Evolution equations of p-Laplace type with absorption or source
terms and measure data
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Abstract
Let Q be a bounded domain of RY, and Q = Q x (0,T). We consider problems of the type
{ ur — Apu £ G(u) = in Q,

u=20 on 09 x (0,7T),
u(0) = uo in Q,

where A, is the p-Laplacian, p is a bounded Radon measure, ug € L*(2), and £G(u) is an absorption
or a source term. In the model case G(u) = % [u|? ' u (¢ > p — 1), or G has an exponential type. We
prove the existence of renormalized solutions for any measure p in the subcritical case, and give sufficient
conditions for existence in the general case, when p is good in time and satisfies suitable capacitary
conditions.

1 Introduction

Let © be a bounded domain of R, and Q = Q x (0,T), T > 0. We consider the quasilinear parabolic
problem

up — A(u) £G(u) = p in Q,
u=0 on 002 x (0,T), (1.1)
u(0) = ug in ©,

where 4 is a bounded Radon measure on @, ug € L*(). We assume that A(u) =div(A(x, Vu)) and A is a
Carathéodory function on ©Q x RY, such that, for a.e. z € , and any &, € RY,

Az, €)= A€, A, O < Ao f¢fP™Y, A1, Az >0, (1.2)

(A(z,§) — Az, (). (€ =€) > 0if £ # ¢, (1.3)
for p > 1; and G(u) = G(x,t,u), where (x,t,r) — G(x,t,r) is a Caratheodory function on @ x R with
G(z,t,r)r >0, fora.e.(zx,t) €@ andanyreR. (1.4)

The model problem is relative to the p-Laplace operator: A(u) = Ayu = div(|Vu|P~2Vu), and G has a
power-type G(u) = + |u|q*1 u (g > p—1), or an exponential type. Our aim is to give sufficient conditions on
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the measure p in terms of capacity to obtain existence results. We denote by Mp(Q2) and M;(Q) the sets of
bounded Radon measures on €2 and @ respectively.

Next we make a brief survey of the main works on problem (1.1). First we consider the case of an
absorption term:
w— AW +Gw) =p  inQ,
u=0 on 99 x (0,7, (1.5)
u(0) = ug in Q.

For p = 2, A(u) = Au and G(u) = |u|9"tu (¢ > 1), the pionnier results concern the case u = 0 and ug is a
Dirac mass in €2, see [12]: existence holds if and only if ¢ < (N +2)/N. Then optimal results are given in [3],
for any p € My(Q) and ug € M;(92). Here two capacities are involved: the elliptic Bessel capacity Capg_
defined, for o > 0,5 > 1 and any Borel set E C RV, by

Capg,, (E) = inf{[|¢]

iS(RN)Z(,OELS(RN),gOZO Go*p>1on E},

where G, is the Bessel kernel of order a; and the capacity Caps, 1, s defined, for any compact set K C RN+
by
Capy ; (K) = inf {HQOH;VEJ(RNH) cp € S(RVNTY), > 1 on a neighborhood of K} ,

and extended classically to Borel sets, where

pe@v+yy @l s @very + Vel || L mn+1) + Z Pasa; || Lo w41y

4,j=1,2,...,N

||¢||W§’1(RN+1) =[]

In [3], Baras and Pierre proved that there exists a solution if and only if p does not charge the sets of
Caps 4 4 -capacity zero and ug does not charge the sets of Capg, 1 -capacity zero.
1,2 2.7t
The case where G has an exponential type was initiated by [17], and studied in the framework of Orlicz
spaces in [29, 19], and very recently by [24] in the context of Wolff parabolic potentials.

For p # 2, most of the contributions are relative to the case G(u) = |u|?"tu, u = 0, with  bounded, or
2 = RY. The case where ug is a Dirac mass in  was studied in [18, 20] when p > 2, and [13] when p < 2.
Existence and uniqueness hold in the subcritical case

p
q<pc:=p 1+N. (1.6)
If ¢ > p. and ¢ > 1, there is no solution with an isolated singularity at ¢t = 0. For ¢ < p., and ug € M;(Q),
the existence was obtained in the sense of distributions in [30], and for any ug € M(2) in [8]. The case p €
LY(Q), up = 0 was treated in [14], and with p € LY(Q), uo € L*(Q) in [1], where G can be multivalued. A
larger set of measures, introduced in [16], was studied in [26]. Let M(Q) be the set of Radon measures p
on () that do not charge the sets of zero cg?—capacity, where for any Borel set E C @,

¢ (E) = inf( {llullw s v e W,u>xu ae. in Q}),

inf
ECU openCQ

and W is the space of functions z € L?((0,T); Wy *(€2) N L?(€)) such that z, € LP'((0,T); W17 (Q)+L2(Q))
imbedded with the norm

Izl = 2l Lo o,y w2y + 12l e (o, yw=10 @)+ 22(0)) -



It was shown that existence and uniqueness hold for any measure p € My(Q) N Mo(Q), called regular, or
diffuse, and p > 1, and for any function G € C(R) such that G(u)u > 0. Up to our knowledge, up to now no
existence results have been obtained for a measure u ¢ My(Q).

The case of a source term

up = Alu) =G(u) +p InQ,
u=0 on 002 x (0,T), (1.7)
u(0) = ug in Q,

with G(u) = u? with nonnegative u and p,ug was treated in [2] for p = 2, giving optimal conditions for
existence. As in the absorption case the arguments of proofs cannot be extended to general p.

2 Main results

In Section 3, we introduce the notion of renormalized solutions, called R-solutions, of problem (1.1), and we
recall at Theorem 3.4 the stability result that we proved in [7] for the problem without perturbation

up — Alu) = in Q,
u=0 on 002 x (0,T), (2.1)
u(0) = ug in Q.

under the assumption
p>p1i=(2N+1)/(N+1),

that we make in all the sequel. This condition ensures that the functions u and |Vu| are well defined in
L'(Q). Combined with some approximation properties of the measures, Theorem 3.4 is the key point of our
results.

In Section 4, we first give existence results of subcritical type, valid for any measure u € M;(Q). Let
G € C(R") be a nondecreasing function with values in R, such that

|G(x,t,m)| < G(|r]) for a.e. z € Qand any r € R, (2.2)

/ G(s)s 1 7Peds < oo, (2.3)
1
where p, is defined at (1.6).

Theorem 2.1 Assume (1.4), (2.2), (2.3). Then, for any u € My(Q) and uy € L*(Q), there exists a
R-solution u of problem
w— AW+ =p  nQ,
u=0 in 99 x (0,7), (2.4)
u(0) = ug in Q.

