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Abstract. The purpose of this note is to present an anisotropic variant of the BMO-
type norm introduced in [4] and to show its relation with a surface measure, which is
indeed a multiple of the perimeter in the isotropic case. This is done in the spirit of
the new characterization of the perimeter of a measurable set in Rn recently studied by
Ambrosio, Bourgain, Brezis and Figalli in [2].

1. Introduction

Ambrosio, Bourgain, Brezis and Figalli recently studied in [1] and [2] a new characteri-
zation of the perimeter of a set in Rn by considering the following functionals originating
from a BMO-type seminorm (defined at first in [4]):

Iε(f) = εn−1 sup
Gε

∑
Q′∈Gε

−
∫
Q′
|f(x)− −

∫
Q′
f | dx, (1.1)

where Gε is any disjoint collection of ε-cubes Q′ with arbitrary orientation and cardinality
not exceeding ε1−n.
In particular, they focused on the case f = 1A; that is, the characteristic function of a
measurable set A, and proved that

lim
ε→0

Iε(1A) =
1

2
min{1,P(A)}. (1.2)

Moreover, if we remove the cardinality bound on Gε from the definition of Iε, by scaling
we obtain

lim
ε→0

Iε(1A) =
1

2
P(A). (1.3)

This theme has been further investigated in [6], where the authors considered the general
case of a BV function f , with a particular attention to the SBV space. We also refer
to [7] for a variant of this construction that led to Sobolev and fractional Sobolev norms
and spaces.

In [3], Ambrosio and the author consider the more general case of anisotropic cover-
ings formed by copies of the ε-dilation of a bounded connected open set with Lipschitz
boundary C; that is, not allowing for arbitrary orientations. In doing so, we also remove
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the upper bound on cardinality that seems to be very specific of the case of cubes. Thus,
we define

HC
ε (A) := εn−1 sup

Hε

∑
C′∈Hε

−
∫
C′
|1A(x)− −

∫
C′
1A| dx, (1.4)

where Hε is any disjoint family of translations C ′ of the set εC with no bounds on
cardinality.

2. The main results

The main result of [3] is the following:

Theorem 2.1. There exists ϕC : Sn−1 → (0,+∞), bounded and lower semicontinuous,
such that, for any set of finite perimeter A, one has

lim
ε→0

HC
ε (A) =

∫
FA

ϕC(νA(x)) dH n−1(x), (2.1)

where FA and νA are respectively the reduced boundary of A and the approximate unit
normal to FA. Moreover, if A is measurable and P(A) =∞, one has

lim
ε→0

HC
ε (A) = +∞. (2.2)

We give here just a short sketch of the proof, with a highlight on the key steps.
At first, we define suitable localized versions Hε(A,Ω) of the functionals, by taking a

covering inside Ω; and we set H±(A,Ω) to be the lim sup and the lim inf as ε → 0. We
notice that we have the scaling property HλC

ε (A,Ω) = λ1−nHC
ελ(A,Ω) and HλC

± (A,Ω) =
λ1−nHC

± (A,Ω), for any λ > 0.
A simple comparison argument based on the results of [2] leads to the proof of (2.2).

Indeed, one can show that, if D ⊂ C, there exists a constant θ(C,D) > 0 such that

HD
ε (A,Ω) ≤ |C|

2

|D|2
θHC

ε (A,Ω). (2.3)

We notice now that, without loss of generality, we can assume B(0, r) ⊂ C for some
r > 0, and that we can pack a cube of side length 2/

√
n in a unit ball. Hence, it is enough

to compare the functional HB
ε , defined using covering with ε-balls, and the functional Iε

without the cardinality bound on the covering families, thus obtaining
lim inf
ε→0

HC
ε (A) ≥ cn,r lim inf

ε→0
HB
ε (A) ≥ c̃n,r lim inf

ε→0
I 2√

n
ε(1A) = +∞,

for any measurable set A of infinite perimeter, by (1.3).
As for the rectifiable case, we fix C, dropping the superscript, and we assume that

diam(C) = 1, without loss of generality by the scaling property. Then, we observe that,
for any set E of finite perimeter, Hε(E, ·) and H±(E, ·) are increasing set functionals
defined on the family of open sets, which are traslation invariant and (n−1)-homogeneous;
that is, for any x ∈ Rn,

Hε(x+ E, x+ Ω) = Hε(E,Ω) and H±(x+ E, x+ Ω),
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and, for any t > 0,

Htε(tE, tΩ) = tn−1Hε(E,Ω) and H±(tE, tΩ) = tn−1H±(E,Ω).

