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Abstract. The notion of BV solution to a rate-independent system was introduced in [7] to
describe the vanishing viscosity limit (in the dissipation term) of doubly nonlinear evolution

equations. Like energetic solutions [4] in the case of convex energies, BV solutions provide a
careful description of rate-independent evolution driven by nonconvex energies, and in partic-
ular of the energetic behavior of the system at jumps.

In this paper we study both notions in the one-dimensional setting and we obtain a full

characterization of BV and energetic solutions for a broad family of energy functionals. In the
case of monotone loadings we provide a simple and explicit characterization of their solutions,
which allows for a direct comparison of the two concepts.

1. Introduction

Over the last decade, the analysis of rate-independent systems has received notable attention
(see e.g. [4] for a thorough survey of applications). The analytical theory of rate-independent
evolutions encounters some mathematical challenges, which are apparent even in the simplest
example of rate-independent evolution, viz. the doubly nonlinear differential inclusion

∂Ψ(u′(t)) + DEt(u(t)) ∋ 0 in X∗ a.e. in (0, T ). (1.1)

Here X∗ is the dual of a finite-dimensional linear space (and in the sequel we focus our analysis
on the simplest case X = R), DEt is the (space) differential of a time-dependent energy functional
E ∈ C1(X × [0, T ];R), Ψ : X → [0,+∞) is a convex, nondegenerate, dissipation potential: rate-
independence requires that Ψ is positively homogeneous of degree 1.

It follows from the above conditions that the range of ∂Ψ equals K∗ := ∂Ψ(0), which is a
proper convex subset of X. Hence, if Et(·) is not strictly convex, one cannot expect the existence
of an absolutely continuous solution to (1.1). It turns out that the natural space for candidate
solutions u of (1.1) is BV([0, T ];X), and this fact has motivated the development of various weak
formulations of (1.1), which should also take into account the behavior of u at jump points.

First and foremost, we recall the notion of (global) energetic solution, proposed by A. Mielke
and coauthors, cf. [8, 9, 4]. For the simplified rate-independent evolution (1.1), an energetic
solution is a curve u ∈ BV([0, T ];X) satisfying two conditions for all t ∈ [0, T ]: the global stability

Et(u(t)) ≤ Et(z) + Ψ(z−u(t)) for every z ∈ X, (S)

and the energy balance

Et(u(t)) + VarΨ(u; [0, t]) = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds , (E)

where VarΨ is the pointwise total variation with respect to Ψ (see (2.4) for the definition). Let
us emphasize that the energetic formulation neither involves the differential DE of the energy,
nor derivatives of the function t 7→ u(t); thus, it is well suited to deal with nonsmooth energies
and jumping solutions. Furthermore, as shown in [10, 4], this formulation can be considered and
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analyzed in very general ambient spaces, even with no underlying linear structure. Because of
these features, the energetic concept has been exploited in several applicative contexts, see [4, 5],
and the references therein.

In the case of nonconvex energies, the global stability condition (S) may lead the system to
change instantaneously in a very drastic way, jumping into very far-apart energetic configurations.
A different dynamical approach has been proposed in [7] (see also [2, 6]), by considering rate-
independent evolution as limit of systems with smaller and smaller viscosity. One can thus
consider the viscous approximation of (1.1), viz.

∂Ψε(u
′(t)) + DEt(u(t)) ∋ 0 in X∗ a.e. in (0, T ), (1.2)

where in the simplest case we have

Ψε(v) := Ψ(v) +
ε

2
Ψ2(v). (1.3)

In fact, we focus on (1.3) just for simplicity, since much more general regularizations can be
considered, see [7]. The main result of [7] is that any limit point as ε ↓ 0 of the family (uε)ε of
solutions to (1.2) is a curve u ∈ BV([0, T ];X) fulfilling the local stability condition

−DEt(u(t)) ∈ K∗ for a.e. t ∈ (0, T ), (Sloc)

and the energy balance

VarΠ,E(u; [0, t]) + Et(u(t)) = E0(u(0)) +

∫ t

0

∂tEs(u(s)) ds for all t ∈ [0, T ]. (EΠ,E)

Notice that (EΠ,E) features the (pseudo)-total variation VarΠ,E, suitably defined from the van-
ishing viscosity contact potential

Π(v, w) := Ψ(v)max
(
1,Ψ∗(w)

)
for (v, w) ∈ X ×X∗ (1.4)

with Ψ∗(w) := infΨ(v)≤1⟨w, v⟩. We refer to Section 2 for all details on the definition of VarΠ,E in
terms of Π and E.

Still, let us emphasize that, in general, both the rate-independent and the viscous dissipation
contribute to Π, and thus to the energy balance (EΠ,E) via the (pseudo)-total variation VarΠ,E. In
contrast, in the energy balance (E) for energetic solutions only the rate-independent dissipation
is involved. In fact, (EΠ,E) reflects the main feature of BV solutions, viz. that rate-independent
and viscous effects are encompassed in the description of the solution jump trajectories, in order
to provide finer (in comparison to energetic solutions) information on the behavior of the system.
This aspect was fully explored in [7], with a thorough description of the non-jumping and jumping
regimes and the related energy balances, see also Proposition 2.4 later on.

Moreover, we point out that, contrary to (S), (Sloc) is a local stability condition. Therefore,
one expects BV solutions to jump “later” and “less abruptly” than energetic solutions.

The latter crucial property is clearly revealed by the characterization of energetic and BV
solutions in the one-dimensional case X = R, which we provide in the present paper. Namely, we
consider energies E : R× [0, T ] → R and dissipation potentials Ψ : R → [0,+∞) of the form

Et(u) := W (u)− ℓ(t)u, Ψ(u) = δ+ u+ + δ− u− (u, t) ∈ R× [0, T ], (1.5)

with W ∈ C1(R) a (possibly nonconvex) energy, ℓ ∈ C1([a, b]) a given external loading, and
δ± > 0. Then, (1.1) reduces to the rate-independent ODE

∂Ψ(u′(t)) +W ′(u(t)) ∋ ℓ(t) a.e. in (0, T ). (1.6)

Our main Theorems 3.1 and 5.1 characterize BV and energetic solutions to (1.6), and provide
the starting point for the explicit representation formulas given by Theorems 4.3 and 6.3 when
the loading function ℓ is monotone. In the case of a strictly increasing map ℓ and of an initial
datum ū satisfying a slightly stronger (local/global) stability condition, we have the following
simple descriptions:
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• u is a BV solution to (1.6) if and only if it is nondecreasing on [0, T ] and solves

u is nondecreasing on [0, T ], W ′(u(t)) = ℓ(t)− δ+ for all t ∈ [0, T ] \ Ju, (1.7)

where Ju is the jump set of u. In terms of the upper monotone envelope of W ′, defined
by mu0(u) := maxu0≤v≤u W

′(v) (see §4.1), (1.7) can also be written as

mu0(u(t)) = ℓ(t)− δ+, u0 := u(0), ℓ(0)− δ+ ≥ W ′(u0).

• u is an energetic solution to (1.6) if and only if

u is nondecreasing on [0, T ], ∂W (u(t);u0) = ℓ(t)− δ+ for all t ∈ [0, T ], (1.8)

where ∂W (·;u0) is the (convex analysis) subdifferential (see §6.1) of the function

W (u;u0) :=

{
W (u) if u ≥ u0

+∞ if u < u0.
(1.9)

Introducing the convex envelope W ∗∗(·;u0) of W (·;u0) (whose definition is given in (6.7))
and its derivative mu0(u) := DW ∗∗(u;u0) for u > u0, (1.8) also yields the following
equation for the energetic solution u:

mu0(u(t)) = ℓ(t)− δ+ for all t ∈ [0, T ]. (1.10)

Therefore, BV and energetic solutions depend monotonically on increasing loadings. Furthermore,
BV solutions are governed by the upper monotone envelope of W ′, whereas energetic solutions
involve the derivative of the convexified energy (1.9). In both cases, the initial condition provides
crucial information to construct the above monotone graphs. The case of a decreasing loading
ℓ can be easily recovered from the increasing one thanks to the symmetry principle recalled in
Proposition 2.5. The concatenation principle allows us to extend immediately our results to the
case of piecewise monotone loadings.

In Examples 4.7 and 6.5, we illustrate (1.7) and (1.8) in the simple, yet significant case of the
double-well potential

W (u) =
1

4
(u2−1)2 u ∈ R.

In this context, the input-output relation ℓ → u given by (1.10) for energetic solutions, corre-
sponds to the so-called Maxwell rule, cf. the discussion in [12, Sec. I.3]. The latter evolution mode
prescribes that for all t ∈ [0, T ], the function u(t) only attains absolute minima of the function
u 7→ W (u)−(ℓ(t)−δ+)u. This corresponds to convexification ofW , and causes the system to jump
“early” into far-apart configurations. Instead, the evolution mode (1.7) follows the Delay rule, re-
lated to hysteresis behavior. The system accepts also relative minima of u 7→ W (u)−(ℓ(t)−δ+)u,
and thus the function t 7→ u(t) tends to jump “as late as possible”.

The plan of the paper is as follows: in Section 2, we recall some definitions and preliminary
properties of BV functions, energetic and BV solutions in a finite-dimensional setting. Section
3 is devoted to a refined characterization of BV solutions in the one-dimensional setting. The
case of monotone loadings is carefully analyzed in Section 4, after some auxiliary results on upper
and lower monotone envelopes of functions. One-dimensional energetic solutions are studied in
Section 5; their explicit characterization when ℓ is monotone is carried out in the last Section 6.

