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Abstract. In this paper we prove the following Kohler-Jobin type inequality: for any open,
bounded set Ω ⊂ RN and any ball B ⊂ RN we have

T (Ω)
1

N+2h1(Ω) ≥ T (B)
1

N+2h1(B),

where T denotes the torsional rigidity and h1 the Cheeger constant. Moreover, equality
holds if and only if Ω is a ball. We then exploit such inequality to provide a new proof of the
sharp quantitative Cheeger inequality. Eventually, we extend these results to the nonlocal
framework.
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1. Introduction

In this paper we study a class of inequalities arising from shape optimization problems
involving the torsional rigidity, the eigenvalues of elliptic operators and the Cheeger constant.
First of all, we introduce the mathematical objects we will deal with.

Let Ω be an open, bounded set in RN . For 1 ≤ r < N and 1 ≤ q < Nr/(N − r), or for
r ≥ N and 1 ≤ q < +∞, we define

λr,q(Ω) := inf

{ ∫
Ω
|∇u|rdx(∫

Ω
|u|qdx

) r
q

: u ∈ W r,q
0 (Ω) \ {0}

}
= inf

{ ∫
Ω
|∇u|rdx(∫

Ω
|u|qdx

) r
q

: u ∈ C∞c (Ω) \ {0}

}
,

(1.1)
which can be interpreted as the principal frequency for the nonlinear eigenvalue problem

−∆ru = λ‖u‖r−qLq(Ω)|u|
q−2u in Ω, u = 0 on ∂Ω .

Alternatively, λr,q(Ω) can be seen as the optimal constant for the Poincaré inequality(∫
Ω

|u|qdx
) r

q

≤ C

∫
Ω

|∇u|rdx ,

in the Sobolev space W r,q
0 (Ω). Some of the functionals defined above have been intensively

studied in the literature: Tp(·) := λ−1
p,1(·) is called p-torsional rigidity and if p = 2 is often

defined, thanks to a homogeneity argument, in the equivalent way,

T2(Ω) = −2 min

{
1

2

∫
Ω

|∇u|2dx−
∫

Ω

u dx : u ∈ H1
0 (Ω)

}
.
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On the other hand, λ2,2(·) is the first eigenvalue of the Dirichlet-Laplacian; beware that it is
often denoted by λ1(·) in works that do not deal also with nonlinear eigenvalues. Moreover, if
Ω has regular enough boundary, λ1,1(·) happens to be equal to the so-called Cheeger constant
of Ω, defined by

h1(Ω) := inf

{
P (E)

|E|
: E ⊂ Ω

}
,

where P (·) denotes the euclidean De Giorgi’s perimeter, and |·| is the N -dimensional Lebesgue
measure. As it can be rapidly checked thanks to the Pólya-Szegö inequality, or to the isoperi-
metric inequality if r = q = 1, balls minimize λr,q(·) among sets of prescribed measure,
namely

λr,q(Ω) ≥ λr,q(B) , (1.2)

for any ball B of measure |B| = |Ω|. Moreover, equality holds if and only if Ω is a ball, up to
a set of null r−capacity. Of course this entails that balls maximize the p−torsional rigidity
under measure constraint, that is,

Tp(Ω) ≤ Tp(B) ,

for any ball B with |B| = |Ω|. The latter is known as Saint-Venant inequality.
Pólya and Szegö in [20] conjectured that the product of the torsional rigidity (raised to a

suitable power) and the first eigenvalue of the Dirichlet-Laplacian was minimized by balls.
Intuitively, this tells that the minimality of balls for the eigenvalue is somehow more stable
compared to their maximality for the torsion. The conjecture was proved to be true by
Kohler-Jobin, who showed, in [15, 16], that

T2(Ω)
2

N+2λ2,2(Ω) ≥ T2(B)
2

N+2λ2,2(B) , (1.3)

with equality if and only if Ω is a ball, up to a set of null measure. The exponent 2/(N + 2)
is chosen so that the functional is scale invariant. The conjecture by Pólya and Szegö can
actually be extended to the more general family of functionals T θp (·)λp,q(·). This step, which is
not straightforward, mostly due to the nonlinearity of the Euler-Lagrange equation governing
λp,q(·) whenever (p, q) 6= (2, 2), has been later accomplished by Brasco. Precisely, in [2] he
shows, with somehow simplified arguments, that

T θp (Ω)λp,q(Ω) ≥ T θp (B)λp,q(B)

whenever B is a ball, 1 < p < +∞, and 1 < q < Np/(N−p) if p < N , 1 ≤ q < +∞ if p ≥ N .
Again, θ = θ(N, p, q) is chosen so to make the inequality homogeneous and equality can hold
only if Ω is a ball, up to a negligible set. We notice that the above class of parameters does
not include the case T θp (·)λr,q(·) with p 6= r (see also Remark 1.2 below) and in particular
the interesting case p = 2, r = q = 1 which involves the Cheeger constant. This latter choice
of parameters has a substantial difference from the other cases: for r > 1 it is not difficult
to show the existence of a minimizer in the definition (1.1) of λr,q(Ω), while for r = 1 this is
not the case, since a minimizing sequence may relax to a function with jumps, not belonging
to W 1,1(Ω), so that a minimizer must be searched in the space of functions with bounded
variation BV (Ω). Moreover, the positive level sets of the BV minimizers turn out to be
optimal sets for h1(Ω) (more details on the Cheeger constant are given in Section 2 below).

In this note we further extend (1.3) to the functionals T θp (·)λ1,q(·), with 1 < p < +∞,
1 ≤ q < N/(N − 1), and θ the suitable “scaling” exponent. Namely, we prove the following.

