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Abstract

We consider shape functionals obtained as minima on Sobolev spaces of classical integrals
having smooth and convex densities, under mixed Dirichlet-Neumann boundary conditions. We
propose a new approach for the computation of the second order shape derivative of such func-
tionals, yielding a general existence and representation theorem. In particular, we consider the
p-torsional rigidity functional for p ≥ 2.
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1 Introduction

Aim of this paper is to provide a new method for the computation of second order shape derivatives,
which applies to a broad class of shape functionals associated with classical problems in the Calculus
of Variations. Let us recall that, if J(·) is a functional depending on a subset Ω of Rn and V is a
deformation field in C1(Rn;Rn), the first and second order shape derivatives of J at Ω in direction
V , if they exist, are given respectively by the limits

J ′(Ω, V ) := lim
ε→0

J(Ωε)− J(Ω)

ε
, J ′′(Ω, V ) := lim

ε→0
2
J(Ωε)− J(Ω)− εJ ′(Ω, V )

ε2
,

where Ωε are the perturbed domains Ωε := Ψε(Ω), with Ψε(x) := x+ εV (x).
The literature on shape derivatives is very wide, and in recent years it has seen a rapid flourishing,
also stimulated by the advances in numerical methods for the determination of optimal shapes. We
limit ourselves to quote the monographs [18, 25, 27, 45], where a lot of bibliographical references in
this field can be found. Concerning in particular second order shape derivatives, their computation
is usually irksome, but often deserves some efforts because the study of their sign allows to detect
whether a critical shape, namely a domain with vanishing first order shape derivative, is actually an
optimal one. As contributions in this direction, let us mention without any attempt of completeness
the papers [1, 11, 17, 21, 24, 26, 31, 38, 44]. In particular, in [38] Novruzi and Pierre proved a
quite general and helpful structure result about second order shape derivatives, under the a priori
assumption that they exist. Moreover, still in [38] the explicit expression of second order shape
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derivative is computed under the assumption that the boundary of the domain Ω is sufficiently
smooth (for the structure of shape derivatives around irregular domains, see [31]). Let us also
mention that the linear and bilinear forms which appear in the structure result have to be identified
each time for the particular functional under study, and this turns out to be a delicate task (see the
discussion in [27, Section 5.9.4]).
In this work we propose a new approach to second order shape derivatives, which applies under
rather mild regularity assumptions to shape functionals of the form

J(Ω) := − inf

{∫
Ω

[f(∇u) + g(u)] dx : u ∈ H(Ω)

}
. (1.1)

Here f and g are assumed to be convex and smooth functions satisfying suitable growth conditions,
while H(Ω) indicates the space of functions in H1(Ω) which satisfy the Dirichlet condition u = 0
on a fixed, nonempty, measurable portion ΓD ⊂ ∂Ω; the Neumann part of the boundary, i.e. the
complement ∂Ω \ ΓD, will be denoted by ΓN .
As a natural continuation of our previous paper [8], where we introduced a new approach to first
order shape derivatives for functionals of the type (1.1), here we tackle second order shape derivatives
by the same method. The main results obtained in [8] are briefly recalled in Section 2, see eq. (2.8)-
(2.9). The basic ingredients we employ are the analysis of the Γ-convergence of the differential
quotients appearing in the definition of J ′′(Ω, V ), and the duality principle

J(Ω) = J∗(Ω) := inf

{∫
Ω

[f∗(σ) + g∗(div σ)] dx : σ ∈ X(Ω;Rn)

}
, (1.2)

where X(Ω;Rn) is a suitable space of vector fields.

Our main results are:

– an existence result for J ′′(Ω, V ) as a quadratic form in V (see Theorem 3.5 (i));

– a new necessary optimality condition, which involves the distributional divergence of a vector field
B(u, V ) (see Proposition 3.4), along with a regularity result of type W 2,2

loc that we recover for the
solution u to J(Ω) (see Proposition 3.2); notice that the latter issue is reminiscent of the celebrated
Nirenberg translation method commonly used in regularity pde theory;

– a representation result for J ′′(Ω, V ) (see Theorem 3.5 (ii)), which holds provided the W 2,2
loc regu-

larity of u stated in Proposition 3.2 extends up to the boundary, and the latter is piecewise C1; it is
obtained by exploiting the optimality condition given in Proposition 3.4 as a crucial tool, and reads

J ′′(Ω, V ) =

∫
∂Ω

(
C(u, V ) · n

)
dHn−1 + q(u, V ) ; (1.3)

here C(u, V ) · n is the normal trace of a suitable vector field (see (3.4)) depending on the solution u
to J(Ω) and quadratically on the deformation V , whereas q(u, V ) is a nonlocal term which involves
the above mentioned vector field B(u, V ) and a quadratic form Q(u, ·) depending on the second
derivatives of f and g (see Theorem 3.5); we stress that, as detailed in Remark 3.8 below, formula
(1.3) fits the general representation result for second order shape derivatives given in [38, Corollary
2.4].

The paper is organized as follows. After providing some notation and preliminary background in
Section 2, we state in Section 3 our main results, followed by some comments and examples. In
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fact, we show that we can recover straightforward the second order shape derivative of the torsional
rigidity, as given e.g. in [27, Section 5.9.6], and we are able to extend the formula to the case of
mixed Dirichlet-Neumann conditions. Moreover, we consider the case of p-torsional rigidity for
p > 2. In this case, to the best of our knowledge, only the first order shape derivative is available
in the literature (see [15, 22]). We are able to compute the second order shape derivative under
an additional assumption, which is quite technical and is related to a deep regularity issue for the
p-Laplace operator; checking its validity seems to be a delicate problem of independent interest
which goes beyond the scope of this paper.
The next three sections are devoted to the proofs: the existence of the second order shape deriva-
tive (Theorem 3.5 (i)) is achieved in Section 4; the regularity result of Proposition 3.2 and the
optimality conditions of Proposition 3.4 are proved in Section 5; eventually, in Section 6 we prove
the representation formula for the second order shape derivative (Theorem 3.5 (ii)).
In Section 7 we present some variants of our results, including in particular the case of the p-torsional
rigidity for p ∈ [2,+∞), and then we conclude the paper by addressing some possible perspectives.
Section 8 is an appendix where some auxiliary lemmas and technical facts are collected.

Acknowledgments. We thank B. Sciunzi for pointing out some useful bibliographical references.
This work was supported by the University of Toulon and GNAMPA (INDAM). We gratefully
acknowledge both these institutions.

2 Preliminaries

Standing assumptions Unless otherwise stated, we work under the following hypotheses, which
will be referred to as standing assumptions:

– Ω is an open bounded connected set, with a piecewise C1 boundary and unit outer normal n;

– f : Rn → R and g : R→ R are of class C2 and are strongly convex, namely there exist positive
constants m and k such that

(∇2f −mI) is positively semidefinite, g′′ − k ≥ 0; (2.1)

– f and g satisfy the growth conditions C1(|z|2 − 1) ≤ f(z) ≤ C2(|z|2 + 1) ∀z ∈ Rn

C3(|v|2 − 1) ≤ g(v) ≤ C4(|v|q + 1) ∀v ∈ R ,
(2.2)

where Ci are positive constants, while the exponent q is assumed to satisfy q = 2∗ := 2n
n−2 if

n > 2 and q ∈ (1,+∞) if n ≤ 2;

– g(0) = 0 (which is not restrictive up to a translation);

– the solution u to J(Ω) is Lipschitz;

– the deformation field V belongs to C1(Rn;Rn).

3



Remark 2.1. Notice that, by strict convexity, the solution u to J(Ω) is unique. Its regularity is a
delicate topic, which exceeds the scope of this paper. We limit ourselves to refer to [34] for a detailed
presentation of the Lipschitz regularity of u in the interior of Ω. As for the Lipschitz regularity up
to the boundary, we mention the papers [10, 12, 23, 33, 46], in which such property is guaranteed
in the Dirichlet case, provided that Ω is convex (namely when the boundary datum zero satisfies
the so called Bounded Slope Condition). We are not aware of any general result available in the
literature for the case of mixed Dirichlet-Neumann boundary conditions.

Some standard notation We adopt the convention of repeated indices. Given two vectors a, b
in Rn we use the notation 〈a, b〉 to denote their Euclidean scalar product; moreover we denote by
a⊗ b the tensor product of a and b, namely the matrix (a⊗ b)ij := aibj . Given two matrices A and
B in Rn×n, we write A : B to denote their Euclidean scalar product, namely A : B = AijBij . We
denote by A−1 and AT the inverse and the transpose matrices of A, by A−T the transposition of
the inverse of A and by I the identity matrix. Moreover, we denote by ak(A) the k-th invariant of
the matrix A, in particular

a1(A) = tr(A) , a2(A) =
1

2

(
tr(A)I −AT ) : A , an(A) = detA .

For a tensor field A ∈ C1(Rn;Rn×n), by divA we mean its divergence with respect to lines, namely
(divA)i := ∂jAij .
Let Ω be as in the standing assumptions. Given a vector field V on ∂Ω, we decompose it into a
tangential and normal component as V = VΓ + Vnn, with Vn := 〈V, n〉.
We recall that, for ϕ ∈ C1(∂Ω) and V ∈ C1(∂Ω;Rn), the tangential gradient of ϕ and the tangential
divergence of V are given respectively by ∇Γϕ := ∇ϕ̃−〈∇ϕ̃, n〉n and divΓ V := div Ṽ −〈DṼ n, n〉 on
∂Ω, where ϕ̃ and Ṽ are arbitrary C1 extensions to Rn of ϕ and V . In particular, if Ω is of class C2,
the tangential divergence of n gives the scalar mean curvature, that is H∂Ω := divΓ n. The first and
second order normal derivatives of ϕ will be denoted by ∂nϕ := 〈∇ϕ, n〉 and ∂2

nnϕ := 〈(∇2ϕ)n, n〉.
Given a vector field Ψ ∈ L2(Ω;Rn) with distributional divergence in L2(Ω), we denote by Ψ · n its
normal trace on ∂Ω, meant as the unique element in H−1/2(∂Ω) such that∫

∂Ω
(Ψ · n)ϕdHn−1 =

∫
Ω

(
〈Ψ,∇ϕ〉+ ϕ div Ψ

)
dx ∀ϕ ∈ H1(Ω) , (2.3)

where the boundary integral at the l.h.s. is intended as the duality bracket between H−1/2(∂Ω) and
H1/2(∂Ω). For a detailed account on the theory of weak traces, we refer to [3, 13] (see also [8,
Section 2.1]).

