
WEYL SCALARS ON COMPACT RICCI SOLITONS

G. Catino1, P. Mastrolia2

Abstract. We investigate the triviality of compact Ricci solitons under general scalar con-

ditions involving the Weyl tensor. More precisely, we show that a compact Ricci soliton is

Einstein if a generic linear combination of divergences of the Weyl tensor contracted with

suitable covariant derivatives of the potential function vanishes. In particular we recover and

improve all known related results. This paper can be thought as a first, preliminary step

in a general program which aims at showing that Ricci solitons can be classified finding a

“generic” [k, s]-vanishing condition on the Weyl tensor, for every k, s ∈ N, where k is the

order of the covariant derivatives of Weyl and s is the type of the (covariant) tensor involved.

1. Introduction

In recent years, the Weyl tensor has played a preeminent role in the classification of Rie-

mannian manifolds with “special” structures, such as Einstein metrics, Ricci solitons, and,

more in general, Einstein-type manifolds (see for instance [11] and references therein). This

is quite natural since these special structures are assigned prescribing conditions on the trace

part of the Riemann tensor (that is, on the Ricci tensor), and thus we can expect classification

results (in dimension greater or equal than four) only assuming some further conditions on

the traceless part (i. e., the Weyl tensor).

We recall that if (Mn, g) is a n-dimensional, connected, Riemannian manifold with metric

g, a soliton structure is the choice (if any) of a smooth vector field X on M and a constant

λ ∈ R such that

(1.1) Ric +
1

2
LXg = λg,

where Ric denotes the Ricci tensor of the metric g and LXg is the Lie derivative of the metric

in the direction of X; the constant λ is called the soliton constant. The soliton is expanding,

steady or shrinking if, respectively, λ < 0, λ = 0 or λ > 0. If X is the gradient of a potential

f ∈ C∞(M) the soliton is called a gradient Ricci soliton and (1.1) becomes

Ric +∇2f = λg,
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where ∇2f denotes the Hessian of f . In this paper we will focus on compact Ricci solitons.

In this case, by the work of Perelman [17], we known that the soliton has to be gradient.

Note that, when the potential function f is a constant, a gradient Ricci soliton is an Einstein

manifold. Ricci solitons generate self-similar solutions of the Ricci flow, play a fundamental

role in the formation of singularities of the flow and have been studied by several authors (see

H.-D. Cao [3, 4] for nice overviews). It has been shown by Perelman [17] that every compact

steady and expading Ricci soliton is Einstein; moreover, in dimension three, Ivey [15] proved

that the only compact shrinking Ricci solitons are, up to quotients, isometric to S3 with the

standard metric. Dimension four is then the lowest dimension allowing “nontrivial” examples

of compact shrinking Ricci solitons (see e.g. the survey [3]and references therein).

The classification results already known in the literature often rely on vanishing conditions

involving zero, first or specific second order derivatives of the Weyl tensor (see for instance

[12, 18, 13, 16, 6]); on the other hand, in the paper [9] the authors obtain classification of

(shrinking) gradient Ricci solitons only requiring a fourth order scalar vanishing condition,

namely

div4(W ) := Wikjl,iljk = 0.

This paper can be thought as a first, preliminary step in a general research program which

aims at showing that gradient Ricci solitons can be classified finding a “generic” (in a suitable

sense) [k, s]-vanishing condition on the Weyl tensor, for every k, s ∈ N, where k is the order

of the covariant derivatives of Weyl and s is the type of the (covariant) tensor involved. For

instance, to quote some important examples, the results in [12, 18], [13, 16], [6] and [9] deal,

respectively, with [0, 4], [1, 3], [2, 2] and [4, 0] conditions. Obviously, the study of the case

[k, 0] is harder, since it involves only a scalar condition.

The aim of this work is to study general [4, 0] conditions, defined as linear combinations of

divergences of the Weyl tensor, contracted with suitable covariant derivatives of the potential

function f . With this choice we improve all the previous quoted results, introducing a general

Weyl scalar having the same homogeneity under rescaling of the metric (see Section 3 for the

precise definitions). For instance, we prove the following triviality result under a single Weyl

scalar vanishing assumption.

Proposition 1.1. For n ≥ 4 there are no non-Einstein compact Ricci soliton, provided that at

least one of the following Weyl scalars vanishes: WijklRikRjl, Wijkl,iRjl,k, Bijfifj, Wijkl,ilkfj

or Wijkl,ilkj.

