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Abstract. In this paper we study the optimal reinforcement of an elastic membrane,
fixed at its boundary, by means of a network (connected one-dimensional structure),
that has to be found in a suitable admissible class. We show the existence of an
optimal network, and observe that such network carries a multiplicity that in principle
can be strictly larger than one. Some numerical simulations are shown to confirm this
issue and to illustrate the complexity of the optimal network when the total length
becomes large.

Keywords: Optimal networks, elastic membranes, reinforcement, relaxed solution,
Golab’s semicontinuity theorem.

MSC (2010): 49J45, 49Q10, 35R35, 35J25, 49M05.

1. Introduction

In the present paper we consider the vertical displacement of an elastic membrane
under the action of an exterior load f and fixed at its boundary; this amounts to
solve the variational problem

min

{
1

2

∫
Ω
|∇u|2 dx−

∫
Ω
fu dx : u ∈ H1

0 (Ω)

}
, (1.1)

or equivalently the elliptic PDE

−∆u = f in Ω, u ∈ H1
0 (Ω).

Here Ω is a bounded Lipschitz domain of R2, f ∈ L2(Ω), and H1
0 (Ω) is the usual

Sobolev space of functions with zero trace on the boundary ∂Ω.
Our goal is to rigidify the membrane by adding a one-dimensional reinforcement

in the most efficient way; the reinforcement is described by a one-dimensional set
S ⊂ Ω which varies in a suitable class of admissible choices. The effect of S on the
membrane is described by the energy

Ef (S) := inf

{
1

2

∫
Ω
|∇u|2 dx+

m

2

∫
S
|∇u|2 dH 1 −

∫
Ω
fu dx : u ∈ C∞c (Ω)

}
(1.2)

that has to be maximized in the class of admissible choices for S.
Here m > 0 is a fixed parameter that represents the stiffness coefficient of the

one-dimensional reinforcement, H 1 denotes the 1-dimensional Hausdorff measure
(that is, the length measure), while C∞c (Ω) denotes the class of smooth functions
with compact support in Ω.

The optimization problem we deal with consists in finding the “best” reinforcement
S among all networks with total length bounded by a prescribed L, that is, all S in
the class

AL :=
{
S closed connected subset of Ω with H 1(S) ≤ L

}
,
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We then consider the maximization of the energy functional Ef (S) in (1.2) over this
class, that is

max
{
Ef (S) : S ∈ AL

}
. (1.3)

1.1. Gradient versus tangential gradient. From the modeling point of view, it
is natural to ask whether the gradient ∇u that appears in the line integral

m

2

∫
S
|∇u|2 dH 1

in (1.2) should be replaced by the tangential gradient ∇τu. It turns out that the
question is irrelevant, at least if we strictly follow a variational approach, because
the value of Ef (S) is not affected by this change (Theorem 2.5).

Indeed, if S is a compact curve of class C1 contained in Ω, it is well-known (see
for instance [4]) that the relaxation of the integral

F (u) :=

∫
S
|∇u|2 dH 1 , u ∈ C∞c (Ω) ,

is given by

F ∗(u) :=

∫
S
|∇τu|2 dH 1 , u ∈ H1(S) .

This relaxation result holds also when S is a compact connected set with finite
length, provided that H1(S) and ∇τ are properly defined (this statement is implicitly
contained in Proposition 2.11). However, we warn the reader that this relaxation
result does not holds if S is an arbitrary compact subset of a curve of class C1 with
positive length; in particular, if S is totally disconnected then the relaxation of F is
equal to 0 for every u.

1.2. Concentrated loads. Besides the case of distributed loads, which consists in
assuming that f belongs to some Lebesgue class Lp(Ω), we may also consider the
case of concentrated loads, in which f may have a more singular behavior. More
precisely, we may assume that f is a signed measure on Ω. (In this case the linear
term

∫
Ω fu dx in (1.2) should be written as

∫
Ω u df .)

We recall that a measure f does not necessarily belong to the dual of the Sobolev
space H1

0 (Ω), and therefore Ef (S) = −∞ for some choices of S. Clearly, if Ef (S) is
finite for at least one S problem (1.3) still makes sense, and we may discard all S
such that Ef (S) = −∞. However, it may happen that Ef (S) = −∞ for every S in
AL and in that case problem (1.3) does not makes sense (see Example 2.8).

1.3. An optimization problem in a model for traffic congestion. Another
optimization problem requiring a similar analytical approach arises in a model for
the reduction of traffic congestion in a given geographic area. Here the minimum
problem is

min

{∫
Ω
H(σ) dx : −div σ = f in Ω, σ · n = 0 on ∂Ω

}
, (1.4)

where f = f+ − f− and in the region Ω the function f+ represents the density of
residents while f− is the density of working places. The vector σ is the traffic flux
and the function H describes the transportation cost; the case H(s) := |s| gives the
classical Monge’s problem, while we talk of congested transport if the function H is
super-linear at infinity, that is,

lim
|s|→∞

H(s)

|s|
= +∞ .
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We refer to [3, 5, 6, 18] and to the references therein for a detailed description of
this model. In the case H(s) := |s|2/2, the minimization problem (1.4) reduces, via
a duality argument, to a problem of the form (1.1).

The optimization problem arises when a new road, or network of roads, S has to
be built to reduce the congestion; the total length L is prescribed and on the new
road the congestion function is strictly lower than |s|2/2, for example α|s|2/2 with
α < 1. The problem then consists in finding the optimal one-dimensional set S, and
we end up, via a duality argument, with a problem similar to (1.3), with m := 1/α.

1.4. Relaxed formulation of the optimization problem. The optimization
problem (1.3) is solved, in a suitable relaxed form, in Section 2, to which we refer for
precise statements and definitions.

We explain first the need for a relaxed formulation. Consider a maximizing se-
quence (Sn) for problem (1.3): since these sets are closed, connected, and satisfy
H 1(Sn) ≤ L, they converge, up to subsequence and in Hausdorff distance, to some
connected compact set S∞ with H 1(S∞) ≤ L contained in the closure Ω. The
problem is that the functional Ef (S) is not upper semicontinuous in S with respect
to Hausdorff convergence, and therefore S∞ may be not a solution of problem (1.3).

However it turns out that Ef (S) is upper semicontinuous if we identify the sets
S with the measures H 1xS, namely the restrictions of the Hausdorff measure H 1

to S, and consider the weak* convergence of measures instead of the Hausdorff
convergence of sets. More precisely, we extend the energy functional (1.2) to general
positive measures µ on Ω by setting

Ef (µ) := inf

{
1

2

∫
Ω
|∇u|2 dx+

m

2

∫
Ω
|∇u|2 dµ−

∫
Ω
u df : u ∈ C∞c (Ω)

}
(here we assume that the load f is a signed measure). Notice that this new functional
extends the previous one in the sense that Ef (µ) = Ef (S) when µ = H 1xS, and it is
upper semicontinuous with respect to the weak* convergence of µ (Proposition 3.1).

The problem now is that weak* limits of measures of the form H 1xS are not
necessarily measures of the same form, and in particular the limit µ∞ of the measures
H 1xSn is a measure supported on the set S∞, but may be not the measure H 1xS∞;
if it is, then S∞ is a solution of the optimization problem (1.3), but otherwise it is
not.

These considerations lead to the following relaxed version of problem (1.3):

max
{
Ef (µ) : µ ∈ML

}
, (1.5)

where ML is the class of all weak* limits of measures of the form H 1xS with S
admissible network, that is, S ∈ AL.

