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Gradient estimates for perturbed Ornstein–Uhlenbeck semigroups
on infinite-dimensional convex domains

L. Angiuli, S. Ferrari and D. Pallara

Abstract. Let X be a separable Hilbert space endowed with a non-degenerate centred Gaussian measure
γ , and let λ1 be the maximum eigenvalue of the covariance operator associated with γ . The associated
Cameron–Martin space is denoted by H . For a sufficiently regular convex function U : X → R and
a convex set � ⊆ X , we set ν := e−U γ and we consider the semigroup (T�(t))t≥0 generated by the
self-adjoint operator defined via the quadratic form

(ϕ, ψ) �→
∫
�

〈DHϕ, DHψ〉H dν,

where ϕ, ψ belong to D1,2(�, ν), the Sobolev space defined as the domain of the closure in L2(�, ν) of
DH , the gradient operator along the directions of H . A suitable approximation procedure allows us to prove
some pointwise gradient estimates for (T�(t))t≥0. In particular, we show that

|DHT�(t) f |pH ≤ e−pλ−1
1 t

(T�(t)|DH f |pH ), t > 0, ν-a.e. in �,

for any p ∈ [1, +∞) and f ∈ D1,p(�, ν).We deduce some relevant consequences of the previous estimate,
such as the logarithmic Sobolev inequality and the Poincaré inequality in � for the measure ν and some
improving summability properties for (T�(t))t≥0. In addition, we prove that if f belongs to L p(�, ν) for
some p ∈ (1, ∞), then

|DHT�(t) f |pH ≤ Kpt
− p

2 T�(t)| f |p, t > 0, ν-a.e. in �,

where Kp is a positive constant depending only on p. Finally, we investigate on the asymptotic behaviour
of the semigroup (T�(t))t≥0 as t goes to infinity.

Introduction

This paper is a contribution to the study of infinite-dimensional elliptic and parabolic
partial differential equations. The basic data are an abstract Wiener space (X, H, γ )

and a quadratic form which defines a self-adjoint operator. This is a recent field of
research, which finds its main motivation in stochastic analysis and its different appli-
cations to mathematical finance, statistical mechanics, hydrodynamics and quantum
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mechanics. The simplest (still, quite challenging) case is that of a Hilbert space X
endowed with a Gaussian measure γ and the Dirichlet form

(ϕ, ψ) �→
∫
X
〈DHϕ, DHψ〉H dγ,

that defines an Ornstein–Uhlenbeck operator L which in turn generates the associated
Ornstein–Uhlenbeck semigroup. Here DH denotes the gradient along the directions
of Cameron–Martin space H . Much has been done on this subject, see [11,21,26,27,
33,34], relying on the available explicit Mehler’s formula for the semigroup. In this
case, the related stochastic differential equation is the Langevin one, i.e.

dX (t) = −X (t) dt + dWH (t),

whereWH (t) is a cylindrical Brownian motion. It is natural to look for generalisations
of the available results, going in two directions: one is that of replacing γ with a more
general measure, the other is that of considering integration on a domain � ⊆ X .
One of the main properties of Gaussian measures is that they factor according to
the orthogonal decompositions of H , and this allows to get explicit formulas when
integrating on the whole space X and to perform finite-dimensional approximations
with increasing sequences of subspaces. Moreover, integrating on a domain requires
to deal with boundary conditions (or suitable classes of test functions) that have to
be assigned in order to correctly define an operator and the generated semigroup.
Introducing a different measure makes the finite-dimensional approximation much
more delicate and prevents to get explicit formulas even if the problem is studied in the
whole space. Restricting to a domain, beside involving boundary conditions that have
to be understood, makes still more difficult the infinite-dimensional approximation,
and in fact, to the best of our knowledge, the only case treated in the literature is that
of convex domains, see [1,6–8,12,14,18,20,31].
In this paper, we consider a log-concave weighted Gaussian measure ν = e−Uγ on

a separable Hilbert space X . Here γ = N(0, Q∞) is the Gaussian measure with zero-
mean and covariance operator Q∞ := −QA−1 where Q is a self-adjoint bounded
non-negative and non-degenerate operator on X , A : D(A) ⊆ X → X is a self-adjoint
operator such that 〈Ax, x〉 ≤ −ω|x |2 (ω > 0) and Q∞ is a trace-class operator with
non-negative eigenvalues (λi )i∈N. The functionU : X → R is convex and sufficiently
regular. (Precise hypotheses are stated in Sect. 1.) We consider the quadratic form

D�(ϕ,ψ) =
∫

�

〈DHϕ, DHψ〉H dν, (1)

which gives rise to the Kolmogorov operator (formally defined in a variational way
through D�)

L = Tr(D2
H ) −

+∞∑
i=1

λ−1
i xi Di − 〈DHU, DH 〉H
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and to the stochastic differential equation

dX (t) = −(X (t) + DU (X (t))) dt + Q1/2∞ dWH (t) + boundary terms, (2)

[we do not enter into the details of boundary terms because we shall not come back
to the stochastic side, see [6,7] for a precise formulation of Eq. (2)]. The domain we
assign to the quadratic form corresponds heuristically to Neumann boundary condi-
tions for L on ∂�, and L generates a strongly continuous semigroup (T�(t))t≥0 (simply
denoted by T�(t)) in L p(�, ν) for 1 ≤ p < ∞. In order to study this semigroup, we
proceed with a double approximation. We approximate U via Moreau–Yosida-type
operators and penalise the characteristic function of � in order to state the prob-
lem in the whole space, eventually getting the restriction to � when the penalisation
converges to χ�. It is here that the convexity assumption on � is essential. Indeed,
in infinite dimension there is no available procedure to mimic the standard domain
decomposition and partition of unity arguments which are classical in finite dimen-
sion. Once the (approximate) problem has been formulated in the whole space, we
perform a finite-dimensional approximation which provides a quite regular family of
semigroups converging to T�(t) f in a suitable sense and to which the results of the
finite-dimensional case can be applied.
As we don’t know any smoothing property of T�(t) [it is not even known whether

T�(t) maps Cb(�) in Cb(�)], we exploit the smoothing properties of the approxi-
mating semigroups. Indeed, the smoothness of the approximants is the crucial tool
for many computations in this paper. Among the results that follow, one of the most
relevant is the pointwise gradient estimate

|DHT�(t) f |pH ≤ e−pλ−1
1 t (T�(t)|DH f |pH ), t > 0, ν-a.e. in �, (3)

which holds true for any p ∈ [1,+∞) and f smooth enough, λ1 being the maxi-
mum eigenvalue of the covariance operator Q∞. Besides its own interest, estimate
(3) represents the key tool in the investigation of many qualitative properties of T�(t)
and the related invariant measure ν. In the finite-dimensional case, gradient estimates
similar to (3) are usually obtained by using the Bernstein method, which relies upon
a variant of the classical maximum principle (see [29] and the reference therein) that
does not have a counterpart in the infinite-dimensional case, or by using stochas-
tic techniques, such as the Bismut–Elworthy–Li formula (see [15,21] and reference
therein) and coupling methods (see, for example, [16,17,40]). On the other hand, in
infinite-dimensional Wiener spaces some partial results are also available. In the case
of a Gaussian measure γ and � = X , the classical Mehler’s representation formula

T (t) f (x) =
∫
X
f
(
e−t x +

√
1 − e−2t y

)
dγ (y),

gives DHT (t) f = e−t T (t)(DH f ), where the equality has to be meant componen-
twise (see [11, Proposition 1.5.6]). Again for the Gaussian measure γ on a convex
subset �, in [12, Theorem 3.1] it is proved that |DHT (t) f |H ≤ e−t T (t)|DH f |H
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for any smooth function f . In this case, the idea consists in approximating the par-
abolic problem with a sequence of finite-dimensional parabolic problems and using
the factorisation of the Gaussian measure. Clearly, this approach does not work in
our case since our measure in general does not decompose as a product of measures
on orthogonal subspaces. Finally, the case of a weighted Gaussian measure is also
considered in [21] where a version of (3) is proved when � = X and the H -derivative
is replaced by the Fréchet one. We point out that, in this latter case, the proof of the
gradient estimate is based on purely stochastic techniques.
Hence, taking into account the existing literature, estimate (3) represents a gener-

alisation of all the above results and the purely analytical proof we proposed, inspired
by an idea due to Bakry and Émery (see [5,39]), is a novelty in the proofs of gradient
estimates.
As announced, the pointwise gradient estimate (3) has several interesting conse-

quences. First of all, it yields that the semigroup T�(t) is smoothing, in the sense that
it is bounded from L p(�, ν) into D1,p(�, ν), for any p ∈ (1,∞) and t > 0 as the
estimate

‖DHT�(t) f ‖L p(�,ν;H) ≤ Cpt
− 1

2 ‖ f ‖L p(�,ν),

reveals. Due to the fact that the Sobolev embedding theorems fail to hold when we
replace the Lebesgue measure with another general measure (as the Gaussian one),
despite T�(t) maps L p(�, ν) into D1,p(�, ν), a natural basic question is whether the
semigroup T�(t) is hypercontractive, i.e. if, given any f ∈ Lq(�, ν), q ∈ [1,∞),
the function T�(t) f belongs to L p(�, ν) for some p > q. To give a positive answer,
the starting point is the proof of a logarithmic Sobolev inequality for the measure
ν which, as in the case of Gaussian measures, implies that the semigroup T�(t) is
hypercontractive in the L p-spaces related to the measure ν. This last result and more
improving summability properties were already known in the finite-dimensional set-
ting for evolution operators associated with non-autonomous elliptic operator (see
[3,4]). We also show a Poincaré inequality in L p(�, ν) for p ∈ [2,∞) that together
with the hypercontractivity estimate ‖T�(t) f ‖L p(�,ν) ≤ cp,q,�‖ f ‖Lq (�,ν) which
holds for any t > 0, f ∈ Lq(�, ν) and some p > q, allows us to study the asymptotic
behaviour of T�(t) f as t → +∞ for f ∈ L p(�, ν), p > 1, and to relate it to the
behaviour of the derivative |DHT�(t) f | as t → +∞. These estimates are drawn in
a more or less standard way: we have presented sketches of proofs (or even complete
proofs) for the convenience of the reader.
Further consequences can be deduced, but these will be hopefully matter of other

works.

Notations

For any k ≥ 0 and n ∈ N, we denote by Ck(Rn) the space of continuous functions
with continuous derivative up to the [k]th order (here [k] denotes the integer part of
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k) such that the [k]-th derivative is (k − [k])-Hölder continuous, if k /∈ N. We use
the subscript “b” to denote the space of all functions in Ck(Rn) which are bounded
together with all their derivatives up to the [k]th order. Ck

b (R
n) is endowed with the

norm

‖ f ‖Ck
b (Rn) :=

∑
|α|≤[k]

‖Dα f ‖∞ +
∑

|α|=[k]
[Dα f ]k−[k],

where ‖·‖∞ denotes the sup-norm and, for any α ∈ (0, 1), [·]α is the α-Hölder semi-
norm. We use the subscript “loc” to denote the space of all f ∈ C [k](Rn) such that
the derivatives of order [k] are (k − [k])-Hölder continuous in any compact subset of
R
n . For any interval J and α, β ≥ 0, we denote by Cα,β(J ×R

n) the usual parabolic
Hölder space. The subscripts “b” and “loc” have the same meanings as above.

We also consider functions defined in infinite-dimensional spaces. X denotes a
separable Hilbert space endowed with its norm | · | and inner product 〈·, ·〉, while
L(X) denotes the space of bounded linear operators from X to itself, endowed with
its operator norm ‖·‖L(X).
We define Cb(X) to be the space of all functions f : X → R which are continuous

and bounded in X . For any k ∈ N, we denote by Ck
b (X) the space of functions

f : X → R which have bounded and continuous Fréchet derivatives up to the order
k with norm

‖ f ‖Ck
b (X) :=

k∑
j=0

‖D j f ‖∞,

where D j denotes the j th Fréchet derivative operator. Moreover, if f : X → R is
Lipschitz continuous, we set [ f ]Lip = supx,y∈X, x �=y

(| f (x) − f (y)||x − y|−1
)
.

For any f : [0,+∞) × X → R, once an orthonormal Hilbert basis (vi )i∈N has
been fixed, we use the symbols Dt f, Di f to denote, respectively, the time derivative
of f and the directional derivative of f in the direction of vi . We use the same notation
in R

n where Di f denotes the directional derivative of f along the i-th vector of the
canonical basis of Rn . Analogous meaning is given to the symbols Di j f and Di jk f .

