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Abstract

Under time-dependent loading, an elastic material is undergoing the simplest form of
damage, that which consists in passing from its original state to a weaker elastic state.
Elaborating on prior work [FM93], we establish existence of a relaxed variational evolution
where, at each time, the two states of the material combine to form a fine mixture, optimal
from the standpoint of the applied load at that time, yet preserving the irreversibility of
the damaging process.
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1 Introduction

The recognition that the elastic response of some materials deteriorates throughout loading
history was born out of the use of new materials like concrete in civil works. In the initial
loading phase of an elastic sample, damage is at first undistinguishable from plasticity; when
unloading occurs however, the damaged sample will return to an unstrained configuration,
in contrast to the plastified sample, which will have undergone irretrievable stretches. But
then, the sample will be less stiff than it was to start with. This simple mechanism is the
macroscopic expression of a slew of usually ill-defined micro-events. Thus, the initial modeling
of damage could only be phenomenological [Kac58].

The phenomenological approach is conceptually straightforward. The stiffness tensor
(Hooke’s law) of the material, A(x, t), is assumed to be a given function of some damage
variable, α(x, t). The evolution of α is then governed by a criterion, as in plasticity, or,
”equivalently”, by some differential equation.

More recently, this approach was deemed too simplistic and, encouraged by the develop-
ment of the theory of mixtures, many mechanicians proposed to establish the relationship
between α to A through a homogenization procedure. They postulated a microstructure
parameterized by α (the micro-mechanism) and computed A(α) as the macroscopic resulting
stiffness (see e.g. the references in [FM93]).
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In this paper, we only consider the case of partial brittle damage. For us, brittle means
that, at a given point, the material is either healthy or damaged, or, equivalently, that
the damage variable is a marker (say the characteristic function of the healthy part of the
material); partial means that the damaged state retains some amount of elastic stiffness.
The starting phenomenology is thus minimal. The merits of the approach that we follow
here were discussed at length in [FM93] and we refer the mechanically inclined reader to the
introduction of that paper. The mechanical background is discussed in Section 2 below, as
well as the ensuing methodology. For now, it suffices to say that we view damage evolution as
a time-parameterized minimization problem, or, in other word, postulate that, at each time,
the material seeks to minimize an energy in which the stored elastic energy competes with
the damage induced dissipated energy. As will be clear in the next section, this is but a slight
departure from the classical thermodynamical modeling of brittle damage, provided that the
material behavior is independent of the rate at which the loads vary. The consequence of
that departure are however drastic.

We will show (see Theorem 4.1) that the resulting evolution is that of a progressively
damaging material; the damage variable is now the local volume fraction of healthy mate-
rial; it decreases with time. The corresponding stiffness is not imposed, but the result of
a minimization process; it is unambiguously determined. So, in spite of a paucity of initial
ingredients, the obtained model has many riches. Once again, we refer to [FM93] for a more
detailed discussion.

¿From a mathematical standpoint, the present paper goes beyond the material presented
in [FM93] and should be seen as the outcome of a maturation process initiated in that paper.
In effect, the cited reference carried the germs of an approach which has proved fruitful in
other settings and there is by now a growing number of papers that view quasi-static evolution
for rate-independent material behavior as time-parameterized minimization problems, be it
in plasticity [OR99, DDM, Mie03, Mie04], fracture [FM98, FL03, DT02, DFT05], or phase
transition [MT04, MTL02, FM]. The methodology is always the same: perform a step by
step minimization, in effect dicretizing the time variable, then let the time-step tend to 0.
The resulting field(s) will satisfy the postulated evolution, which is thus mathematically well-
posed. In the case of damage, an additional hurdle should be overcome. At the first time
step, the minimization problem has no solution; we need to relax the original problem. In
doing so, we lose the brittle character of the damaging process; the damage variable becomes
a volume fraction of the strong material in a mixture of strong and weak materials. But then,
the implementation of the subsequent steps becomes problematic, as explained in Subsection
5.1. This is precisely where the paper [FM93] stalled.

In this paper, that obstacle is removed and the relaxed evolution is derived. This is, to our
knowledge, the first paper that combines quasi-static variational evolution with relaxation.
The only other work we are aware of in this direction is [CT], where, for single-slip plasticity,
a relaxation process for the time-discrete evolution is obtained.

The paper is organized as follows: Section 2 is devoted to a derivation of the model
under investigation and it has a mechanical bias. Section 3 briefly introduces the concepts
of homogenization that will be needed in the subsequent analysis. The evolution result is
stated and commented upon in Section 4. In Section 5, the time discretization is detailed,
while Section 6 details the limit process as the time-step vanishes. Finally, Section 7 checks
the relevance of the obtained well-posed progressive evolution to the original ill-posed brittle
evolution, in essence discussing the optimality of the obtained evolution.
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2 The mechanical model

We consider an elastic material with elastic energy W , and assume geometric, as well as
constitutive linearity. In other words, the elastic energy is a quadratic function of the strain
tensor e, that is

W (e) :=
1
2
Ae.e,

where A is the Hooke’s law, an element of

F(α, β) := {B fourth order tensors with the symmetries: Bijkh = Bkhij = Bjikh,

such that Be.e ∈ [αe.e, βe.e], e symmetric ∈ RN × RN}.

The material occupies a domain Ω ∈ RN . The state of possible damage is characterized by
an internal variable χ ∈ [0, 1], which may vary from point to point, so that W is a function
of both e and χ; the greater the damage, the weaker the material, so that W (e, χ) ↘ as
χ ↗, or still A is a function of χ with A(χ) ↘ as χ ↗, by which we mean that A(χ)e.e ≥
A(χ′)e.e, ∀e symmetric ∈ RN × RN , χ ≤ χ′. Clearly if e and e′ are in RN × RN , we denote
e.e′ := tr((e′)T e).

It is “classical” in thermodynamics [Ger73] to write a constitutive law that relates the
thermodynamic force

F := − ∂

∂χ
W (e, χ),

to a dissipation potential D, lower semi-continuous and convex in χ̇. Thus,

F(t) ∈ ∂D(χ̇(t))

at each point of Ω.
Traditionally, damage models are viewed as rate-independent [LC85]. Here, we yield to

tradition and consequently assume that D is positively homogeneous of degree one in the
variable χ̇.

Now, since damage is by essence irreversible, the expression for D should prohibit any
decrease in χ. The simplest dissipation potential endowed with the two required features is

D(s) :=
{

ks, s ≥ 0
∞, s < 0.

We are unfortunately unable to fathom dynamics in the context of damage, but find
comfort in sharing our misery with other researchers in the field. Thus, quasi-static behavior
is assumed throughout; in other words, at each time, the domain is in elastic equilibrium with
the data. In the sake of simplicity, those will consist only of a time-dependent body load
f(t), while the boundary ∂Ω of the investigated sample will be kept clamped. The reader
should be assured that this is no restriction, but merely convenience (see Remark 4.2).

Summarizing, from a P.D.E. standpoint the pair solution (u(t), χ(t)) satisfies the following
system: 

−div
(

∂W

∂e
(e(u(t)), χ(t))

)
= f(t), u(t) = 0 on ∂Ω,

−∂W

∂χ
(u(t), χ(t)) ∈ ∂D(χ̇(t)), χ(0) = χ0,
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or still, for t ≥ 0, 

−div (A(χ(t))e(u(t))) = f(t), u(t) = 0 on ∂Ω,

−1
2

dA

dχ
(χ(t))e(u(t)).e(u(t)) ≤ k,(

1
2

dA

dχ
(χ(t))e(u(t)).e(u(t)) + k

)
χ̇(t) = 0,

χ̇(t) ≥ 0, χ(0) = χ0.

