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Abstract

We study a 2d-variational problem, in which the cost functional is an integral depending on
the gradient through a convex but not strictly convex integrand, and the admissible functions
have zero gradient on the complement of a given domain D. We are interested in establishing
whether solutions exist whose gradient “avoids” the region of non-strict convexity. Actually, the
answer to this question is related to establishing whether homogenization phenomena occur in
optimal thin torsion rods. We provide some existence results for different geometries of D, and
we study the nonstandard free boundary problem with a gradient obstacle, which is obtained
through the optimality conditions.
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1 Introduction

Let ϕ : R
2 → R be the following convex but non-strictly convex integrand:

ϕ(y) :=

{
|y|2
2 + 1

2 if |y| ≥ 1

|y| if |y| < 1 .
(1.1)

Let D be a bounded and connected domain in R
2, let s be a real parameter, and consider the

variational problem

m(s) := inf

{∫

R
2

ϕ(∇u) : u ∈ H1
c (D) ,

∫

R
2

u = s

}
, (1.2)

where
H1

c (D) :=
{
u ∈ H1(R2) : ∇u = 0 on R

2 \D
}
.

Notice that functions in H1
c (D) must vanish identically on the unique unbounded connected com-

ponent of R
2 \D; in particular, if D is simply connected, functions in H1

c (D) are elements of the
usual Sobolev space H1

0 (D), extended to zero out of D. More generally, if D = D0 \ ∪k
i=1Di, where
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Di (i = 0, 1, . . . , k) are Jordan domains with mutually disjoint boundaries, functions in H1
c (D) are

extensions to zero of elements of H1
0 (D0) which are constant on each Di for i = 1, . . . , k.

We say that u is a special solution to m(s) if it minimizes (1.2) and satisfies

|∇u| ∈ {0} ∪ (1,+∞ ) a.e. in D .

This paper is focused on the following question:

Does problem m(s) admit a special solution? (1.3)

This question, which was raised in [9], appears as an important issue in the context of shape op-
timization of thin torsion rods. We postpone to Section 2 a brief description of the mechanical
motivation and of the precise meaning of problem (1.2). In this framework, question (1.3) corre-
sponds to ask whether an optimal design contains some homogenization region made by a composite
material.
Below and throughout the paper, we adopt the following notation: if u is a special solution to
problem m(s), we call the plateau of u, and we denote it by Ω(u), the set {∇u = 0} minus the
unbounded connected component of R

2 \D (where u ≡ 0). The set Γ(u) := ∂Ω(u)∩D will be called
the free boundary of u (see Figure 1).

D ∖ Ω(u)

u = 0

∇u = 0

∇u = 0

∇u = 0

∣∇u∣ > 1

Figure 1: Behaviour of special solutions.

Our main results concern the study of question (1.3) in relation with the geometry of the domain
D and also with the value of the parameter s. They are listed below.

• When D is a ball or a ring, through explicit computations and exploiting the optimality
conditions, we show that m(s) admits a special solution, and there is no other solution, see
Proposition 5.1 and Proposition 5.3.

• Balls and rings are not the unique domains for which m(s) admits a special solution. At this
point it is worth to compare with the case considered by Murat and Tartar in [25] where
two linearly elastic materials have to be mixed in fixed proportions in a given cross-section
in order to maximize torsional rigidity. In their case the variational problem under study is
quite similar to ours except that it involves a differentiable integrand and they proved that
classical solutions (i.e. with no homogenization regions) cannot exist unless the cross-section
D is a disk. In our case the integrand ϕ is non-differentiable at zero and the conclusion
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goes in a quite opposite direction : we prove that there exists a non circular domain D with
analytic boundary such that, for some s, problem m(s) admits a special solution. Moreover
this solution has a convex plateau with analytic boundary, see Theorem 6.1. To achieve this
result, we use as a key tool the relationship between m(s) and the Cheeger problem (whose
definition is recalled in Section 4). Let us remark that the crucial role played by the Cheeger
set of D in the study of the asymptotic behaviour of m(s) as s → 0+ already emerged in
[9, 10].

• After providing some elementary properties on the sign and the support of generic solutions
(see Propositions 7.1 and 7.2), we derive some information on qualitative properties of special
solutions, when the latter exist. This amounts to study a nonstandard free boundary problem
with an obstacle on the gradient, see (7.4) below. Assuming that D is simply connected, and
that there exists a special solution u with a smooth free boundary,

– we prove that each connected component of D \ Ω(u) must touch ∂D (see Proposition
7.3);

– we provide some sufficient conditions for the convexity of the plateau Ω(u) (see Proposi-
tion 7.4);

– we show that, when D is not Cheeger set of itself, the plateau Ω(u) cannot be compactly
contained into D for arbitrarily small filling ratios (see Proposition 7.5).

We point out that characterizing domains D where a special solution to m(s) exists seems to be
a very challenging problem, which remains by now open: in this respect we believe that, at least
when D is convex, the existence of special solutions is likely related to the regularity of ∂D, and
also to whether or not D coincides with its Cheeger set. Let us notice that the latter criterium
would exclude the existence of a special solution in the case when D is a square. This guess seems
to be confirmed by the numerical results performed in [23] for a very similar problem, in which
homogenization regions are observed.

Outline of the paper.

In Section 2 we provide a physical motivation for the study of problem m(s), namely we describe
its relationship with the optimal design of thin rods in torsion regime.

In Section 3 we find necessary and sufficient optimality conditions, we deduce some consequences
on the behaviour of solutions to m(s) (including a uniqueness criterion), and we study m(s) as a
function of s.

In Section 4 we give some preliminary results about Cheeger sets.

In Section 5 we prove the existence and uniqueness of special solutions to m(s) when D is a ball or
a ring.

In Section 6 we prove the existence of special solutions to m(s) for some domain D, different from
those considered in Section 5.

In Section 7 we obtain qualitative properties of solutions and of special solutions.

Notation. Throughout the paper, unless otherwise stated, D is assumed to be open, bounded, and
connected; when further assumptions are needed, we specify them in each statement. We denote by
|x| the Euclidean modulus of a vector x ∈ R

2, and also by |A| the Lebesgue measure of a Borel set
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A ⊂ R
2. We simply write

∫
A
f to denote the integral of the function f with respect to the Lebesgue

measure on A.

Acknowledgments. This work was realized during several mutual visits of the Authors at the
University of Toulon and at the Politecnico di Milano. We gratefully acknowledge the support
received from these institutions, from the Italian group GNAMPA, and from the French-Italian
University through the Vinci program. We also wish to thank one of the referees for kindly bringing
some related bibliographical items to our attention.

2 An application in shape optimization

Question (1.3) draws its origin from an optimal design problem for thin elastic torsion rods, studied
in [9, 10]. Below we briefly describe such problem and we sketch how it leads to (1.2), referring to
the above quoted papers for more details.
Let Qδ be a cylinder with infinitesimal cross section, of the form Qδ := δD× I, where D is an open,
bounded and connected domain in R

2, I = [−1/2, 1/2], and δ > 0 is a small parameter.
Assume that a given amount of elastic material has to be distributed into the design region Qδ, in
such a way to maximize the resistance to a horizontal twisting load G ∈ H−1(Q; R3). Then one
has to find the domain Ω, of prescribed volume, which minimizes the following shape functional,
usually called elastic compliance:

Cδ(Ω) := sup

{
〈Gδ , u〉

R3 −
∫

Ω
j(e(u)) : u ∈ H1(Qδ; R

3)

}
.