For any finite Radon measure μ on X and 1 ≤ p < ∞, the set L p(X, μ) consists
of all measurable functions f : X → R such that ‖ f ‖p

L p(X,μ) := ∫
X | f |pdμ < +∞,

while L∞(X, μ) is the space of all μ-essentially bounded functions with norm
‖ f ‖∞ = ess supx∈X | f (x)|. In a similar way, we define the spaces L p(X, μ; X) and
L p(X, μ;H2) where H2 is the space of Hilbert–Schmidt operators and the measur-
ability is meant in Bochner’s sense. With p′ we denote the conjugate exponent of p,
i.e. 1/p + 1/p′ = 1, with the standard convention that 1′ = ∞.

1. Assumptions and preliminary results

We start this section by listing the hypotheses we assume throughout the paper.
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HYPOTHESES 1.1. Let assume that

(i) Q ∈ L(X) is a self-adjoint and non-negative operator with Ker Q = {0};
(ii) A : D(A) ⊆ X → X is a self-adjoint operator satisfying 〈Ax, x〉 ≤ −ω|x |2 for

every x ∈ D(A) and some positive ω;
(iii) Qet A = et AQ for any t ≥ 0;
(iv) Tr(−QA−1) < +∞.

Under Hypotheses 1.1, we can consider the Gaussian measure γ with mean zero,
covariance operator Q∞ := −QA−1 and an orthonormal basis (vk)k∈N of X such
that

Q∞vk = λkvk, k ∈ N, (1.1)

where (λk)k∈N is the decreasing sequence of eigenvalues of Q∞.
The Cameron–Martin space (H, | · |H ), where

H =
{
x ∈ X

∣∣∣∣∣
+∞∑
k=1

λ−1
k 〈x, vk〉2 < +∞

}
,

and | · |H is the norm induced by the inner product 〈h, k〉H := 〈Q−1/2∞ h, Q−1/2∞ k〉,
h, k ∈ H , is a Hilbert space which is densely embedded in X . Note that, as H =
Q1/2∞ X , the sequence (ek)k∈N, where ek = √

λkvk for any k ∈ N, is an orthonormal
basis of H .
Weneed to recall the definition ofLipschitz continuous function along theCameron–

Martin space H . If Y is a Banach space with norm ‖·‖Y , a function F : X → Y is
said to be H -Lipschitz continuous if there exists a positive constant C such that

‖F(x + h) − F(x)‖Y ≤ C |h|H , (1.2)

for every h ∈ H and γ -a.e. x ∈ X (see [11, Section 4.5 and Section 5.11] for the basic
properties of H -Lipschitz continuous functions). In particular, we point out that, by
[11, Corollary 4.5.4], there exists a Borel modification of F such that (1.2) is satisfied
for any x ∈ X . Henceforth we always refer to such modification. We denote with
[F]H -Lip the best constant C appearing in (1.2).
Now, we introduce a notion of derivative weaker than the classical Fréchet one. We

say that f : X → R is H -differentiable at x0 ∈ X if there exists  ∈ H such that

f (x0 + h) = f (x0) + 〈, h〉H + o(|h|H ), as |h|H → 0.

In such a case, we set DH f (x0) :=  and Di f (x0) := 〈DH f (x0), ei 〉H for any i ∈ N.
The derivative DH f (x0) is called theMalliavin derivative of f at x0. In a similar way,
we say that f is twice H -differentiable at x0 if f is H -differentiable near x0 and there
exists B ∈ H2 such that

f (x0 + h) = f (x0) + 〈DH f (x0), h〉H + 1

2
〈Bh, h〉H + o(|h|2H ), as |h|H → 0.
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In such a case, we set D2
H f (x0) := B and Di j f (x0) := 〈D2

H f (x0)e j , ei 〉H for any
i, j ∈ N.We recall that if f is twice H -differentiable at x0, then Di j f (x0) = Dji f (x0)
for every i, j ∈ N.

REMARK 1.2. If a function f : X → R is (resp. twice) Fréchet differentiable at
x0, then it is (resp. twice) H -differentiable at x0 and it holds DH f (x0) = Q∞Df (x0),
(resp. D2

H f (x0) = Q1/2∞ D2 f (x0)Q
1/2∞ ).

For any k ∈ N∪{∞}, we denote by FCk
b (X), the space of cylindrical Ck

b functions,
i.e. the set of functions f : X → R such that f (x) = ϕ(〈x, h1〉, . . . , 〈x, hN 〉) for some
ϕ ∈ Ck

b (R
N ), h1, . . . , hN ∈ H and N ∈ N. By FCk

b (X, H), we denote H -valued
cylindrical Ck

b functions with finite rank.
The Sobolev spaces in the sense of Malliavin D1,p(X, γ ) and D2,p(X, γ )with p ∈

[1,∞) are defined as the completions of the smooth cylindrical functions FC∞
b (X)

in the norms

‖ f ‖D1,p(X,γ ) :=
(

‖ f ‖p
L p(X,γ ) +

∫
X

|DH f |pHdγ

) 1
p ;

‖ f ‖D2,p(X,γ ) :=
(

‖ f ‖p
D1,p(X,γ )

+
∫
X

|D2
H f |pH2

dγ

) 1
p

.

This is equivalent to consider the domain of the closure of the gradient operator, defined
on smooth cylindrical functions, in L p(X, γ ).
We define a weighted Gaussian measure considering a function U : X → R that
satisfies the following

HYPOTHESIS 1.3. U is a convex function which belongs to C2(X) ∩ D1,q(X, γ )

for all q ∈ [1,∞).

The convexity of the function U guarantees that U is bounded from below by a
linear function; therefore, it decreases at most linearly, and by Fernique’s theorem
(see [11, Theorem 2.8.5]) e−U belongs to L1(X, γ ). Then, we can consider the finite
log-concave measure

ν := e−Uγ.

Notice that γ and ν are equivalent measures, hence saying that a statement holds
γ -a.e. is the same as saying that it holds ν-a.e. Moreover, the fact that U belongs
to D1,q(X, γ ) for any q ∈ [1,∞) allows us to conclude that the operator DH :
FC1

b(X) → L p(X, ν; H) is closable in L p(X, ν), p ∈ (1,∞) and we may define
the space D1,p(X, ν), p > 1, as the domain of its closure (still denoted by DH ). In
a similar way, we can define D2,p(X, ν), p ∈ (1,∞) (for more details, see [13,23]).
The Gaussian integration by parts formula

∫
X Di f dγ = 1√

λi

∫
X 〈x, vi 〉 f dγ , which

holds true for any f ∈ FC1
b(X) and i ∈ N, yields that∫

X
ψDiϕdν +

∫
X

ϕDiψdν =
∫
X

ϕψDiUdν + 1√
λi

∫
X
〈x, vi 〉ϕψdν, i ∈ N,

(1.3)
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for any ϕ,ψ ∈ FC1
b(X), hence by density for any ϕ,ψ ∈ D1,p(X, ν), p ∈ (1,∞).

In what follows, � denotes an open convex subset of X . In this case, the spaces
D1,p(�, ν) and D2,p(�, ν), p ∈ (1,∞) can be defined in a similar way as in the
whole space, thanks to the following result (proved in [2] in the Gaussian case).

PROPOSITION 1.4. Let us assume that Hypotheses 1.1 and 1.3 are satisfied and
let p ∈ (1,∞) and � be an open subset of X. Then the operators DH : FC∞

b (�) →
L p(�, ν; H) and

(DH , D2
H ) : FC∞

b (�) × FC∞
b (�) → L p(�, ν; H) × L p(�, ν;H2) (1.4)

are closable in L p(�, ν) and L p(�, ν) × L p(�, ν), respectively. Here FC∞
b (�) is

the space of the restriction to � of the functions in FC∞
b (X).

Proof. We just prove that the operator DH : FC∞
b (�) → L p(�, ν; H) is closable in

L p(�, ν), since the proof that the operator defined in (1.4) is closable in L p(�, ν) ×
L p(�, ν) is quite similar. By the linearity of the operator DH it is enough to prove
that if ( fk)k∈N ⊆ FC∞

b (�) is such that

lim
k→+∞ fk = 0 in L p(�, ν);

lim
k→+∞ DH fk = � in L p(�, ν; H),

then � = 0 ν-a.e in �.
By Lusin’s theorem and standard arguments following from [35], the space Lipc(�)

of the bounded Lipschitz functions u defined on X with bounded support such
that dist(supp u,�c) > 0 is dense in L p(�, ν). So it is enough to prove that∫
�

〈�, ei 〉Hudν = 0, for every i ∈ N and u ∈ Lipc(�).
To this aim, let us fix u ∈ Lipc(�) and observe that, by the Hölder inequality,

Hypothesis 1.3 and the fact that e−U ∈ Lq(X, γ ) for every q ∈ [1,∞), we get

lim
k→+∞

∫
�

fk Diudν ≤ [u]Lip[ν(�)]1/p′
lim

k→+∞ ‖ fk‖L p(�,ν) = 0 (1.5)

and

lim
k→+∞

∫
�

fkuDiUdν ≤ ‖u‖∞‖DiU‖L p′q (X,γ )
‖e−U ‖1/p′

Lq′
(X,γ )

lim
k→+∞ ‖ fk‖L p(�,ν) = 0;

(1.6)
for every i ∈ N and q ∈ (1,∞). Moreover, Fernique’s theorem and the quoted
hypotheses imply that

lim
k→+∞

∫
�

fku
〈x, vi 〉√

λi
dν

≤ ‖u‖∞√
λi

(∫
X

|〈x, vi 〉|p′qdγ

) 1
p′q ‖e−U‖1/p′

Lq′
(X,γ )

lim
k→+∞ ‖ fk‖L p(�,ν) = 0.

(1.7)
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Now, we claim that
∫
�

〈�, ei 〉Hudν = limk→+∞
∫
X ũDi fkdν, where ũ is the null

extension of u out of �. Indeed, again by using the hypotheses listed above we get

lim
k→+∞

∫
�

u(Di fk − 〈�, ei 〉H )dν

≤ ‖u‖∞[ν(�)]1/p′
lim

k→+∞

(∫
�

|Di fk − 〈�, ei 〉H |pdν
)1/p

= 0.

To conclude, let us observe that ũ is Lipschitz continuous on X , so by the integration
by parts formula (1.3) and (1.5)–(1.7) we deduce∫

�

〈�, ei 〉Hudν = lim
k→+∞

∫
X
ũDi fkdν

= lim
k→+∞

∫
X
fk

(
−Di ũ + ũDiU + ũ

〈x, vi 〉√
λi

)
dν

= lim
k→+∞

∫
�

fk

(
−Diu + uDiU + u

〈x, vi 〉√
λi

)
dν = 0.

This proves the claim. �

The spaces D1,p(�, ν; H), p ∈ (1,∞), are defined in a similar way, replacing smooth
cylindrical functions with H -valued smooth cylindrical functions. We recall that if
F ∈ D1,p(�, ν; H), then DH F belongs toH2.
In the sequel, we consider boundary Cauchy problems defined in� andwewill need

some continuity properties of the distance function along H , d� : X → [0,+∞],
defined by

d�(x) :=
{
inf{|h|H | h ∈ H ∩ (� − x)}, H ∩ (� − x) �= ∅;
+∞, H ∩ (� − x) = ∅,

for any x ∈ X . In the following proposition, we recall some results about the function
d� (see [11, Theorems 2.8.5 & 5.11.2] and [14, Section 3]).

PROPOSITION 1.5. Let� ⊆ X be an open convex set. Then d2� is H-differentiable
and its Malliavin derivative is H-Lipschitz with H-Lipschitz constant less than or
equal to 2, i.e.

|DHd
2
�(x + h) − DHd

2
�(x)|H ≤ 2|h|H ,

for any h ∈ H and for ν-a.e x ∈ X. Moreover, D2
Hd

2
� exists ν-a.e. in X and d2�

belongs to D2,p(X, ν) for every p ∈ [1,∞).

In order to prove our results,weneed further regularity of the second-orderMalliavin
derivative of the distance function along H . More precisely, we assume that

HYPOTHESIS 1.6. � is an open convex subset of X such that ν(∂�) = 0 and
D2

Hd
2
� is H-continuous γ -a.e. in X; i.e. for γ -a.e. x ∈ X

lim|h|H→0
D2

Hd
2
�(x + h) = D2

Hd
2
�(x).
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REMARK 1.7. We point out that there is a rather large class of subsets of X
satisfying Hypothesis 1.6. For instance, by [24,28], if ∂� is (locally) aC2-embedding
in X of an open subset of a hyperplane in X and ν(∂�) = 0, then Hypothesis 1.6 is
satisfied. Easy examples are:

(i) every open ball and open ellipsoid of X ;
(ii) every open hyperplane of X ;
(iii) every set of the form � = {x ∈ X |G(x) < 0}, where G : X → R is convex,

belongs toC2(X) and DHG is nonzero at every point of ∂� (check [28, Theorem
1(a)]).

An important tool in our analysis is the Moreau–Yosida approximants of U along
H . We recall the main properties of this approximation, and we refer to [9, Section
12.4] for the classical theory and to [1,13,14] for the case considered here.

