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Abstract. We characterize those mappings from a compact subset of R into

the Heisenberg group Hn which can be extended to a Cm horizontal curve in
Hn. The characterization combines the classical Whitney conditions with an

estimate comparing changes in the vertical coordinate with those predicted by

the Taylor series of the horizontal coordinates.

1. Introduction

The classical Whitney extension theorem [1, 24] characterizes those collections
of continuous functions F = (F k)mk=0 defined on a compact set K ⊂ Rn which
can be extended to a Cm function f defined on an open set containing K so that
the derivatives Dkf of the extension coincide with the functions F k on K. The
collection (F k)mk=0 is called a jet of order m (see Definition 2.5), and we intuitively
view the functions F k for k ≥ 1 as some sort of “derivatives” of F 0. A Cm extension
is guaranteed to exist if the jet is a so called Whitney field of class Cm on K (see
Definition 2.7). Intuitively, this means that the value of each F k on K should be
uniformly well approximated by the Taylor polynomial centered at any nearby point
a ∈ K computed using the jet. Taylor’s theorem ensures that this approximation
holds for any Cm function restricted to K, so Whitney’s theorem acts as a sort of
converse to Taylor’s theorem.

The main result of this paper is a Cm Whitney extension theorem for mappings
from compact subsets of R into the Heisenberg group (Theorem 1.1). Before de-
scribing our result, we first give some motivation and history related to the problem.

Whitney’s classical extension theorem has many applications. For instance, it
can be used to construct functions with unusual differentiability properties [25] and
to construct C1 approximations of Lipschitz mappings [5]. Such approximations
have been used to show that rectifiable sets may be equivalently defined by Lipschitz
functions or by C1 functions. Recently, great attention has been devoted to the
study of quantitative versions of Whitney’s theorem. More specifically, given all
(or just a part) of the Whitney data on K, one can attempt to construct a smooth
extension with some sort of reasonable estimate on the Cm-norm. This problem is
of interest in applications, and it is highly nontrivial even in the setting of functions
defined at finitely many points [6, 7, 8, 9].

In recent years, it has become clear that a large part of geometric analysis in
Euclidean spaces may be generalized to more general settings [3, 2, 4, 14, 18, 19].
In particular, rectifiable sets are currently under intense study in Carnot groups
such as the Heisenberg group [11, 12, 13]. This demonstrates the importance of
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understanding to what extent a version of Whitney’s extension theorem holds for
mappings between more general spaces.

Carnot groups are Lie groups whose Lie algebra admits a stratification. This
stratification gives rise to dilations and implies that points can be connected by
absolutely continuous curves with tangents in a distinguished subbundle of the
tangent bundle. These are the so called horizontal curves. Considering lengths
of horizontal curves gives rise to the Carnot-Carathéodory distance and endows
every Carnot group with a metric space structure. Moreover, every Carnot group
has a natural Haar measure which respects the group translations and dilations.
This plethora of structure makes the study of analysis and geometry in Carnot
groups highly interesting [3, 4, 18]. However, results in the Carnot setting can be
very different to Euclidean ones since all such results must respect the horizontal
structure of the Carnot group. The Heisenberg group is the simplest non-Euclidean
Carnot group and admits an explicit representation in R2n+1 (Definition 2.1) with
2n horizontal directions and one vertical direction.

Validity of a Whitney extension theorem in Carnot groups has received consid-
erable attention in recent years. The best understood case is that of mappings
from Carnot groups to R. In 2001, Franchi, Serapioni, and Serra Cassano proved
a C1 version of the Whitney extension theorem for mappings from the Heisenberg
group into R [11]. In this theorem, the jet is defined on a compact subset K of
the Heisenberg group and is extended to a C1

H function. That is, the derivatives
of the extension in the horizontal directions exist and are continuous. In 2006,
Vodop’yanov and Pupyshev proved a Cm version of the Whitney extension theo-
rem for mappings from general Carnot groups to R [23].

The study of a Whitney extension theorem for mappings whose target is a Carnot
group is even more recent. Zimmerman [26] established a C1 version of the Whitney
extension theorem for mappings from compact subsets of R into the Heisenberg
group. More or less at the same time, Speight [21] independently addressed the
related problem of a Lusin type approximation of absolutely continuous horizontal
curves by C1 horizontal curves in the Heisenberg group. Here, it was also shown
that there is no such Lusin type approximation for horizontal curves in the Engel
group (which is a Carnot group of step 3). Hence, one should not expect a Whitney
extension theorem for mappings from compact subsets of R into every Carnot group.
The positive results on Lusin approximation were extended to all step 2 Carnot
groups in [16], after which [15, 22] extended the C1 Whitney extension theorem
to mappings from compact subsets of R to larger classes of Carnot groups and
subriemannian manifolds.

Until now, little was known about the validity of a higher order Whitney exten-
sion theorem for mappings whose target is a non-Euclidean Carnot group. In this
paper, we establish such a Cm Whitney extension theorem for mappings into the
Heisenberg group. For simplicity we focus on the first Heisenberg group H1, rep-
resented in coordinates as R3, but similar methods work for any Heisenberg group
Hn. Our result characterizes when a triple of jets (F k)mk=0, (Gk)mk=0, and (Hk)mk=0

defined on a compact subset K ⊂ R can be extended to a Cm horizontal curve from
R to H1.

We say that a triple (F,G,H) of jets of order m extends to the Cm horizontal
curve (f, g, h) : R → H1 if (f, g, h) is a Cm horizontal curve from R into H1 and
we have Dkf(x) = F k(x), Dkg(x) = Gk(x) and Dkh(x) = Hk(x) for all x ∈ K
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and 0 ≤ k ≤ m. The first two conditions of our characterization (Theorem 1.1) are
easy to understand. First, f , g, and h must extend F , G, and H as maps into R.
Hence, by Taylor’s theorem, the jets F , G, and H must already be Whitney fields
of class Cm on K. Secondly, differentiating in the definition of a horizontal curve
gives (2.2) where polynomials Pk establish a relationship between the derivatives
of the different components of the curve. However, these two conditions alone are
not enough. This is shown in Proposition 4.1. The problem arises from the fact
that the vertical component of a horizontal curve is not free to vary but is instead
determined by an area swept out by the horizontal components (see Lemma 2.3).

Presumably, it is redundant to assume that H is a Whitney field in Theo-
rem 1.1(1) when proving sufficiency of the assumptions. This property is likely
a result of assumptions (2) and (3) in Theorem 1.1 together with the Whitney
properties of F and G. (For an easy proof of this fact in the case m = 1, see
Remark 1.6 in [26].) However, since the Whitney field property of H is necessary
for the existence of a Cm extension, it is reasonable to include this condition.

We now describe the third condition in our characterization and state the result.
Given a, b ∈ K, define the area discrepancy

A(a, b) := H(b)−H(a)− 2

∫ b

a

((Tma F )′(Tma G)− (Tma G)′(Tma F ))(1.1)

+ 2F (a)(G(b)− Tma G(b))− 2G(a)(F (b)− Tma F (b)).

Here we use the identification F (x) = F 0(x), G(x) = G0(x), and H(x) = H0(x).
The terms Tma F and Tma G denote the Taylor polynomials of the jets F and G (see
Definition 2.6). Note that A(a, b) measures over [a, b] the difference between the
change in height of the jets and the change in height predicted by lifting the Taylor
expansion of the horizontal components. The terms on the second line of (1.1) are
a result of the group operation in H1 when we consider points away from the origin.
Intuitively, in order for a Cm horizontal extension to exist, the area discrepancy
A(a, b) must be very small as (b − a) → 0. To make this precise, we define the
velocity

(1.2) V (a, b) := (b− a)2m + (b− a)m
∫ b

a

|(Tma F )′|+ |(Tma G)′|.