Theorem 1.1 (Cheeger–Kohler-Jobin inequality). Let 1 < p < +∞, Ω ⊂ RN be an open,
bounded set and B ⊂ RN be any ball. Then, for any q ∈ [1, N

N−1
), it holds

Tp(Ω)θλ1,q(Ω) ≥ Tp(B)θλ1,q(B) , (1.4)
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with θ = θ(N, p, q) := q−N(q−1)
q[p+N(p−1)]

. In particular, when p = 2, q = 1, and P (Ω) = HN−1(∂Ω),

we have
T2(Ω)θh1(Ω) ≥ T2(B)θh1(B) , (1.5)

where θ = θ(N) := 1
N+2

.
Moreover, equality holds in (1.4) and (1.5) if and only if Ω is equal to a ball, up to a

negligible set.

The interest of this extension is due to the choice of the first index in λ1,q(·). We remark
nevertheless, that in this case we get the characterization of equality cases even for q = 1,
which is an open issue for the functionals Tp(·)λp,q(·) if q = 1 and p > 1.

Remark 1.2 (Open cases). The results of the present paper, those by Brasco in [2] and
those by Kohler-Jobin in [15], do not cover all the possible indexes. In particular one may
consider the family of functionals Tp(·)θλr,q(·) when p 6= r, r ∈ (1,∞), and q ∈ [1, Nr

N−r ) if
r < N , q ∈ [1,∞) if r ≥ N . Our strategy is not extensible to all the parameters, mainly
because we can not employ the coarea formula in order to obtain the results of Step 1 in the
proof of Theorem 1.1 on

∫
Ω
|∇u|rdx. On the other hand one can not hope to have the ball as

minimizer for any index: for instance, in the planar case, if p = 1, r = q = 2, this is not true,
as observed by Parini in [19], who proved that balls are critical points but not minimizers for
T1(·)2λ2,2(·).

Theorem 1.1 holds as well in the fractional setting, that is, when the Cheeger functional
h1 is replaced with its nonlocal counterpart hs, introduced and studied in [4]. For the sake of
clarity, we avoid to burden the proof of the result with the notations necessary to deal with
the fractional case. For the interested reader, some details about this extension are postponed
in Section 4.

We are then able to exploit Theorem 1.1 to offer a new proof of the following quantitative
version of (1.2) in the case r = q = 1.

Theorem 1.3. There exists a dimensional constant σ(N) > 0 such that for any Ω ⊂ RN

open and bounded with P (Ω) = HN−1(∂Ω) and for any ball B ⊂ RN , we have

|Ω|
1
N h1(Ω)− |B|

1
N h1(B) ≥ σ(N)α(Ω)2 , (1.6)

where α(Ω) denotes the Fraenkel asymmetry of Ω, see (2.2). Moreover, the power 2 in (1.6)
is sharp, in the sense that it can not be replaced by any lower number.

This improvement of the Cheeger inequality was first showed by Figalli, Maggi, and Pratelli:
in [10] they provide a short proof of this fact, based on the quantitative version of the
isoperimetric inequality [13, 9, 8].

The approach in this paper is quite different, and borrows an idea from [3], where Brasco,
De Philippis, and Velichkov show that λ2,2(·) satisfies a (asimptotically sharp) quantitative
estimate of the form

|Ω|
2
N λ2,2(Ω)− |B|

2
N λ2,2(B) ≥ C(N)α(Ω)2 ,

by relating the stability of λ2,2(·) to that of the torsional rigidity T2(·). In the very same spirit,
we obtain (1.6) by combining the Cheeger–Kohler-Jobin inequality (1.5), together with the
quantitative stability of the 2-torsional rigidity provided in [3].

The article is organized as follows. In Section 2 we introduce the main notions needed
throughout the paper. Beside this, we shortly survey the several possible definitions of
Cheeger constant, underlining some minimal regularity assumptions in order to make all
of them coincide. One reason for this discussion is that it will allow us to work, in the rest
of the paper, with the functional definitions of the Cheeger constant. The advantage of this
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choice is twofold: on one hand, it is more in the spirit of Kohler-Jobin type inequalities,
where the quantities involved are defined via minimization of functional operators; on the
other hand, a functional definition turns out to be easier to handle in our proofs (in partic-
ular, for the equality cases of (1.5)). Section 3 is devoted to the proof of the main results
of the paper: Theorems 1.1 and 1.3. Eventually, in Section 4 we discuss the fractional case.
As mentioned above, the result (but not the proof) about quantitative improvements of the
Cheeger inequality just overlaps with the work of Figalli, Maggi, and Pratelli: even if the
authors consider only the local case (as a matter of facts, the fractional Cheeger constant
has not been defined at the time of their publication yet), it is not difficult to adapt their
techniques, and consequently their result, to the fractional setting.

2. Preliminaries

In this section we collect some well known facts on geometric measure theory, which will
serve our scopes later in the paper. We refer to [1, Chapter 3] for more details. Then we
discuss some features and links of the several possibles definitions of the Cheeger constant.

2.1. The perimeter and its properties. The measure theoretic perimeter (shortly:
perimeter) of a Borel set E ⊂ RN is the quantity

P (E) := sup

{∫
E

∇ · φ dx : φ ∈ C1
c (RN ,RN), ‖φ‖∞ ≤ 1

}
.

If P (E) < +∞ then we say that E has finite perimeter. Equivalently, it can be defined in
the setting of functions of bounded variation as the distributional derivative of characteristic
functions. We recall that if Ω ⊂ RN is an open set, we say that u ∈ L1(Ω) is a function of
bounded variation, and we write u ∈ BV (Ω) if the distributional derivative Du of u is an
RN -valued finite Radon measure. If E ⊂ RN is a set of finite perimeter, then χE ∈ BV (RN)
and P (E) = |DχE|(RN) =: ‖DχE‖TV (RN ).

Whenever it exists, the quantity

[0, 1] 3 θE(x) := lim
r→0

|E ∩Br(x)|
|Br(x)|

,

is called the density of a Borel set E at x. We denote by Et the subset of points of RN such
that θE(x) = t, and we call essential boundary the set ∂eE = E \ (E0 ∪ E1). Eventually, we
define the reduced boundary of E as the set ∂∗E ⊂ ∂eE of points of the essential boundary
such that the measure theoretic inner unit normal

νE(x) := lim
r→0

DχE(Br(x))

|DχE|(Br(x))

exists.
The geometry of the boundary of sets of finite perimeter is described in the two cornerstones

of the theory of sets of finite perimeter: the De Giorgi’s and the Federer’s structure theorems.