PROPOSITION 1.8. Let f : X → R ∪ {+∞} be a proper convex and lower
semicontinuous function and denote by dom( f ) = {x ∈ X | f (x) < +∞}. For any
ε > 0 and x ∈ X, let us consider

fε(x) := inf

{
f (x + h) + 1

2ε
|h|2H

∣∣∣∣ h ∈ H

}
. (1.8)

Then, the following properties hold true:

(i) fε(x) ≤ f (x) for any ε > 0 and x ∈ X. Moreover, fε(x) converges monotoni-
cally to f (x) for any x ∈ X, as ε → 0+;

(ii) fε is H-differentiable in X and DH fε is H-Lipschitz continuous in X;
(iii) fε belongs to D2,p(X, γ ), whenever f ∈ L p(X, γ ) for some 1 ∈ [1,∞);
(iv) if x ∈ dom( f ) and f belongs to D1,p(X, γ ) for some p ∈ [1,∞), then DH fε(x)

converges to DH f (x) as ε → 0+;
(v) if f ∈ C2(X)∩D2,p(X, γ ) for some p ∈ [1,∞) and f is twice H-differentiable

at every point x ∈ dom( f ), then D2
H fε(x) exists and converges to D2

H f (x) as
ε → 0+, for any x ∈ dom( f ). Furthermore D2

H fε is H-continuous in X, i.e.
lim|h|H→0 D2

H fε(x + h) = D2
h fε(x) for any x ∈ X.

Further notation We now introduce some notations which will be largely used in
the paper. For any i, n ∈ N and x ∈ X , we define xi := √

λi 〈x, vi 〉 and by �n

the projection �n : X → R
n , �nx := (x1, . . . , xn). The function �n denotes the

embedding �n : R
n → H , �nξ := ∑n

k=1 ξkek , for any ξ ∈ R
n . Moreover, if

Pn : X → H is defined by Pnx := ∑n
i=1 xi ei for any x ∈ X and n ∈ N, then the

conditional expectation of f , En f defined as follows

En f (x) :=
∫
X
f (Pnx + (I − Pn)y)dγ (y), f ∈ L p(X, γ ), p ∈ [1,∞),

enjoys somegood continuity properties (see [11,Corollary 3.5.2 andProposition 5.4.5]
for a proof of the following result).
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PROPOSITION 1.9. Assume that Hypotheses 1.1 hold true and let 1 ≤ p < +∞,
k ∈ N and f ∈ Dk,p(X, γ ). Then En f belongs to Dk,p(X, γ ) and converges to f in
Dk,p(X, γ ) and pointwise γ -a.e. in X, as n tends to+∞. Moreover ‖En f ‖Dk,p(X,γ ) ≤
‖ f ‖Dk,p(X,γ ) and

DiEn f =
{
EnDi f 1 ≤ i ≤ n;
0 i > n.

Weconclude this section by recalling themain properties of the semigroupgenerated
by the operator L� in L2(�, ν) defined as

D(L�) =
{
u ∈ D1,2(�, ν)

∣∣∣∣ there exists vu ∈ L2(�, ν) such that

∫
�

〈DHu, DHϕ〉Hdν = −
∫

�

vuϕdν for every ϕ ∈ FC∞
b (�)

}
, (1.9)

with L�u := vu if u ∈ D(L�).

PROPOSITION 1.10. Under Hypotheses 1.1, 1.3 and 1.6, the following properties
hold true.

(i) For any λ > 0 and f ∈ L2(�, ν), the equation λu − L�u = f in � has a weak
solution u ∈ D1,2(�, ν), i.e. for every ϕ ∈ D1,2(�, ν) it holds

λ

∫
�

uϕdν +
∫

�

〈DHu, DHϕ〉Hdν =
∫

�

f ϕdν.

Moreover, u ∈ D2,2(�, ν) and the equation λu − L�u = f , λ > 0, holds
ν-a.e. in �. Denoting by R(λ, L�) the resolvent operator of L�, the following
estimates hold:

‖R(λ, L�) f ‖L2(�,ν) ≤ ‖ f ‖L2(�,ν)

λ
, ‖DH R(λ, L�) f ‖L2(�,ν;H) ≤ ‖ f ‖L2(�,ν)√

λ
,

(1.10)
and ∥∥∥D2

H R(λ, L�) f
∥∥∥
L2(�,ν;H2)

≤ √
2‖ f ‖L2(�,ν), (1.11)

Consequently, L� generates a bounded self-adjoint analytic semigroup T�(t)
in L2(�, ν).

(ii) T�(t) can be extended to a positivity preserving contraction semigroup (still
denoted by T�(t)) in L p(�, ν) for every 1 ≤ p ≤ +∞ and t ≥ 0. In addition,
it is strongly continuous in L p(�, ν) for any p ∈ [1,+∞).

(iii) If f ∈ Cb(�) has positive infimum in �, then T�(t) f has a positive ν-essential
infimum, for any t > 0.

(iv) For any convex function ϕ : R → R,

ϕ(T�(t) f ) ≤ T�(t)(ϕ ◦ f ), ν-a.e. in �, t > 0, f ∈ Cb(�). (1.12)
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(v) For any p ∈ (1,+∞)

T�(t)( f g) ≤ (T�(t)| f |p)1/p(T�(t)|g|p′
)1/p

′
ν-a.e. in �, t > 0, f, g ∈ Cb(�).

(1.13)
(vi) For any p ∈ [1,∞), f ∈ L p(�, ν) and g ∈ L∞(�, ν) it holds

∫
�

f T�(t)gdν =
∫

�

gT�(t) f dν, t > 0.

Proof. (i) Inequalities (1.10) and (1.11) are proved in [14, Theorem 1.3], while the
last statement follows from the standard theory of semigroups.
(ii) It is a consequence of [36, Theorem 2.14 and Corollary 2.18]. Indeed by these

results, it is enough to prove the following two Beurling–Deny conditions:

(1) if u ∈ D1,2(�, ν), then |u| ∈ D1,2(�, ν) and
∫
�

|DH |u||2Hdν ≤ ∫
�

|DHu|2Hdν.
(2) if 0 ≤ u ∈ D1,2(�, ν), then u ∧ 1l := min {u, 1} belongs to D1,2(�, ν) and

∫
�

|DH (u ∧ 1l)|2Hdν ≤
∫

�

|DHu|2Hdν. (1.14)

Statement (1) follows from the fact that if u belongs to D1,2(�, ν), then there exists
a sequence (un)n∈N ⊆ FC1

b(�) converging to u in D1,2(�, ν). It can be proved that
the sequence ũn = √

u2n + n−1 converges to |u| in D1,2(�, ν) as n → +∞, namely
|u| belongs to D1,2(�, ν). In addition, DH |u| = sign(u)DHu and

∫
�

|DH |u||2Hdν =∫
�

|DHu|2Hdν (see [19, Lemma 2.7] for further details).
To prove (2), as above we can consider a sequence (un)n∈N ⊆ FC1

b(�) converging to
u in D1,2(�, ν), as n goes to infinity. Then, the sequence

ũn = 1

2

(
un + 1 −

√
(un − 1)2 + 1

n

)
,

converges to u ∧ 1l as n → +∞, that is u ∧ 1l ∈ D1,2(�, ν). Further,

DH (u ∧ 1l) = 1

2
(1 − sign(u − 1))DHu

and (1.14) holds true (see [12, Proposition 1.1] for more details). The strong continuity
follows from [36].
(iii) It follows immediately using the positivity of T (t) and observing that T (t)c = c

for any c ∈ R. Indeed f ≥ c implies T (t) f ≥ c.
(iv)–(v) Due to [32, Theorem 4.3.5], there is a Markov process (Y,M, (Xt )t≥0,

(Px )x∈X ) such that T�(t) f (x) = Ex ( f (Xt )) for ν-a.e x ∈ X , where Ex

denotes the expected value with respect to the probability measure Px . We sum-
marise here some of the main properties of the Markov process (Y,M, (Xt )t≥0,

(Px )x∈X ) for the convenience of the reader:

• (Y,M) is a measurable space;
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• there exists a filtration (Mt )t≥0 on (Y,M) such that (Xt )t≥0 is a (Mt )t≥0-adapted
stochastic process;

• Px , x ∈ X , are probability measures on (Y,M);
• it holds Px [Xs+t ∈ A|Ms] = PXs [Xt ∈ A] for all Borel set A ⊆ X , any s, t ≥ 0

and for Px -a.e. x ∈ X .

We remark that in [32, Chapter 4, Section 4(b)] the authors study exactly the case we
are in. The claims are easy consequences of the Jensen and Hölder inequalities.
(vi) SinceFC∞

b (�) is dense in L p(�, ν) for every p ∈ [1,∞), there exists a sequence
( fn)n∈N ⊆ FC∞

b (�) such that limn→+∞ ‖ fn − f ‖L p(�,ν). By the self-adjointness of
T� in L2(�, ν), we get∫

�

fnT�(t)gdν =
∫

�

gT�(t) fndν, t > 0.

By (ii) T�(t)g ∈ L∞(�, ν), so letting n go to infinity we get the claim. �

If � = X , the operator in (1.9), denoted by L , acts on smooth cylindrical functions ϕ

as follows

Lϕ := Tr(D2
Hϕ) −

∞∑
i=1

λ−1
i 〈x, ei 〉Diϕ − 〈DHU, DHϕ〉H , ν-a.e in X, (1.15)

and it is symmetrised by the measure ν, indeed∫
X

ψLϕdν = −
∫
X

〈DHϕ, DHψ〉Hdν, ϕ,ψ ∈ FC1
b(X). (1.16)

From now on, we assume that Hypotheses 1.1, 1.3 and 1.6 hold true.

2. An approximation result

Themain goal of this section is Theorem 2.8 which states that for any f ∈ L2(�, ν)

the function T�(t) f can be approximated in a suitable way by smooth enough func-
tions written in terms of semigroups depending on two parameters n and ε. These
parameters take into account that the approximation procedure first reduces the prob-
lem from an infinite-dimensional setting to a finite-dimensional one, and then, by using
a penalisation argument, it allows to solve the problem in the domain � throughout
the solution of a suitable problem in the whole space.
In view of these facts, we first recall some results about parabolic and elliptic

problems with unbounded coefficients in finite dimension.

2.1. Parabolic and elliptic equations in Rn

In this subsection,we consider a convex functionφ ∈ C2+α(Rn) for someα ∈ (0, 1)
with bounded second derivatives and a second-order differential operator Lφ acting
on smooth functions v as follows

Lφv(ξ) = �v(ξ) + 〈Bξ, Dv(ξ)〉 − 〈Dφ(ξ), Dv(ξ)〉, ξ ∈ R
n,
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where B is a constant symmetric matrix such that 〈Bξ, ξ 〉 ≤ −β|ξ |2 for any ξ ∈ R
n

and some β > 0.
It is known (see [29, Chapter 1] and the reference therein) that for any ϕ ∈ Cb(R

n)

there exists a unique bounded classical solution v of problem
{
Dtv(t, ξ) = Lφv(t, ξ) t > 0, ξ ∈ R

n;
v(0, ξ) = ϕ(ξ), ξ ∈ R

n .
(2.1)

Namely v belongs to Cb([0,+∞) × R
n) ∩ C1+α/2,2+α

loc ((0,+∞) × R
n) and solves

the Cauchy problem (2.1). The uniqueness of v is a consequence of the convexity of
φ and of the existence of a Lyapunov function, i.e. a positive function g ∈ C2(Rn)

such that lim|ξ |→+∞ g(ξ) = +∞ and

(Lφg)(ξ) − λg(ξ) ≤ 0, ξ ∈ R
n, (2.2)

for some λ > 0. Indeed, taking g(ξ) = |ξ |2, ξ ∈ R
n , we have

(Lφg)(ξ) = 2n + 2〈Bξ, ξ 〉 − 2〈Dφ(ξ), ξ 〉
≤ 2n − 2β|ξ |2 − 2〈Dφ(ξ) − Dφ(0), ξ 〉 − 2〈Dφ(0), ξ 〉
≤ 2n − 2β|ξ |2 + 2|Dφ(0)||ξ |,

where we have used that 〈Dφ(ξ) − Dφ(0), ξ 〉 ≥ 0 for every ξ ∈ R
n so, clearly, we

can find λ such that inequality (2.2) is satisfied.
In this way, we can consider the semigroup Tφ(t) associated with Lφ in Cb(R

n)

and write v(t, ξ) = (Tφ(t)ϕ)(ξ) for any t > 0 and ξ ∈ R
n . It turns out that Tφ(t) is a

positivity-preserving contractive semigroup in Cb(R
n).

To pass from finite to infinite dimension, we prove and exploit suitable uniform gra-
dient estimates independent of the dimension. More precisely, we prove a dimension-
free uniform estimate for the gradient of Tφ(t)ϕ, ϕ ∈ C1

b(R
n). Such kind of estimates

has already been proved for semigroups associated with more general operators (see
[29, Chapter 5] and the reference therein). However, since in all these estimates are not
emphasised how and if the constants appearing depend on the dimension, we provide
a sketch of the proofs (essentially based on the Bernstein method and the classical
maximum principle) that allows us to verify that the constants are dimension-free.