The class ML is completely described in Proposition 2.1, and the existence of
a solution of the relaxed optimization problem (1.5) is proved in Theorem 2.2. In
Theorem 2.6 we show that there is always a solution of the form µ = θH 1xS where
S is a compact, connected set with finite length contained in Ω, and θ is a real-valued
multiplicity function which satisfies θ(x) ≥ 1 for H 1-a.e. x ∈ S.

If θ(x) = 1 for H 1-a.e. x ∈ S then S is a solution of the original optimization
problem (1.3). If not, then problem (1.3) may have no solution.

In Section 5 we present some numerical simulations which show unexpected be-
haviors of the optimal measures µ; in particular we have evidence that in some
situations (and perhaps most situations) the multiplicity θ may be strictly larger
than 1 in a subset of positive length of S.
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1.5. Final remarks. (i) We do not know if problem (1.5) is “the” relaxation of
problem (1.3), and in particular we cannot exclude that some kind of Lavrentiev
phenomenon occurs (for more details see Problem 6.2 and Remark 6.3).

(ii) The connectedness assumption on S is crucial: indeed, removing this con-
straint allows a sequence of maximizing sets Sn to spread all over Ω and leads to a
relaxed problem of the form

max
{
Ef (µ) : µ ∈M +(Ω) , µ(Ω) ≤ L

}
,

where M +(Ω) is the class of all positive measures on Ω. This optimization problem
has been studied in [11] and in [7], where it is shown that the optimal measure µ
actually belongs to Lp(Ω) and the exponent p depends on the summability of the
right-hand side f . Similar problems, in the extreme case when in the reinforcing
region a Dirichlet condition is imposed, have been considered in [9, 10].

(iii) In the definitions of Ef (S) and Ef (µ) we required that u belongs to C∞c (Ω)
to ensure that all integrals makes sense. Clearly it would be equivalent to consider
continuous functions in H1

0 (Ω) that are of class C1 in a neighborhood of S or of the
support of µ. One can go further, and take u in a suitably defined Sobolev space, so
that the infimum in the definition of Ef (µ) is a minimum (Proposition 2.11).

(iv) In our model the stiffener S is a one-dimensional set and its contribution to
the total energy is described by the line integral

m

2

∫
S
|∇τu|2 dH 1 .

This choice is consistent with the fact that the integral above is the variational limit
as ε→ 0 of the integrals

m

2ε

∫
Sε

|∇u|2 dx ,

where Sε is the thin strip Sε :=
{
x ∈ R2 : dist(x, S) < ε/2

}
. In other words, the

one-dimensional stiffener S can be seen as the limit structure of two-dimensional
thin strips of thickness ε and elastic constants m/ε (see for instance [17] and [2]).

Structure of the paper. In Section 2 we give a precise formulation of the relaxed
optimization problem, and state the main existence results (Theorems 2.2 and 2.6).
In Section 3 we prove the results stated in Section 2. In Section 4 we give some
additional properties that solution of the relaxed optimization problem must satisfy.
Section 5 is devoted to the numerical approximation of the relaxed problem. Section 6
contains additional remarks and open problems.

Acknowledgements. This work is part of the PRIN projects 2017TEXA3H and
2017BTM7SN, funded by the Italian Ministry of Education and Research (MIUR).
The first three authors are members of the research group GNAMPA of INdAM.
Édouard Oudet gratefully acknowledges the support of the ANR through projects
COMEDIC and OPTIFORM, and the support of the Labex Persyval Lab through
project GeoSpec.

2. Existence of solutions of the relaxed problem

Let us fix/recall the basic notation. Unless we specify otherwise, for the rest of
this paper Ω is a bounded Lipschitz domain in R2, the load f is a signed measure on
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Ω, the class AL of admissible reinforcements consists of all closed connected subsets
of Ω with H 1(S) ≤ L.

For every S ∈ AL the functional Ef (S) is defined by formula (1.2), with the linear
term

∫
Ω fu dx written as

∫
Ω u df because f is now a measure. The optimization

problem (1.3) consists in finding the maximum of Ef (S) among all S ∈ AL, and it
makes sense provided that Ef is not identically −∞ (see Subsection 1.2).

In the following we assume that Ef (S) is finite for some set S ∈ AL.
As explained in Subsection 1.4, we denote by M +(Ω) the class of all positive finite

measures on Ω, and extend the Ef to all µ in M +(Ω) by

Ef (µ) := inf
{
Ef (µ, u) : u ∈ C∞c (Ω)

}
, (2.1)

where
Ef (µ, u) :=

1

2

∫
Ω
|∇u|2 dx+

m

2

∫
Ω
|∇u|2 dµ−

∫
Ω
u df . (2.2)

Then we denote by ML the weak* closure in M +(Ω) of the class of all measures of
the form H 1xS with S ∈ AL, in short

ML :=
{
H 1xS : S ∈ AL

}weak*
,

and the relaxed optimization problem (1.5) consists in finding the maximum of Ef (µ)
among all µ ∈ML.

Proposition 2.1. The class ML consist of all µ ∈M +(Ω) such that
(a) µ(Ω) ≤ L;
(b) the support S of µ is a connected, compact set in Ω with H 1(S) ≤ L;
(c) H 1xS ≤ µ.
We can now state our first existence result:

Theorem 2.2. The optimization problem (1.5) admits a solution µ ∈ML.

Let µ be a measure in ML with support S. We want to show that the value of
Ef (µ) is not affected if we replace the full gradient ∇u in the integral

∫
Ω |∇u|

2dµ in
(2.2) with the tangential gradient ∇τu, and if we remove from the measure µ the
part which is singular with respect to H 1xS.

To this purpose we need to recall some well-known properties of connected sets S
with finite length (for more details we refer to standard references, such as [13]).

2.3. Connected sets with finite length. Let S be a compact connected set in
Rd with finite length. Then S is rectifiable, which means that it can be covered (up
to an H 1-negligible subset) by countably many embedded curves of class C1, and
indeed it can be parametrized (although not bijectively) by a single Lipschitz path.

Moreover S admits a tangent line τ(x) at H 1-a.e. x ∈ S. Thus, for every such x
and every u : Rd → R of class C1 we can define the tangential gradient ∇τu(x).

2.4. The functionals E∗
f and E∗

f . Let µ be a measure in M +(Ω) of the form

µ = θH 1xS
where S is a compact connected set in Ω with finite length. We set

E∗f (µ) := inf
{
E∗f (µ, u) : u ∈ C∞c (Ω)

}
, (2.3)

where
E∗f (µ, u) :=

1

2

∫
Ω
|∇u|2 dx+

m

2

∫
S
|∇τu|2 θ dH 1 −

∫
Ω
u df .
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Theorem 2.5. Let µ be a measure in ML with support S, and let µa be the absolutely
continuous part of µ with respect to H 1xS. Then

Ef (µ) = Ef (µa) = E∗f (µa) .

This statement shows that the maximum problem (1.5) can be reformulated as
the maximum of Ef (µ), or equivalently of E∗f (µa), on the class

M a
L :=

{
µ ∈ML : µ is absolutely continuous w.r.t. H 1x spt(µ)

}
. (2.4)

In view of Proposition 2.1, M a
L agrees with the class of all measures of the form

µ = θH 1xS where
(a) S is a compact connected set in Ω with H 1(S) = L,
(b) θ is a real-valued multiplicity function with θ(x) ≥ 1 for H 1-a.e. x ∈ S,
(c) µ(Ω) =

∫
S θ dH

1 ≤ L.
The following improvement of Theorem 2.2 holds:

Theorem 2.6. Problem (1.5) admits a solution µ in the class M a
L with µ(Ω) = L,

which is therefore a solution of

max
{
E∗f (µ) : µ ∈M a

L , µ(Ω) = L
}
.