Theorem 2.2 Assume (1.4), (2.2), (2.8). There exists ¢ > 0 such that, for any A\ > 0, any u € M (Q)
and any nonneagtive ug € L'(Q), if A+ pu(Q) + ||uol| 1) < &, then there exists a nonnegative R-solution u
of problem

u — A(u) = AG(u) + p in Q,

u=0 in 9 x (0,7), (2.5)

u(0) = ug in Q,



In particular for any if G(u) = |u\‘r1 u, condition (2.3) is equivalent to the fact that ¢ is subcritical:
0 < ¢ < p¢, where p. is defined at (1.6).

Next we consider the general case, with no subcriticality assumptions, when G is nondecreasing in u, and
G has a power type, or an exponential type. For G(u) = \u|‘k1 u for ¢ > p., and p # 2, up to now the good
capacities for solving the problem are mot known. In the following, we search sufficient conditions on the
measures p and ug ensuring that there exists a solution.To our knowledge, the question of finding necessary
conditions for existence is still an open problem.

In the sequel we give sufficient conditions for existence for measures that have a good behaviour in t,
based on recent results of [9] relative to the elliptic case. We recall the notion of (truncated) Wolff potential:
for any nonnegative measure w € M (RY) any R > 0, xp € RV,

R
W (] (o) = /0 (PN (B(ao, 1) T L (2.6)

Any measure w € M, (Q) is identified with its extension by 0 to RY. In case of absorption, we obtain the
following:

Theorem 2.3 Letp< N, ¢>p—1, p € My(Q), f € L (Q) and ug € L* (). Assume that
lu| <w®F, withwe M (Q),F e L' ((0,T)),F >0. (2.7)

If w does not charge the sets of CapGp’ ¢ -capacity zero, then there exists a R-solution u of problem

q+1—p
u— Au) + |u|itu=f+pu  inQ,
u=0 on IQ x (0,T), (2.8)
u(0) = ug in Q.

From (3, Proposition 2.3], a measure w € M;(£2) does not charge the sets of Capg, a_-capacity zero
e
if and only if w ® x(o,7) does not charge the sets of Cap, ; a -capacity zero. Therefore, when A(u) = Au
1,7L

and 1 = w ® X(0,1), Uo € L'(2), we find again the existence result of [3]. Besides, in view of [16, Theorem
2.16], there exists data pu € M;(Q) in Theorem 2.3 such that p ¢ My(Q), see Remark 5.7, thus our result
is the first one of existence for non diffuse measure. Otherwise our result can be extended to a more general
function G, see Remark 5.9.

We also consider a source term. Denoting by D = sup, ,cq |z — y| the diameter of Q, we obtain the
following:

Theorem 2.4 Letp < N,q>p—1. Let p € M;(Q), and nonnegative ug € L>°(Q). Assume that
p<w®Xo,r), Wwithw € MZ'(Q)

Then there exist Ny and by, depending of N,p,q, A1, As, D, such that, if

w(E) < AoCapg,, (E), VE compact set C RN, and ||ugl|Le(q) < bo, (2.9)

q
q+1-p
there exists a nonnegative R-solution u of problem
ur — A(u) = u? + p in Q,

u=0 on 002 x (0,T), (2.10)
u(0) = ug in Q,



which satisfies, a.e. in Q,
u(z,t) < CW%g[w](l‘) + 2||uol| Lo (02), (2.11)

where C' = C(N,p, A1, Ag).

In case where G is an exponential, we introduce the notion of maximal fractional operator, defined for
any >0, R >0, o € RN by

M) plw](zo) = sup w(B(xo, 7)) where hy(r) = inf((—Inr)™", (In2)~")).

re(0,R) TN P hy(r)’
In the case of absorption, we obtain the following:
Theorem 2.5 Let p< N and 7 > 0,8 > 1,u € My(Q), f € LY(Q) and ug € L' (2). Assume that
lu| <w®F, withwe Mf(Q), FeL'Y(0,T)),F >0,
and that one of the following assumptions is satisfied:
(i) ||F||Le(0,ry) < 1, and for some My = Mo(N,p, 3,7, A1, Aa, D),

p—1

||Mpng[W]||Lw(RN) < Mpy; (2.12)

1

p—
By

(ii) there exists Bo > B such that M3 p[w] € L= (RY).
Then there exists a R-solution to the problem
up — A(w) + (7" — Dsignu = f+p inQ,

u=0 on IQ x (0,7T),
u(0) = ug in Q.

In the case of a source term, we obtain:

Theorem 2.6 Let 7 > 0,1 € N and 8 > 1 such that I3 >p—1. We set

-1
E(s)=¢€° —Z%, Vs € R. (2.13)

=0
Let n € M (Q), such that
p<w®Xor), withw e M (Q).
Then, there exist by and My depending on N,p, 8, 7,1, A1, As, D, such that if

ERNERS
M, »p [W|[Loemry < Mo, and  ||uol|pe=(q) < bo,

the problem
ug — A(u) = E(TvP) + 1 in Q,
u=0 on 92 x (0,T), (2.14)
u(0) = ug in Q,

admits a nonnegative R-solution u, which satisfies, a.e. in Q, for some C' = C(N,p, A1, As),

u(z,t) < CW%g[w](a:) + 2bg. (2.15)



3 Renormalized solutions and stability theorem

Here we recall the definition of renormalized solutions of the problem without perturbation (2.1), given in
[25] for p > ps.

Let M4(Q) be the set of measures u € My,(Q) with support on a set of zero cg—capacity, also called singular.
Let M; (Q), M (Q), M (Q) be the positive cones of My(Q), Mo(Q), M(Q).

Recall that any measure p € M;(Q) can be written (in a unique way) under the form

W= o + s, where o € MO(Q)) Hs = /Lj - ILL;7 with p’jvﬂ: € Mj(Q)

In turn po € Mo(Q) admits (at least) a decomposition under the form
po=f—divg+h,  feLYQ), ge (P (Q)N, heLP((0,T);W;*(Q)),

see [16]; and we write po = (f, g, h).

We set T (r) = max{min{r, k}, -k}, for any £ > 0 and r € R. If u is a measurable function defined and
finite a.e. in Q, such that Ty (u) € LP((0,T); Wy ()) for any k > 0, there exists a measurable function w
from Q into RN such that VTj(u) = Xju|<kW, a.e. in @, and for any k& > 0. We define the gradient Vu of u
by w = Vu.