Theorem 2.1 (De Giorgi’s Structure Theorem). Let E be a set of finite perimeter. Then ∂∗E
is HN−1−rectifiable and P (E) = HN−1(∂∗E). Moreover, if x ∈ ∂∗E, then (E−x)/r converges
in L1

loc to the hyperspace defined by the interior normal νE(x), as r → 0. Eventually, it holds
the divergence formula ∫

E

∇ · φ dx = −
∫
∂∗E

φ · νE dHN−1(x) ,

for any vector field φ ∈ C1
c (RN ,RN).
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Theorem 2.2 (Federer’s Structure Theorem). Let E be a set of finite perimeter. Then
∂∗E ⊂ E1/2 and HN−1(∂eE \ ∂∗E) = 0. In particular ∂∗E, E1/2, and ∂eE are the same set,
up to a HN−1−null set.

2.2. The isoperimetric inequality and its quantitative improvement. As it will be
explained in more detail later, the Kohler-Jobin inequality is based on the simple principle of
slicing the energy functionals defining λp,q and Tp horizontally, and then rearrange the level
sets of the involved functions in a suitable way. The energies before and after rearrangement
are compared exploting the isoperimetric inequality, which states the following: for any set
E of finite measure,

P (E)− P (B) ≥ 0

whenever B is a ball of measure |E|, with equality if and only if E coincides with B up
to a negligible set. Thanks to the rescaling property of the perimeter and of the Lebesgue
measure, an equivalent version of the isoperimetric inequality is

P (E)−Nω1/N
N |E|(N−1)/N ≥ 0 .

Here ωN denotes the measure of the ball with unit radius in RN , and again equality holds if
and only if E is a ball. While dealing with λ1,q (more precisely, with the equality cases in
(1.4)), we need to exploit a stronger version of the isoperimetric inequality, proved about a
decade ago in [13]: there exists a dimensional constant CN such that, for any set E ⊂ RN of
finite measure, it holds

P (E)−Nω1/N
N |E|(N−1)/N

Nω
1/N
N |E|(N−1)/N

≥ CNα(E)2, (2.1)

with α(E) denoting the Fraenkel asymmetry of the set E, defined as

α(E) := inf
x∈RN

{
|E∆(B + x)|

|Ω|
: B ⊂ RN is a ball, |B| = |E|

}
, (2.2)

where U∆V stands for the symmetric difference between the sets U and V .
It is worth stressing that the exponent 2 in the quantitative estimate (2.1) is sharp, in the
sense that it can not be replaced by any lower number.

2.3. The Cheeger constant. The Cheeger constant was introduced in [7] to obtain lower
bounds for the first eigenvalue of the Dirichlet-Laplacian. While its original definition is given
on Riemannian manifolds, it has lately found many applications in the euclidean setting,
where it can be defined in several ways. Here we briefly survey such different definitions
(for more details, see the recent paper [17]), and we offer a criterion under which all the
corresponding constants coincide. This allows us to switch from one definition to the other
in the rest of the paper.

Definition 2.3. Let Ω be an open, bounded set in RN . Then the Cheeger constant is either

h1(Ω) := inf

{
P (E)

|E|
: E ⊂ Ω

}
, or

h(Ω) := inf

{
P (E)

|E|
: E b Ω

}
, or

λ1(Ω) := inf

{‖Du‖TV (RN )

‖u‖L1(Ω)

: u ∈ BV (Ω) \ {0}, u|RN\Ω = 0

}
, or
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λ1,1(Ω) := inf

{‖∇u‖L1(RN )

‖u‖L1(Ω)

: u ∈ C∞c (Ω) \ {0}
}
.

The definition originally proposed by Cheeger [7] is the first one. Let us stress that by coarea
formula, it is not difficult to show that any minimizer in the third and fourth definition has
the property that each of its level set is a Cheeger set of Ω, that is, a minimizer of h1(Ω), see
[12]. Nonetheless, the constants are not the same in general.

Example 2.4. Let us consider B(0, 1), the ball centered at 0 of radius 1 in R2. Let U =
[−1

2
, 1

2
]× {0}, and let Ω = B \ U . Since any E ⊂ Ω must contain a closed curve surrounding

U (whose length is greater than 2 as it can be seen by means of a projection on U), we have
that h1(Ω) = h1(B), while

h(Ω) ≥ P (E)

|E|
+ 2H1(U) ≥ h1(B) + 2 .

The previous example can be easily extended to higher dimensions. Moreover a very similar
construction, with suitable regular functions, can be done to show that λ1,1(Ω) > λ1(Ω) + 2
(with the same Ω as above).

The feature to be underlined is that we removed a (N-1)-dimensional manifold (the line
U) from a regular set (the ball). It is quite natural to ask if this condition is somehow sharp.
The answer happens to be positive, as shown in the next proposition.

Proposition 2.5. Let Ω be an open, bounded set of RN such that

P (Ω) = HN−1(∂Ω) .

Then h1(Ω) = h(Ω) = λ1(Ω) = λ1,1(Ω).

Proof. We claim that, since P (Ω) = HN−1(∂Ω), the same happens for a minimizer E of
h1(Ω) (such a set exists since any minimizing sequence has equibounded perimeter, thus is
compact in L1, and then the perimeter is lower semicontinuous). To show this, we first split
the reduced boundary of E in the following way

∂∗E = (∂∗E ∩ ∂Ω) ∪ (∂∗E \ ∂Ω) .