If in addition f belongs to Lp(Ω) for some p > 1 and the support of f is Ω, then
every solution of problem (1.5) belongs to M a

L and satisfies µ(Ω) = L.

Remark 2.7. (i) The first part of Theorem 2.6 is little more than a corollary of
Theorem 2.5. The second part, however, requires a more delicate argument.

(ii) The assumption that the support of f is Ω in the second part of Theorem 2.6
can probably be weakened, but not entirely removed. Indeed if f = 0 then Ef (µ) = 0
for every µ ∈M +(Ω), and in particular every µ ∈ML is a solution of problem (1.5).

(iii) As already pointed out in Subsection 1.4, if the solution µ = θH 1xS given
by Theorem 2.6 verifies θ = 1 a.e., that is, µ = H 1xS, then S is a solution of the
original optimization problem (1.3). However, the following example suggests that
this is not always the case.

Example 2.8. Let A,B be two points in Ω such that the closed segment [A,B] is
contained in Ω, and let f := δA − δB. Regarding the maximization problem (1.5)
three possibilities may occur, depending on the choice of L:
• If L < |A−B| then we have Ef (S) = −∞ for every S in the class AL. Indeed,
since a connected set S of length L < |A − B| cannot contain both A and
B, and since the capacity of a point in the plane is zero, we may construct a
sequence of function un ∈ C∞c (Ω) which vanish on S, tend to 0 in H1(Ω), and
satisfy un(A)− un(B)→ +∞.
• If L = |A − B| then the unique set S for which the energy is not −∞ is
the segment [A,B], which is then the unique solution of the maximization
problem (1.3), while µ := H 1xS is the unique solution of problem (1.5).
• If L > |A − B| and µ = θH 1xS is a solution of problem (1.5) as in Theo-
rem 2.6, then the numerical simulations in Section 5 give a strong indication
that θ > 1 on a subset of S with positive length.

We conclude this section by defining the Sobolev space H1
0 (Ω)∩H1(S), and show-

ing that the infimum in formula (2.3) is actually a minimum. This fact will be used
in the proof of the second part of Theorem 2.6.
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2.9. The Sobolev space H1(S). Let S be a compact connected set in Rd with
finite length ` := H 1(S). Using [1, Theorem 4.4] we obtain a closed Lipschitz path
γ : [0, 1]→ S which parametrizes S, and more precisely
• γ has multiplicity 2 at H 1-a.e. x ∈ S, that is, #(γ−1(x)) = 2;
• |γ̇(t)| = 2` for a.e. t ∈ [0, 1].

We then define the Sobolev space H1(S) as the space of all continuous functions
u : S → R such that the composition u ◦ γ belongs to H1(I), where I := (0, 1).1

Note that for a.e. t ∈ [0, 1] the vector γ̇(t) spans τ(x), that is, the tangent line
to S at x := γ(t). Therefore a function u ∈ H1(S) is differentiable along τ(x) for
H 1-a.e. x ∈ S and the tangential derivative satisfies

|∇τu(x)| = 1

2`

∣∣(u ◦ γ)′(t)
∣∣ .

Thus the area formula for Lipschitz maps yields∥∥u∥∥2

2
:=

∫
S
|u|2 dH 1 = `

∫ 1

0

∣∣(u ◦ γ)′(t)
∣∣2 dt .

and ∥∥∇τu∥∥2

2
:=

∫
S
|∇τu|2 dH 1 =

1

4`

∫ 1

0

∣∣(u ◦ γ)′(t)
∣∣2 dt .

We endow H1(S) with the Hilbert norm∥∥u∥∥2

H1(S)
:=
∥∥u∥∥2

2
+
∥∥∇τu∥∥2

2
.

2.10. The Sobolev space H1
0(Ω) ∩ H1(S). Let S be a connected compact set

in Ω with finite length ` := H 1(S). Since S is rectifiable, we can find a strictly
positive (Borel) density function m : S → R such that the trace operator

TS : H1(R2)→ L2(mH 1xS)

is well defined and bounded.2
Then we define H1

0 (Ω)∩H1(S) as the space of all u ∈ H1
0 (Ω) such that TSu agrees

a.e. with a function in H1(S). In the following we tacitly assume that u agrees on S
with the representative of the trace TSu in H1(S), and in particular u is continuous
on S. We endow H1

0 (Ω) ∩H1(S) with the Hilbert norm∥∥u∥∥2

H1
0 (Ω)∩H1(S)

:=
∥∥∇u∥∥2

L2(Ω)
+
∥∥∇τu∥∥2

L2(S)
.

(Completeness can be proved using the continuity of the trace operator TS .) Using
the fact that functions of class H1/2 on intervals do not admit discontinuities of jump
type, one can prove that for every u in H1

0 (Ω) ∩H1(S), there holds

u(x) = 0 for every x ∈ S ∩ ∂Ω.

1 It can be proved that given a function u in H1(S) and a Lipschitz function ϕ : [0, 1]→ S such
that |ϕ̇(t)| ≥ δ for some given positive δ and for a.e. t, then u ◦ ϕ belongs to H1(I). In particular
the definition of H1(S) does not depend on the choice of the parametrization γ.

2 Take for instance countably many compact curves Sn of class C1 in R2 that cover H 1-almost
all of S, let mn be the norm of the trace operators Tn : H1(R2)→ L2(Sn), and set

m(x) :=
∑
n

1

2nm2
n

1Sn(x) .
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Proposition 2.11. Let µ be a measure of the form µ = θH 1xS where S is a
compact connected set with finite length in Ω and the multiplicity θ is larger than
some positive constant. If f belongs to Lp(Ω) for some p > 1 then Ef (µ) = E∗f (µ) is
finite and

Ef (µ) = E∗f (µ) = min
{
E∗f (µ, u) : u ∈ H1

0 (Ω) ∩H1(S)
}
. (2.5)

3. Proofs of the results in Section 2

Through this section, given a matrix M we denote by |M | the operator norm.

Proposition 3.1. The functional Ef defined in (2.1) is weakly* upper semicontinu-
ous on M +(Ω).

Proof. Just notice that Ef (µ) is defined as the infimum of Ef (µ, u) over all u in
C∞c (Ω) and Ef (µ, u) is clearly weakly* continuous in µ for every such u, cf. (2.2). �

Proof of Theorem 2.2. This statement follows from Proposition 3.1 and the weak*
compactness of the class ML (an immediate consequence of its definition). �

To prove Proposition 2.1 we need the following results, which we state in Rd even
if we need only the case d = 2.

Proposition 3.2. Let (Sn) be a sequence of compact connected sets in Rd which
converge to a set S in the Hausdorff distance, let (µn) be a sequence of positive finite
measures on Rd which converge to a measure µ in the weak* sense, and assume that

• µn is supported on Sn and H 1xSn ≤ µn;
• H 1(Sn) ≤ L for some finite constant L.

Then

• µ is supported on S and H 1xS ≤ µ;
• H 1(S) ≤ lim inf H 1(Sn) ≤ L.

Proof. The fact that µ is supported on S follows easily from the weak* convergence
of µn to µ and the convergence of Sn to S in the Hausdorff distance.

The inequality H 1(S) ≤ lim inf H 1(Sn) is Gołąb’s semicontinuity theorem (see
[14, Section 3], or [1, Theorem 2.9]).

