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ABSTRACT. We show how a strong capacitary inequality can be used to
give a decomposition of any function in the Sobolev space W k,1(Rd) as
the difference of two non-negative functions in the same space with con-
trol of their norms.

1. INTRODUCTION

In this paper we are interested in the following problem in the study of
weakly differentiable functions:

Question. Given u in the Sobolev space W k,p(Rd) for k ∈ N∗ and p ≥ 1, is it
possible to find non-negative functions u⊕ and u	 in the same space such
that u = u⊕ − u	 almost everywhere in Rd with control of the W k,p norms
of u⊕ and u	 ?

An affirmative answer to this question has the practical consequence
of enabling the qualification of arguments in W k,p(Rd) with the statement
“without loss of generality we assume that u is non-negative, since u can
be decomposed into positive and negative parts. . . ”, which is useful, for
example, in the proofs of various Hardy and Sobolev inequalities. This is
standard in the first-order case for any p ≥ 1, while with a little thought
one can give a simple solution in the higher-order case for any p > 1. The
main contribution of this work is the following theorem which gives such
a decomposition when p = 1:

Theorem 1.1. Let k ∈ N∗. For every u ∈ W k,1(Rd), there exist non-negative
functions u⊕, u	 ∈W k,1(Rd) such that

u = u⊕ − u	 with ‖u⊕‖Wk,1(Rd) + ‖u	‖Wk,1(Rd) ≤ C‖u‖Wk,1(Rd),

for some constant C > 0 depending on k and d.

In the case of W 1,p(Rd), one can achieve such a decomposition for any
p ≥ 1, in the same manner as in Lp(Rd) and C0(Rd), via the classical de-
composition of u as the difference between its positive and negative parts:

u+ := max {u, 0} and u− := max {−u, 0}.(1.1)

However such a choice is not suitable for higher order derivatives. For ex-
ample, when u ∈ W 2,p(Rd) it may happen that the distributions D2u+ and
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D2u− are merely finite measures with singular parts. This is not a simple
matter of the lack of smoothness of the chosen truncation, as Dahlberg [3,5]
has shown that if for a smooth function H : R→ R one has

H(u) ∈W 2,p(Rd)

for all u ∈ W 2,p(Rd) with 1 < p < d/2, then necessarily H(t) = ct for
some c ∈ R. Such a conclusion propagates to W k,p(Rd) for any k ≥ 3 and
1 ≤ p < d/k.

As an alternative to composition, there is for 1 < p < ∞ a convenient
approach which relies on the characterization of W k,p(Rd) via Bessel po-
tentials: One has u ∈W k,p(Rd) if and only if u = gk ∗f for some f ∈ Lp(Rd)
with

‖f‖Lp(Rd) ∼ ‖u‖Wk,p(Rd).

Since gk ≥ 0, one can take the decomposition

u = gk ∗ f+ − gk ∗ f−,

for which one has the desired control of the norms.
There is no such an equivalence for p = 1, and in this regime one requires

a replacement for harmonic analysis techniques with more geometric ideas.
In particular, our proof of Theorem 1.1 relies on a strong capacitary inequal-
ity which has its roots on the Boxing inequality of Gustin [7]. The reader
is perhaps more familiar with weak-type capacitary inequalities involving
the Hardy-Littlewood maximal function, for example,

(1.2) capW 1,1 ({Mu > t}) ≤ C

t
‖u‖W 1,1(Rd),

for every t > 0 and u ∈ W 1,1(Rd). This inequality has been pioneered by
Federer and Ziemer [6] and is a powerful tool for establishing fine proper-
ties of functions, see [15].

To express a strong-type analogue which is convenient for our purposes,
we rely on the Choquet integral with respect to the W k,1 capacity, defined
in analogy with Cavalieri’s principle for measures as

ˆ
Rd
|ϕ|d capWk,1 :=

ˆ ∞
0

capWk,1 ({|ϕ| > t}) dt.

Then the strong capacitary inequality we use to prove Theorem 1.1 is our

Theorem 1.2. Let k ∈ N∗. For every ϕ ∈ C∞c (Rd), we have
ˆ
Rd
|ϕ|d capWk,1 ≤ C ′‖ϕ‖Wk,1(Rd),

for some constant C ′ > 0 depending on k and d.
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Such inequalities have been initiated in the first-order case by Maz’ya
[9] and later pursued for any order and p > 1 in [1, 10] (see also Theo-
rem 1.1.2 in [11] for k ≤ d). Our result completes the picture in the regime
p = 1, as in fact we prove a more general result than Theorem 1.2 which
includes the scale of fractional Sobolev spaces Wα,1 for any α > 0, defined
in terms of the Gagliardo semi-norm. Since Theorem 1.1 is directly argued
from such an inequality, we obtain a decomposition that is also valid on the
Wα,1 scale, see Theorem 3.1 below. In contrast to (1.2), one cannot replace
ϕ in the left-hand side with the maximal function Mϕ. Nonetheless, as
we show in Section 4, one does have a strong-type inequality with a local
variant of the maximal function, which contains both Theorem 1.2 and the
inequality (1.2). Let us finally remark that Theorem 1.2 is most interesting
in the range 0 < α ≤ d, as we explain below that all the Sobolev capacities
are equivalent for α ≥ d.