Existence of solutions, dual formulation and optimality conditions Under the standing
assumptions, the infimum problem J(Ω) admits a unique solution (cf. [8, Lemma 2.1]), denoted by
u, in the space

H(Ω) := {u ∈ H1(Ω) : u = 0 on ΓD} .

Moreover, by standard duality arguments (cf. [8, Lemma 2.2]), it holds J(Ω) = J∗(Ω), where J∗(Ω)
is the infimum problem introduced in (1.2), set over the space

X(Ω;Rn) := {σ ∈ L2(Ω;Rn) : div σ ∈ Lq′(Ω) , σ · n = 0 on ΓN} , (2.4)
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being q′ := q/(q − 1). Also J∗(Ω) admits a unique solution, denoted by σ, which is related to u by
the following differential equalities:

σ = ∇f(∇u) a.e. in Ω

div σ = g′(u) a.e. in Ω

or equivalently


∇u = ∇f∗(σ) a.e. in Ω

u = (g∗)′(div σ) a.e. in Ω .

(2.5)

Note that, by (2.5) and in view of the regularity assumed on f , g and u, we have ∇u, σ ∈ L∞(Ω;Rn)
and u,div σ ∈ L∞(Ω).

First order shape derivative Let V ∈ C1(Rn;Rn) be a deformation field and set for every ε

Ωε := Ψε(Ω) , being Ψε(x) := x+ εV (x) . (2.6)

Under the standing assumptions, the first order shape derivative of J at Ω in direction V , defined
by

J ′(Ω, V ) := lim
ε→0

J(Ωε)− J(Ω)

ε
, (2.7)

exists and is given by

J ′(Ω, V ) =

∫
Ω
A(u) : DV dx =

∫
∂Ω
〈A(u)n, V 〉 dHn−1 , (2.8)

where A(u) denotes the following tensor which turns out to be divergence free on Ω with a normal
trace A(u)n in L∞(∂Ω):

A(u) = ∇u⊗ σ − (f(∇u) + g(u)) I = ∇u⊗ σ + (f∗(σ) + g∗(div σ)− 〈∇u, σ〉 − udiv σ) I (2.9)

(with σ = ∇f(∇u)). For the proof of (2.8), see Theorem 3.3 and Theorem 3.7 in [8]; actually, even
though such results are not stated for the case of mixed Dirichlet-Neumann boundary conditions,
it can be easily checked that their proofs continue to work unaltered in such case. Moreover, if u is
Lipschitz and ∇u, σ are in BV (Ω;Rn), the boundary integral in (2.8) can be rewritten as a linear
expression of Vn, namely it holds J ′(Ω, V ) = l1(Vn) with

l1(ϕ) :=

∫
ΓD

f∗(σ)ϕdHn−1 −
∫

ΓN

(f(∇u) + g(u))ϕdHn−1 .

Reformulation from a variable domain to a fixed domain Following the same procedure
adopted in [8, Lemma 4.1] in order to recast the first order shape derivative J ′(Ω, V ), we rewrite
the variational problem J(Ωε) over the fixed domain Ω: by using a standard change of variables,
we obtain

J(Ωε) = − inf
u∈H(Ω)

∫
Ω

[fε(∇u) + gε(u)] dx (2.10)

where fε and gε are given by

fε(x, z) := f(DΨ−Tε (x)z)βε(x) , gε(x, v) := g(v)βε(x) (2.11)
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being βε the Jacobian of the map Ψε. Note that, in view of (2.6), βε can be written as a polynomial
in ε, with the invariants of DV as coefficients:

βε := |detDΨε| = 1 + a1(DV )ε+ a2(DV )ε2 + · · ·+ an(DV )εn . (2.12)

In a similar way, the dual variational problems J∗(Ωε) can be rewritten as

J∗(Ωε) = inf
σ∈X(Ω;Rn)

∫
Ω

[f∗ε (σ) + g∗ε(div σ)] dx , (2.13)

where f∗ε and g∗ε are the Fenchel conjugates of fε and gε with respect to the second variable, which
by direct computation satisfy

f∗ε (x, z) = f∗(β−1
ε (x)DΨε(x)z)βε(x) , g∗ε(x, ξ) = g∗(β−1

ε (x) div ξ)βε(x) . (2.14)

In the subsequent asymptotic analysis as ε→ 0, we shall exploit the following developments holding
for small ε, being Ψε and βε defined respectively by (2.6) and (2.12):

DΨ−Tε = I − εDV T + ε2(DV T )2 + ε3Mε , with supε ‖Mε‖ ≤ C , (2.15)

βε = 1 + εdiv V + ε2a2(DV ) + ε3mε , with supε ‖mε‖ ≤ C , (2.16)

β−1
ε = 1− εdiv V + ε2((div V )2 − a2(DV )) + ε3m̃ε(V ) , with supε ‖m̃ε‖ ≤ C . (2.17)

3 Main results

All the results in this Section concern the shape functional J defined in (1.1) and are stated under
the standing assumptions given in Section 2. Our goal is to provide an existence and representation
result for the second order shape derivative of J , meant according to the following

Definition 3.1. Given V ∈ C1(Rn;Rn), J is said to be second order differentiable at Ω in the
direction V , if the following limit exists:

J ′′(Ω, V ) := lim
ε→0

2
J(Ωε)− J(Ω)− εJ ′(Ω, V )

ε2
, (3.1)

where J ′ is the first order shape derivative of J at Ω in direction V (see (2.7) and (2.8) for its
definition and representation formula).

To prepare our main result, some preliminaries are in order. The next two propositions will be
necessary in order to prove the main theorem, but also seem to have an autonomous interest: as
mentioned in the Introduction, the former concerns the regularity of the unique solution u to J(Ω);
the latter states a new necessary condition for optimality.

Proposition 3.2. (regularity of the solution)

Under the standing assumptions, u belongs to W 2,2
loc (Ω).

Remark 3.3. We point out that the stronger condition u ∈W 2,2(Ω) is satisfied for instance if Ω is
of class C1,1 (see [46, Theorem 3.1]). More in general, for W 2,2-type regularity results for solutions
to quasilinear elliptic equations, we refer for instance [16, 43, 42] and references therein.
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Proposition 3.4. (necessary optimality condition)

Under the standing assumptions, the vector field defined by

B(u, V ) := ∇2f(∇u)(∇2u)V − (DV − div V I)σ (3.2)

satisfies
div [B(u, V )] = g′′(u)〈V,∇u〉+ g′(u) div V in D′(Ω) . (3.3)

The vector field B(u, V ) defined in (3.2) will appear in the representation formula for the second
order shape derivative. Besides B(u, V ), such formula will involve another vector field depending
on u and V , and a quadratic form on the space H(Ω), which are defined respectively as follows.
We let C(u, V ) be the following vector field, which depends quadratically on V :

C(u, V ) := −〈V,∇u〉(∇2f(∇u))(∇2u)V − 〈V,∇u〉(div V I −DV )∇f(∇u) +

+ 〈DV ∇f(∇u),∇u〉V − 〈DV V,∇u〉∇f(∇u) +

−
(
f(∇u) + g(u)

)
(div V I −DV )V .

(3.4)

We emphasize that the distributional Hessian of u appearing in (3.2) and (3.4) belongs to L2
loc(Ω)

thanks to Proposition 3.2.
We let Q(u, ·) be the quadratic form given by

Q(u,w) :=

∫
Ω

2 [Qf (x,∇w) +Qg(x,w)] dx ∀w ∈ H(Ω) , (3.5)

where Qf (x, ·) and Qg(x, ·) denote the quadratic integrands

Qf (x, z) :=
1

2
〈∇2f(∇u(x))z, z〉 ∀z ∈ Rn, Qg(x, v) :=

1

2
g′′(u(x))v2 ∀v ∈ R .

In the sequel for brevity we shall omit to denote the dependence of Qf and of Qg on x and we shall
simply write Qf (·) and Qg(·) in place of Qf (x, ·) and Qg(x, ·).
We are now in a position to state our main result.

Theorem 3.5. (existence and representation of the second order shape derivative)

Under the standing assumptions there hold:

(i) the second order shape derivative J ′′(Ω, V ) defined in (3.1) exists for all V ∈ C1(Rn;Rn) and
it is a quadratic form in V ;

(ii) if u is W 2,2(Ω), the vector fields C(u, V ) and B(u, V ), defined respectively in (3.4) and (3.2),
admit a normal trace in H−1/2(∂Ω), and J ′′(Ω, V ) is given by

J ′′(Ω, V ) =

∫
∂Ω

(
C(u, V ) · n

)
dHn−1 + q(u, V ) , (3.6)

where q(u, V ) is the following non local term:

q(u, V ) := − inf
w∈H(Ω)

{
Q
(
u,w − 〈V,∇u〉

)
+ 2

∫
∂Ω

(
w − 〈V,∇u〉

)
B(u, V ) · ndHn−1

}
. (3.7)
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Remark 3.6. Theorem 3.5 is still valid when g is linear and f is either as in the standing assump-
tions or the p-power function, with p > 2. In the latter case, we need to impose some additional
technical assumption. For the benefit of the reader, we postpone to Section 7 the discussion of these
variants, in which the proof of Theorem 3.5 deserves ad hoc techniques.

Remark 3.7. Let us show how the representation formula for J ′′(Ω, V ) given by (3.6) can be
rewritten if one prefers to separate the contributions coming from the Dirichlet and Neumann
portions of the boundary. First observe that, since u is assumed to be W 2,2 up to the boundary, the
product 〈V,∇u〉 belongs to H1(Ω); thus, by considering the translation v := w − 〈V,∇u〉 in (3.7),
the nonlocal term q(u, V ) can be recast as

q(u, V ) = − inf
v∈H1(Ω)

v=−Vn∂nu on ΓD

{
Q(u, v) + 2

∫
ΓN

v B(u, V ) ·ndHn−1
}

+ 2

∫
ΓD

〈V,∇u〉B(u, V ) ·ndHn−1 .