The inequality H 1xS ≤ µ can be viewed as a localized version of Gołąb’s theo-
rem, and the proof is slightly more complicated. Using [1, Theorem 4.4], we obtain
that each Sn can be parametrized by a closed path γn : [0, 1]→ Sn such that

• γn has multiplicity 2 at H 1-a.e. x ∈ Sn, that is, #(γ−1
n (x)) = 2;

• γn has degree 0 at H 1-a.e. x ∈ Sn (for a precise definition see [1, §4.1]);
• each γn has Lipschitz constant Lip(γn) ≤ 2L.

Passing to a subsequence we can assume that the paths γn converge uniformly to
some γ : [0, 1]→ S with Lip(γ) ≤ 2L, and one easily checks that γ parametrizes S.
Moreover [1, Proposition 4.3] shows that γ has degree 0 and in particular has mul-
tiplicity at least 2 at H 1-a.e. x ∈ S.
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Therefore, for every positive test function ϕ ∈ Cc(Rd) there holds∫
Rd
ϕdµ = lim

n→∞

∫
Rd
ϕdµn ≥ lim inf

n→∞

∫
Sn

ϕdH 1

= lim inf
n→∞

1

2

∫ 1

0
ϕ(γn) |γ̇n| dt

≥ 1

2

∫ 1

0
ϕ(γ) |γ̇| dt ≥

∫
S
ϕdH 1 .

The first inequality follows from the assumption µn ≥ H 1xSn and the fact that
ϕ is positive, the second equality and the third inequality follow from the area
formula for Lipschitz maps, and finally the second inequality follows by a standard
semicontinuity argument.

We have thus proved that ∫
Rd
ϕdµ ≥

∫
S
ϕdH 1

for every test function ϕ ≥ 0, which yields the desired inequality µ ≥H 1xS. �

Lemma 3.3. Let S be a connected compact set with finite length in Rd, and let µ be
a positive finite measure supported on S such that µ ≥ H 1xS. Then there exists a
sequence of connected compacts sets Sn in Rd such that
• H 1(Sn) ≤ µ(Rd) for every n,
• the sets Sn converge to S in the Hausdorff distance;
• the measures H 1xSn converge weakly* to µ.

Proof. Choose a unit vector e ∈ Rd which is not in the approximate tangent line to
S at x for H 1-a.e. x ∈ S. Consider then the measure λ := µ −H 1xS. Since λ
is positive and supported on S, it can be approximated by a sequence of positive
discrete measures

λn :=
∑
j

anjδxnj

where
• the points xnj belong to S,
• the coefficients anj converge uniformly to 0 as n→∞,
• λn(Rd) ≤ λ(Rd) for every n, that is,

∑
j anj ≤ µ(Rd)−H 1(S).

Thanks to the choice of e we can further require that
• xnj − xni is not parallel to e for every n and every i 6= j.

Finally we set
Sn := S ∪

(⋃
j

Inj

)
where Inj is the closed segment with endpoints xnj and xnj + anje. By the choice of
the points xni we have that the segments Inj are pairwise disjoint (for fixed n) and
have negligible intersection with S. Now it is easy to check that the sets Sn have
the required properties. �

Proof of Proposition 2.1. We first prove that every measure µ ∈ML satisfies prop-
erties (a)–(c) in Proposition 2.1. Take indeed a sequence of sets Sn ∈ AL such that
H 1xSn weakly* converge to µ. Possibly passing to a subsequence we can assume
that the sets Sn converge in Hausdorff distance to some compact connected set S
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contained in Ω. Then Proposition 3.2 implies that S is the support of µ and µ
belongs to ML.

The converse implication, namely that every positive measure that satisfies prop-
erties (a)-(c) belongs to ML, follows from Lemma 3.3. �

The proof of Theorem 2.5 is split in two parts (Propositions 3.9 and 3.12), the
proofs of which require several lemmas. Some of these lemmas are stated in general
dimension d even if we only need the case d = 2.
Lemma 3.4. Let K ⊂ R be a compact set with |K| = 0. For every ε > 0 there exists
a function f : R→ R of class C∞(R) such that
• |f(x)− x| ≤ ε for all x ∈ R;
• f ′ = 0 in a neighborhood of K;
• 0 ≤ f ′(x) ≤ 1 for all x ∈ R;
• the open set A := {x : f ′(x) 6= 1} satisfies |A| ≤ ε.

Proof. For every δ > 0 let
• Kδ be the open δ-neighborhood of K;
• ρδ be a smooth regularizing kernel with support contained in [−δ, δ],
• gδ := ρδ ∗ 1K2δ

and fδ be a primitive of 1− gδ such that fδ(0) = 0.
One easily checks that gδ and fδ are smooth functions and satisfy the following
properties:
• 0 ≤ gδ(x) ≤ 1 for every x ∈ R, which implies 0 ≤ f ′δ(x) ≤ 1;
• if x ∈ Kδ then [x− δ, x+ δ] ⊂ K2δ, hence gδ(x) = 1, and f ′δ(x) = 0;
• if x /∈ K3δ then [x− δ, x+ δ] ∩K2δ = ∅, hence gδ(x) = 0 and f ′δ(x) = 1;
• for every x ∈ R, |fδ(x)− x| ≤ ‖gδ‖1 = |K2δ|.

Notice now that since K is compact then |Kδ| converges to |K| = 0 as δ → 0, and
therefore we can find δ̄ such that |K2δ̄| ≤ |K3δ̄| ≤ ε. We conclude the proof by
setting f := fδ̄. �

Lemma 3.5. Let K be a compact set in Rd, d ≥ 2, with H 1(K) = 0 For every
ε > 0 there exist a map φ : Rd → Rd of class C∞ and an open set A ⊂ Rd such that

(i) |φ(x)− x| ≤ ε for all x ∈ Rd;
(ii) ∇φ = 0 in a neighborhood of K;
(iii) |∇φ(x)| ≤ 1 for all x ∈ Rd.
Moreover, having fixed r > 0, we can further require that ∇φ(x) = I, where I is the
d× d-identity matrix, out of an open set A with |A ∩ (−r, r)d| ≤ ε.
Proof. Fix for the time being ε′, to be properly chosen later. For i = 1, . . . , d let
Ki be the projection of K on the i-th coordinate axis, and let fi : R → R be the
function obtained by applying Lemma 3.4 with Ki and ε′ in place of K and ε, and
let Ai be the set where f ′i 6= 1. Let

φ(x1, . . . , xd) :=
(
f1(x1), . . . , fd(xd)

)
.

It is easy to check that φ has properties (i)-(iii) for ε′ small enough. Moreover A is
contained in the set of all x such that xi ∈ Ai for some i = 1, . . . , d, and therefore
|A ∩ (−r, r)d| ≤ dε′(2r)d−1, which is less that ε for ε′ small enough. �

Lemma 3.6. Let µ, µ′ be measures in M +(Ω) and assume that µ = µ′ + λ where λ
is a positive measure supported on a Borel set E with H 1(E) = 0. Then for every
u ∈ C∞c (Ω) and every δ > 0 there exist v ∈ C∞c (Ω) such that ‖v − u‖∞ ≤ δ and∫

Ω
|∇v|2dµ ≤

∫
Ω
|∇u|2dµ′ + δ . (3.1)
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Proof. We fix for the time being ε > 0, to be chosen properly through the proof.
Then we choose a compact set K ⊂ E such that λ(Ω \K) ≤ ε, we let φ : R2 → R2

be the map constructed in Lemma 3.5 for the set K, and we set

v(x) := u(φ(x)) for every x ∈ R2.

The function v is clearly smooth and compactly supported on R2, and the support
is contained in Ω for ε sufficiently small.

