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Abstract
The aim of this note is to prove a sharp regularity estimate for solutions of the continuity

equation associated to vector fields of class W 1,p with p > 1. Regularity is understood with
respect to a log-Sobolev functionals, that could be seen as a version of the Gagliardo semi-norms
measuring the “logarithmic derivative” of a function.
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1 Introduction and main result
This paper is concerned with the regularity of solutions to the continuity equation over the
d-dimensional Euclidean space:{

∂tu+ div(bu) = 0,
u0 = ū,

in [0, T ]× Rd, (CE)

where b : [0, T ] × Rd → Rd is a time dependent vector field, ū : Rd → R is the initial data and
u : [0, T ] × Rd → Rd is the unknown of the problem. The time interval [0, T ] could be possibly
infinite, i.e. the choice T =∞ is allowed.
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We are mainly interested in the study of the Cauchy problem (CE) under the Sobolev assumption
on the drift bt and the incompressibility condition, that is to say,∫ T

0
‖bs‖W 1,p(Rd) ds <∞, and div bs(x) = 0 for-L d+1 a.e (t, x) ∈ [0, T ]× Rd,

for some p > 1. Solutions are understood in the distributional sense in the class L∞([0, T ]× Rd),
more precisely we are looking for maps t→ ut ∈ L∞(Rd), continuous with respect to the weak-star
topology (thus they are defined for every t ∈ [0, T ] allowing the Cauchy formulation of (CE)), such
that, for every ϕ ∈ C∞c (Rd) the function t→

∫
Rd ϕut dx is absolutely continuous and fulfills

d
dt

∫
Rd
ϕut dx =

∫
Rd
bt · ∇ϕut dx for a.e. t ∈ [0, T ].

The just established setting is quite natural, both from the theoretical point of view, and for its
applications to the study of nonlinear partial differential equations of the mathematical physics.

The Cauchy problem (CE) is strictly linked to the system of ordinary differential equations
d
dtX(t, x) = b(t,X(t, x)),

X(0, x) = x, ∀(t, x) ∈ [0, T ]× Rd.
(ODE)

Indeed, when the vector field is regular enough (for instance globally bounded and Lipschitz in
the spatial variable, uniformly in time) the classical Cauchy-Lipschitz theory grants the existence
of a unique flow map X : [0, T ]× Rd → Rd, an by the formula

(Xt)#ūL
d = utL

d, 1

can be recovered the unique solution ut of the Cauchy problem (CE).
Such link between the problems (CE) and (ODE) is still present out of a smooth setting, but it

is very subtle. The situation is complicated by the loss of point-wise uniqueness for solutions of
(ODE) when studying ordinary differential equations associated to non-Lipschitz vector fields. To
overcome these difficulties Ambrosio in [A04] introduced the notion of regular Lagrangian flow (see
Definition 2.6) and established a link between the well-posedness in L∞ of the Cauchy problem
(CE) and the existence and uniqueness for regular Lagrangian flows. The author also showed the
well-posedness in L∞ for (CE) when the vector field has the BV spatial regularity and bounded
divergence (it means div bt � L d, with density in L∞). In this manner Ambrosio extended the
celebrated result in [DPL89] by DiPerna and Lions, where it has been proven the existence and
uniqueness in L∞ for solutions of the Cauchy problem (CE) associated to Sobolev drifts. This
theory has been recently fully established by the second author in [Nguyen1] by mean of quantitative
techniques.

In the last period the problem of quantifying the propagation of regularity and the rate of
“mixedness” for solutions of (CE) has been received a lot of attentions. These two questions at an
informal level can be interpreted as follow: we look at the evolution of suitable norms, or functionals,
measuring the regularity of a function (reasonable choices are Sobolev norms, BV norms or even
weaker ones) or a “mixing” level of a function (reasonable choices are negative Sobolev norms or
geometrical functionals as in [Br03] or [HSSS18]) along solutions of the Cauchy problem (CE). We
refer to [ACM16, IKX14, HSSS18, Se13] for an overview on the topic of mixing, while we are going
to focus most on the regularity side of the problem.

Looking at the regularity problem in the smooth setting the picture is quite clear. Assume for
instance a uniform Lipschitz bound on b

|bt(x)− bt(y)| ≤ L|x− y| ∀x, y ∈ Rd, ∀t ∈ [0, T ],
1 This is an identity between measures, where the left hand side is defined by (Xt)#ūL d(E) := (uL d)((Xt)−1(E))

for every Borel set E ⊂ Rd, and (1.1) is equivalent to∫
Rd
φ(x)ut(x)dx =

∫
Rd
φ(X(t, x))u0(x)dx ∀ φ ∈ Cb(Rd).
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a simple Grönwall’s argument yields a bi-Lipschitz estimate for the flow Xt with constant etL.
Assuming the incompressibility condition and using (1.1) we get

liput ≤ etL lipu0 ∀t ∈ [0, T ], (1.2)

where ut is the unique solution of (CE) with initial data u0 ∈ Lip(Rd)∩L∞(Rd) and liput denotes the
Lipschitz constant of ut(·). In other worlds the Lipschitz semi-norm increases at most exponentially
in time. Moreover it can be seen that this estimate is sharp building a smooth divergence-free
vector field admitting a solution that increases the Lipschitz constant with exponential rate (see
[ACM16]).

Assuming only a Sobolev bound on the vector field the situation is much more complicated.
Every Lipschitz or Sobolev regularity (even of fractional order) of the initial data, might be
instantaneously lost during the time evolution as it has been shown in [ACM18, ACM16, ACM14].
However, a very weak notion of regularity seems to be propagated also in this wild case. A first
result in this direction has been established by Crippa and De Lellis in [CDL08]. They obtained
a quantitative Lusin-Lipschitz estimate at the level of Lagrangian flows that implies in turn the
propagation of the “Lipexp” regularity. In [BJ15] the authors proved that a suitable singular
operator remains bounded during the time evolution. They used this result to deduce a compactness
theorem that allowed them to built a new theory of existence of solutions to the compressible
Navier-Stokes equations. By mean of very sophisticated tools from harmonic analysis in [LF16] the
author studied the behavior of the following functionals∫

Rd
| log(|ξ|)||ût(ξ)|2 dξ,

∫
Rd

log(|ξ|)2|ût(ξ)|2 dξ (1.3)

along the solutions of the Cauchy problem (CE). He proved that, under the incompressibility
condition and the uniform W 1,p bound (with p > 1) on the vector field, the first functional in (1.3)
increases at most linearly in time. Assuming a better regularity on the drift, i.e W 1,p bounds with
p ≥ 2, the second functional increases at most quadratically.