(3.8)
By combining (3.6) and (3.8), we obtain

J ′′(Ω, V ) =

∫
ΓD

(
C(u, V ) + 2〈V,∇u〉B(u, V )

)
· ndHn−1 +

∫
ΓN

(
C(u, V ) · n

)
dHn−1+

− inf
v∈H1(Ω)

v=−Vn∂nu on ΓD

{
Q(u, v) + 2

∫
ΓN

v B(u, V ) · ndHn−1
}

;

(3.9)

in Remark 3.8 below we will see that, under suitable regularity assumptions, the infimum problem
appearing in (3.9) is a quadratic form in Vn.
Next, in order to further simplify (3.9), we observe that the boundary integrals appearing therein
depend only on the normal traces of C(u, V ) and B(u, V ) on ∂Ω. Therefore, such fields can be
replaced by any simpler vector field with the same normal trace, which can be chosen in different
ways on the Dirichlet and Neumann portions of the boundary. On ΓD, since ∇u is parallel to n on
∂Ω, C(u, V ) + 2〈V,∇u〉B(u, V ) has the same normal trace as

CD(u, V ) := 〈V,∇u〉(∇2f(∇u))(∇2u)V +
(
〈∇f(∇u),∇u〉 − f(∇u)

)
(div V I −DV )V ; (3.10)

while on ΓN , since σ ·n = 0 on such portion of the boundary, C(u, V ) has the same normal trace as

CN (u, V ) := −〈V,∇u〉(∇2f(∇u))(∇2u)V + 〈V,∇u〉DV∇f(∇u) +

+〈DV ∇f(∇u),∇u〉V −
(
f(∇u) + g(u)

)
(div V I −DV )V .

We end up with the following reformulation of (3.6):

J ′′(Ω, V ) =

∫
ΓD

(
CD(u, V ) · n

)
dHn−1 +

∫
ΓN

(
CN (u, V ) · n

)
dHn−1+

− inf
v∈H1(Ω)

v=−Vn∂nu on ΓD

{
Q(u, v) + 2

∫
ΓN

v B(u, V ) · ndHn−1
}

;

(3.11)

note that we readily obtain the expression of the second order shape derivative in the pure Dirichlet
case, i.e. when ΓD = ∂Ω, by dropping the integrals over ΓN in the above equality.
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Remark 3.8. It is interesting to compare our representation formula (3.6) with the structure
result proved in [38], which allows to enlighten the role played by the tangential and the normal
components of the deformation field V on ∂Ω. Notice that, in general, these components are not
decoupled, i.e. J ′′(Ω, V ) 6= J ′′(Ω, VΓ) + J ′′(Ω, Vnn). In fact, according to the structure theorem
given in [38, Corollary 2.4, Remark 2.10] (see also [27, Theorem 5.9.2]), under suitable regularity
conditions J ′′(Ω, V ) can be decomposed as J ′′(Ω, V ) = l1(z) + l2(Vn), where l2 is a quadratic form
on C1(∂Ω) and l1 is the linear form on C0(∂Ω) associated with the first order shape derivative,
evaluated in

z := 〈VΓ, DnVΓ〉 − 2〈VΓ,∇ΓVn〉 ; (3.12)

in this way the scalar z encodes the coupling between the tangential and normal components of V .
In the case of our functional J , by Theorem 3.7 in [8], the linear form l1 is given by

l1(ϕ) =

∫
ΓD

f∗(σ)ϕdHn−1 −
∫

ΓN

(f(∇u) + g(u))ϕdHn−1 , (3.13)

and we claim that, as soon as ∂Ω is C2, by Theorem 3.5 the quadratic form l2 is given by

l2(ϕ) :=

∫
ΓD

ϕ2 [∂nu〈Dσn, n〉+ f∗(σ)H∂Ω] dHn−1+

+

∫
ΓN

[
〈σ,∇Γ(ϕ2∂nu)〉 − ϕ2

[
〈(∇2u)σ, n〉+ (f(∇u) + g(u))H∂Ω + ∂nu〈Dσn, n〉

]]
dHn−1+

− inf
v∈H1(Ω)

v=−ϕ∂nu on ΓD

{
Q(u, v) + 2

∫
ΓN

v [ϕ〈Dσn, n〉 − 〈σ,∇Γϕ〉] dHn−1
}
.

(3.14)
This claim can be easily checked when VΓ = 0 and ∂Ω = ΓD. Indeed in this case we have z = 0 and
hence l1(z) = 0; moreover, starting from equality (3.6), if we replace C(u, V ) by the simpler field
CD(u, V ) given in (3.10) and we use the identity 〈(div V I − DV )n, n〉 = VnH∂Ω (holding thanks
to the C2 regularity assumption on ∂Ω), we are led to the equality J ′′(Ω, V ) = l2(Vn), with l2
defined according to (3.14). The proof of the claim in the general case requires some tedious but
straightforward computations, that we omit for the sake of conciseness.

Remark 3.9. We point out that the nonlocal part of the second variation, namely the term q(u, V )
defined in (3.7), may also be reformulated in dual form. In analogy with (3.5), let us introduce the
quadratic form Q∗(σ, ·) on the space X(Ω;Rn) defined in (2.4): we set

Q∗(σ, η) :=

∫
Ω

2[Qf∗(x, η) +Qg∗(x,div η)] dx ,

with Qf∗(x, z) := 1
2 〈∇

2f∗(σ(x))z, z〉 and Qg∗(x, v) := 1
2 (g∗)′′(div σ(x))v2. (For brevity in the sequel

we adopt the notation Qf∗(·) and Qg∗(·) in place of Qf∗(x, ·) and Qg∗(x, ·).)
A standard duality argument (see Lemma 8.5) yields

q(u, V ) = inf
η∈X(Ω;Rn)

{
Q∗(σ, η −B(u, V )) +

∫
ΓD

2 ∂nuVn (η · n) dHn−1
}
,

or equivalently, via a translation,

q(u, V ) = inf
η∈X(Ω;Rn)−B(u,V )

{
Q∗(σ, η)+

∫
ΓD

2 ∂nuVn (η·n) dHn−1
}

+

∫
ΓD

2 ∂nuVn (B(u, V )·n) dHn−1 .
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Example 3.10. An example of shape functional which is covered by Theorem 3.5 is the torsional
rigidity under mixed Dirichlet-Neumann boundary conditions (see also Remark 3.6 and §7.1):

J(Ω) = − inf

{∫
Ω

( |∇u|2
2
− λu

)
dx : u ∈ H(Ω)

}
.

In this case, assuming ∂Ω of class C2 and taking deformations normal to the boundary, the second
order shape derivative given in (3.11) reads

J ′′(Ω, V ) = −1

2

∫
ΓD

V 2
n

(
2λ∂nu+ |∂nu|2H∂Ω

)
dHn−1+

−1

2

∫
ΓN

V 2
n

[
(−2λu+ |∇u|2)H∂Ω + 2〈∇2u∇u, n〉

]
dHn−1+

− inf
v∈H1(Ω)

v=−Vn ∂nu on ΓD

{∫
Ω
|∇v|2 dx− 2

∫
ΓN

v〈∇u,∇ΓVn〉 dHn−1

}
.

(3.15)

Here, as already pointed out in Remark 3.8, the second order shape derivative is given by l2(Vn),
being l2 the quadratic form defined in (3.14). The equality between l2(Vn) and the r.h.s. of (3.15)
readily follows by using the identity ∆u = ∂2

nnu + ∂nuH∂Ω on ΓD, the fact that ∂nu = 0 on ΓN ,

and by taking into account that Qg ≡ 0 and Qf (z) = |z|2
2 .

We underline that in the pure Dirichlet case, i.e. when ΓN = ∅, our formula (3.15) allows to recover
the known expression of the second order shape derivative of the torsional rigidity (see for instance
[27, Section 5.9.6]). Finally, let us point out that, when the deformation field is not normal to the
boundary, the expression of J ′′(Ω, V ) is slightly more complicated than (3.15). Precisely, it is given
by l1(z) + l2(Vn), being l1 and z defined respectively in (3.13) and (3.12); in other words, we have
to add to the r.h.s. of formula (3.15) the following terms:∫

ΓD

|∂nu|2

2
(〈VΓ, DnVΓ〉−2〈VΓ,∇ΓVn〉) dHn−1−

∫
ΓN

( |∇u|2
2
−λu

)
(〈VΓ, DnVΓ〉−2〈VΓ,∇ΓVn〉) dHn−1 .

Example 3.11. As a variant of the previous example, we can consider the p-torsion problem under
Dirichlet boundary conditions (see also Remark 3.6):

Jp(Ω) = − inf

{∫
Ω

( |∇u|p
p
− λu

)
dx : u ∈W 1,p

0 (Ω)

}
, (3.16)

where p > 2 and λ is a positive parameter. Note that in this case the integrands f and g do not
satisfy the standing assumptions, in particular (2.1), so that we cannot apply directly Theorem 3.5.
In fact a major difficulty appears with the degeneracy at the origin of the Hessian of f . Nevertheless,
by exploiting a suitable approximation argument, we are able to show that Theorem 3.5 is still valid,
provided a suitable equality between weighted Sobolev spaces holds (cf. eq. (7.8)). The outcoming
formula reads as follows. Let ∂Ω be of class C2 and let the deformation field V be normal to the
boundary. Observe that σ is parallel to ∇u, and satisfies div σ = −λ; moreover, the equalities
〈(div σI − Dσ)n, n〉 = σnH∂Ω and ∆u = ∂2

nnu + ∂nuH∂Ω hold on ∂Ω. Taking these facts into
account, starting from (3.11) we obtain:

J ′′p (Ω, V ) = −1

p

∫
∂Ω
V 2
n

(
pλ∂nu+ |∂nu|pH∂Ω

)
dHn−1 − inf

v∈H1(Ω)
v=−Vn∂nu on ∂Ω

∫
Ω
〈P (u)∇v,∇v〉 dx , (3.17)
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with

P (u) := |∇u|p−2

(
I + (p− 2)

∇u
|∇u|

⊗ ∇u
|∇u|

)
.

The complete presentation of this variant is postponed to §7.2, see Theorem 7.1.

4 Existence of the second order shape derivative

This section is devoted to the proof of Theorem 3.5 (i). We introduce for brevity the differential
quotients

rε(V ) := 2
J(Ωε)− J(Ω)− εJ ′(Ω, V )

ε2
. (4.1)

By exploiting the formulation (2.10) of J(Ωε) and taking therein as a test function u+ εw, we infer

rε(V ) ≥ 2

ε2

(
−
∫

Ω
[fε(∇u+ ε∇w) + gε(u+ εw)] dx− J(Ω, V )− εJ ′(Ω, V )

)
. (4.2)

We are thus led to introduce the sequence of functionals defined for w ∈ H(Ω) and V ∈ C1(Rn;Rn)
by

Eε(w, V ) :=
2

ε2

{∫
Ω

[fε(∇u+ ε∇w) + gε(u+ εw)] dx+ J(Ω) + εJ ′(Ω, V )

}
. (4.3)

Moreover, still for w ∈ H(Ω) and V ∈ C1(Rn;Rn), let us define the following functional E(w, V ),
which will be seen to be the variational limit of Eε(w, V ), and its “dual counterpart” E∗(η, V ) (with
η ∈ X(Ω;Rn) and V as above):

E(w, V ) := 2

∫
Ω

[f(∇u) + g(u)]a2(DV ) dx+ 2

{∫
Ω

[
Qf (∇w −DV T∇u) +Qg(w)

]
dx+

+

∫
Ω

[
−〈(DV − div V I)∇f(∇u),∇w −DV T∇u〉 dx + div V g′(u)w

]
dx

}
,

(4.4)

E∗(η, V ) := 2

∫
Ω

[
f∗(σ) + g∗(div σ)− 〈∇f∗(σ), σ〉 − udiv σ

]
a2(DV ) dx+

+2
{∫

Ω

[
Qf∗((DV − div V I)σ + η) +Qg∗(div η − div V div σ) + 〈∇f∗(σ), DV η〉

]
dx
}
.