In particular, in the compact setting, the proposition improves the results in [12, 18, 13, 16,

6]. More in general, Proposition 1.1 holds true assuming a generic [4, 0] vanishing condition

on Weyl (see Propositions 4.2 and 4.3); in particular, we show that the Bach tensor

Bij =
1

n− 3
Wikjl,lk +

1

n− 2
WikjlRkl,
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although interesting for its connections with conformal geometry and Physics, plays no special

role in the classification of Ricci solitons. In fact, we prove the following

Proposition 1.2. Let (Mn, g) be a compact Ricci solitons of dimension n ≥ 4. If(
c1Wikjl,lk + c2Wtikj,tfk +

1

n− 2
WikjlRkl

)
Rij = 0 on M,

for some constants c1, c2 ∈ R with c1 6= 1
n−3 and c2 > − 1

n−2 , then (M, g) is Einstein.

Note that the Bach case corresponds to the choice c1 = 1
n−3 and c2 = 0. Moreover, we

can show two triviality results under mixed Weyl scalars vanishing assumptions. In general

dimension n ≥ 4 we can prove the following

Proposition 1.3. Let (Mn, g) be a compact Ricci solitons of dimension n ≥ 4. If

c1Wtijk,tkji + c2Wtijk,tkjfi + c3Wtijk,tkfifj +
1

n− 3
Wtijk,tkRij + c4Wtijk,tRik,j

+ c5Wtijk,tRikfj + c6WtijkRik,jt + c7WtijkRikftfj +
1

n− 2
WtijkRtjRik = 0 on M,

for some ci ∈ R, i = 1, . . . , 7, with either c1 > 0 or c1 = 0 and c4 + n−2
n−3c6 6= 0, then (M, g) is

Einstein.

In dimension four, we have

Proposition 1.4. Let (M4, g) be a compact Ricci solitons of dimension four. If

c1Wtijk,tkji+c2Wtijk,tkjfi + c3Wtijk,tkfifj + c4Wtijk,tkRij

+ c5Wtijk,tRik,j − c3Wtijk,tRikfj + c6WtijkRik,jt +
1

2
WtijkRtjRik = 0 on M,

for some ci ∈ R, i = 1, . . . , 6, with 1 + c2 + c4 + c5 + c6 6= 0, then (M, g) is Einstein.

We recall that, for a gradient Ricci solitons, we have the validity of the first integrability

condition

Cijk + ftWtijk = Dijk,

where C and D are the Cotton tensor and the three tensor introduced by H.-D. Cao and

Q. Chen in [5]. Note that if D ≡ 0 then C ≡ 0 (see [6]); moreover, when M is compact,

C ≡ 0 implies that (M, g) is Einstein (see [13, 16]). Thus, a possible strategy to obtain the

classification is to provide suitable assumptions ensuring the vanishing of C. The proof of our

results can be divided in three steps:

1. first of all we obtain some pointwise identities for each Weyl scalar given by linear com-

binations of the three terms |C|2, |D|2 and CD := CijkDijk, with possible remainder

term of divergence type;
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2. secondly, exploiting the previous pointwise identities, we derive integral identities

with parametric exponential weight of the type e−ωf , ω ∈ R. More precisely, we prove

that, for every ω ∈ R, the weighted integral of a general Weyl scalar is given by the

expression ∫
M

(
α|C|2 + 2β CD + γ|D|2

)
e−ωf ,

with explicit coefficients α, β and γ depending on ω and the Weyl scalar itself (Section

3).

3. Finally, a simple algebraic argument shows that the vanishing of a class of good Weyl

scalars implies that D ≡ C ≡ 0 (Section 4).

In the final Section 5, we provide some applications of the previous analysis and prove

Propositions 1.1, 1.2, 1.3 and 1.4. Moreover, in Remark 5.1 we discuss possible extensions to

the noncompact case.

2. Preliminaries

The Riemann curvature operator of a Riemannian manifold (Mn, g) is defined by

Riem(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z .

Throughout the article, the Einstein convention of summing over the repeated indices will be

adopted. In a local coordinate system the components of the (1, 3)-Riemann curvature tensor

are given by Rlijk
∂
∂xl

= Riem
(
∂
∂xj

, ∂
∂xk

)
∂
∂xi

and we denote by Rijkl = gimR
m
jkl its (0, 4)-version.

The Ricci tensor is obtained by the contraction Rik = gjlRijkl and R = gikRik will denote the

scalar curvature. The so called Weyl tensor is then defined by the following decomposition

formula (see [14, Chapter 3, Section K]) in dimension n ≥ 3,

Wijkl = Rijkl −
1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk) .