PROPOSITION 2.1. The estimate

|DξTφ(t)ϕ(ξ)| ≤ ‖ϕ‖∞√
βt

(2.3)

holds true for any t > 0, ξ ∈ R
n and ϕ ∈ Cb(R

n). Here β is the positive constant
which bounds from below the quadratic form associated with −B.

Proof. It suffices to prove the claim for functions ϕ ∈ C2+α
c (Rn), i.e. the space of the

functions in C2+α(Rn) with compact support. Indeed, if ϕ ∈ Cb(R
n) we can consider

a sequence (ϕm)m∈N converging toϕ locally uniformly asm goes to infinity and use the

Author's personal copy



Gradient estimates on infinite dimensional convex domains

fact that, up to a subsequence, Tφ(t)ϕm converges to Tφ(t)ϕ in C1,2
loc ((0,+∞) ×R

n),
as m goes to infinity (see [29]). Moreover, taking advantage of the interior Schauder
estimates (see [25]), we reduce ourselves to proving the claim for the solution vR of the
homogeneous Neumann–Cauchy problem associated with the equation Dtv = Lφv

in (0, T ] × BR , where BR is the open ball centred at the origin with radius R large
enough such that the support of ϕ is contained in BR . Indeed, once (2.3) is proved
for vR , recalling that vR converges to Tφ(t)ϕ in C1,2

loc ((0,+∞) × R
n) as R → +∞,

we conclude. Therefore, let ϕ ∈ C2+α
c (Rn) and vR be as specified above. Then, the

function

zR(t, ξ) := |vR(t, ξ)|2 + βt
∣∣Dξ vR(t, ξ)

∣∣2 t > 0, ξ ∈ BR

satisfies zR(0, ·) = ϕ2 in BR , 〈Dξ vR, ν〉 ≤ 0 (ν is the unit normal vector) on (0, T ]×
∂BR and solves the equation

Dt zR − LφzR = (β − 1)
∣∣Dξ vR

∣∣2 + 〈
BDξ vR, Dξ vR

〉
−〈D2

ξ φDξ vR, Dξ vR〉 − βt |D2
ξ vR |2 ≤ 0,

in (0, T ]×BR (in the last inequalitywehave used the convexity ofφ and the assumption
on the matrixB). The classical maximum principle applied to the function zR −‖ϕ‖∞
yields the claim in (0, T ] × BR . The arbitrariness of T allows us to extend the claim
in the whole (0,+∞) × BR . �

The contractivity of Tφ(t) in Cb(R
n) and estimate (2.3) yield some dimension-free

uniform estimates for the solution (and its gradient) of the elliptic equation

λv − Lφv = ϕ ∈ C2
b (R

n), λ > 0. (2.4)

PROPOSITION 2.2. For any λ > 0, there exists a unique bounded classical solu-
tion v of problem (2.4). Moreover, v satisfies

(i) ‖v‖∞ ≤ 1

λ
‖ϕ‖∞, (i i) ‖Dv‖∞ ≤

√
π

βλ
‖ϕ‖∞. (2.5)

In addition, if φ ∈ C3(Rn), then v belongs to C3
b(R

n).

Proof. Existence and estimates (2.5) are immediate consequences of the fact that

v(ξ) =
∫ +∞

0
e−λt (Tφ(t)ϕ)(ξ)dt ξ ∈ R

n .

(see [10, Propositions 3.2 & 3.4] and [37, Proposition 3.6]) and estimate (2.3).
Concerning the last statement, we prove that the third-order derivatives of v are

bounded. Indeed, the classical theory of elliptic equations guarantees that v belongs
to C3(Rn). Moreover, [30, Theorem 1] yields that u belongs to C2+θ

b (Rn) for every
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0 < θ < 1 and ‖v‖C2+θ
b (Rn)

≤ C‖ϕ‖Cθ
b (Rn) for some positive constant C independent

of ϕ. Thus, we can differentiate (2.4) and obtain

λDjv − LφDjv = Djϕ + (D2φDv) j + (BDv) j , (2.6)

for any j = 1, . . . , n. Thus, taking into account that the right-hand side of (2.6) is
α-Hölder continuous and bounded we can apply again [30, Theorem 1] to deduce that
Djv ∈ C2+α

b (Rn) for every j = 1, . . . , n. In particular, v belongs to C3
b(R

n). �

2.2. Back to the infinite dimension

Here we apply the results of the previous subsection with B = diag
(−λ−1

1 , . . . ,−λ−1
n ) and β = λ−1

1 (see (1.1) for the definition of (λi )i∈N). Moreover,
we focus on the term 〈DHU, DH 〉H in the operator L in (1.15). We introduce some
functions that, in some sense, reduce U from infinite dimension to finite dimension
and that contain a penalisation term which allows us to localise the problem in �.
More precisely, we define �ε : X → R and φε,n : Rn → R, respectively, by

�ε(x) := Uε(x) + 1

2ε
d2�(x),

φε,n(ξ) := (En�ε)(�nξ) x ∈ X, ξ ∈ R
n, n ∈ N, ε > 0,

where Uε is the Moreau–Yosida approximation of U along H [see (1.8)] and �n :
R
n → X is the embedding function defined in Sect. 1.
In order to apply the finite-dimensional results obtained in Sect. 2.1, we need also to

regularise the function φε,n . To do this, we consider φε,n,η : Rn → R, the convolution
of φε,n with a standard mollifier ρη.
First, we state some properties of the functions just introduced. In the following

statement, we show that the function φε,n,η belongs to C2+α
b (Rn) for any α ∈ (0, 1).

LEMMA2.3. For every ε, η > 0 and n ∈ N, the functionφε,n,η belongs toC∞
b (Rn).

Proof. Clearly, φε,n,η belongs to C∞(Rn). Let us show that D2φε,n,η is bounded in
R
n . Propositions 1.5 and 1.8(ii) guarantee that �ε is H -differentiable and DH�ε

is H -Lipschitz continuous in X . The same holds true in R
n for the functions φε,n .

Rademacher’s theorem yields that Dφε,n is differentiable Ln-a.e. and D2φε,n is Ln-
essentially bounded. This implies that D2φε,n,η are bounded inRn . With similar argu-
ments, it follows that φε,n,η ∈ C∞

b (Rn). �

LEMMA 2.4. Let ε > 0. There exists an infinitesimal sequence (ηn)n∈N such that

lim
n→+∞ DH�ε,n,ηn = DH�ε, (2.7)

lim
n→+∞ D2

H�ε,n,ηn = D2
H�ε, (2.8)

where �ε,n,ηn (x) := φε,n,ηn (�nx) for any x ∈ X. The limits in (2.7) and (2.8) are
taken in L2(X, νε; H) and L2(X, νε;H2), respectively, and νε is the measure e−�εγ .
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Proof. Throughout this proof, for any n ∈ N and x, y ∈ X we set �n(x, y) :=
Pnx + (I − Pn)y. We start by proving that (2.7) holds true for every infinitesimal
sequence (ηn)n∈N. To this aim, let (ηn)n∈N be an infinitesimal sequence. Then
∫
X

(∣∣DH�ε − DH�ε,n,ηn

∣∣2
Hdνε ≤ 2

∫
X

|DH�ε − DHEn�ε|2H

+ ∣∣DHEn�ε − DH�ε,n,ηn

∣∣2
H

)
dνε

≤ 2

(∫
X
e−p′�εdγ

) 1
p′
(∫

X
|DH�ε − DHEn�ε|2pH dγ

) 1
p

+ 2
∫
X

∣∣DHEn�ε − DH�ε,n,ηn

∣∣2
Hdνε. (2.9)

Since DHd2� is H -Lipschitz continuous in X , the function �ε belongs to D1,q(X, γ )

for q ∈ [1,∞). Thus, Proposition 1.9 yields that the second line in (2.9) vanishes as
n goes to infinity. Now∫

X

∣∣DHEn�ε − DH�ε,n,ηn

∣∣2
Hdνε

=
∫
X

n∑
i=1

( ∫
X
Di�ε(�n(x, y))dγ (y)

−
∫
X

(∫
Rn

Di�ε(�n(x, y) − ηn(�nξ))ρ(ξ)dξ

)
dγ (y)

)2
dνε(x)

≤
∫
X

∫
Rn

(∫
X

|DH�ε(�n(x, y)) − DH�ε(�n(x, y) − ηn(�n(ξ))|2Hdγ (y)

)

ρ(ξ)dξdνε(x)

≤ [DH�ε]2H -Lipνε(X)ηn

∫
Rn

|ξ |2ρ(ξ)dξ ≤ [DH�ε]2H -Lipνε(X)ηn, (2.10)

and the right-hand side of (2.10) vanishes as n → +∞.
Now we prove (2.8). Propositions 1.5 and 1.8(iii) guarantee that �ε belong to

D2,p(X, γ ) for any p ∈ [1,∞) and by Proposition 1.9 we immediately get that
D2

HEn�ε converges to D2
H�ε in L2(X, νε;H2) as n → +∞.

In view of this fact, arguing as in (2.9), it remains to prove the existence of a
vanishing sequence (ηn)n∈N such that (D2

HEn�ε − D2
H�ε,n,ηn )n∈N is infinitesimal in

L2(X, νε;H2) as n goes to infinity.
We start by showing that for any n ∈ N the function D2

H�ε,n,η converges to
D2

HEn�ε in L2(X, νε;H2) as η → 0+. To this aim, we can argue as in (2.10) and
deduce that∫

X
|D2

HEn�ε − D2
H�ε,n,η|2H2

dνε

≤
∫
X

∫
Rn

(∫
X

|D2
H�ε(�n(x, y)) − D2

H�ε(�n(x, y) − η(�nξ))|2H2
dγ (y)

)

ρ(ξ)dξdνε(x).
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By Hypotheses 1.3, 1.6 and Proposition 1.8(v), the function D2
H�ε is H -continuous.

This guarantees that the integrand function vanishes as η → 0. Moreover, as D2
H�ε

is γ -essentially bounded in X , we can estimate the integrand function by a constant
independent of η and apply the dominated convergence theorem to conclude.
Now, a diagonal argument yields an infinitesimal sequence satisfying (2.8) (and (2.7),
too). We start by letting η1 be such that

∥∥∥D2
HE1�ε − D2

H�ε,1,η1

∥∥∥
L2(X,νε,H2)

< 1.

Proceeding by induction, for every n ≥ 1, we take ηn+1 in such a way that ηn+1 < ηn

and
∥∥∥D2

HEn+1�ε − D2
H�ε,n+1,ηn+1

∥∥∥
L2(X,νε,H2)

<
1

2n
.

Thus, let ε > 0 and n̄ ∈ N be such that 1< 2n̄−1ε and
∥∥D2

H�ε − D2
HEn�ε

∥∥
L2(X,νε,H2)

< ε
2 for any n ≥ n̄. Then for n ≥ n̄

∥∥∥D2
H�ε − D2

H�ε,n,ηn

∥∥∥
L2(X,νε,H2)

≤
∥∥∥D2

H�ε − D2
HEn�ε

∥∥∥
L2(X,νε,H2)

+
∥∥∥D2

HEn�ε − D2
H�ε,n,ηn

∥∥∥
L2(X,νε,H2)

≤ ε

2
+ ε

2
= ε.

So the proof is complete. �

Now, let f ∈ FC∞
b (X) and ψ ∈ C∞

b (Rn0) for some n0 ∈ N be such that f (x) =
ψ(�n0x) for any x ∈ X . Proposition 2.2 and Lemma 2.3 allow us to consider vε,n,ηn ,
(n ≥ n0), the unique solution of (2.4) with φ replaced by φε,n,ηn and ϕ replaced by ψ .

In order to come back to the infinite-dimensional setting, we define

�ε,n(x) := φε,n,ηn (�nx), Vε,n(x) := vε,n,ηn (�nx), x ∈ X, ε > 0, n ≥ n0

where (ηn)n∈N is the sequence of Lemma2.4.Nowwe consider the operator Lε defined
as

D(Lε) =
{
u ∈ D1,2(X, νε)

∣∣∣∣ there exists vu ∈ L2(X, νε) such that

∫
X

〈DHu, DHϕ〉Hdνε = −
∫
X

vuϕdνε for every ϕ ∈ FC∞
b (�)

}
,

with Lεu := vu if u ∈ D(Lε). We remark that Lε acts on smooth cylindrical functions
ϕ as follows

Lεϕ = Tr(D2
Hϕ) −

+∞∑
i=1

λ−1
i 〈x, ei 〉Diϕ − 〈DH�ε, DHϕ〉H . (2.11)
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REMARK 2.5. Note that formulas (1.3) and (1.16) hold true also with ν, L and U
replacedby νε , Lε and�ε, respectively.The samearguments listed afterHypothesis 1.3
allow us to define the spaces Dk,p(X, νε) for any ε > 0, p ∈ (1,∞) and k = 1, 2.
Moreover, if (Tε(t))t≥0 is the analytic semigroup generated by the operator Lε in
L2(X, νε), then all the properties listed in Proposition 1.10 for T�(t) hold true for
Tε(t), too.