(4.5)
Theorem 3.5 (i) holds in view of the following result:

Proposition 4.1. Under the standing assumptions, the second order shape derivative J ′′(Ω, V )
exists, and is given by

J ′′(Ω, V ) = lim
ε→0

(
− inf
w∈H(Ω)

Eε(w, V )
)

= − inf
w∈H(Ω)

E(w, V ) = inf
η∈X(Ω;Rn)

E∗(η, V ) . (4.6)

Moreover the map V 7→ J ′′(Ω, V ) is a quadratic form in C1(Rn;Rn).

Proposition 4.1 will be obtained as a consequence of the two lemmas stated hereafter.
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Lemma 4.2. (upper and lower bounds)

Under the standing assumptions, the differential quotients defined in (4.1) satisfy

lim inf
ε→0

rε(V ) ≥ − inf
w∈H(Ω)

E(w, V ) (4.7)

and
lim sup
ε→0

rε(V ) ≤ inf
η∈X(Ω;Rn)

E∗(η, V ) . (4.8)

Lemma 4.3. (Γ-convergence)

Under the standing assumptions, for every V ∈ C1(Rn;Rn) the sequence {Eε(·, V )} is equicoervice
and Γ-converges to E(·, V ), with respect to the weak topology of H(Ω).

Let us show how the proposition follows from these lemmas, and then turn back to their proofs.

Proof of Proposition 4.1. We begin by proving the last equality in (4.6). Let Ψ : L2(Ω;Rn)×Lq(Ω)→
R be the function

Ψ(z, v) :=

∫
Ω

[Qf (z − a) + 〈z − a, b〉+Qg(v) + vα+ γ ] dx (4.9)

with

a := DV T∇u , b := −(DV − div V I)σ , α := div V g′(u) , γ := [f(∇u) + g(u)] a2(DV ) .

For every w ∈ H(Ω), it holds E(w, V ) = 2 Ψ(∇w,w), in particular

− inf
w∈H(Ω)

E(w, V ) = −2 inf
w∈H(Ω)

{Ψ(∇w,w)} . (4.10)

By applying Lemma 8.5 with Y = H(Ω), Z = L2(Ω;Rn) × Lq(Ω), A : Y → Z the operator
Av := (∇v, v), Φ : Y → R the zero function and Ψ defined as in (4.9), we can rewrite (4.10) as

−2 inf
w∈Y
{Ψ(Aw) + Φ(w)} = 2 inf

(η,τ)∈Z∗
{Ψ∗(η, τ) + Φ∗(−A∗(η, τ))} . (4.11)

Let us compute the Fenchel conjugates appearing in the r.h.s. of (4.11). By exploiting Lemma 8.2,
it is easy to see that

Ψ∗(η, τ) =

∫
Ω

[(Qf )∗(η − b) + 〈η, a〉+ (Qg)
∗(τ − α) + γ] dx .

Since Φ ≡ 0, its Fenchel conjugate Φ∗ is 0 at 0 and +∞ otherwise. As an element of Y ∗, A∗(η, τ)
is characterized by its action on the elements of Y : since

〈A∗(η, τ), v〉Y ∗,Y = 〈(η, τ), Av〉Z∗,Z =

∫
Ω

(〈η,∇v〉+ τv) dx ,

we infer that Φ∗(A∗(η, τ)) = 0 if and only if τ = div η (with the additional condition η · n = 0 on
ΓN ); note that, as a consequence, such vector fields η belong to X(Ω;Rn).
Therefore we may rewrite the r.h.s. of (4.11) as

2 inf
η∈X(Ω;Rn)

{∫
Ω

[(Qf )∗(η − b) + 〈η, a〉+ (Qg)
∗(div η − α) + γ] dx

}
. (4.12)
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Since by Lemmas 8.3 and 8.4 we have (Qf )∗ = Qf∗ and (Qg)
∗ = Qg∗ , and by the optimality

conditions (2.5) there holds

γ =

∫
Ω

[
f∗(σ) + g∗(div σ)− 〈∇f∗(σ), σ〉 − udiv σ

]
a2(DV ) dx ,

we conclude that the expression in (4.12) agrees with infη∈X(Ω;Rn)E
∗(η, V ), which achieves the proof

of the last equality in (4.6). Combined with Lemma 4.2, such equality implies the existence of the
second order shape derivative, and the fact that it agrees with any of the two infimum problems at
the r.h.s. of (4.7) and (4.8). The second equality in (4.6) is a direct consequence of Lemma 4.3.
Finally, the fact that the map V 7→ J ′′(Ω, V ) is a quadratic form is readily checked: one may
start from the equality J ′′(Ω, V ) = − infw E(w, V ), and look at the expression (4.4) of E(w, V ), by
recalling in particular that Qf is a quadratic form. �

Proof of Lemma 4.2. We first prove the lower bound in (4.7). We start from the inequality (4.2),
where we choose w as an element of C∞(Ω) ∩H(Ω). Recalling the definitions (2.11) of fε and gε,
the definition (1.1) of J(Ω), and the expression (2.8) of J ′(Ω;V ), we can rewrite the inequality (4.2)
separating the terms of different orders in ε. Recalling that Mε and mε are defined respectively
according to (2.15) and (2.16), and setting for brevity

h1 := ∇w −DV T∇u , h2 := (DV T )2∇u−DV T∇w , hε := (DV T )2∇w +Mε(∇u+ ε∇w) ,

we get

rε(V ) ≥
(
I0(ε) + I1(ε) + I2(ε)

)
, (4.13)

where

I0(ε) :=− 2

∫
Ω

[f(∇u+ εh1 + ε2h2 + ε3hε) + g(u+ εw)](a2(DV ) + εmε) dx ,

I1(ε) :=− 2

ε

∫
Ω

[f(∇u+ εh1 + ε2h2 + ε3hε) + g(u+ εw)− f(∇u)− g(u)] div V dx ,

I2(ε) :=− 2

ε2

∫
Ω

[f(∇u+ εh1 + ε2h2 + ε3hε) + g(u+ εw)− f(∇u)− g(u) + ε〈∇f(∇u), DV T∇u〉] dx .

Let us study separately the asymptotic behavior of Ii(ε) as ε → 0. By exploiting the growth
assumptions on the integrands and the uniform L∞ boundedness of mε and hε, we get

lim
ε→0

I0(ε) = −2

∫
Ω

[f(∇u) + g(u)]a2(DV ) dx . (4.14)

By applying Lemma 8.1 (i) to the integral functionals If and Ig defined according to (8.1) (note
that this can be done after possibly modifying g outside an interval, since u+εw remains uniformly
bounded in L∞), we get

lim
ε→0

I1(ε) = −2

∫
Ω

[〈∇f(∇u),∇w −DV T∇u〉+ g′(u)w] div V dx . (4.15)

Let us now consider I2(ε). We recall that, in view of the optimality conditions in (2.5), there holds
σ = ∇f(∇u) and div σ = g′(u), so that∫

Ω
[〈∇f(∇u),∇w〉+ g′(u)w] dx =

∫
Ω

(
〈σ,∇w〉+ w div σ

)
dx =

∫
∂Ω
wσ · ndHn−1 = 0 , (4.16)
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where the last equality holds since w = 0 on ΓD and σ ·n = 0 on ΓN . Thus, I2(ε) remains unchanged
if we add the zero term (4.16) (multiplied by 2/ε):

I2(ε) =− 2

ε2

∫
Ω

[f(∇u+ εh1 + ε2h2 + ε3hε)− f(∇u)− ε〈∇f(∇u), h1〉] dx+

− 2

ε2

∫
Ω

[g(u+ εw)− g(u)− εg′(u)w] dx .

Hence, by applying Lemma 8.1, we obtain

lim
ε→0

I2(ε) = −2

∫
Ω

[Qf (h1) + 〈∇f(∇u), h2〉+Qg(w)] dx . (4.17)

By combining (4.13), (4.14), (4.15) and (4.17), by the arbitrariness of w ∈ C∞(Ω) ∩H(Ω) we infer

lim inf
ε→0

rε(V ) ≥ − inf
w∈C∞(Ω)∩H(Ω)

E(w, V ) . (4.18)

In order to conclude the proof of the inequality (4.7), it is enough to observe that the infimum at
the r.h.s. of (4.18) coincides with the infimum at the r.h.s. of (4.7). Indeed, the integral functional
E(·, V ) above is continuous on H(Ω) (by the growth conditions (2.2) and the Sobolev embedding
of W 1,p(Ω) into Lp(Ω)), whereas C∞(Ω) ∩H(Ω) is dense in H(Ω).

Let us now prove the upper bound in (4.8). Let η be an arbitrary element of the space C∞(Ω;Rn)∩
X(Ω;Rn). In view of (1.2), the differential quotients rε(V ) introduced in (4.1) can be rewritten as

rε(V ) =
2

ε2

[
J∗(Ωε)− J∗(Ω)− εJ ′(Ω, V )

]
.