In addition, H−(E, ·) is superadditive and H+(E, ·) is almost subadditive, in the sense
that

H+(E,Ω1 ∪ Ω2) ≤ H+(E,W1) +H+(E,W2),

for any open sets Wi ⊃ {x ∈ Rn : dist(x,Ωi) < δ}, i = 1, 2, for some δ > 0. Moreover,
by the relative isoperimetric inequality which holds in the open bounded connected set C
with Lipschitz boundary, we obtain an upper bound for H+:

H+(E,Ω) ≤ 2γP(E,Ω), (2.4)

where γ is the relative isoperimetric constant of C.
We then define the upper and lower density of H± by setting

ϕ±(ν) := H±(Sν , Qν),

where ν ∈ Sn−1, Sν := {x ∈ Rn : x · ν ≥ 0} and Qν is a unit cube centered in the origin
having one face orthogonal to ν and bisected by the hyperplane ∂Sν . It is possible to show
that ϕ is bounded from above and from below, by (2.4) and by a comparison argument
employing (2.3) and (1.3), respectively. In addition, the superadditivity, homogeneity and
translation invariance of H−(Sν , ·) imply that

ϕ−(ν) ≥ sup
t>0

Ht(Sν , Qν),

which then shows that ϕ− is lower semicontinuous and ϕ− = ϕ+.
Therefore, we can define the density

ϕ(ν) := lim
ε→0

Hε(Sν , Qν),

and it is clear that, if x ∈ ∂Sν and Qν(x, r) is a cube of side length r centered in x and
with one face orthogonal to ν, by translation invariance and homogeneity we have

lim
r→0

H±(Sν , Qν(x, r))

rn−1
= H±(Sν , Qν(x, 1)) = ϕ(ν).

By an argument employing a modulus of continuity of the map E → Hε(E,Ω) and the
fine properties of the sets of finite perimeter, we can prove a result on the lower and upper
density of H±(E, ·) with respect to the measure P(E, ·).

Theorem 2.2. Let E be a set of finite perimeter and νE be its measure theoretic interior
normal. Then, for H n−1-a.e. x ∈ FE, we have

D−PH−(x) := lim inf
r→0

H−(E,QνE(x)(x, r))

P(E,QνE(x)(x, r))
≥ ϕ(νE(x)), (2.5)

D+
PH+(x) := lim sup

r→0

H+(E,QνE(x)(x, r))

P(E,QνE(x)(x, r))
≤ ϕ(νE(x)). (2.6)
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In particular, it follows that

D−PH−(x) = D+
PH+(x) = ϕ(νE(x)) for H n−1-a.e. x ∈ FE.

To proceed, we apply to the nondecreasing set functionsH±(E, ·) an argument similar to
the classical density theorems for measures, for which we need the Vitali covering theorem
for cubes and properties which replace the additivity. Indeed, H− is superadditive, and
this is sufficient to achieve a lower bound; however, H+(E, ·) is not a subadditive set
function on the family of open sets, hence we consider its inner regular envelope

H∗+(E,Ω) := sup{H+(E,Ω′) : Ω′ b Ω},
which is actually σ-subadditive.

Theorem 2.3. For any Borel set B ⊂ FE and t > 0, we have that

lim inf
r→0

H−(E,QνE(x)(x, r))

P(E,QνE(x)(x, r))
≥ t (2.7)

for all x ∈ B implies H−(E,U) ≥ tH n−1(B) for any open set U ⊃ B. On the other
hand, we have that

lim sup
r→0

H+(E,QνE(x)(x, r))

P(E,QνE(x)(x, r))
≤ t (2.8)

for all x ∈ B implies H∗+(E,U) ≤ tP(E,U) + 2γP(E,U \B) for any open set U ⊃ B.