The Weyl tensor shares the symmetries of the curvature tensor. Moreover, as it can be easily

seen by the formula above, all of its contractions with the metric are zero, i.e. W is totally

trace-free. In dimension three, W is identically zero on every Riemannian manifold, whereas,

when n ≥ 4, the vanishing of the Weyl tensor is a relevant condition, since it is equivalent

to the local conformal flatness of (Mn, g). We also recall that in dimension n = 3, local

conformal flatness is equivalent to the vanishing of the Cotton tensor

Cijk = Rij,k −Rik,j −
1

2(n− 1)

(
Rkgij −Rjgik

)
,
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where Rij,k = ∇kRij and Rk = ∇kR denote, respectively, the components of the covari-

ant derivative of the Ricci tensor and of the differential of the scalar curvature. By direct

computation, we can see that the Cotton tensor C satisfies the following symmetries

Cijk = −Cikj , Cijk + Cjki + Ckij = 0 ,

moreover it is totally trace-free,

gijCijk = gikCijk = gjkCijk = 0 ,

by its skew–symmetry and Schur lemma. Furthermore, it satisfies

Cijk,i = 0,

see for instance [10, Equation 4.43]. We recall that, for n ≥ 4, the Cotton tensor can also be

defined as one of the possible divergences of the Weyl tensor:

Cijk =

(
n− 2

n− 3

)
Wtikj,t = −

(
n− 2

n− 3

)
Wtijk,t.

A computation shows that the two definitions coincide (see e.g. [1]).

In what follows a relevant role will be played by the Bach tensor, first introduced in general

relativity by Bach, [2]. By definition we have

Bij =
1

n− 3
Wikjl,lk +

1

n− 2
RklWikjl =

1

n− 2
(Cjik,k +RklWikjl).

A computation using the commutation rules for the second covariant derivative of the

Weyl tensor or of the Schouten tensor (see [10]) shows that the Bach tensor is symmetric

(i.e. Bij = Bji); it is also evidently trace-free (i.e. Bii = 0). It is worth reporting here the

following interesting formula for the divergence of the Bach tensor (see e. g. [6] for its proof)

Bij,j =
(n− 4)

(n− 2)2RktCkti.

We recall here some useful equations satisfied by every gradient Ricci soliton (Mn, g)

Rij + fij = λgij , λ ∈ R,

where fij = ∇i∇jf are the components of the Hessian of f (see e.g. [12]).

Lemma 2.1. Let (Mn, g) be a gradient Ricci soliton of dimension n ≥ 3. Then

∆f +R = nλ

Ri = 2ftRit

R+ |∇f |2 = 2λf + c

for some constant c ∈ R.
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The tensor D, introduced by H.-D. Cao and Q. Chen in [5], turns out to be a fundamental

tool in the study of the geometry of gradient Ricci solitons (more in general for gradient

Einstein-type manifolds, see [11]). In components it is defined as

Dijk =
1

n− 2
(fkRij − fjRik) +

1

(n− 1)(n− 2)
ft(Rtkgij −Rtjgik)(2.1)

− R

(n− 1)(n− 2)
(fkgij − fjgik).

The D tensor is skew-symmetric in the second and third indices (i.e. Dijk = −Dikj) and

totally trace-free (i.e. Diik = Diki = Dkii = 0). Note that our convention for the tensor D

differs from that in [5].

In the rest of the paper we use the notation

CD = DC := CijkDijk.

We also recall the four integrability conditions for gradient Ricci solitons of dimension n ≥ 3

(see [9] for the proof).

Proposition 2.2. If (Mn, g) is a gradient Ricci soliton with potential function f , then the

Cotton tensor, the Bach tensor and the tensor D satisfy the following conditions

Cijk + ftWtijk = Dijk,

(n− 2)Bij −
(
n− 3

n− 2

)
ftCjit = Dijk,k,

RktCkti = (n− 2)Ditk,tk,

1

2
|C|2 +RktCkti,i = (n− 2)Ditk,tki.

3. Weyl scalars on a Ricci soliton

We define the following ten Weyl scalars:

w0,1 := Wtijkftjfik, w0,2 := Wtijkfikftfj , w0,3 := Wtijkfikjft, w0,4 := Wtijkfikjt,

w1,1 := Wtijk,tfikfj , w1,2 := Wtijk,tfikj ,

w2,1 := Wtijk,tkfij , w2,2 := Wtijk,tkfifj ,

w3,1 := Wtijk,tkjfi,

w4,1 := Wtijk,tkji.