The main result in the present paper is a sharp characterization of the regularity for solutions
of (CE) associated to incompressible Sobolev vector fields with exponent p > 1. We study the
propagation of regularity by mean of the what we call log-Sobolev functionals of order p > 0
associated to a function f ∈ L2(Rd):(∫

B1/2

∫
Rd

|f(x+ h)− f(x)|2

|h|d
1

log(1/|h|)1−p dx dh
)1/2

. (1.4)

Let us compare (1.4) with the well-known Gagliardo semi-norm(∫
Rd

∫
Rd

|f(x+ h)− f(x)|2

|h|d+2s dxdh
)1/2

s ∈ (0, 1),

that roughly speaking has the aim to measure the “size” of the s-derivative (i.e. derivative of order
s) of the function f . At least at an intuitive level it is clear that replacing the term |h|2s with
log(1/|h|)1−p1B1/2(h) we are taking into account the “log-derivative” of f , justifying the name
log-Sobolev functionals. This intuitive idea is also supported by the equivalence∫
B1/2

∫
Rd

|f(x+ h)− f(x)|2

|h|d
1

log(1/|h|)1−p dxdh 'd,p
∫
|ξ|≥10

log(|ξ|)p|f̂(ξ)|2 dξ+
∫
|ξ|≤10

|ξ|2|f̂(ξ)|2 dξ,

(1.5)
for every f ∈ L2(Rd), that is proven in a forthcoming paper [BrNg18]. Note that our log-Sobolev
functionals are comparable with the ones in (1.3) considered by Leger [LF16] when p = 1 and p = 2.
Our main result is the following.

Theorem 1.1. Let p > 1 be fixed. Let us consider a bounded (in space and time) divergence-free
vector field b ∈ L1((0, T );W 1,p(Rd;Rd)).
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Then for every initial data ū ∈ BV (Rd) with ‖ū‖L∞ ≤ 1 the (unique) solution u ∈ L∞((0, T )×
Rd) of the continuity equation (CE) satisfies∫

B1/2

∫
Rd

|ut(x+ h)− ut(x)|2

|h|d
1

log(1/|h|)1−p dxdh .p,d

(∫ t

0
‖∇bs‖Lp ds

)p
+ ‖ū‖pBV + ‖ū‖L1 .

(1.6)
Moreover, there exist a divergence free vector field b ∈ L∞((0,+∞);W 1,p(Rd)) and an initial

data ū ∈ L∞(Rd) ∩W 1,d(Rd), such that the unique solution u ∈ L∞((0,∞)× Rd) of the Cauchy
problem (CE) satisfies∫

B1/2

∫
Rd

|ut(x+ h)− ut(x)|2

|h|d
1

log(1/|h|)γ dxdh =∞, ∀t > 0, (1.7)

for any γ < 1− p.

Under the additional assumption b ∈ L∞((0, T );W 1,p(Rd;Rd)) with p > 1 (1.6) ensures that
the log-Sobolev functional (1.4) of order p increases in time at most polynomially with exponent p.
Also this rate is sharp as we show in Theorem 3.1.

We refer to section 2 and section 3 for technical remarks around Theorem 1.1 concerning
the boundedness assumption on the vector field, the regularity of the initial data and simple
generalization to the case of vector fields with non-zero divergence.

Let us spend some worlds about the strategy of the proof of Theorem 1.1. For what concern the
first part of the result our starting point is the Lusin-Lipschitz estimate for regular Lagrangian flows
obtained by Crippa and De Lellis in [CDL08]. We prove that a suitable version of this estimate (see
Proposition 2.9) implies (1.6) by mean of a general result Proposition 2.12 that has the aim to link
a notion of “having a logarithm Sobolev derivative” written in term of Lusin-Lipschitz property
with a quantitative estimate in term of our log-Sobolev functionals.

To achieve the second part of Theorem 1.1 we use a version of the construction proposed
by Alberti Crippa and Mazzucato in [ACM16] (see also [ACM14] and [ACM18]). The main new
technical tool we introduce is the interpolation inequality proved in Proposition 3.5 (see also
Corollary 3.7) that links the log-Sobolev functionals (1.4) of a function f with its L2 and Ḣ−1

norms. As a byproduct of Theorem 1.1 and the just mentioned interpolation inequality we are able
to recover the sharp bound on “mixing” for vector fields with uniformly bounded W 1,p norm, with
p > 1. This well-known result (see for instance [CDL08, Theorem 6.2], [IKX14], [HSSS18], [Se13],
[LF16]) is proved in Proposition 3.10.

The paper is organized as follow. In section 2 we deal with the first part of the Theorem 1.1, see
also Theorem 2.1. The second part of the paper, that is to say section 3, is devoted to the proof of
the second part of the Theorem 1.1 (see also Theorem 3.2) and of Theorem 3.1. In this section we
also collect two mixing estimates (see Proposition 3.10) obtained as a byproduct of the previously
developed theory.

Throughout the present paper we work in the Euclidean space of dimension d ≥ 2 endowed with
the Lebesgue measure L d and the Euclidean norm | · |. We denote by Br(x) the ball of radius
r > 0 centered at x ∈ Rd. We often write Br instead of Br(0). Let us set

−
∫
E

f dx = 1
L d(E)

∫
E

f dx, ∀ E ⊂ Rd Borel set,

and
Mf(x) := sup

r>0
−
∫
Br(x)

|f(y)|dy, ∀ x ∈ Rd,

to denote the Hardy-Littlewood maximal function. We often use the expression a .c b to mean that
there exists a universal constant C depending only on c such that a ≤ Cb. The same convention is
adopted for &c and 'c.
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2 Regularity result
The main result of the present section is the following.
Theorem 2.1. Let p > 1 be fixed. Let us consider a bounded (in space and time) divergence-free
vector field b ∈ L1((0, T );W 1,p(Rd;Rd)).

Then for every initial data ū ∈ BV (Rd) with ‖ū‖L∞ ≤ 1 the (unique) solution u ∈ L∞((0, T )×
Rd) of the continuity equation (CE) satisfies∫

B1/2

∫
Rd

|ut(x+ h)− ut(x)|2

|h|d
1

log(1/|h|)1−p dxdh .p,d

(∫ t

0
‖∇bs‖Lp ds

)p
+ ‖ū‖pBV + ‖ū‖L1 .

(2.1)
Some technical remarks are in order.

Remark 2.2. Using standard arguments it is possible to prove that (2.1) implies

sup
h∈B1/2

log(1/|h|)p
∫
Rd
|ut(x+ h)− ut(x)|2 dx .p,d

(∫ t

0
‖∇bs‖Lp ds

)p
+ ‖ū‖pBV + ‖ū‖L1 .

This estimate will play a role in the study of the geometric mixing norm along solutions of (CE),
see Proposition 3.10.
Remark 2.3. The assumption b ∈ L∞((0, T )× Rd;Rd) can be replaced with more general growth
conditions, for instance one can ask

b(t, x)
1 + |x| = b1(t, x) + b2(t, x), (2.2)

with b1 ∈ L1((0, T );L1(Rd;Rd)) and b2 ∈ L1((0, T );L∞(Rd;Rd)) (see [CDL08, pg. 12]). Note that
it contains the class Lq((0, T );Lq(Rd,Rd)) for any q ∈ [1,∞], since |b(t, x)| ≤ |b(t, x)|q + 1.