(2.1)

¿From a classical standpoint, this model is intractable, and this had led many to introduce
a regularizing term in the form of a gradient of the internal variable (see e.g. [FN96, LA99,
Fré02, IN04]). Refraining from temptation, we however limit our analysis to the very special
case where the material only lives in a healthy state, the strong, undamaged state indexed
henceforth with the subscript s, and a damaged state, the weak state indexed henceforth
with the subscript w. We thus enforce brittleness in the form of a single damaged state.
Specifically, we assume that

W (e, χ) =
1
2
(χAw + (1− χ)As)e.e, χ ∈ {0, 1}, As, Aw ∈ F(α, β).

In effect, χ can be thought of as the characteristic function of the damaged material.
Now, as was already explained at length in [FM93], we cannot let the material lose all of

its stiffness; we thus impose positive definiteness of Aw, so that

As ≥ Aw > 0 (2.2)

as quadratic forms acting on symmetric N ×N matrices.
For a given pair (v, ζ) ∈ H1

0 (Ω; RN ) × L∞(Ω; {0, 1}), we define the potential energy at
time t as

E(t, v, ζ) :=
∫

Ω
W (e(v), ζ)dx− 〈f(t), v〉,

and the dissipation as

D(ζ) := k

∫
Ω

ζdx.

Assuming for now that the evolution (2.1) makes sense and that (u(t), χ(t)) do exist
over the time of existence of the data, say [0, T ], and that they (and the loads) are smooth
enough for all that follows to be meaningful, a straightforward computation demonstrates
that (u(t), χ(t)) satisfies (2.1) if, and only if, with obvious notation,

(ULM) (u(t), χ(t)) satisfies a first order (unilateral) minimality condition for E(t, v, ζ)+kD(ζ)
among all v ∈ H1

0 (Ω; RN ) and ζ ≥ χ(t) (unilateral local minimality);

(IR) χ̇(t) ≥ 0 (irreversibility);

(EB)
d

dt

(
E(t, u(t), χ(t)) + D(χ(t))

)
= −〈ḟ(t), u(t)〉. After integrating over [0, t] this also

reads as

E(t, u(t), z(t)) + D(χ(t)) = E(0, u(0), χ0) + D(χ0)−
∫ t

0
〈ḟ(s), u(s)〉ds,

which, through an elementary integration by parts, becomes a statement of what is
sometimes referred to as the mechanical version of the second law of thermodynamics
[Gur00] (energy balance).
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In conclusion, the classical quasi-static evolution of a linearly elastic material undergoing
brittle partial damage is described through items (ULM), (IR), (EB) above. Let us emphasize
that, up to this point, the proposed model cannot be challenged by mechanicians on the
ground of mathematical divagation, because it is precisely that which is used in a large
segment of the mechanics community.

In [FM93], it was proposed to (ever so slightly) depart from that model, replacing item
(ULM) above by the following global minimality statement:
(UGM) (u(t), χ(t)) satisfies

E(t, u(t), χ(t)) + kD(χ(t)) ≤ E(t, v, ζ) + kD(ζ)

among all v ∈ H1
0 (Ω; RN ) and ζ ≥ χ(t) (unilateral global minimality).

Of course, the stability criterion (UGM) should not be construed as an effort to introduce
a new thermodynamic principle, but rather as a first attempt to deal constructively with
(ULM). A better statement would certainly be local unilateral minimality; unfortunately,
this immediately begs the question of the meaning of locality, a usually distance dependent
notion, and, in any case, the mathematical locality toolbox is pretty empty at present.

Summarizing, we propose to investigate, for smooth enough data f , the evolution problem
(UGM), (IR), (EB). It seems natural, both from a numerical and a mathematical stanpoint,
to tackle this evolution through time discretization and this is the route that was suggested
in [FM93]. Taking a partition of [0, T ] into 0 = tn0 ≤ . . . ≤ tnk(n) = T , and setting

∆n := tni+1 − tni , fn
i := f(tni ) (f0 := fn

0 = f(0)),

we propose to find, for i ≥ 0: (un
i+1, χ

n
i+1) minimizer for∫

Ω
W (e(v), ζ)dx− 〈fn

i+1, v〉+ k

∫
Ω

ζdx

among all pairs (v, ζ) with v = 0 on ∂Ω and ζ(x) ≥ χn
i (x) a.e. in Ω. Henceforth, 〈, 〉 denotes

the duality pairing between H1
0 (Ω; RN ) and H−1(Ω; RN ), unless otherwise stated.

Remark 2.1 Note that the irreversibility constraint (IR) is encoded in the unilateral con-
straint on the admissible ζ’s, while energy balance (EB) seems to have been forgotten alto-
gether.

This scheme has proved successful in a few settings that were already mentioned in the
introduction; as the time-step tends to zero, the approximations are expected to converge
to a time-continuous evolution, which provides a “weak” solution for (2.1). We will see
in the next section that the current setting is less accommodating, as had been noted in
[FM93]. This is because the incremental minimization problem is ill-posed from the start
and relaxation is required.

Remark 2.2 In [FM93], it was assumed that, besides (2.2),

Aw is isotropic, i.e. (Aw)ijkh = λwδijδkh + µw(δikδjh + δihδjk).

That restriction is not essential to the model and can be done away with. It is important if
one desires more explicit expressions for the various energies that come into play. This issue
was central to [FM93], and should remain so if numerical implementation is contemplated. It
is peripheral here, because our main goal is to provide a mathematically well-posed evolution;
we thus drop that assumption in the sequel, keeping in mind that it should be re-introduced
when concrete examples are investigated.
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3 Homogenization

Homogenization is the main tool in the relaxation of the discrete evolution. We recall, for
the reader’s convenience, the notions of homogenization and of H-convergence, as introduced
in e.g. [MT97], and specialize them to the case of two-phase mixtures of linearly elastic
materials.

Consider a sequence An ∈ L∞(Ω;F(α, β)); we recall that, as in Section 2,

F(α, β) := {B fourth order tensors with the symmetries: Bijkh = Bkhij = Bjikh,

such that Be.e ∈ [αe.e, βe.e], e symmetric ∈ RN × RN}.

We solve, for any body force f ∈ H−1(Ω; RN ), the equilibrium equation

−div [An(e(un))] = f, un ∈ H1
0 (Ω; RN ),

where the strain tensor e(un) is given by e(un) := 1/2(∇un + (∇un)T ).
We say that An H

⇀ A, A ∈ L∞(Ω;F(α, β)), iff un ⇀ u, weakly in H1
0 (Ω; RN )

Ane(un) ⇀ Ae(u), weakly in L2(Ω; RN × RN ),

where u is the solution of

−div [Ae(u)] = f, u ∈ H1
0 (Ω; RN ),

Now, let B and C be the stiffness tensors (Hooke’s laws) of each phase, that is elements
of F(α, β). We look, for any mixture of those two phases – that is for any characteristic
function χ of, say, phase B – at a new elastic material with stiffness

Bχ := χB + (1− χ)C.

Considering a sequence of characteristic functions χn ⇀ θ, weak-* in L∞(Ω), we then
investigate the possible H-limits of Bχn .

The properties of H-convergence that will be needed are

• Compactness: for any sequence An ∈ L∞(Ω;F(α, β)), there exists a subsequence, Ak(n)

and A ∈ L∞(Ω;F(α, β)) such that An H
⇀ A;

• Convergence of the energy: if An H
⇀ A, then, with un and u defined as above,∫

Ω
Ane(un).e(un) dx →

∫
Ω

Ae(u).e(u) dx;

• Metrizability: H-convergence is associated to a metrizable topology on L∞(Ω;F(α, β));

• Ordering: if Bn ≤ An and Bn H
⇀ B, An H

⇀ A, then B ≤ A (the inequalities are in the
sense of quadratic forms, that is Bne.e ≤ Ane.e, ∀e symmetric ∈ RN × RN .);

• Locality: if Bn H
⇀ B, An H

⇀ A, and χ is a characteristic function on Ω, then χBn +(1−
χ)An H

⇀ χB + (1− χ)A;
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• Periodicity: if An(x) := A(nx), with A ∈ L∞([0, 1]N ;F(α, β)), then the whole sequence
An H-converges to A, which is the constant tensor given by

Ae.e = inf
ϕ periodic

∫
[0,1]N

A(y)(e + e(ϕ)).(e + e(ϕ)) dy. (3.1)

In the case of a two-phase material, Bχn(x) = χ(nx)B + (1 − χ(nx))C, with χ ∈
L∞([0, 1]N ; {0, 1}) and we speak of periodic mixtures in volume fraction θ :=

∫
[0,1]N χ dy

of material B.