Note that these are the only scalar quantities wich depend linearly on the Weyl tensor and its

divergences. Moreover, all this functions have the same homogeneity under rescaling of the

metric. Indeed, if g̃ = λ g, λ ∈ R, then w̃a,b = λ−3 wa,b. We can now define a general Weyl

scalar as follows:
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Definition 3.1. A general Weyl scalar is a linear combination of the ten Weyl scalars pre-

viously defined, i.e. a function w of the type

wG = ap0w0,p,+a
q
1w1,q + ar2w2,r + a1

3w3,1 + a1
4w4,1

with ap0, a
q
1, a

r
2, a

1
3, a

1
4 ∈ R and p = 1, . . . , 4, q, r = 1, 2.

3.1. Pointwise identities. We now obtain some pointwise identities for each Weyl scalar

given by linear combinations of the three terms |C|2, |D|2 and CD := CijkDijk, with possible

remainder term of divergence type. Indeed we have

Lemma 3.2. Let (Mn, g), n ≥ 3, be a gradient Ricci soliton with potential function f . Then

the Weyl scalars defined in (3.1) satisfy the following pointwise identities:

w0,1 = WtijkRtjRik =
1

2
|C|2 +

(n− 4)

2
CD + (WtijkRijft)k,

w0,2 = −WtijkRikftfj =
(n− 2)

2

(
|D|2 − CD

)
,

w0,3 = −WtijkRik,jft =
1

2

(
CD − |C|2

)
,

w0,4 = −WtijkRik,jt = − (n− 3)

2(n− 2)
|C|2 − (WtijkRtj,i)k,

w1,1 = −Wtijk,tRikfj = −(n− 3)

2
CD,

w1,2 = −Wtijk,tRik,j = − (n− 3)

2(n− 2)
|C|2,

w2,1 = −Wtijk,tkRij = − (n− 3)

2(n− 2)
|C|2 − (Wtijk,tRij)k,

w2,2 = Wtijk,tkfifj =
(n− 3)

2
CD + (Wtijk,tfifj)k,

w3,1 = Wtijk,tkjfi =
(n− 3)

2(n− 2)
|C|2 + (Wtijk,tfi)kj ,

w4,1 = Wtijk,tkji.

Proof. We give only the proof of the first identity. Using the soliton equation and Proposition

2.2 one has

w0,1 = Wtijkftjfik = WtijkRtjRik

= WtikjftjRik = (WtikjftRik)j −Wjkit,jftRik −WtikjftRik,j

= (WtijkftRij)k +
(n− 3)

(n− 2)
ftRikCkit −

1

2
WtikjftCikj

=
1

2
|C|2 +

(n− 4)

2
CD + (WtijkRijft)k.

The other ones are similar. �
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3.2. Integral identities. We first derive integral identities with a general weight function

depending on the f .

Lemma 3.3. Let (Mn, g), n ≥ 3, be a gradient Ricci soliton with potential function f . For

every ψ : R→ R, smooth function with ψ(f) having compact support in M , the Weyl scalars

defined in (3.1) satisfy the following weighted integral identities:

W0,1 :=

∫
M

w0,1 ψ(f) =
1

2

∫
M

{
ψ(f)|C|2 +

[
(n− 4)ψ(f) + (n− 2)ψ′(f)

]
CD − (n− 2)ψ′(f)|D|2

}
;

W0,2 :=

∫
M

w0,2 ψ(f) =
(n− 2)

2

∫
M
ψ(f)

(
|D|2 − CD

)
;

W0,3 :=

∫
M

w0,3 ψ(f) =
1

2

∫
M
ψ(f)

(
CD − |C|2

)
;

W0,4 :=

∫
M

w0,4 ψ(f) =
1

2

∫
M

{[
ψ′(f)− (n− 3)

(n− 2)
ψ(f)

]
|C|2 − ψ′(f)CD

}
;

W1,1 :=

∫
M

w1,1 ψ(f) = −(n− 3)

2

∫
M
ψ(f)CD,

W1,2 :=

∫
M

w1,2 ψ(f) = − (n− 3)

2(n− 2)

∫
M
ψ(f)|C|2,

W2,1 :=

∫
M

w2,1 ψ(f) = −(n− 3)

2

∫
M

{
1

n− 2
ψ(f)|C|2 + ψ′(f)CD

}
;

W2,2 :=

∫
M

w2,2 ψ(f) =
(n− 3)

2

∫
M
ψ(f)CD;

W3,1 :=

∫
M

w3,1 ψ(f) =
(n− 3)

2(n− 2)

∫
M
ψ(f)|C|2;

W4,1 :=

∫
M

w4,1 ψ(f) = − (n− 3)

2(n− 2)

∫
M
ψ′(f)|C|2 .