Let us point out that a growth condition on b is necessary to ensure the existence of a unique
regular Lagrangian flow associated to the vector field, see [A04, AC14, CDL08] for a detailed
discussions on this topic.
Remark 2.4. The divergence free condition on b can be replaced with a more general

exp
{∫ T

0
‖div bs‖L∞ ds

}
= L <∞, (2.3)

provided we work with the transport equation{
∂tu+ b · ∇u = 0,
u0 = ū,

(TrE)

instead of (CE). The precise statement is the following.
Let p > 1 be fixed. Let us consider a bounded vector field b ∈ L1((0, T );W 1,p(Rd;Rd))

satisfying (2.3). Then for every initial data ū ∈ BV (Rd) with ‖ū‖L∞ ≤ 1 the (unique) solution
u ∈ L∞((0, T )× Rd) of the transport equation (TrE) satisfies∫
B1/2

∫
Rd

|ut(x+ h)− ut(x)|2

|h|d
1

log(1/|h|)1−p dxdh .p,d L
p

(∫ t

0
‖∇bs‖Lp ds

)p
+ ‖ū‖pBV + ‖ū‖L1 .

Remark 2.5. The regularity assumption on the initial data ū ∈ BV (Rd) is very far from being
sharp, indeed it can be immediately weakened, for instance asking u0 ∈ W s,1(Rd) for 0 < s ≤ 1
or u0 satisfying some Lusin-Lipschitz regularity condition as (2.13). Of course we expect that the
minimal assumption to ask is∫

B1/2

∫
Rd

|u0(x+ h)− u0(x)|2

|h|d
1

log(1/|h|)1−p dx dh <∞, (2.4)

but it seams to be much more difficult to prove using our techniques. For sake of simplicity and for
consistency with the counterexample in Theorem 3.2 we prefer to deal with Sobolev or BV initial
data.
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The proof of Theorem 2.1 strictly relies on a well-know ingredient: the quantitative Lusin-
Lipschitz estimates for the Lagrangian flows associated to Sobolev vector fields, first introduced
in [ALM05] and [CDL08]. The strategy of our proof is the following. First we state, in a suitable
form, the afore mentioned regularity result for Lagrangian flows (see Proposition 2.9) and for sake
of completeness we add a very simple proof of this fact. As a second step we turn the quantitative
Lusin-Lipschitz estimate performed at the Lagrangian level to an estimate for solutions of the
continuity equation (see Corollary 2.11). We point out that also this result is already present in the
literature [CDL08, Theorem 5.3], in a slightly less quantitative form. Finally we establish a general
result that links a suitable quantitative Lusin-Lipschitz property of a generic scalar function with
an estimate on the log-Sobolev functional (1.4).

2.1 Regularity of Lagrangian flows
As mentioned above in this subsection we present a regularity estimate for Lagrangian flows
associated to Sobolev vector fields with exponent p > 1. Let us begin recalling the definition of
regular Lagrangian flow introduced by Ambrosio in [A04].

Definition 2.6. Let us fix a time dependent vector field b ∈ L1
loc((0, T ) × Rd;Rd). We say that

X : [0, T ]× Rd → Rd is a Regular Lagrangian flow associated to bt (RLF for short) if the following
conditions hold:

(i) there exists an L d-negligible set N ⊂ Rd such that

Xt(x) = x+
∫ t

0
bs(Xs(x)) ds ∀t ∈ [0, T ],

for every x ∈ Rd \N ;

(ii) there exists L > 0, called compressibility constant, such that

(Xt)]L d ≤ LL d, for every t ∈ [0, T ];

The regular Lagrangian flow can be thought as a “good” selection of (possible not unique)
solutions of the (ODE) problem associated to a rough vector field. Is the condition (ii) that has
the role to select “good” trajectories, ensuring that the flow does not concentrate too much the
reference measure L d.

Condition (ii) plays also an important role at the technical viewpoint. Indeed it guarantees that
the notion of RLF is stable under modifications of the vector field on a L d-negligible set. More
precisely if X is a regular Lagrangian flow associated to b and b̄ is such that

L d+1({ (t, x) : | b(t, x)− b̄(t, x)| > 0 }) = 0,

then X is also a regular Lagrangian flow associated to b̄.
Remark 2.7. It has been shown in [A04, Theorem 6.2, Theorem 6,4] that under the BV assumption
on the vector fields

∫ T
0 ‖bs‖BV ds <∞, the uniform bound on the negative part of the divergence, i.e.

div bt � L d and
∫ T

0 ‖[div bs]−‖L∞ ds <∞, and a growth conditions (for instance b ∈ L∞([0, T ]×Rd)
see also Remark 2.3 ) there exists a unique RLF.

We also remark that assuming a bound on the whole divergence

exp
{∫ T

0
‖div bs‖L∞ ds

}
≤ L,

condition (ii) in Definition 2.6 can be improved in

1/LL d ≤ (Xt)]L d ≤ LL d, for every t ∈ [0, T ]. (2.5)

In particular if the vector field is divergence-free Xt is a measure preserving map for any t ∈ [0, T ].
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Remark 2.8. Even though the notion of regular Lagrangian flow is stable under modification of
the vector field on L d-negligible sets we prefer, for technical reasons, to work with a vector field
point-wise defined, with respect to the spatial variable.

From now on when we write b ∈ L1((0, T );W 1,p(Rd,Rd)) we are tacitly considering the repre-
sentative (that we still call b) obtained setting bt(x) equal to limr→0

1
ωdrd

∫
Br(x) bt(y) dy when x is

a Lebesgue point of bt and 0 otherwise.
This choice allows a point-wise Lusin-Lipschitz maximal estimate for Sobolev vector fields:

|bt(x)− bt(y)| .d |x− y|(M |∇bt|(x) +M |∇bt|(y)) ∀x, y ∈ Rd, for L 1-a.e. t ∈ [0, T ], (2.6)

where M is the Hardy-Littlewood maximal function. See [ST] for a proof of this result at the level
of scalar Sobolev functions.

The following is the Lusin-Lipschitz regularity result for regular Lagrangian flows associated to
W 1,p vector fields with p > 1, compare with [CDL08, Poposition 2.3].

Proposition 2.9. Assume b ∈ L1((0, T );W 1,p(Rd;Rd)) for some p > 1. Let X be a regular
Lagrangian flow associated to b with compressibility constant L. Then there exists a positive function
gt : Rd → R ∪ {+∞} for every t ∈ [0, T ] such that

exp {−gt(x)− gt(y)} ≤ |Xt(x)−Xt(y)|
|x− y|

≤ exp {gt(x) + gt(y)} , (2.7)

for any x, y ∈ Rd, for every t ∈ [0, T ], and

‖gt‖Lp .p,d L
∫ t

0
‖∇bs‖Lp ds ∀t ∈ [0, T ]. (2.8)

Moreover, if b is a divergence-free drift then we can take L = 1.

Proof. Let us take N ⊂ Rd as in point (i) of Definition 2.6, ε > 0, x, y ∈ Rd \N and t ∈ [0, T ], we
have∣∣∣∣log

(
ε+ |Xt(x)−Xt(y)|

ε+ |x− y|

)∣∣∣∣ =
∣∣∣∣∫ t

0

d
ds log (ε+ |Xs(x)−Xs(y)|) ds

∣∣∣∣ ≤ ∫ t

0

|bs(Xs(x))− bs(Xs(y))|
|Xs(x)−Xs(y)| ds.