Then, by exploiting the expression of J∗(Ωε) in (2.13), we infer that

rε(V ) ≤ 2

ε2

(∫
Ω

[f∗ε (σ + εη) + g∗ε(div σ + εdiv η)] dx− J∗(Ω)− εJ ′(Ω, V )

)
. (4.19)

Recalling the definitions (2.14) of f∗ε and g∗ε , the definition of J∗(Ω) in (1.2), and the second
expression for J ′(Ω;V ) in (2.8), we can rewrite the inequality (4.19) separating the terms of different
orders in ε. Recalling the definition (2.17) of m̃ε, and setting for brevity

z1 :=(DV − div V I)σ + η ,

z2 :=(DV − div V I)η + ((div V )2 − div V DV − a2(DV ))σ ,

zε :=m̃ε(σ + εη) + ((div V )2 − a2(DV ))(DV σ + η)− div V DV η ,

τ1 := div η − div V div σ ,

τ2 :=((div V )2 − a2(DV )) div σ − div V div η ,

τε :=((div V )2 − a2(DV )) div η + m̃ε(div σ + εdiv η) ,

we obtain
rε(V ) ≤

(
I∗0 (ε) + I∗1 (ε) + I∗2 (ε)

)
, (4.20)

where

I∗0 (ε) :=2

∫
Ω

[f∗(σ + εz1 + ε2z2 + ε3zε) + g∗(σ + ετ1 + ε2τ2 + ε3τε)](a2(DV ) + εmε) dx ,
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I∗1 (ε) :=
2

ε

∫
Ω

[f∗(σ + εz1 + ε2z2 + ε3zε) + g∗(σ + ετ1 + ε2τ2 + ε3τε)− f∗(σ)− g∗(div σ)] div V dx ,

I∗2 (ε) :=
2

ε2

∫
Ω

[f∗(σ + εz1 + ε2z2 + ε3zε) + g∗(σ + ετ1 + ε2τ2 + ε3τε)− f∗(σ)− g∗(div σ) +

− ε〈∇f∗(σ), (DV − div V )σ〉+ ε div V div σ(g∗)′(div σ)] dx .

Let us study separately the asymptotic behavior of I∗i (ε) as ε → 0. By exploiting the growth
properties of the integrands (note that the growth assumptions on f and g made in (2.2) imply
similar conditions on f∗ and g∗) and the uniform L∞ boundedness of m̃ε, we get

lim
ε→0

I∗0 (ε) = 2

∫
Ω

[f∗(σ) + g∗(div σ)]a2(DV ) dx . (4.21)

By applying Lemma 8.1 (i) to the integral functionals If∗ and Ig∗ defined according to (8.1) (note
that this can be done after possibly modifying g∗ outside an interval, since div σ + ε div η remains
uniformly bounded in L∞), we get

lim
ε→0

I∗1 (ε) = 2

∫
Ω

[〈∇f∗(σ), z1〉+ (g∗)′(div σ)τ1] div V dx . (4.22)

Let us now consider I∗2 (ε). We recall that, in view of the optimality conditions (2.5), we have∫
Ω

[〈∇f∗(σ), η〉+ (g∗)′(div σ) div η] dx = 0 . (4.23)

Thus, I∗2 (ε) remains unchanged by adding the zero term (4.23) (multiplied by −2/ε):

I∗2 (ε) =
2

ε2

∫
Ω

[f∗(σ + εz1 + ε2z2 + ε3zε)− f∗(σ)− ε〈∇f∗(σ), z1〉+

+ g∗(σ + ετ1 + ε2τ2 + ε3τε)− g∗(div σ)− ε(g∗)′(div σ)τ1] dx .

Hence, by applying Lemma 8.1, we infer

lim
ε→0

I∗2 (ε) = 2

∫
Ω

[Qf∗(z1) + 〈∇f∗(σ), z2〉+Qg∗(τ1) + (g∗)′(div σ)τ2] dx . (4.24)

By combining (4.20) with (4.21), (4.22) and (4.24) and recalling the definition (4.5) of E∗, in view
of the arbitrariness of η ∈ C∞(Ω;Rn) ∩X(Ω;Rn), we infer

lim sup
ε→0

rε(V ) ≤ inf
η∈C∞(Ω;Rn)∩X(Ω;Rn)

E∗(η, V ) . (4.25)

Finally we observe that, for every η ∈ X(Ω;Rn), there exists a sequence {ηh} ⊂ C∞(Ω;Rn) ∩
X(Ω;Rn), such that ηh → η in L2(Ω;Rn) and div ηh → div η in Lq

′
(Ω). Since E∗(·, V ) is continuous

with respect to such convergence (thanks to the fact that the growth assumptions on f and g made
in (2.2) imply similar conditions on f∗ and g∗), the infimum at the r.h.s. of (4.25) turns out to agree
with the infimum at the r.h.s. of (4.8), and the proof is achieved.

�

Proof of Lemma 4.3. For brevity, throughout the proof we fix the vector field V and we omit it
when writing the functionals Eε and E. We begin by showing the equicoercivity of Eε. In view of
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the convexity assumptions on f and g we infer that the following bounds hold true, where m and
k are the positive constants appearing in (2.1):

f(z0 + z) ≥ f(z0) + 〈∇f(z0), z〉+m|z|2 , g(v0 + v) ≥ g(v0) + g′(v0)v + k|v|2 .

By exploiting such bounds for z0 = ∇u, z = −∇u+DΨ−Tε (∇u+∇w), v0 = u and v = εw, we infer
that for every ε

Eε(w) ≥ c1‖∇w‖2L2 + c2‖w‖2L2 − c3‖∇w‖L2 − c4‖w‖L2 − c5 ,

for some positive constants ci. Therefore the sequence Eε is equicoercive in H(Ω).

Let us now show the Γ-convergence statement. By definition of Γ-convergence, we have to prove
the so-called Γ-liminf and Γ-limsup inequalities:

inf

{
lim inf Eε(wε) : vε

H(Ω)
⇀ v

}
≥ E(w) (4.26)

inf

{
lim supEε(wε) : vε

H(Ω)
⇀ v

}
≤ E(w) . (4.27)

Let us prove (4.26). For every w ∈ H(Ω) and for every sequence wε which converges weakly to w
in H(Ω), we have to prove that

E(w) ≤ lim inf
ε

Eε(wε) . (4.28)

For a given w ∈ H(Ω), let us first consider a regular sequence w̃ε ∈ C∞(Ω)∩H(Ω) weakly converging
to w.
As already done in the proof of Lemma 4.2 , by exploiting the C1 regularity of the integral functionals
If and Ig and the L2-Mosco convergence of the corresponding sequences ∆ε,f and ∆ε,g defined
according to (8.2), we infer

E(w) ≤ lim inf
ε

Eε(w̃ε) . (4.29)

Let us now consider a generic sequence wε ∈ H(Ω) weakly converging to w. By density, for every
fixed ε, there exists w̃ε,k ∈ C∞(Ω)∩H(Ω) such that w̃ε,k → wε strongly in H(Ω) as k → +∞. With
a diagonal argument, we may find a subsequence such that

lim inf
ε

Eε(wε) = lim inf
ε

lim
k
Eε(w̃ε,k) = lim

ε
Eε(w̃ε,kε) , (4.30)

where the first equality follows by the strong continuity of Eε. We remark that the subsequence
w̃ε,kε is regular and weakly converging to w, hence it satisfies (4.29). Such property, combined with
the equality (4.30), concludes the proof of (4.28).

Let us now prove (4.27). For every fixed w ∈ H(Ω) we have to find a recovery sequence, namely
a sequence wε which converges weakly to w in H(Ω) and satisfies lim supε→0Eε(wε) ≤ E(w). If
w̃ is an element of the space C∞(Ω) ∩H(Ω), we are done simply by taking the constant sequence
wε ≡ w̃. Indeed, by following the same procedure adopted in the proof of Lemma 4.2, we infer
that limε→0Eε(w̃) = E(w̃). If w is a generic element of H(Ω), we approximate it by a sequence
w̃k ∈ C∞(Ω)∩H(Ω): by the lower semicontinuity of the l.h.s. of (4.27) (usually called Γ-lim supEε)
and the continuity of E, we obtain

(Γ− lim supEε)(w) ≤ lim inf
k

(Γ− lim supEε)(w̃k) ≤ lim inf
k

lim sup
ε

Eε(w̃k) = E(w) .

�
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5 Regularity of the solution and necessary optimality condition

In this section we prove Propositions 3.2 and 3.4. Both of them are based on the crucial result
given below, which in turn exploits the Γ-convergence statement given in the previous section (cf.
Lemma 4.3).

Proposition 5.1. Under the standing assumptions, if V has compact support contained into Ω,
then the function θV := 〈V,∇u〉 solves the minimization problem inf

w∈H(Ω)
E(·, V ), where E(·, V ) is

the functional defined by (4.4).

Proof. We first prove the following claim: for every fixed ε > 0, the function

wε(x) :=
u(x+ εV (x))− u(x)

ε
(5.1)

solves the minimization problem inf
w∈H(Ω)

Eε(·, V ), where Eε(·, V ) is the functional defined by (4.3).

Let uε ∈ H(Ω) be optimal for problem J(Ωε) in the formulation (2.10) set on the fixed domain Ω.
Via change of variables we obtain

J(Ωε) = −
∫

Ω
[fε(∇uε) + gε(uε)] dx = −

∫
Ωε

[f(∇(uε ◦Ψ−1
ε )) + g(uε ◦Ψ−1

ε )] dx .

We infer that the function uε ◦Ψ−1
ε ∈ H(Ωε) is optimal for problem J(Ωε) in its original formulation

as an infimum over H(Ωε). On the other hand, since V has compact support contained into Ω, we
know that J(Ωε) = J(Ω), and hence (since u is the unique solution to J(Ω)) we have uε ◦Ψ−1

ε = u,
namely uε(x) = u◦Ψε(x) = u(x+εV (x)). It follows that the function wε defined in (5.1) minimizes
Eε(·, V ) over H(Ω), and our claim on the optimality of wε is proved.

In view of Lemma 4.3, the minimizing sequence {wε} is equibounded in H(Ω) and, up to sub-
sequences, it weakly converges to a minimizer of the Γ-limit, namely to a minimizer of E(·, V ).
Clearly, the weak limit of wε necessarily agrees with the pointwise limit 〈V,∇u〉, which allows to
conclude that 〈V,∇u〉 minimizes E(·, V ) over H(Ω). �

Proof of Proposition 3.2. In view of Proposition 5.1 we can assert that, for every vector field
V compactly supported into Ω, the function 〈V,∇u〉 belongs to H1(Ω). By the arbitrariness of
V ∈ C1

0 (Ω;Rn), we infer that u is an element of W 2,2
loc (Ω). �

Proof of Proposition 3.4. We consider the minimization of the functional E(·, V ) in (4.4) over H(Ω),
written as done in the proof of Proposition 4.1, see eq. (4.10). By duality, we have the equality
(4.11). Then, by Lemma 8.5, a function w ∈ H(Ω) and a pair (η, τ) ∈ L2(Ω;Rn)×Lq′(Ω) are optimal
respectively for the two problems in (4.11) if and only if (η, τ) ∈ ∂Ψ(∇w,w) and (div η, τ) ∈ ∂Φ(w).
Then, by computing explicitly the expressions of ∂Φ and ∂Ψ, we get τ = div η, with the additional
condition η · n = 0 on ΓN , and

η = ∇2f(∇u)(∇w −DV T∇u)− (DV − div V I)σ ,

div η = g′′(u)w + g′(u) div V .
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Hence, for V ∈ C1
0 (Ω;Rn), the distributional equality (3.3) follows by replacing w by 〈V,∇u〉 in

the above optimality conditions (since we know by Proposition 5.1 that θV = 〈V,∇u〉 minimizes
E(·, V ) over H(Ω)). For V ∈ C1(Rn;Rn), the equality (3.3) continues to hold by the following
simple argument: in order to check (3.3) for a given test function ϕ ∈ D(Ω), it is enough to use its
validity when V is replaced by the product µV ∈ C1

0 (Ω;Rn), being µ a cut off function compactly
supported into Ω which equals 1 on the support of ϕ.