Here Gδ is a suitable scaling of G, e(u) denotes the symmetric part of ∇u, and j is the strain
potential, that for simplicity we take as j(z) = |z|2/4.
After including the volume constraint into the cost functional through a Lagrange multiplier k ∈ R,
the shape optimization problem reads

φδ(k) := inf
{
Cδ(Ω) +

k

δ2
|Ω| : Ω ⊆ Qδ

}
.

It is well known that such problem is in general ill-posed: homogenization phenomena prevent the
existence of an optimal domain (see [1]), so that relaxed solutions must be searched under the form
of densities with values in [0, 1].
Now, keeping k fixed, one can consider the variational problem φ(k) obtained from φδ(k) in the
small cross section limit δ → 0+. In [9, Theorem 3.2] it is proved that, under suitable assumptions
on the load G, φ(k) is the following variational problem for varying densities in L∞(Q; [0, 1]):

φ(k) := inf

{
Clim(θ) + k

∫

Q

θ : θ ∈ L∞(Q; [0, 1])

}
. (2.1)

The limit compliance Clim(θ) appearing in the r.h.s. of (2.1) is defined by

Clim(θ) := sup
{
〈G, v〉

R3 − 1

2

∫

Q

∣∣(e13(v), e23(v))
∣∣2 θ : (v1, v2) = c(x3)(−x2, x1) , c(x3) ∈ H1

m(I)

v3 ∈ L2(I;H1
m(D))

}
,
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being H1
m(D) (resp H1(I)) the subspace of H1(D) (resp H1(I)) of functions with zero integral mean.

Clearly, as a variational problem on L∞(Q; [0, 1]), φ(k) is well-posed (in contrast with problem
φδ(k) which in general, as mentioned above, has no solution). Then the following question arises in
a natural way (cf. [9, Remark 4.6]):

Does problem φ(k) admit a solution θ taking values into {0, 1}? (2.2)

An affirmative answer would mean that the optimal design problem φ(k) admits a classical solution,
which may be identified with a set rather than a composite.
We claim that question (2.2) is equivalent to our initial question (1.3). In fact, let us explain the
relationship betwen problems φ(k) and m(s).
Decomposing the spatial variable x ∈ R

3 as x = (x′, x3) ∈ D× I and writing φ(k) in dual form, one
gets (see [9, Theorem 4.2])

φ(k)

2k
= inf

q∈L2(R3;R2)

{∫

R
3

ϕ(q) : spt(q) ⊂ Q , divx′ q = 0 ,

∫

R
3

(x1q2 − x2q1) = −2MG(x3)√
2k

}
, (2.3)

where MG(x3) can be written explicitly in terms of G. Here the divergence free constraint is due to
the vanishing of the vertical component of G. It holds in the distributional sense on all R

3, being
implicitly assumed that q is zero on R

3 \Q.
Now we observe that the constraints imposed on the admissible fields in (2.3) involve only the
horizontal variable x′. Therefore, q solves (2.3) if and only if, for a.e. x3 ∈ I, q(·, x3) solves the
following section problem, for s = MG√

2k
:

α(s) := inf
q∈L2(R2;R2)

{∫

R2

ϕ(q) : spt(q) ⊂ D , div q = 0 ,

∫

R2

(x1q2 − x2q1) = −2s

}
. (2.4)

Now we observe that any divergence free field q ∈ L2(R2; R2) compactly supported in D can be
written in a unique way as the rotated gradient (−∂2u, ∂1u) of a suitable function u ∈ H1(R2). As
q vanishes a.e in R

2 \D, we have that u ∈ H1
c (D), as u is constant on each connected component

of R
2 \D. It follows that

α(s) = m(s) . (2.5)

The equalities (2.3), (2.4) and (2.5) show the link between the optimal design problem φ(k) and
our initial problem m(s).
To go farther, one can see that questions (1.3) and (2.2) are equivalent to each other, by exploiting
the optimality conditions for problem φ(k) derived in [9, Theorem 4.5]. Actually their analysis
reveals that, if problem m(s) admits a special solution u, then a solution θ to problem φ(k) takes
only the values 0 and 1, which means that no homogenization phenomenon occurs.
In the light of the above discussion, the results presented in the next sections can be applied to
study the influence of the section’s shape and of the filling ratio on the presence of homogenization
regions in optimal thin torsion rods.
Let us emphasize that no precedent exists in this direction within the study of optimal thin plates.
Indeed in that case the limit model obtained starting from three-dimensional elasticity through
a 3d-2d dimension reduction process always admits classical “set” solutions, under the form of
sandwich-like structures ([11], see also [8]).
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3 Existence, uniqueness, optimality conditions, and dependence on s.

The contents of this section are organized as follows: in §3.1 we study the minimization problemm(s)
in its primal formulation (1.2): we prove the existence of solutions, and a necessary and sufficient
condition for optimality; in §3.2 we give the dual form of problem m(s), we derive the corresponding
optimality conditions and some of their consequences; in §3.3 we show some properties of m(s) seen
as a function of the parameter s.

3.1 Primal problem

We begin by establishing the existence of minimizers form(s), and their characterization as solutions
to a variational inequality.

Proposition 3.1. For every s ∈ R, the infimum m(s) is achieved in H1
c (D). A function u ∈ H1

c (D)
is optimal if and only if

∫

{∇u=0}
|∇v| +

∫

{∇u 6=0}
〈∇ϕ(∇u),∇v〉 ≥ 0 ∀v ∈ H1

c (D) :

∫

R2

v = 0 .

Proof. We observe that, since functions in H1
c (D) vanish in the unbounded connected component

of R
2 \D, by Poincaré inequality there exists a positive constant C such that

‖u‖H1(R2) ≤ C ‖∇u‖L2(R2) ∀u ∈ H1
c (D) .

Combined with the coercivity of ϕ (in fact ϕ(y) ≥ |y|2
2 ), this ensures that every minimizing sequence

for problem m(s) is weakly relatively compact in H1(R2). Clearly any cluster point belongs to
H1

c (D). On the other hand, by the convexity of ϕ, the integral functional Jϕ(u) :=
∫

R
2 ϕ(∇u) is

weakly lower semicontinuous on H1(R2). Therefore the existence of at least one solution follows
from the direct method of Calculus of Variations. Considering all the variations compatible with
the integral constraint, it is straightforward to check that a minimizer u is characterized by the
variational inequality δJϕ(u, v) ≥ 0 for all v ∈ H1

c (D) such that
∫

R2 v = 0. Here the directional
derivative δJϕ(u, v) is given by

δJϕ(u, v) = lim
ε→0+

1

ε
[Jϕ(u+ εv) − Jϕ(u)] =

∫

{∇u=0}
|∇v| +

∫

{∇u 6=0}
〈∇ϕ(∇u),∇v〉 .