Proof. Using Lemma 3.2, integrating by parts and using the definitions of C and D we obtain

∫
M

(WtijkRijft)k ψ(f) = −
∫
M
WtijkRijftfk ψ

′(f) = −n− 2

2

∫
M

(Dijk − Cijk)Dijk ψ
′(f)

=
n− 2

2

∫
M

(
CD − |D|2

)
ψ′(f) ,

∫
M

(WtijkRtj,i)k ψ(f) = −
∫
M
WtijkRtj,ifk ψ

′(f) = −
∫
M
WtijkRik,jft ψ

′(f)

=
1

2

∫
M

(Dijk − Cijk)Cijk ψ′(f) =
1

2

∫
M

(
CD − |C|2

)
ψ′(f)
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and ∫
M

(Wtijk,tRij)k ψ(f) = −
∫
M
Wtijk,tRijfk ψ

′(f) =
(n− 3)

(n− 2)

∫
M
CijkRijfk ψ

′(f)

=
(n− 3)

2

∫
M
CDψ′(f) .

Moreover, by the simmetries of Weyl one has∫
M

(Wtijk,tfifj)k ψ(f) = −
∫
M
Wtijk,tfifjfk ψ

′(f) = 0 ,

∫
M

(Wtijk,tfi)kj ψ(f) =

∫
M
Wtijk,tfi [ψ(f)]jk = 0 .

Finally∫
M
Wtijk,tkji ψ(f) = −

∫
M
Wtijk,t [ψ(f)]ijk

= −
∫
M
Wtijk,t

[
ψ′(f)fij + ψ′′(f)fifj

]
k

= −
∫
M
Wtijk,t

[
ψ′′(f)fijfk + ψ′(f)fijk + ψ′′′(f)fifjfk + ψ′′(f)fikfj + ψ′′(f)fifkj

]
= −

∫
M
Wtijk,t

[
ψ′(f)fijk

]
=

∫
M
Wtijk,tRij,k ψ

′(f) = − (n− 3)

2(n− 2)

∫
M
|C|2ψ′(f) .

�

In particular, it follows that only six integrals are independent. Indeed, a simple compu-

tation shows that

Corollary 3.4. The following identities holds

W0,3 = − 1

(n− 2)
W1,1 +

(n− 2)

(n− 3)
W1,2;

W0,4 =
(n− 4)

(n− 3)
W1,2 +

1

(n− 3)
W2,1 −

(n− 2)

(n− 3)
W4,1;

W2,2 = −W1,1;

W3,1 = −W1,2 .

Since (Mn, g) is compact we choose ψ(f) := e−ωf , with ω ∈ R, thus obtaining

Corollary 3.5. Let (Mn, g), n ≥ 3, be a compact gradient Ricci soliton with potential function

f . Then, for every ω ∈ R, the Weyl scalars defined in (3.1) satisfy the following weighted
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integral identities:

W0,1 =

∫
M

w0,1 e
−ωf =

1

2

∫
M

{
|C|2 + [(n− 4)− (n− 2)ω]CD + (n− 2)ω|D|2

}
e−ωf ;

W0,2 =

∫
M

w0,2 e
−ωf =

(n− 2)

2

∫
M

(
|D|2 − CD

)
e−ωf ;

W1,1 =

∫
M

w1,1 e
−ωf = −(n− 3)

2

∫
M
CD e−ωf ;

W1,2 =

∫
M

w1,2 e
−ωf = − (n− 3)

2(n− 2)

∫
M
|C|2 e−ωf ;

W2,1 =

∫
M

w2,1 e
−ωf = −(n− 3)

2

∫
M

{
1

n− 2
|C|2 − ω CD

}
e−ωf ;

W4,1 =

∫
M

w4,1 e
−ωf =

(n− 3)

2(n− 2)

∫
M
ω|C|2e−ωf .

Note that, in the case n = 4 and ω = 0, the first integral identities appeared in [8].