The rest of the proof is divided in three steps. In the following we use the letter
C to denote any constant that may depend on µ and u but not on ε; the value of C
may change at every occurrence.

Step 1. Estimate of |u− v|. Using property (i) in Lemma 3.5 we obtain

|v − u| = |u(φ)− u| ≤ Lip(u) |φ(x)− x| ≤ Cε ,
which implies ‖v − u‖∞ ≤ δ if we choose ε small enough.

Step 2. Estimates of |∇v|. Using property (iii) in Lemma 3.5 we obtain

|∇v| = |∇u(φ)| |∇φ| ≤ |∇u(φ)| ≤ |∇u|+
∣∣∇u(φ)−∇u

∣∣
≤ |∇u|+ Lip(∇u) ε = |∇u|+ Cε .

Step 3. Proof of estimate (3.1). Property (ii) in Lemma 3.5 implies that ∇v = 0
on K. Using this fact and the estimate in Step 2, and recalling the choice of K, we
obtain ∫

Ω
|∇v|2dµ =

∫
Ω\K
|∇v|2dµ ≤

∫
Ω\K

(
|∇u|+ Cε

)2
dµ

=

∫
Ω\K
|∇u|2 + Cεdµ

≤
∫

Ω
|∇u|2 dµ′ +

∫
Ω\K
|∇u|2 dλ+ Cε

≤
∫

Ω
|∇u|2 dµ′ + Cε ,

which implies the desired estimate if we choose ε small enough. �

Lemma 3.7. Let µ, µ′ be as in Lemma 3.6. Then for every u ∈ C∞c (Ω) and every
δ > 0 there exist v ∈ C∞c (Ω) such that ‖v − u‖∞ ≤ δ and

Ef (µ, v) ≤ Ef (µ′, u) + δ . (3.2)

Proof. Consider the measures µ̄ := dx + mµ and µ̄′ := dx + mµ′, where dx is the
Lebesgue measure on Ω, and fix δ̄ ∈ (0, δ], to be chosen later.

Let now v be the function obtained by applying Lemma 3.6 with µ̄, µ̄′, δ̄ in place
of µ, µ′, δ. Then ‖v − u‖∞ ≤ δ̄ ≤ δ and

Ef (µ, v) =
1

2

∫
Ω
|∇v|2dµ̄+

∫
Ω
v df

≤ 1

2

[ ∫
Ω
|∇u|2dµ̄′ + δ̄

]
+

[ ∫
Ω
u df + ‖u− v‖∞‖f‖

]
= Ef (µ′, u) +

(1

2
+ ‖f‖

)
δ̄ ,

where ‖f‖ is the total mass of the signed measure f . Thus estimate (3.2) follows by
choosing δ̄ sufficiently small. �

Lemma 3.8. Given µ, µ′ ∈M +(Ω) such that µ ≥ µ′, then Ef (µ) ≥ Ef (µ′).
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Proof. This statement follows by the fact that Ef (µ′, u) ≤ Ef (µ, u) for every u in
C∞c (Ω), cf. (2.1) and (2.2). �

Proposition 3.9. Let µ, µ′ be measures in M +(Ω) and assume that µ = µ′ + λ
where λ is a positive measure supported on a Borel set E with H 1(E) = 0. Then

Ef (µ) = Ef (µ′) .

Proof. The inequality Ef (µ) ≥ Ef (µ′) is contained in Lemma 3.8, the opposite in-
equality follows from Lemma 3.7. �

Lemma 3.10. Let µ be a finite positive measure on Rd of the form µ = θH 1xΣ
where Σ is a rectifiable set, and let A be an open set that contains Σ. For a.e. x ∈ Σ
let τ(x) be the tangent line to Σ at x and let P (x) be the matrix associated to the
orthogonal projection of Rd onto τ(x). Then for every ε > 0 there exist a smooth
map φ : Rd → Rd and a compact set K ⊂ Σ such that

(i) |φ(x)− x| ≤ ε for all x, and φ(x) = x for x ∈ Rd \A;
(ii) |∇φ(x)| ≤ 10 for all x, and ∇φ(x) = I for x ∈ Rd \A;
(iii) |∇φ(x)− P (x)| ≤ ε for all x ∈ K and µ(Rd \K) ≤ ε.

Proof. The proof is divided in several steps. We fix for the time being ε′ ∈ (0, 1], to
be chosen at the end of the proof.

Step 1. Construction of φ. Using the fact that Σ is rectifiable and µ is supported
on Σ we can find compact sets Ki ⊂ Σ and curves Γi of class C1, with i = 1, . . . , n,
such that:
• the sets Ki are disjoint and contained in Γi;
• µ(Rd \K) ≤ ε where K := K1 ∪ · · · ∪Kn;
• up to a rotation Ri, Γi agrees with the graph of a C1 map γi : R→ Rd−1 (we
identify Rd with R× Rd−1) and |γ̇i| ≤ ε′ everywhere.

Then we find δ ∈ (0, ε/3] such that
• the open δ-neighborhoods Kδ

i are disjoint and contained in A.
Next we find smooth curves Gi and smooth functions σi : Rd → [0, 1] such that
• σi = 1 on a neighborhood of Ki and σi = 0 out of Kδ

i ;
• |∇σi| ≤ 2/δ everywhere;
• Gi agrees, up to the rotation Ri, with the graph of a C∞ map gi : R→ Rd−1

such that |γi − gi| ≤ δ and |ġi| ≤ ε′ everywhere.
For every i we let pi be the projection of Rn onto Gi defined by

pi(x) = pi(x1, . . . , xd) :=
(
x1, gi(x1)

)
(modulo the rotation Ri). Finally we set σ0 := 1 − (σ1 + · · · + σn), so that the
functions σ0, . . . , σn form a partition of unity, and define

φ(x) := σ0(x)x+
n∑
i=1

σi(x) pi(x) = x+
n∑
i=1

σi(x)
(
pi(x)− x

)
. (3.3)

In the rest of this proof we assume for simplicity that the rotations Ri are the
identity, and we denote by C any constant that does not depend on ε′ and δ; the
value of C may vary at every occurrence.

Step 2. |x−pi(x)| ≤ 3δ for every x ∈ Kδ
i . Write x = (x1, x

′) with x′ ∈ Rd−1. Since
Γi is the graph of γi and |γ̇i| ≤ 1, the fact that dist(x,Γi) ≤ δ implies |x′− γi(x1)| ≤
2δ. Then the assumption |γi − gi| ≤ δ yields |x′ − gi(x1)| ≤ 3δ, which is the desired
estimate.
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Step 3. Proof of statement (i). Given x ∈ Rn, for every i such that σi(x) 6= 0
there holds x ∈ Kδ

i , and then |x− pi(x)| ≤ 3δ by Step 2. Hence (3.3) gives

|φ(x)− x| ≤
n∑
i=1

σi(x)
∣∣pi(x)− x

∣∣ ≤ 3δ ≤ ε .

On the other hand, if x does not belong to A then it does not belong to any Kδ
i ,

which means σi(x) = 0, and therefore (3.3) yields φ(x) = x.
Step 4. Proof of statement (ii). Formula (3.3) gives

∇φ(x) = I +
n∑
i=1

σi(x)
(
∇pi(x)− I

)
+

n∑
i=1

(
pi(x)− x

)
⊗∇σi(x) . (3.4)

If x does not belong to A then x does not belong to the support of σi for every i,
and formula (3.4) reduces to ∇φ(x) = I.