Using the Lusin maximal estimate (2.6) an letting ε→ 0 we get∣∣∣∣log
(
|Xt(x)−Xt(y)|
|x− y|

)∣∣∣∣ ≤ Cd ∫ t

0
M |∇bs|(Xs(x)) ds+ Cd

∫ t

0
M |∇bs|(Xs(y)) ds.

Set gt(x) := Cd
∫ t

0 M |∇bs|(Xs(x)) ds when x ∈ Rd \N and gt(x) := +∞ otherwise. The condition
(ii) in Definition 2.6, the boundness of the maximal function between Lp spaces when p > 1, together
with Minkowski’s inequality (see [ST, Appendix]), yields (2.8). The proof is complete.

Remark 2.10. It is clear from the proof that gt could be taken independent of t, simply considering
gT := Cd

∫ T
0 M |∇bs|(Xs(x)) ds.

As a quite simple consequence of Proposition 2.9 we get a Lusin-Lipschitz estimate at the level
of solutions to the continuity equation (CE), compare with [CDL08, Theorem 5.3].

Corollary 2.11. Let us fix p > 1 and a bounded divergence-free vector field b ∈ L1((0, T );W 1,p(Rd;Rd)).
Then, there exists a positive function g̃t : Rd → R ∪ {+∞} for t ∈ [0, T ], such that, for every
initial data ū ∈ BV (Rd)∩L∞(Rd) there exists a representative u : [0, T ]×Rd → Rd of the (unique)
solution in L∞([0, T ]× Rd) to (CE) satisfying

|ut(x)− ut(y)| ≤ |x− y| exp {g̃t(x) + g̃t(y)} , ∀x, y ∈ Rd, ∀t ∈ [0, T ], (2.9)

and
‖g̃t‖Lp .p,d

∫ t

0
‖∇bs‖Lp ds+ ‖ū‖BV ∀t ∈ [0, T ]. (2.10)
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Proof. Let X be a unique regular Lagrangian flow associated to b. For every time t ∈ [0, T ] the
map x→ Xt(x) is essentially invertible, namely there exists Y : [0, T ]× Rd → Rd such that

X(t, Y (t, x)) = Y (t,X(t, x)) = x for L d-a.e. x ∈ Rd, (2.11)

see [A04, Theorem 6.2]. It is immediate to check that Yt satisfies the inequality (2.7) replacing
gt(x) with ḡt(x) := gt(Yt(x)) when x fulfills (2.11) and ḡt(x) :=∞ otherwise. Using the measure
preserving property of Yt (compare with Remark 2.7) it is simple to verify that

‖ḡt‖Lp .p,d

∫ t

0
‖∇bs‖Lp ds ∀t ∈ [0, T ]. (2.12)

Thus, up to modifies again ḡt on a negligible set we get

|ut(x)− ut(y)|
|x− y|

.d (M |∇ū|(x) +M |∇ū|(y)) exp {ḡt(x) + ḡt(y)} , ∀x, y ∈ Rd, ∀t ∈ [0, T ],

where we used the L d-a.e. identity ut = u0(Yt) (it can be checked observing that ut(Xt(x)) = u0(x)
for L d-a.e. x ∈ Rd) and the Lusin-Lipschitz maximal estimate (2.6) for u0 ∈ BV (Rd).

Finally observe that for x, y ∈ Rd and for every t ∈ [0, T ]

Cd(M |∇ū|(x) +M |∇ū|(y)) exp {ḡt(x) + ḡt(y)} ≤ exp {g̃t(x) + g̃t(x)} ,

where g̃t(x) = ḡt(x) + cp1M |∇ū|(x)> 1
2Cd

(M |∇ū|(x))1/2p for some cp > 0. This implies (2.9). Thanks
to weak type (1,1) bound of the maximal function (see [ST]) and (2.12), we obtain (2.10). The
proof is complete.

2.2 A key lemma
This section is devoted to the proof of the following.

Proposition 2.12. Let p ≥ 1 be fixed. Let f ∈ L1(Rd) be a function satisfying the following
exponential Lusin-Lipschitz regularity estimate: there exist a positive function g ∈ Lp(Rd) such
that

|f(x)− f(y)| ≤ |x− y| exp {g(x) + g(y)} ∀x, y ∈ Rd. (2.13)

Then, it holds∫
B1/2

∫
Rd

1 ∧ |f(x+ h)− f(x)|2

|h|d
1

log(1/|h|)1−p dxdh .p,d ‖g‖pLp + ‖f‖L1 . (2.14)

Roughly speaking this result establishes an implication between two different notions of “having
a derivative of logarithmic order”. Observe that these two conditions cannot be equivalent, the
assumption (2.13) is stronger than (2.14). Indeed, the latter allows every Hölder continuous function,
that in general cannot be weakly differentiable (see for instance [Nguyen2]), compare also with the
following.
Remark 2.13. The result in Proposition 2.12 is written in a form useful for our purposes, that is
very far from being sharp. For instance it can be generalized as follow. Assume that f ∈ L1(Rd)
satisfies an Hölder-Lipschitz inequality

|f(x)− f(y)| ≤ |x− y|α exp {g(x) + g(y)} ∀x, y ∈ Rd,

for some α ∈ (0, 1] and some g ∈ Lp(Rd). Then it holds∫
B1/2

∫
Rd

1 ∧ |f(x+ h)− f(x)|2

|h|d
1

log(1/|h|)1−p dxdh .p,α,d ‖g‖pLp + ‖f‖L1 .

The proof can be obtain following the proof of Proposition 2.12 with minor modifications.
Let us now prove a technical lemma.
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Lemma 2.14. Let f ∈ L1(Rd) and g ∈ Lp(Rd) be as in Proposition 2.12. Then, it holds∫
Rd

1 ∧ |f(x+ h)− f(x)|2 dx .d |h|2
∫ log(1/|h|)

1
e2λL d({ 2g > λ }) dλ+ |h| ‖f‖L1 , (2.15)

for every h ∈ Rd with |h| ≤ 1/e.

Proof. Using (2.13) and the Cavalieri’s summation formula we get∫
Rd

1 ∧ |f(x+ h)−f(x)|2 dx

=2
∫ e|h|

0
tL d ({x : | f(x+ h)− f(x)| > t }) dt

+ 2
∫ 1

e|h|
tL d ({x : | f(x+ h)− f(x)| > t }) dt

.|h| ‖f‖L1 +
∫ 1

e|h|
tL d ({x : | f(x+ h)− f(x)| > t }) dt

.|h| ‖f‖L1 +
∫ 1

e|h|
tL d({x : g(x) + g(x+ h) > log(t/ | h|) }) dt,

for L d-a.e. h ∈ Rd with |h| ≤ 1/e. Estimating
∫ 1
e|h| tL

d({x : g(x) + g(x+ h) > log(t/ | h|) }) dt
with

2
∫ 1

e|h|
tL d({ 2g > log(t/ | h|) }) dt, (2.16)

setting λ = log(t/|h|) and changing variables in (2.16) we conclude the proof.

We are now ready to prove Proposition 2.12.

Proof. In order to shorten notation we set µ(λ) := L d({ 2g > λ }) dλ. Using the result in
Lemma 2.14 we get∫

B1/e

∫
Rd

1 ∧ |f(x+ h)− f(x)|2

|h|d log(1/|h|)1−p dxdh

.
∫
B1/e

log(1/|h|)p−1

|h|d

(
|h|2

∫ log(1/|h|)

1
e2λ dµ(λ) + |h| ‖f‖L1

)
dh

.p,d

∫ 1

0
log(1/r)p−1r

∫ log(1/r)

1
e2λ dµ(λ) dr + ‖f‖L1 .