The plan of the paper is as follows. In Section 2 we show how recent
work of the authors [13] on the Boxing inequality of Gustin implies a non-
homogeneous form of this inequality that involves the Choquet integral
with respect to the Hausdorff outer measures Hd−αδ for 0 < α ≤ d and
0 < δ < ∞. In this range of α such an estimate is equivalent to the strong
capacitary inequality in Theorem 1.2. We then argue the case α ≥ d from
the observation that all capacities are equivalent toH0

δ , see Proposition 2.4.
In Section 3 we show how the strong capacitary inequality implies The-
orem 1.1 and its fractional counterpart. In Section 4, we prove the local
maximal-function counterpart of the strong capacitary inequality for func-
tions in Wα,1(Rd) that implies both (1.2) and Theorem 1.2. In Section 5
we rely on a lemma of Harvey and Polking’s [8] to show that when u is
bounded, the functions u⊕ and u	 can inherit the same property.

2. NON-HOMOGENEOUS BOXING INEQUALITY

Let k ∈ N and denote by W k,1(Rd) the space of weakly differentiable
functions u ∈ L1(Rd) such that Diu ∈ L1(Rd,Rdi) for i ∈ {1, . . . , k}. We
define the norm of u by

‖u‖Wk,1(Rd) :=

k∑
i=0

‖Diu‖L1(Rd),

where D0u := u. Next, for α > 0 non-integer, write α = k + θ where k ∈ N
and 0 < θ < 1. We say that u ∈Wα,1(Rd) whenever u ∈W k,1(Rd) and

‖u‖Wα,1(Rd) := ‖u‖Wk,1(Rd) + [Dku]W θ,1(Rd)

is finite, where

[Dku]W θ,1(Rd) :=

ˆ
Rd

ˆ
Rd

|Dku(x)−Dku(y)|
|x− y|θ+d

dx dy
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is the Gagliardo semi-norm of order θ of Dku.
We rely on the following non-homogeneous version of Gustin’s Boxing

inequality:

Proposition 2.1. Let 0 < α ≤ d and 0 < δ < ∞. For every ϕ ∈ C∞c (Rd), we
have ˆ

Rd
|ϕ| dHd−αδ ≤ C‖ϕ‖Wα,1(Rd),

for some constant C > 0 depending on α, d and δ.

For every 0 < δ ≤ ∞, Hd−αδ is the Hausdorff outer measure defined for
every A ⊂ Rd by

Hd−αδ (A) := inf

{ ∞∑
i=1

rd−αi : A ⊂
∞⋃
i=1

Bri(xi), ri ≤ δ
}

and the Choquet integral of |ϕ|with respect toHd−αδ is
ˆ
Rd
|ϕ| dHd−αδ :=

ˆ ∞
0
Hd−αδ ({|ϕ| > t}) dt.

In this definition one can replace the sets {|ϕ| > t} by {|ϕ| ≥ t} without
changing the value of the integral.

We prove Proposition 2.1 using the following strong form of the Boxing
inequality for the Hausforff contentHd−α∞ :

(2.1)
ˆ ∞

0
|ϕ|dHd−α∞ ≤ C ′[ϕ]Wα,1(Rd), for every ϕ ∈ C∞c (Rd).

The homogeneous semi-norm in the right-hand side is

[ϕ]Wα,1(Rd) := ‖Dkϕ‖L1(Rd),

when α = k ∈ N and

[ϕ]Wα,1(Rd) := [Dkϕ]W θ,1(Rd),

when α 6∈ N and α = k + θ with k ∈ N and 0 < θ < 1. We refer the reader
to [2, 13] for the proof of (2.1) when α < d. The case α = d is straightfor-
ward: From the facts that H0

∞(∅) = 0 and H0
∞(A) = 1 for every nonempty

bounded subset A ⊂ Rd one has
ˆ ∞

0
|ϕ| dH0

∞ =

ˆ ‖ϕ‖
L∞(Rd)

0
H0
∞({|ϕ| > t}) dt = ‖ϕ‖L∞(Rd)

and then (2.1) with α = d is equivalent to the classical inequality

(2.2) ‖ϕ‖L∞(Rd) ≤ C ′‖Ddϕ‖L1(Rd).

We deduce Proposition 2.1 for α < d using the next
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Lemma 2.2. Let (Qj)j∈N be a family of closed cubes in Rd with disjoint interiors
obtained by translation of a fixed cube as Qj = Q + cj , and let ζj : Rd → R be
defined by ζj(x) = ζ(x − cj) for some ζ ∈ C∞c (2Q). Given α > 0, there exists a
constant C ′′ > 0 depending on α, d and the side length of Q such that

∞∑
j=0

‖uζj‖Wα,1(Rd) ≤ C ′′‖u‖Wα,1(Rd), for every u ∈Wα,1(Rd).

Proof of Lemma 2.2. The estimate of the terms
∞∑
j=0
‖Di(uζj)‖L1(Rd) with i ∈

{0, . . . , k} is straightforward due to the local character of the L1 norm. We

thus assume thatα = k+θwith 0 < θ < 1 and estimate
∞∑
j=0

[Dk(uζj)]W θ,1(Rd).