From De Giorgi’s Theorem, it is well known that outside the contact points, i.e. in ∂∗E \∂Ω,
the set E is regular, so that HN−1(∂∗E \∂Ω) = HN−1(∂E \∂Ω). As for the contact points, we
clearly haveHN−1(∂∗E∩∂Ω) ≤ HN−1(∂E∩∂Ω). On the other hand, HN−1−a.e. x ∈ ∂E∩∂Ω
belongs to ∂E∩∂∗Ω, from our hypothesis on Ω and Federer’s Theorem. Finally, thanks to [17,
Prop. 3.5, point (vii)], any x ∈ ∂∗Ω∩∂E belongs to ∂∗E (namely: ∂E meets ∂Ω tangentially),
so that HN−1(∂∗E ∩ ∂Ω) = HN−1(∂E ∩ ∂Ω). Summing up all the informations, we have

P (E) = HN−1(∂∗E)

= HN−1(∂∗E ∩ ∂Ω) +HN−1(∂∗E \ ∂Ω) = HN−1(∂∗E ∩ ∂Ω) +HN−1(∂E \ ∂Ω)

= HN−1(∂E ∩ ∂Ω) +HN−1(∂E \ ∂Ω) = HN−1(∂E) .

From this fact, we can exploit [22, Theorem 1.1], which assures the existence of a sequence
of smooth sets En compactly contained inside E, which approximate E both in L1 and in
perimeter. In particular,

h(Ω) ≤ h1(Ω) =
P (E)

|E|
≤ lim

n→+∞

P (En)

|En|
= h(Ω).
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Moreover, since En b E we can construct functions un ∈ W 1,1
0 (Ω) such that∫

Ω
|∇un| dx∫

Ω
|un| dx

=
P (E)

|E|
+ on(1),

which easily entails that λ1,1(Ω) = h(Ω) = h1(Ω). A possible construction of the sequence (un)
above is the following: given an optimal function u for λ1 (its existence can be easily proven by
means of the direct method in the Calculus of Variations), then we define un = ρε/2 ∗ (uχEε

n
),

where Aε is the set of points of A whose distance from ∂A is larger than ε, and ρt is a
positive mollifying kernel of total mass 1. Notice that such a construction is admissible since
dist(∂E, ∂En) > 0.

The proof of the fact that λ1(Ω) = λ1,1(Ω) is analogous. The main difference in the
approximation argument is that one must use [22, Theorem 1.2] instead of [22, Theorem 1.1].
We thus skip the details. �

Remark 2.6. Notice that, for sets of finite perimeter, the inequality P (E) ≤ HN−1(∂E)
is always true, but the equality does not hold in general as long as the HN−1− measure of
E0 ∩ ∂E and E1 ∩ ∂E is non zero, as a consequence of Federer’s Theorem. The condition
HN−1(E0 ∩ ∂E) > 0 is quite pathological. Indeed, due to the fact that sets of finite relative
perimeter satisfy density estimates on their boundary, whenever this happens to be true, then
E can not even support a relative isoperimetric inequality. For a proof see [21, Lemma 3.5].
On the other hand, the condition HN−1(E1 ∩ ∂E) > 0 can hold even for self-Cheeger sets,
that is those sets who are minimizer of their Cheeger constant h1, as shown in [18, Section 2].

Remark 2.7. When dealing with the functionals λ1,q(·) for (N − 1)/N > q > 1, we still
have two possible equivalent definitions. For any Ω ⊂ RN open and bounded, with P (Ω) =
HN−1(∂Ω),

λ1,q(Ω) = inf

{‖Du‖TV (RN )

‖u‖Lq(Ω)

: u ∈ BV (Ω) \ {0}, u|RN\Ω = 0

}
= inf

{‖∇u‖L1(RN )

‖u‖Lq(Ω)

: u ∈ C∞c (Ω) \ {0}
}
.

Arguing as in Proposition 2.5, one can prove this equivalence.

3. Proof of the main result

3.1. Cheeger-Kohler-Jobin Inequality. This paragraph is devoted to the proof of The-
orem 1.1. Since our strategy is based on the Kohler-Jobin radial rearrangement technique,
later extended by Brasco to the nonlinear case p 6= 2, we begin by a short explanation of this
tool. At the same time, this allows us to introduce the needed notations for our proof.

The cornerstone of the Kohler-Jobin inequality is the following: given a non-negative func-
tion u in the usual Sobolev space W 1,p

0 (Ω), one constructs a rearrangement u∗ of u, belonging
to W 1,p

0 (B) for some ball B, such that∫
Ω

|∇u|pdx =

∫
B

|∇u∗|pdx and

∫
Ω

|u|qdx ≤
∫
B

|u∗|qdx . (3.1)

A somehow natural idea, in order to obtain the Kohler-Jobin inequality, is to consider the
function u∗ such that any level set of u∗ is a ball Br(t) centered at 0 with

Tp(Br(t)) = Tp({u > t}) .
Unfortunately this idea is too pretentious. In particular, the second requirement in (3.1) can
not hold in general: if {u > t} is not a ball for t in a set of positive measure, then∫

Ω

|u|qdx >
∫
B

|u∗|qdx ,
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from the Saint-Venant inequality (while nothing can be said on the Lp-norms of the gradients).
On the other hand, even if the second condition in (3.1) holds true, the first one may fail: it is
not difficult to construct a function u which is not radially decreasing, and without plateaux
(that is such that |{u ≥ t} \ {u > t}| = 0 for any t) but such that {u > t} is a ball for any t.
In this case the Lq norms of u and u∗ coincide, but∫

Ω

|∇u|pdx >
∫
B

|∇u∗|pdx ,

by the characterization of equality cases of Pólya-Szegö inequality see [5]. This suggests that
the rearrangement must somehow take into account the other level sets of u. The successful
idea of Kohler-Jobin was to introduce the following modification of the torsional rigidity.

Definition 3.1 ([2, 15]). Let Ω be an open, bounded set and 1 < p < +∞. We say that
u ∈ W 1,p

0 (Ω) ∩ L∞(Ω) is a reference function for Ω if u ≥ 0 in Ω and

t 7→ |{x ∈ Ω : u(x) > t}|∫
{u=t} |∇u|p−1 dHN−1

∈ L∞([0, ‖u‖L∞(Ω)]) .