Setting log(1/r) = t, changing variables and applying Fubini theorem we get∫ 1

0
log(1/r)p−1r

∫ log(1/r)

1
e2λ dµ(λ) dr

=
∫ ∞

0
e−2ttp−1

∫ t

1
e2λ dµ(λ) dt

=
∫ ∞

1
e2λ
∫ ∞
λ

e−2ttp−1 dtdµ(λ).

Using the integration by part formula and the inequality λ ≥ 1 it is elementary to check that

e2λ
∫ ∞
λ

e−2ttp−1 dt .p λp−1, (2.17)

that together with the definition of µ(λ) implies∫ ∞
1

e2λ
∫ ∞
λ

e−2ttp−1 dtdµ(λ) .p
∫ ∞

0
λp−1 dµ(λ) .p ‖g‖pLp .

9



Putting all together we get∫
B1/e

∫
Rd

1 ∧ |f(x+ h)− f(x)|2

|h|d
1

log(1/|h|)1−p dxdh .p,d ‖g‖pLp + ‖f‖L1 , (2.18)

that is clearly equivalent to our thesis.

Eventually the proof of Theorem 2.1 follows applying Proposition 2.12 with f = ut, and recalling
Corollary 2.11 and Remark 2.15 below.
Remark 2.15. For every 1 ≤ p <∞ the Lp norm of a solution ut to (CE) is preserved in time, at
least when the vector field is regular enough. For instance in the smooth setting one can simply
compute

d
dt

1
2

∫
Rd
|ut|2 dx = −

∫
Rd
ut div(btut) dx = −1

2

∫
Rd

div(btu2
t ) dx = 0.

More in general, if b ∈ L1((0, T );BV (Rd;Rd)) with bounded divergence then ut has the renormal-
ization property (see [A04]) that is to say, for any β ∈ C1

c (R) the function β(u(t, x)) is a solution of
the continuity equation as well. It implies the preservation in time of Lp norms.

3 Counterexamples and mixing estimates
The aim of this section is to show the sharpness of Theorem 2.1 under two different viewpoints.
The first result is the following.

Theorem 3.1. Let p ≥ 1 fixed. There exist a smooth divergence-free vector field b belonging to
L∞((0,∞);W 1,∞(Rd,Rd)) supported in B1 × [0,∞), and a smooth initial data u0 supported in B1,
such that the unique solution u ∈ L∞((0,∞)× Rd) to the continuity equation (CE) satisfies∫

B1/2

∫
Rd

|ut(x+ h)− ut(x)|2

|h|d
1

log(1/|h|)1−p dx dh & tp,

for any t ∈ (0,∞).

This result implies that the polynomial growth of order p proved in (2.1) is sharp. A partial
result in this direction was already obtained in [LF16] for the case p = 1. The second and most
important example reads as follow.

Theorem 3.2. Let p ≥ 1. There exist a divergence free vector field b ∈ L∞((0,+∞);W 1,p(Rd))
supported in B1 × [0,∞), and an initial data u0 ∈ L∞(Rd) ∩W 1,d(Rd) also supported in B1, such
that the unique solution u ∈ L∞((0,∞)× Rd) of the continuity equation (CE) satisfies∫

B1/2

∫
Rd

|ut(x+ h)− ut(x)|2

|h|d
1

log(1/|h|)γ dx dh =∞, ∀γ < 1− p, (3.1)

for every t > 0.

In other words a solution of the continuity equation associated to a divergence-free vector field
belonging to W 1,p for some p ≥ 1 cannot preserve the log-Sobolev functional (1.4) of order q, when
q > p, while it is always preserved the one of order p > 1 as Theorem 2.1 shows.

As a consequence of Proposition 2.12 (see also Remark 2.13) and Proposition 2.9 the result in
Theorem 3.2 immediately implies the following.

Proposition 3.3. Let p ≥ 1 fixed. For every q > p there exists a compact supported divergence
free-vector field b ∈ L∞((0,+∞);W 1,p(Rd)) whose regular Lagrangian flow X satisfies the following
property: for every t > 0, for every g ∈ Lq and for every α ∈ (0, 1] there exists a set E ⊂ Rd of
positive Lebesgue measure such that

|Xt(x)−Xt(y)| > |x− y|α exp {g(x) + g(y)} ∀x, y ∈ E. (3.2)
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In other words the exponential Lusin-Lipschitz regularity of order p for Lagrangian flows
associated to vector fields belonging to W 1,p cannot be improved. Even an exponential Lusin
Hölder regularity of order greater than p cannot be reached.

The main idea behind our constructions comes from the work [ACM16] by Alberti, Crippa and
Mazzucato. In this paper the authors built a solution to (CE), drifted by a divergence-free Sobolev
vector field, that is smooth at time zero but it does not belong to any Sobolev space for positive
times. The construction of a vector field b and the solution ut is achieved by patching together a
countable number of pairs vn and ρn of velocity fields and solutions to the Cauchy problem (CE)
with disjoint supports. They are obtained by rescaling in space, time and size v and ρ, that are
given by the following.

Proposition 3.4. Assume d ≥ 2 and let Q be the open cube with unit side centered at the origin of
Rd. There exist a velocity field v ∈ C∞([0,∞)×Rd) and a (non trivial) solution ρ ∈ L∞([0,∞)×Rd)
of the continuity equation (CE) such that

(i) vt is bounded, divergence-free and compactly supported in Q for any t ≥ 0;

(ii) ρt has zero average and it is bounded and compactly supported in Q for any t ≥ 0;

(iii) supt≥0 ‖vt‖W 1,p(Rd) <∞ for any t ≥ 0, for any 1 ≤ p ≤ ∞;

(iv) there exists a constant c > 0 such that

‖ρt‖Ḣ−1(Rd) . exp(−ct), ∀t ≥ 0, (3.3)

where ‖·‖Ḣ−1 is the negative homogeneous Sobolev norm of order −1.

The result in Proposition 3.4, that is taken from [ACM18, Theorem 8] (see also [ACM14])
provides a solution of (CE) (associated to a smooth divergence-free vector field) whose Ḣ−1 norm
decays exponentially in time. It can be shown that, under the uniform W 1,p bound with p > 1
on the vector field, the rate of decay of negative Sobolev norms for solutions of (CE) is at most
exponential (see Proposition 3.10 and the discussion above for more details), thus ρt built in
Proposition 3.4 saturates this rate.

By mean of Remark 2.15 and the following interpolation inequality

‖ut‖L2 ≤ ‖ut‖Ḣ−1 ‖ut‖Ḣ1 ,

from (3.3) we can deduce an exponential loss of Sobolev regularity for the solution ut:

‖ut‖Ḣ1 & ‖u0‖L1 exp(ct), ∀t ≥ 0.

Moreover, using a new interpolation inequality (see Corollary 3.7) we are able to prove that the
log-Sobolev functional (1.4), with exponent p ≥ 1, evaluated on ut increases in time at least
polynomially with exponent p, namely the solution built in Proposition 3.4 satisfies the statement
of Theorem 3.1.