By the explicit formula of Dk(uζj), it suffices to estimate the Gagliardo
seminorm of the functions Diu ⊗Dk−iζj . To simplify the notation we per-
form the estimates using f := Diu and gj := Dk−iζj . We then have

[Diu⊗Dk−iζj ]W θ,1(Rd) ≤
ˆ
Rd
|gj(x)|

(ˆ
Rd

|f(x)− f(y)|
|x− y|θ+d

dy

)
dx

+

ˆ
Rd
|f(y)|

(ˆ
Rd

|gj(x)− gj(y)|
|x− y|θ+d

dx

)
dy.

Since gj is supported in 2Qj and the number of overlaps of these cubes is
uniformly bounded by some constant depending on the dimension d, we
have

∞∑
j=0

|gj(x)| ≤ C1, for every x ∈ Rd.

For the second term, take y ∈ Rd and let Jy ⊂ N be the set of indices j
such that y ∈ 4Qj . The number of elements in Jy is bounded from above
independently of y. By the uniform boundedness of (gj)j∈N and (Dgj)j∈N,
we then get∑

j∈Jy

ˆ
Rd

|gj(x)− gj(y)|
|x− y|θ+d

dx ≤ C2, for every y ∈ Rd.

Denoting by η > 0 the side length ofQ, for j ∈ N\Jy we have d(y, 2Qj) ≥ η
and also gj(y) = 0. Thus,∑

j∈N\Jy

ˆ
Rd

|gj(x)− gj(y)|
|x− y|θ+d

dx ≤ ‖gj‖L∞(Rd)

∑
j∈N\Jy

ˆ
2Qj

dx

|x− y|θ+d

≤ C3

ˆ
Rd\Bη(y)

dx

|x− y|θ+d
≤ C4,

for every y ∈ Rd. Hence,
∞∑
j=0

[Diu⊗Dk−iζj ]W θ,1(Rd) ≤ C1[f ]W θ,1(Rd)+(C2+C4)‖f‖L1(Rd) ≤ C5‖u‖Wα,1(Rd),
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which implies the estimate of
∞∑
j=0

[Dk(uζj)]W θ,1(Rd). �

Proof of Proposition 2.1. Let Q be the cube centered at the origin with diam-
eter δ/2. We cover Rd using a countable collection of closed cubes (Qj)j∈N
with disjoint interiors of the form Qj = Q + cj . By subadditivity of Hd−αδ ,
for every subset A ⊂ Rd we have

(2.3) Hd−αδ (A) ≤
∞∑
j=0

Hd−αδ (A ∩Qj) =
∞∑
j=0

Hd−α∞ (A ∩Qj),

where the equality follows from the fact that each set A ∩Qj has diameter
less than δ. Let ζ ∈ C∞c (2Q) be such that ζ = 1 on Q, and consider the
function ζj : Rd → R defined by ζj(x) = ζ(x − cj). Observe that for every
ϕ ∈ C∞c (Rd) and j ∈ N we have

{|ϕ| ≥ t} ∩Qj ⊂ {|ϕζj | ≥ t}.

Applying the homogeneous Boxing inequality (2.1) to ϕζj , we have

(2.4)
ˆ ∞

0
Hd−α∞ ({|ϕζj | ≥ t}) dt ≤ C ′[ϕζj ]Wα,1(Rd).

A combination of (2.3) with A = {|ϕ| ≥ t} and (2.4) then gives
ˆ ∞

0
Hd−αδ ({|ϕ| ≥ t}) dt ≤

∞∑
j=0

ˆ ∞
0
Hd−α∞ ({|ϕζj | ≥ t}) dt ≤ C ′

∞∑
j=0

[ϕζj ]Wα,1(Rd).

By Lemma 2.2 we getˆ ∞
0
Hd−αδ ({|ϕ| ≥ t}) dt ≤ C6‖ϕ‖Wα,1(Rd). �

One deduces from Proposition 2.1 and a straightforward adaptation of
the proof of Theorem 2.1 in [13] the following:

Corollary 2.3. For every 0 < α ≤ d and 0 < δ <∞, we have

capWα,1 ∼ Hd−αδ .

Given α > 0, the Sobolev capacity capWα,1 is defined for every compact
set K ⊂ Rd by

capWα,1(K) := inf
{
‖ϕ‖Wα,1(Rd) : ϕ ∈ C∞c (Rd), ϕ ≥ 0 in Rd, ϕ > 1 on K

}
.

It is then extended to the class of open sets ω ⊂ Rd as the supremum

capWα,1 (ω) := sup
{
capWα,1 (K) : K ⊂ ω compact

}
.

The equivalence in Corollary 2.3 has been proved by Carlsson and Maz’ya
for α ∈ N and α < d, see Lemma 3 in [4]. On balls Br(x) ⊂ Rd, such a re-
sult can be easily obtained from a scaling argument. Indeed, when α ≤ d a
separate analysis in the regimes r ≤ 1 and r ≥ 1 yields

(2.5) capWα,1 (Br(x)) ∼ max {rd−α, rd},
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which is the same behavior as for Hd−αδ (Br(x)). In the range α ≥ d, one
uses the classical inequality (2.2) to get

(2.6) capWα,1 (Br(x)) ∼ max {1, rd}.