Definition 3.1 Let ug € L*(Q), u = po+pus € Mp(Q). A measurable function u is a renormalized solution,
called R-solution of (2.1) if there exists a decompostion (f,g,h) of po such that

U=u—he L0, T; Wy 7 (Q)NL®(0,T; LY(Q)), Vo e[l,m.);  Tu(U) e LP((0,T); WP (Q)), k> 0;
and:
(i) for any S € W2>°(R) such that S’ has compact support on R, and S(0) =0,

= Jo S(uo)p(0)dz — [, ¢ S(U)dzdt + [, S"(U)A(z,t, Vu).Vedzdt
+ Jo 8"(U)pA(z,t, Vu).VUdzdt = [, fS'(U)pdzdt + [, 9.V(S'(U)p)dzdt,

for any ¢ € LP((0,T); Wy P(Q)) N L°(Q) such that @, € L' ((0,T); W12 (Q)) + LY(Q) and (., T) = 0;

(ii) for any ¢ € C(Q),

lim — / gbA(z,t,Vu).Vdedt:/ pdut,
Q

{m<U<2m}

1
lim — / gi)A(x,t,Vu).VUdscdtz/ pduy .
Q

m—oo m
{—-m>U>—-2m}

In the sequel we consider the problem (1.1) where u € My(Q), ug € L*(Q2). We say that u is a R-solution
of problem (1.1) if G(u) € L'(Q) and u is a R-solution of (2.1) with data (u F G(u), ug).

We recall some properties of R-solutions which we proved in [7, Propositions 2.8,2.10 and Remark 2.9]:



Proposition 3.2 Let p € LY(Q) and ug € L*(Q), and u be the (unique) R-solution of problem (1.1) with
data p and ug. Then

P+ N

meas {[u| >k} < C(||uollzr ) + ul(Q) ¥ k7P, VE>0, (3.1)

for some C = C(N,p, A1, As).

Proposition 3.3 Let {u,} C My(Q), and {uo,} C L*(2), with

sup |pn| (Q) < 00, and sup ||ugnl|p1 (o) < oo.
n n

Let {u,} be a sequence of R-solutions of (1.1) with data p, = pin,0+ fin,s and ug ., relative to a decomposition
(frs s hn) Of fino. Assume that {f,} is bounded in L*(Q), {gn} bounded in (LP (Q))N and {h,} converges
in LP(0,T; W, P ().

Then, up to a subsequence, {u,} converges to a function u a.e in Q and in L*(Q) for any s € [1,m.).

Moreover, if {1} is bounded in LY(Q), then {u,} converges to u in L*(0,T; Wy*(Q)) in s € [1,p — NL_H)

Our results are based on the stability theorem that we obtained for problem (2.1) in [7], extending the
elliptic result of [15, Theorem 3.4] to the parabolic case. Note that it is valid under more general assumptions
on the operator A, see [7]. Recall that a sequence {u,} C My(Q) converges to u € My(Q) in the narrow
topology of measures if

n—oo

lim wdun=/ pdp Vo € C(Q) N L7(Q).
Q Q

Theorem 3.4 Let p > p1, ug € LY(Q), and
p=f—divg+he+pd —pg € My(Q),
with f € LY(Q),g € (L (@)™, h € LP((0,T); Wy P () and i, pig € M (Q). Let o € L}(9),
fin = fr = divgn + (hn)i + pn — 10 € Mp(Q),
with fn, € LYQ), gn € (Lpl Q)N , hy € Lp((O,T);Wol’p(Q)), and pp,Mp € M;(Q), such that
pr =Py = diVPE + pus, =1y — dIVI A+ s,
with ph,nh € LNQ), g2, 172 € (P (Q))Y and pus, s € M (Q). Assume that

sup |pn| (@) < oo,

and {ug.n} converges to ug strongly in L*(Q), {f.} converges to f weakly in L'(Q), {gn} converges to g
strongly in (LP (Q))N, {hn} converges to h strongly in LP((0,T); Wy?(Q)), {pn} converges to ut and {n,}
converges to iy in the narrow topology of measures; and {p}l} , {77,11} are bounded in L*(Q), and {p%} , {ni}
bounded in (LP (Q))N.

Let {u,} be a sequence of R-solutions of
Un,t — A(un) = Un in Q,

Up, =0 on 90 x (0,T),
Un (0) = ugp in €.



relative to the decomposition (fn + pl —nk, gn + p2 — 12, hn) of tino. Let Uy = up — hy,.

Then up to a subsequence, {u,} converges a.e. in Q to a R-solution u of (2.1), and {U,} converges a.e.
in @ to U = u — h. Moreover, {Vuy,},{VU,} converge respectively to Vu,VU a.e. in Q, and {T(U,)}
converge to Ty,(U) strongly in LP((0,T); Wy P(Q)) for any k > 0.

For applying Theorem 3.4, we require some approximation properties of measures, see [7]:

Proposition 3.5 Let = o + pus € M (Q) with g € M$(Q) and ps € MH(Q).
(i) Then, we can find a decomposition po = (f,g,h) with f € LY(Q),g € (LP (Q))N,h € LP(0,T; W, P(Q))
such that

Hf||L1(Q) + ||9||(Lp’(Q))N + HhHLP(QT;WOl’p(Q)) + NS(Q) < 2#(@)- (3~2)

(i1) Furthermore, there exists sequences of measures pon = (fn,Gn,hn) and ps, such that f,gn, b, €
C(Q) strongly converge to f,g,h in Ll(Q),(Lp/(Q))N and LP(0,T; Wolp(Q)) respectively, and pisn, €
(C(Q))T converges to ps and piy, := pon + phsn converges to p in the narrow topology of measures, and
satisfying |pn|(Q) < u(Q),

[fallzr @) + HQnH(Lp’(Q))N + ||hn||LP(0,T;W01*p(Q)) + s, (Q) < 20(Q). (3.3)
In particular we use in the sequel a property of approximation by nondecreasing sequences:

Proposition 3.6 Let 1 € M; (Q). Let {1} be a nondecreasing sequence in M (Q) converging to pu in
My(Q). Then, there exist fn,f € LY(Q), gn,g € (LP(Q))N and h,,h € LP(0,T; V[/Ol’p(Q))7 tn,s, s €
MI(Q) such that

p=f—divg+he+ps,  pn=fo—divg, + (hn)e + b,

and {fn} ,{gn},{hn} strongly converge to f,g,h in L*(Q), (L (Q))N and LP(0,T; Wy (Q)) respectively,
and {pn,s} converges to us (strongly) in My(Q) and

[fnllLr @) + HQHH(LP/(Q))N + thHLp(o,T;WOLP(Q)) + tn,s(€2) < 2u(Q). (3.4)
As a consequence of the above results, we get the following;:

Corollary 3.7 (i) Let ug € LY(Q) and p € My(Q). Then there exists a R-solution u to the problem 2.1
with data (1, ug) such that u satisfies (3.1).