4. Main results

In virtue of Corollary 3.4, to compute the weighted integral of a general Weyl scalar wG, i.e.∫
M wG e

−ωf , it is sufficient to consider a linear combination of the six independent integrals

W0,1,W0,2,W1,1,W1,2,W2,1,W4,1. Thus, letting

A :=
(
A1

0, A
2
0, A

1
1, A

2
1, A

1
2, A

1
4

)
∈ R6

we can define

(4.1) WG(A, ω) := A1
0W0,1 +A2

0W0,2 +A1
1W1,1 +A2

1W1,2 +A1
2W2,1 +A1

4W4,1

and correspondingly, at the pointwise level,

(4.2) wG(A) := A1
0w0,1 +A2

0w0,2 +A1
1w1,1 +A2

1w1,2 +A1
2w2,1 +A1

4w4,1.

From Corollary 3.5, a long but straightforward algebraic computation shows the validity of

the following

Corollary 4.1. Let (Mn, g), n ≥ 3, be a compact gradient Ricci soliton with potential function

f . Then, for every ω ∈ R

WG(A, ω) =

∫
M

(
α|C|2 + 2β CD + γ|D|2

)
e−ωf ,
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with

α = α(A, ω) :=
1

2

[
A1

0 −
(n− 3)

(n− 2)

(
A2

1 +A1
2 − ωA1

4

)]
β = β(A, ω) :=

1

4

{
(n− 4)A1

0 − (n− 2)A2
0 − (n− 3)A1

1 − ω
[
(n− 2)A1

0 − (n− 3)A1
2

]}
γ = γ(A, ω) :=

(n− 2)

2

(
A2

0 + ωA1
0

)
.

We now need the following definition. We say that (A, ω) ∈ R6 × R is C-degenerate or

D-degenerate if

α(A, ω) 6= 0 and β(A, ω) = γ(A, ω) = 0

or

γ(A, ω) 6= 0 and α(A, ω) = β(A, ω) = 0,

respectively. From Corollary 4.1 we immediately deduce the following proposition justifying

the terminology.

Proposition 4.2. Let (M, g) be a compact shrinking Ricci soliton of dimension n ≥ 4 with

wG(A) = 0 for some A ∈ R6. If there exists ω ∈ R such that (A, ω) is C-degenerate or

D-degenerate, then C ≡ 0 or D ≡ 0, respectively.

Let

∆ = ∆(A, ω) := αγ − β2.

A (long) computation shows that

∆ = δ2ω
2 + 2δ1ω + δ0,

where

δ2 = δ2(A) :=
1

16

[
−(n− 2)2(A1

0)2 + 2(n− 3)A1
0((n− 2)A1

2 + 2A1
4)− (n− 3)2(A1

2)2
]

δ1 = δ1(A) :=
1

16

{
(A1

0)2(n− 2)2 +A1
0

[
n(5A1

1 + 5A1
2

+ 4A2
0 − 2A2

1) + n2(−(A1
1 +A1

2 +A2
0))− 6A1

1 − 6A1
2

− 4A2
0 + 6A2

1

]
+ (n− 3)

(
A1

1A
1
2(n− 3) +A1

2A
2
0(n− 2) + 2A1

4A
2
0

)}
δ0 = δ0(A) :=

1

16

{
− (A1

0)2(n− 4)2 + 2A1
0

[
A1

1(n− 4)(n− 3) +A2
0(n− 2)2

]
− (A1

1)2(n− 3)2 − 2A1
1A

2
0(n− 3)(n− 2)

−A2
0

[
4A1

2(n− 3) +A2
0(n− 2)2 + 4A2

1(n− 3)
]}
.

We now define the subsets of R6

Ω+ :=
{
A ∈ R6 : δ2(A) > 0

}
,

Ω0 :=
{
A ∈ R6 : δ2(A) = 0 and δ1(A) 6= 0

}
∪
{
A ∈ R6 : δ2(A) = δ1(A) = 0 and δ0(A) > 0

}
,

Ω− :=
{
A ∈ R6 : δ2(A) < 0 and δ2

1(A)− δ2(A)δ0(A) > 0
}
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and

Ωd =
{
A ∈ R6 : δ2

1(A)− δ2(A)δ0(A) > 0
}
⊃ Ω−.

We can now state our main triviality result.

Proposition 4.3. Let (M, g) be a compact shrinking Ricci soliton of dimension n ≥ 4. If

wG(A) = 0 for some A ∈ Ω+ ∪ Ω0 ∪ Ω− ∪ Ωd, then C ≡ D ≡ 0.

Remark 4.4. Note that if D ≡ 0 then C ≡ 0 (see [?]). Moreover when M is compact, C ≡ 0

implies (M, g) Einstein (see [?]).

To prove Proposition 4.3 we first need the following

Lemma 4.5. Let (M, g) be a compact shrinking Ricci soliton of dimension n ≥ 4. If

WG(A, ω̄) = 0 for some (A, ω̄) ∈ R6 × R such that ∆(A, ω̄) > 0, then C ≡ D ≡ 0.