In some sense, V (a, b) is related to the speed of the horizontal components of the
curve fragment. If the higher order terms in the jets F and G are large at a,
then V (a, b) is controlled by the integral term. Otherwise V (a, b) is controlled by
(b − a)2m. The final condition of our characterization asserts A(a, b)/V (a, b) → 0
uniformly as (b− a)↘ 0 with a, b ∈ K.

We now state formally our main theorem.

Theorem 1.1. Let K ⊂ R be a compact set and F , G, and H be jets of order m on
K. Then the triple (F,G,H) extends to a Cm horizontal curve (f, g, h) : R → H1

if and only if

(1) F , G, and H are Whitney fields of class Cm on K,
(2) for every 1 ≤ k ≤ m and t ∈ K we have

(1.3) Hk(t) = Pk
(
F 0(t), G0(t), F 1(t), G1(t), . . . , F k(t), Gk(t)

)
,

(3) A(a, b)/V (a, b)→ 0 uniformly as (b− a)↘ 0 with a, b ∈ K.
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First note that Theorem 1.1 is consistent with the C1 case from [26], even if
condition (3) appears slightly different to the corresponding condition in [26]. This
is described in Section 3. Our proof of Theorem 1.1 when specialized to the C1

case is very different to that of [26]. Hence we also obtain a new proof of the C1

case. We now briefly describe the structure of the proof.
Necessity of the three conditions in Theorem 1.1 is established in Proposition

5.1. As already described, (1) follows from Taylor’s theorem, and (2) follows from
differentiating the definition of a horizontal curve in Lemma 2.3. To establish (3),
we assume f(a) = g(a) = h(a) = 0 and combine the definition of a horizontal curve

with direct estimates on
∫ b
a
|f ′g − (Tf)′Tg|. To remove the assumption f(a) =

g(a) = h(a) = 0, we simply apply group translations.
Sufficiency of the three conditions is more involved and is established by Theo-

rem 6.1. We begin with the decomposition [minK, maxK]\K = ∪i≥1(ai, bi). The
main step will be to obtain Lemma 6.7. This lemma provides Cm horizontal curves
(Fi,Gi,Hi) defined on each interval [ai, bi] whose derivatives agree with the values
prescribed by (F,G,H) at the endpoints, the derivatives do not deviate far from
these values along the entire interval, and the areas enclosed by Fi and Gi in the
plane are chosen so that, when they are lifted to a horizontal curve in the Heisen-
berg group, the change in height Hi(bi) −Hi(ai) is equal to H(bi) −H(ai). Once
these curves are constructed, one can glue such curves to obtain the required exten-
sion of (F,G,H) (Proposition 6.8). To establish Lemma 6.7, we begin by using the
classical Whitney extension theorem to extend the jets F and G to Cm functions
f and g whose derivatives take the correct values on K. On each interval [ai, bi]
we then construct perturbations φ and ψ whose derivatives vanish at the endpoints
and are uniformly small throughout (ai, bi) so that lifting the curve (f + φ, g + ψ)
creates a horizontal curve whose height agrees with H at the endpoints of [ai, bi].
The difficulty arises in ensuring that these new curves actually meet the image of
K at the correct height. Fortunately, the condition on A(a, b)/V (a, b) controls the
change in height over K and therefore guarantees that small enough perturbations
can in fact be constructed despite the constraints on them. To build perturbations
large enough to meet the height requirements, inequalities such as∫ b

a

ψ(Tf)′ ≥ Cβ(b− a)m
∫ b

a

|(Tf)′|

are necessary, where β is the bound on the derivatives of ψ and C is some constant.
To obtain this, we use Markov’s inequality to control the behavior of polynomials
such as Tf (Lemma 2.10) which asserts that the largest values of a polynomial
cannot be overly concentrated in too small a region.

The structure of the paper is as follows. In Section 2 we recall preliminaries on
the Heisenberg group, the classical Whitney extension theorem, and useful inequal-
ities for polynomials. In Section 3 we show that Theorem 1.1 is consistent with
previous results for the C1 case. In Section 4 we give an example of jets satisfying
conditions (1) and (2) of Theorem 1.1 for which no Cm horizontal extension exists.
In Section 5 we prove the easier implication of necessity of the conditions in The-
orem 1.1. Finally, in Section 6 we prove that the conditions of Theorem 1.1 are
sufficient for the existence of a Cm horizontal extension.

Remark 1.2. To simplify notation we have restricted our attention to the first
Heisenberg group H1. Theorem 1.1 and its proof generalize to the setting of curves
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in an arbitrary Heisenberg group Hn, which is identified with R2n+1 in coordinates.
In this setting, F1, . . . , Fn, G1, . . . , Gn, and H are jets of order m on K, and our aim
is to extend (F1, . . . , Fn, G1, . . . , Gn, H) to a Cm horizontal curve in Hn. Condition
(1) of Theorem 1.1 is replaced by the requirement that F1, . . . , Fn, G1, . . . , Gn,
and H are all Whitney fields of class Cm on K. Condition (2) is substituted
with a related condition on the polynomials Pk resulting from differentiating the
horizontality condition for a curve γ in Hn:

(1.4) γ′2n+1(t) = 2

n∑
i=1

(γ′i(t)γn+i(t)− γ′n+i(t)γi(t)).

Condition (3) takes the same form except the definitions of A(a, b) and V (a, b) are
modified to reflect the fact that (1.4) is a sum of n terms in Hn, each of which is
very similar to the one term which appears in H1.

The proof of necessity in Hn is essentially the same as before except each com-
mutator term in the new definition of A(a, b) is estimated separately, then the
estimates are added together. The proof of sufficiency is Hn also follows the same
ideas. Each of the horizontal terms F1, . . . , Fn and G1, . . . , Gn is extended sepa-
rately to a Cm map. The analogue of Proposition 6.2 then constructs perturbations
for each horizontal term so that lifting the horizontal terms gives the right bound-
ary conditions for H in Proposition 6.2(3). Actually, one only needs to perturb
at most two coordinates, depending on which terms are large in the expression for
V (a, b). Once these interpolating maps are constructed, the remainder of the proof
of Theorem 1.1 in Hn is essentially the same as before.

It is natural to ask whether the ideas in the present paper can be applied in more
general Carnot groups. We intend to investigate this problem in the future.

Acknowledgements: Part of this work was done while A. Pinamonti was vis-
iting the University of Cincinnati. This visit was partly supported by a Research
Support Grant from the Taft Research Center at the University of Cincinnati. A. P.
is a member of Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro
Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

2. Preliminaries

2.1. The Heisenberg group.

Definition 2.1. The Heisenberg group Hn is the Lie group represented in coordi-
nates by R2n+1, whose points we denote by (x, y, t) with x, y ∈ Rn and t ∈ R. The
group law is given by:

(x, y, t)(x′, y′, t′) =

(
x+ x′, y + y′, t+ t′ + 2

n∑
i=1

(yix
′
i − xiy′i)

)
.

We equip Hn with left invariant vector fields

(2.1) Xi = ∂xi + 2yi∂t, Yi = ∂yi − 2xi∂t, 1 ≤ i ≤ n, T = ∂t.

Here ∂xi , ∂yi and ∂t denote the coordinate vectors in R2n+1, which may be inter-
preted as operators on differentiable functions. If [·, ·] denotes the Lie bracket of
vector fields, then [Xi, Yi] = −4T . Thus Hn is a Carnot group with horizontal layer
Span{Xi, Yi : 1 ≤ i ≤ n} and second layer Span{T}.
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Definition 2.2. A vector in R2n+1 is horizontal at p ∈ R2n+1 if it is a linear
combination of the vectors Xi(p), Yi(p), 1 ≤ i ≤ n.