�

3.2 Dual problem

We are going to explicit the dual formulation of problem m(s). Let us remark that the Fenchel
conjugate of ϕ is given by

ϕ∗(ξ) =

{
1
2 |ξ|2 − 1

2 if |ξ| > 1

0 if |ξ| ≤ 1 .
(3.1)

Moreover let us introduce, for every λ ∈ R, the class of vector fields

Sλ(D) :=
{
σ ∈ L2(R2; R2) : spt(σ) ⊆ D ,

∫

R
2

σ · ∇u = λ

∫

R
2

u ∀u ∈ H1
c (D)

}
. (3.2)
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By taking as test functions u in (3.2) elements of H1
0 (D) extended to zero out of D, one can see

that every σ ∈ Sλ(D) satisfies the condition − div σ = λ in D. In the special case when D is simply
connected, all functions u ∈ H1

c (D) are of this type, so that Sλ(D) can be characterized as

Sλ(D) =
{
σ ∈ L2(R2; R2) : spt(σ) ⊆ D , − div σ = λ in D

}
. (3.3)

More in general, if D = D0 \ ∪k
i=1Di, where Di (i = 0, 1, . . . , k) are Jordan domains with mutually

disjoint boundaries, one has

Sλ(D) =
{
σ ∈ L2(R2; R2) : spt(σ) ⊆ D , − div σ = λ in D ,

∫

∂Di

σ · νi = −λ|Di| ∀i = 1, . . . , k
}
,

being νi the unit outer normal to ∂Di.

Lemma 3.2. The map s 7→ m(s) is a convex even function on R, whose Fenchel conjugate is given
by

m∗(λ) = min
{ ∫

R
2

ϕ∗(σ) : σ ∈ Sλ(D)
}
. (3.4)

Proof. Recalling definition (1.2), since the integrand ϕ is convex and even, we obtain immediately
that the map s 7→ m(s) is a convex even function on R. Its Fenchel conjugate is given by

m∗(λ) = sup
s∈R

{
λs−m(s)

}
= sup

u∈H1
c (D)

{
λ

∫

R
2

u−
∫

R
2

ϕ(∇u)
}

∀λ ∈ R . (3.5)

By seeing the constant λ as an element of the dual space of H1
c (D), we may rewrite (3.5) as the

Fenchel conjugate of a composition:

m∗(λ) =
(
Iϕ ◦A

)∗
(λ) ,

where Iϕ : L2(R2; R2) → R is the integral functional Iϕ(y) =
∫

R
2 ϕ(y), and A : H1

c (D) → L2(R2; R2)
is the gradient mapping Au = ∇u. Then, since Iϕ is convex continuous whereas A is a bounded
linear operator, we have (see e.g.[7, Proposition 13])

m∗(λ) = min
{

(Iϕ)∗(σ) : σ ∈ L2(R2; R2) , spt(σ) ⊆ D , A∗σ = λ
}
.

The above equality entails (3.4), by taking into account that (Iϕ)∗ = Iϕ∗ (see [7, Example 4]), and
by observing that A∗σ = λ holds if and only if σ belongs to the subset Sλ(D) given in (3.2).

�

We can now give the optimality conditions which characterize solutions to problemsm(s) andm∗(λ).

Proposition 3.3. Let s, λ ∈ R, u ∈ H1
c (D), and σ ∈ L2(R2; R2). There holds the following

equivalence

(i)





u solution to m(s)

σ solution to m∗(λ)

λ ∈ ∂m(s) .

⇐⇒ (ii)





∫

R2

u = s

σ ∈ Sλ(D)

σ ∈ ∂ϕ(∇u) a.e.
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Proof. [(i) ⇒ (ii)] Let s, λ, u, σ satisfy (i). In particular, since by definition u and σ are admissible
in problems (1.2) and (3.4) respectively, they satisfy

∫
R

2 u = s and σ ∈ Sλ(D). Thus we only have
to show that σ ∈ ∂ϕ(∇u) a.e. Since λ ∈ ∂m(s), the Fenchel equality is satisfied

m(s) +m∗(λ) = sλ ,

that is, thanks to the optimality of u and σ in (1.2) and (3.4),

∫

R2

ϕ(∇u) +

∫

R2

ϕ∗(σ) = sλ = λ

∫

R2

u =

∫

R2

∇u · σ , (3.6)

which implies σ ∈ ∂ϕ(∇u) a.e.
[(ii) ⇒ (i)] Let s, λ, u, σ satisfy (ii). By the first two conditions in (ii), u and σ are admissible in
problems (1.2) and (3.4) respectively. Moreover, the third condition σ ∈ ∂ϕ(∇u) a.e. implies that
(3.6) holds. Hence ∫

R2

ϕ∗(σ) = λs−
∫

R2

ϕ(∇u) ≤ λs−m(s) ≤ m∗(λ) . (3.7)

Therefore, σ is a solution to m∗(λ), and all the inequalities in (3.7) hold with equality sign. This
implies that u is a solution to m(s) and that λ ∈ ∂m(s). �

Let us examine more in detail the condition σ ∈ ∂ϕ(∇u) a.e., appearing in Proposition 3.3. The
convex integrand ϕ is differentiable at every y 6= 0, whereas its subdifferential at 0 is given by
∂ϕ(0) = {|y| ≤ 1}. Therefore, the inclusion σ ∈ ∂ϕ(∇u) always holds true on R

2 \D, where σ = 0
and ∇u = 0. On the other hand, the same inclusion can be rewritten more explicitly on the different
regions of D as 




σ = ∇u on
{
x ∈ D : |∇u(x)| > 1

}

σ = ∇u
|∇u| on

{
x ∈ D : 0 < |∇u(x)| ≤ 1

}

|σ| ≤ 1 on
{
x ∈ D : |∇u(x)| = 0

}
.

(3.8)

These equalities have several implications, which are listed in the next corollaries. First of all, the
region where solutions u to problem m(s) satisfy the condition |∇u| > 1 turns out to be uniquely
determined by s, together with the value of ∇u on it. More precisely we have:

Corollary 3.4. There exist a measurable subset Qs of D and a function ψs ∈ L2(Qs; R
2) such that,

for any solution u to problem m(s) and any solution σ to problem m∗(λ), with λ ∈ ∂m(s), it holds

{|∇u| > 1} = {|σ| > 1} = Qs and ∇u = σ = ψs a.e. on Qs , (3.9)

where the first equality is intended up to Lebesgue negligible sets.
Moreover, Qs = Qt and ψs = ψt whenever ∂m(s) ∩ ∂m(t) 6= ∅.

Proof. It is enough to observe that the equalities in (3.8) hold true, choosing λ ∈ ∂m(s), an arbitrary
solution u to problem m(s), and an arbitrary solution σ to problem m∗(λ): it follows that the sets
where {|∇u| > 1} and {|σ| > 1}, and the values of ∇u and σ on them, only depend on s. Moreover,
such sets and values agree as soon as there exists some λ ∈ ∂m(s) ∩ ∂m(t). �

From Corollary 3.4 we derive the following uniqueness criterion:
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Corollary 3.5. If there exists a special solution to problem m(s), then there is no other solution.