2. Preliminaries

In this section we recall some notation and properties related to functions in BV([0, T ];X), withX
a finite-dimensional vector space, and to energetic and BV solutions of a general rate-independent
system.
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2.1. BV functions. Hereafter, we shall consider functions of bounded variation u ∈ BV([a, b];X)
to be pointwise defined at every time t ∈ [a, b]. Notice that a function u ∈ BV([a, b];X) admits
left (resp. right) limits at every t ∈ (a, b] (resp. t ∈ [a, b)), viz. ∃ul(t) = lims↑t u(s) and ∃ur(t) =
lims↓t u(s). We also adopt the convention ul(a) := u(a), ur(b) := u(b). The pointwise jump set
Ju of u is the at most countable set defined by

Ju :=
{
t ∈ [a, b] : ul(t) ̸= u(t) or u(t) ̸= ur(t)

}
⊃ ess-Ju :=

{
t ∈ (a, b) : ul(t) ̸= ur(t)

}
. (2.1)

We denote by u′ the distributional derivative of u (extended by u(a) in (−∞, a) and by u(b) in
(b,+∞)) in D′(R): it is a Radon vector measure with finite total variation |u′| supported in [a, b].
In the one-dimensional case X = R, u′ admits the Hahn decomposition u′ = (u′)+ − (u′)− as the
difference of two positive and mutually singular measures, such that |u′| = (u′)+ + (u′)−.

It is well known [1] that u′ can be decomposed into the sum of its diffuse part u′
co and the

jump part u′
J:

u′ = u′
co + u′

J, u′
J := u′ ess-Ju, so that u′

co({t}) = 0 for every t ∈ [a, b]. (2.2)

2.2. Energetic solutions to rate-independent systems. We consider a general rate-independent
system (X,E,Ψ), where the dissipation potential

Ψ : X → [0,+∞) is 1-positively homogeneous, convex, with Ψ(v) > 0 if v ̸= 0,

and
E ∈ C1(X × [a, b]), Et(u) := W (u)− ⟨ℓ(t), u⟩,

for some W ∈ C1(X) and ℓ ∈ C1([a, b];X∗). We shall also use the notation ∂tEt(u) := −⟨ℓ′(t), u⟩
for the partial time derivative, and we set

K∗ := ∂Ψ(0) = {w ∈ X∗ : Ψ∗(w) ≤ 1} ⊂ X∗, where Ψ∗(w) := sup
Ψ(v)≤1

⟨w, v⟩ w ∈ X∗ (2.3)

We recall the notion of energetic solution to the rate-independent system (X,E,Ψ), cf. [8, 9, 4].

Definition 2.1 (Energetic solution). A curve u ∈ BV([a, b];X) is an energetic solution of the
rate-independent system (X,E,Ψ) if for all t ∈ [a, b] it satisfies the global stability

∀ z ∈ X : Et(u(t)) ≤ Et(z) + Ψ(z − u(t)) (S)

and the energy balance

Et(u(t)) + VarΨ(u; [a, t]) = Ea(u(a)) +

∫ t

a

∂tEs(u(s)) ds, (E)

where

VarΨ(u; [a, t]) = sup
{ M∑

m=1

Ψ
(
u(tm)− u(tm−1)

)
: a = t0 < t1 < · · · < tM−1 < tM = t

}
(2.4)

denotes the pointwise Ψ-total variation of u on the interval [a, t].

The following characterization of energetic solutions has been proved in [7, Prop. 2.2].

Proposition 2.2 (Differential characterization of energetic solutions). A curve u ∈ BV([a, b];X)
is an energetic solution of the rate-independent system (X,E,Ψ) if and only if it satisfies the
global stability condition (S), the doubly nonlinear differential inclusion in the BV sense

∂Ψ
(du′

co

dµ
(t)

)
+DW (u(t)) ∋ ℓ(t) for µ-a.e. t ∈ (a, b), µ := L 1 + |u′

co|, (DN)

and the following jump conditions at each point t ∈ Ju:

Et(ur(t))− Et(ul(t)) = −Ψ(ur(t)−ul(t)),

Et(u(t))− Et(ul(t)) = −Ψ(u(t)−ul(t)),

Et(ur(t))− Et(u(t)) = −Ψ(ur(t)−u(t)).

(Jener)
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The jump conditions (Jener) show that, in the case of an energetic solution u the jump set Ju
coincides with the essential jump set ess-Ju.

2.3. BV solutions to rate-independent systems. As we mentioned in the introduction, we
shall restrict to BV solutions arising in the vanishing viscosity limit of (1.2), with dissipation
potentials Ψε of the form (1.3). In such a setting, the vanishing viscosity contact potential Π :
X ×X∗ → [0,+∞) associated to the family (Ψε)ε is given by

Π(v, w) := Ψ(v) max(1,Ψ∗(w)) =

{
Ψ(v) if w ∈ K∗,

Ψ(v)Ψ∗(w) if w ̸∈ K∗.
(2.5)

For a fixed t ∈ [a, b], the (possibly asymmetric) Finsler cost induced by Π and (the differential
of) E at the time t is for every ū, u1 ∈ X given by

∆Π,E(t; ū, u1) := inf
{∫ r1

r0

Π(ϑ̇(r),−DEt(ϑ(r))) dr :

ϑ ∈ AC([r0, r1];X), ϑ(r0) = ū, ϑ(r1) = u1

}
.

(2.6)

As already observed in [7], it is not difficult to check that the infimum in (3.5) is always attained

by a Lipschitz curve ϑ ∈ Lip([r0, r1];X) such that Π(ϑ̇(r),−DEt(ϑ(r))) ≡ 1 for a.e. r ∈ (r0, r1).

For every u ∈ BV([a, b];X) and every subinterval [α, β] ⊂ [a, b], the jump variation of u induced
by (Π,E) on [α, β] is

JmpΠ,E(u; [α, β]) := ∆Π,E(α;u(α), ur(α)) + ∆Π,E(β;ul(β), u(β))

+
∑

t∈Ju∩(α,β)

(
∆Π,E(t;ul(t), u(t)) + ∆Π,E(t;u(t), ur(t))

)
, (2.7)

and the associated (pseudo-)total variation is

VarΠ,E(u; [α, β]) :=

∫ β

α

Ψ

(
du′

co

dµ

)
dµ+ JmpΠ,E(u; [α, β]), (2.8)

where µ could be any nonnegative and diffuse reference measure, provided that u′
co is absolutely

continuous w.r.t. µ (e.g. µ = L 1 + |u′
co|). In fact, since Ψ is 1-homogeneous, the result would be

independent of µ (see e.g. [1]).

Then, we are in the position to recall the definition of BV solution given in [7].

Definition 2.3. A curve u ∈ BV([a, b];X) is a BV solution of the rate-independent system
(R,E,Π) if it satisfies the local stability condition

ℓ(t)−DW (u(t)) ∈ K∗ for a.e. t ∈ [a, b] \ Ju, (Sloc)

and the (Π,E)-energy balance

VarΠ,E(u; [a, t]) + Et(u(t)) = E0(u(0)) +

∫ t

a

∂tEs(u(s)) ds for all t ∈ [a, b]. (EΠ,E)

In [7, Sec. 4] the following result has been proved.

Proposition 2.4 (Differential characterization of BV solutions). A curve u ∈ BV([a, b];X) is a
BV solution of the rate-independent system (R,E,Π) if and only if it satisfies the doubly nonlinear
differential inclusion (DN), and it fulfills at each point t ∈ Ju the jump conditions:

Et(ur(t))− Et(ul(t)) = −∆Π,E(t;ul(t), ur(t)),

Et(u(t))− Et(ul(t)) = −∆Π,E(t;ul(t), u(t)),

Et(ur(t))− Et(u(t)) = −∆Π,E(t;u(t), ur(t)).

(JBV)

As in the case of energetic solutions, (JBV) yield that, for a BV solution u the jump set Ju
coincides with the essential jump set ess-Ju.
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2.4. Symmetry and concatenation principles for energetic and BV solutions. We state
here two useful properties of energetic and BV solutions. Let us first introduce the modified
energy, dissipation, and potentials

Ẽt(u) := Et(−u), Ψ̃(u) := Ψ(−u), Π̃(u,w) := Π(−u,−w). (2.9)

Proposition 2.5 (Symmetry principle). A curve u ∈ BV([a, b];R) is an energetic solution of the
rate-independent system (X,E,Ψ) (resp. a BV solution of the rate-independent system (X,E,Π))
if and only if the curve ũ(t) := −u(t) is an energetic solution of the rate-independent system

(X, Ẽ, Ψ̃) (resp. of the rate-independent system (X, Ẽ, Π̃)).

The proof follows from easy calculations, observing that

Ẽt(ũ(t)) = Et(u(t)), ũ′(t) = −u′(t), Ψ̃(ũ′(t)) = Ψ(u′(t)), Ψ̃∗(w) = Ψ∗(−w), K̃∗ = −K∗

Another simple property concerns the behavior of energetic and BV solutions with respect to
restriction and concatenation. The proof is trivial.

Proposition 2.6 (Restriction and concatenation principle).

(1) The restriction of an energetic (resp. BV) solution in [a, b] to an interval [α, β] ⊂ [a, b] is
an energetic (resp. BV) solution in [α, β].

(2) If a = t0 < t1 < · · · < tM−1 < Tm = b is a subdivision of [a, b] and u : [a, b] → X is an
energetic (resp. BV) solution in each one of the intervals [tj−1, tj ], j = 1, · · · ,M , then u
is an energetic (resp. BV) solution in [a, b].

2.5. The one-dimensional setting. From now on we consider the particular caseX = R, which
we also identify with X∗. We will denote by v+, v− the positive and negative part of v ∈ R.
Dissipation. A dissipation potential is a function of the form

Ψ(v) := δ+ v+ + δ− v− v ∈ R, for some δ± > 0. (2.10)

Hence, we have

∂Ψ(v) =


δ+ if v > 0,

[−δ−, δ+] if v = 0,

−δ− if v < 0

for all v ∈ R,

K∗ = [−δ−, δ+], Ψ∗(w) =
1

δ+
w+ +

1

δ−
w− for all w ∈ R.