An absolutely continuous curve γ in the Heisenberg group is horizontal if, at
almost every point t, the derivative γ′(t) is horizontal at γ(t).

Lemma 2.3. An absolutely continuous curve γ : [a, b] → R2n+1 is a horizontal
curve in the Heisenberg group if and only if, for t ∈ [a, b]:

γ2n+1(t) = γ2n+1(a) + 2

n∑
i=1

∫ t

a

(γ′iγn+i − γ′n+iγi).

The integrals above have a geometric interpretation; if the curve starts at 0 and
is smooth enough to apply Stokes’ theorem, then each gives a signed area in R2.

Lemma 2.4. Suppose σ : [a, b]→ R2 is a smooth curve with σ(a) = 0. Let [0, σ(b)]
be the straight line from 0 to σ(b) and let Aσ denote the signed area of the region
enclosed by σ and [0, σ(b)]. Then:

Aσ =
1

2

∫ b

a

(σ1σ
′
2 − σ2σ′1).

Clearly Lemma 2.3 implies that for any horizontal curve γ we have

γ′2n+1(t) = 2

n∑
i=1

(γ′i(t)γn+i(t)− γ′n+i(t)γi(t)) for a.e. t ∈ [a, b].

If we assume that γ is C1, this equality holds for every t ∈ [a, b]. If we further
assume that γ is Cm for some m > 1, then, for 1 ≤ k ≤ m, we may write

(2.2) Dkγ2n+1(t) =

n∑
i=1

Pk
(
γi(t), γn+i(t), γ

′
i(t), γ

′
n+i(t), . . . , D

kγi(t), D
kγn+i(t)

)
for all t ∈ [a, b] where Pk is a polynomial determined by the Leibniz rule.

2.2. Jets and the classical Whitney extension theorem.

Definition 2.5. A jet of order m on a set K ⊂ R consists of a collection of
continuous functions F = (F k)mk=0 on K. We denote the space of such jets by
Jm(K) and write F (x) = F 0(x) for x ∈ K.

For an open set U ⊂ R, we define the mapping Jm : Cm(U) → Jm(U), which
sends a Cm function on U to the jet on U consisting of derivatives up to order m,
as Jm(F ) = (DkF )mk=0 for F ∈ Cm(U). Here, Dk is the kth derivative of F .

Definition 2.6. Given a ∈ K and F ∈ Jm(K), the Taylor polynomial of order m
of F at a is

Tma F (x) =

m∑
k=0

F k(a)

k!
(x− a)k for all x ∈ R.

If m or a are clear, we write TaF or even TF for the Taylor polynomial.

Jets of the same order are added and subtracted term by term. For jets F ∈
Jm(K), we will sometimes use the notation Rma F = F − Jm(Tma F ). This gives for
0 ≤ k ≤ m

(Rma F )k(x) = F k(x)−
m−k∑
`=0

F k+`(a)

`!
(x− a)` for all x ∈ R.
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Definition 2.7. A jet F ∈ Jm(K) is a Whitney field of class Cm on K if, for every
0 ≤ k ≤ m, we have

(Rma F )k(b) = o(|a− b|m−k)

as |a− b| → 0 with a, b ∈ K.

The following theorem is the classical Whitney extension theorem [24].

Theorem 2.8 (Classical Whitney extension theorem). Let K be a closed subset of
an open set U ⊂ R.

Then there is a continuous linear mapping W from the space of Whitney fields
of class Cm on K to Cm(U) such that

Dk(WF )(x) = F k(x) for 0 ≤ k ≤ m and x ∈ K,

and WF is C∞ on U \K.

In other words, given a Whitney field F = (F k)mk=0 of class Cm on K, there is
a function f = WF ∈ Cm(U) so that Dkf = F k on K for 0 ≤ k ≤ m. We now
record two consequences of the proof of Theorem 2.8 from [1, p150] which will be
useful later. (See also [10].) Let K ⊂ R be a compact set.

(1) In this paper, we will define a modulus of continuity to be an increasing
function α : [0,∞)→ [0,∞) with α(0) = 0 and α(t)→ 0 as t↘ 0. For any
Cm Whitney field F on K, there exists a modulus of continuity α such that

(2.3) |(Rma F )k(x)| ≤ α(|x− a|)|x− a|m−k

for all a, x ∈ K and 0 ≤ k ≤ m.
(2) Let U be a bounded open set containing K and f = WF be the Whitney

extension constructed in the proof of Theorem 2.8 in [1]. Then there exists
a constant C such that

(2.4) |Dkf(x)−Dk(Tma F )(x)| ≤ Cα(|x− a|)|x− a|m−k

for all a ∈ K, x ∈ U , and 0 ≤ k ≤ m.

2.3. Inequalities for polynomials. We recall Markov’s inequality for polynomi-
als and prove some elementary consequences [17, 20].

Lemma 2.9 (Markov Inequality). Let P be a polynomial of degree n and a < b.
Then

max
[a,b]
|P ′| ≤ 2n2

b− a
max
[a,b]
|P |.

Lemma 2.10. Let P be a polynomial of degree n and a < b. Let M = max[a,b] |P |.
Then there exists a closed subinterval I ⊂ [a, b] of length at least (b − a)/4n2 such
that |P (x)| ≥M/2 for all x ∈ I.

Proof. Suppose x0 ∈ [a, b] satisfies P (x0) = M . Set I ⊂ [a, b] to be an interval
of length (b − a)/4n2 with x0 as an endpoint. Without loss of generality, write
I = [x0, x1]. Suppose |P (y)| < M/2 for some y ∈ I. Then the Markov inequality
gives

M

2
< |P (y)− P (x0)| ≤

∫ y

x0

|P ′| ≤ b− a
4n2

max
[a,b]
|P ′| ≤ 1

2
max
[a,b]
|P | = M

2

which is impossible, so no such y exists. �
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Corollary 2.11. Let P be a polynomial of degree n and a < b. Let M = max[a,b] |P |.
Then

M(b− a)

8n2
≤
∫ b

a

|P | ≤M(b− a).

3. Consistency with the C1 case

In this section, we will see that, in the case m = 1, Theorem 1.1 is consistent with
the C1 Whitney extension theorem for horizontal curves in the Heisenberg group
proven in [26]. We state [26, Theorem 1.5] in our language here for convenience:

Theorem 3.1 (Zimmerman). Let K ⊂ R be a compact set and F , G, and H be
jets of order 1 on K. Then the triple (F,G,H) extends to a C1 horizontal curve
(f, g, h) : R→ H1 if and only if

(1) F , G, and H are Whitney fields of class C1 on K,
(2) for every t ∈ K, we have H1(t) = 2(F 1(t)G(t)− F (t)G1(t)),
(3) the following convergence is uniform as (b− a)↘ 0 for a, b ∈ K:

(3.1)
H(b)−H(a)− 2(F (b)G(a)− F (a)G(b))

(b− a)2
→ 0.

As before, we have identified the functions F (x) = F 0(x), G(x) = G0(x), and
H(x) = H0(x) for each x ∈ K. Note that conditions (1) and (2) here are the same
as those in Theorem 1.1. To prove that Theorem 1.1 is indeed a generalization of
Theorem 3.1, we need only show that the convergence in (3.1) is equivalent to the
uniform convergence A(a, b)/V (a, b) → 0. This will follow from the definitions of
A and V . Indeed, in the case m = 1, the area discrepancy (1.1) is

A(a, b) = H(b)−H(a)

− 2

∫ b

a

[F 1(a)(G(a) +G1(a)(t− a))−G1(a)(F (a) + F 1(a)(t− a))] dt

+ 2F (a)(G(b)− (G(a) +G1(a)(b− a)))

− 2G(a)(F (b)− (F (a) + F 1(a)(b− a)))

= H(b)−H(a)− 2(F (b)G(a)− F (a)G(b)).