(ii) Furthermore, if vo € L'(Q) and v € My(Q) such that uy < vo and p < v, then one can find R-
solutions u and v to the problem 2.1 with respective data (p,ug) and (w,vg) such that u < v, u satisfies (3.1)
and

meas {[v] > k} < C(||vollLiay + V(Q)*F k7P, Vk>0. (3.5)

Proof. (i) We approximate g by a smooth sequence {u,} defined at Proposition 3.5-(ii) and apply
Proposition 3.2 and Theorem 3.4.

(ii) We set wg = vg — up > 0 and A = w — p > 0. In the same way, we consider a nonnegative, smooth
sequence (A, wo ) of approximations of (A, wp) defined at Proposition 3.5-(ii). Let v,, be the solution of the
problem with data (A, + i, wo,n + U0, ). Clearly, u, < v, and (A, + fn, Wo,n + Uo.) IS an approximation
of data (w,vg) in the sense of Theorem 3.4, then we reach the conclusion. [



4 Subcritical case

We first consider the subcritical case with absorption. We obtain Theorem 2.1 as a direct consequence of
Theorem 3.4 and Proposition 3.5. We follow the well-known technique introduced in [4] for the elliptic
problem with absorption

—A(u) + G(u) =w in Q, u=0 on 09, (4.1)
where w € My(Q),p > 1, and G is nondecreasing and odd, and [;~ G(s)s~ N -DP/(N=P)gs < .

Proof of Theorem 2.1. Let = po+pus € Mp(Q), with ug € Mo(Q), s € Ms(Q), and ug € ngQ). By
Proposition 3.5, we can find f,,.i, gn.i» bn.i € C2°(Q) which strongly converge to fi, g, hi in L(Q), (L (Q))
and LP((0,T); Wol’p(Q)) respectively, for i = 1,2, such that ud = (f1,91,h1), g = (f2, g2, ha), and pp 0 =
(fn,i»Gn,is hni), converge respectively for ¢ = 1,2 to ﬂ(i fto in the narrow topology; and we can find
nonnegative i, s; € C(Q),7 = 1,2, converging respectively to uJ, p5 in the narrow topology.
Furthermore, if we set

Pn = Un,0,1 — Un,0,2 T Hn,s,1 — Hn,s,2,
then |1, [(Q) < |u|(Q). Consider a sequence {ug,} C C°(£2) which strongly converges to ug in L*() and
satisfies ||uon|l1,0 < [|uol|L1(0)-

Let u,, be a solution of
(un)e — Alun) + G(un) = n Q,
Up =0 on 09 x (0,7,
un(0) = uop in Q.

We can choose ¢ = e 1T, (u,,) as test function of above problem. Since

/ (e To(up)) devdt = / e T (un(T))da — / e T (uom)dr > = |luo nl |1 (@),
o t Q Q

there holds from (1.2)
/ G(@,t,un)e™  Te(up)dadt < |unl(Q) + ||uonllLr () < 1I(Q) + [luol |1 (0)-
Q

Letting € — 0, we obtain
/Q Gt wn)| dxdt < |ul(Q) + [[uol|1 -

Next we apply the estimate (3.1) of Proposition 3.2 to uy,, with initial data g, and measure data p, —G(uy,) €
L'(Q). We get for any s > 0 and any n € N,

ptN

meas{|un| ZS}SMS_[)C7 M:C(|IJ’|(Q)+||UOHL1(Q)) ) C:C(NapaAlaAQ)'

For any L > 1, we set GL(S) = X[L,00)(5)G(5), and |u,[*(s) = inf{a > 0 : meas {|u,| > a} < s}. For any
s > 0, we obtain

{‘ / | Clldt = | Guliualoa < [ Guiunl (s -

Since |G(z,t,u,)| < G(Ju,|), we deduce that {|G(u,)|} is equi-integrable. Then, from Proposition 3.3, up
to a subsequence, {u,} converges to some function u, a.e. in @, and {G(u,)} converges to G(u) in L'(Q).
Therefore, applying Theorem 3.4, u is a R-solution of (2.4). ]



Next we study the subcritical case with a source term. We proceed by induction by constructing an
nondecreasing sequence of solutions. Here we meet a difficulty, due to the possible nonuniqueness of the
solutions, that we solve by using Corollary 3.7.

Proof of Theorem 2.2. Let {u,},>1 be defined by induction as nonnegative R-solutions of

(u1)e — A(ur) = p in Q, (Uns1)e — Altny1) = p+ AG(up) in Q,
up =0 on 02 x (0,7, Upt1 =0 on 90 x (0,7,
ul(o) = Ug in Qv un+1(0) = Uo in Qa

From Corollary 3.7 we can assume that {u, } is nondecreasing and satisfies, for any s > 0 and n € N
meas {|u,| > s} < C1K,s Pe, (4.3)
where C does not depend on s,n, and

PN
K1 = ([Juollpr @) + 1l(@) ™~

+N

K1 = (|[uoll () + [11(Q) + MG (un)l £r0))

for any n > 1. Take € = A + |u[(Q) + [|uo||L1 (o) < 1. Denoting by C; some constants independent on n, €,
there holds Ky < Cse, and for n > 1,

1+ £
K1 < Cae(||G(un)ll 1) +1)-

From (4.2) and (4.3), we find

1G(un)ll L1y < 1QIG(2) + / G(uy)dzdt < |Q|G(2) + C4Kn/ G (5) s~ 1 Peds.
2
{un>2}]

Thus, K41 < C’ss(K}f%Jrl). Therefore, if ¢ is small enough, {K,,} is bounded. Since {u,,} is nondecreasing,

from (4.2) and the relation G(z,t,u,) < G(uy), we deduce that {G(u,)} converges. Then by Theorem 3.4,
up to a subsequence, {u,} converges to a R-solution u of (2.5). ]

Remark 4.1 Theorems 2.1 and 2.2 are still valid for operators A also depending on t, satisfying conditions
analogous to (1.2), (1.3).

5 General case with absorption terms

In the sequel we combine the results of Theorem 3.4 with delicate techniques introduced in [9] for the elliptic
problem (4.1), for proving Theorems 2.3 and 2.5. In these proofs the use of the elliptic Wolff potential is an
essential tool.