Consider now x arbitrary. From formula (3.4) we obtain

|∇φ(x)| ≤ 1 +
n∑
i=1

σi(x)
(
1 + |∇pi(x)|

)
+

n∑
i=1

∣∣x− pi(x)
∣∣ · ∣∣∇σi(x)

∣∣
≤ 1 + 3 + 3δ · 2

δ
= 10 .

For the second inequality we used that σi(x) = 0 and ∇σi(x) = 0 for all i except at
most one, and the following estimates: |∇pi(x)| ≤ 2 (use the definition of pi and the
bound |ġi| ≤ ε′ ≤ 1), |∇σi| ≤ 2/δ (by the choice of σi), and |x−pi(x)| ≤ 3δ (Step 2).

Step 5. |∇pi(x)− P (x)| ≤ Cε′ for x ∈ Ki. Let P be the d× d matrix associated
to the projection of Rd onto the line R × {0}, that is, the matrix with all entries
equal to 0 except P11 = 1. The definition of pi and the assumption |ġi| ≤ ε′ imply
|∇pi(x)− P | ≤ Cε′, while the assumption |γ̇i| ≤ ε′ implies |P (x)− P | ≤ Cε′.

Step 6. Proof of statement (iii). We already know that µ(Rd \K) ≤ ε. Moreover,
if x belongs to K then it belongs to Ki for some i and since σi = 1 in a neighborhood
of Ki, formula (3.4) reduce to ∇φ(x) = ∇pi(x). We conclude the proof using the
estimate in Step 5 and choosing ε′ small enough. �

Lemma 3.11. Let µ be a measure in M +(Ω) of the form µ = θH 1xΣ where Σ is
a rectifiable set. Then for every u ∈ C∞c (Ω) and every δ > 0 there exist v ∈ C∞c (Ω)
such that ‖v − u‖∞ ≤ δ and

Ef (µ, v) ≤ E∗f (µ, u) + δ . (3.5)

Proof. We fix ε > 0, to be chosen later. We take an open set A ⊃ Σ such that |A| ≤ ε,
and we then let φ and K be the map and the compact set given by Lemma 3.10.
We now set

v(x) := u(φ(x)) for every x ∈ R2.
The function v is smooth and its support is contained in Ω for ε sufficiently small,
and the desired properties of v follow by the properties of φ stated in Lemma 3.10.
As usual, the letter C denotes any constant which does not depend on ε.

Using property (i) in Lemma 3.10, for every x ∈ R2 we obtain

|v − u| = |u(φ)− u| ≤ Lip(u) |φ(x)− x| ≤ Cε ,
which implies ‖v − u‖∞ ≤ δ for ε small enough, and∣∣∣∣ ∫

Ω
v df −

∫
Ω
u df

∣∣∣∣ ≤ Cε . (3.6)
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Using property (ii) in Lemma 3.10 we obtain

|∇v| = |∇u(φ)| · |∇φ| ≤ C , (3.7)

while properties (i) and (ii) imply that ∇v = ∇u for every x ∈ Ω \A. Therefore∫
Ω
|∇v|2 dx ≤

∫
Ω\A
|∇u|2 dx+ C|A| ≤

∫
Ω
|∇u|2 dx+ Cε . (3.8)

For every x ∈ K we write ∇v as follows, where P (x) is the matrix associated to the
projection on the approximate tangent line to Σ at x:

∇v = ∇u(φ)∇φ =
(
∇u(φ)−∇u

)
∇φ+∇u

(
∇φ− P

)
+∇uP .

Then, recalling that ∇uP = ∇τu and using properties (i)-(iii), we obtain:

|∇v| ≤
∣∣∇u(φ)−∇u

∣∣ · |∇φ|+ |∇u| · |∇φ− P |+ |∇τu|
≤ Lip(∇u) |φ(x)− x|C + Cε+ |∇τu| = |∇τu|+ Cε .

Using this estimate and (3.7), and the fact that µ(R2 \K) ≤ ε, we obtain∫
Σ
|∇v|2 dµ =

∫
K
|∇τu|2 + Cεdµ+

∫
Σ\K

C dµ ≤
∫

Σ
|∇τu|2 dµ+ Cε . (3.9)

Finally (3.5) follows from (3.6), (3.8) and (3.9) by choosing ε small enough. �

Proposition 3.12. Let µ be a measure in M +(Ω) of the form µ = θH 1xΣ where
Σ is a rectifiable set. Then

Ef (µ) = E∗f (µ) .

Proof. The trivial inequality Ef (µ, u) ≥ E∗f (µ, u) implies Ef (µ) ≥ E∗f (µ); the oppo-
site inequality follows from Lemma 3.11. �

Proof of Theorem 2.5. Combine Propositions 3.9 and 3.12. �

Proof of Proposition 2.11. If f belongs to Lp(Ω) for some p > 1 then it belongs also
to the dual of H1

0 (Ω), and therefore the functional E∗f (µ, ·) is coercive, which implies
that the infimum E∗f (µ) is not −∞. Clearly the same holds for Ef (µ).

Next we notice that the minimum of E∗f (µ, u) over all u ∈ H1
0 (Ω) ∩H1(S) is

attained because this functional is coercive and weakly lower-semicontinuous.
The first equality in (2.5) is proved in Theorem 2.5.
To prove the second equality in (2.5) it is enough to show that C∞c (Ω) is dense

in norm in H1
0 (Ω) ∩H1(S). The proof of this density result is a bit delicate, but

ultimately standard, and we simply list the key steps:
• C∞c (Ω) is dense in Lipc(Ω);
• Lipc(Ω) is dense in Lip0(Ω);
• Lip0(Ω) is dense in the subspaceX of all u ∈ H1

0 (Ω)∩H1(S) which are constant
on some open set A (depending on u) such that S\A can be covered by finitely
many disjoint compact curves of class C1;
• X is dense in H1

0 (Ω) ∩H1(S).
In all these statement “dense” refers to the norm ofH1

0 (Ω)∩H1(S); the last statement
is the most delicate, and can be proved arguing as in the proof of Lemma 3.6. �

Lemma 3.13. Assume that f ∈ Lp(Ω) for some p > 1 and that the support of f is
Ω, and let µ be a measure in ML such that µ(Ω) < L. Then there exists µ′ in ML

such that µ′ ≥ µ and Ef (µ′) > Ef (µ).
In particular every solution µ of problem (1.5) satisfies µ(Ω) = L.
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Proof. Let S be the support of µ. By Proposition 2.11, Ef (µ) = E∗f (µ, u) where
u ∈ H1

0 (Ω)∩H1(S) is a minimizer of E∗f (µ, ·). Then u solves the equation ∆u = −f
in Ω′ := Ω \ S, which implies that u is of class C1 on Ω′ and the set of all x ∈ Ω′

such that ∇u(x) = 0 has empty interior.
In particular we can find a point x ∈ Ω′ such that ∇u(x) 6= 0 and dist(x, S) < `

where ` := L − µ(Ω). We then choose a segment S′ which connects x to S, has
length H 1(S′) ≤ `, and is not orthogonal to ∇u(x).

We set µ′ := µ + H 1xS. Clearly µ′ ≥ µ and the support of µ′ is S ∪ S′,
and one easily checks that µ′ belongs to ML. Since µ′ ≥ µ then Ef (µ′) ≥ Ef (µ)
(cf. Lemma 3.8), and we claim that this inequality is strict.

Assume by contradiction that Ef (µ′) = Ef (µ), and let u′ ∈ H1
0 (Ω) ∩ H1(S ∪ S′)

be a minimizer of E∗f (µ′, ·). Then u′ is also a minimizer of E∗f (µ, ·), and since this
functional is strictly convex we have that u and u′ agree as elements of the space
H1

0 (Ω) ∩H1(S). This means that

E∗f (µ, u′) = Ef (µ) = Ef (µ′) = E∗f (µ′, u′) .