�

6 Representation formula for the second order shape derivative

In this section we give the

Proof of Theorem 3.5 (ii). We start from the following equality that we have already proved in
Proposition 4.1:

J ′′(Ω, V ) = − inf
w∈H(Ω)

E(w, V ) . (6.1)

Throughout the proof we set for brevity θV := 〈V,∇u〉. By inserting into the definition (4.4) of
E(w, V ) the identities

Qf (∇w −DV T∇u) = Qf
(
∇(w − θV )

)
+
〈
∇2f(∇u)(∇2u)V,∇(w − θV )

〉
+Qf

(
(∇2u)V

)
Qg(w) = Qg(w − θV ) + g′′(u) θV (w − θV ) +Qg(θV ) ,

we obtain

E(w, V ) =

∫
Ω

2
[
Qf
(
∇(w − θV )

)
+Qg(w − θV )

]
dx+

+

∫
Ω

2
[
〈∇2f(∇u)(∇2u)V − (DV − div V I)σ,∇(w − θV )〉+

(
g′′(u) θV + div V g′(u)

)
(w − θV )

]
dx+

+

∫
Ω

[(
f(∇u) + g(u)

)
(div V I −DV ) : DV T − 2〈(DV − div V I)σ, (∇2u)V 〉+ 2 div V g′(u)θV

]
dx+

+

∫
Ω

[
2Qf ((∇2u)V ) + 2Qg(θV )

]
dx .

Recalling the definition (3.5) of the quadratic form Q(u, ·) and the definition (3.2) of the vector field
B(u, V ), by using also Proposition 3.4 we can rewrite the above equality as E(w, V ) = (I) + (II),
with

(I) = Q(u,w − θV ) dx+

∫
Ω

2
[
〈B(u, V ),∇(w − θV )〉+ divB(u, V )(w − θV )

]
dx

and

(II) =

∫
Ω

[(
f(∇u) + g(u)

)
(div V I −DV ) : DV T − 2〈(DV − div V I)σ, (∇2u)V 〉+ 2 div V g′(u)θV

]
dx+

+

∫
Ω

[
2Qf ((∇2u)V ) + 2Qg(θV )

]
dx .

18



Note that, in view of the assumption u ∈W 2,2(Ω), the vector field B(u, V ) is in L2 and has bounded
divergence, thus it admits a normal trace in H−1/2(∂Ω), and we are allowed to apply the integration
by parts formula (2.3). Thus we get

(I) = Q(u,w − θV ) dx+

∫
∂Ω

2(w − θV )B(u, V ) · ndHn−1 , (6.2)

We now want to rewrite (II) as a boundary integral. To this purpose we observe that, by (3.2) and
(3.3), there hold

−〈(DV − div V I)σ −∇2f(∇2u)V, (∇2u)V 〉 = 〈B(u, V ), (∇2u)V 〉 , (6.3)

div V g′(u) θV + g′′(u)(θV )2 = divB(u, V ) θV . (6.4)

Moreover, again thanks to the assumption u ∈W 2,2(Ω), the vector field

X1 := (f(∇u) + g(u))(div V I −DV )V (6.5)

is bounded and has L2 divergence. Thus we are allowed to apply the integration by parts formula
(2.3) and we get∫

Ω
(f(∇u) + g(u))(div V I −DV ) : DV T dx =

∫
∂Ω

(f(∇u) + g(u))〈(div V I −DV )V, n〉 dHn−1+

−
∫

Ω
〈(div V I −DV )V, (∇2u)σ + g′(u)∇u〉 dx . (6.6)

Using (6.3), (6.4) and (6.6), we infer that

(II) =

∫
∂Ω

(X1 · n) dHn−1 +

∫
Ω

[〈B(u, V ), (∇2u)V 〉+ divB(u, V ) θV ] dx+

−
∫

Ω
〈(∇2u)DV σ −DV T (∇2u)σ − g′(u)DV T∇u, V 〉 dx .

Exploiting the equality (∇2u)V = ∇θV −DV T∇u, we get

(II) =

∫
∂Ω

(X1 · n) dHn−1 +

∫
Ω

[〈B(u, V ),∇θV 〉+ divB(u, V ) θV ] dx+

−
∫

Ω

[
〈∇2f(∇u)(∇2u)V,DV T∇u〉+ div V 〈σ,DV T∇u〉+ 〈(∇2u)DV σ, V 〉

]
dx+

+

∫
Ω

[
〈DV σ,DV T∇u〉+ 〈DV T (∇2u)σ, V 〉+ g′(u)〈DV T∇u, V 〉

]
dx .

Finally we remark that 〈B(u, V ),∇θV 〉+ divB(u, V ) θV = div
(
θVB(u, V )

)
, and

− 〈∇2f(∇u)(∇2u)V,DV T∇u〉 − div V 〈σ,DV T∇u〉 − 〈(∇2u)DV σ, V 〉+ 〈DV σ,DV T∇u〉+

+ 〈DV T (∇2u)σ, V 〉+ g′(u)〈DV T∇u, V 〉 = div
(
− 〈DV σ,∇u〉V + 〈DV V,∇u〉σ

)
.
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Hence

(II) =

∫
∂Ω

(X1 · n) dHn−1 +

∫
Ω

div
(
θV B(u, V )− 〈DV σ,∇u〉V + 〈DV V,∇u〉σ

)
dx ; (6.7)

moreover, thanks to the assumption u ∈W 2,2(Ω), the tensor field

X2 := θV B(u, V )− 〈DV σ,∇u〉V + 〈DV V,∇u〉σ , (6.8)

is in L2 and has L2 divergence. Then, by adding (6.2) and (6.7) and by applying the integration by
parts formula (2.3), we obtain

E(w, V ) = Q(u,w − θV ) dx+

∫
∂Ω

2(w − θV )B(u, V ) · ndHn−1+

+

∫
∂Ω

(X1 · n) dHn−1 +

∫
∂Ω

(X2 · n) dHn−1 .

(6.9)

Now, the fact that the field C(u, V ) defined in (3.4) admits a normal trace in H−1/2(∂Ω) follows by
observing that C(u, V ) = −X1−X2, with X1 and X2 defined respectively in (6.5) and (6.8). Finally
the expression (3.6) of the second order shape derivative follows by combining (6.9) with (6.1), and
using the equality C(u, V ) = −X1 −X2.

�

7 Variants and perspectives

7.1 The case g linear

We claim that Theorem 3.5, Proposition 3.2, and Proposition 3.4 remain true in the case when
g(v) = −λv, for some λ ∈ R. Note just that in the definition (3.5) of the quadratic form Q(u, ·),
the term Qg vanishes.
The proof of the lower bound inequality (4.7) works unaltered, whereas the proof of the upper
bound inequality (4.8) must be modified as follows. Note firstly that, since the Fenchel conjugate
of g is the Dirac delta function g∗(τ) = δ−λ, the dual energy E∗(η, V ) introduced in (4.5) is finite
only if div η = −λ div V , and in this case it reads:

E∗(η, V ) = 2

∫
Ω

[f∗(σ)− 〈∇f∗(σ), σ〉+ λu] a2(DV ) dx+

+2

∫
Ω

[
Qf∗((DV − div V I)σ + η) + 〈∇f∗(σ), DV η〉

]
dx .

(7.1)

Next, we write the following inequality (which replaces (4.19)):

rε(V ) ≤ 2

ε2

(∫
Ω

[f∗ε (σε) + g∗ε(div σε)] dx− J∗(Ω, V )− εJ ′(Ω, V )

)
, (7.2)

where σε are the perturbations of σ defined by

σε := σ +
n∑
k=1

εkηk , (7.3)
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with for k ∈ {1, 2, . . . , n}

ηk ∈ L∞(Ω;Rn) , div ηk = −λak(DV ) in Ω , ηk · n = 0 on ΓN . (7.4)

Notice that, for such a choice of σε, the r.h.s. of the inequality (7.2) is finite. Namely, exploiting the
expansion (2.12) and the fact that by (2.5) it holds div σ = −λ, we obtain div σε = −λβε, so that

g∗ε(div σε) = βεg
∗(β−1

ε div σε) = βεg
∗(−λ) = 0 . (7.5)

Notice also that the set of fields satisfying (7.4) is non empty: indeed, every ak(DV ) can be expressed
as the divergence of a suitable regular vector field νk (see for instance [35, Lemma 4.6.4]); thus the
conditions in (7.4) are verified by taking ηk := −λνk +∇wk, being wk the solution of

∆wk = 0 in Ω , ∂nwk = hk on ∂Ω ,

with hk = λνk · n on ΓN ,
∫
∂Ω hk = 0. By combining (7.2) and (7.5), we may write

rε(V ) ≤
(
I∗0 (ε) + I∗1 (ε) + I∗2 (ε)

)
, (7.6)

with

I∗0 (ε) :=2

∫
Ω
f∗(β−1

ε DΨεσε)(a2(DV ) + εmε) dx ,

I∗1 (ε) :=
2

ε

∫
Ω

[f∗(β−1
ε DΨεσε)− f∗(σ)] div V dx ,

I∗2 (ε) :=
2

ε2

∫
Ω

[f∗(β−1
ε DΨεσε)− f∗(σ)− ε〈∇f∗(σ), (DV − div V I)σ〉 − ελ div V u] dx .

Now we argue in a similar way as in the strictly convex case: we apply Lemma 8.1 to the integral
functional If∗ and, in order to deal with I∗2 (ε), we exploit the equality∫

Ω
λdiv V u dx = −

∫
Ω
udiv η1 dx =

∫
Ω
〈∇f∗(σ), η1〉 dx ;

thus we obtain

lim
ε→0

I∗0 (ε) = 2

∫
Ω
f∗(σ)a2(DV ) dx ,

lim
ε→0

I∗1 (ε) = 2

∫
Ω
〈∇f∗(σ), (DV − div V I)σ + η1〉div V dx ,

lim
ε→0

I∗2 (ε) = 2

∫
Ω
Qf∗((DV − div V I)σ + η1)+

+ 〈∇f∗(σ), ((div V )2 − div V DV − a2(DV ))σ + (DV − div V I)η1 + η2〉 dx .