Energy functional. The energy is given by a function E : R× [a, b] → R of the form

Et(u) := W (u)− ℓ(t)u, (2.11)

with ℓ ∈ C1([a, b]) and W : R → R such that

W ∈ C1(R), lim
x→−∞

W ′(x) = −∞, lim
x→+∞

W ′(x) = +∞. (2.12)

3. BV solutions of rate-independent systems in R

In this section we will provide an equivalent characterization of BV solutions to the rate-independent
system (R,E,Π), in the one-dimensional setting considered in §2.5.

Theorem 3.1. A function u ∈ BV([a, b];R) is a BV solution of the rate-independent system
(R,E,Π) of §2.5 if and only if the following properties hold:

a) u satisfies the local stability condition (equivalent to (Sloc))

−δ− ≤ ℓ(t)−W ′(u(t)) ≤ δ+ for every t ∈ [a, b] \ Ju. (Sloc,R)

b) The function W ′(ul) is continuous in [a, b), the function W ′(ur) is continuous in (a, b] and
they coincide in (a, b): we denote their common value by W ′(ulr).
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c) u satisfies the following precise formulation of the doubly nonlinear differential inclusion (DN)

W ′(ulr(t)) = ℓ(t)− δ+ for every t ∈ supp
(
(u′)+

)
∩ (a, b), (3.1)

W ′(ulr(t)) = ℓ(t) + δ− for every t ∈ supp
(
(u′)−

)
∩ (a, b), (3.2)

with obvious modifications at t = a, t = b as in the previous point b).
d) At each jump point t ∈ Ju, u satisfies the jump conditions

min
(
ul(t), ur(t)

)
≤ u(t) ≤ max

(
ur(t), ul(t)

)
, (3.3)

and

ℓ(t)−W ′(ϑ) ≥ δ+ if ul(t) < ur(t), ℓ(t)−W ′(ϑ) ≤ −δ− if ul(t) > ur(t), (3.4)

for every ϑ such that min
(
ul(t), ur(t)

)
≤ ϑ ≤ max

(
ur(t), ul(t)

)
. In particular Ju = ess-Ju.

Proof. We split the argument in various steps.

Claim 1: The local stability condition (Sloc) is equivalent to (Sloc,R).

It is sufficient to recall that K∗ = [−δ−, δ+].

Claim 2: the jump conditions (JBV) are equivalent to (3.3) and (3.4).

Taking (2.5) and (2.11) into account, the Finsler cost ∆Π,E(t; ·, ·) in fact reduces (up to a linear
reparametrization) to

∆Π,E(t; ū, u1) = min
{∫ 1

0

max
(
1,Ψ∗

(
ℓ(t)−W ′(ϑ(r))

))
Ψ(ϑ′(r)) dr :

ϑ ∈ AC([0, 1];R), ϑ(0) = ū, ϑ(1) = u1

}
,

(3.5)

Let us consider, e.g., the case ū ≤ u1 and notice that, if ϑ ∈ AC([0, 1];R) fulfils ϑ(0) = ū and
ϑ(1) = u1, then, setting

r0 := sup{r ∈ [0, 1] : ϑ(t) ≤ ū}, r1 := inf{r ∈ [r0, 1] : ϑ(r) ≥ u1},

there holds

ϑ(r0) = ū, ϑ(r1) = u1, ϑ(r) ∈ (ū, u1) for all r ∈ (r0, r1).

Therefore, the value of the integral in (3.5) surely diminishes if we just consider the restriction of
ϑ to the interval [r0, r1], so that we can assume that the range of a minimizing curve in (3.5) is
contained in [ū, u1].

We can also suppose that the competing curves ϑ in (3.5) are nondecreasing. In fact, if ϑ is

absolutely continuous and connects ū to u1, we can consider the curve ϑ̃(r) := maxs∈[0,r] ϑ(s). It
is easy to check that ϑ is nondecreasing and absolutely continuous, since for all 0 ≤ r1 ≤ r2 ≤ 1

ϑ̃(r2)− ϑ̃(r1) ≤ sup
s1,s2∈[r1,r2]

|ϑ(s2)− ϑ(s1)| ≤
∫ r2

r1

|ϑ′(s)|ds.

It follows that ϑ̃′ = ϑ′ a.e. on the coincidence set {ϑ̃ = ϑ}, whereas one can easily check that

ϑ̃′(r) = 0 where ϑ̃(r) > ϑ(r) (viz., where ϑ̃(r) ̸= ϑ(r)). From the above considerations we obtain∫ 1

0

max
(
1,Ψ∗(ℓ(t)−W ′(ϑ̃(r)))

)
Ψ(ϑ̃′(r)) dr ≤

∫ 1

0

max
(
1,Ψ∗(ℓ(t)−W ′(ϑ(r)))

)
Ψ(ϑ′(r)) dr.

Therefore, it is not restrictive to assume that the curve ϑ is nondecreasing on [0, 1]. Then, with
a change of variable, from (3.5) we deduce the identity

∆Π,E(t; ū, u1) = δ+

∫ u1

ū

max
(
1,Ψ∗(ℓ(t)−W ′(r))

)
dr. (3.6)

Notice that

δ+ max
(
1,Ψ∗(ℓ(t)−W ′(r))

)
≥ max

(
δ+, ℓ(t)−W ′(r)

)
≥ ℓ(t)−W ′(r), (3.7)
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and

δ+ max
(
1,Ψ∗(ℓ(t)−W ′(r))

)
= ℓ(t)−W ′(r) ⇔ ℓ(t)−W ′(r) ≥ δ+; (3.8)

moreover, at a jump point t with ul(t) < ur(t) there holds

Et(ur(t))− Et(ul(t)) = −
∫ ur(t)

ul(t)

(
ℓ(t)−W ′(r)

)
dr (3.9)

Comparing (JBV) with (3.6) and (3.9) we immediately see that the first condition of (JBV) is
equivalent to the first of (3.4). If (3.3) also holds, then we easily get the other two conditions of
(JBV). Conversely, (JBV) yields

∆Π,E(t;ul(t), ur(t)) = ∆Π,E(t;ul(t), u(t)) + ∆Π,E(t;u(t), ur(t)),

and this identity implies (3.3) by the positivity of the integrand in (3.6). The case ul(t) > ur(t)
can be studied by a similar argument, see also Proposition 2.5.

Claim 3, sufficiency: a function u satisfying a) – d) is a BV solution.

In view of Prop. 2.4 and Claim 2, we simply have to check that the differential inclusion (DN)
holds: it follows from (3.1), (3.2), and (Sloc,R) since µ is diffuse and therefore ur(t) = ul(t) = u(t)
for µ-a.e. t ∈ [a, b].

Claim 4: a) and d) imply b).

It is immediate, since the continuity of W ′ and ℓ yields that the inequalities in (Sloc,R) hold
also for ul and ur; (3.4) provides the opposite inequalities.

Claim 5, necessity: a BV solution u satisfies a) – d).

By the previous claims, it remains to check c). The identity in (3.1) is satisfied (u′)+-a.e.
in [a, b] thanks to the differential inclusion (DN) and the jump/stability conditions (which yield
(3.1) on the jump set). By Claim 4, we know that W ′(ulr) is continuous, so that the identity in
(3.1) holds on the support of (u′)+. The same argument applies to (3.2). �

The previous general result has a simple consequence: a BV solution is locally constant in a
neighborhood of a point where the stability condition (Sloc,R) holds with a strict inequality.

Lemma 3.2. Let u ∈ BV([a, b];R) be a BV solution of the rate-independent system (R,E,Π) of
§2.5 and let us suppose that −δ− < ℓ(s)−W ′(u(s)) < δ+ at some s ∈ [a, b]. Then, setting

α := max
{
t ∈ [a, s] : Ψ∗(ℓ(t)−W ′(u(s))) = 1

}
, β := min

{
t ∈ [s, b] : Ψ∗(ℓ(t)−W ′(u(s))) = 1

}
we have α < s < β and u(t) ≡ u(s) for every t ∈ [α, β].

Proof. In view of (3.3) and (3.4), s is not a jump point of u, hence u is continuous at s and the
set {t ∈ [a, b] : Ψ∗(ℓ(t) −W ′(u(t))) < 1} contains a (relatively) open neighborhood I of s; since
u = ur = ul in I, point c) of Theorem 3.1 shows that u(t) ≡ u(s) in I. Consider now the set
J := {r ∈ (α, β) : u(r) = u(s)

}
: we have seen that J is open, and it is easy to check that it is

also closed in (α, β), so that J = (α, β) and the thesis follows. �

4. BV solutions of the rate-independent system (R,E,Π) with monotone loadings

As mentioned in the introduction, BV solutions of rate-independent systems in R, driven by
monotone loadings, involve the notion of the upper and lower monotone (i.e. nondecreasing)
envelopes of the graph of a given function (W ′ in our setting). In this section we first focus
on a few properties of these maps and their inverses, and then we exhibit the explicit formulas
characterizing BV solutions when ℓ is increasing or decreasing.
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4.1. The upper monotone envelope of W ′.