On the other hand u is of class C1 on Ω \ S, and in particular is continuous, and
therefore u agrees with u′ on S′, which implies that ∇τu′ = ∇τu a.e. on S′, and
by the choice of S′ we have that ∇τu is not identically null on S′. This yields the
contradiction E∗f (µ, u′) < E∗f (µ′, u′). �

Proof of Theorem 2.6. Let us prove the first part of the statement. Let µ̄ ∈ ML

be an arbitrary solution of problem (1.5) (which exists by Theorem 2.2), let S be
the support of µ̄ and let µ̄a = θ̄H 1xS be the absolutely continuous part of µ̄ with
respect to H 1xS. Then µ̄a is also a solution of problem (1.5) by Theorem 2.5.

If L = µ̄a(Ω) we set µ := µ̄a = θ̄H 1xS.
If L > µ̄a(Ω) =

∫
S θ̄ dH

1 we set µ := θH 1xS where θ is a any function such
that θ ≥ θ̄ and L =

∫
S θ dH

1 = µ(Ω).

Let us now prove the second part of the statement. Since µ̄a is a solution of
problem (1.5), Lemma 3.13 implies that µ̄a(Ω) = L. On the other hand µ̄(Ω) ≤ L
because of the definition of ML, and therefore we must have µ̄(Ω) = L and µ̄ = µ̄a,
which concludes the proof. �

4. Some necessary conditions of optimality

In this section we assume that the load f belongs to L2(Ω), and we consider a
measure µ = θH 1xS in M a

L (see (2.4)) and the function u ∈ H1
0 (Ω) ∩H1(S) that

solves problem (2.5), that is, the unique minimizer of E∗f (µ, ·).
In Proposition 4.1 we derive some necessary conditions that µ and u must satisfy

if µ solves the maximum problem (1.5).
In Proposition 4.2 we derive the Euler-Lagrange equations for u in strong form

(assuming some regularity on S and u).

Proposition 4.1. Assume that µ solves of the optimization problem (1.5) and that
the set S+ := {x ∈ S : θ(x) > 1} has positive length. Then there exists a constant
c ∈ R such that

(i) |∇τu| = c a.e. on S+;
(ii) |∇τu| ≤ c a.e. on S \ S+.
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Proof. The proof is divided in several steps; the key inequality is (4.4), which is
obtained from (4.2).

We consider variations of µ of the form µε := (θ + εη) H 1xS, with ε > 0 and
η ∈ L∞(S) (in particular we keep the set S fixed). In order that µε be admissible,
that is, µε ∈ML for 0 ≤ ε ≤ 1, we assume that∫

S
η dH 1 = 0 and η ≥ 1− θ a.e. (4.1)

Step 1. Let uε be the minimizer of E∗f (µε, ·): then for every η that satisfies (4.1)
there holds ∫

S
|∇τuε|2 η dH 1 ≤ 0 . (4.2)

By the choice of u and uε we have that Ef (µ) = E∗f (µ, u) and Ef (µε) = E∗f (µε, uε).
Therefore, the optimality of µ yields

E∗f (µ, uε) ≥ E∗f (µ, u) ≥ E∗f (µε, uε) = E∗f (µ, uε) +
mε

2

∫
S
|∇τuε|2 η dH 1 , (4.3)

and the comparison of the first and last terms of (4.3) gives (4.2).

In the next four steps we prove that the functions uε converge strongly to u, which
will imply that (4.2) holds with u in place of uε.

Step 2. The functions uε are uniformly bounded in H1
0 (Ω) ∩H1(S). Note indeed

that for ε small enough there holds 1/2 ≤ θ + εη and therefore
1

2

∫
Ω
|∇uε|2 dx+

m

4

∫
S
|∇τuε|2 dH 1 −

∫
Ω
fuε dx

≤ E∗f (µε, uε) ≤ E∗f (µε, 0) = 0 ,

and the functional in the first line is clearly coercive on H1
0 (Ω) ∩H1(S).

Step 3. E∗f (µ, uε) converge to E∗f (µ, u) as ε→ 0. From (4.3) we obtain

0 ≤ E∗f (µ, uε)− E∗f (µ, u) ≤ −mε
2

∫
S
|∇τuε|2 η dH 1 ,

and the last term tends to 0 as ε→ 0 by Step 2.
Step 4. The functions uε converge to u weakly in H1

0 (Ω) ∩H1(S) as ε → 0. By
Step 3 and the weak lower-semicontinuity of E∗f (µ, ·), every weak* limit of the se-
quence uε is a minimizer of E∗f (µ, ·) and therefore it must be u because this functional
is strictly convex.

Step 5. The functions uε converge to u strongly in H1
0 (Ω) ∩H1(S) as ε→ 0, and

for every η that satisfies (4.1) there holds∫
S
|∇τu|2 η dH 1 ≤ 0 . (4.4)

Since the linear term in E∗f (µ, ·) is weakly continuous, the convergence of the ener-
gies in Step 3 implies the convergence of the energies without linear term, that is
E∗0(µ, uε)→ E∗0(µ, u). Notice now that

Φ(·) :=
(
E∗0(µ, ·)

)1/2
is an equivalent Hilbert norm on H1

0 (Ω) ∩H1(S), and recall that in Hilbert spaces
weak convergence plus convergence of the norms implies strong convergence.

Inequality (4.4) follows from (4.2) and the fact that the functions |∇τuε|2 converge
to |∇τu|2 in L1(S).
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Step 6. Conclusion of the proof. Set Sδ := {x ∈ S : θ(x) ≥ 1 + δ}. Note that
inequality (4.4) holds for all η which vanish on S \ Sδ, satisfy |η| ≤ δ on Sδ, and
have integral 0 on Sδ. Since this class of functions is closed by change of sign, the
inequality is actually an equality, which can be written as∫

Sδ

|∇τu|2 η dH 1 = 0 ,

and implies that |∇τu|2 is equal to some constant c a.e. on Sδ. Since this holds for
every δ > 0, we have proved statement (i).

Using statement (i) and recalling that for every admissible η there holds∫
S\S+

η dH 1 = −
∫
S+

η dH 1 ,

we rewrite (4.4) as

0 ≥
∫
S\S+

|∇τu|2 η dH 1 + c2

∫
S+

η dH 1 =

∫
S\S+

(
|∇τu|2 − c2

)
η dH 1 ,

and since the restriction of η to S \S+ can be an arbitrary positive bounded function
with integral less than

∫
S(θ − 1) dH 1, this inequality implies that |∇τu|2 − c2 ≤ 0

a.e. on S \ S+, which is statement (ii). �

For the next result we need some assumptions on S, θ and u.
We assume that θ is a continuous function and that S is a network of class C1,

that is, it can be written as a finite union of simple curves Si of class C1 contained
in Ω that intersect each other and ∂Ω only at the endpoints. We denote by S# the
set of all endpoints of the curves Si, and we say that x ∈ S# is
• a boundary point if x ∈ ∂Ω;
• a terminal point if x ∈ Ω and x belongs to only one curve Si;
• a branching point if x ∈ Ω and x belongs to more than one curve Si.

We choose an orientation τ of S,3 we denote by ν the associated normal, that is, the
rotation of τ by 90◦ counterclockwise, and write ∂τ for the tangential derivative, ∂±ν
for the normal derivatives on the two sides of S.