We call Ap(Ω) the set of all reference functions for Ω.
Then, for any u ∈ Ap(Ω), the modified torsional rigidity is the functional, depending on Ω
and u, defined by

Tp,mod(Ω, u) =

(
p

p− 1
sup

{∫
Ω

g ◦ u dx− 1

p

∫
Ω

|∇g ◦ u|pdx : g ∈ Lip[0, ‖u‖L∞(Ω)], g(0) = 0

})p−1

.

The features of Tp,mod that will be used later are collected in the next Lemma (for the
proof, we refer to [2, Proposition 3.8] and [15]).

Lemma 3.2. Let 1 < p < +∞, Ω ⊂ RN be an open, bounded set, and u ∈ Ap(Ω). Then

(i) Tp,mod(Ω, u) ≤ Tp(Ω);
(ii) if B is a ball such that Tp,mod(Ω, u) = Tp(B), then |B| ≤ |Ω|. Equality holds in the

latter if and only if Ω = B and u is a radial function.

The idea in [15, 16, 2] is then the following: given u ∈ Ap(Ω), define u∗ as the function
such that for any t ∈ [0, ‖u‖L∞(Ω)], the set {u∗ > t} is a ball with p−torsional rigidity equal
to Tp,mod({u > t}, (u− t)+), where for a function f we call f+ = max{f, 0} the positive part
of f . With this construction, it is possible to show a rearrangement result as follows (for a
proof we refer to [2, Proposition 4.1 and Remark 4.3] and [15]).

Lemma 3.3 (Kohler-Jobin Rearrangement Theorem). Let 1 < p < +∞, Ω ⊂ RN be an
open, bounded set, u ∈ Ap(Ω), and B the origin centered ball such that Tp(B) = Tp,mod(Ω, u).

Then, for every q ≥ 1, there exists a radially symmetric decreasing function u∗ ∈ W 1,p
0 (B)

such that ∫
Ω

|∇u|pdx =

∫
B

|∇u∗|pdx and

∫
Ω

|u|qdx ≤
∫
B

|u∗|qdx .

Moreover, if q > 1, equality holds in the latter if and only if u is already a radially decreasing
function.

In the sequel we will call such an u∗ Kohler-Jobin rearrangement of u. We are now in
position to prove our main result.

Proof of Theorem 1.1. Step 1. Let u ∈ Ap(Ω), B be the origin centered ball such that Tp(B) =
Tp,mod(Ω, u), and u∗ be the Kohler-Jobin rearrangement of u. Then, by part (ii) of Lemma 3.2,
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we know that |{u∗ > t}| ≤ |{u > t}| for any t ∈ [0, ‖u‖L∞(Ω)]. Thanks to the isoperimetric
inequality we have then that

P ({u > t}) ≥ CN |{u > t}|
N−1
N ≥ CN |{u∗ > t}|

N−1
N = P ({u∗ > t}), (3.2)

for a suitable dimensional constant CN > 0. By integrating on R+ and applying the coarea
formula, we obtain ∫

Ω

|∇u|dx ≥
∫
B

|∇u∗|dx .

Moreover, thanks to the rigidity cases of the isoperimetric inequality, equality holds if and
only if {u > t} = {u∗ > t} for almost all t ∈ R, so that, in particular, Ω = B. On the other
hand, by Lemma 3.3 we have that∫

Ω

|u|qdx ≤
∫
B

|u∗|qdx ,

for q ≥ 1.
Step 2. We want now to apply the first Step to functions of a minimizing sequence for λ1,q(Ω)
with q ∈ [1, N

N−1
). By the definition of λ1,q(Ω), see (1.1), we can find a minimizing sequence

of non-negative ϕh ∈ C∞c (Ω) with h ∈ N, such that

R(ϕh) :=

∫
Ω
|∇ϕh| dx(∫

Ω
|ϕh|qdx

) 1
q

−→ λ1,q(Ω), as h→∞ . (3.3)

It is immediate to note that ϕh ∈ Ap(Ω) for all h ∈ N and for all p ∈ (1,∞). Hence we can
apply Step 1 to ϕh ∈ Ap(Ω), calling with a slight abuse of notation Bh the ball such that

Tp(Bh) = Tp,mod(Ω, ϕh), and obtain, for θ = θ(N, p, q) = q−N(q−1)
q(p+N(p−1))

,

Tp(Ω)θR(ϕh) ≥ Tp,mod(Ω, ϕh)
θR(ϕh) = Tp(Bh)

θR(ϕh) ≥ Tp(Bh)
θR(ϕ∗h) ≥ Tp(Bh)

θλ1,q(Bh) .
(3.4)

We highlight that the last inequality follows since the Kohler-Jobin rearrangement ϕ∗h of ϕh
is an admissible function for the infimum defining λ1,q(Bh). Moreover, we observe that the
quantity on the right of the chain of inequalities is constant, since Bh is a ball and θ is taken
so that the functional T θp (·)λ1,q(·) is scale invariant. Hence, passing to the limit as h → ∞
on the left-hand side, we obtain

Tp(Ω)θλ1,q(Ω) = lim sup
h→∞

Tp(Ω)θR(ϕh) ≥ Tp(Bh)
θλ1,q(Bh) = Tp(B)θλ1,q(B) ,

where B is any ball. We finally note that the case of the Cheeger constant h1 = λ1,1 follows
simply taking q = 1, and the first part of the proof is concluded.
Step 3. Equality cases. This step is not straightforward, as in the proof of the inequality
we had to pass to the limit as h → +∞. We consider Ω ⊂ RN that satisfies (1.4) with the
equality sign and take ϕh, ϕ

∗
h, and Bh as in Step 2. Without loss of generality, we may assume

that ‖ϕh‖Lq(Ω) = 1 for every h. In view of (3.3), the minimizing sequence (ϕh) is uniformly
bounded in W 1,1(Ω); therefore, up to a subsequence (not relabeled), ϕh weakly* converges in
BV (Ω) to some ϕ, optimal for λ1,q(Ω), see Remark 2.7. As for ϕ∗h, thanks to (3.3) and (3.4),
we infer that

lim
h→+∞

R(ϕ∗h) = lim
h→+∞

R(ϕh) = λ1,q(Ω) . (3.5)