Definition 4.1 (Upper monotone envelope). For every ū ∈ R, we set ℓ̄ := W ′(ū), and we define
the maximal monotone map mū(·) : R ⇒ R

mū(u) := max
ū≤v≤u

W ′(v) if u > ū, mū(ū) := (−∞,W ′(ū)], mū(u) = ∅ if u < ū. (4.1)

We call mū(·) the upper monotone envelope of W ′ in the interval (ū,+∞). The contact set is
defined by

C ū := {ū} ∪
{
u > ū : W ′(u) = mū(u)

}
. (4.2)

The mapping mū(·) is monotone and surjective thanks to (2.12); it is single-valued on (ū,+∞)
(where we identify the set mū(u) with its unique element with a slight abuse of notation). We
can thus consider the inverse graph pū(·) : R ⇒ R of mū(·): it is defined by

u ∈ pū(ℓ) ⇔ ℓ ∈ mū(u) for u, ℓ ∈ R. (4.3)

Clearly, pū(·) is a maximal monotone graph in R, and it is uniquely characterized by a left-
continuous monotone function pūl (·) and a right-continuous monotone function pūr (·) such that

pū(ℓ) = [pūl (ℓ), p
ū
r (ℓ)], i.e. mū(u) ∋ ℓ ⇔ pūl (ℓ) ≤ u ≤ pūr (ℓ). (4.4)

We also consider a further selection in the graph of pū(·):

pū
c (ℓ) :=

{
u ∈ pū(ℓ) : W ′(u) = ℓ

}
=

{
u ∈ C ū : mū(u) ∋ ℓ

}
= pū(ℓ) ∩ C ū. (4.5)

By introducing the set

Aū :=
{
f : (ū,+∞) → R : f is nondecreasing and fulfils f ≥ W ′}, (4.6)

we have

mū(·)|(ū,+∞)
∈ Aū and W ′(u) ≤ mū(u) ≤ f(u) for all f ∈ Aū and u ∈ (ū,+∞), (4.7)

so thatmū(·) is the minimal nondecreasing map above the graph ofW ′ in (ū,+∞). It immediately
follows from (4.7) that

mū(u) = inf{f(u) : f ∈ Aū} for all u > ū. (4.8)

The following result collects some simple properties of pūl (·) and pūr (·).

Lemma 4.2. Assume (2.12). Then

(1) the functions pūl (·) and pūr (·) are nondecreasing in R and we have

ℓ̄ = W ′(ū) ≤ ℓ1 < ℓ2 ⇒ pūr (ℓ1) < pūl (ℓ2). (4.9)

(2) For every ℓ ∈ R there holds:

lim
λ↑ℓ

pūl (λ) = pūl (ℓ) and lim
λ↓ℓ

pūr (λ) = pūr (ℓ). (4.10)

(3) For every ℓ ≥ ℓ̄ = W ′(ū) there holds

W ′(u) ≤ ℓ if u ∈ [ū, pūr (ℓ)]. (4.11)

(4) For every ℓ ≥ ℓ̄ = W ′(ū) there holds

W ′(pūl (ℓ)) = W ′(pūr (ℓ)) = W ′(pū
c (ℓ)) = ℓ; (4.12)

(5) For every ℓ ∈ R there holds

pūl (ℓ) = min
{
u ≥ ū : W ′(u) ≥ ℓ

}
, pūr (ℓ) = inf

{
u ≥ ū : W ′(u) > ℓ

}
. (4.13)
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Proof. First of all, (4.9) and (4.10) are general properties of the inverse of a maximal monotone
map.

As for (4.11), it is an immediate consequence of the inequality W ′ ≤ mū(·) in [ū,∞).

Let us check (4.12) and (4.13). The identity W ′(pūl (ℓ)) = ℓ and the first property of (4.13)
ensue from (4.1): it is sufficient to notice that W ′(u) ≤ mū(u) < ℓ if ū ≤ u < pūl (ℓ) and
mū(u) = ℓ if u = pūl (ℓ).

The identity W ′(pūr (ℓ)) = ℓ is due to the continuity of W ′ and the second property of (4.13).
To prove it, we observe that when u > pūr (ℓ) we have mū(u) > ℓ and we know that there exists
v ∈ [pūr (ℓ), u] such that W ′(v) > ℓ: since u is arbitrary we get pūr (ℓ) ≥ inf{u ≥ ū : W ′(u) > ℓ}.
The converse inequality follows from (4.11). �

4.2. The lower monotone envelope of W ′. In a completely similar way we can introduce the
maximal monotone map below the graph of W ′ on the interval (−∞, ū], viz.

nū(u) := inf
u≤v≤ū

W ′(v) if u < ū, nū(ū) := [W ′(ū),+∞), nū(u) = ∅ if u > ū, (4.14)

which satisfies

nū(u) = sup
{
f(u) : f ∈ Bū

}
for u < ū, (4.15)

where

Bū :=
{
f : (−∞, ū) → R : f is nondecreasing and fulfils f ≤ W ′}.

As before, the inverse graph qū(·) := (nū(·))−1 : R ⇒ (−∞, ū] can be represented as qū(u) =
[qūl (u), q

ū
r (u)], where

qūl (ℓ) = sup
{
u ≤ ū : W ′(u) < ℓ

}
, qūr (ℓ) = max

{
u ≤ ū : W ′(u) ≤ ℓ

}
, (4.16)

and we set

qū
c (ℓ) :=

{
u ∈ qū(ℓ) : W ′(u) = ℓ

}
. (4.17)

If we consider the symmetric energy as in (2.9), viz. W̃ (u) := W (−u) (so that W̃ ′(u) =

−W ′(−u)), and we denote by m̃ū(·), p̃ūl (·), and p̃ūr (·) the functions associated with W̃ via (4.1)
and (4.4), it can be easily checked that

nū(u) = p̃(−ū)(−u), qūr (ℓ) = −p̃
(−ū)
l (−ℓ), qūl (ℓ) = −p̃(−ū)

r (−ℓ). (4.18)

Hence the obvious analogue of Lemma 4.2 holds.

4.3. Monotone loadings and BV solutions. We apply the notions introduced in §4.1 to char-
acterize BV solutions when ℓ is monotone.

First of all, we provide an explicit formula yielding BV solutions for an increasing loading
ℓ. The case of a decreasing and of a piecewise monotone loading will easily follow by applying
Propositions 2.5 and 2.6.

Theorem 4.3. Let ū ∈ R and ℓ ∈ C1([a, b]) be a nondecreasing loading such that

ℓ(a) ≥ W ′(ū)− δ−. (4.19)

Any map u : [a, b] → R satisfying

u is nondecreasing, u(t) ∈ pū
c (ℓ(t)−δ+) for every t ∈ [a, b]\Ju, W ′(u(b)) ≤ ℓ(b)−δ+ (4.20)

is a BV solution of the rate independent system (R,E,Π) of §2.5. In particular, (4.20) yields

u(t) ∈ [pūl (ℓ(t)− δ+), p
ū
r (ℓ(t)− δ+)] for every t ∈ [a, b], (4.21)

and (4.21) is equivalent to (4.20) when ℓ is strictly increasing.
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Proof. We apply Theorem 3.1. It is immediate to check that u satisfies (Sloc,R).

By continuity, (4.20) yields

W ′(ul(t)) + δ+ = W ′(ur(t)) + δ+ = ℓ(t) for every t ∈ (a, b) (4.22)

so that b) and c) are satisfied.

To check the jump conditions of d), let us notice that by (4.13), (4.22), and the monotonicity
of u we have

pūl (ℓ(t)− δ+) ≤ ul(t) ≤ u(t) ≤ ur(t) ≤ pūr (ℓ(t)− δ+) for every t ∈ [a, b], (4.23)

which yields (3.3) and (3.4) by (4.11).

The inequalities in (4.23) also show that (4.20) implies (4.21). Conversely, when ℓ is strictly
increasing, it is immediate to check that any map satisfying (4.21) is nondecreasing. Since the
jump set of u coincides with {t ∈ [a, b] : pūl (ℓ(t)− δ+) < pūr (ℓ(t)− δ+)}, we have pūl (ℓ(t)− δ+) =
pūr (ℓ(t)− δ+) = pū

c (ℓ(t)− δ+) at every t ∈ [a, b] \ Ju. Then, also the second condition of (4.20)
is satisfied. �

Applying Proposition 2.5 and the discussion of §4.2 we have:

Corollary 4.4. Let ū ∈ R and ℓ ∈ C1([a, b]) be a nonincreasing loading satisfying ℓ(a) ≤ W ′(ū)+
δ+. Any map u : [a, b] → R satisfying

u is nonincreasing, u(t) ∈ qū
c (ℓ(t)+δ−) for every t ∈ [a, b]\Ju, W ′(u(b))−δ− ≥ ℓ(b) (4.24)

is a BV solution of the rate independent system (R,E,Π). In particular, (4.24) yields

u(t) ∈ [qūl (ℓ(t) + δ−), q
ū
r (ℓ(t) + δ−)] for every t ∈ [a, b], (4.25)

and (4.25) is equivalent to (4.24) when ℓ is strictly decreasing.

The next result states that, under a slightly stronger condition on the initial data, any BV
solution driven by an increasing loading admits the representation (4.20).

Theorem 4.5 (Nondecreasing loadings). Let ℓ ∈ C1([a, b]) be a nondecreasing loading and let
u ∈ BV([a, b];R) be a BV solution of the rate-independent system (R,E,Π) satisfying

ℓ(a) ≥ W ′(u(a))− δ−, (4.26)

W ′ < W ′(u(a)) in a left neighborhood of u(a) if ℓ(a) = W ′(u(a))− δ−. (4.27)

Then u can be represented as in Theorem 4.3, i.e. it satisfies

u is nondecreasing, u(t) ∈ pu(a)
c (ℓ(t)− δ+) for every t ∈ [a, b] \ Ju, (4.28)

and

u(t) ∈ [p
u(a)
l (ℓ(t)− δ+), p

u(a)
r (ℓ(t)− δ+)] for all t ∈ [a, b]. (4.29)

Proof. We apply Theorem 3.1 and we split the argument in a few steps; as usual we set ū := u(a).

Claim 1: There exists α ∈ [a, b] such that ℓ(t)−W ′(u(t)) > −δ− for all t ∈ (α, b], and u(t) ≡ ū,
ℓ(t) ≡ ℓ(a) in [a, α].

Let us consider the set

Σ := {t ∈ [a, b] : ℓ(t)−W ′(u(t)) ≤ −δ−} (4.30)

and observe that by (3.3) and (3.4) we also have Σ∩(a, b) = {t ∈ [a, b] : ℓ(t)−W ′(ulr(t)) = −δ−},
(with obvious modifications for Σ ∩ {a, b}), so that Σ is closed thanks to b) of Theorem 3.1.