That is, A(a, b) is nothing more than the top of the fraction in (3.1). Moreover, the
velocity is

V (a, b) = (b− a)2 + (b− a)

∫ b

a

|F 1(a)|+ |G1(a)| = (b− a)2(1 + |F 1(a)|+ |G1(a)|).

Since F ′ and G′ are continuous on the compact set K, there is a uniform bound
of 1 + |F 1(a)| + |G1(a)|. Therefore, the uniform convergence A(a, b)/V (a, b) → 0
is equivalent to the uniform convergence (3.1), and Theorem 1.1 is consistent with
[26, Theorem 1.5] when m = 1.

4. Importance of the area condition

Here we will see the importance of the area-velocity assumption (3) in The-
orem 1.1. In other words, we will construct Whitney fields F , G, and H on a
compact set K ⊂ R which satisfy condition (2) of Theorem 1.1, but there will be
no Cm horizontal extension of (F,G,H) on R. Note that, since F , G, and H are
all Whitney fields, the classical Whitney extension theorem guarantees that a Cm
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extension will exist. However, we will show that any such extension cannot possibly
be horizontal. Indeed, such a horizontal, smooth extension would have to satisfy
condition (3) everywhere (according to Proposition 5.1), but our mapping will not
satisfy this on K.

This construction will be nearly identical to [26, Proposition 1.3] which provided
an example in the case m = 1. Here, we will show that almost the same construction
works for any m ≥ 1. We summarize this discussion in the following proposition.

Proposition 4.1. There is a compact set K ⊂ R and jets F , G, and H of order
m on K so that

(1) F , G, and H are Whitney fields of class Cm on K,
(2) for every 1 ≤ k ≤ m and t ∈ K we have

Hk(t) = Pk
(
F 0(t), G0(t), F 1(t), G1(t), . . . , F k(t), Gk(t)

)
,

but there is no Cm horizontal curve (f, g, h) : R→ H1 extending the triple (F,G,H).

Proof. As mentioned above, we will proceed as in the proof of [26, Proposition 1.3].
Define the compact set K ⊂ R as follows:

K :=

∞⋃
n=0

[cn, dn] ∪ {1} where [cn, dn] :=
[
1− 2−n, 1− 3

42−n
]

for every n ∈ N.

For 0 ≤ k ≤ m, define F k(t) = 0 and Gk(t) = 0 for every t ∈ K. Also, define
H(t) = 3−mn if t ∈ [cn, dn] and H(1) = 0, and set Hk(t) = 0 for 1 ≤ k ≤ m and
every t ∈ K. The jets of F and G are trivially Whitney fields, and (2) is trivially
satisfied.

We will now show that H is a Whitney field. For 1 ≤ k ≤ m, the remainders
(Rma H)k are constantly 0 on K. Thus we need only show that

(Rma H)0(b)

|b− a|m
=
H(b)−H(a)

|b− a|m
→ 0

uniformly on K as (b− a)→ 0. Fix ε > 0 and n ∈ N with 4m(2/3)mn < ε. Choose
a, b ∈ K with |b − a| < 2−(n+2). If a and b lie in the same interval [ck, dk], then
(Rma H)0(b) = 0. If a and b lie in different intervals [ck, dk] and [c`, d`] (say ` > k)
then, as in the proof of [26, Proposition 1.3], we see that k ≥ n. Therefore

H(b)−H(a)

|b− a|m
≤ 3−mk − 3−m`

(c` − dk)m
≤ 3−mk

(ck+1 − dk)m
= 4m

(
2
3

)mk ≤ 4m
(
2
3

)mn
< ε.

If either a or b is equal to 1, a similar argument holds. Hence H is a Whitney field.
Suppose now that (f, g, h) : R → H1 is a Cm curve extending (F,G,H). (Ac-

cording to the classical Whitney extension theorem, such a curve is guaranteed to
exist.) Suppose also that (f, g, h) is horizontal. Then, according to Proposition 5.1,
we must have A(a, b)/V (a, b)→ 0 uniformly as (b− a)→ 0 for a, b ∈ K. However,

A(a, b) = H(b)−H(a) and V (a, b) = (b− a)2m

for any a, b ∈ K. Therefore, we have |cn+1 − dn| = 2−(n+2) → 0, but

A(cn+1, dn)

V (cn+1, dn)
=

3−mn − 3−m(n+1)

4−m(n+2)
=

(3m − 1)16m

3m

(
4

3

)mn
→∞

as n→∞. This contradicts Proposition 5.1. Thus there is no Cm horizontal curve
extending (F,G,H). �
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5. Necessity of the criteria for a Cm horizontal extension

In this section we show that the conditions in Theorem 1.1 are necessary for
existence of a Cm horizontal extension. Recall the polynomials Pk from (2.2).

Proposition 5.1. Suppose (f, g, h) : R→ H1 is a Cm horizontal curve and K ⊂ R
is a compact set. Let F = Jm(f)|K , G = Jm(g)|K , and H = Jm(h)|K be the jets
of order m obtained by restricting f, g, h and their derivatives to K. Then

(1) F G, and H are Whitney fields of class Cm on K,
(2) for all t ∈ K and 1 ≤ k ≤ m we have

(5.1) Hk(t) = Pk
(
F 0(t), G0(t), F 1(t), G1(t), . . . , F k(t), Gk(t)

)
,

(3) A(a, b)/V (a, b)→ 0 uniformly as (b− a)↘ 0 with a, b ∈ K.

We use the remainder of this section to prove Proposition 5.1.

Proof. Suppose f, g, h, F,G,H,K are as in the statement of Proposition 5.1. With-
out loss of generality, we may assume that K = [A,B] is a closed interval. Indeed,
if (1), (2), and (3) hold on the interval [A,B], then they also hold on any compact
subset. Taylor’s theorem asserts that F , G, and H must be Whitney fields of class
Cm on K. Also (2.2) gives

Dkh(t) = Pk
(
f(t), g(t), f ′(t), g′(t), . . . , Dkf(t), Dkg(t)

)
for 1 ≤ k ≤ m and for all t ∈ R. This proves Proposition 5.1 (1) and (2). It remains
to prove (3).

Fix ε > 0. There exists δ > 0 such that if [a, b] ⊂ K and (b− a) < δ then:

(i) |Dif −Dif(a)| ≤ ε and |Dig −Dig(a)| ≤ ε on [a, b] for 0 ≤ i ≤ m.
(ii) |f − Tma f | ≤ ε(b− a)m and |g − Tma g| ≤ ε(b− a)m on [a, b].
(iii) |f ′ − (Tma f)′| ≤ ε(b− a)m−1 and |g′ − (Tma g)′| ≤ ε(b− a)m−1 on [a, b].

Let a ∈ K and let Tf = Tma f and Tg = Tma g be the Taylor polynomials of f and
g of order m at a. Fix b ∈ K with 0 < b− a < δ.

Temporarily assume f(a) = g(a) = h(a) = 0. In this case A(a, b) takes the
simpler form.

A(a, b) = h(b)− h(a)− 2

∫ b

a

((Tf)′Tg − Tf(Tg)′).

Since (f, g, h) is a horizontal curve, we have

h(b)− h(a) = 2

∫ b

a

(f ′g − fg′).

Hence we can estimate |A(a, b)| as follows∣∣∣∣∣h(b)− h(a)− 2

∫ b

a

((Tf)′Tg − Tf(Tg)′)

∣∣∣∣∣(5.2)

≤ 2

∫ b

a

|f ′g − (Tf)′Tg|+ 2

∫ b

a

|fg′ − Tf(Tg)′|.