PROPOSITION 2.6. The function Vε,n belongs to FC3
b(X) and solves

λVε,n − LεVε,n = f + 〈
DH�ε − DH�ε,n, DHVε,n

〉
H =: fn, λ > 0. (2.12)

Moreover, fn converges to f in L2(X, νε) and DH fn converges to DH f in
L1(X, νε, H), as n goes to infinity.

Proof. The fact that Vε,n belongs to FC3
b(X) follows from Proposition 2.2 and

Lemma 2.3. In order to obtain (2.12), we recall that vε,n,ηn (ξ) = Vε,n(�nξ) for
any ξ ∈ R

n . So we have

λVε,n(�nξ) − Tr(D2
HVε,n(�nξ)) +

+∞∑
i=1

λ−1
i ξi Di Vε,n(�nξ)

+ 〈
DH�ε,n(�nξ), DHVε,n(�nξ)

〉
H = ψ(ξ).

Now adding and subtracting LεVε,n(�nξ) [see (2.11)] and letting ξ = �nx , we get
(2.12). Observe that by Proposition 2.2 we also get the following estimate

∥∥DHVε,n
∥∥∞ ≤

√
λ1π

λ
‖ f ‖∞ =: K . (2.13)

Using (2.12) and (2.13), we get

∫
X

| fn − f |2dνε =
∫
X

∣∣〈DH�ε − DH�ε,n, DHVε,n
〉∣∣2
Hdνε

≤ K 2
∫
X

∣∣DH�ε − DH�ε,n
∣∣2
Hdνε.

and by (2.7) we obtain that fn converges to f in L2(X, νε).
In order to prove the last part of the claim we first estimate D2

HVε,n . Differentiating
(2.12) along e j , multiplying the result by DjVε,n and then summing up from 1 to n,
yield

λ
∣∣DHVε,n

∣∣2
H −

n∑
j=1

DjVε,n Lε(DjVε,n) +
n∑

i=1

λ−1
i (DiVε,n)

2 + 〈
D2

H�εDHVε,n, DHVε,n
〉
H

= 〈
DH f, DHVε,n

〉
H + 〈

(D2
H�ε − D2

H�ε,n)DHVε,n, DHVε,n
〉
H

+ 〈
D2

HVε,n DHVε,n, DH�ε − DH�ε,n
〉
H .
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Since λi > 0 for every i ∈ N, by the convexity of �ε we get

−
n∑
j=1

DjVε,nLε(DjVε,n) ≤ 〈
DH f, DHVε,n

〉
H

+
〈
D2

HVε,nDHVε,n, DH�ε − DH�ε,n

〉
H

+
〈
(D2

H�ε − D2
H�ε,n)DHVε,n, DHVε,n

〉
H

. (2.14)

Thus, integrating (2.14) with respect to νε and using that∫
X

〈DHu, DHϕ〉Hdνε = −
∫
X

ϕLεudνε, u ∈ D(Lε), ϕ ∈ FC1
b(X),

we deduce∫
X

∣∣∣D2
HVε,n

∣∣∣2
H2

dνε ≤ Kνε(X)‖DH f ‖∞ + σK
∫
X

∣∣∣D2
HVε,n

∣∣∣2
H2

dνε

+ 1

4σ
K
∫
X

∣∣DH�ε − DH�ε,n
∣∣2
Hdνε

+ K 2
(∫

X

∣∣∣D2
H�ε − D2

H�ε,n

∣∣∣2
H2

dνε

)1/2

.

for every σ > 0. Choosing σ = (2K )−1, we have

1

2

∫
X

∣∣∣D2
HVε,n

∣∣∣2
H2

dνε ≤ Kνε(X)‖DH f ‖∞ + 1

2
K 2

∫
X

∣∣D�ε − D�ε,n
∣∣2
Hdνε

+ K 2
(∫

X

∣∣∣D2�ε − D2�ε,n

∣∣∣2
H2

dνε

)1/2

.

Thanks to (2.7) and (2.8), there is a constant C = C(K , ε) > 0 such that
‖D2

HVε,n‖L2(X,νε;H2)
≤ C for every n ∈ N. To complete the proof, we show that

DH fn converges to DH f in L1(X, νε; H). We have∫
X

|DH fn − DH f |dνε =
∫
X

∣∣DH
〈
DH�ε − DH�ε,n, DHVε,n

〉
H

∣∣
H
dνε

≤
∫
X

(∣∣∣(D2
H�ε − D2

H�ε,n)DHVε,n

∣∣∣
H

+
∣∣∣D2

HVε,n(DH�ε − DH�ε,n)

∣∣∣
H

)
dνε

≤ K‖D2
H�ε − D2

H�ε,n‖L2(X,νε;H2)

+ ‖D2
HVε,n‖L2(X,νε;H2)

‖DH�ε − DH�ε,n‖L2(X,νε;H).

So, being ‖D2
HVε,n‖L2(X,νε;H2)

bounded, the claim follows from (2.7) and (2.8). �

Proposition 2.6 and the Lumer–Phillips theorem yield that the resolvent set of Lε

in L2(X, νε) contains the half-line (0,+∞). In addition, from [13, Theorem 5.10],
we get the following approximation result.
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PROPOSITION 2.7. For any ε > 0 and f ∈ L2(X, νε), there exists a sequence
( fn)n∈N in D1,2(X, νε) such that R(λ, Lε) fn belongs to FC3

b(X) for every n ∈ N

and

lim
n→+∞ ‖R(λ, Lε) fn − R(λ, Lε) f ‖D2,2(X,νε)

= 0, λ > 0,

where R(λ, Lε) is the resolvent operator of Lε [see (2.11)]. In addition,

‖R(λ, Lε) f ‖L2(X,νε)
≤ 1

λ
‖ f ‖L2(X,νε)

,

‖DH R(λ, Lε) f ‖L2(X,νε;H) ≤ 1√
λ

‖ f ‖L2(X,νε)
, (2.15)

and

∥∥∥D2
H R(λ, Lε) f

∥∥∥
L2(X,νε;H2)

≤ √
2‖ f ‖L2(X,νε)

. (2.16)

Now, we are ready to prove the main theorem of this section.

THEOREM 2.8. The following statements hold true.

(i) For any ε > 0 and f ∈ L2(X, νε), it holds that

lim
n→+∞ ‖Tε(t) fn − Tε(t) f ‖D2,2(X,νε)

= 0, t > 0,

where ( fn)n∈N is the sequence defined in Proposition 2.7. Furthermore, Tε(t) fn
belongs to FC3

b(X). In addition, if f ∈ D1,2(X, νε) then DH fn converges to
DH f in L1(X, νε; H), as n goes to infinity.

(ii) For any f ∈ L2(�, ν) there exists an infinitesimal sequence (εn)n∈N such that
Tεn (t) f̃ weakly converges to T�(t) f in D2,2(�, ν), where f̃ is any L2-extension
of f to X.

Proof. The analyticity of the semigroups T�(t) and Tε(t) in L2(�, ν) and L2(X, νε),
respectively, and the decay estimates (1.10), (1.11), (2.15) and (2.16) (andRemark 2.5)
allow us to write the following representation formulas

D j
HTε(t) f = 1

2π i

∫
σ

eλt D j
H R(λ, Lε) f dλ, t > 0, f ∈ L2(X, νε), (2.17)

D j
HT�(t) f = 1

2π i

∫
σ ′
eλt D j

H R(λ, L�) f dλ, t > 0, f ∈ L2(�, ν),

for any j = 0, 1, 2, where σ (resp. σ ′) is a smooth (unbounded) curve in C which
leaves on the left a sector containing the spectrum of Lε (resp. L�).
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(i) For any j = 0, 1, 2, we have

∫
X

|D j
HTε(t) fn − D j

HTε(t) f |2jdνε

= 1

4π2

∫
X

∣∣∣∣
∫

σ

eλt
(
D j

H R(λ, Lε) fndλ − D j
H R(λ, Lε) f

)
dλ

∣∣∣∣
2

j
dνε

≤ K (σ, t)

4π2

∫
σ

∫
X
eλt |D j

H R(λ, Lε) fn − D j
H R(λ, Lε) f |2jdνεdλ, (2.18)

where | · | j denotes the norm in R, H, H2, respectively, and K (σ, t) = ∫
σ
eλtdλ.

We conclude observing that, by the dominated convergence theorem and the results in
Proposition 2.7, the right-hand side of (2.18) vanishes as n goes to infinity. The further-
more part is consequence of Proposition 2.7 and the integral representation formula
(2.17). Finally, the last assertion is an immediate consequence of Proposition 2.6.
(ii) Since U (x) ≥ �ε(x) for any x ∈ �, by using (2.15) and (2.16) we immediately
deduce that for any vanishing sequence (εn) and for any f ∈ L2(�, ν) the sequence
(R(λ, Lεn ) f̃ ) is bounded in D2,2(�, ν). A compactness argument yields that there
exists a subsequence of (εn) [still denoted by (εn)] such that R(λ, Lεn ) f̃ weakly
converges to an element u ∈ D2,2(�, ν), as n goes to infinity. From [14, Theorem
5.3], it follows that u = R(λ, L�) f . Now, the proof proceeds as in (i). Indeed, for
any f, g ∈ L2(�, ν) we have

∫
�

(Tεn (t) f̃ )gdν = 1

2π i

∫
�

∫
σ

eλt (R(λ, Lεn ) f̃ )gdλdν

= 1

2π i

∫
σ

eλt
∫

�

(R(λ, Lεn ) f̃ )gdνdλ,

Now, arguing as in (i), by the dominated convergence theorem we deduce

lim
n→+∞

∫
�

(Tεn (t) f̃ )gdν = 1

2π i

∫
�

∫
σ

eλt (R(λ, L�)) f )gdλdν =
∫

�

(T�(t) f )gdν.

In a similar fashion, it is possible to prove that DHTεn (t) f̃ weakly converges to
DHT�(t) f in L2(�, ν; H) and that D2

HTεn (t) f̃ weakly converges to D2
HT�(t) f in

L2(�, ν;H2). �

3. Pointwise gradient estimates

In this section, we prove some pointwise gradient estimates for T�(t). As already
observed in Introduction, these estimates are interesting since, firstly, they represent a
generalisation to what it is known in the literature and, secondly, they allow to deduce
many properties of T�(t) and of the associated invariant measure ν, as the results in
Sect. 4 show.
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THEOREM 3.1. For any p ∈ [1,+∞) and f ∈ D1,p(�, ν)

|DHT�(t) f |pH ≤ e−pλ−1
1 t (T�(t)|DH f |pH ), t > 0, ν-a.e. in �. (3.1)

Proof. First we prove the claim with p = 1 and f ∈ FC∞
b (�). Next we address to

the general case.
Let f ∈ FC∞

b (X) ⊆ D1,2(X, ν)(⊆ D1,2(X, νε), for any ε > 0) and g a bounded,
continuous and positive function. To overcome the lack of regularity of the function
|DHT�(t) f |H at its zeros,we replace it byησ (|DHT�(t) f |2H )whereησ : [0,+∞) →
[0,+∞) is the concave and smooth function defined by ησ (ξ) := √

σ + ξ − √
σ for

any ξ ≥ 0 and σ > 0. Note that ησ is Lipschitz continuous in [0,+∞) and satisfies

(i) ησ (ξ) ≤ √
ξ, (ii) ξη′

σ (ξ) ≥ 1

2
ησ (ξ), (iii) η′

σ (ξ) + 2ξη′′
σ (ξ) ≥ 0, (3.2)

for any ξ ≥ 0 and σ > 0.
To proceed further, we need to control the third-order spatial derivatives of T�(t) f .