We recall a first result obtained in [9, Corollary 3.4 and Theorem 3.8] for the elliptic problem without
perturbation term, inspired from [27, Theorem 2.1]:

Theorem 5.1 Let 1 < p < N, Q be a bounded domain of RN and w € My(Q)) with compact support in €.
Suppose that u, is a solution of problem

—A(uy) = op *w in Q,
Up =0 on 09,
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where {p,} is a sequence of mollifiers in RN. Then, up to subsequence, u, converges a.e in Q to a renor-
malized solution u of

—Au) =w in Q,
u=20 on 0N,

in the elliptic sense of [15], satisfying
—nW%g[w*] <u< KW%g[er] (5.1)
where Kk is a constant which only depends of N,p, Ay, As.
Next we give a general result for the parabolic problem (1.5) with absorption:

Theorem 5.2 Let p < N, and assume that s — G(x,t,s) is nondecreasing and odd, for a.e. (x,t) in Q.
Let jiy, p2 € M (Q) such that there exist {w,} C M (Q) and nondecreasing sequences {u1,n},{f2.n} in
M;‘(Q) with compact support in @, converging to 1, 2, respectively in the narrow topology, and satisfying

Py o < Wn @ X0,1),  and  G((n+ nW?ﬁ [wa])) € LYQ),

where the constant k is given at Theorem 5.1. Let ug € L*(2), and pn = py — pio.

Then there exists a R-solution u of problem (1.5). Moreover if ug € L*(Q), and w, <~ for any n € N,
for some v € M (Q), then a.e. in Q,

u(z, t)] < KWTD V] () + [Juol| Lo (@) - (5.2)
For proving this result, we need two Lemmas:

Lemma 5.3 Let G satisfy the assumptions of Theorem 5.2 and G € L>(Q x R). Fori = 1,2, let ug; €
L*>(Q) be nonnegative, and \; = i o+ Ai,s € My (Q) with compact support in Q, v € M; (Q) with compact
support in § such that i < v ® x(o,1)- Let Nio = (fi, gi, hi) be a decomposition of A\; o into functions with
compact support in Q.

Then, there exist R-solutions u,uy,us, to problems

up— Au) +G(u) = 1 — A2 inQ,
u=0 on 9 x (0,T), (5.3)
U(O) = ’U,071 — ong, m Q,

(ui)t — A(u,) + Q(uz) =\ mn Q,
u; =0 on 9 x (0,T), (5.4)
’LLZ(O) = ’LLOJ', mn Q,

relative to decompositions (f1,n — foon — G(Un)s G1,n — G2,n, P10 — how), (fin — G(Win), Gin, Rin), such that
a.e. in Q,

—[Juo 2|l () — KEWTH (Y] (2) < —uz(w,t) < u(,t) < wui(z,t) < KWIE ] (@) + |[uo (),  (5.5)

and

i=1,2
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Furthermore, assume that H, K have the same properties as G, and H(z,t,s) < G(z,t,s) < K(z,t,s) for any

s € (0,400) and a.e. in Q. Then, one can find solutions u;(H),u;(K), corresponding to H,K with data A;,
such that w;(H) > u; > ui(K), i =1,2.

Assume that w;,0; have the same properties as \; and w; < N\ < 0;, ugi1,u0i2 € L¥T(Q), ugi2 <
Uo,; < ugia. Then one can find solutions u;(w;),u;(0;), corresponding to (w;,uo;2), (6i,%0,i,1), such that
Ui (wi, w0 5,2) <y < w6, u0,4,1)-

Proof. Let {1}, {2} be sequences of mollifiers in R and RY, and ¢,, = ©1.n02.n. Set Yn = @2, %7,
and for 1 = 1,2, ugin = Y2,n * Ui,
Ain = @n * XNi = fin — div(gin) + (hin)t + Nisn,
where fin = ©n * fi, Gin = ©n * giy hin = ©n * hiy, Xisn = @n * Ais, and
An =AM — Ao = fru —div(gn) + (hn)t + Aspns

where fn = fl,n - f2,nv 9n = 91,n — 92.n, hn = hl,n - h2,n7 )\s,n = )\1,s,n - )\2,s,n~ Then for n large enoughv
Moy A2,ny An € C2(Q), v, € C2°(€). Thus there exist unique solutions wy, i n, vin, ¢ = 1,2, of problems

(U"ﬂ)t - A(un) + g(un) = )\Ln — )\27774 in Q7
up, =0  on 99 x (0,7),
un(0) = uo,1,n — Uo,2,n in €,

(ui,n)t - A(uz,n) + g(ul,n) - )\i,n in Qa
Ui =0 on 002 x (0,7,
Uz,n(o) = U0,i,n in Q,

—A(wp) =, inQ, wy, =0 on 04,
such that

—lluo 2|l (@) = wn(®) < —uzn(,1) < un(w,t) < urn(2,t) < wn(@) + [uollL=(e), ae inQ.

Otherwise, as in the Proof of Theorem 2.1, (i), there holds

/ |Q(un)|dxdt S Z ()\Z(Q) —+ HuO,i,nHLl(Q)) s and / g(ul,n)dzdt S )\Z(Q) + ||u0,i,n”L1(Q)7 7= 1, 2.
Q Q

i=1,2

From Proposition 3.3, up to a common subsequence, {tn, U1 n, U2} converge to some (u, ui, uz), a.e. in Q.
Since G is bounded, in particular, {G(u,)} converges to G(u) and {G(u;,)} converges to G(u;) in L*(Q).
Thus, (5.6) is satisfied. Moreover {\; , — G(win), fin — G Win)s Gin, Pins Niosn, Uo,in ) 1S an approximation
of (N —G(w;), fi —G(ws), gis hiy Mis, w0,5), and { Ay, — G(un), fr, — G(Un); Gn, Py Ao ns U0,1,m — U0,2,n ) 1S a0 AP-
proximation of (A1 — Ay — G(u), f — G(u),g,h, As,u01 — up,2), in the sense of Theorem 3.4. Thus, we can
find (different) subsequences converging a.e. to u, uy, uz, R-solutions of (5.3) and (5.4). Furthermore, from
Theorem 5.1, up to a subsequence, {w,,} converges a.e. in @) to a renormalized solution of

—A(w) =+ inQ, w=0 on dQ,

such that w < /{W%g [v], a.e. in 2. Hence, we get the inequality (5.5). The other conclusions follow in the
same way. -

12



Lemma 5.4 Let G satisfy the assumptions of Theorem 5.2. For i = 1,2, let ug,; € L>(Q?) be nonnegative,
i € M(Q) with compact support in Q, and v € M (Q) with compact support in 2, such that

A <v@x0m),  and G(([[uoill= o) + kWD ) € LHQ). (5.7)
Let Xio = (fi, gis hi) be a decomposition of Ao into functions with compact support in Q.