We will only show how to bound the first term above, since the second is the same
with f and g interchanged. Notice

f ′g − (Tf)′(Tg) = (f ′ − (Tf)′)(g − Tg) + (f ′ − (Tf)′)(Tg) + (g − Tg)(Tf)′.
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Hence∫ b

a

|f ′g − (Tf)′Tg| ≤
∫ b

a

|f ′ − (Tf)′||g − Tg|+ |f ′ − (Tf)′||Tg|+ |g − Tg||(Tf ′)|

≤ ε2(b− a)2m + ε(b− a)m−1
∫ b

a

|Tg|+ ε(b− a)m
∫ b

a

|(Tf)′|.

Using a similar estimate for the second term gives the following estimate of (5.2)∣∣∣∣∣h(b)− h(a)− 2

∫ b

a

((Tf)′Tg − Tf(Tg)′)

∣∣∣∣∣
≤ 4ε2(b− a)2m + 2ε(b− a)m−1

∫ b

a

|Tf |+ |Tg|+ 2ε(b− a)m
∫ b

a

|(Tf)′|+ |(Tg)′|.

Since Tf(a) = f(a) = 0, we have |Tf(x)| ≤ M(b − a) on [a, b] where M =
max[a,b] |(Tf)′|. Combining this with Corollary 2.11 applied to the polynomial
(Tf)′ gives ∫ b

a

|Tf | ≤M(b− a)2 ≤ 8m2(b− a)

∫ b

a

|(Tf)′|.

Similarly, we obtain the same inequality for g∫ b

a

|Tg| ≤M(b− a)2 ≤ 8m2(b− a)

∫ b

a

|(Tg)′|.

Hence ∣∣∣∣∣h(b)− h(a)− 2

∫ b

a

((Tf)′Tg − Tf(Tg)′)

∣∣∣∣∣
≤ 4ε2(b− a)2m + (2 + 16m2)ε(b− a)m

∫ b

a

|(Tf)′|+ |(Tg)′|.

General case without assuming f(a) = g(a) = h(a) = 0. We begin by
considering the curve (u, v, w) := (f(a), g(a), h(a))−1(f, g, h). The definition of the
group operation gives

(5.3) u = f − f(a), v = g − g(a),

(5.4) w = h− h(a) + 2f(a)g − 2g(a)f.

Also Diu = Dif and Div = Dig for 1 ≤ i ≤ m. Clearly u(a) = v(a) = w(a) = 0
and (u, v, w) is a Cm horizontal curve. As a consequence of this, we obtain the
following analogues of the earlier estimates on f and g for 0 ≤ i ≤ m on the
interval [a, b]:

(i) |Diu−Diu(a)| = |Dif −Dif(a)| ≤ ε, |Div −Div(a)| = |Dig −Dig(a)| ≤ ε.
(ii) |u− Tu| = |f − Tf | ≤ ε(b− a)m and |v − Tv| = |g − Tg| ≤ ε(b− a)m.
(iii) |u′ − (Tu)′| = |f ′ − (Tf)′| ≤ ε(b − a)m−1 and |v′ − (Tv)′| = |g′ − (Tg)′| ≤

ε(b− a)m−1.

Hence we may follow the proof of the previous case to obtain the estimate
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∣∣∣∣∣w(b)− w(a)− 2

∫ b

a

((Tu)′Tv − Tu(Tv)′)

∣∣∣∣∣
≤ 4ε2(b− a)2m + (2 + 16m2)ε(b− a)m

∫ b

a

|(Tu)′|+ |(Tv)′|.

Easy calculations yield

w(b)− w(a) = h(b)− h(a) + 2f(a)g(b)− 2g(a)f(b)

and∫ b

a

((Tu)′Tv − Tu(Tv)′) =

∫ b

a

((Tf)′(Tg)− (Tf)(Tg)′)− g(a)Tf(b) + f(a)Tg(b).

Hence

w(b)− w(a)− 2

∫ b

a

((Tu)′Tv − Tu(Tv)′)

= h(b)− h(a)− 2

∫ b

a

(Tf)′(Tg)− (Tf)(Tg)′

+ 2f(a)(g(b)− Tg(b))− 2g(a)(f(b)− Tf(b)).

We deduce that the absolute value of

h(b)− h(a)− 2

∫ b

a

(Tf)′(Tg)− (Tf)(Tg)′

+ 2f(a)(g(b)− Tg(b))− 2g(a)(f(b)− Tf(b))

is less than or equal to

4ε2(b− a)2m + (2 + 16m2)ε(b− a)m
∫ b

a

|(Tf)′|+ |(Tg)′|.

That is, we have shown |A(a, b)| ≤ (4ε2 + (2 + 16m2)ε)V (a, b) for any a, b ∈ K
with 0 < b− a < δ. This shows

A(a, b)/V (a, b)→ 0 uniformly as (b− a)↘ 0 with a, b ∈ K
which concludes the proof of Proposition 5.1. �

6. Sufficiency of the criteria for a Cm horizontal extension

In this section we show that the conditions in Theorem 1.1 are sufficient to
guarantee the existence of a Cm horizontal extension. Recall the polynomials Pk
from (2.2) obtained by differentiating the definition of a horizontal curve. Given
jets F,G,H of order m on a compact set K ⊂ R and a, b ∈ K, recall the area
discrepancy A(a, b) and velocity V (a, b) from (1.1) and (1.2) given by:

A(a, b) = H(b)−H(a)− 2

∫ b

a

((TaF )′(TaG)− (TaG)′(TaF ))

+ 2F (a)(G(b)− TaG(b))− 2G(a)(F (b)− TaF (b)),

and

V (a, b) = (b− a)2m + (b− a)m
∫ b

a

|(TaF )′|+ |(TaG)′|.
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Theorem 6.1. Let K ⊂ R be compact and F,G,H be jets of order m on K.
Assume

(1) F , G, and H are Whitney fields of class Cm on K,
(2) for every 1 ≤ k ≤ m and t ∈ K we have

Hk(t) = Pk
(
F 0(t), G0(t), F 1(t), G1(t), . . . , F k(t), Gk(t)

)
,

(3) A(a, b)/V (a, b)→ 0 uniformly as (b− a)↘ 0 with a, b ∈ K.

Then the triple (F,G,H) extends to a Cm horizontal curve (f, g, h) : R→ H1.

We use the remainder of this section to prove Theorem 6.1.

Proof. Suppose K,F,G,H are as in the statement of the theorem and satisfy the
assumptions stated. Let I = [minK,maxK] and notice that it suffices to find a
Cm horizontal extension (f, g, h) : I → H. Here, derivatives and continuity at the
endpoints are defined, as usual, using one-sided limits. We may write I \ K =
∪∞i=1(ai, bi) for disjoint open intervals (ai, bi) with ai, bi ∈ K.