In view of (7.6), by adding up the three terms above and exploiting the equality
∫

Ω〈∇f
∗(σ), η2〉 dx =∫

Ω λua2(DV ) dx, we infer that lim supε→0 rε(V ) ≤ E∗(η1, V ).
Now, since η1 is an arbitrary vector field in L∞(Ω;Rn) with div η1 = −λ and η1 · n = 0 on ΓN , in
order to conclude the proof of the upper bound inequality (4.8) it is enough to show that every field
η ∈ X(Ω;Rn) satisfying the two conditions div η = −λ and η · n = 0 on ΓN can be approximated
strongly in L2 by a sequence of fields ηh belonging to L∞(Ω;Rn) and satisfying the same two
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conditions. To that aim we begin by noticing that, since by assumption ∂Ω is piecewise C1, there
exists a sequence of smooth fields η̃h, with η̃h · n = 0 on ΓN , such that η̃h → η in L2(Ω;Rn) and
div η̃h → −λ in L2(Ω). Then, we let φh be the unique solution to the Dirichlet-Neumann problem

−∆φh = ρh := λ+ div η̃h in Ω , φh = 0 on ΓD , ∂nφ
h = 0 on ΓN .

Finally we define ηh := η̃h +∇φh, and we claim that such sequence ηh has the required properties.
Namely, since ρh is a sequence of smooth functions converging to 0 in L2(Ω), the sequence ηh lies in
L∞(Ω;Rn), and converges to η in L2(Ω;Rn); moreover it holds div ηh = −λ and ηh · n = 0 on ΓN .
Eventually, once now (4.8) is established, the remaining parts of the proofs given in Sections 4, 5
and 6 can be repeated as done for g strictly convex.

7.2 The p-torsion problem

Here we prove formula (3.17) for the second order shape derivative of the p-torsional rigidity func-
tional Jp(Ω) introduced in (3.16), for p > 2. We recall that the first order derivative J ′p(Ω, V ) exists
and is given by

J ′p(Ω, V ) =

∫
∂Ω

|∇u|p

p′
Vn dHn−1 ,

where u is the unique solution in W 1,p
0 (Ω) to −∆pu = λ (see for instance [8, 15]). It is well-known

that u is of class C1,α(Ω) (see [19, 47]), and it is also in C2(Ω \ S), where S is the critical set
S := {x ∈ Ω : ∇u = 0}. Let us also recall that S has vanishing Lebesgue measure (see [32]), and
it is compactly contained into Ω (thanks to Hopf boundary lemma).
Let us introduce the weight function ρ := |∇u|p−2, which is continuous in Ω and strictly positive
outside S. Moreover, ρ−1 is in L1(Ω) (see [42]).
We denote by W 1,2

ρ (Ω) the Hilbert space consisting of functions v ∈W 1,1
loc (Ω) such that

‖v‖
W 1,2
ρ (Ω)

:= ‖v‖2L2(Ω) + ‖∇v‖2L2
ρ(Ω) < +∞ ,

and by H1,2
ρ (Ω) the completion of C1(Ω) with respect to the above norm.

Let Q(u, ·) denote the quadratic functional defined on W 1,2
ρ (Ω) by

Q(u, v) :=

∫
Ω
〈P (u)∇v,∇v〉 dx , with P (u) := |∇u|p−2

(
I + (p− 2)

∇u
|∇u|

⊗ ∇u
|∇u|

)
. (7.7)

Notice that, since the norm of the matrix P (u) is controlled by ρ, the functional Q(u, ·) is continuous
on the Hilbert space W 1,2

ρ (Ω). By adapting the approach developed in Section 4, we obtain the
following second order differentiability result.

Theorem 7.1. Let ∂Ω be of class C2. Let p > 2 and assume that the weight ρ := |∇u|p−2 is such
that

H1,2
ρ (Ω) = W 1,2

ρ (Ω) . (7.8)

Then, the functional Jp(Ω) is twice differentiable at Ω in any direction V , and for V normal to the
boundary it holds

J ′′p (Ω, V ) = −1

p

∫
∂Ω
V 2
n

(
pλ∂nu+ |∂nu|pH∂Ω

)
dHn−1 − inf

v∈W1,2
ρ (Ω)

v=−Vn∂nu on ∂Ω

Q(u, v) . (7.9)
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Remark 7.2. Notice that, since ρ is strictly positive in a neighborhood of ∂Ω, the space W 1,2
ρ (Ω)

is embedded into H1
loc(Ω \ S), and hence the trace operator is well defined from W 1,2

ρ (Ω) into
H1/2(∂Ω). In particular, the infimum in (7.9) is well-defined since, by the C2 regularity of u in
Ω\S, the function 〈V,∇u〉 belongs to H1

loc(Ω\S). Moreover, the infimum can be equivalently taken
in H1(Ω) (as written in Example 3.11).

Remark 7.3. Let us add a few comments on assumption (7.8) and related bibliographical references.
As general texts on weighted Sobolev spaces, we refer to [30, 36]. Moreover, we address to the paper
[14] for a counterexample showing that the L1-summability property of ρ−1 is not strong enough to
ensure the validity of (7.8). A sufficient condition would be ρ ∈ A2, where A2 is the Muckenhoupt

class of functions satisfying supB

(
1
|B|
∫
B ρ
)(

1
|B|
∫
B ρ
−1
)
< +∞, where B varies among balls in Rn

(see for instance [28]), but such kind of regularity result seems hard to prove. On the other hand,
equality (7.8) holds true if the set S has vanishing capacity in H1,2

ρ (Ω), namely if there exists a
sequence of smooth functions αε : Ω → [0, 1] which are equal to 1 in a ε-neighborhood of S and
satisfy limε

∫
Ω |∇αε|

2ρ dx = 0. Indeed in this case, given w ∈ W 1,2
ρ (Ω) with w = −θV on ∂Ω, it

is possible to construct an approximating sequence {wε} ∈ H1,2
ρ (Ω) with wε = −θV on ∂Ω: it is

enough to take wε := (1−αε)w (which belong to H1(Ω), and hence to H1,2
ρ (Ω)). In particular, our

assumption (7.8) turns out to be satisfied whenever S is a singleton. Concerning the geometry of
S recall that, if Ω is convex, the function u is power concave [41], and hence S agrees with the set
where u assumes its maximum. If in addition Ω is strictly convex, it is likely true that S is reduced
to a singleton (cf. [5, 29]), or at least that it is of vanishing capacity, so that (7.8) holds true.

Proof of Theorem 7.1. Since shape derivatives only depend on the behavior of the deformation field
on the boundary, with no loss of generality we may choose V vanishing in a neighborhood of S
(recall that S ⊂⊂ Ω). Then, in order to show the equality (7.9), we proceed along the same scheme
adopted in Section 4, namely we show that the lower and upper limits as ε → 0 of the differential
quotients rε(V ) defined in (4.1) are bounded respectively from below and from above by the same
quantity, which is precisely the r.h.s. of formula (7.9). For convenience, we divide the remaining of
the proof in three steps.

Step 1 (lower bound): Thanks to the assumption p ≥ 2, the following lower bound can be achieved
by arguing exactly as done in the proof the inequality (4.7) in Lemma 4.2:

lim inf
ε→0

rε(V ) ≥ m∞ := − inf
w∈C∞0 (Ω)

E(w, V ) ,

where E(w, V ) is defined according to (4.4) by taking therein f(z) = |z|p/p, and g(v) = −λv.
We claim that the field B(u, V ) introduced in (3.2) still satisfies Proposition 3.4, namely

divB(u, V ) = −λ div V in D′(Ω) . (7.10)

The proof of the above equality cannot be repeated as done in Section 5, because the minimizer u of
the functional Jp(Ω) satisfies the regularity condition u ∈W 2,2(Ω) only for p ∈ (1, 3); nevertheless,
for p ≥ 3, one has that u ∈W 2,q(Ω) for any q < (p−1)/(p−2) (see [16, Proposition 2.2]). Thus ∇u
is always in W 1,1(Ω), and the distributional Hessian of u appearing in the definition B(u, V ) is well-
defined as a function in L1(Ω). Moreover, the function u satisfies the crucial regularity condition
|∇u|p−2∇u ∈ W 1,2(Ω) (see [43, Corollary 2.1]), which enables us to obtain the proof of (7.10) as
follows. Recall that σ = ∇f(∇u) = |∇u|p−2∇u; then, since ∇f(·) is a locally Lipschitz function
and ∇u ∈ L∞(Ω)∩W 1,1(Ω), we can apply the chain rule and we get Dσ = ∇2f(∇u)∇2u a.e. in Ω.
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Thus the field B(u, V ) may be rewritten in terms of σ as B(u, V ) = DσV − (DV − div V I)σ and
in particular it belongs to L2(Ω;Rn). It is then straightforward to obtain (7.10). Namely, for any
test function ϕ ∈ C∞c (Ω), it holds

〈div(DσV ), ϕ〉 = −〈DσV,∇ϕ〉 = −〈∂kσiVk, ∂iϕ〉 = 〈σi∂kVk, ∂iϕ〉+ 〈σiVk, ∂2
ikϕ〉

= 〈−div(σ div V ) + div(V div σ) + div(DV σ), ϕ〉
= 〈div[(DV − div V I)σ], ϕ〉 − 〈λ div V, ϕ〉 ,

where we have used the equality −div σ = λ (holding by (2.5) applied with g(t) = −λt).
Now, we are in a position to rewrite m∞ similarly as in Theorem 3.5 (ii). Indeed, one can check
that the proof of Theorem 3.5 (ii) given in Section 6 continues to work, thanks in particular to the
identity (7.10) and to the W 2,q regularity of u for q < (p− 1)/(p− 2)). Thus, defining CD(u, V ) as
in (3.10) (with f(z) = |z|p/p), letting Q(u, ·) be given by (7.7), and setting θV = 〈V,∇u〉, we obtain

lim infε→0 rε(V ) ≥ m∞ =

∫
∂Ω
CD(u, V ) dHn−1 − inf

w∈C∞0 (Ω)
Q(u,w − θV )

=

∫
∂Ω
CD(u, V ) dHn−1 − inf

w∈H1,2
ρ,0(Ω)

Q(u,w − θV ) ;

(7.11)

here H1,2
ρ,0 (Ω) denotes the space of functions in H1,2

ρ (Ω) vanishing at ∂Ω, and the last equality follows

from the continuity of Q(u, ·) on W 1,2
ρ .