We now use the previous results to adapt the classical proofs of the differentiation
theorem for Radon measures to H±(E, ·).

The key idea is to partition FE in the family of sets {x ∈ FE : ϕ(νE(x)) ∈ (tk, tk+1]}
for some t > 1 fixed and k ∈ Z, and then use the density theorems. Letting t ↓ 1, we
obtain ∫

FE

ϕ(νE) dH n−1 ≤ H−(E,Rn) ≤ H∗+(E,Rn) ≤
∫

FE

ϕ(νE) dH n−1.

Indeed, the superadditivity of H−(E, ·) ensures the lower estimate and the σ-subadditivity
of H∗+(E, ·), together with (2.4), provides the upper estimate.

Then, it is easy to show that H∗+(E,Rn) = H+(E,Rn), and so we get (2.1).
In addition, it is possible to achieve a localized version of the main results for HC

ε (E,A)
on a rich family of open sets A.

We notice that the right hand side of (2.1) can be seen as an anisotropic version of the
perimeter, Pϕ(A). However, the anisotropic perimeter is lower semicontinuous w.r.t. the
convergence in measure if and only if the density ϕ is the restriction to the unit sphere
of a positively 1-homogeneous and convex function. Hence, even though the particular
geometry of the covering sets is not essential to prove the existence of the limit, one
might ask if there are conditions under which ϕ has indeed that property. The problem is
nontrivial since we can show that, if C is the unit square (0, 1)2 in R2, then the positively
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1-homogeneous extension of ϕC is not convex. In particular, the convexity of C is not a
sufficient condition, and actually no sufficient condition is presently known.

It is however not difficult to see that ϕ is a constant if we allow for arbitrary rotations
of the covering sets, or if we choose as C a rotation invariant set. In particular, if C is
the unit open cube in this isotropic setting, we recover ϕ ≡ 1/2, as in [2].

2.1. Covering with balls. If B = B(0, 1) is the unit ball, for any set E of finite perimeter
one has

lim
ε→0

HB
ε (E) = ξP(E),

for some dimensional constant ξ = ξ(n). It would be of interest to estimate the value of
such constant, which can be also seen as ξn = HB

± (Sν , Qν), for any ν ∈ Sn−1.
By a result due to Cianchi ([5]), we know that the sharp isoperimetric constant in the

unit ball is 1/(4ωn−1), where ωn is the volume of the unit ball in Rn. This helps us finding
an upper bound for ξn, by (2.4).

On the other hand, the derivation of a lower bound is related to the well-known Kepler’s
problem (see for instance [8], [10]). This problem, also called “packing problem”, consists
in looking for the best way to place finite unions of disjoint open balls with the same
(small) radius inside a unit cube in Rn in order to cover as much volume as possible. As
the radius tends to 0, it is possible to show that the ratio of volume covered converges to
the best volume fraction ρn ∈ (0, 1]. Kepler’s problem is highly non trivial, and the value
of the constant ρn is presently known only in dimensions 2 and 3 ([11], [9]).

Since we can choose a covering family of ε-balls which are inside Qν and are bisected by
∂Sν , our aim is to give a lower estimate of the cardinality of such covering. In this way,
it is clear that we are looking for the optimal fraction of the volume of the (n − 1) unit
cube Qν ∩ ∂Sν which can be covered by a finite union of disjoint ε-balls as ε→ 0. Then,
the number Nε of (n− 1)-dimensional ε-balls of such an optimal covering will satisfy

Nεωn−1ε
n−1 ∼ ρn−1.

These (n − 1)-dimensional ε-balls can be seen as the sections ∂Sν ∩ B′ for some disjoint
n-dimensional ε-balls B′ which are bisected by the hyperplane ∂Sν and lie inside the cube
Qν . Therefore, we get

ξn ≥ lim
ε→0

εn−1
1

2
Nε =

ρn−1
2ωn−1

.

Using these observations, we can find the following lower and upper bounds for the
constants ξn:

ρn−1
2ωn−1

≤ ξn ≤
1

2ωn−1
.

Detailed proofs and other examples can be found in [3].
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