Using the classical Whitney extension theorem (Theorem 2.8), we can choose
f, g : I → R of class Cm such that Dkf(x) = F k(x) and Dkg(x) = Gk(x) for every
x ∈ K and 0 ≤ k ≤ m. We also choose f and g to be C∞ in I \K. Note that, while
the classical Whitney extension theorem gives extension to an open set containing
K, to extend to I we simply extend to an open set containing I then restrict to I.
Recall that Dk(Tma F )(x) takes the form

Dk(Tma F )(x) =

m−k∑
`=0

F k+`(a)

`!
(x− a)`

and a similar expression holds for Dk(Tma G)(x). Using (2.3), we may assume there
exists a modulus of continuity α so that, for all a, x ∈ K and 0 ≤ k ≤ m,

(6.1) |F k(x)−Dk(Tma F )(x)| ≤ α(|x− a|)|x− a|m−k,

(6.2) |Gk(x)−Dk(Tma G)(x)| ≤ α(|x− a|)|x− a|m−k.
Using (2.4), we can ensure that for a ∈ K, x ∈ I and 0 ≤ k ≤ m:

(6.3) |Dkf(x)−Dk(Tma F )(x)| ≤ Cα(|x− a|)|x− a|m−k,

(6.4) |Dkg(x)−Dk(Tma G)(x)| ≤ Cα(|x− a|)|x− a|m−k

for some constant C > 0. Hence, by scaling the value of α by a constant depending
on F,G,K,m (but still maintaining α(t) → 0 as t ↘ 0), we can assume that for
every 0 ≤ k ≤ m:

(6.5) |Dkf(x)−Dkf(a)| ≤ α(|x− a|) and |Dkg(x)−Dkg(a)| ≤ α(|x− a|).
Finally, using the hypothesis A(a, b)/V (a, b) → 0 uniformly, we choose α possibly
larger (but still a modulus of continuity) so that

(6.6) A(a, b) ≤ α(b− a)V (a, b) for a, b ∈ K with a < b.

Proposition 6.2. There exists a modulus of continuity β ≥ α (independent of i)
for which the following holds: for each interval [ai, bi], there exist C∞ functions
φ, ψ : [ai, bi]→ R such that

(1) Dkφ(ai) = Dkφ(bi) = Dkψ(ai) = Dkψ(bi) = 0 for 0 ≤ k ≤ m.
(2) max{|Dkφ|, |Dkψ|} ≤ β(bi − ai) for 0 ≤ k ≤ m on [ai, bi].
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(3) H(bi)−H(ai) = 2
∫ bi
ai

(f + φ)′(g + ψ)− (g + ψ)′(f + φ).

Proof. This proof will require several lemmas. Fix an interval [a, b] of the form
[ai, bi] for some i. Since the interval is fixed, we will write A, V, α instead of
A(a, b), V (a, b), α(b− a) respectively.

Claim 6.3. It suffices to consider the case F (a) = G(a) = H(a) = 0.

Proof. Indeed, suppose this case has been established and f, g, F,G,H are chosen
without restriction satisfying (6.1)–(6.6). Define u = f − f(a), v = g − g(a) and
define jets U, V,W so that

(U, V,W ) = (F (a), G(a), H(a))−1(F,G,H)

and Uk = F k and V k = Gk for 1 ≤ k ≤ m. The equations for U, V,W are calculated
from the group law as in (5.3) and (5.4). It is easy to verify that the analogues of
(6.1)–(6.5) hold for u, v, U, V,W since the group law is simply Euclidean addition
in the two horizontal directions. For example, (6.1) becomes

|Uk(x)−Dk(Tma U)(x)| ≤ α(|x− a|)|x− a|m−k.

Now, a simple calculation yields

A(a, b) := H(b)−H(a)− 2

∫ b

a

((TaF )′(TaG)− (TaG)′(TaF ))

+ 2F (a)(G(b)− TaG(b))− 2G(a)(F (b)− TaF (b)).

= W (b)− 2

∫ b

a

(TaU)′(TaV )− (TaV )′(TaU)

which is the analogue of A(a, b) for (U, V,W ). Of course,

V (a, b) = (b− a)2m + (b− a)m
∫ b

a

|(TaF )′|+ |(TaG)′|

= (b− a)2m + (b− a)m
∫ b

a

|(TaU)′|+ |(TaV )′|

which is the analogue of V (a, b) for (U, V,W ). Hence we obtain also the analogue of
(6.6) for U, V,W . If we assume that the proposition has been proven for u, v, U, V,W
satisfying the initial condition U(a) = V (a) = W (a) = 0, then this gives a modulus
of continuity β and C∞ functions φ, ψ : [a, b]→ R such that

(1) Dkφ(a) = Dkφ(b) = Dkψ(a) = Dkψ(b) = 0 for 0 ≤ k ≤ m.
(2) max{|Dkφ|, |Dkψ|} ≤ β(b− a) for 0 ≤ k ≤ m on [a, b].

(3) W (b)−W (a) = 2
∫ b
a

(u+ φ)′(v + ψ)− (v + ψ)′(u+ φ).

Simple calculations yield

W (b)−W (a) = W (b) = H(b)−H(a) + 2F (a)G(b)− 2G(a)F (b)

and

2

∫ b

a

(u+ φ)′(v + ψ)− (v + ψ)′(u+ φ) = 2

∫ b

a

((f + φ)′(g + ψ)− (g + ψ)′(f + φ))

+ 2f(a)g(b)− 2g(a)f(b).
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Hence (3) is transformed into

H(b)−H(a) = 2

∫ b

a

(f + φ)′(g + ψ)− (g + ψ)′(f + φ).

This is the desired statement for the general curve, and the claim is proven. �

Hence we can assume F (a) = G(a) = H(a) = 0. In this case we have

A = H(b)−H(a)− 2

∫ b

a

((TF )′(TG)− (TG)′(TF ))

and

V = (b− a)2m + (b− a)m
∫ b

a

|(TF )′|+ |(TG)′|.

Define

A := H(b)−H(a)− 2

∫ b

a

(f ′g − g′f).

Notice Proposition 6.2(3) can be rewritten as:

(6.7) 2

∫ b

a

(f ′ψ − ψ′f) + (φ′g − g′φ) + (φ′ψ − ψ′φ) = A.

An argument analogous to the one in Section 5 with ε replaced by α yields∣∣∣∣∣
∫ b

a

(f ′g − g′f)−
∫ b

a

((Tf)′Tg − Tf(Tg)′)

∣∣∣∣∣ ≤ (2α2 + (1 + 8m2)α)V.

Combining this with (6.6) shows that

(6.8) |A| =

∣∣∣∣∣H(b)−H(a)− 2

∫ b

a

(f ′g − g′f)

∣∣∣∣∣ ≤ C1α̂V.

Here, α̂ = α2 + α, and C1 ≥ 1 is a fixed constant depending on m which we will
refer to later. Intuitively, (6.8) implies that f and g are no worse than TF = Tf
and TG = Tg for the purpose of lifting to give the correct height. However, they
have the advantage of being Cm maps defined on the interval [a, b] which satisfy
the correct boundary conditions. Next,∫ b

a

(f ′ψ − ψ′f) = 2

∫ b

a

f ′ψ

for any C∞ function ψ which vanishes at a and b, and a similar equation holds
for the other terms in (6.7). Hence constructing φ and ψ which satisfy Proposition
6.2(3) is equivalent to solving

(6.9) 4

∫ b

a

(ψf ′ + φg′ + ψφ′) = A,

where A satisfies |A| ≤ C1α̂V . We now show how to do this subject to the con-
straints Proposition 6.2(1) and (2).

Remark 6.4. Suppose C0 > 0 is a constant depending only on m and diam(K) (the
exact value of which will be established at the beginning of Lemma 6.5). Note that,
once this constant has been chosen, we may assume for the rest of the proof of the
proposition that α̂ < 1/C0. Indeed, since α̂ is a modulus of continuity and I is
bounded, there are only finitely many intervals [ai, bi] satisfying α̂(bi− ai) ≥ 1/C0.
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Thus, if we are currently considering such an interval, we are free to choose ψ
and φ to be any C∞ functions which satisfy (6.9) and Proposition 6.2(1), and
we may assign β(bi − ai) to be the maximum over all |Diφ(x)| and |Diψ(x)| for
0 ≤ i ≤ m and x ∈ [a, b] (and over all [aj , bj ] with bj − aj = bi − ai) to ensure that
Proposition 6.2(2) holds. (We may also choose β in such a way that it is still an
increasing function.)