Then, there exist R-solutions u,u1,us of the problems (5.3) and (5.4), respectively relative to the decom-
positions (f1 — f2 —G(u), g1 — g2, b1 — h2), (fi — G(wi), gi, hi), satifying (5.5) and (5.6).

Moreover, assume that w;, 8; have the same properties as A; andw; < X\; < 0;, uo 4.1, u0,i,2 € L>(Q),0 <
U052 < g < ups1. Then, one can find solutions u;(w;, uoi2), w;(6;,u0,4,1), corresponding with (w;, uo;.2),
(03, u0,i,1), such that u;(wi, uo2) < ui < ui(0s,uo0,4,1)-

Proof. From Lemma 5.3 there exist R-solutions u,, u;, to problems

(un)e — A(up) + Tn(G(un)) = A1 — Ao in Q,
Up =0 on 90 x (0,7T),
un(O) = ’UJ071 - U072 n Q,

(Uin)t — Aluin) + Tn(G(uin)) = N in @Q,

Ui =0 on 09 x (0,7),

ulvn(o) = uo,iv in Q,
relative to the decompositions (f1 — fo — T,(G(un)), g1 — g2, h1 — ha), (fi — Tn(G(win)), gi, hi); and they
satisfy, a.e. in @,

~luo2|lze= (o) = kWP 1] () < —uzn(z,t) < wn(w,t) S wrn(z,t) < kWIDy(@) + |luoallz=(@),  (5.8)

/Q T, (Gun)) dzdt < 57 (@) + o

i=1,2

ey and /Tn(g(um))da:dtg/\i(Q)+||uo7i||L1(Q).
Q

As in Lemma 5.3, up to a common subsequence, {uy, U1, U2} converges a.e. in Q to {u,us, us} for which
(5.5) is satisfied a.e. in Q. From (5.7), (5.8) and the dominated convergence Theorem, we deduce that
{T}.(G(un))} converges to G(u) and {T,(G(u;n))} converges to G(u;) in L*(Q). Thus, from Theorem 3.4,
u and u; are respective R-solutions of (5.3) and (5.4) relative to the decompositions (f; — fo — G(u), g1 —
g2, h1 —he), (fi —G(u;), gi, hs), and (5.5) and (5.6) hold. The last statement follows from the same assertion
in Lemma 5.3. u

Proof of Theorem 5.2. By Proposition 3.6, for i = 1,2, there exist f; ., fi € L*(Q), gin, i € (LY (Q))N
and hy , hi € LP((0,T); WP (Q)), fin.s, fti.s € MT(Q) such that

pi = fi —divg; + (hi)e + i s, tin = fin —divgin + (Rin)t + Lin,s,

and {fin},{gin},{hin} strongly converge to fi, g;, h; in L*(Q), (Lpl(Q))N and L?((0,T); Wol’p(Q)) respec-
tively, and {g;n}, {tin,s} converge to p;, ;s (strongly) in M;(Q), and

fimllzr @) + [19imll Lo @) + hinll Lo o.)wi v )) + Hin.s () < 20(Q).
By Lemma 5.4, there exist R-solutions u,, u;,, to problems

(un)t - -A(un) + g(un) = H1n — H2,n in Qa
U, =0 on 90 x (0,T),
un(o) = Tn(UO) in Qa
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(win)e — A(win) + G(Win) = tin in Q,
Ui =0 on 092 x (0,7,
;. (0) = Tn(uat) in €,

for i = 1,2, relative to the decompositions (f1,n— fo,n—G(Un), 91.n—92.n, P1.n—P2.n)s (fin—GWin), Gimn, Pin),
such that {u;,} is nonnegative and nondecreasing, and —usg , < Uy, < uy,,; and

/ G ()| dvdt, / G (s, )dadt < 111(Q) + 2(Q) + [[uo]| 1+ - (5.9)
Q Q

As in the proof of Lemma 5.4, up to a common subsequence {ty, 1y, U2, } converge a.e. in Q to {u, uy, us}.
Since {G(u;,)} is nondecreasing, and nonnegative, from the monotone convergence Theorem and (5.9), we
obtain that {G(u;,)} converges to G(u;) in L'(Q), i = 1,2. Finally, {G(u,)} converges to G(u) in L' (Q),
since |G(un)| < G(u1,n) + G(uz,n). Thus, we can see that

{Ml;ﬂ — H2n — g(“n)v f17n - f27n - g(un)agl,n —92,n, hl,n - h?,naul,s,n - M2,s,n7Tn(u0)}

is an approximation of (1 —pe —G(u), f1 — fa—G(w), g1 — g2, h1 — ha, pi1,s — H2,s, Uo ), in the sense of Theorem
3.4. Therefore, u is a R-solution of (1.1), and (5.2) holds if uy € L*°(Q2) and w,, <~ for any n € N and some
v € MF(Q). [

As a consequence of Theorem 5.2, we get a result for problem (2.1), used in Section 6:

Corollary 5.5 Let ug € L>(2), and p € My(Q) such that |u| < w @ x(o,r) for some w € M (Q). Then
there exist a R-solution u of (2.1), such that

lu(z, t)] < KW%g[w](x) + |uol| L= (), fora.e. (x,t) € Q, (5.10)

where k is defined at Theorem 5.1.

Proof. Let {¢,} be a nonnegative, nondecreasing sequence in C2°(Q) which converges to 1, a.e. in Q.
Since {pnu™}, {dnp~} are nondecreasing sequences, the result follows from Theorem 5.2. ]

5.1 The power case

First recall some results relative to the elliptic case for the model problem
—Apu+ ' fu=w inQ, u=0 on 09, (5.11)

with w € Mp(Q),g>p—1>0.
For p = 2, it is shown in [2] that (5.11) admits a solution if and only if w does not charge the sets of
Bessel Capg,. —a -capacity zero. For p # 2, existence holds for any measure w € M;(Q) in the subcritical
—
case

q<pe:=Np-1)/(N—p) (5.12)

from [4]. Some necessary conditions for existence have been given in [5, 6]. From [9, Theorem 1.1], a
sufficient condition for existence is that w does not charge the sets of Capg, = —capacity zero, and it can
’q+1-p

be conjectured that this condition is also necessary.

Next we prove Theorem 2.3. We use the following result of [9]:
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Proposition 5.6 Let ¢ >p—1 and v € M; (Q).

If v does not charge the sets of CapGp 4 -capacity zero, there exists a nondecreasing sequence {v,} C
’qg+1-p

M (Q) with compact support in Q which converges to v strongly in My(2) and such that WL [vn] € LYRY),
for anyn € N and R > 0.