In particular, by construction of the Kohler-Jobin rearrangement, by Lemma 3.3 and by the
above formula we deduce

1 = ‖ϕh‖Lq(Ω) ≤ ‖ϕ∗h‖Lq(Bh) ≤ CN , (3.6)
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where CN denotes, as usual, a positive constant, depending only on the dimension N , which
may vary from line to line. Improving the computations done in (3.2) with the quantitative
form of the isoperimetric inequality (2.1), for u = ϕh, we obtain

P ({ϕh > t}) ≥ P ({ϕ∗h > t}) + CNNω
1/N
N |{ϕh > t}|(N−1)/Nα({ϕh > t})2 ,

then, integrating on R+ and applying the coarea formula, we have∫
Ω

|∇ϕh| dx ≥
∫
Bh

|∇ϕ∗h| dx+ CN

∫ +∞

0

|{ϕh > t}|(N−1)/Nα({ϕh > t})2dt . (3.7)

On the other hand, by combining (3.6) and (3.7) we obtain

R(ϕh) ≥ R(ϕ∗h) + CN

∫ +∞

0

|{ϕh > t}|(N−1)/Nα({ϕh > t})2dt .

Passing to the limit as h→ +∞ and recalling (3.5), we infer that

lim inf
h→+∞

∫ ∞
0

|{ϕh > t}|(N−1)/Nα({ϕh > t})2dt = 0 ,

and by applying Fatou’s Lemma, we have∫ +∞

0

lim inf
h→+∞

|{ϕh > t}|(N−1)/Nα({ϕh > t})2dt = 0 ,

hence for almost all t ∈ (0,∞) one has, up to pass to subsequences,

lim
h→+∞

|{ϕh > t}|(N−1)/Nα({ϕh > t})2 = 0 .

Since ϕ 6= 0, there exists a t > 0 such that |{ϕ > t}| > ε > 0, so one has |{ϕh > t}| ≥ ε/2 > 0
for h large enough, since ϕh → ϕ in L1 and pointwise a.e. up to subsequences. Moreover, for
any s ≤ t and all h ∈ N, it holds {ϕh > t} ⊆ {ϕh > s}, hence for any t ∈ (0, t) it can not
happen that |{ϕh > t}| → 0 as h→ 0, therefore it must hold that for almost all t ∈ (0, t),

lim
h→+∞

α({ϕh > t}) = 0 ,

entailing that {ϕh > t} → Bt in L1 for some ball Bt. In particular we have that {ϕh > 0} =
∪t>0{ϕh > t} → B in L1 as h → ∞, for some ball B. On one hand, ϕ is an admissible
function for the variational problem defining λ1,q(B) and it is optimal for λ1,q(Ω). Moreover
we have the inclusion B ⊂ Ω (since any x ∈ B is the limit of points in the support of ϕh).
Thus

λ1,q(Ω) ≤ λ1,q(B) ≤
‖Dϕ‖TV (RN )(∫

Ω
|ϕ|q dx

)1/q
= λ1,q(Ω) ,

and therefore λ1,q(B) = λ1,q(Ω). In view of the assumption Tp(B)θλ1,p(B) = Tp(Ω)θλ1,q(Ω),
we also have Tp(B) = Tp(Ω).
We claim now that the support of ϕ is Ω itself, up to a negligible set. Notice that the claim, if
q = 1 means that Ω is self-Cheeger. If it does not hold, that is if |Ω\B| > 0, then, since Tp(·)
is strictly increasing for set inclusion, we get that Tp(Ω) > Tp(B), which is clearly impossible.
In conclusion we have that Ω = {ϕ > 0}, thus we have that |Ω| = |B| and we can invoke the
equality cases of the Saint-Venant or of the Faber-Krahn inequality to deduce that Ω = B
up to zero measure. The proof is concluded. �
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3.2. Proof of the quantitative estimate for h1. We offer here the proof of Theorem 1.3.
We remark that it is just a slight modification of the combination of a Kohler-Jobin type
inequality with a quantitative Saint-Venant inequality proposed in [3]. We recall that the
quantitative Saint-Venant inequality proved in [3, Section 5, Proof of Main Theorem] reads
as

T2(B)|B|−
N+2
N − T2(Ω)|Ω|−

N+2
N ≥ τ(N)α(Ω)2 ,

where τ = τ(N) > 0 is a dimensional constant and α the Fraenkel asymmetry (2.2).

Proof of Theorem 1.3. Since inequality (1.6) is scale invariant, we may assume without loss
of generality that Ω and B have the same measure, equal to 1. Moreover, for brevity of
notation, we will denote by T the 2-torsional rigidity T2. Thanks to the Cheeger–Kohler-
Jobin estimate (1.5), we have

h1(Ω)

h1(B)
− 1 ≥

(
T (B)

T (Ω)

)θ
− 1 .

We now distinguish two cases: T (B)/T (Ω) > 2 and T (B)/T (Ω) ∈ [1, 2]. In the former,
exploiting the easy bound τα2(Ω) ≤ T (B), we obtain

h1(Ω)

h1(B)
− 1 ≥ 2θ − 1 ≥ (2θ − 1)

τα2(Ω)

T (B)
. (3.8)

In the latter, we use the concavity of the function x 7→ xθ, being 0 < θ = 1/(N + 2) < 1. For
every x ∈ [1, 2], we have

xθ = ((2− x) + 2(x− 1))θ ≥ (2− x) + 2θ(x− 1) , (3.9)

since 2−x and x−1 are both in [0, 1] and their sum is 1. By applying (3.9) to x = T (B)/T (Ω),
we obtain

h1(Ω)

h1(B)
− 1 ≥

(
2− T (B)

T (Ω)

)
+ 2θ

(
T (B)

T (Ω)
− 1

)
− 1 = (2θ − 1)

(
T (B)

T (Ω)
− 1

)
≥ (2θ − 1)

τα2(Ω)

T (Ω)
≥ (2θ − 1)

τα2(Ω)

T (B)
.