Proof. We set ᾱ = α(A, ω̄), β̄ = β(A, ω̄), γ̄ = γ(A, ω̄) and ∆̄ = ∆(A, ω̄). Since ∆̄ > 0 we

have ᾱ 6= 0, and from WG(A, ω̄) = 0 we deduce

0 =

∫
M

(
ᾱ|C|2 + 2β̄ CD + γ̄|D|2

)
e−ω̄f

=

∫
M

(
ᾱ

∣∣∣∣C +
β̄

ᾱ
D

∣∣∣∣2 +
∆̄

ᾱ
|D|2

)
e−ω̄f ,

which implies D ≡ 0 and C ≡ 0. �

Proof of Proposition 4.3. Let (M, g) be a compact shrinking Ricci soliton of dimension n ≥ 4

satisfying wG(A) = 0, with A ∈ Ω+ ∪ Ω0 ∪ Ω−. In particular, WG(A, ω) = 0 for all ω ∈ R.

1. If A ∈ Ω+, then δ2(A) > 0 and thus ∆(A, ω) > 0 for ω sufficiently large;

2. if A ∈ Ω0, then δ2(A) = 0 and we have two possibilities: if δ1(A) 6= 0, then ∆(A, ω) >

0 for |ω| sufficiently large with ωδ1(A) > 0. If δ1(A) = 0, then ∆(A, ω) = δ0(A) > 0;

3. if A ∈ Ω−, then δ2(A) < 0 and δ2
1(A)− δ2(A)δ0(A) > 0;

4. if A ∈ Ωd, then δ2
1(A) − δ2(A)δ0(A) > 0 and, clearly, there exist ω ∈ R such that

∆(A, ω) > 0.

In any case, there exists ω ∈ R such that ∆(A, ω) > 0 and the conclusion follows from Lemma

4.5. �

5. Special cases

In this final section we highlight some special cases in which we can apply Propositions 4.2

and 4.3.
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1. Single Weyl scalars. We consider here five general Weyl scalars wG given by a single

term, in order to extend all the known results (at least in the compact case) discussed in the

Introduction. We summarize them in the following table:

A α β γ δ2 δ1 δ0

W ∗ Ric ∗Ric (1, 0, 0, 0, 0, 0) 1
2

(n−4)−ω(n−2)
4

ω n−2
2

− (n−2)2

16
(n−2)2

16
− (n−4)2

16
A ∈ Ω−

div(W ) ∗ ∇Ric (0, 0, 0, 1, 0, 0) − n−3
2(n−2)

0 0 0 0 0 C-deg.

B ∗ Ric
(

1
n−2

, 0, 0, 0, 1
n−3

, 0
)

0
(n−4)
4(n−2)

ω
2

0 0 −
(

n−4
4(n−2)

)2
D-deg.
(n=4)

B(∇f,∇f)
(

0,− 1
n−2

, 1
n−3

, 0, 0, 0
)

0 0 − 1
2

0 0 0 D-deg.

div4(W ) (0, 0, 0, 0, 0, 1) ω n−3
2(n−2)

0 0 0 0 0 C-deg.

Here ∗ denotes a suitable contraction, according to the definition of the Weyl scalars given

in Lemma 3.2. By Propositions 4.2 and 4.3 we can deduce that every compact shrinking

solitons of dimension n ≥ 4 for which one of the five Weyl scalars in the first column of

the previous table vanishes must be Einstein. In the case B ∗ Ric we get the result only in

dimension n = 4. By Corollary 3.4 we include also the condition Wijkl,ilkfj = 0. Note that, in

particular, if B(∇f,∇f) = 0 or div4(W ) = 0, we recover the results in [6] or [9], respectively;

on the other hand the first three cases provide new conditions ensuring the classification. This

proves Proposition 1.1 in the Introduction.

2. Modified Bach tensors. We prove Proposition 1.2. Let (Mn, g) be a compact Ricci

solitons of dimension n ≥ 4 with(
c1Wikjl,lk + c2Wtikj,tfk +

1

n− 2
WikjlRkl

)
Rij = 0 on M,

for some c1, c2 ∈ R with c1 6= 1
n−3 and c2 > − 1

n−2 . Equivalently, one has wG(A) ≡ 0 with

A =

(
1

n− 2
, 0,−c2, 0, c1, 0

)
.