Proof of Theorem 2.3. Let f € LY(Q), up € L' (), and p € My(Q) such that |u| < w ® F, where
F € L'((0,T)) and w does not charge the sets of Capg,, _¢__-capacity zero. From Proposition 5.6, there

gt+1-—p
exists a nondecreasing sequence {w, } C M; (Q) with compact support in  which converges to w, strongly
in M,(Q), such that W3P[w,] € LI(RY). We can write

fHp=p—p2, = fT4pt,  pe=f"+u, (5.13)

and pt,pu” <w® F. We set

1 1 1
Qn={(@,t) €Qx (-.T=2):d(@,00) > =}, Fo=Tulxar-sF), (5.14)
pin = Tn(xq, f) +inf{u", w, ® F,}, pon = Tn(xq, f~) +inf{p,w, ® F.}. (5.15)

Then {p1 0}, {p2.n} are nondecreasing sequences with compact support in @, and

B, M2 < Wn ® X(0,T)> with @, = n(XQ + Wn)a

and (n+ kWih[@,])7 € L(Q). Besides, w, ® F, converges to w ® F strongly in M,(Q). Indeed we casily
check that

llwn ® Fr — w @ Fllmy @) < 1Fallrro,mllwn — wllmy@) + llwll sy @) 1 Fn = FllLio,m))
Observe that for any measures v,0,n1 € My(Q), there holds
|inf{v, 0} — inf{r,n}| <10 —n,

hence {10}, {12,n} converge to pi, po respectively in My(Q). Therefore, the result follows from Theorem
5.2. ]

Remark 5.7 From Theorem 2.3, we deduce the existence for any measure w € My(Q2) for p < p., whre pe
is defined at (5.12), since p. is the critical exponent of the elliptic problem (5.11). Note that p. > p. since
p > p1. Let Mg (Q) be the set of Radon measures w on that do not charge the sets of zero cg-capacz'ty,
where, for any compact set K C 2,

GUR) =it [ [VoPde: > 0 € C()

From [16, Theorem 2.16], for any F € L*((0,T)) with fOT F(t)dt #0, and w € My(Q),
wWE Mpe() <= wF € My(Q).

If ¢ > pe, there exist measures w € M; (Q) which do not charge the sets of Capg,,_a__-capacity zero, such

i
that w & Mg (). As a consequence, Theorem 2.3 shows the existence for some measures p & Mo(Q).
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Remark 5.8 Let G : QxR — R be a Caratheodory function such that the map s — G(x,t, s) is nondecreasing
and odd, for a.e. (z,t) in Q. Let n € My(Q), f € LY (Q),uo € L (Q) and w € M} (Q) such that (2.7) holds.

If w({z : WiP[w](z) = 00}) = 0, then, (1.5) has a R-solution with data (f + i, uo). The proof is similar
to the one of Theorem 2.3, after replacing wn by Xwzp (. <pw- Note that w{z : WiPlw](z) = oo}) = 0 if
and only if w € Mg (), see [21].

Remark 5.9 As in [9], from Theorem 5.2, we can extend Theorem 2.8 given for G(u) = |u|? " u, to the
case of a function G(z,t,.), odd for a.e. (z,t) € Q, such that

G t,w)] < G(Jul), / G(s)s™7 1ds < oo,
1

where G is a nondecreasing continuous, under the condition that w does not charge the sets of zero Capg.

q -
prgFi—pol

capacity, where for any Borel set E C RV,

Capg

q
Prg+i-p>

1(E) = inf{||g0||quT,1(RN) o€ Lt (RY), G, x¢ > xg}
where L=r71 (RN is the Lorentz space of order (q/(q —p+ 1),1).

5.2 The exponential case

Theorem 2.5 extends the elliptic result of [9, Theorem 1.2] to the parabolic case. For the proof, we use the
following property of [9, Theorem 2.4]:

Proposition 5.10 Suppose 1 < p < N. Let v € M (), B > 1, and do = ((128)71)’pIn2. There exists
C = C(N,p,B,D) such that, for any 6 € (0,d),

W2D B
/ exp(d ; 1’p[yl Ydx < 3 C;(S.
@ ||Mpf32,D[V”|£;ol(]RN) 0

Proof of Theorem 2.5. Let @, be defined at (5.14), and w,, = wxq,, , where Q,, = {x € Q : d(z,0Q) >
1/n}. We still consider pi, o, Fr, ft1,n, ph2,n as in (5.13), (5.15).

Case (i): Assume that ||F||pe(,r)) < 1 and (2.12) holds. We have ji1 , pto,n < nxq +w. For any € > 0,
there exists c¢. = c.(e, N, p, 8, k,D) > 0 such that

Bp_
(n+ NW%g[nxg + w])'B <eenv T+ (1+ s)m’B(ng[w])ﬁ

a.e. in . Thus,

exp (7(n+ HW%g[nXQ +w])?) <exp (TCE’I’L%) exp (T(1+ s)mB(ng[w])ﬁ) .

If (2.12) holds with My = (50/7'11[3)(]071)/[3 then we can chose € such that

p—1 _B_
(1 + e)KB||Mpf2D[u]|\g;l(RN) <dp.
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From Proposition 5.10, we get exp(7(1 + &)’ W2 [w])?) € L*(Q), which implies exp(7(n + " W3D[nxq +
w))?) € LY(Q) for all n. We conclude from Theorem 5.2.

Case (ii): Assume that there exists ¢ > 0 such that M;p;l;)/(’g+a)/[w] € L*°(RY). Now we use the inequality
i, H2n < n(xa +w). For any € > 0 and any n € N there exists ¢, > 0 such that

(n+ kWil [n(xa +w))” < o + (WD W)™

Thus, from Proposition 5.10, we obtain that exp(7(n + mﬂW%g[n(XQ +w)])?) € LY(Q) for any n € N. We
conclude from Theorem 5.2. [ ]

6 General case with source term

The results of this Section are based on Corollary 5.5 and elliptic techniques of Wolff potential used in [27],
[28] and [22, Theorem 2.5].
6.1 The power case
Recall some results of [27], [28] for the nonnegative solutions of equation
-Apu=u?4+w inQ, u=0 on 0. (6.1)

It was proved that if w(FE) < CCapg,, e (E),for any compact of RY, with C' small enough, problem (6.1)

has at least a solution, and conversely if there exists a solution, and w has a compact support, then there
exists a constant C’ such that

w(E) < C'Capg. _a (R), for any compact set E of RY.