For a given weak-* limit θ ∈ L∞(Ω, [0, 1]) of χn, we introduce the set Gθ(B,C) ⊂ F(α, β)
as the set of all possible H-limits of Bχn , when χn is only restricted through its target θ.
Then, a locality result of [DK] asserts that

Gθ(B,C) = {D ∈ F(α, β) : D(x) ∈ Gθ(x)(B,C), a.e. in Ω}, (3.2)

where the set Gθ(B,C) is the set of all H-limits resulting from the periodic mixture of B and
C in respective volume fractions θ, 1 − θ. The determination of the set Gθ(B,C), or of its
closure in the set of fourth order tensors Gθ(B,C), is a problem of paramount significance
in the theory of mixtures, but it is merely a collateral issue here. Of course our ability
to implement the proposed method in practice will be severely tested if we lack minimal
information on that set. As will be seen later, the only required knowledge is that of the
minimum, for any fixed e, of Ae.e over A ∈ Gθ(B,C), so that we do not need to know
Gθ(B,C), but only its tangent hyperplanes with normal vectors located in the first quadrant.

Let us elaborate on the already evoked metrizable character of H-convergence. The
associated distance is easily constructed. Consider a countable subset {gk} of L2(Ω, RN ),
dense in the unit ball. For any B ∈ L∞(Ω,F(α, β)) and for any k, we denote by uB

k the
solution to the following Dirichlet problem

−div [B(e(uB
k )] = gk uB

k ∈ H1
0 (Ω, RN ) . (3.3)

We now consider, for any A,B ∈ L∞(Ω,F(α, β)),

dH(A,B) :=
∞∑

k=1

1
2k

∣∣∣∣∫
Ω

Ae(uA
k ).e(uA

k )−Be(uB
k ).e(uB

k ) dx

∣∣∣∣ .

It is easily checked that this expression defines a distance on L∞(Ω,F(α, β)) and that
a sequence of elements of L∞(Ω,F(α, β)) H-converges if, and only if it converges for the
distance dH . Moreover, since ‖gk‖L2 = 1, k ∈ N, we immediately get that there exists a
constant C such that for every A,B ∈ L∞(Ω,F(α, β))

dH(A,B) =
∞∑

k=1

1
2k

∣∣∣∣∫
Ω

gk(uA
k − uB

k ) dx

∣∣∣∣ ≤ ∞∑
k=1

1
2k
‖uA

k − uB
k ‖L2 ≤ C (3.4)

A generalization of Helly’s theorem for functions with value in a metric space [MM05]
now permits to prove the following

Theorem 3.1 Assume that An(t) ∈ L∞(Ω,F(α, β)), t ∈ [0, T ], is monotonically decreasing,
that is that, if t ≤ t′,

An(t)e.e ≥ An(t′)e.e, ∀e symmetric ∈ RN × RN , a.e. in Ω.
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Then, there exists a subsequence {p(n)} of {n} and a monotonically decreasing A(t) ∈
L∞(Ω,F(α, β)), t ∈ [0, T ] such that

Ap(n)(t) H→ A(t), t ∈ [0, T ].

Proof. The total variation of An, that is

VardH
(An, [0, T ]) := sup{

h∑
i=1

dH(An(ti), An(ti+1)) : h ∈ N 0 = t1 < t2 < ... < th = T},

is uniformly bounded. Indeed, given t′ ≤ t, set un
k(t) := uAn

k (t) and un
k(t′) := uAn

k (t′) (see
(3.3)). Since An is monotone in t,

0 ≤
∫

Ω
An(t)(e(un

k(t))− e(un
k(t′))).(e(un

k(t))− e(un
k(t′))) dx ≤∫

Ω
An(t)e(un

k(t)).e(un
k(t)) dx+

∫
Ω
An(t′)e(un

k(t′)).e(un
k(t′)) dx− 2

∫
Ω

An(t)e(un
k(t)).e(un

k(t′)) dx

=
∫

Ω
gku

n
k(t)dx +

∫
Ω

gku
n
k(t′)dx− 2

∫
Ω

gku
n
k(t′)dx =

∫
Ω

gku
n
k(t)dx−

∫
Ω

gku
n
k(t′)dx,

so that ∫
Ω

gku
n
k(t′)dx ≤

∫
Ω

gku
n
k(t)dx,

or still ∫
Ω

An(t′)e(un
k(t′)).e(un

k(t′)) dx ≤
∫

Ω
An(t)e(un

k(t)).e(un
k(t)) dx . (3.5)

Consequently, in view of the definition of dH ,

VardH
(An, [0, T ]) = dH(An(0), An(T )) ≤ C . (3.6)

We are then in a position to apply Theorem 3.2 in [MM05], which we restate here in a
form that is convenient in the current framework.
Theorem Let (Y, d) be a compact metric space and let Yn : [0, T ] → Y be a sequence with
equibounded total variation Vard(Yn, [0, T ]) with respect to the distance d. Then, there exists
a subsequence {p(n)} of {n} and a function Y : [0, T ] → Y such that

d(Yp(n)(t), Y (t)) n→ 0, ∀ t ∈ [0, T ] .

In view of (3.6), we can apply the above theorem to the sequence An in L∞(Ω,F(α, β))
equipped with the distance dH and we obtain the existence of a subsequence {p(n)} of {n},
and of A(t) ∈ L∞(Ω,F(α, β)) such that Ap(n)(t) H-converges to A(t) for every t ∈ [0, T ].
The monotonically decreasing character of Ap(n)(t) in t is preserved by H-convergence, so
that A(t) is indeed monotonically decreasing. This completes the proof.

Remark 3.2 Note that, by the definition of the distance dH , if An(t) ∈ L∞(Ω,F(α, β)), t ∈
[0, T ], is monotonically decreasing in t and H-converges to A(t) (also monotonically decreasing
in t), then dH(An(t), A(t)) is a measurable function because it is a countable sum of absolute
values of differences of monotone functions. Further, dH(An(t), A(t)) n→ 0, for any t ∈ [0, T ].
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Finally, it is uniformly bounded in t and n by virtue of (3.4). Thus, applying the dominated
convergence theorem, we get ∫ T

0
dH(An(t), A(t)) dt

n→ 0.

This is true in particular for the subsequence Ap(n)(t) of Theorem 4.1.

The previous remark, and the analogous remark below concerning weak-* convergence,
will prove useful in passing to the limit in the discretization increment (Section 6), as well as
in discussing optimality of the obtained evolution (Section 7).

Remark 3.3 Theorem 3.2 in [MM05] also applies to the unit ball in L∞(Ω; [0, 1]), a met-
ric and compact set for the weak-* topology. Thus, an argument identical to that lead-
ing to Theorem 3.1 would show that, if Θn(t) ∈ L∞(Ω; [0, 1]), t ∈ [0, T ], is monotonically
decreasing in t, there exists a subsequence {p(n)} of {n} and a monotonically decreasing
Θ(t) ∈ L∞(Ω; [0, 1]), t ∈ [0, T ], such that

Θp(n)(t)L∞
⇀Θ(t), t ∈ [0, T ].

Furthermore, the analogue of Remark 3.2 also holds true in this latter setting with dH

replaced by the distance d∗ associated to the weak-* topology on the unit ball.

4 The main result

As already mentioned, we will construct a quasi-static damage evolution by means of a
discrete time approximation. The following theorem is the main result of the paper.