Proof. Let u be a special solution to m(s), and let ũ be another solution. From (3.9) we infer

m(s) =

∫

{0<|∇ũ|≤1}
|∇ũ| +

∫

{|∇ũ|>1}
ϕ(∇ũ) =

∫

{0<|∇ũ|≤1}
|∇ũ| +

∫

Qs

ϕ(ψs)

=

∫

{0<|∇ũ|≤1}
|∇ũ| +

∫

R2

ϕ(∇u) =

∫

{0<|∇ũ|≤1}
|∇ũ| +m(s) ,

hence the set {0 < |∇ũ| ≤ 1} is Lebesgue negligible. Then ∇ũ = ∇u a.e., i.e. the two solutions
u and ũ coincide a.e. up to an additive constant. As elements of H1

c (D), they are both compactly
supported, hence the additive constant is zero. �

As a further consequence of the equalities in (3.8), we get some information on the gradient of
special solutions on their free boundary:

Corollary 3.6. If u is a special solution for m(s) with a smooth free boundary Γ(u), it holds

|∇u| = 1 on Γ(u) . (3.10)

Proof. If σ is a solution to problem m∗(λ), with λ ∈ ∂m(s), by Proposition 3.3 we know that
σ ∈ Sλ(D) and σ ∈ ∂ϕ(∇u) a.e. The former condition implies − div σ = λ in D, the latter implies
that |σ| > 1 or |σ| ≤ 1 according to whether |∇u| > 1 or ∇u = 0 (see (3.8) above). We deduce that

∣∣σ · νΓ(u)

∣∣ = 1 on Γ(u) ,

where νΓ(u) denotes the unit normal to Γ(u), pointing outside Ω(u). This implies (3.10) since

|σ · νΓ(u)| = |∇u · νΓ(u)| = |∇u| on Γ(u) .

�

3.3 Properties of the map s 7→ m(s)

Below we derive several properties of m(s), seen as a function of the real parameter s. Firstly we
give some bounds on it, and we determine its asymptotic behaviour as s → 0+ and s → +∞. To
that aim we introduce two constants, τ

D
and k

D
, through the following variational problems set on

the space H1
c (D):

τ
D

:= inf
{ ∫

R2

|∇u|2 : u ∈ H1
c (D) ,

∫

R2

u = 1
}

(3.11)

k
D

:= inf
{ ∫

R
2

|∇u| : u ∈ H1
c (D) ,

∫

R
2

u = 1
}

(3.12)

When D is simply connected, the constants τ
D

and k
D

are related to classical variational problems.
More precisely, solving problem (3.11) allows to determine the torsional rigidity of a cylinder with
cross section D; indeed the Saint-Venant torsional stiffness of D, namely the Dirichlet energy of the
unique solution u ∈ H1

0 (D) to the equation −∆u = 2, is given precisely by 4
τ
D

.

On the other hand, the relaxation of problem (3.12) in the space of BV functions, leads to the
theory of Cheeger sets; the relationship between the constant k

D
and the Cheeger constant of D

will be discussed more in detail in Section 4.
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Proposition 3.7. The function m(s) satisfies the following bounds:

max
{
k

D
|s|, τ

D

s2

2

}
≤ m(s) ≤ 1

2

(
τ

D
s2 + |D|

)
.

Furthermore, it holds

lim
s→0+

m(s)

s
= k

D
, lim

s→+∞
m(s)

s2
=

τ
D

2
. (3.13)

Proof. The function ϕ defined by (1.1) satisfies the inequalities 1
2 |y|2 ≤ ϕ(y) ≤ 1

2 (|y|2+1). Therefore,
by homogeneity, we are led to:

1

2
τ

D
s2 ≤ m(s) ≤ 1

2

(
τ

D
s2 + |D|

)
,

which implies the second equality in (3.13).

On the other hand, since ϕ(y) ≥ |y|, it holds m(s) ≥ k
D
|s|, thus lim infs→0+

m(s)
s

≥ k
D
.

Let u ∈ H1
c (D) such that

∫
R2 u = 1 and s > 0. Since su is admissible form(s) and ϕ(s∇u) ≤ s2 |∇u|2

on the set {|∇u| > 1
s
}, we have

m(s)

s
≤ 1

s

∫

R
2

ϕ(s∇u) ≤
∫

{|∇u|≤ 1

s
}
|∇u| + s

∫

{|∇u|> 1

s
}
|∇u|2.

Thus lim sups→0+
m(s)

s
≤

∫
R
2 |∇u| and the first equality in (3.13) follows by taking the infimum

with respect to u over H1
c (D).

�

We now turn attention to the differentiability properties of m(s). Proposition 3.8 below shows in
particular that, for any s > 0, the condition λ ∈ ∂m(s) appearing in Proposition 3.3 turns out to
determine λ uniquely, whereas this is not the case when s = 0.

Proposition 3.8. (i) At every s > 0, m(s) is differentiable, and

m′(s) =
1

s

[
m(s) +

∫

Qs

(1

2
|ψs|2 −

1

2

)]
, (3.14)

where Qs and ψs are defined according to Corollary 3.4.

(ii) The subdifferential of m at the origin is given by

∂m(0) = [−k
D
, k

D
] ,

where k
D

is the constant defined in (3.12).

Remark 3.9. As a consequence of statement (ii) and of the convexity ofm, we have thatm′(s) ≥ k
D

for all positive s and the map s 7→ m(s) is strictly increasing on (0,+∞).

Proof. (i) Let s > 0 be fixed, and let λ ∈ ∂m(s). If σ is a solution to m∗(λ), by using the expressions
of m∗(λ) and ϕ∗ given respectively by Lemma 3.2 and by (3.1), the Fenchel equality reads

λs = m(s) +m∗(λ) = m(s) +

∫

R
2

ϕ∗(σ) = m(s) +

∫

{|σ|>1}

(1

2
|σ|2 − 1

2

)
.
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In view of Corollary 3.4, we conclude that λ is uniquely determined by the equality

λs = m(s) +

∫

Qs

(1

2
|ψs|2 −

1

2

)
.

Then ∂m(s) = {λ}, that is m′(s) = λ.

(ii) Since m is a convex even function, ∂m(0) is a bounded closed interval of the form [−c, c], for
some positive constant c. Moreover, c agrees with the right derivative

m′
+(0) := lim

s→0+

m(s) −m(0)

s
.

Since m(0) = 0, by using the first equality in (3.13), we conclude that

m′
+(0) = lim

s→0+

m(s)

s
= k

D
.

�

Thanks to Proposition 3.8, we deduce that no special solutions can exist for s ranging in some open
interval unless the map s 7→ m(s) is strictly convex on it.

Proposition 3.10. Assume that the map s 7→ m(s) is affine on some interval [a, b] ⊂ {s ≥ 0}.
Then, for any s ∈ (a, b], problem m(s) does not admit a special solution. Moreover, if a = 0, for
any s ∈ [0, b] any solution u to m(s) satisfies |∇u| ≤ 1 a.e., and it holds m(s) = k

D
s.