If a ̸∈ Σ we set α := a and Σa = ∅. If a ∈ Σ we denote by Σa the connected component of Σ
containing a and we set α = maxΣa. If α > a then

ℓ(t)−W ′(u(t)) ≤ −δ− = ℓ(t)−W ′(ur(t)) = ℓ(t)−W ′(ul(t)) for every t ∈ [a, α], (4.31)
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so that by c) of Theorem 3.1 u is nonincreasing in [a, α]. Then, (4.27), (4.31) and the jump
condition (3.3) show that a ̸∈ Ju (otherwise, ur(a) < u(a) by (4.31) and (3.4), and (3.4) would also
imply W ′(ϑ) ≥ ℓ(a)+δ− = W ′(ū) for ϑ ∈ [ur(a), ū], contrary to (4.27)), so that ur(a) = u(a) = ū.
Since ℓ is nondecreasing, with a similar argument and still invoking (4.27) we conclude that
u(t) = ur(t) ≡ ū and ℓ(t) ≡ ℓ(a) in [a, α]. If α = b the claim is proved.

If α < b let us show that Σ \Σa is empty. Indeed, if not there exists σ ∈ (α, b] \Σ and we can
consider σ′ := min(Σ ∩ [σ, b]); since Σ is closed, by construction σ′ > σ > α and the definition
of Σ yields −δ− < ℓ(t) −W ′(ul(t)) < δ+ in some left neighborhood (σ′′, σ′) of σ′. Lemma 3.2
yields that ul(t) = u(t) ≡ ul(σ

′) in (σ′′, σ′), and this contradicts the fact that ℓ is nondecreasing
and ℓ(σ′)−W ′(ul(σ

′)) = −δ−.

Claim 2: u is nondecreasing on [a, b].

Relation (3.2) and Claim 1 imply that (u′)−
(
[a, b)

)
= 0, so that u is nondecreasing in [a, b). If

b were a jump point, then by (3.4) it would be u(b) > ul(b).

Claim 3: let B := {t ∈ [α, b] : W ′(ū) + δ+ = ℓ(t)} and β := minB (we set β := b if B is empty).
Then u(t) ≡ ū in [a, β) and

W ′(ul(t)) = W ′(ur(t)) = ℓ(t)− δ+, W ′(u(t)) ≤ ℓ(t)− δ+ for all t ∈ (β, b]. (4.32)

In particular
ul(t) ≥ pūl (ℓ(t)− δ+) for every t ∈ [a, b]. (4.33)

The first statement follows from Claim 1 and Lemma 3.2.

To prove the second property in (4.32), we argue by contradiction and we suppose that a point
s ∈ (β, b] exists such that if W ′(u(s)) + δ+ > ℓ(s). Since ℓ is nondecreasing, Claim 1 and Lemma
3.2 show that u(t) ≡ u(s) for every t ∈ [α, s], so that s ≤ β.

The first identity in (4.32) then follows by a continuity argument and the stability condition
(Sloc,R). Inequality (4.33) ensues from (4.32) and the first characterization in (4.13).

Claim 4: For every t ∈ [a, b] we have ur(t) ≤ pūr (ℓ(t)− δ+).

If ur(t) = ū there is nothing to prove. Otherwise, let t ≥ β and take z ∈ (ū, ur(t)). Since u is
nondecreasing, there exists s ∈ [β, t] such that ul(s) ≤ z ≤ ur(s), so that by (4.32) and (3.4)

W ′(z) ≤ ℓ(s)− δ+ ≤ ℓ(t)− δ+,

since ℓ is nondecreasing. Being z < ur(t) arbitrary, the claim follows from the second of (4.13).

Conclusion:

Relation (4.29) follows from Claim 2, (4.33), and Claim 4. At every continuity point t for u
we have ul(t) = ur(t) = u(t), so that (4.28) is due to (4.29) and (4.32). �

A straightforward consequence of Proposition 2.5 and the discussion of §4.2 concerns the char-
acterization of BV solutions in the case of a decreasing load: it can be deduced from the analysis
of the increasing case.

Corollary 4.6 (Nonincreasing loadings). Let ū ∈ R, let ℓ ∈ C1([a, b]) be a nonincreasing loading
satisfying ℓ(a) ≤ W ′(ū) + δ+, and let us suppose that

W ′ > W ′(ū) in a right neighborhood of ū if ℓ(a) = W ′(ū) + δ+. (4.34)

Then every BV solution u ∈ BV([0, T ];R) with u(a) = ū satisfies

u is nonincreasing, u(t) ∈ qū
c (ℓ(t)) for every t ∈ [a, b] \ Ju, (4.35)

and therefore
u(t) ∈ [qūl (ℓ(t) + δ−), q

ū
r (ℓ(t) + δ−)] for all t ∈ [a, b]. (4.36)

We conclude this section with some examples illustrating the previous results. In particular,
Example 4.8 shows that the characterization (4.29) may not hold if the loading ℓ does not comply
with (4.27).
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Example 4.7 (BV solutions driven by a double-well energy). The double-well potential energy

W (u) =
1

4
(u2 − 1)2 (4.37)

clearly fulfills condition (2.12). Note that W ′(u) = u3 − u, and

W ′(u) > 0 for u < u1 := − 1√
3
and u > u2 :=

1√
3
, with W ′(u) < 0 for u1 < u < u2.

Let us set

ℓ∗ := W ′(u1) =
2
√
3

9
, ℓ∗ := W ′(u2) = −2

√
3

9
,

and, for later convenience,

u∗ := min{u ∈ R : W ′(u) = ℓ∗}, u∗ := max{u ∈ R : W ′(u) = ℓ∗}. (4.38)

We also introduce the intervals I1 := (−∞, u1], I2 := [u1, u2], I3 := [u2,+∞), and, for i = 1, 2, 3,
we denote by Si the inverse function ((W ′)|Ii )

−1. Hence

S1 : (−∞, ℓ∗] → (−∞, u1), S2 : [ℓ∗, ℓ
∗] → [u1, u2], S3 : [ℓ∗,+∞) → [u2,+∞). (4.39)

Notice that the functions S1 and S3 are strictly increasing, whereas S2 is strictly decreasing. Let
us consider the evolution in the case of an external loading ℓ ∈ [0, 1] → R such that

ℓ is strictly increasing in [0, 1/2], ℓ is strictly decreasing in [1/2, 1]

u(0) < u1, ℓ(0) := W ′(u(0)) + δ+, ℓ(1/2) > ℓ∗ + δ+, ℓ(1) < ℓ∗ − δ−.

There are points

t1 ∈ (0, 1/2) : ℓ(t1) = ℓ∗+δ+; t2 ∈ (1/2, 1) : ℓ(t2)+δ− = ℓ(1/2)−δ+; t3 ∈ (t2, 1) : ℓ(t3) = ℓ∗−δ−

All the BV solutions are then given by

u(t) =



S1(ℓ(t)− δ+) in [0, t1),

u′ ∈ [u1, u
∗] if t = t1,

S3(ℓ(t)− δ+) in (t1, 1/2],

S3(ℓ(1/2)− δ+) in [1/2, t2],

S3(ℓ(t) + δ−) in [t2, t3),

u′′ ∈ [u∗, u3] if t = t3,

S1(ℓ(t) + δ−) in (t3, 1].

Example 4.8 (Bifurcation of BV solutions driven by critical loadings). We consider the same
potential energy (4.37) as in Example 4.7, but we suppose now that ℓ(1/2) = ℓ∗+ δ+ (in this case
(4.34) is not satisfied at a = 1/2). In addition to the solution considered before, we have another
family of solutions, among which e.g.

u(t) =



S1(ℓ(t)− δ+) in [0, 1/2),

S2(ℓ(t)− δ+) in [1/2, t∗),

S2(ℓ(t∗)− δ+) in [t∗, t3],

u′′ ∈ [u∗, u3] if t = t3,

S1(ℓ(t) + δ−) in (t3, 1].

where t∗ ∈ (1/2, t3) is defined by ℓ(t∗)− δ− = ℓ(t3) + δ+.
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5. Energetic solutions of rate-independent systems in R

In this section we provide a general characterization of energetic solutions to the rate-independent
system (R,E,Ψ) considered in §2.5.

In order to express the global stability and jump conditions for energetic solutions, let us
introduce the following one-sided global slopes

W ′
i,r(u) := inf

z>u

W (z)−W (u)

z − u
, W ′

s,l(u) := sup
z<u

W (z)−W (u)

z − u
, (5.1)

where the subscripts i r and s l stands for inf-right and sup-left respectively. They satisfy

W ′
i,r(u) ≤ W ′(u) ≤ W ′

s,l(u), W ′
s,l(u) = −W̃ ′

i,r(−u) for every u ∈ R, (5.2)

and it not difficult to check that they are continuous. Indeed, it is sufficient to introduce the
continuous function V : R× R → R

V (u, z) :=

{
W ′(u) if z = u,
W (z)−W (u)

z−u if z ̸= u,

and observe, e.g. for W ′
i,r, that W ′

i,r(u) = min{V (u, z) : z ≥ u} and for u in a bounded set the

minimum is attained in a compact set thanks to (2.12).

Taking (5.2) into account, we observe that the global stability condition (S) can be reformulated
as the system of inequalities

−δ− ≤ ℓ(t)−W ′
s,l(u(t)) ≤ ℓ(t)−W ′(u(t)) ≤ ℓ(t)−W ′

i,r(u(t)) ≤ δ+ for all t ∈ [a, b]. (5.3)

The continuity property of the one-sided slopes also yields

−δ− ≤ ℓ(t)−W ′
s,l(ur(t)) ≤ ℓ(t)−W ′(ur(t)) ≤ ℓ(t)−W ′

i,r(ur(t)) ≤ δ+ for all t ∈ [a, b], (5.4)

−δ− ≤ ℓ(t)−W ′
s,l(ul(t)) ≤ ℓ(t)−W ′(ul(t)) ≤ ℓ(t)−W ′

i,r(ul(t)) ≤ δ+ for all t ∈ [a, b]. (5.5)

We can state the main characterization theorem concerning energetic solutions, which the reader
may compare with Thm. 3.1 for BV solutions.