In order to prove Theorem 3.2 we follow a strategy very similar to the one adopted by Alberti
Crippa and Mazzucato, using again our interpolation formula (see Proposition 3.5 and Corollary 3.7)
as a main technical tool to deduce (3.1).

3.1 Interpolation inequality and proof of Theorem 3.1
The main result of this section is inspired by [DDN18, Proof of Theorem 2.4] and reads as follow.

Proposition 3.5. Let us fix parameters γ ∈ (−∞, 1), λ ∈ (0, 1/100) and δ ∈ (0, 1]. The following
inequality holds true

‖f‖2L2 .d,γ
1

| log(δλ)|1−γ

∫
B 1

5δ

∫
Rd

|f(x+ h)− f(x)|2

|h|d| log(δ|h|)|γ dx dh+ | log(λ)|
‖f‖2L2

log
(

2 + ‖f‖L2
‖f‖Ḣ−1

) , (3.4)

for every f ∈ L2(Rd).
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Let us now describe two important corollaries of Proposition 3.5, that among other things, imply
that the solution provided by Proposition 3.4 fulfills the assumption of Theorem 3.1. The first
corollary give us an estimate for a scaled version of the log-Sobolev functional (1.4) of the solution
built in Proposition 3.4 that would play a crucial role in the proof of Theorem 3.2.

Corollary 3.6. Let ρ be as in Proposition 3.4 and let t > 0 be fixed. For every γ ∈ (−∞, 1),
λ ∈ (0, 1/100) and γ ∈ (0, 1], it holds∫

B 1
5δ

∫
Rd

|ρt(x+ h)− ρt(x)|2

|h|d| log(δ|h|)|γ dxdh &d,γ ‖ρ0‖2L2 | log(δλ)|1−γ
(
Cγ − | log(λ)|

C(‖ρ0‖L2)
1 + ct

)
,

where c is the constant in Proposition 3.4, the constant Cγ > 0 depends only on γ and C(‖ρ0‖L2) > 0
depends only on ‖ρ0‖L2 .

It can be proved starting from (3.4) and using the property (iv) in Proposition 3.4 and
Remark 2.15.
The second corollary of Proposition 3.5, that follows from (3.4) setting δ = 1 and

| log(λ)| =

 log
(

2 + ‖f‖L2
‖f‖Ḣ−1

)
‖f‖2L2

∫
B1/5

∫
Rd

|f(x+ h)− f(x)|2

|h|d log(1/|h|)γ dxdh


1

2−γ

is the following.

Corollary 3.7. For every parameter γ ∈ (−∞, 1) it holds

log
(

2 +
‖f‖L2

‖f‖Ḣ−1

)1−γ
‖f‖L2 .d,γ

∫
B1/5

∫
Rd

|f(x+ h)− f(x)|2

|h|d
1

log(1/|h|)γ dxdh, (3.5)

for every f ∈ L2(Rd).

It easily implies the proof Theorem 3.1. Indeed, we can consider a vector field v and the solution
ut of (CE) as in the statement of Proposition 3.4. Using (3.5) with γ = 1− p, the property (iv) in
Proposition 3.4 and Remark 2.15 we get the desired result.

The remaining part of this section is devoted to the proof of Proposition 3.5.

Proof of Proposition 3.5. Fix ε > 0. Let us fix ϕ ∈ C∞c (Rd) such that ϕ = 1 in B1 \ B1/2, ϕ = 0
in
(
B5/4 \B1/4

)c and ∫Rd ϕ = 1. Set ϕε(x) := ε−dϕ(x/ε). Thus, we have

‖f ∗ ϕε‖2L2 =
∥∥∥f̂ ϕ̂ε∥∥∥2

L2
≤
∥∥log(2 + | · |)|ϕ̂ε(·)|2

∥∥
L∞

∫
Rd

|f̂(ξ)|2

log(2 + |ξ|) dξ

=
∥∥log(2 + ε−1| · |)|ϕ̂(·)|2

∥∥
L∞

∫
Rd

|f̂(ξ)|2

log(2 + |ξ|) dξ

.d

∣∣∣∣log
(
ε ∧ 1

2

)∣∣∣∣ ∫
Rd

|f̂(ξ)|2

log(2 + |ξ|) dξ,

and

‖f − f ∗ ϕε‖2L2 .
∫
ε≤4|h|≤5ε

∫
Rd

|f(x+ h)− f(x)|2

|h|d
dxdh.

Thus,

‖f‖2L2 .d

∫
ε≤4|h|≤5ε

∫
Rd

|f(x+ h)− f(x)|2

|h|d
dxdh+

∣∣∣∣log
(
ε ∧ 1

2

)∣∣∣∣ ∫
Rd

|f̂(ξ)|2

log(2 + |ξ|) dξ. (3.6)
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Now we integrate (3.6) with respect to a variable ε against a suitable kernel obtaining the following.∫ 1
10δ

λ

1
| log(δε)|γ

dε
ε
‖f‖2L2(Rd) .d

∫ 1
10δ

λ

∫
ε≤4|h|≤5ε

∫
Rd

|f(x+ h)− f(x)|2

|h|d
dx dh 1

| log(δε)|γ
dε
ε

+
∫ 1

10δ

λ

∣∣log
(
ε ∧ 1

2
)∣∣

| log(δε)|γ
dε
ε

∫
Rd

|f̂(ξ)|2

log(2 + |ξ|) dξ. (3.7)

Starting from the elementary inequalities

− 1
1− γ

d
dε | log(δε)|1−γ = 1

| log(δε)|γ
1
ε

for ε < 1
δ
,

and
− d

dε
| log(ε)|2

| log(δε)|γ = | log(ε)|
| log(δε)|γ

1
ε

(
2− γ | log(ε)|

| log(δε)|

)
≥ | log(ε)|
| log(δε)|γ

1
ε

for ε < 1,

we deduce ∫ 1
10δ

λ

1
| log(δε)|γ

dε
ε
'γ | log(δλ)|1−γ , (3.8)

when δλ is small enough (for instance we can ask δλ < 1/100, that is verified under our assumption),
and∫ 1

10δ

λ

∣∣log
(
ε ∧ 1

2
)∣∣

| log(δε)|γ
dε
ε

.γ | log(δλ)|1−γ
(
| log(λ)2

log(δλ) +
(
| log(δ)|
| log(δλ)|

)1−γ
)

.γ | log(δλ)|1−γ | log(λ)|,

(3.9)
for every δ > 0. Putting (3.7), (3.8) and (3.9) together we get

‖f‖2L2 .d,γ
1

| log(δλ)|1−γ

∫
B 1

5δ

∫
Rd

|f(x+ h)− f(x)|2

|h|d| log(δ|h|)|γ dxdh+ | log(λ)|
∫
Rd

|f̂(ξ)|2

log(2 + |ξ|) dξ.