Proof. We recall that the sets Qs and ψs are defined as in Corollary 3.4.
Let us assume that for some s ∈ [a, b] problem m(s) admits a special solution, so that m(s) =∫
Qs
ϕ(ψs), and let us show that necessarily s = a. By the assumption that m is affine on [a, b],

it follows that m′(s) = m′(t) for any other t ∈ [a, b]. Therefore, in view of the last assertion of
Corollary 3.4, for any t ∈ [a, b] it holds Qt = Qs and ψt = ψs. Thus, denoting by ut a solution to
m(t), we have

m(t) =

∫

{|∇ut|≤1}
|∇ut| +

∫

Qt

ϕ(ψt) =

∫

{|∇ut|≤1}
|∇ut| +

∫

Qs

ϕ(ψs)

=

∫

{|∇ut|≤1}
|∇ut| +m(s) .

In particular this implies m(t) ≥ m(s) and in turn, since m is strictly increasing, that t ≥ s. By
the arbitrariness of t ∈ [a, b], we conclude that s = a.
In the special case when a = 0, we get Qs = Q0 , for any s ∈ [0, b]. Clearly the equality m(0) = 0
implies |Q0| = 0. Therefore it holds |Qs| = 0 for any s ∈ [0, b], which means that any solution u to
problem m(s) satisfies |∇u| ≤ 1 and ϕ(∇u) = |∇u| a.e., hence the conclusion.

�
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4 Link with the Cheeger problem

Recall that the Cheeger constant of a bounded and connected domain D is defined by

h
D

:= inf
A⊂D

|∂A|
|A| , (4.1)

where the infimum is taken over all the subsets A of D with finite perimeter.
In the last years, such minimization problem has captured the attention of many authors (see for
instance [2, 3, 12, 14, 15, 16, 17, 18, 26]). In this section we present some related properties which
shed some light on the link between the Cheeger constant h

D
and the minimization problem m(s).

The first result in this direction is the relationship between h
D

and the constant k
D

defined in (3.12):

Proposition 4.1. The constants h
D

and k
D

defined respectively in (4.1) and (3.12) satisfy the
inequality h

D
≥ k

D
, with equality in case D is simply connected.

Proof. The Cheeger constant introduced in (4.1) can also be recast as

h
D

= inf

{∫

D

|∇v| : v ∈ H1
0 (D) ,

∫

R
2

v = 1

}
. (4.2)

Then the statement follows by comparing (3.12) and (4.2). Indeed the space of extensions to zero
of functions in H1

0 (D) is included into H1
c (D), and coincides with it if D is simply connected. �

Remark 4.2. The above statement can be generalized to the case when D = D0 \∪k
i=1Di, being Di

(i = 0, 1, . . . , k) Jordan domains with mutually disjoint boundaries. Indeed, thanks to the inclusions
H1

0 (D) ⊂ H1
c (D) ⊂ H1

0 (D0), there holds h
D
≥ k

D
≥ h

D0
. Moreover, the equality k

D
= h

D0
holds as

soon as there exists a Cheeger set C for D0 such that

∂C ∩
( k⋃

i=1

Di

)
= ∅ , (4.3)

and also the equality h
D

= k
D

holds if in addition

( k⋃

i=1

Di

)
⊂ (D0 \ C) . (4.4)

Indeed, conditions (4.3) and (4.4) ensure respectively that the function 11C/|C| belongs not only to
H1

0 (D0) but also to H1
c (D) and to H1

0 (D). For instance, in Figure 2 below, the set D0 is taken as a
square, the grey region represents its Cheeger set, and conditions (4.3) and (4.4) are satisfied if the
holes Di are chosen respectively as in the left and in the right pictures.

By combining Proposition 4.1 with Proposition 3.8 (ii) we obtain that, when D is simply connected,
there holds

∂m(0) = [−h
D
, h

D
] . (4.5)

This identity allows to obtain Proposition 4.3 below, that will be exploited in Section 6. Though it
is already known in the literature (see in particular [6, 19, 22]), we prefer to be self-contained and
give a new proof of it, based on (4.5).
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D0

Dj

Dk

Di D0Di

Figure 2: About conditions (4.3) and (4.4).

We need to introduce some definitions. Let Ω ⊂ R
2 be a bounded and connected set with finite

perimeter. We say that Ω is a Cheeger set of itself if

h
Ω

=
|∂Ω|
|Ω| .

Some examples of Cheeger sets of themselves are the ball, the ellipse and the annulus.
We say that Ω is calibrable if there exists a calibration, namely a field σ ∈ L2(Ω; R2) such that

− div σ = h
Ω

in Ω , ‖σ‖L∞(Ω) ≤ 1 , [σ · νΩ] = −1 H1-a.e. on ∂Ω .

Here [σ · νΩ] is meant as the weak notion of the trace of the normal component of σ on ∂Ω, defined
according to [5, Theorem 3.5] (see also [4, Theorem 1.2] for the same definition in case ∂Ω is
Lipschitz).

Proposition 4.3. Let Ω be a bounded and simply connected set with finite perimeter. Then

Ω is Cheeger set of itself ⇐⇒ Ω is calibrable . (4.6)

Remark 4.4. Under the additional assumption that Ω is convex, it is known that each of the two
equivalent conditions in (4.6) holds true if and only if the mean curvature of ∂Ω satisfies the uniform

estimate ‖H∂Ω‖L∞(∂Ω) ≤ |∂Ω|
|Ω| , see [22].

Proof. Assume that Ω is calibrable, and let σ be a calibration. Integrating over Ω the equality
− div σ = h

Ω
, by the generalized divergence theorem proved in [5, Theorem 3.5], since [σ · νΩ] = −1

H1-a.e. on ∂Ω, we get h
Ω

= |∂Ω|/|Ω|.
Conversely, assume that h

Ω
= |∂Ω|/|Ω|. For every s ∈ R, let m(s) be the variational problem

defined as in (1.2), settled on the domain D = Ω. Using the equality m(0) = 0 and Lemma 3.2, we
obtain

∂m(0) =
{
λ : m∗(λ) = 0

}
=

{
λ : ∃σ ∈ Sλ(Ω) ,

∫

R2

ϕ∗(σ) = 0
}
.

By recalling the expression of Fenchel conjugate of ϕ in (3.1), and the characterization of Sλ(Ω)
holding when Ω simply connected (cf. (3.3)), it follows

∂m(0) =
{
λ : ∃σ ∈ L2(R2; R2) , spt(σ) ⊆ Ω , − div σ = λ in Ω , ‖σ‖L∞(Ω) ≤ 1

}
. (4.7)
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On the other hand, by (4.5), we know that ∂m(0) = [−h
Ω
, h

Ω
], that is

h
Ω

= max{λ ∈ R : λ ∈ ∂m(0)} . (4.8)

By combining (4.7) and (4.8), we infer that there exists σ ∈ L2(R2; R2) such that

spt(σ) ⊆ Ω , − div σ = h
Ω

in Ω , ‖σ‖L∞(Ω) ≤ 1 .

