 1}
= πN ({u ∈ X : ‖Lu‖M ≤ 1})
= (πN ◦ TΩ)({µ ∈M(Ω) : ‖µ‖M ≤ 1}) .

Notice that πN ◦ TΩ : M(Ω) → XN is a linear, injective map. Indeed, let us suppose that
(πN ◦ TΩ)(µ) = 0. Then there exists ψ ∈ N such that TΩµ = ψ. Applying L on both sides and
using Remark 4.10 we deduce that µ = 0.
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Hence we can apply part ii) of Lemma 3.2 to obtain

Ext(BN ) = (πN ◦ TΩ)Ext({µ ∈M(Ω) : ‖µ‖M ≤ 1})

and by Proposition 4.1,

Ext(BN ) = (πN ◦ TΩ){σδx : x ∈ Ω, σ ∈ {−1, 1}} .

So applying Theorem 3.3 and noting that TΩδx = Gx one concludes.

5 Conclusions and open problems

The abstract main result of this paper contained in Theorem 3.3 about the structure of a
minimizer of a variational problem with finite dimensional data appears to be widely applicable,
thanks to its generality. The usability of this theorem to concrete problems relies, however, on
the characterization of the extremal points of the unit ball associated with the given regularizer.
Such a characterization appears to be fundamental for devising suitable algorithms that rely on
the structure of the minimizers given by Theorem 3.3.
In this paper we essentially carried out this characterization for two specific regularizers:

• The total variation of a function with bounded variation.

• The Radon norm of a scalar differential operator.

In the meantime, a follow-up paper also provides the characterization of extremal points for the
Benamou–Brenier energy in optimal transport [6]. A challenging direction of further research
is the study of the extremal points of balls associated with other classes of regularizers. For
example, it would be of great interest to be able to treat the case of the Radon norm for general
vector-valued differential operators. This would lead to the consideration, as an instance among
others, of TV 2 regularization (see for example [14]) which is defined as

TV 2(u) = sup

{ˆ
Ω
∇u · divϕdx : ϕ ∈ C1

c (Ω,Rd×d), ‖ϕ‖∞ ≤ 1

}
,

that is the total variation of the weak gradient of an L1 function. As a consequence, it would be
possible to compare the regularizing effect of the TV 2 seminorm and the TV seminorm, leading,
e.g., to a better understanding of how higher-order regularizers reduce the staircase effect.
Additionally, one can also consider more complex regularizers that were studied to overcome the
limitations of TV and TV 2 models. For example, in [8], the so called total generalized variation
was introduced, which is defined in the following way:

TGV k
α (u) = sup

{ˆ
Ω
udiv kϕdx : ϕ ∈ Ckc (Ω,Symk(Rd)), ‖div `ϕ‖∞ ≤ α`, ` = 0, . . . , k − 1

}
,

where Symk(Rd) is the space of symmetric tensors of order k and α = (α0, . . . , αk−1) are positive
parameters. The characterization of extremal points of the ball associated with these particular
regularizers is, up to our knowledge, still not known and would lead to a deep understanding of
the regularization effects in respective variational models.
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