Theorem 5.1. A function u ∈ BV([a, b];R) is an energetic solution of the rate-independent
system (R,E,Ψ) of §2.5 if and only if the following properties hold:

a) u satisfies the global stability condition (5.3) (and therefore (5.4) and (5.5)).
b) u satisfies the following precise formulation of the doubly nonlinear differential inclusion (DN)

W ′(ur(t)) = W ′
i,r(ur(t)) = ℓ(t)− δ+ for every t ∈ S+ := supp

(
(u′)+

)
, (5.6)

W ′(ur(t)) = W ′
s,l(ur(t)) = ℓ(t) + δ− for every t ∈ S− := supp

(
(u′)−

)
. (5.7)

c) At each point t ∈ Ju, u fulfills the jump conditions:

u(t) = (1− θ)ul(t)+ θur(t), W (u(t)) = (1− θ)W (ul(t))+ θW (ur(t)) for some θ ∈ [0, 1], (5.8)

and

W ′
i,r(z) ≤ W ′

i,r(ul(t)) =
W (ur(t))−W (ul(t))

ur(t)− ul(t)
= ℓ(t)− δ+ if ul(t) ≤ z < ur(t), (5.9)

W ′
s,l(z) ≥ W ′

s,l(ul(t)) =
W (ur(t))−W (ul(t))

ur(t)− ul(t)
= ℓ(t) + δ− if ul(t) > z ≥ ur(t). (5.10)

In particular, u is locally constant in the open set

I :=
{
t ∈ [a, b] : −δ− < ℓ(t)−W ′

s,l(u(t)) ≤ ℓ(t)−W ′
i,r(u(t)) < δ+

}
. (5.11)
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Since any jump point belongs either to the support of (u′)+, or of (u′)−, combining (5.8), (5.6),
and (5.9) and (5.8), (5.7), and (5.10) we also get at every jump point

W ′
i,r(ul) = W ′

i,r(u) = W ′
i,r(ur) = W ′(ur) =

W (ur)−W (ul)

ur − ul
= ℓ− δ+ if ul < ur (5.12a)

W ′
s,l(ul) = W ′

s,l(u) = W ′
s,l(ur) = W ′(ur) =

W (ur)−W (ul)

ur − ul
= ℓ+ δ− if ul > ur. (5.12b)

Proof. It is easy to check that, if u ∈ BV(a, b;R) satisfies conditions a) – c) then u is an energetic
solution to (R,E,Ψ): we omit the simple details.

We discuss here the converse implication. Hence, let u be an energetic solution of (R,E,Ψ).
We have already shown point a); let us first consider point c). The first property of (5.8) easily
follows by summing the identities of the jump conditions (Jener), thus obtaining

Ψ(ur(t)− ul(t)) = Ψ(ur(t)− u(t)) + Ψ(u(t)− ul(t)). (5.13)

In particular, this implies that min(ul(t), ur(t)) ≤ u(t) ≤ max(ur(t), ul(t)
)
, so that u(t) is a convex

combination of ul(t) and ur(t) with a uniquely determined coefficient θ ∈ [0, 1]. Conditions (Jener)
then yield the corresponding property for W (u(t)).

Let us now consider, e.g., the case ul(t) < ur(t) and prove (5.9). From the first of the jump
conditions (Jener) and the definition of the right global slope W ′

i,r(·), we find

ℓ(t)−W ′
i,r(ul(t)) ≥ ℓ(t)− W (ur(t))−W (ul(t))

ur(t)− ul(t)
= δ+.

Combining this inequality with (5.5) we conclude that the identities in (5.9) hold. If now
z ∈ [ul(t), ur(t)) we obtain

W (z)−W (ur(t)) = W (z)−W (ul(t))−W ′
i,r(ul(t))(ur(t)− ul(t))

≥ W ′
i,r(ul(t))(z − ul(t))−W ′

i,r(ul(t))(ur(t)− ul(t)) = W ′
i,r(ul(t))(z − ur(t)), (5.14)

where the second inequality ensues from the definition (5.1) of W ′
i,r. Dividing by z−ur(t) we then

have that W ′
i,r(z) ≤ W ′

i,r(ul(t)). The proof of (5.10) is completely analogous.

Concerning b), we notice that (DN) yields

W ′(u(t)) = ℓ(t)− δ+ for (u′
co)

+-a.e. t ∈ [a, b]

so that (5.6) holds by continuity and by (5.4) in supp
(
u′)+ \ Ju. On the other hand, for every

t ∈ Ju ∩ supp
(
u′)+ we have ul(t) < ur(t) so that, dividing inequality (5.14) by z − ur(t) and

passing to the limit as z ↑ ur(t) we obtain

W ′(ur(t)) ≤ W ′
i,r(ul(t)) = ℓ(t)− δ+ (5.15)

and applying (5.4) we conclude the proof of (5.6). The identities in (5.7) follow by the same
argument.

It remains to check (5.11): by (5.9) and (5.10) any t ∈ I is a continuity point for u; the
continuity properties of W ′

i,r(·) and W ′
s,l(·) then show that a neighborhood of t is also contained in

I, so that I is open and disjoint from Ju. Relations (5.6) and (5.7) then yield that u′ = 0 in the
sense of distributions in I, so that u is locally constant. �

6. Energetic solutions of the rate-independent system (R,E,Ψ) with monotone
loadings

6.1. Convex envelopes and their subdifferentials. This section is devoted to some prelim-
inary convex analysis results, which turn out to be useful for the characterization of energetic
solutions driven by monotone loadings.
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Let W : R → (−∞,+∞] be a function with proper non-empty domain D(W) := {u ∈ R :
W(u) < ∞}. For our purposes, we will assume that

D(W) is a closed interval, W is of class C1 in D(W) and it is bounded from below. (6.1)

The (convex analysis) subdifferential of W is the multivalued map ∂W : R ⇒ R defined by

ξ ∈ ∂W(u) ⇔ W (u) + ξ(z − u) ≤ W (z) for every z ∈ R. (6.2)

Clearly, ∂W(u) is empty if u ̸∈ D(W). In the present one-dimensional setting, we have a simple
characterization of the subdifferential in terms of the one-sided slopes defined in (5.1):

ξ ∈ ∂W(u) ⇔ W′
s,l(u) ≤ ξ ≤ W′

i,r(u). (6.3)

If u ∈ int
(
D(W)

)
, then ∂W(u) coincides with {W′(u)} or it is empty. By (6.3), the former case

can also be characterized by

∂W(u) ̸= ∅ ⇔ W′
s,l(u) = W′(u) = W′

i,r(u) for every u ∈ int
(
D(W)

)
; (6.4)

if this is the case, the common value on the right-hand side of (6.4) is the unique element of ∂W(u).

The Fenchel-Moreau conjugate of W is the function

W∗(ℓ) := sup
u∈R

(ℓ u−W(u)) , (6.5)

and a further iteration of the conjugation yields

W∗∗(u) := sup
ℓ∈R

(
u ℓ−W∗(ℓ)

)
. (6.6)

Indeed, W∗∗ coincides with the l.s.c. convex envelope of W, i.e. the maximal convex and l.s.c.
function less than W. It can also be defined by

W∗∗(u) = sup {au+ b : ay + b ≤ W(y) for all y ∈ R.} (6.7)

We introduce the contact set

C(W) :=
{
u ∈ R : W(u) = W∗∗(u)

}
(6.8)

and its complement

B(W) := {u ∈ R : W(u)−W∗∗(u) > 0} = D(W) \ C(W); (6.9)

It can be shown (see e.g. [11, Lemma 3.3]) that B(W) ⊂ D(W) is open in R, hence it is the
disjoint union of a (at most) countable collection of open intervals. Further, for every connected
component (α, β) of B(W) there holds

W∗∗(α) = W(α), W∗∗(β) = W(β), W∗∗((1− θ)α+ θβ) = (1− θ)W(α) + θW(β) (6.10)

for all θ ∈ [0, 1]. Using (6.10), it can be checked that W∗∗ ∈ C1(D(W)). It is well known (see e.g.
[3, Ch. 1, §5.1]) that

∂W(u) ̸= ∅ ⇔ W(u) = W∗∗(u), and in this case ∂W(u) = ∂W∗∗(u). (6.11)

Moreover, for every ℓ ∈ R

∂W−1(ℓ) = Argmin
u∈R

(
W(u)− ℓu

)
= C(W) ∩ ∂W∗(ℓ) ⊂ ∂W∗(ℓ) (6.12)

and

∂W∗(ℓ) = (∂W∗∗)−1(ℓ) = co
(
(∂W)−1(ℓ)

)
, (6.13)

where the latter set is the convex hull of (∂W)−1(ℓ).

We apply the above notions to the functions W(·) := W (·; ū), ū ∈ R, defined by

W (u; ū) := W (u) + I[ū,∞)(u) =

{
+∞ if u < ū,

W (u) if u ≥ ū
for u ∈ R. (6.14)
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We consider their conjugate W ∗(·; ū), and the subdifferentials

pū(ℓ) := ∂W ∗(ℓ; ū) = (∂W ∗∗(·; ū))−1(ℓ), pū
c (ℓ) :=

(
∂W (·; ū)

)−1
(ℓ) = ∂W ∗(ℓ; ū) ∩ Cū, (6.15)

where Cū := C(W (·; ū)).
We observe that (cf. (4.4))

pū(ℓ) = [pūl (ℓ), p
ū
r (ℓ)] with

{
pūl (ℓ) = min{u ≥ ū : ∂W ∗∗(u; ū) ∋ ℓ},
pūr (ℓ) = max{u ≥ ū : ∂W ∗∗(u; ū) ∋ ℓ}.