We claim that the restriction of such a field σ to Ω is a calibration for Ω (so that Ω is calibrable).
We only have to show that [σ · νΩ] = −1 H1-a.e. on ∂Ω . By integrating again over Ω the equality
− div σ = h

Ω
, we obtain

∫

∂Ω
[σ · νΩ] dH1 =

∫

Ω
div σ = −hΩ|Ω| = −|∂Ω|.

Since ‖σ‖L∞(Ω) ≤ 1, the above equality implies [σ · νΩ] = −1 H1-a.e. on ∂Ω as required.
�

5 Existence and uniqueness of special solutions on a ball or a ring

In this section we show that, when D is a ball or a ring, problem m(s) has a unique solution, which
is a special one and has a circular plateau.

Proposition 5.1. Let R > 0 and let D = BR(0) be the ball of radius R centered at the origin.
Then, for every s ∈ R, problem m(s) admits a unique solution u, which is a special solution. More
precisely: if s = 0 then u ≡ 0; if s > 0, there exists r ∈ (0, R), uniquely determined by the values of
s and R, such that

u(x) =





R2 −
(
|x|2 ∨ r2

)

2r
if |x| < R

0 otherwise .

(5.1)

∣x∣

u(∣x∣)

r R0

Figure 3: The special solution u given by Proposition 5.1.

Proof. If s = 0 the function u ≡ 0 is clearly the unique solution to m(0), and it is a special one.
Assume s > 0. We begin by defining r as the unique number in the interval (0, R) such that
f(r) = s, where f is the map

f(t) :=
π

4

(
R4

t
− t3

)

+

∀t ∈ (0, R) .
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Notice that r is well-defined because f is strictly decreasing from (0, R) onto (0,+∞). Using (5.1),
the relation f(r) = s and an integration by parts, it is straightforward to check that

∫
R

2 u = s.
Moreover, u belongs to H1

c (D) since its gradient over R
2 is given by

∇u(x) =




−x
r

if |x| ∈ [ r,R ]

0 otherwise .

Hence u is admissible for problem m(s). For every v ∈ H1
c (D) with

∫
R

2 v = 0, it holds

∫

{∇u=0}
|∇v|+

∫

{∇u 6=0}
〈∇ϕ(∇u),∇v〉 ≥

∫

{|x|<r}
|∇v| −

∫

{r<|x|<R}
〈x
r
,∇v〉

=

∫

{|x|<r}

(
|∇v| + 〈x

r
,∇v〉

)
≥ 0 .

Hence Proposition 3.1 implies that u is a solution to problem m(s). It is a special solution as
|∇u| = |x

r
| > 1 on the subset {r < |x| < R}. Finally, uniqueness follows from Corollary 3.5. �

Remark 5.2. With the same proof technique of Proposition 5.1, one can show that a similar result
is valid also when D =

⋃
iBi is the countable union of a family of pairwise disjoint balls Bi of radii

Ri. Again, for every s ∈ R problem m(s) admits a unique solution, which is a special one. More
precisely: if s = 0 the solution is identically zero; if s > 0 there exists r ∈ (0, supiRi), uniquely
determined by the values of s and the radii Ri, such that on balls whose radius is smaller than
r, the solution is identically zero, while on balls with a larger radius, it is of the form (5.1), with
R = Ri. The critical radius r is the unique number in (0, supiRi) such that f(r) = s, where

f(t) =
π

4

∑

i

(
R4

i

t
− t3

)

+

∀t ∈ (0, sup
i
Ri) .

Proposition 5.3. Let R2 > R1 > 0, and let D := {x ∈ R
2 : R1 < |x| < R2}. Then, for every

s ∈ R, problem m(s) admits a unique solution u, which is a special solution. More precisely: if
s = 0 then u ≡ 0; if s > 0, there exists a unique r ∈ (0, R2), uniquely determined by the values of s
and the radii R1, R2, such that

u(x) =





R2
2 −

(
|x|2 ∨ (R1 ∨ r)2

)

2r
if |x| < R2

0 otherwise .

(5.2)

Proof. If s = 0 the function u ≡ 0 is clearly the unique solution to m(0), and it is a special one.
For s > 0, we define r as the unique number in the interval (0, R) such that f(r) = s, where f is
the map

f(t) :=





π

4

(
R4

2 −R4
1

t

)
if t ∈ (0, R1)

π

4

(
R4

2 − t4

t

)
if t ∈ [R1, R2) .
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∣x∣

u(∣x∣)

R1r R20 ∣x∣

u(∣x∣)

R1r R20

Figure 4: The special solution u given by Proposition 5.3, respectively when R1 < r < R2 on the
left, and when 0 < r < R1 on the right.

Notice that r is well-defined since the map f is strictly decreasing from (0, R2) onto (0,+∞). Using
the definition of r and an integration by parts, it is straightforward to obtain that

∫
R

2 u = s.
Moreover, u belongs to H1

c (D) since it is constant on each connected component of R
2 \D:

u ≡ R2
2 − (R1 ∨ r)2

2r
if |x| ≤ R1 and u ≡ 0 if |x| ≥ R2 .

Hence u is admissible for problem m(s). Let us show that it is optimal. We distinguish the two
cases when s < f(R1) or s ≥ f(R1), which correspond respectively to r ∈ (R1, R2) or r ∈ (0, R1].
If r ∈ (R1, R2), u coincides with the function defined in (5.1), with R = R2. The optimality of u
for problem m(s) set on the ball BR2

(0) implies the optimality also for problem m(s) set on D,
because of the inclusion H1

c (D) ⊂ H1
c (BR2

(0)).
If r ∈ (0, R1], we apply Proposition 3.1: for every v ∈ H1

c (D) with
∫

R
2 v = 0 it holds

∫

{∇u=0}
|∇v| +

∫

{∇u 6=0}
〈∇ϕ(∇u),∇v〉 =

∫

R
2

〈−x
r
,∇v〉 =

2

r

∫

R
2

v = 0 ,

where we have used the fact the gradient of u is given by

∇u(x) =




−x
r

if |x| ∈ (R1, R2)

0 otherwise ,

Thus u is a special solution, and uniqueness follows again from Corollary 3.5.
�

Remark 5.4. If in Proposition 5.3 we consider the case s > f(R1), when the solution ū is given
by (5.2) for a suitable r ∈ (0, R1) (see the above proof and Figure 4 at right), then the inequality
|∇u(x)| > 1 turns out to be strict up to |x| = R1. This shows that, for a special solution, the equality
(3.10) satisfied on the free boundary (lying in open set D) is in general false on ∂Ω(u) ∩ ∂D.
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6 Existence of special solutions for some other domain D

By exploiting the results of Sections 3 and 4, we are going to prove that there exists some domain
D, different from a ball, where problem m(s) admits a special solution, see Theorem 6.1 below for a
precise statement. Let us remark that the proof of Theorem 6.1, and in particular the construction
of the vector field σ therein, has some similarity with results contained in [24, Sections 4-5].

Theorem 6.1. There exists an open bounded simply connected set D, different from a ball, such
that problem m(s) admits a special solution u for some s ∈ R \ {0}. Moreover, both D and the
plateau of u have analytic boundary, and the latter is convex.