We divide the constructions of φ and ψ into two cases. In one case, (Tf)′ (or
(Tg)′) is large enough on average to allow us to create a controlled perturbation of
g (or f) that encloses the prescribed area (Proposition 6.2(3)). In the other case,
both (Tf)′ and (Tg)′ are small on average, and so A is small as well. Thus, both
f and g may be perturbed slightly to satisfy Proposition 6.2(3). For convenience,
we recall

V = (b− a)2m + (b− a)m
∫ b

a

|(Tf)′|+ |(Tg)′|.

Lemma 6.5. Suppose

(6.10)

∫ b

a

|(Tf)′| ≥ max

(∫ b

a

|(Tg)′|, (b− a)m

)
.

Then there exists a C∞ map ψ on [a, b] satisfying

(1) Diψ(a) = Diψ(b) = 0 for 0 ≤ i ≤ m,
(2) |Diψ(x)| ≤ (C1C0)α̂ on [a, b],

(3) 4
∫ b
a
ψf ′ = A.

Hence, if (6.10) holds, we may choose φ ≡ 0 on [a, b].

Proof. In this case we have

(6.11) |A| ≤ 3C1α̂(b− a)m
∫ b

a

|(Tf)′|.

We begin by applying Lemma 2.10 to the polynomial (Tf)′. This gives a closed
subinterval I ⊂ [a, b] of length at least (b − a)/4m2 such that |(Tf)′| ≥ M/2 in I,
where M = max[a,b] |(Tf)′|. In partiular, (Tf)′ 6= 0 on I. By rescaling, translating,
and dilating a bump function, we can choose a C∞ map η on [a, b] and a constant
C0 ≥ 1 depending only on m and diam(K) such that

(a) Diη = 0 outside I for 0 ≤ i ≤ m,
(b) |Diη(x)| ≤ C0α̂ on [a, b],
(c) |η| ≥ 48m2α̂ · (b−a)m on the interval consisting of the middle third of I (which

has length at least (b− a)/12m2) so that the sign of η is the same as the sign
of (Tf)′ on I.

Now define ψ on [a, b] by scaling η by a constant:

ψ =

(
A

4
∫ b
a
ηf ′

)
· η.

In particular, this gives 4
∫ b
a
ψf ′ = A which is property (3). Clearly, ψ satisfies

property (1). It remains to show that ψ satisfies property (2). To prove this, we
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must bound
∣∣∣∫ ba ηf ′∣∣∣ from below. We begin with∣∣∣∣∣

∫ b

a

η(Tf)′

∣∣∣∣∣ =

∫
I

η(Tf)′ ≥ b− a
12m2

48m2α̂(b− a)m
M

2
= 2α̂(b− a)m+1M

≥ 2α̂(b− a)m
∫ b

a

|(Tf)′|.

Using |f ′ − (Tf)′| ≤ α̂(b− a)m−1 (since α ≤ α̂) and |η| ≤ C0α̂(b− a)m gives∫ b

a

|ηf ′ − η(Tf)′| ≤ C0α̂
2(b− a)2m ≤ C0α̂

2(b− a)m
∫ b

a

|(Tf)′|.

This gives

(6.12)

∣∣∣∣∣
∫ b

a

ηf ′

∣∣∣∣∣ ≥ α̂(b− a)m
∫ b

a

|(Tf)′| (2− C0α̂) > α̂(b− a)m
∫ b

a

|(Tf)′|

because of the assumption α̂ < 1/C0 from Remark 6.4. We are now ready to finish
the proof of (2). From (6.11) and (6.12), we have

|Diψ| = |A|

4
∣∣∣∫ ba ηf ′∣∣∣ |Diη| ≤ (C1C0)α̂.

�

Clearly Lemma 6.5 has a direct analogue involving φ if

(6.13)

∫ b

a

|(Tg)′| ≥ max

(∫ b

a

|(Tf)′|, (b− a)m

)
,

in which case the conclusion is 4
∫ b
a
φg′ = A. In this case, we choose ψ ≡ 0 on [a, b].

It remains to construct the functions φ and ψ when (6.10) and (6.13) both fail.

Lemma 6.6. Suppose

(b− a)m > max

(∫ b

a

|(Tf)′|,
∫ b

a

|(Tg)′|

)
.

Then there exist C∞ maps φ and ψ and a constant C2 > 0 depending only on m
and diam(K) such that

(1) Diψ(a) = Diψ(b) = Diφ(a) = Diφ(b) = 0 for 0 ≤ i ≤ m,
(2) max{|Diψ(x)|, |Diφ(x)|} ≤ 18C2

√
C1α̂ on [a, b] for 0 ≤ i ≤ m,

(3) 4
∫ b
a

(ψf ′ + φg′ + ψφ′) = A.

Proof. Notice the hypotheses imply

(6.14) |A| ≤ C1α̂V ≤ 3C1α̂(b− a)2m.

For simplicity, write B := 3
√
C1α̂. Set C2 > 0 to be a constant (depending only

on m and diam(K)) so that there exist C∞ functions ξ and η on [a, b] (which are
each a dilated, scaled, translated bump function) so that

(a) Diξ(a) = Diξ(b) = 0 for 0 ≤ i ≤ m,
(b) |Diξ| ≤ C2B on [a, b] for 0 ≤ i ≤ m,
(c) ξ′ ≥ B(b− a)m−1 on a subinterval I of [a, b] with length (b− a)/3.

and
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(a) Diη vanishes outside of I for 0 ≤ i ≤ m,
(b) |Diη| ≤ C2B on [a, b] for 0 ≤ i ≤ m,
(c) η ≥ B(b− a)m on the middle third of I (which has length (b− a)/9).

Case 1:
∣∣∣∫ ba ηf ′∣∣∣ ≥ |A|/24.

Set φ ≡ 0 on [a, b] and ψ = η · (A/(4
∫ b
a
ηf ′)). Then (1) and (3) are clearly

satisfied, and we have as before

|Diψ| = |A|

4
∣∣∣∫ ba ηf ′∣∣∣ |Diη| ≤ 6C2B on [a, b].

Case 2:
∣∣∣∫ ba ξg′∣∣∣ ≥ |A|/24. This is identical to the previous case when we choose

ψ ≡ 0 on [a, b] and φ = ξ · (A/(4
∫ b
a
ξg′)).

Case 3: max
{∣∣∣∫ ba ηf ′∣∣∣ , ∣∣∣∫ ba ξg′∣∣∣} < |A|/24.

We first have∫ b

a

ηξ′ =

∫
I

ηξ′ ≥ 1
9B

2(b− a)2m = C1α̂(b− a)2m ≥ |A|
3
,

and hence 4
∫ b
a

(ηf ′ + ξg′ + ηξ′) > |A|. Now consider F : R→ R defined by

F(λ) = 4

∫ b

a

(λη)f ′ + ξg′ + (λη)ξ′.

Clearly F is a continuous map with F(0) = 4
∫ b
a
ξg′ < |A|/6 and F(1) > |A|. Hence,

by the intermediate value theorem, there exists λ ∈ (0, 1) such that F(λ) = |A|. In
other words, if we set φ = ±ξ and ψ = ±λη (with the appropriate choice of sign),
we have found mappings which satisfy the lemma. �

Setting β(b − a) := max{(C1C0)α̂, 18C2

√
C1α̂} completes the proof of Proposi-

tion 6.2. �

We are now ready to build the Cm horizontal extension of (F,G,H).