Since we are not able to do that directly on T�(t) f , we replace it by the double
indexed approximating sequence (Tεk (t) fn)n,k∈N where the sequences (εk)k∈N and
( fn)n∈N are as in Theorem 2.8. More precisely, εk vanishes as k goes to infinity,
(Tεk (t) fn) ⊆ FC3

b(X) and DH fn converges to DH f in L1(X, νε; H) as n → +∞.
Hence, for any t > 0, τ, s ∈ [0, t] and k, n ∈ N we define

wεk ,n
τ := |DHuεk ,n(τ )|2H , G(s) = Gεk ,n

σ,h (s) :=
∫
X

ησ (w
εk ,n
t−s )Tεk (s)gdνεk ,

where, to simplify the notation, we have set uεk ,n := Tεk (·) fn for any k, n ∈ N. Recall
that νεk = e−�εk γ is the invariant measure associated with Tεk (t) and that by the
definition of the operator Lεk we get∫

X
ψ1Lεkψ2dνεk = −

∫
X
〈DHψ1, DHψ2〉Hdνεk , (3.3)

with ψ1 ∈ D1,2(X, νεk ) and ψ2 ∈ D(Lεk ) = D2,2(X, νεk ) (see [13, Theorem 6.2]
for the characterisation of the domain of D(Lεk )). Theorem 2.8 guarantees that, for
every t ≥ 0, the function uεk ,n(t, ·) belongs to FC3

b(X) and, as consequence, that G
is differentiable in (0, t). Thus, taking into account that

d

ds
ησ (w

εk ,n
t−s ) = η′

σ (w
εk ,n
t−s )

d

ds
|DHuεk ,n(t − s)|2H

= −2η′
σ (w

εk ,n
t−s )〈DHuεk ,n(t − s), DH (Lεk uεk ,n(t − s))〉H

and using (3.3) twice, we deduce

G′(s) = − 2
∫
X

η′
σ (w

εk ,n
t−s )〈DHuεk ,n(t − s), DH (Lεk uεk ,n(t − s))〉HTεk (s)gdνεk

−
∫
X

η′
σ (w

εk ,n
t−s )〈DHTεk (s)g, DHw

εk ,n
t−s 〉Hdνεk
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= − 2
∫
X

η′
σ (w

εk ,n
t−s )〈DHuεk ,n(t − s), DH (Lεk uεk ,n(t − s))〉HTεk (s)gdνεk

−
∫
X
〈DH (η′

σ (w
εk ,n
t−s )Tεk (s)g), DHw

εk ,n
t−s 〉Hdνεk

+
∫
X

η′′
σ (w

εk ,n
t−s )Tεk (s)g|DHw

εk ,n
t−s |2Hdνεk

= − 2
∫
X

η′
σ (w

εk ,n
t−s )〈DHuεk ,n(t − s), DH (Lεk uεk ,n(t − s))〉HTεk (s)gdνεk

+
∫
X

η′
σ (w

εk ,n
t−s )Tεk (s)gLεk (w

εk ,n
t−s )dνεk +

∫
X

η′′
σ (w

εk ,n
t−s )Tεk (s)g|DHw

εk ,n
t−s |2Hdνεk

= 2
∫
X
η′
σ (w

εk ,n
t−s )Tεk (s)g

×
(
1

2
Lεk (w

εk ,n
t−s ) − 〈DHuεk ,n(t − s),DH (Lεk uεk ,n(t − s))〉H

)
dνεk

+
∫
X

η′′
σ (w

εk ,n
t−s )Tεk (s)g|DHw

εk ,n
t−s |2Hdνεk . (3.4)

Now, a straightforward computation and Hypothesis 1.1 yield that

1

2
Lεk (w

εk ,n· ) − 〈DHuεk ,n, DH (Lεk uεk ,n)〉H

= |D2
Huεk ,n|2H2

+
+∞∑
i=1

λ−1
i (Diuεk ,n)

2 + 〈D2
H�εk DHuεk ,n, DHuεk ,n〉H

≥ |D2
Huεk ,n|2H2

+ λ−1
1 |DHuεk ,n|2H + 〈D2

H�εk DHuεk ,n, DHuεk ,n〉H .

In addition, it is easy to prove that

|DHwεk ,n· |2H2
= 4|D2

Huεk ,nDHuεk ,n|2H2
≤ 4|D2

Huεk ,n|2H2
wεk ,n· . (3.5)

Thus, using (3.4) and (3.5), taking into account the convexity of � andU and the fact
that η′′

σ ≤ 0 in (0,+∞) we deduce that

G ′(s) ≥ 2
∫
X
[η′

σ (w
εk ,n
t−s ) + 2η′′

σ (w
εk ,n
t−s )w

εk ,n
t−s ]Tεk (s)g|D2

Huεk ,n(t − s)|2H2
dνεk

+ 2λ−1
1

∫
X

η′
σ (w

εk ,n
t−s )w

εk ,n
t−s Tεk (s)gdνεk

≥ λ−1
1

∫
X

ησ (w
εk ,n
t−s )Tεk (s)gdνεk = λ−1

1 G(s),

where in the last inequality we have used also (3.2)(ii)–(iii). Integrating the previous

estimate with respect to s in (0, t), we get G(0) ≤ e−λ−1
1 tG(t), and letting σ → 0 we

deduce ∫
X

|DHuεk ,n(t)|Hgdνεk ≤ e−λ−1
1 t

∫
X

|DH fn|HTεk (t)gdνεk . (3.6)
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Proposition 1.10(vi), Remark 2.5 and formula (3.6) imply∫
X

|DHuεk ,n(t)|Hgdνεk ≤ e−λ−1
1 t

∫
X
(Tεk (t)|DH fn|H )gdνεk . (3.7)

Since formula (3.7) holds true for every positive, bounded and continuous func-
tion g and the measures νε and ν are equivalent, we get |DHuεk ,n(t)|H ≤
e−λ−1

1 t Tεk (t)|DH fn|H , ν-a.e. in X for every k, n ∈ N and t ≥ 0. From Theorem 2.8,
up to subsequences, we get that |DHuεk ,n(t)|H and Tεk (t)|DH fn|H pointwise con-
verge ν-a.e. in � to |DHT�(t) f |H and T�(t)|DH f |H , respectively, as k, n → +∞.
This yields (3.1) with p = 1 and f ∈ FC∞

b (�). Formula (1.12) allows to extend the
previous estimate to any p ∈ (1,∞).
Finally, let f ∈ D1,p(�, ν) and let (gn)n∈N ⊆ FC∞

b (�) be a sequence converging to
f in D1,p(�, ν) and pointwise ν-a.e. in �. Formula (3.1) with f replaced by gn − gm
and the invariance of ν with respect to T�(t) give that the sequence (DHT�(t)gn)n∈N is
a Cauchy sequence in L p(�, ν; H). Since T�(t)gn converges to T�(t) f in L p(�, ν)

and the operator DH is closable in L p(�, ν), we obtain that DHT�(t)gn converges to
DHT�(t) f in L p(�, ν; H). Writing (3.1) with f replaced by gn and letting n → +∞
yield the claim in the general case. �

COROLLARY 3.2. For any p ∈ (1,+∞) and f ∈ D1,p(X, ν), it holds that

lim
t→0+ ‖DHT�(t) f ‖L p(�,ν;H) = ‖DH f ‖L p(�,ν;H).

Proof. By the strong continuity of T�(t) and the lower semicontinuity of the L p-norm
of the gradient, we have

‖DH f ‖L p(�,ν;H) ≤ lim inf
t→0+ ‖DHT�(t) f ‖L p(�,ν;H).

Hence, by (3.1)
∫

�

|DH f |pHdν ≤ lim inf
t→0+

∫
�

|DHT�(t) f |pHdν ≤ lim sup
t→0+

∫
�

|DHT�(t) f |pHdν

≤ lim
t→0+ e−pλ−1

1 t
∫

�

T�(t)|DH f |pHdν =
∫

�

|DH f |pHdν

and the proof is complete. �

Now we prove a pointwise gradient-function estimate for T�(t) f whenever f ∈
L p(�, ν) and p ∈ (1,∞). The proof is similar to [29, Theorem 6.2.2]; however, it
cannot be directly adapted to T�(t) f in view of the possible lack of regularity of its
derivatives. To overcome this difficulty and the additional complications due to the
infinite-dimensional setting, we use again the approximants in Theorem 2.8.

THEOREM 3.3. For p ∈ (1,+∞), f ∈ L p(�, ν) and t > 0 there exists a positive
constant K p, depending only on p, such that

|DHT�(t) f |pH ≤ Kpt
− p

2 T�(t)| f |p, ν-a.e. in �. (3.8)
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As a consequence, we get

‖DHT�(t) f ‖L p(�,ν;H) ≤ K
1
p
p t

− 1
2 ‖ f ‖L p(�,ν). (3.9)

Proof. We remark that (3.9) is an easy consequence of (3.8), so it is enough to prove
(3.8). We divide the proof in two steps. In the first step, we prove that if f ∈ FC∞

b (X),
then for every ε, s > 0 and p ∈ (1, 2] there exists Kp > 0, depending only on p, such
that

|DHTε(s) fn|pH ≤ Kps
− p

2 Tε(s)| fn|p, νε-a.e. in X, (3.10)

(see Theorem 2.8). In the second step, we prove (3.8) for any p ∈ (1,∞) and f ∈
L p(�, ν).

Step 1 Let us differentiate the function

Gδ,n(t) = Tε(s − t)

((
|Tε(t) fn|2 + δ

)p/2 − δ p/2
)

, 0 < t < s,

where ε, δ > 0 and p ∈ (1, 2]. Setting φε,δ,n(t) := |Tε(t) fn|2 + δ, we have

G ′
δ,n(t) = − LεTε(s − t)

((
φε,δ,n(t)

)p/2 − δ p/2
)

+ Tε(s − t)
(
p
(
φε,δ,n(t)

)(p−2)/2
(Tε(t) fn)(LεTε(t) fn)

)

= Tε(s − t)
[

− Lε

((
φε,δ,n(t)

)p/2 − δ p/2
)

+ p(Tε(t) fn)(LεTε(t) fn)
(
φε,δ,n(t)

)(p−2)/2
]
. (3.11)

By Theorem 2.8, the function
(
φε,δ,n(t)

)p/2 − δ p/2 belongs to FC3
b(X), hence from

the definition of Lε (see (2.11)) we get

Lε

((
φε,δ,n(t)

)p/2 − δ p/2
)

= p
(
φε,δ,n(t)

)(p−2)/2
(Tε(t) fn)(LεTε(t) fn)

+ p
(
φε,δ,n(t)

)(p−2)/2|DHTε(t) fn|2H
+ p(p − 2)

(
φε,δ,n(t)

)(p−4)/2
(Tε(t) fn)

2|DHTε(t) fn|2H .

(3.12)

Combining (3.11) and (3.12), we get

G ′
δ,n(t) = − pTε(s − t)

((
φε,δ,n(t)

)(p−2)/2|DHTε(t) fn|2H
)

+ p(2 − p)Tε(s − t)
((

φε,δ,n(t)
)(p−4)/2

(Tε(t) fn)
2|DHTε(t) fn|2H

)
.

Since the semigroup (Tε(t))t≥0 is positivity preserving (see Proposition 1.10(ii) and
Remark 2.5), we get

G ′
δ,n(t) ≤ p(1 − p)Tε(s − t)

((
φε,δ,n(t)

)(p−2)/2|DHTε(t) fn|2H
)
. (3.13)

Author's personal copy



Gradient estimates on infinite dimensional convex domains

Now integrating (3.13) from 0 to s with respect to t , we get

Tε(s)

((
| fn|2 + δ

)p/2 − δ p/2
)

−
(
|Tε(s) fn|2 + δ

)p/2 + δ p/2

≤ p(1 − p)
∫ s

0
Tε(s − t)

((
|Tε(t) fn|2 + δ

)(p−2)/2|DHTε(t) fn|2H
)
dt.

Using again that (Tε(t))t≥0 is positivity preserving, from the previous inequality we
get

p(p−1)
∫ s

0
Tε(s− t)

((
|Tε(t) fn |2 + δ

)(p−2)/2|DHTε(t) fn |2H
)
dt ≤

(
|Tε(s) fn |2 + δ

)p/2
.

(3.14)
By the semigroup property, (3.1), (1.12), (1.13), Remark 2.5 and the Young inequality,
we get for every η > 0

|DHTε(s) fn |pH = |DHTε(s − t)Tε(t) fn |pH
≤ e−pλ−1

1 (s−t)Tε(s − t)|DHTε(t) fn |pH
≤ e−pλ−1

1 (s−t)Tε(s − t)

((
φε,δ,n(t)

)− p(2−p)
4 |DHTε(t) fn |pH

(
φε,δ,n(t)

) p(2−p)
4

)

≤ e−pλ−1
1 (s−t)

(
Tε(s − t)

((
φε,δ,n(t)

) p
2 −1|DHTε(t) fn |2H

))p/2

·
(
Tε(s − t)

(
φε,δ,n(t)

) p
2
)1− p

2

≤ e−pλ−1
1 (s−t) p

2
η2/pTε(s − t)

((
φε,δ,n(t)

) p
2 −1|DHTε(t) fn |2H

)

+ e−pλ−1
1 (s−t)

(
1 − p

2

)
η2/(p−2)Tε(s − t)

(
|Tε(t) fn |p + δ p/2

)

≤ e−pλ−1
1 (s−t) p

2
η2/pTε(s − t)

((
φε,δ,n(t)

) p
2 −1|DHTε(t) fn |2H

)

+ e−pλ−1
1 (s−t)

(
1 − p

2

)
η2/(p−2)Tε(s − t)

(
Tε(t)| fn |p + δ p/2

)
(3.15)

Multiplying (3.15) by epλ
−1
1 (s−t), integrating from 0 to s with respect to t , and recalling

(3.14) we get

epλ
−1
1 (s−t) − 1

pλ−1
1

|DHTε(s) fn|pH ≤ η2/p

2(p − 1)

(
|Tε(s) fn|2 + δ

)p/2

+
(
1 − p

2

)
η2/(p−2)s

(
Tε(s)| fn|p + δ p/2

)
.