(6.16)

Furthermore, the functions pūl and pūr are nondecreasing and satisfy the obvious continuity
properties

(ℓn ↓ ℓ as n → ∞ ) ⇒ lim
n→∞

pūr (ℓn) = pūr (ℓ),

(ℓn ↑ ℓ as n → ∞ ) ⇒ lim
n→∞

pūl (ℓn) = pūl (ℓ);
(6.17)

There is a last interesting property which relates the one-sided slopes W ′
s,l(·),W ′

i,r(·), their upper
monotone envelopes, and the convex envelope of W(·) = W (·; ū).

Lemma 6.1. For ū ∈ R let us consider the upper monotone envelope

rū(u) := max
ū≤v≤u

W ′
i,r(v) if u > ū, rū(ū) := (−∞,W ′

i,r(ū)], rū(u) := ∅ if u < ū. (6.18)

Then, there holds

∂W ∗∗(u; ū) = rū(u) for every u ∈ R. (6.19)

In particular,

ℓ ∈ rū(u) ⇔ u ∈ pū(ℓ) = [pūl (ℓ), p
ū
r (ℓ)],

ℓ = W ′
i,r(u) ∈ rū(u) ⇔ u ∈ pū

c (ℓ),
(6.20)

and

pūl (ℓ) = min{u ≥ ū : W ′
i,r(u) ≥ ℓ}, pūr (ℓ) = inf{u ≥ ū : W ′

i,r(u) > ℓ}. (6.21)

Proof. Let us start by proving (6.19): it is sufficient to consider the case u > ū. Let W(u) =
W (u; ū). If u ∈ Cū ∩ (ū,∞) then, by (6.4) and (6.11) we have W ′

i,r(u) = W ′(u) = d
duW

∗∗(u; ū) ≤
rū(u). Let us consider the case when u ̸∈ Cū and let (a, b) be the connected component of B(W)
containing u. Since (W ∗∗)′ is constant in (a, b), then (W∗∗)′(u) = (W∗∗)′(a) ≤ rū(a) ≤ rū(u).
All in all, we have (W∗∗)′(u) ≤ rū(u) for every u > ū. Since for every connected component (a, b)
of B(W) we have

W′
i,r(v) ≤

W(b)−W(v)

b− v
≤ W∗∗(b)−W∗∗(v)

b− v
= (W∗∗)′(v) for every v ∈ (a, b), (6.22)

we also deduce that (W∗∗)′ ≥ W′
i,r(·). Combining the fact that rū(u) is the minimal monotone

map above W′
i,r(·) in (ū,∞), and the monotonicity of (W∗∗)′, we conclude.

The first equivalence in (6.20) is a consequence of (6.15) and (6.16), and (6.21) corresponds to
(4.13). Concerning the second equivalence in (6.20), if ū < u ∈ pū

c (ℓ) then (6.4) yields ℓ = W′
i,r(u).

Conversely, if u ∈ [pūl (ℓ), p
ū
r (ℓ)] andW ′

i,r(u) = ℓ then we get u ∈ Cū. In fact, this property obviously

holds if u ∈ {pūl (ℓ), pūr (ℓ)}; if u ∈ (pūl (ℓ), p
ū
r (ℓ)) then, combining W ′

i,r(u) = ℓ = (W∗∗)′(u) with

(6.22), we conclude that all inequalities in (6.22) hold as equalities. Hence, we find

W(u)−W(pūr (ℓ))

u− pūr (ℓ)
=

W ∗∗(pūl (u))−W(pūr (ℓ))

u− pūr (ℓ)
,

whence W(u) = W∗∗(u). �
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6.2. Energetic solutions of (R,E,Ψ) with monotone loadings.

Theorem 6.2. Let ū ∈ R and ℓ ∈ C1([a, b]) be a nondecreasing loading such that

W ′
s,l(ū)− δ− ≤ ℓ(a) ≤ W ′

i,r(ū) + δ+. (6.23)

Any map u : [a, b] → R satisfying

u(a) = ū, u is nondecreasing, u(t) ∈ pū
c (ℓ(t)− δ+) for every t ∈ (a, b] (6.24)

is an energetic solution of (R,E,Ψ). In particular, (6.24) yields

u(t) ∈ [pūl (ℓ(t)− δ+), p
ū
r (ℓ(t)− δ+)]. (6.25)

Notice that, if ℓ is strictly increasing, then any selection u(t) of pū
c (ℓ(t)− δ+) is also strictly

increasing, so that the second condition of (6.24) is automatically satisfied.

Proof. Notice that (6.23) and (6.24) yield

ℓ(t)− δ+ ∈ ∂W (u(t); ū) for every t ∈ [a, b]; (6.26)

Indeed, (6.26) holds also at t = a in view of (6.3) applied to W(u) := W (u; ū), since in this case
W′

s,l(ū) = −∞ and W′
i,r(ū) = W ′

i,r(ū), cf. (6.14). A further application of (6.3) yields the global

stability condition (5.3). Since the subdifferential has a closed graph, we also have

ℓ(t)− δ+ ∈ ∂W (ur(t); ū), ℓ(t)− δ+ ∈ ∂W (ul(t); ū) for every t ∈ [a, b]. (6.27)

Let us set α := inf{t > a : u(t) > u(a)}. Since u(a) satisfies the global stability condition by
(6.23), the function u is clearly a constant energetic solution in [a, α]. Thus, Proposition 2.6
shows that it is not restrictive to assume that α = a.

In this case, ur(t) > u(a) for every t > a, so that ur(t) belongs to the interior of the domain of
W (·; ū); it follows from (6.24) that W ′(ur(t)) = W ′

i,r(ur(t)) = ℓ(t)− δ+ in (a, b], and also at t = a

by passing to the limit in the equation as t ↓ a. The formulation (5.6) of (DN) is thus satisfied
in [a, b].

Let us check now the point c) of Theorem 5.1 concerning the jump conditions. If t ∈ Ju, then
in view of (6.27) pū

c (ℓ(t) − δ+) contains two distinct points ul(t) < ur(t), so that the graph of
W ∗∗(·; ū) is linear on [ul(t), ur(t)]. Since ul(t), u(t), ur(t) belong to the contact set Cū, in view
of (6.10) the jump conditions (5.8) and (5.9) are also satisfied, and therefore u is an energetic
solution. �

We are now in the position to state the analogue of Theorem 4.5 for energetic solutions. We
also show a direct link with the notion of BV solution. To do this, we introduce the modified
energy

W̄ (u) := W (ū) +

∫ u

ū

W ′
i,r(r) dr, Ēt(u) := W̄ (u)− ℓ(t)u. (6.28)

Theorem 6.3. Let ℓ ∈ C1([a, b]) be a nondecreasing loading and let u ∈ BV([a, b];R) be an
energetic solution of (R,E,Ψ) satisfying

W (z)−W (u(a))

z − u(a)
> W ′

s,l(u(a)) for every z < u(a) if W ′
s,l(u(a)) = ℓ(a) + δ−, (6.29a)

W ′(z) < W ′(u(a)) in a left neighborhood of u(a) if W ′(u(a)) = ℓ(a) + δ−. (6.29b)

Then

a) u is also a BV solution of the rate-independent system (R, Ē,Π).
b) u can be represented as in Theorem 6.2, i.e.

u is nondecreasing, u(t) ∈ pu(a)
c (ℓ(t)− δ+) for every t ∈ (a, b]. (6.30)
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Proof. Claim 1: Let us suppose that ℓ and u are constant in the interval (ρ, σ) and σ ∈ Ju with
ur(σ) < ul(σ). If ρ ∈ Ju then also ur(ρ) < ul(ρ).

Let us denote by ℓ̄ and ū the constant value of ℓ and u on (ρ, σ); by continuity ℓ(σ) = ℓ(ρ) = ℓ̄
and ul(σ) = ur(ρ) = ū. We argue by contradiction and we suppose that ū = ur(ρ) > ul(ρ). The
jump conditions (5.9) and (5.10) yield

W (ū)−W (ur(σ)) = (ℓ̄+ δ−)(ū− ur(σ)), W (ū)−W (ul(ρ)) = (ℓ̄− δ+)(ū− ul(ρ)). (6.31)

Taking the difference of the two identities we get

W (ul(ρ))−W (ur(σ)) = (δ− + δ+)(ū− ul(ρ)) + (ℓ̄+ δ−)(ul(ρ)− ur(σ)) (6.32)

= (δ− + δ+)(ū− ur(σ)) + (ℓ̄− δ+)(ul(ρ)− ur(σ)) (6.33)

Clearly, the case ul(ρ) = ur(σ) is impossible; if ul(ρ) > ur(σ), upon dividing by ul(ρ) − ur(σ)
(6.32) yields

W ′
s,l(ul(ρ)) > ℓ̄+ δ−

which contradicts the first inequality of (5.5); if ul(ρ) < ur(σ), upon dividing by ul(ρ) − ur(σ)
(6.33) yields

W ′
i,r(ul(ρ)) < ℓ̄− δ+

which contradicts the last inequality of (5.5).