(3.10)

Finally, combining (3.8) and (3.10), we conclude the proof of (1.6) with

σ :=
τ(2θ − 1)h1(B)

T (B)
,

where B denotes an N -dimensional ball of unit measure.
Eventually, we notice that the exponent 2 is sharp. Indeed it is enough to consider the family
of ellipsoids

Ωε =
{

(x1, . . . , xN) :
N−1∑
i=1

x2
i + (1 + ε)x2

N ≤ 1
}
.

A simple computation shows that |Ωε|
N−1
N P (Ωε) − |B|

N−1
N P (B) ' ε2 while α(Ωε) ' ε as

ε→ 0. On the other hand, since h1(B) = N ,

h1(Ωε)− h1(B) ≤ P (Ωε)− P (B)

|Ωε|
' P (Ωε)− P (B) .

This concludes the proof. �
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4. The fractional case

4.1. Preliminaries on fractional Sobolev spaces. In this section we introduce the frac-
tional Sobolev spaces W s,p, for s ∈ (0, 1) and p ∈ [1,∞). The W s,p Gagliardo seminorm on
RN is defined by

[u]p
W s,p(RN )

:=

∫∫
RN×RN

|u(x)− u(y)|p

|x− y|N+sp
dxdy .

We then call
W s,p(RN) :=

{
u ∈ Lp(RN) : [u]W s,p(RN ) <∞

}
,

which is a Banach space (Hilbert for p = 2) once endowed with the norm

‖u‖p
W s,p(RN )

:= ‖u‖p
Lp(RN )

+ [u]p
W s,p(RN )

.

Since our aim is to study functionals with Dirichlet boundary conditions, it is natural to

define, for an open, bounded set Ω ⊂ RN , the Banach space W̃ s,p
0 (Ω) as the completion of

C∞c (Ω) with respect to the norm

u 7→ ‖u‖Lp(Ω) + [u]W s,p(RN ) .

We note that, in W̃ s,p
0 (Ω), the norm ‖ · ‖Lp(Ω) + [·]W s,p(RN ) is equivalent to the seminorm

[·]W s,p(RN ). This space is reflexive for p ∈ (1,∞), while W̃ s,1
0 (Ω) is not reflexive, hence it is

often substituted by the (larger) space

W s,1
0 (Ω) :=

{
u ∈ L1(Ω) : [u]W s,1(RN ) <∞, u = 0 a.e. in RN \ Ω

}
.

Observe that W̃ s,1
0 (Ω) ⊂ W s,1

0 (Ω).
There are other possible definitions of fractional Sobolev spaces, but we do not use them

and so we just refer the interested reader to [4] and the references therein for a broader
discussion.

We recall that the fractional perimeter is defined, for measurable sets E ⊂ RN and s ∈
(0, 1), as

Ps(E) := [χE]W s,1(RN ) =

∫∫
RN×RN

|χE(x)− χE(y)|
|x− y|N+s

dxdy = 2

∫∫
RN×RN

χE(x)χEc(y)

|x− y|N+s
dxdy ,

and we note that the functional Ps(·) is N − s positively homogeneous. In [4], Brasco,
Lindgren, and Parini study several properties of the the nonlocal counterpart of the Cheeger
constant of an open, bounded set Ω ⊂ RN , which they define, for s ∈ (0, 1), as

hs(Ω) = inf

{
Ps(E)

|E|
: E ⊂ Ω

}
.

In the spirit of the multiple definitions available in the local case, if Ω ⊂ RN is open, bounded,
and Lipschitz (see [4, Theorem 5.8]), the fractional Cheeger constant can be equivalently
characterized as

hs(Ω) = λs1,1(Ω) := inf

{
[u]W s,1(RN )∫

Ω
|u| dx

: u ∈ W s,1
0 (Ω) \ {0}

}
= inf

{
[u]W s,1(RN )∫

Ω
|u| dx

: u ∈ C∞c (Ω) \ {0}
}

;

moreover, Brasco, Lingdren, and Parini prove the following fractional Cheeger inequality: for
s ∈ (0, 1), it holds

|Ω|
s
N hs(Ω) ≥ |B|

s
N hs(B) ,

where B is any N -dimensional ball; moreover, equality holds true if and only if Ω is a ball.
Since we have the equivalence between the two definitions of Cheeger constant only among
bounded Lipschitz domains, from now on we restrict ourselves to this class of sets in the
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fractional setting. We note that the hypothesis of Lipschitz regularity for ∂Ω is a lot stronger
than the assumption P (Ω) = HN−1(∂Ω) that we considered in the local case s = 1.

4.2. Proof of the main results for the fractional case. We now state the results analo-
gous to Theorem 1.1 and 1.3 for the nonlocal case. Since the strategy of the proofs is precisely
the same of the local case, we just highlight the points where some technical differences arise.

Theorem 4.1. Let p ∈ (1,∞), s ∈ (0, 1), and q ∈ [1, N
N−s). Then for any open, bounded and

Lipschitz set Ω ⊂ RN it holds

Tp(Ω)θλs1,q(Ω) ≥ Tp(B)θλs1,q(B), (4.1)

where θ = θ(N, s, q, p) =
N
q

+s−N
Np−N+p

and

λs1,q(Ω) := inf

{
[u]W s,1(RN )(∫
Ω
|u|qdx

)1/q
: u ∈ W s,1

0 (Ω) \ {0}

}
= inf

{
[u]W s,1(RN )(∫
Ω
|u|qdx

)1/q
: u ∈ C∞c (Ω) \ {0}

}
.

(4.2)
In particular,

T2(Ω)θhs(Ω) ≥ T2(B)θhs(B), (4.3)

with θ = θ(N, s) = s
N+2

.