Prg+l—p

For proving Theorem 2.4 we use the following property of Wolff potentials, shown in [27]:
Theorem 6.1 Let g >p—1,0<p< N, w e M (Q). If for some X > 0,

w(F) < XCapg _a (FE) for any compact set E C RY, (6.2)

Prgt+i-p

then (ng[w])q € LY(Q), and there exists M = M (N, p, q,diam(Q)) such that, a.e. in 2,

g—p+1
WD [(WiDw])?] < MAG-D2 WD w] < cc. (6.3)
We deduce the following:

Lemma 6.2 Let w € M} (2), and b > 0 and K > 0. Suppose that {tum}m>1 is a sequence of nonnegative
functions in Q) that satisfies

up < KW%g[w] +0b,
Upg1 < KWIPud +w]+b  ¥Vm> 1.

Assume that w satisfies (6.2) for some A > 0. Then there exist A\g and by, depending on N,p,q, K,D, such
that, if X < Ao and b < by, then W3D[w] € LI(Q) and for any m > 1,

Um < 28, KW3D[w] + 20, B, = max(1,37). (6.4)
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Proof. Clearly, (6.4) holds for m = 1. Now, assume that it holds at the order m. Then
ufy, < 2971(26,) KU WD [w])? + 2771 (20)".
Using (6.3) we get
i < KW3D (207128, KIWER )" + 207 (20)7 + | + b
< B K (A W3R [(WEPL])] + WED [(2)7] + WED[w]) + b
< B,K(A MAGEE 2D 2D q
= Pp 1 + 1)W1,p [w] + ﬁple,p [(20)"] +b
g9—p+1 q
= ByK (A MG + 1)W3D[w] + A7t 4,
where M is as in (6.3) and

Ay = (2q_1(2ﬂp)qKq)l/(p_l) : Ay = /BPK2q/(p_l)|B1‘1/(p_1)(p/)_1(2D)p/.

Thus, (6.4) holds for m = n + 1 if we prove that
a—p+1 g
A MA@-D? <1 and Abr—T < b,
which is equivalent to
p—1)2 _ _p—1
A< (A M)~ and b < A, T
Therefore, we obtain the result with \g = (AlM)’(p’l)g/(q’p“) and by = Az_(p_l)/(q_pﬂ). [

Proof of Theorem 2.4. From Corollary 3.7 and 5.5, we can construct a sequence of nonnegative
nondecreasing R-solutions {u, }m>1, defined in the following way: wu; is a R-solution of (2.1), and w41 is
a nonnegative R-solution of

(Um+1)e — Altm1) =ul, + - inQ,
Umt+1 =0 on 00 x (0,T),
um+1(0) = Uo in €.

Setting U = supe (o ) um(t) for all m > 1, there holds

< KWL [w] + [[uol| L (q),
Umt1 < ﬁW%g[ﬂ% + w] =+ [[uo|| Lo () Ym > 1.
From Lemma 6.2, we can find A\g = A\o(V, p,q, D) and by = by(N, p, ¢, D) such that if (2.9) is satisfied with

Ao and bg; then
Uy < Uy, < 2ﬁan%Z[w} + 2|uo|| Lo () Ym > 1. (6.5)

Thus {u,,} converges a.e. in @ and in L9(Q) to some function u, for which (2.11) is satisfied in © with
¢ = 2f,k. Finally, one can apply Theorem 3.4 to the sequence of measures {ul, + p}, and obtain that u is
a R-solution of (2.10). |
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6.2 The exponential case

We end this Section by proving Theorem 2.6. We first recall an approximation property, which is a conse-
quence of [22, Theorem 2.5]:

Theorem 6.3 Let 7 >0,b>0, K > 0,1 €N and 8 > 1 such that I8 > p — 1. Let £ be defined by (2.13).
Let {v,} be a sequence of nonnegative functions in Q such that, for some K > 0,
v < KWiD[u] +0,
Umt1 < KW%?[S(TU,%) +pul+b, ¥Ym>1

Then, there exist by and My, depending on N,p, 8, 7,1, K, D, such that if b < by and
(r=1)(s=1)
IIM,,op"  [1lleory < Mo, (6.6)
then, setting ¢, = 2max(1,2i%€),
exp(r(K ey WD [u] +2b0)") € L1(),
Um < Key,WED u] 4 2by,  Vm > 1. (6.7)

Proof of Theorem 2.6. From Corollary 3.7 and 5.5 we can construct a sequence of nonnegative
nondecreasing R-solutions {wy, }m>1 defined in the following way: uq is a R-solution of problem (2.1), and
by induction, w11 is a R-solution of

(umi1)e — A(umsr) = E(rul,) + - in Q,
Umt1 =0 on 90 x (0,7), (6.8)
um+1(0) = Ug in Q.

And, setting %, = sup;e (1) um(t), there holds

a1 < KW W]+ [Juol [ 0

U1 < mng[S(Tﬂ%) + w] + [[uo|| o () Ym > 1.

Thus, from Theorem 6.3, there exist by € (0,1] and My > 0, depending on N, p, 5, 7,1, D, such that, if (6.6)
holds, then (6.7) is satisfied with v,, = W,,. As a consequence, u,, is well defined. Thus, {u,,} converges
a.e. in @ to some function u, for which (2.15) is satisfied in . Furthermore, {&(7u?,)} converges to &(Tu?)
in L'(Q). Finally, one can apply Theorem 3.4 to the sequence of measures {5(7’11,,,6”) + u} , and obtain that
u is a R-solution of (2.14). |

Remark 6.4 In [22, Theorem 1.1], when A= A, we showed that there exist M = M(N,p,3,7,1,D) such
that if

(p—=1)(B—-1)
3

||Mp,2D[ [W]HLOO(]RN) <M,

then the problem
Ay =E(TP) +w in Q,
v=20 on O0f).

has a renormalized solution in the sense of [15]. We claim the following:
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Let A=A, and ug = 0. If (6.9) has a renormalized solution v and w € My (), then the problem (2.14)
in Theorem 2.6 admits a R-solution u, satisfying u(z,t) < v(z) a.e in Q.

Indeed, since w € Mo (), there holds ;1 € My(Q). Otherwise, for any measure n € Mo(Q) the problem

us — Apu =1 n Q,
u=0 on 02 x (0,T),
u=0 mn €,

has a (unique) R-solution, and the comparison principle is valid, see [26]. Thus, as in the proof of Theorem
2.6, we can construct a unique sequence of nonnegative nondecreasing R-solutions {um }m>1, defined in the
following way: wy is a R-solution of problem (2.1) and satisfies u; < v a.e in Q ; and by induction, Upmi1
is a R-solution of (6.8) and satisfies umi1 < v a.e in Q. Then {E(Tul)} converges to E(TuP) in LY(Q).
Finally, v := lim,,_,o uy, is a solution of (2.14). Clearly, this claim is also valid for power source term.
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