Claim 2: Let a < ρ ≤ σ ∈ Ju with ur(σ) < ul(σ), and let us assume that ρ ̸∈ Ju and ℓ and u are
constant in the interval (ρ, σ) if ρ < σ. If ur(t) ≤ ur(ρ) in a left neighborhood of ρ, then there
exists ε > 0 such that ℓ(t) ≡ ℓ(ρ) = ℓ(σ) and u(t) ≡ u(ρ) = ul(σ) for every t ∈ [ρ− ε, ρ]

As in the previous claim, let us denote by ℓ̄ = ℓ(ρ) and ū = ul(σ) the constant value of ℓ
and u on (ρ, σ). We argue by contradiction and we assume that there exists a sequence tn < ρ
converging to ρ such that un := ur(tn) ↑ ū, ℓn := ℓ(tn) ↑ ℓ̄ and un + ℓn < ū + ℓ̄. The global
stability and the jump condition (5.12b) yield

(ℓ̄+ δ−)(ū− ur(σ)) = W (ū)−W (ur(σ)) = W (ū)−W (un) +W (un)−W (ur(σ))

≤ W ′(ū)(ū− un) + o(ū− un) + (ℓn + δ−)(un − ur(σ)) as n → ∞.
(6.34)

If for some n̄ ∈ N un ≡ ū for every n ≥ n̄ then we get

(ℓ̄+ δ−)(ū− ur(σ)) ≤ (ℓn + δ−)(ū− ur(σ)),

which contradicts the assumption ℓn < ℓ̄. Up to extracting a suitable subsequence we can then
assume that un < ū for every n ∈ N, so that ū ∈ supp(u′)+ and W ′(ū) = ℓ̄− δ+ by (5.6). From
(6.34) we then get

(ℓ̄+ δ−)(ū− un) + (ℓ̄+ δ−)(un − ur(σ)) ≤ (ℓ̄− δ+)(ū− un) + (ℓn + δ−)(un − ur(σ)) + o(ū− un)

as n → ∞. so that

(δ− + δ+)(ū− un) + (ℓ̄− ℓn)(un − ur(σ)) ≤ o(ū− un) as n → ∞,

which can be satisfied only if for n sufficiently big un ≡ ū and ℓn ≡ ℓ̄. Hence, we have a
contradiction.

Claim 3: If for some t ∈ Ju ul(t) = u(a) and ℓ(t) = ℓ(a), then ul(t) < ur(t).

It is sufficient to notice that (6.29a) is not compatible with (5.10).

Claim 4:

Let a < σ′ < σ ≤ b such that

ℓ(t)−W ′(ur(t)) > −δ− = ℓ(σ)−W ′(ur(σ)) for every t ∈ [σ′, σ). (6.35)

Then σ ̸∈ Ju.

We argue by contradiction and assume that σ ∈ Ju. In view of (5.12a), necessarily

ul(σ) > ur(σ), (6.36)
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and (5.7) shows that ur is nondecreasing in [σ′, σ).

Let R := {ρ ∈ [a, σ] : ur(t) ≡ ul(σ), ℓ(t) ≡ ℓ(σ) for all t ∈ [ρ, σ]}. R is clearly closed and
contains σ. Let us show that R is open in [a, σ]: it is sufficient to prove that for every ρ ∈ R∩(a, σ],
the set R contains a left neighborhood of ρ (R obviously contains also a right neighborhood of ρ
if ρ < σ).

When ρ > σ′ we can easily check that we can apply Claim 2. Indeed, ur(t) ≤ ur(ρ) in a
left neighborhood of ρ since ur is nondecreasing in [σ′, σ). Further, ρ cannot be a jump point
for u thanks to Claim 1, which prevents a jump point with ul(ρ) < ur(ρ), and the fact that
ℓ(ρ)−W ′(ur(ρ)) > −δ−, which prevents a jump point with ul(ρ) > ur(ρ). By the way, this shows
that R ⊃ [σ′, σ].

If ρ ≤ σ′ we can still apply Claim 2, since we have that ℓ(ρ) = ℓ(σ′) and ur(ρ) = ur(σ
′), so

that ℓ(ρ)−W ′(ur(ρ)) > −δ−, u is nondecreasing in a left neighborhood of ρ by (5.7) and ρ ̸∈ Ju
by the same arguments above.

Since R is both open and closed, we conclude that R = [a, σ]. Claim 1 and Claim 3 yield
that a ̸∈ Ju so that ul(σ) = u(a) and ℓ(σ) = ℓ(a). A further application of Claim 3 gives the
contradiction with (6.36).

Claim 5: There exists α ∈ [a, b] such that ℓ(t) − W ′(ur(t)) > −δ− for all t ∈ (α, b] and
u(t) ≡ u(a), ℓ(t) ≡ ℓ(a) in [a, α].

Let us consider the set

Σ := {t ∈ [a, b] : W ′(ur(t)) = ℓ(t) + δ−}, (6.37)

and observe that

tn ∈ Σ, tn ↓ t ⇒ t ∈ Σ. (6.38)

If a ∈ Σ we denote by Σa the connected component of Σ containing a, and we set α = supΣa.
If α > a, then

W ′(ur(t)) = ℓ(t) + δ− for every t ∈ [a, α], (6.39)

so that by (5.6) u is nonincreasing in [a, α]. Assumption (6.29a) and the jump conditions
(5.12b) imply that a ̸∈ Ju and ur(a) = u(a). Since also ℓ is nondecreasing we conclude by (6.29b)
and (5.7) that u(t) ≡ u(a) and ℓ(t) ≡ ℓ(a) in [a, α]; moreover, by the same argument, α ̸∈ Ju so
that α ∈ Σ. When a ̸∈ Σ we simply set α := a and Σa = ∅.

The Claim then follows if we show that Σ \ Σa is empty. This is trivial if α = b. If α < b we
suppose Σ \ Σa ̸= ∅ and we argue by contradiction.

We can find points α2 > α1 > α such that α1 ̸∈ Σ, and α2 ∈ Σ. By (6.38) we can consider
σ := min(Σ ∩ [α1, b]) > α1 > α; Claim 4 (with σ′ := α1) yields that σ ̸∈ Ju, so that we can find
ε > 0 such that

−δ− < ℓ(t)−W ′(ur(t)) < δ+ for every t ∈ (σ − ε, σ). (6.40)

Point b) of Theorem 5.1 implies that ur(t) = u(t) ≡ ul(σ) = ur(σ) is constant in (σ−ε, σ). Hence,
W ′(ur(t)) ≡ W ′(ur(σ)) = ℓ(σ) + δ− ≥ ℓ(t) + δ− for every t ∈ (σ − ε, σ), since ℓ is nondecreasing
and σ ∈ Σ. This contradicts (6.40).

Claim 6: u is nondecreasing on [a, b].

It follows immediately from (5.7) and Claim 5.

Claim 7: Let B := {t ∈ [α, b] : W ′
i,r(u(a)) + δ+ = ℓ(t)} and let β := minB (with the convention

β := b if B is empty). Then u(t) ≡ u(a) in [a, β) and

W ′
i,r(ul(t)) = W ′

i,r(ur(t)) = ℓ(t)− δ+ for all t ∈ (β, b]. (6.41)

In particular, ul(t) ≥ pūl (ℓ(t)− δ+) for all t ∈ (β, b].

The first statement follows from the previous Claim and (5.6).
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To prove the second identity in (6.41) for ur(t), we argue by contradiction and we suppose
that a point s ∈ (β, b] exists such that if W ′

i,r(ur(s)) + δ+ > ℓ(s). Then, by (5.12a) s is not a

jump point, and therefore in view of point b) of Thm. 5.1, u is locally constant around s. Since
ℓ is nondecreasing, because of (5.6) we conclude that u(t) ≡ u(s) for every t ∈ [α, s], so that
s ≤ β, a contradiction.

The first identity in (6.41) then follows by continuity. The last statement of Claim 7 is a
consequence of the first of (6.21).

Claim 8: for all t ∈ [a, b] we have ur(t) ≤ pūr (ℓ(t)− δ+).

The statement is obvious if ur(t) = ū = u(a). If ur(t) > ū, let z ∈ (ū, ur(t)): since u is
nondecreasing we find s ∈ [a, t] such that z ∈ [ul(s), ur(s)], so that (5.9) (in the case s ∈ Ju) or
(5.6) (in the case ul(s) = ur(s)) yield

W ′
i,r(z) ≤ ℓ(s)− δ+ ≤ ℓ(t)− δ+.

Since z is arbitrary, we conclude by the second of (6.21).

Claim 9: conclusion.

In order to check point a), we apply Theorem 4.3. In fact, due to the previous claims, u fulfills
(4.20) with the energy W̄ (6.28).

Recalling Lemma 6.1, it is easy to check that also b) holds. In fact Claims 7 and 8 yield

u(t) ∈ [pūl (ℓ(t)− δ+), p
ū
r (ℓ(t)− δ+)] = pū(ℓ(t)− δ+) for every t ∈ (a, b]. (6.42)

Identities (6.41) and (6.20) show that ur(t), ul(t) ∈ Cū for t > a. The jump condition (5.8) also
yields that u(t) ∈ Cū, and we conclude by definition (6.15). �

Remark 6.4. In view of Proposition 2.5, a characterization of energetic solutions analogous to
the one provided in Thm. 6.3 could be given in the case of a decreasing loading as well, cf. also
Corollary 4.6.

Finally, we conclude with an example, to be compared with Ex. 4.7, which illustrates energetic
evolution in the case of a nonconvex double-well potential energy.

Example 6.5 (Energetic solutions driven by a double-well energy). We consider the very same
setting as in Example 4.7, viz. the double-well energy

W (x) =
1

4
(x2 − 1)2 for all x ∈ R,

and a strictly increasing loading ℓ on [0, T ]. We start from an initial datum ū ∈ (u∗,−1) with
u∗ as in (4.38). In order to illustrate the input-output relation on the interval [0, t1], we consider
the convexification of W on [ū,+∞), viz.

W ∗∗(u; ū) =


1
4 (u

2 − 1)2 if u ≤ −1,

0 if − 1 ≤ u ≤ 1,
1
4 (u

2 − 1)2 if u ≥ 1.

with
d

du
W ∗∗(u; ū) =


u3 − u if u ≤ −1,

0 if − 1 ≤ u ≤ 1,

u3 − u if u ≥ 1.

Therefore, taking into account the explicit form of d
duW

∗∗(·; ū)−1
in terms of the functions Si,

i = 1, 3, in (4.39), we find the energetic solution

u(t)


= S1(ℓ(t)− δ+) if ℓ(t) < δ+,

∈ [−1, 1] if ℓ(t) = δ+,

= S3(ℓ(t)− δ+) if ℓ(t) > δ+

for all t ∈ [0, T ].
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