Theorem 4.1 Consider two materials with respective stiffness tensors Aw and As, both in
F(α, β) and satisfying (2.2). Assume that Ω is Lipshitz and that

f ∈ W 1,1(0, T ;H−1(Ω; RN )). (4.1)

There exist, for each t ∈ [0, T ], u(t) ∈ H1
0 (Ω; RN ), Θ(t) ∈ L∞(Ω), A(t) ∈ G1−Θ(t)(Aw, As),

such that

• Initial time: u(0), A(0) and (1−Θ(0)) minimize∫
Ω

1
2
Ae(v).e(v) dx− 〈f(0), v〉+ k

∫
Ω

θ dx,

and this, for any v ∈ H1
0 (Ω; RN ), any θ ∈ L∞(Ω; [0, 1]) and any A ∈ Gθ(Aw, As);

• Monotonicity: A(t) and Θ(t) are decreasing functions of t, as well as Θ(t) :=
∫

Ω
Θ(t) dx;

• Continuity: u is continuous with values in H1
0 (Ω; RN ), except at the (at most countable)

discontinuity points of Θ; specifically, for every t, t′ ∈ [0, T ],

‖u(t′)− u(t)‖H1
0 (Ω;RN ) ≤ C‖f(t′)− f(t)‖H−1(Ω;RN ) +

(
Θ(t′)−Θ(t)

) 1
2 ; (4.2)
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• One-sided minimality: u(t), A(t) minimize∫
Ω

1
2
Ae(v).e(v) dx− 〈f(t), v〉+ k

∫
Ω

Θ(t)θ dx,

and this, for any v ∈ H1
0 (Ω; RN ), any θ ∈ L∞(Ω; [0, 1]) and any A ∈ Gθ(Aw, A(t));

• Energy balance: The total energy

T (t) :=
∫

Ω

1
2
A(t)e(u(t)).e(u(t)) dx− 〈f(t), u(t)〉+ k

∫
Ω
(1−Θ(t)) dx

satisfies

T (t) = T (0)−
∫ t

0
〈ḟ(σ), u(σ)〉 dσ. (4.3)

This theorem describes a well-posed evolution process for brittle damage in a linearly
elastic material; the internal damage variable is the volume fraction Θ of the strong (undam-
aged) material, while the corresponding stiffness is well-defined as a function of Θ (although
possibly non-unique). In doing so, we have in effect replaced a model of partial brittle dam-
age with a richer one of partial progressive damage. As already noted in [FM93], we do not
postulate the stiffness dependence upon Θ, which contrasts sharply with the phenomenolog-
ical approach; nor do we a priori assume an underlying microstructure and an accompanying
micro-mechanism for damage, which in turn contrasts with the micro-mechanical approach.

If, perchance, Θ(t) = 1 − χ(t) with χ ∈ W 1,1((0, T );L∞(Ω; {0, 1})), then the pair
(u(t), χ(t)) is a solution of the original system (2.1).

Remark 4.2 Let us reiterate that, in the above theorem, the consideration of a force load
f ∈ W 1,1(0, T ;H−1(Ω; RN )) as only external load is unessential (not so however its ab-
solute continuous character). With nearly no modifications, we could also consider time-
dependent surface tractions: to this effect, it would suffice to consider f as belonging to
the space W 1,1(0, T ; [H1]∗(Ω; RN )), where [H1]∗(Ω; RN ) is the dual of H1(Ω; RN ), identi-
fied with H−1(Ω; RN ) × H− 1

2 (∂Ω; RN ). In doing so, f becomes (fvol, fsurf ), with fvol ∈
W 1,1(0, T ;H−1(Ω; RN )) and fsurf ∈ W 1,1(0, T ;H− 1

2 (∂Ω; RN )). Then the duality pairing
〈f, u〉 is replaced by the sum of the two duality pairings 〈fvol, u0〉 + 〈fsurf , u∂Ω〉 with u =
(u0, u∂Ω), u0 ∈ H1

0 (Ω; RN ), u∂Ω ∈ H
1
2 (∂Ω; RN ).

As far as time-dependent displacement boundary conditions are concerned, a condition
like u = g(t) on ∂Ω, with g ∈ W 1,1(0, T ;H− 1

2 (∂Ω; RN )) could be incorporated into the
statement of Theorem 4.1, at the expense of adding to the right hand-side of (4.3) the term∫ t

0

[∫
Ω

A(s)e(u(s)).e(ġ(s)) dx− 〈f(s), ġ(s)〉
]

ds,

where g has been suitably extended to an element in W 1,1(0, T ;H1(Ω; RN )).

Remark 4.3 The estimate (4.2), and of the monotone character of Θ indicate that both u
and Θ have at most a countable number of jumps as t increases from 0 to T . It would be
reasonable to expect continuity of both u and Θ in time. Unfortunately, this is not so as is
easily demonstrated through the following one-dimensional example.

Consider Ω := (0, L), Aw = α and As = β > α. Apply an ever increasing force f(t) = t at
the extremity x = L, while maintaining the other extremity fixed. Thus, the ambient space
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is H := {v ∈ H1(0, L); v(0) = 0}. For a given volume fraction θ = 1 − Θ of weak material,
the set Gθ(α, β) is reduced to a single point, namely the harmonic mean

a(θ) :=
αβ

θ(β − α) + α
.

So, for a given θ(x, t), the minimal u(x, t) satisfies

− d

dx

(
a(θ(x, t))

du

dx
(x, t)

)
= 0, u(0, t) = 0, a(θ(L, t))

du

dx
(L, t) = t.

In this special context, one-sided minimality reduces to pointwise in x monotonicity of θ(x, t).
A straightforward computation would establish that, for all but one t, the quasistatic evolu-
tion is unique, and that it is given, for a.e. x ∈ (0, L), by

θ(x, t) =


0, if t2 < 2k

αβ

β − α

1, if t2 > 2k
αβ

β − α
.

In terms of notation, in the remainder of the paper, C will denote a generic positive
constant, so that e.g. 2C = C.

5 Time discretization

In this section we proceed to analyze (and considerably modify) the discretization scheme
proposed in [FM93]. To this effect, it is best to first focus on the initial time step.

5.1 The first time step

This subsection constitutes the bulk of the analysis presented in [FM93]. Here, we merely
recall a few conclusions from that paper.

At the first time step, t0 = 0, we wish to minimize, over (v, χ) ∈ H1
0 (Ω; RN ) ×

L∞(Ω;{0, 1}), ∫
Ω

[
1
2
(χAw + (1− χ)As)e(v).e(v) + kχ

]
dx− 〈f0, v〉,

with f0 := f(0). It is straightforward to eliminate χ in the minimization process, and we are
thus left with the minimization over v ∈ H1

0 (Ω; RN ) of∫
Ω

W (t0, e(v)) dx− 〈f0, v〉,

where

W (t0, e) := min
{

1
2
Awe.e + k,

1
2
Ase.e

}
.

But the energy density W (t0, ·) is not convex, and the infimum

I(t0) := inf
v

∫
Ω

W (t0, e(v)) dx− 〈f0, v〉

11



strong energy density

weak energy density

k

– Original energy density at first time step –

is generically not attained. It is by now classical [Bal77, BM86] that

I(t0) = min
v

∫
Ω

QW (t0, e(v)) dx− 〈f0, v〉, (5.1)

where the quasi-convex envelope QW (t0, ·) of W (t0, ·) is given through

QW (t0, e) = inf
ϕ periodic

∫
[0,1]N

W (t0, e + e(ϕ)) dx.

Note that the perhaps more familiar Dirichlet boundary conditions may be imposed on the
test ϕ’s, in lieu of periodic boundary conditions [BM86].

In the particular case at hand, it is then immediately seen, with the definition of the
Gθ-closure recalled in Section 3, that

QW (t0, e) = inf
0≤θ≤1

[
inf

A∈Gθ(Aw,As)
{1
2
Ae.e}+ kθ

]
.