Proof. Let us construct an open bounded simply connected set D with analytic boundary, and

– a function u ∈ H1
0 (D) with





∫

D

u = s , for some s ∈ R \ {0}

∇u = 0 in a convex set Ω ⊂ D

|∇u| > 1 in D \ Ω ,

(6.1)

– a field σ ∈ L2(D; R2) with




− div σ = λ in D , for some λ ∈ R

|σ| ≤ 1 in Ω

σ = ∇u in D \ Ω .

(6.2)

We recall that, since D is simply connected, functions in H1
c (D) are extensions to zero of elements in

H1
0 (D), and Sλ(D) is given by (3.3). Then u and σ (extended to zero out of D), satisfy conditions

(ii) in Proposition 3.3. Since |∇u| ∈ {0} ∪ (1,+∞), we conclude that u is a special solution to
problem m(s) (settled on D).

The construction is divided into 3 steps.

Step 1. We choose a bounded convex set Ω, with analytic boundary, whose curvature satisfies the
strict inequality ‖H‖L∞(∂Ω) <

|∂Ω|
|Ω| . In view of Remark 4.4, there exists a calibration for Ω, namely

a vector field σ1 ∈ L2(Ω; R2) such that

− div σ1 = h
Ω

in Ω , ‖σ1‖L∞(Ω) ≤ 1 in Ω , [σ1 · νΩ] = −1 H1−a.e. on ∂Ω .

Step 2. Since ∂Ω is analytic, Cauchy-Kowalevskaya Theorem ensures the existence of an analytic
solution v in a neighbourhood V of ∂Ω to the initial value problem





−∆v = h
Ω

in V ,

v = 1 , −vν = 1 on ∂Ω ,
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Ω

σ1

Figure 5: Construction of the convex set Ω and the vector field σ1 in Step 1.

being ν the unit outer normal to ∂Ω. We claim that, up to choosing a smaller neighbourhood V, if
we set U := V \ Ω, it holds

v ≤ 1 in U (6.3)

and
|∇v| > 1 in U . (6.4)

Indeed, (6.3) follows straightforward from the condition vν < 0 on ∂Ω. In order to prove (6.4), we
exploit the equation −∆v = h

Ω
, which may be rewritten pointwise on ∂Ω as

− (H∂Ω vν + vνν) = h
Ω

on ∂Ω ,

being H∂Ω the (signed) curvature of ∂Ω. By construction, we have

|∇v| = 1 , vν = −1, |H∂Ω| < hΩ on ∂Ω .

Then (6.4) follows from the inequality

∂ν(|∇v|2) = 2vνvνν = −2vνν = −2(H∂Ω − hΩ) > 0 on ∂Ω .

Next we choose t0 > 0, independent of y ∈ ∂Ω, such that the map

t 7→ φy(t) := v(y + tν(y))

is well-defined and satisfies the inequality φ′y(t) < 0 on [0, t0]. Then, for some ε0 > 0,

max
y∈∂Ω

φy(t0) = 1 − ε0 < 1 .

Therefore, if we fix ε ∈ (0, ε0), it holds:

∀y ∈ ∂Ω , ∃ty ∈ [0, t0] : φy(ty) = 1 − ε .

We set γ := {y + tyν(y) : y ∈ ∂Ω}, so that γ = ∂D, with

D := Ω ∪
{
1 − ε ≤ v ≤ 1

}
.

Finally we define
v := v − (1 − ǫ) and σ2 = ∇v on D \ Ω .
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∂D

∂Ω

V

Figure 6: Construction of the set D in Step 2.

Notice in particular that σ2 satisfies

− div σ2 = −∆v = h
Ω

in D \ Ω , [σ2 · νΩ] = −1 H1 − a.e. on ∂Ω .

Step 3. We set

u :=





ε in Ω

v in D \ Ω

, σ :=





σ1 in Ω

σ2 in D \ Ω

,

where Ω and σ1 have been defined in Step 1, while D, v and σ2 have been defined in Step 2.
It is easy to check that, by construction, u and σ verify respectively (6.1) and (6.2).
So, as claimed at the beginning of the proof, u is a special solution to m(s). Moreover, the plateau
Ω was chosen to be convex with analytic boundary. And also ∂D is analytic by the implicit function
Theorem for analytic functions (see e.g. [28]): indeed, γ is a level set of an analytic function whose
gradient is nonzero along γ (because of (6.4) and since γ ⊂ U).

�

7 Some qualitative properties of solutions and special solutions

We first state two results which concern arbitrary solutions to problem m(s), and more precisely
their sign (Proposition 7.1) and their support (Proposition 7.2).

Proposition 7.1. For every s ∈ R
+, any solution u to m(s) satisfies the inequality u ≥ 0 a.e.

Proof. The unique solution to m(0) is identically zero. Let s > 0 and let u be a solution to m(s).
We set u+ := max{u, 0} and s̃ :=

∫
R

2 u+. Then

m(s) =

∫

R2

ϕ(∇u) ≥
∫

R2

ϕ(∇u+) ≥ m(s̃) .

Since s̃ ≥ s and m is strictly increasing (recall Remark 3.9), we infer that s = s̃, and hence that the
set {u < 0} is Lebesgue negligible. �
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Proposition 7.2. Let s be positive and sufficiently small. Then any solution u to problem m(s)
satisfies

spt(u) ∩ ∂D 6= ∅ . (7.1)

Proof. Assume that (7.1) is false for some s > 0. Then spt(u) ⊂⊂ D and, letting

uλ(x) := λu
(x
λ

)
∀x ∈ R

2 , ∀λ > 0 ,

by continuity we have also spt(uλ) ⊂⊂ D for λ close to 1. Accordingly, the function uλ is admissible
for problem m(λ3 s), whence we deduce

m(λ3 s) ≤
∫

R2

ϕ(∇uλ) = λ2

∫

R2

ϕ(∇u) = λ2m(s) . (7.2)

Therefore the function g(λ) = m(λ3 s)− λ2m(s) achieves a local maximum at λ = 1, and g′(1) = 0.
It follows that 3m′(s) = 2m(s). Thus, by applying Remark 3.9, we find m(s) ≥ 3

2 kD
, which is not

possible for s small. �

We now turn our attention to investigate qualitative properties of special solutions, under the
assumption that D is simply connected. The corresponding simplified formulation of m(s), that we
consider from now on, reads

m(s) = inf

{∫

D

ϕ(∇u) : u ∈ H1
0 (D) ,

∫

D

u = s

}
. (7.3)

The search for special solutions to problem (7.3) leads to study a nonstandard free boundary value
problem. Indeed, by Proposition 3.3, (3.8), and Corollary 3.6, if u is a special solution to m(s) with
plateau Ω(u) and free boundary Γ(u), there exist constants λ(= m′(s)) and ci ∈ R such that





−∆u = λ , |∇u| > 1 in D \ Ω(u)

|∇u| = 1 on Γ(u)

u = ci on γi ,

(7.4)

where γi denote the different connected components of Γ(u) (see Figure 7).
A full understanding of problem (7.4) seems to be a quite challenging task. To the best of our
knowledge, it is not directly covered by the extensive literature on free boundary problems (see [13]
and references therein). In particular, the available regularity results for free boundaries do not
allow to obtain a priori the smoothness of Γ(u). This is the reason why the results hereafter are
stated under such smoothness assumption.