Proof of Theorem 4.1. Step 1. Let u ∈ Ap(Ω), B be the origin centered ball such that
Tp(B) = Tp,mod(Ω, u), and u∗ be the Kohler-Jobin rearrangement of u. Then, by part (ii) of
Lemma 3.2, we know that |{u∗ > t}| ≤ |{u > t}| for any t ∈ [0, ‖u‖L∞(Ω)]. Applying the
fractional isoperimetric inequality for the s-perimeter (see [11, 14]) we have then that

Ps({u > t}) ≥ C(N, s)|{u > t}|
N−s
N ≥ C(N, s)|{u∗ > t}|

N−s
N = Ps({u∗ > t}),

for some constant C(N, s) > 0. Integrating over R+ and using a suitable coarea formula for
the fractional setting, which can be found in [4, Lemma 4.7] or in [6], we have

[u]W s,1(RN ) =

∫∫
RN×RN

|u(x)− u(y)|
|x− y|N+s

dxdy = 2

∫ ∞
t=0

(∫∫
{u(x)>t}×{u(y)≤t}

dxdy

|x− y|N+s

)
dt

=

∫ ∞
t=0

Ps({u > t}) dt ≥
∫ ∞
t=0

Ps({u∗ > t}) dt = [u∗]W s,1(RN ).

(4.4)

Moreover, thanks to the rigidity cases of the fractional isoperimetric inequality, equality holds
if and only if {u > t} = {u∗ > t} for almost all t ∈ R, so that, in particular, Ω = B. On the
other hand, by Lemma 3.3 we have that∫

Ω

|u|qdx ≤
∫
B

|u∗|qdx

for q ≥ 1.
Step 2. We want now to apply the facts above to the elements of a minimizing sequence
for λs1,q(Ω), with q ∈ [1, N

N−s). By the definition (4.2) of λs1,q(Ω), we can find a minimizing
sequence of non-negative ϕh ∈ C∞c (Ω) with h ∈ N, such that

R(ϕh) :=
[ϕh]W s,1(RN )(∫
Ω
|ϕh|qdx

) 1
q

−→ λs1,q(Ω), as h→∞.

Since ϕh ∈ Ap(Ω) for all h and p ∈ (1,∞), we can define ϕ∗h its Kohler-Jobin rearrangement,
and then the remainder of the proof follows word by word as in Step 2 of the proof of
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Theorem 1.1. We note that the case of the Cheeger constant hs = λs1,1 follows simply taking
q = 1.
Step 3. Equality cases. Also this part of the proof can be done similarly to Step 3 in the proof
of Theorem 1.1, using the suitable fractional perimeter and the coarea type formula described
in Step 1. It is important to highlight that this step is actually easier in the fractional setting,
since we do not need a relaxation into BV functions.

We consider Ω ⊂ RN that satisfies (4.1) with the equality sign, we take ϕh, ϕ
∗
h as in Step 2

and Bh the ball such that Tp(Bh) = Tp,mod(Ω, ϕh). Then, since the functions ϕh ∈ C∞c (Ω) are
bounded in W s,1(Ω), one can find a subsequence (not relabeled) strongly converging in Lq,
for any q ∈ [1, N

N−s), to some function ϕ. Moreover, up to pass to a subsequence converging
pointwise a.e., one can also see that

[ϕ]W s,1(RN ) ≤ lim inf
h→∞

[ϕh]W s,1(RN ),

using Fatou’s Lemma. In conclusion we have that

[ϕ]
W s,1(RN )(∫

Ω
|ϕ|qdx

) 1
q

≤ lim inf
h→∞

[ϕh]W s,1(RN )(∫
Ω
|ϕh|qdx

) 1
q

= λs1,q(Ω) ,

and hence, noting that the pointwise convergence entails ϕ = 0 a.e. in RN \ Ω, we have
that ϕ ∈ W s,1

0 (Ω) is an optimal function for λs1,q(Ω). On the other hand, by hypothesis and
construction of the Kohler-Jobin rearrangement, one also has

lim
h→∞

[ϕ∗h]W s,1(RN )(∫
Ω
|ϕ∗h|qdx

) 1
q

= λs1,q(Ω), ‖ϕ∗h‖Lq ≤ CN .

At this point it is enough to repeat the arguments already detailed in the local case with the
due changes. First of all, we use the fractional quantitative isoperimetric inequality [14, 11]
with the fractional perimeter and coarea type formula [4, Lemma 4.7] in place of their local
counterparts in order to improve the estimates in (4.4).

As a consequence, we have that {ϕh > 0} converges in L1 to a ball B, hence ϕ is an
admissible function for the variational problem defining λs1,q(B) and optimal for λs1,q(Ω). On

the other hand B ⊂ Ω, due to the L1−convergence of the supports of ϕh. Thus we deduce
λs1,q(B) = λs1,q(Ω), which together with the assumption that (4.1) holds with the equality,
entails that Tp(Ω) = Tp(B). Eventually we conclude that Ω = B a.e. thanks to the strict
monotonicity of the torsional rigidity and the characterization of equality cases for the Saint-
Venant inequality. �

We are now able to exploit the fractional Cheeger–Kohler-Jobin inequality in order to
obtain a quantitative estimate for the nonlocal Cheeger constant.

Theorem 4.2. There exists a dimensional constant σ(N) > 0 such that for any open, bounded
and Lipschitz set Ω ⊂ RN and for any ball B ⊂ RN , we have

|Ω|
s
N hs(Ω)− |B|

s
N hs(B) ≥ σ(N)α(Ω)2 , (4.5)

where α is the Fraenkel asymmetry. Moreover, the power 2 in (4.5) is sharp, in the sense
that it can not be replaced by any lower number.

Proof of Theorem 4.2. The argument follows precisely as the proof of Theorem 1.3, using
the fractional Cheeger–Kohler-Jobin inequality (4.3) proved in Theorem 4.1 instead of the
local version (1.5). We stress that, also for the proof of the fractional quantitative Cheeger
inequality, we rely on the quantitative result for the local torsional rigidity T2 proved in [3]. �
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