It is also true, although far from immediate, that the infima in the above formula can be
replaced by minima (see [MT85]), at the expense of replacing Gθ(Aw, As) by its closure
Gθ(Aw, As) (in RN × RN ), so that, finally

QW (t0, e) = min
0≤θ≤1

[
min

A∈Gθ(Aw,As)
{1
2
Ae.e}+ kθ

]
. (5.2)

Remark 5.1 It is one of the central tasks in [FM93] to derive as explicit an expression for
QW (t0, e) as feasible. This is also part of the study of energy bounds to be found in [AK93].

Now, let u0 be a minimizer for (5.1), and call θ0 and A0 measurable minimizers of the
right hand-side of (5.2) for e ≡ e(u0). Denote by Θ0 := 1− θ0 the volume fraction of strong
material. Then

QW (t0, e(u0)) =
1
2
A0e(u0).e(u0) + k(1−Θ0).

We denote the total energy at time t0 by

T0 :=
∫

Ω

{
1
2
A0e(u0).e(u0) dx + k(1−Θ0)

}
dx− 〈f0, u0〉, (5.3)
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so that
T0 = I(t0).

This is coincidental and will not be true of the subsequent time steps; the correct relation is
given in (5.11).

At this point, that is after the first time step, the incremental problem has produced,
through relaxation, a local volume fraction of the weak material in lieu of a characteristic
function of the weak material, and a homogenized stiffness in lieu of the original stiffnesses.
From an equilibrium standpoint, this is perfectly satisfactory: microstructures will form to
accommodate energy minimization, in the tradition of e.g. shape optimization [ABFJ97] or
phase transition [BJ87]. From the standpoint of the evolution problem however, this is a
source of embarrassment.

Indeed, since characteristic functions of the weak material have disappeared in the relax-
ation process, how should one implement (IR) at the next time step? The solution proposed
in [FM93] was to relax the irreversibility constraint (IR), replacing it by the softer constraint
that the volume fraction of the strong material at time tni should decrease with i. This could
be an acceptable compromise, but only provided there is no rotation in the direction of the
body forces, because then, by the 2-homogeneity of e 7→ minA∈Gθ

Ae.e and the fact that, for
a given θ, the minimizing A is obtained through multiple layering in directions that are deter-
mined by the eigendirections of e (see [FM93]), a multiplication by a factor α of the force f
will only increase (by some complicated function of α) the volume fraction θ, with no change
in the eigendirections, hence no change in the layering directions. Thus, the monotonicity
constraint will be enforced at the microstructural level.

A more general loading path will not interact so nicely with the underlying microstruc-
tures and those that are optimal at two different time steps will generically be mutually
incompatible because the irreversibility constraint (IR) (in its discretized version) will not be
respected.

We thus propose a different approach to the time stepping process after time t = t0. This
is the object of the next subsection.

5.2 The subsequent time steps

As we have seen in the previous subsection, whenever Θ0(x) 6= 0, 1, a mixture of Aw and
As has formed at x, resulting in a stiffness tensor A0(x) at that point. The way out of the
conundrum was suggested to us by J.J. Marigo; we wish to express our gratitude to him for
providing such a fruitful lead. It goes as follows: at time tni , look at all possible arrangements,
within Ω, of the weak material Aw with material An

i−1(x) (that, which was obtained at the
point x at the previous time step). That material corresponds to a volume fraction Θn

i−1(x)
of the strong material; thus 1 − Θn

i−1(x) has already been “paid” in terms of “dissipated”
energy at that point, up to time tni−1. Therefore, the possible cost is either 0 if the material
remains in the state it was at time tni−1, or Θn

i−1(x) if the material becomes weak at x. In
other words, at time tni , compute

I(tni ):= inf
χ∈L∞(Ω;{0,1})

{
min

v∈H1
0 (Ω;RN )

∫
Ω

[
1
2
(χAw +(1−χ)An

i−1)e(v).e(v)+ kΘn
i−1χ

]
dx− 〈fn

i , v〉

}
.

Once again, this problem, can be rephrased as

I(tni ) = inf
v∈H1

0 (Ω;RN )

∫
Ω

W (tni , e(v)) dx− 〈fn
i , v〉,
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with

W (tni , e) := min
{

1
2
Awe.e + kΘn

i−1,
1
2
An

i−1e.e

}
;

note that W (tni , ·) is actually a measurable function of x through the x-dependence of Θn
i−1

and An
i−1 upon x. Then, as before (see e.g. [AF84]),

I(tni ) = min
v

∫
Ω

QW (tni , e(v)) dx− 〈fn
i , v〉, (5.4)

with
QW (tni , e) = min

0≤θ≤1

[
min

A∈Gθ(Aw,An
i−1)

{1
2
Ae.e}+ kΘn

i−1θ
]
. (5.5)

Let un
i be a minimizer for (5.4), and θn

i and An
i be measurable minimizers of the right hand-

side of (5.5) for e ≡ e(un
i ). The volume fraction of strong material is

Θn
i := Θn

i−1(1− θn
i ), Θ0

−1 := 1. (5.6)

Then
QW (tni , e(un

i )) =
1
2
An

i e(un
i ).e(un

i ) + k(Θn
i−1 −Θn

i ),

or still

I(tni ) =
∫

Ω

{
1
2
An

i e(un
i ).e(un

i ) dx + k(Θn
i−1 −Θn

i )
}

dx− 〈fn
i , un

i 〉. (5.7)

Remark 5.2 The proposed scheme should be distinguished from that originally suggested
in [FM93] and briefly evoked at the end of the previous subsection. Indeed, the present
scheme does not violate the discretized version of (IR), because at each time, the underlying
microstructure at a point at that time is itself a mixture of that which existed at the previous
time step with the weak material; thus monotonicity is enforced. This argument could be
made rigorous upon appealing to the metrizable character of H-convergence (see the relevant
remarks in Section 3).

5.3 A few properties of the discrete evolution

We now establish the properties of un
i , An

i as i ↗ that will be used in passing to the time-
continuous limit.

Minimality : Since un
i minimizes (5.4) and An

i ∈ Gθn
i
(Aw, An

i−1), it is obvious, in view of
the expression (5.5) for QW (tni , e), that

un
i minimizes

∫
Ω

1
2
An

i e(v).e(v) dx− 〈fn
i , v〉, v ∈ H1

0 (Ω; RN ). (5.8)

Monotonicity: For any x ∈ Ω and A ∈ Gθn
i
(Aw, An

i−1(x)), in view of the formula (3.1),
there exists a characteristic function χ such that

Ae.e = inf
ϕ periodic

∫
[0,1]N

(χ(y)Aw +(1−χ(y))An
i−1(x))(e + e(ϕ)(y)).(e + e(ϕ)(y)) dy

≤
∫

[0,1]N
(χ(y)Aw + (1− χ(y))An

i−1(x))e.e dy ≤ An
i−1(x)e.e.

Thus, since An
i ∈ Gθn

i
(Aw, An

i−1),
An

i ≤ An
i−1. (5.9)
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Lower bound on the total energy increment: Since, for l ≥ 1, An
i+l ∈ Gθn

i+l
(Aw, An

i+l−1),
while An

i+l−1 ∈ Gθn
i+l−1

(Aw, An
i+l−2), a straightforward argument based on the metrizable

character of H-convergence and on (3.2) would yield that

An
i+l ∈ Gθn

i+l+(1−θn
i+l)θ

n
i+l−1

(Aw, An
i+l−2),

or equivalently, thanks to (5.6),

An
i+l ∈ G

1−[
Θn

i+l
Θn

i+l−2
]
(Aw, An

i+l−2).