Proposition 7.3. Assume that problem m(s) admits a special solution u, with Γ(u) smooth. Then
each connected component of D \ Ω(u) meets the boundary ∂D.
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∣∇u∣ = 1

∣∇u∣ = 1

u ≡ cj

u ≡ ck

D ∖ Ω(u)

D

u = 0

u ≡ ci

∣∇u∣ > 1

−△u = λ

Figure 7: The free boundary value problem (7.4).

Proof. Assume by contradiction that there exists a connected component A of D \ Ω(u) such that
A ⊂⊂ D. Then ∂A = ∪γi, where γi are some of the connected components of Γ(u). Then (cf.
(7.4)), there exist constants λ(= m′(s)) and ci ∈ R such that





−∆u = λ , |∇u| > 1 in A

u = ci , |∇u| = 1 on γi .

By standard regularity theory, u is smooth enough in order to apply [27, Lemma 5.1] (by taking
therein f(u) = λ, g(u) = 1, and h(u) = 0). We deduce that the P -function

P (x) := |∇u|2 , x ∈ A ,

is either constant in A or it attains its maximum on ∂A. In both cases, since we know that |∇u| ≥ 1
in A, we infer that

|∇u| ≡ 1 in A . (7.5)

We now consider another P -function,

P̃ (x) := |∇u|2 + λu , x ∈ A .

From (7.5) we obtain
∆P̃ = −λ2 = −(m′(s))2 < 0

(for the last inequality recall (3.14)). On the other hand, equality (5.17) in [27] (applied now with
f(u) = λ, g(u) = 1, and h(u) = λu) shows that ∆P̃ ≥ 0, a contradiction. �

Proposition 7.4. Let D be a convex set with a smooth boundary, and assume that problem m(s)
admits a special solution u, with Ω(u) connected, Ω(u) ⊂⊂ D, and Γ(u) smooth. Then Ω is convex.

Proof. By applying Proposition 7.3, we obtain that Γ(u) is connected (otherwise, some connected
component of D\Ω(u) would be compactly contained into D). Then (cf. (7.4)), there exist constants
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λ(= m′(s)) and c ∈ R such that





−∆u = λ , |∇u| > 1 in D \ Ω(u)

u = c , |∇u| = 1 on Γ(u) .

In order to prove that Ω(u) is convex, we follow the approach adopted in [21] (see also [20]): we
consider the P -function

P (x) := |∇u|2 + 2λu ∀x ∈ D \ Ω(u) .

By standard regularity theory, u is smooth enough in order to apply [27, Lemma 5.1]. Since by
assumption u has no critical points in D \ Ω(u), we infer that one of the following facts occurs:

(a) P is constant;

(b) P attains its maximum on ∂D;

(c) P attains its maximum on Γ(u).

Let us exclude the first two possibilities.

If P is constant, it holds

0 = Pν = 2(uνuνν + λuν) = −2(uνν + λ) on Γ(u) . (7.6)

On the other hand, since by assumption Γ(u) is smooth, the equation ∆u+ λ = 0 can be rewritten
pointwise on Γ(u) as

HΓuν + uνν + λ = −HΓ + uνν + λ = 0 on Γ(u) , (7.7)

where we have denoted by HΓ the mean curvature of Γ(u). Combining (7.6) and (7.7), we deduce
that HΓ ≡ 0 on Γ(u), a contradiction.

If P attains its maximum at some point x0 ∈ ∂D, since ∂D is smooth we may apply Hopf’s boundary
point lemma to infer that either P is constant or Pν(x0) > 0 (here ν stands for the unit outer normal
to ∂D). Since we have already excluded the first possibility, let us show that also the second one
leads to a contradiction. We have

0 < Pν(x0) = 2uν(x0)uνν(x0) + 2λuν(x0) = −2(uν(x0))
2H∂D(x0) , (7.8)

where the last equality follows by exploiting the pde ∆u+λ = 0 on ∂D. In particular, (7.8) implies
H∂D(x0) < 0, against the convexity of D.

We conclude that (c) holds true, namely P assumes its maximum on Γ(u). Since P is constant on
Γ(u), every point of the free boundary is a maximum point. Then, thanks to the smoothness of
Γ(u), Hopf’s lemma applies and yields

0 > Pν = 2uνuνν + 2λuν = −2HΓ on Γ(u) .

Hence Ω(u) is convex. �

Proposition 7.5. Assume that D is not Cheeger set of itself, and let sε be an infinitesimal se-
quence of positive numbers. Then problem m(sε) cannot admit for every ε a special solution uε with
Ω(uε) ⊂⊂ D and Γ(uε) smooth.
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Proof. Set for brevity Ωε := Ω(uε) and Γε := Γ(uε). Assume by contradiction Ωε ⊂⊂ D and Γε

smooth. We set λε = m′(sε), and we take an optimal field σε ∈ Sλε
(D) for the dual problem m∗(λε).

By Proposition 3.3 and (3.8), σε satisfies





− div σε = λε in D

|σε| ≤ 1 in Ωε

σε = ∇uε in D \ Ωε .

By Corollary 3.6 and the regularity assumed on Γε, we infer that |σε ·νΓε | equals 1 and has constant
sign on Γε. Integrating on Ωε the equation − div σε = λε, we obtain σε · νΓε = −sgn(λε) = −1 and

λε =
|Γε|
|Ωε|

. (7.9)

Since λε = m′(sε), by using (7.9), the continuity from the right of the right derivative s 7→ m′
+(s)

as s→ 0+, Proposition 3.8 and Proposition 4.1, we get

lim
ε→0

λε = h
D
. (7.10)

Moreover, we have

|D \ Ωε| ≤
∫

D\Ωε

|∇uε|2 =

∫

D\Ωε

∇uε · σε =

∫

D

∇uε · σε = sε · λε .

In view of (7.10), we infer that limε→0 |D \ Ωε| = 0, which is equivalent to limε→0 11Ωε = 11D in
L1(D). By using the lower semicontinuity of the perimeter with respect to the L1-convergence, and
(7.9), we obtain

|∂D| ≤ lim inf
ε→0

|Γε| = lim
ε→0

λε|Ωε| = h
D
|D| ,

hence D is Cheeger set of itself, against the assumption. �

Concluding comments. It is a quite challenging problem to identify the geometrical conditions
on the design domain D under which a special solution with a smooth free boundary should exist
or not. We point out that proving or disproving the existence of a special solution remains open
even for simple geometries of D. For instance, when D is a square, in view of Propositions 7.3 and
7.4, it cannot happen that a special solution has the grey regions in Figure 8 as plateau. Actually,
having in mind Proposition 7.5, at least for small s the set where a solution u is constant may be
expected to be shaped as the grey region in Figure 9; but on its complement it is difficult to guess
whether |∇u| > 1, or some homogenization phenomenon occurs.
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Figure 8: Impossible plateaus for a special solution on the square.

Figure 9: A possible plateau for a special solution on the square.
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