While the Wα,1 capacity strongly depends on α for α ≤ d, we here ob-
serve that all Wα,1 capacities are equivalent for α ≥ d:

Proposition 2.4. For every α ≥ d and 0 < δ <∞, we have

capWα,1 ∼ H0
δ .

Proof. Given a compact subsetK ⊂ Rd and a finite coveringK ⊂
N⋃
i=1

Bri(xi)

with ri ≤ δ, by subadditivbity of the capacity and (2.6),

capWα,1 (K) ≤
N∑
i=1

capWα,1 (Bri(xi)) ≤
N∑
i=1

C1 max {1, rdi } ≤ C1 max {1, δd}N.

Minimizing the right-hand side with respect to the number of balls N , we
get

capWα,1 (K) ≤ C1 max {1, δd}H0
δ(K).

Applying Corollary 2.3 with α = d, we get the reverse inequality

H0
δ(K) ≤ C2 capW d,1 (K) ≤ C2 capWα,1 (K). �

Using Propositions 2.1 and 2.4, we now prove the strong capacitary in-
equality for the Wα,1 norm, which includes Theorem 1.2 when α is integer:

Theorem 2.5. Let α > 0. For every ϕ ∈ C∞c (Rd), we haveˆ
Rd
|ϕ|d capWα,1 ≤ C ′‖ϕ‖Wα,1(Rd),

for some constant C ′ > 0 depending on α and d.

Proof. The case of order α ≤ d is contained in Proposition 2.1 and the
straightforward inequality capWα,1 ≤ C ′Hd−αδ . When α > d, one applies
Proposition 2.4 and Proposition 2.1 with order d to getˆ ∞

0
capWα,1 ({|ϕ| > t}) dt ≤ C1

ˆ ∞
0
H0

1({|ϕ| > t}) dt

≤ C2‖ϕ‖W d,1(Rd) ≤ C2‖ϕ‖Wα,1(Rd). �

3. PROOF OF THEOREM 1.1

We establish the following theorem that includes Theorem 1.1 for integer
orders:

Theorem 3.1. Let α > 0. For every u ∈ Wα,1(Rd), there exist non-negative
functions u⊕, u	 ∈Wα,1(Rd) such that

u = u⊕ − u	 with ‖u⊕‖Wα,1(Rd) + ‖u	‖Wα,1(Rd) ≤ C‖u‖Wα,1(Rd),

for some constant C > 0 depending on α and d.
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Let us begin with an analogous property for smooth functions:

Proposition 3.2. Let α > 0. For every ϕ ∈ C∞c (Rd), there exists ψ ∈ C∞c (Rd)
such that |ϕ| ≤ ψ in Rd with

‖ψ‖Wα,1(Rd) ≤ C ′‖ϕ‖Wα,1(Rd),

for some constant C ′ > 0 depending on α and d.

For α ≤ 2 this proposition can be proved by regularization of |ϕ|. In
contrast, our argument works for every order α > 0 and ultimately relies on
the Hahn-Banach theorem through the strong form of the Boxing inequality
(see e.g. the proof of Lemma 4.6 in [13]).

Proof of Proposition 3.2. We assume that ϕ 6≡ 0. By the monotonicity of the
capacity,

(3.1)
∞∑

j=−∞
2j−1 capWα,1 ({|ϕ| ≥ 2j}) ≤

ˆ ∞
0

capWα,1 ({|ϕ| ≥ t}) dt.

Let J ∈ Z be an integer such that

|ϕ| ≤ 2J in Rd.

For every integer j ≤ J , take a non-negative function ψj ∈ C∞c (Rd) such
that ψj > 1 in {|ϕ| ≥ 2j} and

‖ψj‖Wα,1(Rd) ≤ 2 capWα,1 ({|ϕ| ≥ 2j}).

Let m be an integer to be explicitly chosen below, depending on ϕ, and let
ζ ∈ C∞c (Rd) be such that 0 ≤ ζ ≤ 1 in Rd and ζ = 1 in suppϕ.

We claim that the function

ψ := 2mζ +
J−1∑
j=m

2j+1ψj

satisfies

(3.2) ψ ≥ |ϕ| in Rd.

We first observe that ψ ≥ 2m in suppϕ. We thus have to prove (3.2) on the
set {|ϕ| ≥ 2m}. To this end, given x ∈ Rd such that 2m ≤ |ϕ(x)| < 2J , take
i ∈ Z with m ≤ i ≤ J − 1 such that 2i ≤ |ϕ(x)| < 2i+1. Since all functions
ψj are non-negative and ψi(x) > 1, we have

J−1∑
j=m

2j+1ψj(x) ≥ 2i+1ψi(x) > 2i+1 > |ϕ(x)|.

That is,

|ϕ| ≤
J−1∑
j=m

2j+1ψj in {2m ≤ |ϕ| < 2J},
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and so also in the larger set {2m ≤ |ϕ| ≤ 2J} = {|ϕ| ≥ 2m} by continuity
of ϕ. Hence, (3.2) holds in suppϕ and then, by nonnegativity of ψ, this
pointwise inequality holds in the entire space Rd.