In order to conclude the proof remain only to show∫
Rd

|f̂(ξ)|2

log(2 + |ξ|) dξ ≤
2 ‖f‖2L2

log(2 + ‖f‖L2
‖f‖Ḣ−1

)
. (3.10)

To this aim we fix a parameter ν > 0, and we estimate∫
Rd

|f̂(ξ)|2

log(2 + |ξ|) dξ =
∫
|ξ|≤ν

|ξ|2

log(2 + |ξ|) |ξ|
−2|f̂(ξ)|2 dξ +

∫
|ξ|≥ν

1
log(2 + |ξ|) |f̂(ξ)|2 dξ

≤ ν2

log(2 + ν)

∫
|ξ|≤ν

|ξ|−2|f̂(ξ)|2 dξ + 1
log(2 + ν)

∫
|ξ|≥ν

|f̂(ξ)|2 dξ

≤ ν2

log(2 + ν) ‖f‖
2
Ḣ−1 + 1

log(2 + ν) ‖f‖
2
L2 .

Choosing ν = ‖f‖L2
‖f‖Ḣ−1

, one gets (3.10). The thesis is now proved.

3.2 Proof of Theorem 3.2
Before going into details with the proof of Theorem 3.2 we present the last technical ingredient.
It can be seen as an orthogonality property, with respect to the log-Sobolev functional (1.4), for
functions with disjoint supports.

Lemma 3.8. Let γ ∈ (−∞, 1) be fixed. For every n ∈ N consider an open set Ωn, a function
fn ∈ L2(Rd) and a parameter 0 < λn < 1/4. Assume that the family {Ωn }n∈N is disjoint and that
the distance between supp fn and Rd \ Ωn is bigger than λn for every n ∈ N.
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Then it holds∫
B1/2

∫
Rd

|
∑
n fn(x+ h)−

∑
n fn(x)|2

|h|d
1

log(1/|h|)γ dx dh

≥ lim sup
N→∞

N∑
n=1

(∫
B1/2

∫
Rd

|fn(x+ h)− fn(x)|2

|h|d log(1/|h|)γ dxdh−
4 ‖fn‖2L2

1− γ | log(λn)|1−γ
)
. (3.11)

Proof. Let us call Ω̄n ⊂ Ωn the set of x ∈ Rd whose distance from supp fn is smaller than λn/2.
Observe that∫

B1

∫
Rd

|
∑
n fn(x+ h)−

∑
n fn(x)|2

|h|d
1

log(1/|h|)γ dx dh

≥ lim sup
N→∞

N∑
n=1

∫
Bλn/2

∫
Ω̄n

|fn(x+ h)− fn(x)|2

|h|d
1

log(1/|h|)γ dx dh

= lim sup
N→∞

N∑
n=1

(∫
B1/2

∫
Rd

|fn(x+ h)− fn(x)|2

|h|d
1

log(1/|h|)γ dx dh

−
∫
B1/2\Bλn/2

∫
Rd

|fn(x+ h)− fn(x)|2

|h|d
1

log(1/|h|)γ dxdh
)
.

On the other hand,∫
B1/2\Bλn/2

∫
Rd

|fn(x+ h)− fn(x)|2

|h|d
1

log(1/|h|)γ dx dh

≤ 2
∫
B1/2\Bλn/2

∫
Rd

|fn(x)|2

|h|d log(1/|h|)γ dxdh+ 2
∫
B1/2\Bλn

∫
Rd

|fn(x+ h)|2

|h|d log(1/|h|)γ dxdh

≤ 4 ‖fn‖2L2

∫
B1/2\Bλn/2

1
|h|d

1
log(1/|h|)γ dh ≤

4 ‖fn‖2L2

1− γ | log(λn)|1−γ .

Combining these inequalities the thesis follows.

We are now in position to prove Theorem 3.2.

Proof. Let p ≥ 1 be fixed. We consider v and ρ as in Proposition 3.4, and a family of disjoint open
cubes {Qn }n∈N contained in B1. Let us define sequences

λn = e−n, γn = 1
n2 , τn =

(
n2e−dn

)1/p
. (3.12)

Assuming that the cube Qn has side of length 3λn and center at xn ∈ B1, we set

vn(t, x) := λn
τn
v

(
t

τn
,
x− xn
λn

)
, ρn(t, x) := γnρ

(
t

τn
,
x− xn
λn

)
,

for every x ∈ Rd, t ≥ 0 and n ∈ N. Observe that un is supported in Qn and dist(suppun,Rd\Qn) ≥
λn for every n ∈ N.

Setting

b(t, x) :=
∑
n

vn(t, x), u(t, x) :=
∑
n

ρn(t, x) ∀x ∈ Rd, ∀t > 0,

the following facts hold true.

(i) b is a divergence free vector field supported inB1×[0,∞] and belonging to L∞((0,∞);W 1,p(Rd));

(ii) u is supported in B1 × [0,∞) and u ∈ L∞((0,∞)× Rd);
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(iii) the initial data u0 belongs to W 1,d(Rd);

(iv) u is a solution of the continuity equation (CE) with vector field b.

Let us fix t ≥ 0. We have

‖bt‖pW 1,p ≤
∑
n

(‖vn(t, ·)‖pLp + ‖∇vn(t, ·)‖pLp)

=
∑
n

(
λn
τn

)p (
λdn
∥∥vt/τn∥∥pLp + λd−pn

∥∥∇vt/τn∥∥pLp)
≤ sup

s≥0
‖vs‖pW 1,p

∑
n

λdn
τpn

= sup
s≥0
‖vs‖pW 1,p

∑
n

1
n2 <∞,

this proves the non-trivial part of (i). The point (ii) follows observing that supn γn <∞. In order
to prove (iii) we estimate

‖u0‖dW 1,d ≤
∑
n

(
‖ρn(0, ·)‖dLd + ‖∇ρn(0, ·)‖dLd

)
=
∑
n

γdn

(
λdn ‖ρ0‖dLd + ‖∇ρ0‖dLd

)
≤‖ρ0‖dW 1,d

∑
n

γdn <∞.

The last point follows from the construction.
We are now ready to prove (3.1). Fix a time t > 0 and γ ∈ (−∞, 1). Thanks to Lemma 3.8 and

Remark 2.15 we have∫
B1

∫
Rd

|u(t, x+ h)− u(t, x)|2

|h|d log(1/|h|)γ dx dh

≥ lim sup
N→∞

N∑
n=1

(∫
B1/2

∫
Rd

|ρn(t, x+ h)− ρn(t, x)|2

|h|d log(1/|h|)γ dxdh−
4 ‖ρn(t, ·)‖2L2

1− γ | log(λn)|1−γ
)

= lim sup
N→∞

N∑
n=1

γ2
n

∫
B1/2

∫
Rd

|ρ
(
t
τn
, x+h−xn

λn

)
− ρ

(
t
τn
, x−xnλn

)
|2

|h|d log(1/|h|)γ dxdh−
4
∥∥∥ρ( t

τn
, ·λn

)∥∥∥2

L2

1− γ | log(λn)|1−γ


= lim sup

N→∞

N∑
n=1

γ2
nλ

d
n

∫
B 1

2λn

∫
Rd

|ρ
(
t
τn
, x+ h

)
− ρ

(
t
τn
, x
)
|2

|h|d| log(|λnh|)|γ
dxdh−

4 ‖ρ0‖2L2

1− γ | log(λn)|1−γ
 .