A simple induction, leads, for j > i, to

An
j ∈ G

1−[
Θn

j
Θn

i
]
(Aw, An

i ). (5.10)

This allows us to derive a lower bound on the total energy

T n
i := I(tni )+k

∫
Ω
(1−Θn

i−1) dx =
∫

Ω

1
2
An

i e(un
i ).e(un

i ) dx−〈fn
i , un

i 〉+k

∫
Ω
(1−Θn

i ) dx. (5.11)

Indeed, by virtue of (5.7), for any j > i,∫
Ω

1
2
An

i e(un
i ).e(un

i ) dx + k

∫
Ω
(Θn

i−1 −Θn
i ) dx− 〈fn

i , un
i 〉 ≤

∫
Ω

QW (tni , e(un
j )) dx− 〈fn

i , un
j 〉.

We recall the definition (5.5) of QW (tni , ) and remark that, thanks to (5.10),

An
j ∈ G

1−[
Θn

j
Θn

i−1
]
(Aw, An

i−1).

Hence, ∫
Ω

QW (tni , e(un
j )) dx ≤

∫
Ω

1
2
An

j e(un
j ).e(un

j ) dx + k

∫
Ω

Θn
i−1

(
1−

Θn
j

Θn
i−1

)
dx.

Thus, ∫
Ω

1
2
An

i e(un
i ).e(un

i ) dx− 〈fn
i , un

i 〉+ k

∫
Ω
(Θn

i−1 −Θn
i ) dx

≤
∫

Ω

1
2
An

j e(un
j ).e(un

j ) dx− 〈fn
i , un

j 〉+ k

∫
Ω
(Θn

i−1 −Θn
j ) dx,

or still
T n

j − T n
i ≥ −〈fn

j − fn
i , un

j 〉, j > i. (5.12)

Continuity estimate: Since un
j satisfies (5.8) for j,∫

Ω
An

j e(un
j ).(e(un

i )− e(un
j )) dx = 〈fn

j , un
i − un

j 〉,

so that, for j > i,∫
Ω

1
2
An

j (e(un
i )− e(un

j )).(e(un
i )− e(un

j )) dx =
∫

Ω

1
2
An

j e(un
i ).e(un

i ) dx + 〈fn
j , un

j − un
i 〉 −

∫
Ω

1
2
An

j e(un
j ).e(un

j ) dx ≤
∫

Ω

1
2
An

i e(un
i ).e(un

i ) dx + 〈fn
j , un

j − un
i 〉 −

∫
Ω

1
2
An

j e(un
j ).e(un

j ) dx

= T n
i − T n

j + k

∫
Ω
(Θn

i −Θn
j ) dx + 〈fn

i − fn
j , un

i 〉 ≤ k

∫
Ω
(Θn

i −Θn
j ) dx + 〈fn

i −fn
j , un

i − un
j 〉,
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where we have used (5.9) in deriving the first inequality in the string above, and (5.12) in
deriving the second one in that string.

Application of Korn’s inequality to the first term in the above string, and of Poincaré and
Young’s inequalities to the last term of that string finally yields, for some positive constant
C,

‖un
j − un

i ‖H1
0 (Ω;RN ) ≤ C

{
‖fn

j − fn
i ‖H−1(Ω;RN ) + ‖Θn

j −Θn
i ‖

1
2

L1(Ω)

}
. (5.13)

Relations (5.9), (5.10), (5.12), (5.13) will all play an essential role in the derivation of the
continuous-time model.

Upper bound on the total energy: We observe that, in view of the expression (5.5) for
QW (tni , ·) and of the obvious fact that An

i−1 ∈ G0(Aw, An
i−1),

QW (tni , e(un
i−1)) ≤

1
2
An

i−1e(u
n
i−1).e(u

n
i−1).

Consequently, recalling (5.6), (5.7) (at time tni−1), we obtain

I(tni ) ≤
∫

Ω
QW (tni , e(un

i−1)) dx− 〈fn
i , un

i−1〉 ≤
∫

Ω

1
2
An

i−1e(u
n
i−1).e(u

n
i−1) dx− 〈fn

i , un
i−1〉

=
∫

Ω

1
2
An

i−1e(u
n
i−1).e(u

n
i−1) dx− 〈fn

i−1, u
n
i−1〉 − 〈

∫ tni

tni−1

ḟ(σ) dσ, un
i−1〉

= I(tni−1)− k

∫
Ω
(Θn

i−2 −Θn
i−1) dx− 〈

∫ tni

tni−1

ḟ(σ) dσ, un
i−1〉.

Invoking definition (5.11) of the total energy, we conclude that

T n
i ≤ T n

i−1 − 〈
∫ tni

tni−1

ḟ(σ) dσ, un
i−1〉. (5.14)

Iterating (5.14) and recalling (5.3), we finally obtain,

T n
i =

∫
Ω

1
2
An

i e(un
i ).e(un

i ) dx− 〈fn
i , un

i 〉+ k

∫
Ω
(1−Θn

i ) dx ≤ T0 −
i∑

j=1

〈
∫ tnj

tnj−1

ḟ(σ) dσ, un
j−1〉.

(5.15)

It now remains to define the piecewise constant in time approximations of the relevant
quantities, which we do by setting, for any sequence {gn

i }i=0,....,k(n),

g(t) := gn
i , t ∈ [tni , tni+1).

We recall that ∆n = tni+1−tni , for any i ∈ {0, ..., k(n)} denote by τn(t) the largest time tni ≤ t.
Then, (5.4), (5.8) become minimality statements,

I(τn(t)) =
∫

Ω
QWn(t, e(un(t))) dx− 〈fn(t), un(t)〉 = min

v

∫
Ω

QWn(t, e(v)) dx− 〈fn(t), v〉,

(5.16)
with

QWn(t, e) := min
0≤θ≤1

[
min

A∈Gθ(Aw,An(t−∆n))
{1
2
Ae.e}+ kΘn(t−∆n)θ

]
, (5.17)
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so that, in view of (5.6),

I(τn(t)) =
∫

Ω

1
2
An(t)e(un(t)).e(un(t)) dx− 〈fn(t), un(t)〉+ k

∫
Ω
(Θn(t−∆n)−Θn(t)) dx.

(5.18)
Also,

un(t) minimizes
∫

Ω

1
2
An(t)e(v).e(v) dx− 〈fn(t), v〉, v ∈ H1

0 (Ω; RN ). (5.19)

Further, (5.9) becomes a monotonicity property,

An(t)
t
↘ as a quadratic form , Θn(t)

t
↘ . (5.20)

Relation (5.11) becomes an expression for the total energy,

T n(t) = I(τn(t)) + k

∫
Ω
(1−Θn(t−∆n)) dx

=
∫

Ω

1
2
An(t)e(un(t)).e(un(t)) dx− 〈fn(t), un(t)〉+ k

∫
Ω
(1−Θn(t)) dx.

(5.21)

Then, (5.10) implies an inclusion property for An(t),

An(t′) ∈ G
1−[

Θn(t′)
Θn(t)

]
(Aw, An(t)), t′ ≥ t. (5.22)

A lower bound on energy increments is obtained from (5.12), namely,

T n(t′)− T n(t) ≥ −〈fn(t′)− fn(t), un(t′)〉, t′ > t. (5.23)

Inequality (5.13) implies the following continuity property,

‖un(t′)− un(t)‖H1
0 (Ω;RN ) ≤ C

{
‖fn(t′)− fn(t)‖H−1(Ω;RN ) + ‖Θn(t′)−Θn(t)‖

1
2

L1(Ω)

}
; (5.24)

In particular, since ‖fn(t)‖H−1(Ω;RN ) ≤ C,

‖un(t)‖H1
0 (Ω;RN ) ≤ C. (5.25)

Finally, an upper energy bound is deduced from (5.15), that is

T n(t) =
∫

Ω

1
2
An(t)e(un(t)).e(un(t)) dx− 〈fn(t), un(t)〉+ k

∫
Ω
(1−Θn(t)) dx

≤ T0 −
∫ τn(t)

0
〈ḟ(σ), un(σ)〉 dσ.