We now claim that

(3.3) ‖ψ‖Wα,1(Rd) ≤ 2m‖ζ‖Wα,1(Rd) + 8C ′‖ϕ‖Wα,1(Rd),

where C ′ > 0 is the constant in Theorem 2.5. Indeed, by the choice of ψj
and (3.1),

‖ψ‖Wα,1(Rd) ≤ 2m‖ζ‖Wα,1(Rd) +
J−1∑
j=m

2j+1‖ψj‖Wα,1(Rd)

≤ 2m‖ζ‖Wα,1(Rd) +

J−1∑
j=m

2j+2 capWα,1 ({|ϕ| ≥ 2j})

≤ 2m‖ζ‖Wα,1(Rd) + 8

ˆ ∞
0

capWα,1 ({|ϕ| ≥ t}) dt.

Estimate (3.3) thus follows from the strong capacitary inequality.
To conclude the proof, it now suffices to choosem ∈ Z such that 2m‖ζ‖Wα,1(Rd) ≤

‖ϕ‖Wα,1(Rd), which is possible since ζ is independent of m. �

Proof of Theorem 3.1. Given u ∈ Wα,1(Rd), by density of C∞c (Rd) in this

space we can write u as a strongly convergent series u =
∞∑
j=0

ϕj , where

ϕj ∈ C∞c (Rd) and
∞∑
j=0

‖ϕj‖Wα,1(Rd) ≤ 2‖u‖Wα,1(Rd).

Takeψj ∈ C∞c (Rd) such that |ϕj | ≤ ψj in Rd and ‖ψj‖Wα,1(Rd) ≤ C1‖ϕj‖Wα,1(Rd)

as in Proposition 3.2. The function u⊕ :=
∞∑
j=0

ψj is non-negative in Rd and

satisfies

‖u⊕‖Wα,1(Rd) ≤ C1

∞∑
j=0

‖ϕj‖Wα,1(Rd) ≤ 2C1‖u‖Wα,1(Rd).

In particular, u⊕ belongs to Wα,1(Rd). The conclusion readily follows with
u	 := u⊕ − u, which is non-negative by the choice of u⊕. �

Remark 3.3. The proof of Theorem 3.1 shows that for every u ∈ Wα,1(Rd)
one has

|u| ≤ U almost everywhere in Rd,

where U :=
∞∑
j=0

ψj is the nondecreasing limit of a sequence of non-negative

functions in C∞c (Rd) and satisfies the estimate

‖U‖Wα,1(Rd) ≤ C‖u‖Wα,1(Rd),
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with a constant C > 0 depending on α and d. Such a construction can
be interpreted as a regularized replacement of the absolute-value function
that is adapted to the space Wα,1(Rd).

4. MAXIMAL STRONG CAPACITARY INEQUALITY

We now give an improvement of the strong capacitary inequality that
involves the maximal operator and implies the weak capacitary inequality
(1.2):

Proposition 4.1. Let α > 0 and 0 < δ <∞. For every u ∈Wα,1(Rd), we haveˆ
Rd
Mδud capWα,1 ≤ C‖u‖Wα,1(Rd),

for some constant C > 0 depending on α, d and δ.

Here,Mδu : Rd → [0,+∞] denotes the local maximal function

Mδu(x) := sup

{ 
Br(x)

|u| : 0 < r ≤ δ
}
.

Proposition 4.1 relies on the inequality

(4.1)
ˆ
Rd
MudHd−α∞ ≤ C ′[u]Wα,1(Rd),

for every u ∈ Wα,1(Rd) and 0 < α ≤ d, which is proved in [13] using the
Boxing inequality (2.1) and D. Adams’ maximal estimate for the Choquet
integral [2, 12] ˆ

Rd
MudHd−α∞ ≤ C ′′

ˆ
Rd
|u|dHd−α∞ .

Observe that for α = d this inequality is equivalent to the straightforward

‖Mu‖L∞(Rd) ≤ ‖u‖L∞(Rd).

Proof of Proposition 4.1. We first assume that α ≤ d. As in the statement of
Lemma 2.2, we cover Rd with cubes Qj centered at cj that are obtained by
translation from a fixed cubeQ and we assume that eachQj has side length
4δ. Let ζ ∈ C∞c (2Q) be such that ζ = 1 on 3

2Q, and consider the function
ζj : Rd → R defined by ζj(x) = ζ(x − cj). Observe that if x ∈ Qj , then
Bδ(x) ⊂ 3

2Qj . Thus, for every t > 0,

{Mδu > t} ∩Qj ⊂ {M(uζj) > t}.

Applying (2.3) with A = {Mδu > t} and using the subadditivity and
monotonicity ofHd−α∞ , we get

Hd−αδ ({Mδu > t}) ≤
∞∑
j=0

Hd−α∞ ({Mδu > t} ∩Qj) ≤
∞∑
j=0

Hd−α∞ ({M(uζj) > t}).
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We now integrate this estimate with respect to t over (0,∞). By (4.1) ap-
plied to each function uζj we thus have

ˆ
Rd
MδudHd−αδ ≤ C ′

∞∑
j=0

‖uζj‖Wα,1(Rd).