Lemma 6.7. For all i ≥ 1, there is a horizontal curve (Fi,Gi,Hi) : [ai, bi] → H1

of class Cm which satisfies

(1) for 0 ≤ k ≤ m,

DkFi(ai) = F k(ai), DkGi(ai) = Gk(ai), DkHi(ai) = Hk(ai)
DkFi(bi) = F k(bi), DkGi(bi) = Gk(bi), DkHi(bi) = Hk(bi)

(2) |DkFi(x)−F k(ai)| ≤ 2β(bi − ai) and |DkGi(x)−Gk(ai)| ≤ 2β(bi − ai) for
0 ≤ k ≤ m and x ∈ [ai, bi].

Proof. Fix i ∈ N. Set Fi = f + φ and Gi = g + ψ where φ and ψ are chosen using
Proposition 6.2 for the interval [ai, bi] and f and g are the Cm Whitney extensions
of F and G respectively chosen earlier. Define Hi to be the horizontal lift of Fi
and Gi with starting height H(ai):

(6.15) Hi(x) := H(ai) + 2

∫ x

ai

(F ′iGi −FiG′i) for all x ∈ [ai, bi].

Differentiating Hi gives for any x ∈ [ai, bi] and 1 ≤ i ≤ m the equation

(6.16) DkHi(x) = Pk(Fi(x),Gi(x),F ′i(x),G′i(x), . . . , DkFi(x), DkGi(x))
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by the definition of the polynomials Pk.
Clearly (Fi,Gi,Hi) is horizontal by definition of the horizontal lift. It is of class

Cm because f, g, φ, ψ are at least Cm.
Fix 1 ≤ k ≤ m. For DkFi(ai) we observe

DkFi(ai) = Dkf(ai) +Dkφ(ai) = F k(ai) + 0 = F k(ai)

by definition of f and φ. The same argument works for DkFi(bi), DkGi(ai), and
DkGi(bi). For DkHi(ai) we calculate as follows using the assumption (1.3):

DkHi(ai) = Pk(Fi(ai),Gi(ai),F ′i(ai),G′i(ai), . . . , DkFi(ai), DkGi(ai))

= Pk(F (ai), G(ai), F
1(ai), G

1(ai), . . . , F
k(ai), G

k(ai))

= Hk(ai).

The same argument shows DkHi(bi) = Hk(bi). Finally, Hi(ai) = H(ai) by defini-
tion, and Proposition 6.2(3) together with (6.15) gives Hi(bi) = H(bi). This proves
(1).

For (2) we use the definition of φ, ψ and (6.5) to estimate for t ∈ [ai, bi]:

|DkFi(x)− F k(ai)| ≤ |Dkφ(x)|+ |Dkf(x)−Dkf(ai)| ≤ β(bi − ai) + α(bi − ai)
≤ 2β(bi − ai).

The same argument also yields |DkGi(x) − Gk(ai)| ≤ 2β(bi − ai) which concludes
the proof. �

Recall the interval I = [minK, maxK] and the decomposition I\K = ∪i≥1(ai, bi),
where the intervals (ai, bi) are disjoint and ai, bi ∈ K.

Proposition 6.8. Define the curve Γ = (F ,G,H) : I → H1 as follows:

Γ(x) := (F (x), G(x), H(x)) if x ∈ K

and

Γ(x) := (Fi(x),Gi(x),Hi(x)) if x ∈ (ai, bi) for some i ∈ N.

Then Γ is a Cm horizontal curve in H1 with

DkF(x) = F k(x), DkG(x) = Gk(x), DkH(x) = Hk(x)

for all x ∈ K and 0 ≤ k ≤ m.

Proof. Clearly the curve Γ is Cm in the subintervals (ai, bi). Define maps γk on K
for 0 ≤ k ≤ m by γk = (F k, Gk, Hk). With this notation we have to show that Γ
is a Cm horizontal curve and DkΓ|K = γk for 0 ≤ k ≤ m.

Fix k ∈ {1, . . . ,m} and suppose we have shown that Dk−1Γ exists on I and
Dk−1Γ|K = γk−1. (In the case k = 1, this follows from the definition of Γ.) In
Lemma 6.7, we showed that a one-sided derivative DkΓ exists from the right at ai
and from the left at bi for every i ∈ N and takes the correct value. Fix x ∈ K with
x 6= ai for any i ∈ N and x 6= maxK. We now prove differentiability of Dk−1Γ at
x from the right. Suppose {xi} is a decreasing sequence converging to x. We will
show that

(6.17) (xi − x)−1|Dk−1Γ(xi)−Dk−1Γ(x)− (xi − x)γk(x)|
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vanishes as i→∞. If {xi} ⊂ K, then (6.17) indeed vanishes since Dk−1Γ|K = γk−1

and γ is a triple of Whitney fields on K. If {xi} ⊂ I \K, then there exist ji ∈ N
for every i ∈ N such that xi ∈ (aji , bji). For each i ∈ N, we may bound (6.17) by

(xi − x)−1|Dk−1Γ(xi)−Dk−1Γ(aji)− (xi − aji)γk(aji)|(6.18)

+ (xi − x)−1|(xi − aji)γk(aji)− (xi − aji)γk(x)|(6.19)

+ (xi − x)−1|γk−1(aji)− γk−1(x)− (aji − x)γk(x)|.(6.20)

Since (xi − aji) < (xi − x), (6.18) may be bounded by

1

xi − aji

∫ xi

aji

∣∣DkΓ(t)− γk(aji)
∣∣ dt ≤ sup

t∈(aji ,bji )

∣∣DkΓ(t)− γk(aji)
∣∣ .

Since

|DkH(t)−Hk(aji)|

=
∣∣∣Pk (F(t),G(t),F ′(t),G′(t), . . . , DkF(t), DkG(t)

)
− Pk

(
F (aji), G(aji), F

′(aji), G
′(aji), . . . , F

k(aji), G
k(aji)

) ∣∣∣
for any t ∈ (aji , bji) and since each Pk is a polynomial, property (2) in Lemma 6.7
implies that (6.18) vanishes as (bji − aji)→ 0. The term (6.19) vanishes uniformly
as well since γk is continuous on the compact set K, and (6.20) also vanishes due
to the fact that γ is a triple of Whitney fields on K. We have therefore shown that
(6.17) vanishes if {xi} is an arbitrary decreasing sequence converging to x. That
is, the right-hand derivative of Dk−1Γ at x is γk(x). We may argue similarly using
increasing sequences to show that the left-hand derivative of Dk−1Γ at any x ∈ K
exists and is equal to γk(x) (since Lemma 6.7(2) implies that

∣∣DkFji − F k(bji)
∣∣

and
∣∣DkGji −Gk(bji)

∣∣ will vanish as (bji−aji)→ 0). That is, DkΓ exists on I, and

DkΓ|K = γk.
It remains to prove that DmΓ is continuous on I. The right and left-hand

continuity of DmΓ at ai and bi respectively follow from the fact that (Fi,Gi,Hi) is
Cm on [ai, bi]. If x ∈ K and x 6= ai, we may prove the right-hand continuity of DmΓ
by taking a decreasing sequence {xi} as before. Indeed, if {xi} ⊂ K, the continuity
of γm on K gives DmΓ(xk)→ DmΓ(x), and, if {xi} ⊂ I \K, then writing

|DmΓ(xk)−DmΓ(x)| ≤ |DmΓ(xk)− γm(aji)|+ |γm(aji)− γm(x)|

shows the desired convergence as in the proof of (6.17). Arguing in the same way
using increasing sequences as before gives the continuity from the left. Hence DmΓ
is continuous on K, and therefore Γ is indeed Cm on I.

Finally, note that Γ is horizontal by the hypothesis (1.3) on (F,G,H) and the
fact that (Fi,Gi,Hi) is horizontal on each subinterval (ai, bi). �

This proves Theorem 6.1. �

Taken together, Proposition 5.1 and Theorem 6.1 prove Theorem 1.1, which is
our main result.
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