(5.26)

In the next section, we propose to let ∆n tend to 0, so as to obtain a time-continuous
limit.
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6 The time-continuous limit

In this section, we let ∆n tend to 0 with n (and k(n) correspondingly tend to ∞). In view
of (5.20), we can apply Theorem 3.1 to An(t), and, since un(t) satisfies (5.19), while fn → f
in C0([0, T ];H−1(Ω; RN )), we obtain the existence of a subsequence of {n}, still denoted by
{n}, such that  An(t) H

⇀ A(t)

un(t)
H1

0⇀ u(t)
t ∈ [0, T ], (6.1)

where further, by the very definition of H-convergence,

u(t) minimizes
∫

Ω

1
2
A(t)e(v).e(v) dx− 〈f(t), v〉, v ∈ H1

0 (Ω; RN ). (6.2)

Moreover, since Θn(t) ↘ with t, we apply Remark 3.3 and conclude that the chosen subse-
quence may also be assumed to satisfy

Θn(t) L∞
⇀ Θ(t), t ∈ [0, T ], (6.3)

for some monotonically decreasing Θ(t) ∈ L∞(Ω; [0, 1]). We set

Θn(t) :=
∫

Ω
Θn(t) dx, Θ(t) :=

∫
Ω

Θ(t) dx, (6.4)

so that

Θn(t) → Θ(t)
t
↘ , ∀t ∈ [0, T ]. (6.5)

Since An(−∆n) = As and Θn(−∆n) = 1, the inclusion property (5.22), applied to t′ = t
and t = −∆n, states that

An(t) ∈ G1−Θn(t)(Aw, As).

In view of (6.1), together with metrizability for both H and L∞-weak-* convergence, this
easily implies that

A(t) ∈ G1−Θ(t)(Aw, As). (6.6)

Finally, weak lower semi-continuity of the norm implies that the continuity property (5.24)
is preserved in the limit, i.e. that, for all t, t′ ∈ [0, T ],

‖u(t′)− u(t)‖H1
0 (Ω;RN ) ≤ C

{
‖f(t′)− f(t)‖H−1(Ω;RN ) + ‖Θ(t′)−Θ(t)‖

1
2

L1(Ω)

}
= C

{
‖f(t′)− f(t)‖H−1(Ω;RN ) +

(
Θ(t′)−Θ(t)

) 1
2

}
.

(6.7)

In particular,
‖u(t)‖H1

0 (Ω;RN ) ≤ C. (6.8)
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6.1 One-sided Minimality

We now establish a one-sided minimality property for the pair u(t), A(t), which is reminiscent
of similar properties in the study of brittle fracture evolution [DFT05, DT02, FL03, FM98].
Let θ be an arbitrary element of L∞(Ω; [0, 1]) and A be an arbitrary element of Gθ(Aw, A(t))
(really, A(x) ∈ Gθ(x)(Aw, A(t, x)), a.e. in Ω). Then, there exists a sequence χp of character-
istic functions with  χp

L∞
⇀ θ

χpAw + (1− χp)A(t) H
⇀ A, p ↗∞.

(6.9)

Now, An(t) H
⇀ A(t), hence, by the locality of H-convergence,

χpAw + (1− χp)An(t) H
⇀ χpAw + (1− χp)A(t), n ↗∞.

Note that
χpAw + (1− χp)An(t) ∈ G[θn(t)(1−χp)+χp](Aw, An(t−∆n)),

with θn(t) :=
Θn(t−∆n)−Θn(t)

Θn(t−∆n)
.

Then, in view of (5.16), (5.18), (5.17), for any v ∈ H1
0 (Ω; RN ),∫

Ω

1
2
An(t)e(un(t)).e(un(t)) dx − 〈fn(t), un(t)〉+ k

∫
Ω
(Θn(t−∆n)−Θn(t)) dx ≤∫

Ω
QWn(t, e(v)) dx−〈fn(t), v〉 ≤

∫
Ω

1
2
(χpAw +(1−χp)An(t))e(v).e(v) dx−〈fn(t), v〉

+ k

∫
Ω

Θn(t−∆n)(θn(t)(1− χp) + χp) dx

=
∫

Ω

1
2
(χpAw + (1− χp)An(t))e(v).e(v) dx−

〈fn(t), v〉+ k

∫
Ω

[ ( Θn(t−∆n)−Θn(t))(1− χp) + Θn(t−∆n)χp] dx.

(6.10)
Denote by vn

p the minimizer of∫
Ω

1
2
(χpAw + (1− χp)An(t))e(v).e(v) dx−〈fn(t), v〉

over H1
0 (Ω; RN ), and remark that, by H-convergence, vn

p

H1
0⇀ vp, where vp is the minimizer of∫

Ω

1
2
(χpAw + (1− χp)A(t))e(v).e(v) dx−〈f(t), v〉

over H1
0 (Ω; RN ). Also, possibly at the expense of extracting a (t-dependent) subsequence

{nt}, assume that
Θnt(t−∆nt)

L∞
⇀ Ψ.

Then, passing to the limit in nt in (6.10) with v = vnt
p , we get∫

Ω

1
2
A(t)e(u(t)).e(u(t)) dx− 〈f(t), u(t)〉+ k

∫
Ω
(Ψ−Θ(t)) dx ≤∫

Ω

1
2
(χpAw + (1− χp)A(t))e(vp).e(vp) dx−〈f(t), vp〉

+ k
∫
Ω [(Ψ−Θ(t))(1− χp) + Ψχp] dx.

(6.11)
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Now remark that, by H-convergence, together with (6.9), vp
H1

0⇀ v, where

v is the minimizer of
∫

Ω

1
2
Ae(v).e(v) dx−〈f(t), v〉 over H1

0 (Ω; RN ). (6.12)

Thus, from (6.11), we finally conclude that∫
Ω

1
2
A(t)e(u(t)).e(u(t)) dx− 〈f(t), u(t)〉+ k

∫
Ω
(Ψ−Θ(t)) dx ≤∫

Ω

1
2
Ae(v).e(v) dx−〈f(t), v〉+ k

∫
Ω

[(Ψ−Θ(t))(1− θ) + Ψθ] dx.

By virtue of the minimality property (6.12) of v, we obtain the following one-sided minimality
property (where the one-sidedness refers to the admissible A’s):∫

Ω

1
2
A(t)e(u(t)).e(u(t)) dx− 〈f(t), u(t)〉 ≤

∫
Ω

1
2
Ae(v).e(v) dx−〈f(t), v〉+ k

∫
Ω

Θ(t)θ dx,

(6.13)
and this, for any v ∈ H1

0 (Ω; RN ), any θ ∈ L∞(Ω; [0, 1]) and any A ∈ Gθ(Aw, A(t)).

6.2 Energy balance

We propose to derive a balance of energy for the evolution of the triplet u(t), A(t),Θ(t). To
this effect, we recall (5.26) and pass to the limit in n. Thanks to (5.25), (6.1), (6.3), and the
fact that τn(t) → t, the limit inequality is immediate; we get

T (t) :=
∫

Ω

1
2
A(t)e(u(t)).e(u(t)) dx− 〈f(t), u(t)〉+ k

∫
Ω
(1−Θ(t)) dx

≤ T0 −
∫ t

0
〈ḟ(σ), u(σ)〉 dσ,

(6.14)

where we recall that T0 is given by (5.3).
To derive a lower bound, we appeal to (5.23) and, once again, immediately pass to the

limit in n, recalling that, since f ∈ C0([0, T ],H−1(Ω; RN ), for all t ∈ [0, T ], fn(t) → f(t),
strongly in H−1(Ω; RN ). We obtain

T (t′)− T (t) ≥ −〈f(t′)− f(t), u(t′)〉, t′ > t. (6.15)

Take the subdivision Jp := {0, t
p , 2t

p ...., t} of [0, t]. Fix ε > 0. Take E finite, such that it
encapsulates nearly all the jumps of Θ, i.e. such that∑

s∈[0,t]\E

|Θ+(s)−Θ−(s)| < ε;

we will denote by Θ̇ the approximate derivative of Θ. Now, take p large enough, so that∑
j∈{0,...,p}:[ jt

p
,
(j+1)t

p
]∩E 6=∅

∫
[ jt

p
,
(j+1)t

p
]
‖ḟ(s)‖H−1(Ω;RN ) ds ≤ ε,

which is always possible because of the regularity of f .
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In view of (6.7), if s, s′ ∈ [ it
p , (i+1)t

p ] with [ itp , (i+1)t
p ] ∩ E = ∅, then

‖u(s′)− u(s)‖H1
0 (Ω;RN ) ≤ C


∫ s′

s
‖ḟ(σ)‖H−1(Ω;RN ) dσ +

(∫ t′

t
(Θ̇(σ)) dσ + ε

) 1
2

 ,

while, if [ itp , (i+1)t
p ] ∩ E 6= ∅, then, by virtue of (6.8)

‖u(s′)− u(s)‖H1
0 (Ω;RN ) ≤ C.