The conclusion follows for α ≤ d since Hd−αδ ∼ capWα,1 (by Corollary 2.3)
and the series in the right-hand side is bounded from above by ‖u‖Wα,1(Rd)

(by Lemma 2.2).
When α > d, it suffices to apply Proposition 2.4 and the inequality at

order d to getˆ
Rd
Mδud capWα,1 ≤ C2

ˆ
Rd
MδudH0

δ ≤ C3‖u‖W d,1(Rd) ≤ C3‖u‖Wα,1(Rd).

�

The counterpart of Proposition 4.1 for the usual Hardy-Littlewood max-
imal functionMu = M∞u is false due to the same obstruction as for the
strong L1 maximal inequality: Any ϕ ∈ C∞c (Rd) such that ϕ(0) 6= 0 satisfies

(4.2)
ˆ
Rd
Mϕd capWα,1 = +∞.

To this end, we may assume that ϕ(0) = 1. SinceMϕ(x) is bounded from
below by C1/|x|d for large values of |x|, for 0 < t < 1/2 one has

{Mϕ > t} ⊃ Bε/t1/d(0),

for some ε > 0. On the other hand, for every r > 0 and x ∈ Rd,

(4.3) capWα,1(Br(x)) ≥ |Br(x)| = ωdr
d,

where ωd is the volume of the unit ball. By monotonicity of the capacity,
one deduces that

capWα,1({Mϕ > t}) ≥ capWα,1(Bε/t1/d(0)) ≥
ε′

t
,

which implies (4.2) by integration with respect to t.
Although Proposition 4.1 fails forMu, one does have a weak form of the

capacitary inequality:

Proposition 4.2. Let α > 0. For every u ∈Wα,1(Rd) and t > 0, we have

capWα,1 ({Mu > t}) ≤ C ′

t
‖u‖Wα,1(Rd),

for some constant C ′ > 0 depending on α and d.

Proof. Given t > 0, observe that

(4.4) {Mu > t} ⊂ {M1u > t} ∪At,

where
At := {Mu > t andM1u ≤ t}.
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By Proposition 4.1 and the Chebyshev inequality we have

capWα,1 ({M1u > t}) ≤ C

t
‖u‖Wα,1(Rd).

By (4.4) and the subadditivity of the capacity, the proof is thus complete
once we prove that

(4.5) capWα,1 (At) ≤
C1

t
‖u‖L1(Rd).

The argument is based on the usual weak L1 inequality for the maximal
function. Indeed, using Wiener’s covering lemma one finds sequences
(xn)n∈N in At and (rn)n∈N in the interval (1,∞) such that the balls Brn(xn)
are disjoint, At ⊂

⋃
n∈N

B5rn(xn) and

t <

 
Brn (xn)

|u|.

By (2.5) or (2.6), depending on α, and the fact that rn > 1,

capWα,1(B5rn(xn)) ≤ C2 (5rn)
d.

By countable subadditivity of the capacity and additivity of the integral,
we thus have

capWα,1 (At) ≤
∞∑
n=0

capWα,1 (B5rn(xn)) ≤ C3

∞∑
n=0

rdn ≤
C4

t

ˆ
⋃
n∈N

Brn (xn)

|u|,

which implies (4.5) and completes the proof. �

5. DECOMPOSITION WITH L∞ BOUNDS

We now show how one can obtain a decomposition in Wα,1(Rd) that
inherits L∞ bounds:

Proposition 5.1. If, in addition to the assumptions of Theorems 1.1 or 3.1, we
have u ∈ L∞(Rd), then the functions u⊕ and u	 can be chosen with the additional
property that they also belong to L∞(Rd) and

‖u⊕‖L∞(Rd) + ‖u	‖L∞(Rd) ≤ C ′‖u‖L∞(Rd),

for some constant C ′ > 0 depending on α and d.

We rely on a clever construction of Harvey and Polking’s (see Lemma 1
in [8]) that yields almost minimizers of the Wα,1 capacity, with uniform
bounds. Let us first illustrate this tool to get an improvement of Proposi-
tion 3.2:

Proposition 5.2. For every ϕ ∈ C∞c (RN ), one can find ψ ∈ C∞c (RN ) satisfying,
in addition to the conclusion of Proposition 3.2,

‖ψ‖L∞(Rd) ≤ 8‖ϕ‖L∞(Rd).
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To prove Proposition 5.2 we need the following

Lemma 5.3. Let α > 0. For every compact subset K ⊂ Rd and every ε > 0, there
exists ϕ ∈ C∞c (Rd) such that 0 ≤ ϕ ≤ 1 in Rd, ϕ = 1 in a neighborhood of K,
and

‖ϕ‖Wα,1(Rd) ≤ C ′′ capWα,1(K) + ε,

for some constant C ′′ > 0 depending on α and d.