A computation shows that in this case we have

α β γ
1−(n−3)c1

2(n−2)
1
4

{
n−4
n−2 + (n− 3)c2 − ω[1− (n− 3)c1]

}
ω
2

and

δ2 δ1 δ0

−
(

(n−3)c1−1
4

)2 −(n−3)2c1c2+(n−3)(c2−c1)+1
16 −

(
(n−4)+(n−2)(n−3)c2

4(n−2)

)2
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In particular, a straightforward computation yields

δ2
1 − δ0δ2 =

(n− 3)[(n− 2)c2 + 1][(n− 3)c1 − 1]2

64(n− 2)2
> 0.

Thus A ∈ Ω− and Proposition 1.2 follows from Proposition 4.3.

3. Mixed Weyl scalars. We prove first Proposition 1.3. Let (Mn, g) be a compact Ricci

solitons of dimension n ≥ 4. If

c1Wtijk,tkji + c2Wtijk,tkjfi + c3Wtijk,tkfifj +
1

n− 3
Wtijk,tkRij + c4Wtijk,tRik,j

+ c5Wtijk,tRikfj + c6WtijkRik,jt + c7WtijkRikftfj +
1

n− 2
WtijkRtjRik = 0 on M,

for some ci ∈ R, i = 1, . . . , 7, with either c1 > 0 or c1 = 0 and c4 + n−2
n−3c6 6= 0. From Corollary

3.4, we get wG(A) ≡ 0 with

A =

(
1

n− 2
,−c7,

c6

n− 2
− c5,−

n− 2

n− 3
c6 − c4,

1

n− 3
, c1

)
.

A computation shows that

δ2 =
(n− 3)

4(n− 2)
c1.

If c1 > 0, then A ∈ Ω+ and Proposition 1.3 follows from Proposition 4.3. On the other hand,

if c1 = 0 and c4 + n−2
n−3c6 6= 0, then δ2 = 0 and

δ1 =
(n− 3)

4(n− 2)

(
c4 +

(n− 2)

(n− 3)
c6

)
6= 0.

Thus A ∈ Ω0 and Proposition 1.3 follows again from Proposition 4.3.

Now we prove Proposition 1.4. Let (M4, g) be a compact Ricci solitons of dimension four

with

c1Wtijk,tkji+c2Wtijk,tkjfi + c3Wtijk,tkfifj + c4Wtijk,tkRij

+ c5Wtijk,tRik,j − c3Wtijk,tRikfj + c6WtijkRik,jt +
1

2
WtijkRtjRik = 0 on M,

for some ci ∈ R, i = 1, . . . , 6, with 1 + c2 + c4 + c5 + c6 6= 0. Using Corollary 3.4 implies that

wG(A) ≡ 0 with

A =

(
1

2
, 0, 0,−c2 − c5,−c4 − c6, c1

)
.

A computation shows that

α β γ
1+c1ω+c2+c4+c5+c6

4 −1+c5+c6
8 ω ω

2

and
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δ2 δ1 δ0

− (1+c5+c6)2

32 + c1
8

1+c2+c4+c5+c6
16 0

In particular, δ2
1 − δ0δ2 = δ2

1 > 0 and A ∈ Ωd. Now Proposition 1.4 follows from Proposition

4.3.

Remark 5.1. We explicitely note that, if (M, g) is a complete noncompact gradient shrinking

Ricci soliton with bounded curvature, then Proposition 4.3 can be applied. In fact, by Shi

estimates |∇kRiem| is bounded for every k ∈ N, implying that |C| and |D are bounded.

Moreover, it is well known that the potential function f grows quadratically at infinity while

the volume of geodesic balls is at most Euclidean (see [7]). Hence, all the integration by parts

in the proof of Corollary 3.5 can be justified using standard cutoff functions as soon as ω can

be chosen to be positive. For instance, this happens if A ∈ Ω+. Thus, using the classification

of noncompact shrinkers with D = 0 (see [6]), one has

Proposition 5.2. Let (Mn, g) be a noncompact Ricci solitons of dimension n ≥ 4. If

c1Wtijk,tkji + c2Wtijk,tkjfi + c3Wtijk,tkfifj +
1

n− 3
Wtijk,tkRij + c4Wtijk,tRik,j

+ c5Wtijk,tRikfj + c6WtijkRik,jt + c7WtijkRikftfj +
1

n− 2
WtijkRtjRik = 0 on M,

for some ci ∈ R, i = 1, . . . , 7, with c1 > 0, then (M, g) is isometric to a finite quotient of

Nn−1 × R where Nn−1 is Einstein and R is the Gaussian shrinking soliton.
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