Step 2 (upper bound): Due to the growth of order p′ ∈ (1, 2] of the Fenchel conjugate f∗(z∗) =
|z∗|p′/p′, in order bound from above rε(V ), we need to set up an approximation argument. Roughly
speaking, we cover almost all Ω with a suitable family of subdomains of Ω in which the Hessian of f∗

is bounded from above, and then we pass to the limit. More precisely, as ∇u is a continuous function
which is strictly positive outside S, we can construct increasing sequence of open sets Ωh ↑ (Ω \ S)
such that, for every h ∈ N, |∇u| > 1/h in Ωh, and the boundary Γh := ∂Ωh \ ∂Ω is smooth and has
a positive distance from ∂Ω. For every fixed h, we follow the same procedure adopted for the proof
of the inequality (4.8) in Lemma 4.2, in the variant when g is linear described in §7.1. We choose
the fields ηk appearing in (7.3) as done in (7.4), with the additional condition that ηk = 0 in Ω \Ωk

(note that this is possible thanks to the assumption made on the support of the deformation field
V ). We infer that, for every fixed h,

lim sup
ε

rε(V ) ≤ mh := inf
η∈X(Ω;Rn) , div η=−λ div V in Ω

η=0 in Ω\Ωh

E∗(η, V ) , (7.12)

where E∗(η, V ) is defined according to (7.1) (with f∗(z∗) = |z∗|p′/p′).
By applying Lemma 8.5 and exploiting the regularity of u, we may rewrite mh in primal form as

mh =

∫
∂Ω
CD(u, V ) dHn−1 − inf

w∈Vh
Qh(u,w − θV ) , (7.13)

where Vh denotes the subspace of H1(Ωh) of functions having zero trace on ∂Ω, and

Qh(u, v) := 2

∫
Ωh

〈P (u)∇v,∇v〉 dx .
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Now, in order to bound from above the upper limit of mh as h → +∞, we are going to bound
from below the infimum appearing at the r.h.s. of (7.13). We start by noticing that such infimum
can be equivalently taken in the space W 1,2

ρ,0 (Ω) of functions in W 1,2
ρ (Ω) vanishing at ∂Ω. Let

{wh} ⊂ W 1,2
ρ,0 (Ω) be a sequence of minimizers for Qh(u, · − θV ). For every fixed k ∈ N, such

sequence is bounded in H1(Ωk), so that it admits a subsequence weakly converging in H1(Ωk) to
some element w(k). By a diagonalization argument, we can choose the same subsequence for every k,
and hence the restriction of w(k) to Ωl for l < k agrees with w(l). Hence we obtain a (not relabeled)
subsequence of wh and an element ŵ ∈W 1,2

ρ,0 (Ω) such that wh converges weakly to ŵ in H1(Ωk) for
every k. Then, by Fatou’s Lemma and monotone convergence, we get

lim inf
h
Qh(u,wh − θV ) ≥ Q(u, ŵ − θV ) ≥ inf

w∈W 1,2
ρ,0 (Ω)

Q(u,w − θV ) . (7.14)

By combining (7.12), (7.13), and (7.14), we obtain

lim sup
ε

rε(V ) ≤ m∗∞ :=

∫
∂Ω
CD(u, V ) dHn−1 − inf

w∈W 1,2
ρ,0 (Ω)

Q(u,w − θV ) . (7.15)

Step 3 (conclusion): We finally need to show that the lower and upper bounds m∞ and m∗∞ in (7.11)
and (7.15) agree, and that they are equal to the expression at the r.h.s. of (7.9). We firstly observe
that, by arguing as in Remark 3.8, the integral over ∂Ω of CD(u, V ) appearing in the expression
(7.11) of m∞ can be rewritten as done in (7.9) . Then it only remains to prove that no Lavrenteev
phenomenon occurs for the infimum problems appearing in (7.11) and (7.15). In other words, after
a translation, we are reduced to show that

inf
w∈W 1,2

ρ (Ω)

{
Q(u, ·) : w = −θV on ∂Ω

}
= inf

w∈H1,2
ρ (Ω)

{
Q(u, ·) : w = −θV on ∂Ω

}
. (7.16)

The validity of (7.16) is an immediate consequence of our assumption (7.8) and of the continuity of
Q(u, ·) in W 1,2

ρ (Ω).
�

7.3 Perspectives

A natural perspective is the possible extension of our results to the case of convex non-smooth
integrands f and g. The main difficulty is that in this case one can no longer exploit the second order
differentiability property for integral functionals stated in Lemma 8.1. However we expect that in
some cases the second order shape derivative still exists, and admits a representation formula similar
to (3.6), with the quadratic form Q(u, ·) (formerly associated with the second order differentials of
f and g) replaced by a suitable convex, positively 2-homogeneous, non-quadratic function. This
kind of generalization would be useful in applications: for instance, the shape functional obtained

by taking the function f(z) equal to |z|
2

2 + 1
2 if |z| ≥ 1 and |z| if |z| < 1, and the function g(v)

equal to −λv (for some λ ∈ R), is related to the optimization of thin rods in torsion regime (see
[2, 9]), and studying its second order shape derivative might be helpful in order to investigate the
occurrence of homogenization regions in an optimal design. (For the computation of the first order
shape derivative in this case, see Example 3.9 (ii) in [8].)

Another perspective is trying to understand whether the results obtained in §7.2 may entail some
useful information on the second order shape derivative of the shape functional J∞(Ω) obtained as
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the limit as p→ +∞ of the p-torsional rigidity functionals Jp(Ω) defined in (3.16). Actually, up to
constant multiple, it is well known that here holds J∞(Ω) =

∫
Ω d∂Ω(x) dx and limp up(x) = d∂Ω(x),

where d∂Ω is the distance function from ∂Ω, and up is the unique solution to Jp(Ω) (see [4, 7, 39]).

8 Appendix

Lemma 8.1. Let φ : Rn → R be a strongly convex function of class C2 satisfying growth conditions
of order 2 from above and below, and let Iφ be the integral functional defined on L2(Ω;Rn) by

Iφ(z) :=

∫
Ω
φ(z(x)) dx . (8.1)

Let z0 be a fixed vector field in L∞(Ω;Rn) and, for h ∈ L2(Ω;Rn), set qφ(h) := 1
2

∫
Ω〈∇

2φ(z0)h, h〉 dx,
and

∆ε,φ(h) :=
Iφ(z0 + εh)− Iφ(z0)− ε〈∇φ(z0), h〉L2

ε2
. (8.2)

Then:

(i) Iφ is of class C1 on the Hilbert space L2(Ω;Rn), and ∇Iφ(z) = ∇φ(z);

(ii) ∆ε,φ Mosco converges in L2(Ω;Rn) to qφ as ε→ 0;

(iii) Iφ is second order differentiable at z0 with respect to L∞ variations; namely, for every h ∈
L∞(Ω;Rn), it holds ∆ε,φ(h)→ qφ(h) as ε→ 0.

Proof. For statements (i) and (ii), see [37, Proposition 4.1 and Corollary 3.2]. Let us now prove
(iii). For a fixed h ∈ L∞(Ω;Rn), the Mosco convergence property stated in (ii) implies that

qφ(h) ≤ lim inf
ε→0

∆ε,φ(h) .

In order to prove that lim supε ∆ε,φ(h) ≤ qφ(h), we exploit the second property given by the Mosco

convergence: there exists a sequence hε ∈ L2(Ω;Rn) such that hε
L2

→ h and qφ(hε) = limε→0 ∆ε,φ(hε).
We remark that the function ∆ε,φ is convex, therefore, ∆ε,φ(h)−∆ε,φ(hε) ≤ 〈∇∆ε,φ(h), h− hε〉L2 .
If we prove that, for ε > 0 small enough,

‖∇∆ε,φ(h)‖L2 ≤ C , (8.3)

we are done, since we infer

lim sup
ε

∆ε,φ(h)− qφ(h) = lim sup
ε

(
∆ε,φ(h)−∆ε,φ(hε)

)
≤ lim

ε→0
C‖hε − h‖L2 = 0 .

We conclude by proving the claim (8.3): we remark that ∇∆ε(h) = [∇φ(z0 + εh)−∇φ(z0)]/ε, and
hence (8.3) follows from the local boundedness of the Hessian matrix ∇2φ and recalling that by
assumption there exists R > 0 such that ‖z0 + th‖L∞ ≤ R for t small enough. �

Lemma 8.2. Let X be a normed vector space and let X∗ be its topological dual. We denote by
〈·, ·〉 the duality product. Let h : X → R ∪ {+∞} be a proper function. Then, for every a ∈ X and
b ∈ X∗, there holds

(h(· − a))∗ (z∗) = h∗(z∗) + 〈a, z∗〉 , (h(·) + 〈b, ·〉)∗ (z∗) = h∗(z∗ − b) .
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Proof. The statement follows straightforward by using the definition of Fenchel conjugate. �

Lemma 8.3. Let A be a positive definite n× n matrix and let QA denote the associated quadratic
form, defined as QA(x) := 1

2〈Ax, x〉. Then (QA)∗ = QA−1.

Proof. See [40, Chapter III]. �

Lemma 8.4. Let X be a Banach space and let h : X → R be a strongly convex function of class
C2. Then dom(h∗) has nonempty interior, h∗ is C2 on the interior of dom(h∗), and x∗ = ∇h(x)

with x ∈ X implies x = ∇h∗(x∗) and ∇2h∗(x∗) =
(
∇2h(x)

)−1
.

Proof. See [20, Proposition 10 in Section 2 of Chapter II]. �

Lemma 8.5. Let Y,Z be Banach spaces. Let A : Y → Z be a linear operator with dense domain
D(A). Let Φ : Y → R∪ {+∞} be convex, and Ψ : Z → R∪ {+∞} be convex lower semicontinuous.
Assume there exists u0 ∈ D(A) such that Φ(u0) < +∞ and Ψ is continuous at Au0. Let Z∗ denote
the dual space of Z, A∗ the adjoint operator of A, and Φ∗, Ψ∗ the Fenchel conjugates of Φ, Ψ. Then

− inf
u∈Y

{
Ψ(Au) + Φ(u)

}
= inf

σ∈Z∗

{
Ψ∗(σ) + Φ∗(−A∗ σ)

}
, (8.4)

and the infimum at the right hand side is achieved.
Furthermore, u and σ are optimal for the l.h.s. and the r.h.s. of (8.4) respectively, if and only if
there holds σ ∈ ∂Ψ(Au) and −A∗σ ∈ ∂Φ(u).

Proof. See [6, Proposition 14]. �
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