Proof of Lemma 5.3. We first assume thatα < d. Take a finite family (Qj)j∈{0,...,M}

of dyadic closed cubes with disjoint interiors such that K ⊂ int
( M⋃
j=0

Qj

)
,

where K ⊂ Rd is a non-empty compact subset. By Lemma 1 in [8], there
exist functions (ϕj)j∈{0,...,M} with ϕj ∈ C∞c (3

2Qj) such that

(5.1) 0 ≤ ϕj ≤ 1 in Rd,
M∑
j=0

ϕj = 1 in
M⋃
j=0

Qj

and, for any i ∈ N, the pointwise estimate holds

(5.2) |Diϕj | ≤
C1

rij
in Rd,

where rj > 0 is the side length of Qj and the constant C1 > 0 depends on i
and d, but not on the number M +1 of cubes. Since ϕj is supported in 3

2Qj ,
one has in particular

(5.3) ‖Diϕj‖L1(Rd) ≤ C2 r
d−i
j .

For every 0 < θ < 1, we then have by interpolation

(5.4) [Diϕj ]W θ,1(Rd) ≤ C3‖Diϕj‖1−θL1(Rd)
‖Di+1ϕj‖θL1(Rd) ≤ C4 r

d−i−θ
j .

To conclude the proof of the lemma, let δ > 0 and assume that each side
length rj is such that rj ≤ δ. Hence, whether α is integer or not, it follows

from (5.3) and (5.4) that ϕ :=
M∑
j=0

ϕj verifies

(5.5) ‖ϕ‖Wα,1(Rd) ≤ C5

M∑
j=0

rd−αj .

By the definition of the dyadic Hausdorff outer measure Ĥd−αδ (see [14]),
given ε > 0 we take the cubes (Qj)j∈{0,...,M} so as to have

(5.6)
M∑
j=0

rd−αj ≤ Ĥd−αδ (K) + ε.

Hence, by estimates (5.5) and (5.6) and the equivalence between Ĥd−αδ and
Hd−αδ ,

‖ϕ‖Wα,1(Rd) ≤ C6(Ĥd−αδ (K) + ε) ≤ C7 capWα,1 (K) + C6ε,
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which proves the lemma for α < d. When α ≥ d, one has from (5.5) that

‖ϕ‖Wα,1(Rd) ≤ C8δ
d−α(M + 1).

Then, by minimization of the right-hand side with respect to M ,

‖ϕ‖Wα,1(Rd) ≤ C9H0
δ(K).

The conclusion thus follows in this case using Proposition 2.4. �

Proof of Proposition 5.2. We rely on the construction from the proof of Propo-
sition 3.2. By the previous lemma, we can pick each ψj with the additional
property that 0 ≤ ψj ≤ 2 in Rd. Therefore, taking J as the smallest integer
such that |ϕ| ≤ 2J in Rd, we get

0 ≤ ψ = 2mζ +
J−1∑
j=m

2j+1ψj ≤
J−1∑
j=−∞

2j+2 = 2J+2 ≤ 8‖ϕ‖L∞(Rd),

which gives the L∞ bound for ψ. �

In the proof of Proposition 5.1 we need the following counterpart of
Lemma 5.3 on open sets:

Lemma 5.4. Let 0 < α < d. For every open subset ω ⊂ Rd, there exists v ∈
Wα,1(Rd) such that 0 ≤ v ≤ 1 in Rd, v = 1 in ω, and

‖v‖Wα,1(Rd) ≤ C ′′ capWα,1(ω).

Proof of Lemma 5.4. Let 0 < δ < ∞ and let (Qj)j∈N be a sequence of closed
dyadic cubes with disjoint interiors and side lengths rj ≤ δ such that ω ⊂
int
( ⋃
j∈N

Qj

)
and

(5.7)
∞∑
j=0

rd−αj ≤ 2 Ĥd−αδ (ω).

We rely on Harvey and Polking’s lemma to construct a sequence of func-
tions (ϕj)j∈N with ϕj ∈ C∞c (3

2Qj) that verifies properties (5.1)–(5.4) for ev-
ery j,M ∈ N. Some care is needed here because their lemma involves
finitely many cubes, even though the constants in the estimates do not de-
pend on the number of cubes. To deal with countably many cubes one may

proceed as follows. Since
∞∑
j=0

rd−αj < ∞, the sequence of positive numbers

(rj)j∈N converges to zero. We can thus relabel the cubes if necessary so that
(rj)j∈N is non-increasing. Once the side lengths rj are arranged in this way
and we have chosen the functions ϕ0, . . . , ϕj , the next function ϕj+1 is cho-
sen in their proof without modification of the previous ones and for every
j ∈ N we have

‖ϕj‖Wα,1(Rd) ≤ C1r
d−α
j .
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Hence, the series v :=
∞∑
j=0

ϕj converges normally inWα,1(Rd) and in partic-

ular v ∈ Wα,1(Rd). The conclusion follows from (5.7) and the equivalence
between Ĥd−αδ (ω) and capWα,1(ω). �

In the regime α /∈ N, Lemma 5.4 is a straightforward consequence of
Lemma 5.3. Indeed, one takes a non-decreasing sequence of compact sub-
sets (Kj)j∈N whose capacities converge to capWα,1(ω). For each j ∈ N, by
Lemma 5.3 there exists ϕj ∈ C∞c (Rd) with ϕj = 1 on Kj and

‖ϕj‖Wα,1(Rd) ≤ C ′′ capWα,1(Kj) +
1

2j
.