Thus, ∣∣∣∣∣∣
p∑

j=0

〈f(
(j + 1)t

p
)− f(

jt

p
), u(

(j + 1)t
p

)〉 −
∫ t

0
〈ḟ(σ), u(σ)〉 dσ

∣∣∣∣∣∣ ≤
∑

[ jt
p

, j+1
p

]∩E 6=∅

∫ (j+1)t
p

jt
p

‖u(
(j + 1)t

p
)− u(s)‖H1

0 (Ω;RN )‖ḟ(s)‖H−1(Ω;RN )ds +
∑

[ jt
p

,
(j+1)t

p
]∩E=∅

idem ≤ εC+

sup
j=0,...,p


∫ (j+1)t

p

jt
p

‖ḟ(σ)‖H−1(Ω;RN ) dσ +

(∫ (j+1)t
p

jt
p

(Θ̇(s)) ds + ε

) 1
2


[∫ t

0
‖ḟ(σ)‖H−1(Ω;RN )dσ

]
.

Letting p ↗∞, we infer, thanks to the equi-integrable character of ḟ and of Θ̇, that

lim sup
p

∣∣∣∣∣∣
p∑

j=0

〈f(
j + 1

p
)− f(

j

p
), u(

j + 1
p

)〉 −
∫ t

0
〈ḟ(σ), u(σ)〉 dσ

∣∣∣∣∣∣
≤ εC + ε

1
2

∫ t

0
‖ḟ(σ)‖H−1(Ω;RN ) dσ.

Letting ε go to 0, we conclude that

lim sup
p

∣∣∣∣∣∣
p∑

j=0

〈f(
(j + 1)t

p
)− f(

jt

p
), u(

(j + 1)t
p

)〉 −
∫ t

0
〈ḟ(σ), u(σ)〉 dσ

∣∣∣∣∣∣ = 0. (6.16)

Applying (6.15) to the partition Jp (with t′ = (j+1)
p , t = j

p) yields

T (t)− T0 ≥ −
p∑

j=0

〈f(
j + 1

p
)− f(

j

p
), u(

j + 1
p

)〉,

hence, upon letting p ↗∞, application of (6.16) yields in turn

T (t) ≥ T0 −
∫ t

0
〈ḟ(σ), u(σ)〉 dσ. (6.17)

Energy balance, that is

T (t) = T0 −
∫ t

0
〈ḟ(σ), u(σ)〉 dσ (6.18)

is obtained by collecting (6.14) and (6.17).
Recalling (6.7), the monotonically decreasing character of both A(t) and Θ(t), (6.6),

(6.13), (6.18), the proof of Theorem 4.1 is now complete.
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Remark 6.1 Note that we also obtain convergence of the energies for any time-stepping pro-
cedure which produces the same homogenized tensor A(t); thus the time-discrete approxima-
tion may be viewed as a sound discrete approximation of the solution to the time-continuous
problem.

Consider a piecewise constant triplet un(t),Θn(t), An(t) satisfying the incremental evo-
lution defined through the minimization of (5.4). It is then immediate, by the definition
of H-convergence, that, if An(t) H

⇀ A(t), for all t ∈ [0, T ], where the triplet u(t),Θ(t), A(t)
satisfies all the conclusions of Theorem 4.1, then, for all t ∈ [0, T ],∫

Ω

1
2
Ae(un(t)).e(un(t)) dx →

∫
Ω

1
2
Ae(u(t)).e(u(t)) dx

k

∫
Ω

Θn(t) dx →
∫

Ω
Θ(t) dx.

Thus far, no claim has been made as to the relevance of the obtained well-posed evolution
to the initial ill-posed problem. In other words, is the proposed evolution a reasonable lower
bound on all possible evolutions of the damaged zone for the same loading history? This
concern is partially addressed in the following section.

7 “Optimality” of the evolution

We first show that the evolution obtained in Theorem 4.1 is not too low, in the sense of the
following

Proposition 7.1 Given a time evolution (u(t), A(t),Θ(t)) given by Theorem 4.1, there exists
a time-parameterized sequence χn(t) of monotonically increasing characteristic functions of
the weak material – that with stiffness tensor Aw – such that, for almost all t’s in [0, T ], χn(t) L∞

⇀ θ(t) := 1−Θ(t)

χn(t)Aw + (1− χn(t))As
H
⇀ A(t).

In particular,∫
Ω
(χn(t)Aw + (1− χn(t))As)e(vn(t)).e(vn(t)) dx →

∫
Ω

A(t)e(u(t)).e(u(t)) dx,

where vn(t) is the solution of

−div [(χn(t)Aw + (1− χn(t))As)(e(vn(t)))] = f(t), vn(t) ∈ H1
0 (Ω; RN ).

Proof. Take An(t) to be the piecewise constant in time sequence constructed in Section 5.
Since An(t) ∈ G

1−[
Θn(t)

Θn(t−∆n)
]
(Aw, An(t−∆n)), a repeated diagonalization argument, based on

the metrizable character of H-convergence and starting with An(t) ≡ A0, t ∈ [0,∆n), would
show the existence of a sequence of characteristic functions χn

k(t), monotonically increasing
in t, such that χn

k(t) L∞
⇀ θn(t) := 1−Θn(t)

Bn
k (t) := χn

k(t)Aw + (1− χn
k(t))As

H
⇀ An(t),

k ↗∞, t ∈ [0, T ].
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Recall Remark 3.2. Since both Bn
k (t) and An(t) are monotonically decreasing in t and

respectively H-converge to An(t) and A(t), that remark applies; thus,∫ T

0
dH(Bn

k (t), An(t)) dt
n→ 0,

∫ T

0
dH(An(t), A(t)) dt

n→ 0.

Similarly, recalling the last part of Remark 3.3,∫ T

0
d∗(χn

k(t), θn(t)) dt
n→ 0,

∫ T

0
d∗(θn(t), θ(t)) dt

n→ 0.

Once again, an argument of diagonalization produces a subsequence {k(n)} of {k}, such that
∫ T

0
d∗(χn

k(n)(t), θ(t)) dt → 0

∫ T

0
dH(Bn

k(n)(t), A(t)) dt → 0 ,

which, in view of the elementary property of energy convergence for H-converging sequences,
concludes the proof of the proposition upon setting χn(t) := χn

k(n)(t), t ∈ [0, T ].

Remark 7.2 Note that, in the previous result, we also have convergence of the total energy
associated to χn(t) to that of the relaxed evolution at t, for a.e. t ∈ [0, T ]. A better statement,
namely that that convergence is uniform in t, is unclear to us at this time.

It remains to demonstrate that the relaxed evolution in Theorem 4.1 is not too high. We
state, without proof, a very weak version of this result in the following final

Remark 7.3 Consider a relaxed evolution in the sense of Theorem 4.1. If χ(t), the charac-
teristic function of the weak material, is monotonically increasing in t, and if

χ(t) ≥ θ(t) := 1−Θ(t), t > 0,

then, for all t’s, the total energy associated to χ(t) is at least as large as T (t).
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