Let us fix n ∈ N and a parameter λ ∈ (0, 1/100) to be specified later. Applying Corollary 3.6 with
parameters γ, λ, and δ = λn (we need to consider n bigger than a suitable integer nγ depending
only on γ) we get

∫
B 1

2λn

∫
Rd

|ρ
(
t
τn
, x+ h

)
− ρ

(
t
τn
, x
)
|2

|h|d| log(|λnh|)|γ
dxdh

&γ ‖ρ0‖2L2 | log(λnλ)|1−γ
(
Cγ − | log(λ)|

τnC(‖ρ0‖L2)
τn + ct

)
.

We now take λ such that atτ−1
n = | log(λ)| (at least for n big enough), where

at := Cγ
2C(‖ρ0‖L2)ct,

with this choice we obtain

| log(λnλ)|1−γ
(
Cγ − | log(λ)|

τnC(‖ρ0‖L2)
τn + ct

)
≥ (| log(λn)|+ at(τn)−1)1−γCγ

2 ≥ C̄t
1−γτγ−1

n ,
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for every n ≥ nγ , where C̄ is a positive constant depending only on, c (see Proposition 3.4), ‖ρ0‖L2

and γ.
Putting all together and recalling (3.12) we get∫

B1/2

∫
Rd

|u(t, x+ h)− u(t, x)|2

|h|d
1

log(1/|h|)γ dxdh

≥C̄t1−γ
∞∑

n=nγ

γ2
nλ

d
nτ

γ−1
n −

4 ‖ρ0‖L2

1− γ

∞∑
n=1

γ2
nλ

d
n| log(λn)|1−γ

=C̄t1−γ
∞∑

n=nγ

n
2(γ−1)
p −4e−dn

γ+p−1
p −

4 ‖ρ0‖L2

1− γ

∞∑
n=1

n−γ−3e−dn,

that is equal to +∞ when γ < 1− p and t > 0. The thesis is proved.

3.3 Mixing estimates
As a simple byproduct of our results in Theorem 2.1 and Corollary 3.7 we get two estimates on the
mixing rate for solutions of (CE) drifted by divergence-free vector fields that are bounded in W 1,p,
uniformly in time, for p > 1.

These results are already present in the literature (see [CDL08, Theorem 6.2], [IKX14], [Se13],
[LF16]), the extension to the case p = 1 is an important open problem related to the so-called
Bressan’s mixing conjecture (see [Br03]).

Let us begin with a simple estimate involving the geometric mixing scale (see [Br03]).

Lemma 3.9. Let σ > 0, f ∈ L∞(Rd) be such that ‖f‖L∞ = 1 and L d({|f | = 1}) ≥ c0 > 0. Then,
for any κ ∈ (0, 1), and ε ∈ (0, 1/2), it holds

sup
x∈Rd

∣∣∣∣−∫
Bε

f(x+ y) dy
∣∣∣∣ < κ =⇒ ε ≥ exp

−C [ sup
h∈B1/2

log(1/|h|)σ
∫
Rd
|f(x+ h)− f(x)|dx

]1/σ
 ,

(3.13)

where C = (c0(1− κ))−1/σ.

Proof. For any x ∈ {|f | = 1}, we have 1− κ <
∣∣∣−∫Bε(f(x)− f(x+ y)) dy

∣∣∣. So,
c0(1− κ) < −

∫
Bε

∫
Rd
|f(x)− f(x+ y)|dxdy

≤

[
sup

h∈B1/2

log(1/|h|)σ
∫
Rd
|f(x)− f(x+ h)|dx

]
−
∫
Bε

log(1/|y|)−σ dy

≤

[
sup

h∈B1/2

log(1/|h|)σ
∫
Rd
|f(x)− f(x+ h)|dx

]
| log(ε)|−σ.

This implies (3.13). The proof is complete.

We are now ready to state and prove the aforementioned mixing estimates.

Proposition 3.10. Let p > 1 be fixed. Let us consider a bounded divergence-free vector field b such
that

‖∇bt‖Lp ≤ B <∞ for a.e. t ≥ 0.

Then for every initial data u0 ∈ BV (Rd) ∩ L∞(Rd) the (unique) solution u ∈ L∞((0, T )× Rd) of
the continuity equation (CE) satisfies

‖ut‖Ḣ−1 ≥ C exp(−cBt), t ≥ 0, (3.14)
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where C > 0 and c > 0 depend on ‖u0‖L2 , ‖u0‖BV , p and d.
Furthermore, assume u0(x) ∈ { 1,−1, 0 } for every x ∈ Rd and

∫
Rd |u0| dx ≥ c0 > 0. Then, for

any κ ∈ (0, 1), and ε ∈ (0, 1/2), it holds

sup
x∈Rd

∣∣∣∣∣−
∫
Bε(x)

ut(y) dy

∣∣∣∣∣ < κ =⇒ ε ≥ exp(−CBt), (3.15)

where C > 0 depends on p, d, κ, c0 and ‖u0‖BV .

Proof. The first part of the statement follows immediately applying Corollary 3.7 with γ = 1−p and
Theorem 2.1. The second part is a consequence of Lemma 3.9, applied with σ = p, and Remark 2.2
together with the following elementary observation: if f is a measurable function that takes only
the values 1, 0 and −1 then∫

Rd
|f(x+ h)− f(x)|dx ≤

∫
Rd
|f(x+ h)− f(x)|2 dx,

for every h ∈ Rd.

Two remarks are in order.
Remark 3.11. The mixing estimate (3.14) is still true considering the Ḣ−s semi-norm with s > 0,
indeed we have

‖ut‖Ḣ−s ≥ C exp(−cBst), t ≥ 0.

It can be proved modifying slightly the interpolation inequality (3.4).
Remark 3.12. Let us assume bt to be smooth and compactly supported in Q = [0, 1]d ⊂ Rd. Call
Xt its flow. Setting u0 = 1A − 1Q\A ∈ BV (Rd) with A ⊂ [0, 1]d and L d(A) = 1

2 . It is immediate
to see that ut := 1At − 1Q\At where At = Xt(A). Setting κ = 1/2 and fixing p > 1 the implication
in (3.15) implies

1
4 ≤

L d(B(x, ε) ∩At)
ωdεd

≤ 3
4 =⇒

∫ t

0
‖∇bs‖Lp ds ≥ C| log(ε)|, (3.16)

where C depends on p, d and ‖u0‖BV .
Note that (3.16) is exactly the statement of the Bressan’s conjecture for p > 1 (see [Br03]) that

has been proved for a first time in [CDL08].
Let us conclude the section with an open question.

Open Question 3.13. Let b ∈ L∞((0,+∞);W 1,1(Rd,Rd)) be a divergence-free vector field
with compact support. Fix an initial data ū ∈ C∞c (Rd) and consider ut the unique solution in
L∞([0, T ]×Rd) of the continuity equation (CE). Is there an increasing function ψ : (0,∞)→ (0,∞)
with lima→∞ ψ(a) =∞ and ψ−1(2t) ≤ Cψ−1(t) such that

sup
h∈B1/2

ψ (log(1/|h|))
∫
Rd
|ut(x+ h)− ut(x)|2 dx ≤ Cψ (t) <∞,

for every time t big enough?

Let us remark that a positive answer of (3.13), together with the proof of Lemma 3.9 implies
an exponential bound on mixing in the case p = 1 (see Proposition 3.10), proving the complete
version of the conjecture by Bressan (see [Br03]).
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