Letting δ → 0+ and applying (1.12), we obtain

epλ
−1
1 (s−t) − 1

pλ−1
1

|DHTε(s) fn|pH ≤
(

η2/p

2(p − 1)
+
(
1 − p

2

)
η2/(p−2)s

)
Tε(s)| fn|p
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whence

epλ
−1
1 (s−t) − 1

pλ−1
1

|DHTε(s) fn|pH ≤ min
η>0

{
η2/p

2(p − 1)
+
(
1 − p

2

)
η2/(p−2)s

}
Tε(s)| fn|p

=: cps1− p
2 Tε(s)| fn|p.

for some positive constant cp depending only on p. Setting t = 0, and recalling that

the function s/(epλ
−1
1 s − 1) is bounded from above, we get (3.10).

Step 2 If p ∈ (2,∞) it suffices to write |DHTε(s) fn|pH = (|DHTε(s) fn|2H )p/2 and to
apply (3.10) with p = 2. Then, using (1.13) together with Remark 2.5, we get (3.10)
for every p ∈ (1,∞). Due to the properties listed in Theorem 2.8, letting n → +∞
and ε → 0, up to a subsequence we get (3.8) for every f ∈ FC∞

b (X). Moreover,
integrating it on � and using that ν is the invariant measure associated with T�(t), we
get

∫
�

|DHT�(s) f |pHdν ≤ Kps
− p

2

∫
�

| f |pdν. (3.16)

for any f ∈ FC∞
b (�) and p ∈ (1,∞). Finally, we extend estimate (3.16) to any

f ∈ L p(�, ν) arguing by approximation as in the last part of the proof of Theorem3.1.
To this aim, let f ∈ L p(�, ν) and let (gn)n∈N be a sequence of functions in FC∞

b (�)

converging to f in L p(�, ν). Then, for every n, k ∈ N

∫
�

|DHT�(s)gn − DHT�(s)gk |pHdν ≤ Kps
− p

2

∫
�

|gn − gk |pdν.

So the sequence (DHT�(s)gn)n∈N is a Cauchy sequence in L p(�, ν; H). The clos-
ability of the operator DH : FC∞

b (�) → L p(�, ν) in L p(�, ν) and the fact
that for any s > 0 the sequence (T�(s)gn)n∈N converges to T�(s) f we get that
limn→+∞ DHT�(s)gn = DHT�(s) f in L p(�, ν; H). Hence, writing (3.16) with f
replaced by gn and letting n → +∞, we conclude. �

The pointwise gradient estimate (3.1) implies that ‖DHT�(t) f ‖L p(�,ν;H) vanishes
as t → +∞ and f ∈ D1,p(�, ν). Actually using (3.8), we get the same result when
f belongs to L p(�, ν).

COROLLARY 3.4. Let p ∈ (1,∞) and t ≥ 1. For every f ∈ L p(�, ν)

‖DHT�(t) f ‖L p(�,ν;H) ≤ Cpe
−λ−1

1 t‖ f ‖L p(�,ν),

where Cp = K 1/p
p eλ−1

1 and Kp is the positive constant in Theorem 3.3.

Proof. By (3.1), (3.9), the semigroup property and the fact that ν is invariant with
respect to T�(t) we get
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∫
�

|DHT�(t) f |pHdν =
∫

�

|DHT�(t − 1)T�(1) f |pHdν

≤ e−pλ−1
1 (t−1)

∫
�

T�(t − 1)|DHT�(1) f |pHdν

≤ e−pλ−1
1 (t−1)

∫
�

|DHT�(1) f |pHdν

≤ Kpe
−pλ−1

1 (t−1)
∫

�

T�(1)| f |pdν

≤ Kpe
−pλ−1

1 (t−1)
∫

�

| f |pdν,

for any t ≥ 1, f ∈ L p(�, ν). This concludes the proof. �

4. Logarithmic Sobolev inequality and other consequences

Logarithmic Sobolev inequalities are important tools in the study of Gaussian
Sobolev spaces since they represent the counterpart of the Sobolev embeddings which
in general fail to hold when the Lebesgue measure is replaced by other measures, as
for example the Gaussian one. In infinite dimension, such inequalities are known for
the Gaussian measure on the whole space (see [11, Theorem 5.5.1]) and on convex
domains (see [12, Proposition 3.5]). In the weighted Gaussian case, the inequality is
known in the whole space (see [21, Proposition 11.2.19]), for Fréchet differentiable
functions. In this section, we use the pointwise gradient estimates (3.1) and (3.8) to
prove logarithmic Sobolev inequalities for weighted Gaussian measures on convex
domains generalising all the above results. We also collect some consequences of the
logarithmic Sobolev inequality (4.4). To simplify the notation we set, if f ∈ L1(X, νε)

and g ∈ L1(X, ν)

mε( f ) := 1

νε(X)

∫
X
f dνε, m�(g) := 1

ν(�)

∫
�

gdν. (4.1)

First of all, we study the asymptotic behaviour of the semigroup (Tε(t))t≥0.

LEMMA 4.1. For any ε > 0 and f ∈ FC1
b(X)

lim
t→+∞ Tε(t) f (x) = mε( f ), νε-a.e. x ∈ X. (4.2)

In addition, if f ≤ 1 and has a positive infimum, then

lim
t→+∞

∫
X
(Tε(t) f ) log(Tε(t) f )dνε =

(∫
X
f dνε

)
log (mε( f ))

= νε(X)mε( f ) log (mε( f )). (4.3)
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Proof. First of all note that since the function (0, 1] � x �→ x | log x | has a maximum,
formula (4.3) can be obtained by (4.2) and the dominated convergence theorem. The
proof of (4.2) is divided in three steps.

Step 1Let us show that there exists a sequence (tk)k∈N ⊆ [0,+∞), such that tk → +∞
as k → +∞ and Tε(tk) f → gε weakly in L2(X, νε) for some gε ∈ L2(X, νε), as k
goes to infinity. To do this, it is sufficient to consider a sequence (tn)n∈N tending to
+∞ as n → +∞ and to recall that Tε(tn) is a contraction in L2(X, νε).

Step 2 Here we claim that gε is H -invariant, i.e. gε(x + h) = gε(x) for γ -a.e. x ∈ X
and for every h ∈ H . For any ϕ ∈ Cb(X), we have∣∣∣∣

∫
X

[
gε(x + h) − gε(x)

]
ϕ(x)dνε(x)

∣∣∣∣
≤
∣∣∣∣
∫
X

[
gε(x + h) − (Tε(tk) f )(x + h)

]
ϕ(x)dνε(x)

∣∣∣∣ (I1)

+
∣∣∣∣
∫
X

[
(Tε(tk) f )(x + h) − (Tε(tk) fn)(x + h)

]
ϕ(x)dνε(x)

∣∣∣∣ (I2)

+
∣∣∣∣
∫
X

[
(Tε(tk) fn)(x + h) − (Tε(tk) fn)(x)

]
ϕ(x)dνε(x)

∣∣∣∣ (I3)

+
∣∣∣∣
∫
X

[
(Tε(tk) fn)(x) − (Tε(tk) f )(x)

]
ϕ(x)dνε(x)

∣∣∣∣ (I4)

+
∣∣∣∣
∫
X

[
(Tε(tk) f )(x) − gε(x)

]
ϕ(x)dνε(x)

∣∣∣∣ (I5)

where ( fn)n∈N is the sequence in Theorem 2.8. The regularity of Tε(tk) fn and (3.7)
allow us to estimate (I3) as follows

(I3) =
∣∣∣∣
∫
X

(∫ 1

0
〈DHTε(tk) fn(x + sh), h〉Hds

)
ϕ(x)dνε(x)

∣∣∣∣
≤ e−λ−1

1 tk |h|H‖ϕ‖∞
∫ 1

0

∫
X
(Tε(tk)|DH fn|H )(x + sh)dνε(x)ds

≤ e−λ−1
1 tk |h|H‖ϕ‖∞

∫ 1

0

∫
X

|DH fn(x + sh)|Hdνε(x)ds

≤ e−λ−1
1 tk |h|H‖ϕ‖∞

(∫ 1

0

∫
X

|DH f (x + sh)|Hdνε(x)ds + M
)

≤ e−λ−1
1 tk |h|H‖ϕ‖∞(νε(X)‖DH f ‖∞ + M),

for some positive M , where in the second to last line we took into account that
‖DH fn‖L1(X,νε;H) converges to ‖DH f ‖L1(X,νε;H) as n → +∞. Now, for every η > 0
we can choose k large enough such that (I1) + (I3) + (I5) ≤ η/2 and n such that
(I2) + (I4) ≤ η/2. This proves the claim.

Step 3 In this step, we complete the proof. By [11, Theorem 2.5.2], a H -invariant
function coincides γ -a.e. in X (hence ν-a.e. in X as well) with a constant function,
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i.e. there exists c ∈ R such that gε(x) = c for γ -a.e. x ∈ X . We get

c = 1

νε(X)

∫
X
cdνε = 1

νε(X)
lim

k→+∞

∫
X
Tε(tk) f dνε = mε( f )

where in the last equality we used the invariance of νε with respect to Tε(t). Since our
arguments are independent of the sequence (tk)k∈N, we get (4.2). �

REMARK 4.2. In view of the method used in the proof, the results in Lemma 4.1
cannot be easily extended to the semigroup T�(t). However, as we prove in Proposi-
tion 4.7, the asymptotic behaviour of T�(t) as t → +∞ can be obtained also with a
precise decay estimate.

Now we are ready to prove that the measure ν satisfies a logarithmic Sobolev
inequality in �. The idea of the proof is to apply the Deuschel and Stroock method
(see [22]) to the measure νε and then taking the limit as ε → 0.

PROPOSITION 4.3. For p ∈ [1,∞) and f ∈ FC1
b(�), the following inequality

holds:
∫

�

| f |p log | f |pdν ≤ ν(�)m�(| f |p) log (m�(| f |p))

+ p2λ1
2

∫
�

| f |p−2|DH f |2Hχ{ f �=0}dν. (4.4)

Proof. We split the proof in two parts. In the first part, we prove the claim when f
satisfies some additional hypotheses, and in the second part we show (4.4) in its full
generality.

Step 1Here we prove (4.4) with ν and� replaced by νε and X , and f in FC1
b(X) such

that there exists a positive constant c with c ≤ f ≤ 1. To this aim, we consider the
function

Fε(t) =
∫
X
(Tε(t) f

p) log(Tε(t) f
p)dνε, t ≥ 0.

which is well defined thanks to Proposition 1.10(ii)–(iii) and Remark 2.5.
Our aim is to find a bound from below for the derivative of Fε. Indeed, we show

that F ′
ε(t) ≥ c1e−c2t

∫
X f p−2|DH f |2Hdνε, for some positive constants c1 and c2. We

start by observing that

F ′
ε(t) =

∫
X
(LεTε(t) f

p) log(Tε(t) f
p)dνε +

∫
X
LεTε(t) f

pdνε

= −
∫
X

〈
DHTε(t) f

p, DH log(Tε(t) f
p)
〉
Hdνε

= −
∫
X

|DHTε(t) f p|2H
Tε(t) f p

dνε
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where we used that
∫
X Lεϕdνε = 0 for any ϕ ∈ D(Lε), the definition of Lε and the

integration by parts formula. By (1.13) and Remark 2.5, we have Tε(t)|DH f p|H ≤(
Tε(t)

|DH f p |2H
f p

)1/2

(Tε(t) f p)
1/2. Hence, by using (3.1) we deduce

F ′
ε(t) ≥ −e−2λ−1

1 t
∫
X

(Tε(t)|DH f p|H )2

Tε(t) f p
dνε ≥ −e−2λ−1

1 t
∫
X
Tε(t)

(
|DH f p|2H

f p

)
dνε

= −e−2λ−1
1 t p2

∫
X
f p−2|DH f |2Hdνε.

Integrating from 0 to +∞ and using (4.3), we get

∫
X
f p log f pdνε ≤

(∫
X
f pdνε

)
log

(
mε( f

p)
)+ p2λ1

2

∫
X
f p−2|DH f |2Hdνε.

Finally letting ε → 0 and recalling that νε weakly∗ converges to χ�ν, we get the
claim.