For α = k + θ with k ∈ N and 0 < θ < 1, by compactness one can extract a
sequence (ϕji)i∈N that converges to some function v in W k,1(Rd). One has
v = 1 in ω, while Fatou’s lemma implies that Dkv ∈ W θ,1(Rd). By lower
semicontinuity of the norm, v satisfies the required estimate. The adapta-
tion of this argument to the case α = k ∈ N∗ is trickier since it yields a
function v whose distribution Dkv could be no better than a finite measure
in Rd.

Proof of Proposition 5.1. Let u ∈ (Wα,1 ∩ L∞)(Rd), which we assume in the
first part of the proof to have compact support in some cubeQ ⊂ Rd. Given
η > 0 to be explicitly chosen later on, take ϕ ∈ C∞c (Rd) such that

(5.8) ‖ϕ− u‖Wα,1(Rd) ≤ η and ‖ϕ‖L∞(Rd) ≤ ‖u‖L∞(Rd).

For instance, ϕ can be a convolution of u with a smooth mollifier.
We begin by analyzing the case where α < d. Given ε > 0, we have

(5.9) |u− ϕ| ≤ ε almost everywhere in Rd \ ω,

where ω is the open set {M1(ϕ − u) > ε}. Let v ∈ Wα,1(Rd) be as in
Lemma 5.4. We then have

|u− ϕ| ≤ ε+ 2‖u‖L∞(Ω)v almost everywhere in Rd.

We now let ψ ∈ C∞c (Rd) with |ϕ| ≤ ψ in Rd given by Proposition 5.2. Then,

|u| ≤ |ϕ|+ |u− ϕ| ≤ ψ + ε+ 2‖u‖L∞(Ω)v.

In addition,

‖ψ‖Wα,1(Rd) ≤ C1‖ϕ‖Wα,1(Rd) ≤ C1(‖u‖Wα,1(Rd) + η)

and, by choice of v and the maximal strong capacitary inequality (Proposi-
tion 4.1),

‖v‖Wα,1(Rd) ≤ C ′′ capWα,1 (ω) ≤
C2

ε
‖ϕ− u‖Wα,1(Rd) ≤

C2η

ε
.
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Take some fixed non-negative function ζ ∈ C∞c (2Q) such that 0 ≤ ζ ≤ 1

in Rd and ζ = 1 on Q with uniform bounds on the derivatives depending
on the side length of Q and on the dimension d. Since u is supported on Q,

(5.10) |u| ≤ (ψ + ε+ 2‖u‖L∞(Ω)v)ζ =: w.

This function w belongs to (Wα,1 ∩ L∞)(Rd), has compact support in 2Q,
and satisfies

‖w‖Wα,1(Rd) ≤ C3

(
‖ψ‖Wα,1(Rd) + ε+ ‖u‖L∞(Ω)‖v‖Wα,1(Rd)

)
≤ C4

(
‖u‖Wα,1(Rd) + η + ε+ ‖u‖L∞(Ω)

η

ε

)
and

‖w‖L∞(Rd) ≤ 10‖u‖L∞(Ω) + ε.

We now first choose ε > 0 with

ε ≤ min
{
‖u‖Wα,1(Rd), ‖u‖L∞(Ω)

}
,

and then η > 0 so that

η + ‖u‖L∞(Ω)
η

ε
≤ ‖u‖Wα,1(Rd).

This concludes the proof when u is compactly supported in a cube Q and
α < d.

When α ≥ d, the function u is continuous and, for any given ε > 0, we
can chose η > 0 sufficiently small so that (5.8) implies ‖ϕ − u‖L∞(Rd) ≤ ε.
Thus, (5.9) holds in this case with ω = ∅. The previous computation with
v = 0 thus gives w ∈ (Wα,1 ∩ L∞)(Rd) supported in 2Q such that (5.10) is
satisfied and

‖w‖Wα,1(Rd) ≤ C4

(
‖u‖Wα,1(Rd) + η + ε

)
and ‖w‖L∞(Rd) ≤ 8‖u‖L∞(Ω) + ε.

The conclusion for α ≥ d then follows from a suitable choice of ε and then
η. The proof is thus complete for any α > 0 when u is supported in a cube.

For an arbitrary function u ∈ (Wα,1∩L∞)(Rd), we now decompose Rd as
a countable union of closed cubes (Qj)j∈N with disjoint interiors and ver-
tices given by all integer components. Take a sequence of functions (ζj)j∈N

such that ζj is supported in 3
2Qj and

∞∑
j=0

ζj = 1 in Rd obtained by translation

of a single function ζ. We then write u =
∞∑
j=0

uζj . By Lemma 2.2,

∞∑
j=0

‖uζj‖Wα,1(Rd) ≤ C5‖u‖Wα,1(Rd).

We then apply the first part of the proof to each function uζj to obtain a
function wj ∈ (Wα,1 ∩ L∞)(Rd) supported in 2Qj . Since the cubes 2Qj

overlap a finite number of times, the function u⊕ :=
∞∑
j=0

wj also belongs to

(Wα,1∩L∞)(Rd). To complete the proof, it suffices to take u	 := u⊕−u. �
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