Step 2 Now, for any f ∈ FC1
b(�) and n ∈ N, let consider the sequence ( fn)n∈N

defined by fn = (1 + ‖ f ‖∞)−1
√

f 2 + n−1. Step 1 yields that

∫
�

f pn log( f pn )dν ≤
(∫

�

f pn dν

)
log

(
m�( f pn )

)+ p2λ1
2

∫
�

f p−2
n |DH fn|2Hdν.

(4.5)
Observing that there exists a positive constant cn,p such that cn,p ≤ f pn ≤ 1 for any
n ∈ N and using the fact that the function x �→ x |log x | is bounded in (0, 1], by the
dominated convergence theorem the left-hand side of (4.5) converges to

(1 + ‖ f ‖∞)−p
∫

�

| f |p log [(1 + ‖ f ‖∞)−p| f |p]dν,

and the first term in the right-hand side of (4.5) converges to
(

(1 + ‖ f ‖∞)−p
∫

�

| f |pdν
)
log

(
m�(| f |p)

(1 + ‖ f ‖∞)p

)
.

Since |DH fn|H ≤ (1 + ‖ f ‖∞)−1|DH f |H for every n ∈ N, by the monotone con-
vergence theorem if p ∈ [1, 2), and by Lebesgue’s dominated convergence theorem
otherwise, we obtain

lim
n→+∞

∫
�

fn
p−2|DH fn|2Hdν = (1 + ‖ f ‖∞)−p

∫
�

| f |p−2|DH f |2Hχ{ f �=0}dν.

So the statement follows letting n to infinity in (4.5). �

As it is well known the logarithmic Sobolev inequality has several interesting con-
sequences. Among them, we point out the following, related to our setting: once a
log-Sobolev inequality with respect to the measure ν has been proved, a summability
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improving property of T�(t) follows. Indeed, we are able to show that T�(t) maps
Lq(�, ν) into L p(�, ν) for some p > q. The technique used to prove this property
is quite standard. However, for the sake of completeness, we provide a proof of it.

PROPOSITION 4.4. Let t > 0 and p, q ∈ (1,+∞) be such that p ≤ (q −
1)e2λ

−1
1 t + 1. Then, the operator T�(t) maps Lq(�, ν) in L p(�, ν) and

‖T�(t) f ‖L p(�,ν) ≤ [ν(�)] 1
p − 1

q ‖ f ‖Lq (�,ν), t > 0, f ∈ Lq(�, ν). (4.6)

Proof. Let f ∈ FC1
b(�), with a positive global infimum, and let p(t) := (q −

1)e2λ
−1
1 t + 1. For s ≥ 0, we set

G(s) :=
(

1

ν(�)

∫
�

(T�(s) f )p(s)dν

)1/p(s)

=:
(

1

ν(�)
F(s)

)1/p(s)

and we prove that G is a non-increasing function in (0,+∞). Before starting we want
to recall that T�(s) maps FC1

b(�) into D1,2(�, ν) ∩ L∞(�, ν), due to the definition
of the operator T�(s) and Proposition 1.10(ii). This guarantees that all the integrals
we are going to write are well defined and finite. So, using (1.9), we get

F ′(s) = p′(s)
∫

�

(T�(s) f )p(s) log(T�(s) f )dν − p(s)(p(s) − 1)

×
∫

�

(T�(s) f )p(s)−2|DHT�(s) f |2Hdν. (4.7)

Now we set u(s) := T�(s) f , and we differentiate the function G. Taking into account
(4.7), we get

G ′ = G

(
− p′

p2
log(m�(u p)) + 1

p
∫
�
u pdν

×
(
p′
∫

�

u p log udν − p(p − 1)
∫

�

u p−2|DHu|2Hdν
))

= G
p′

p2
∫
�
u pdν

(
−
(∫

�

u pdν

)
log

(
m�(u p)

)+
∫

�

u p log u pdν

)

−G(p − 1)∫
�
u pdν

∫
�

u p−2|DHu|2Hdν.

Since p′(s) = 2λ−1
1 (q − 1)e2λ

−1
1 s ≥ 0, we can apply (4.4) to get

G′(s) ≤ (G(s))1−p(s)
(
p′(s)λ1

2
− (p(s) − 1)

)∫
�

(T�(s) f )p(s)−2|DHT�(s) f |2Hdν = 0.

This proves that G is a decreasing function, which means that G(0) ≥ G(t) for every
t > 0, i.e.

‖T�(t) f ‖L p(t)(�,ν) ≤ [ν(�)] 1
p(t) − 1

q ‖ f ‖Lq (�,ν).
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So we get (4.6) for a function f ∈ FC1
b(�) with positive global infimum. Indeed, if

p < p(t)

‖T�(t) f ‖L p(�,ν) ≤ [ν(�)] p(t)−p
p(t)p ‖T�(t) f ‖L p(t)(�,ν)

≤ [ν(�)] p(t)−p
p(t)p [ν(�)] 1

p(t) − 1
q ‖ f ‖Lq (�,ν) = [ν(�)] 1

p − 1
q ‖ f ‖Lq (�,ν).

Arguing as in the second step of the proof of Proposition 4.3, we obtain (4.6) for a
general f ∈ FC1

b(�). The density of the space FC1
b(�) in Lq(�, ν) allows us to

conclude the proof. �

From the logarithmic Sobolev inequality follows the asymptotic behaviour of
T�(t) f as t goes to infinity, whenever f belongs to L2(�, ν). This can be done
thanks to the Poincaré inequality.

PROPOSITION 4.5. Let p ∈ [2,∞) and f ∈ D1,p(�, ν). Then

‖ f − m�( f )‖L p(�,ν) ≤ K‖DH f ‖L p(�,ν;H), (4.8)

where K is a positive constant depending only on p, λ1 and ν(�). Furthermore, if
p = 2, then K = λ

1/2
1 .

Proof. We divide the proof in two steps. In the first step, we prove (4.8) for p = 2,
while in the second step we prove the claim for p ∈ (2,∞).

Step 1We use an idea of [38] (see also [4, Theorem 5.2]). Let f ∈ FC1
b(�), η > 0 and

consider the function fη = 1+ η( f −m�( f )). Recalling that (1+ ξ)2 log(1+ ξ)2 =
2ξ + 3ξ2 + o(ξ2) as ξ → 0, we get
∫

�

f 2η log f 2η dν −
(∫

�

f 2η dν

)
log

(
m�( f 2η )

)
= 2η2

∫
�

( f − m�( f ))2dν + o(η2).

By (4.4), with p = 2 and f replaced by fη, we get

2η2
∫

�

( f − m�( f ))2dν + o(η2) ≤ 2λ1

∫
�

∣∣DH fη
∣∣2
Hdν = 2λ1η

2
∫

�

|DH f |2Hdν.

Letting η → 0+, we get (4.8) for a function f belonging to FC1
b(�). Then by the

density of FC1
b(�) in D1,2(�, ν), we get

∫
�

( f − m�( f ))2dν ≤ λ1

∫
�

|DH f |2Hdν, f ∈ D1,2(�, ν). (4.9)

Step 2Now let assume that p ∈ (2,∞). If g ∈ D1,p(�, ν), then |g|p/2 ∈ D1,2(�, ν).
This can be seen by approximating g by a sequence of functions in FC1

b(�), which is
dense in D1,p(�, ν). Applying (4.9), with f replaced by |g|p/2, we get

∫
�

|g|pdν − 1

ν(�)

(∫
�

|g|p/2dν
)2

≤ λ1 p2

4

∫
�

|g|p−2|DHg|2Hdν (4.10)
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Applying the Young inequality to the right-hand side of (4.10), for every η > 0 we
have ∫

�

|g|pdν ≤ λ1 p(p − 2)ηp/(p−2)

4

∫
�

|g|pdν

+ λ1 p

2ηp/2

∫
�

|DHg|pHdν + 1

ν(�)

(∫
�

|g|p/2dν
)2

.

Choosing η > 0 such that ηp/(p−2) ≤ 4/(λ1 p(p− 2)) and K (p, η) := 1− (λ1 p(p−
2)ηp/(p−2))/4, we deduce

K (p, η)

∫
�

|g|pdν ≤ λ1 p

2ηp/2

∫
�

|DHg|pHdν + 1

ν(�)

(∫
�

|g|p/2dν
)2

. (4.11)

Now we proceed by induction. If p ∈ (2, 4), then∫
�

|g|p/2dν ≤
(∫

�

|g|2dν
)p/4

[ν(�)](4−p)/4

and so by (4.11), for every p ∈ (2, 4]
K (p, η)

∫
�

|g|pdν ≤ λ1 p

2ηp/2

∫
�

|DHg|pHdν + 1

[ν(�)](2−p)/2

(∫
�

|g|2dν
)p/2

.

If we let g = f − m�( f ) for a function f ∈ D1,p(�, ν), we get

K (p, η)

∫
�

| f − m�( f )|pdν

≤ λ1 p

2ηp/2

∫
�

|DH f |pHdν + 1

[ν(�)](2−p)/2

(∫
�

| f − m�( f )|2dν
)p/2

.

By (4.9), we get

K (p, η)

∫
�

| f − m�( f )|pdν

≤ λ1 p

2ηp/2

∫
�

|DH f |pHdν + λ
p/2
1

[ν(�)](p2−4)/(2p)

∫
�

|DH f |pdν, (4.12)

which proves the statement when p ∈ (2, 4]. Now let p ∈ (4, 8]. For any f ∈
D1,p(�, ν) we apply (4.11) to the function g = f −m�( f ), and since p/2 ∈ (2, 4],
we can use (4.12) with p/2 instead of p, to get the thesis for p ∈ (4, 8]. Iterating the
above procedure, we conclude the proof. �

A standard consequence of the Poincaré inequality is the convergence of T�(t) f to
m�( f ) (see (4.1)) in L2(�, ν), as the following exponential decay estimate shows.

COROLLARY 4.6. If f ∈ L2(�, ν), then

‖T�(t) f − m�( f )‖L2(�,ν) ≤ e−λ−1
1 t‖ f ‖L2(�,ν). (4.13)

As a consequence for every f ∈ L2(�, ν), it holds

lim
t→+∞ T�(t) f = m�( f ), ν-a.e. in �.
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Proof. Let G(s) = ∫
� (T�(s) f − m�( f ))2dν. Using (1.9) and (4.8), we get

G ′(s) = d

ds

∫
�

(T�(s) f − m�( f ))2dν = 2
∫

�

(T�(s) f )(L�T�(s) f )dν

= −2
∫

�

|DHT�(s) f |2Hdν ≤ − 2

λ1

∫
�

(T�(s) f − m�(T�(s) f ))2dν

= − 2

λ1

∫
�

(T�(s) f − m�( f ))2dν = − 2

λ1
G(s).

Thus, G(t) ≤ e−2λ−1
1 tG(0), which means∫

�

(T�(t) f − m�( f ))2dν

≤ e−2λ−1
1 t

∫
�

( f − m�( f ))2dν

= e−2λ−1
1 t

[∫
�

f 2dν − 2
1

ν(�)

(∫
�

f dν

)2

+ 1

ν(�)

(∫
�

f dν

)2
]

≤ e−2λ−1
1 t

∫
�

f 2dν.

This concludes the proof. �

Once the Poincaré inequality, with p = 2, the gradient estimate (3.9) and a hyper-
contractivity type estimate like (4.6) are available, we can establish a relationship
between the asymptotic behaviour of T�(t) f and that of |DHT�(t) f |H as t → +∞,
whenever f ∈ L p(�, ν), p ∈ (1,∞). More precisely, arguing as in [4, Theorem
5.3] we can prove the following result, that extends the decay estimate (4.13) to any
p ∈ (1,∞). We skip the proof due to its length and the fact that it does not present
any substantial difference with the one contained in [4, Theorem 5.3]

PROPOSITION 4.7. For any p ∈ (1,∞), consider the sets

Ap =
{
ω ∈ R

∣∣∣ ∃Mp,ω > 0 s.t. ‖T�(t) f − m�( f )‖L p(�,ν) ≤ Mp,ωe
ωt‖ f ‖L p(�,ν),

t > 0, f ∈ L p(�, ν)
}
;

Bp =
{
ω ∈ R

∣∣∣ ∃Np,ω > 0 s.t. ‖DHT�(t) f ‖L p(�,ν;H) ≤ Np,ωe
ωt‖ f ‖L p(�,ν),

t > 1, f ∈ L p(�, ν)
}
.

Then the sets Ap and Bp are independent of p and they coincide. In particular, by
Corollary 3.4, for any p ∈ (1,∞) there exists a positive constant K p,λ1 , depending
only on p and λ1, such that for every t > 0 and f ∈ L p(�, ν), the inequality

‖T�(t) f − m�( f )‖L p(�,ν) ≤ Kp,λ1e
−λ−1

1 t‖ f ‖L p(�,ν)

holds. As a consequence, for every p ∈ (1,∞) and f ∈ L p(�, ν)

lim
t→+∞ T�(t) f = m�( f ), ν-a.e. in �.
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