Finally we assume that u is of class C1 on Ω \ S, and that the normal derivatives
∂±ν u esist at every point of S \ S# and belong to L1(S). We write[

∂νu
]

:= ∂+
ν u− ∂+

ν u .

(Note that this quantity does not depend on the choice of the normal ν.)

Proposition 4.2. Under the assuptions on S, θ and u stated above, we have that
• u solves −∆u = f on Ω \ S with boundary condition u = 0 on ∂Ω;
• u solves −m∂τ

(
θ ∂τu

)
=
[
∂νu
]
on each curve Si minus the endpoints;

• u is of class C1 on each curve Si, including the endpoints.
In particular the values of ∂τu at the endpoints of Si, denoted by (∂τu)i are well-
defined, and for every x ∈ S# we set[

∂τu(x)
]

:=
∑

(∂τu(x))i ,

where the sum is taken over all i such that x is an endpoint of Si. Then
• if x is a boundary point, the Dirichlet condition u(x) = 0 holds;
• if x is a terminal point, the Neumann condition ∂τu(x) = 0 holds;

3 This means that τ agrees on each curve Si (except the endpoints) with is a continuous unit
tangent field to Si; we do not require that τ is continuous at branching points.
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• if x is a branching point, the Kirchhoff condition
[
∂τu
(
x)] = 0 holds.

Proof. The full Euler-Lagrange equation for u in the weak form is∫
Ω
∇u · ∇φdx+m

∫
S
∇τu · ∇τφ θ dH 1 −

∫
Ω
fφ dx = 0 ∀φ ∈ C∞c (Ω) . (4.5)

Thus u satisfies the equation ∆u = f on Ω\S in the weak sense, and hence it belongs
to H2

loc(Ω \ S).
Integrating by parts the first integral in (4.5) we obtain∫

Ω
∇u · ∇φdx =

∫
Ω\S
∇u · ∇φdx =

∫
Ω\S

fφ dx−
∫
S

[
∂νu
]
φdH 1 ,

and therefore (4.5) becomes

m

∫
S
∂τu · ∂τφ θ dH 1 −

∫
S

[
∂νu]φdH 1 = 0 ∀φ ∈ C∞c (Ω) . (4.6)

Thus u solves the equation −m∂τ (θ ∂τu) =
[
∂νu
]
in the weak sense on each curve

Si, which implies that θ ∂τu belongs W 1,1(Si), and then also to C0(Si), which in
turn implies that u belongs to C1(Si).

Finally we integrate by parts the first integral in (4.6) and obtain∑
x∈S#

θ(x)
[
∂τu(x)

]
φ(x) = 0 ∀φ ∈ C∞c (Ω) ,

This implies that
[
∂τu(x)

]
= 0 for every x ∈ S# which is not a boundary point; if

x is a terminal point this means ∂τu(x) = 0 . �

5. Numerical approximation of optimal reinforcing networks

In this section we introduce a numerical strategy to approximate the solutions of
the relaxed reinforcement problem (1.5). Through this section we assume that Ω is
a bounded convex domain, and that the load f belongs to L2(Ω).

Thanks to Theorem 2.6 we can rewrite this optimization problem as

max
S,θ

min
u

[
1

2

∫
Ω
|∇u|2 dx+

m

2

∫
S
|∇u|2 θ dH 1 −

∫
Ω
fu dx

]
, (5.1)

where the minimum is taken over all function u ∈ H1
0 (Ω)∩H1(S) and the maximum

is taken over all S and θ such that S is a compact, connected set with finite length
contained in Ω, θ is a function on S with θ ≥ 1 a.e. and

∫
S θ dH

1 = L.
Since we expect problem (5.1) to have many local maxima, we focus on stochastic

optimization algorithms which only require cost function evaluations to proceed.

5.1. Spanning tree parametrization and discrete functional. To discretize
problem (5.1), we consider a mesh T associated to the domain Ω made of np points
and nt triangles. We denote byK andM respectively the stiffness and mass matrices
of dimensions np×np associated to the finite elements P1 on T . Moreover, we define
Kx and Ky to be the differentiation matrices of P1 functions. More precisely, Kx

and Ky are matrices of dimensions nt × np which evaluate the operators ∂x and ∂y
on piecewise linear continuous functions on the mesh T . Observe that due to the
linearity of P1 elements, ∂x and ∂y are constant on every triangle of the mesh.

Denoting by Vareas the column vector of size nt × 1 containing the area measures
of every triangle, we recall the simple identity

K = KT
x VareasKx +KT

y VareasKy .
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Algorithm 1 Projection on weighted length and bound constraints.
Input: L, SP (P1, . . . , Pnd), θweights, hs.
step 1: Compute the length L of SP (P1, . . . , Pnd) and the center of mass C of the

points P1, . . . , Pnd .
step 2: Define (P1, . . . , Pnd) to be the image of SP (P1, . . . , Pnd) by the homothetic

transformation with center C and ratio hsL/L.
step 3: Project the weight vector θweights on the convex set which is the intersection

of the linear constraint (5.2) with respect to SP (P1, . . . , Pnd) and the bound
constraints θweights ≥ 1. The projected vector is denoted by θweights.

Output: SP (P1, . . . , Pnd), θweights.

We denote by the letter U a real vector of np node values representing an element
of P1 ∩H1

0 (Ω).
Problem (5.1) involves both a connected set and an associated weight function. In

order to parametrize connected one dimensional structures, we follow the strategy
developed in [8]. Take nd = 1, 2, . . . and consider a set of nd points P1, . . . , Pnd ∈ Ω.
We associate to such a set its canonical spanning tree SP (P1, . . . , Pnd), which is the
polygonal set of minimal length connecting these points without introducing new
branching points. Let us point out that, generically, SP (P1, . . . , Pnd) is the union of
nd − 1 arcs.

It is straightforward to establish that the family of all such spanning trees (with
nd varying among all integers) is dense with respect to Hausdorff distance among
compact connected subsets of Ω. To describe an L1 element of SP (P1, . . . , Pnd), we
simply consider a vector θweights of nd − 1 values greater than 1 which represents a
piecewise constant function on every arc of the tree.

Let Vlengths(P1, . . . , Pnd , θweights) be the vector of size nt × 1 which contains the
weighted lengths of SP (P1, . . . , Pnd) intersected with every triangle of the mesh
T . With previous notations, we can now introduce a discrete approximation of
problem (5.1):

max min

[
1

2
UTKU +

m

2
UT
(
KT
x VlengthsKx +KT

y VlengthsKy

)
U −MF

]
where F is the linear interpolation of the function f at the vertices of the mesh T ,
the minimum is taken over all U ∈ P1∩H1

0 (Ω), the maximum is taken over all pairs
(SP (P1, . . . , Pnd), θweights), that satisfy the constraints that every value of θweights is
greater than 1 and the following measure equality holds:

nd−1∑
i=1

H 1(Si) θweights(i) = L , (5.2)

where the (Si)1≤i≤nd are the nd − 1 edges of SP (P1, . . . , Pnd).
Since the minimization problem is a strictly convex quadratic problem, it reduces

to solve the linear system[
K +

m

2

(
KT
x VlengthsKx +KT

y VlengthsKy

)]
U = MF . (5.3)

5.2. Parametrization of the constraints. As explained in the previous sections,
we need the couple (SP (P1, . . . , Pnd), θweights) to have weights greater than one and
satisfies equality constraint (5.3). To parametrize such admissible couples we intro-
duce a last scale parameter denoted by hs ∈ (0, 1). We introduce in Algorithm 1 a
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Algorithm 2 Summary of one cost evaluation.
Input: m, l, SP (P1, . . . , Pnd), θweights, hs.
step 1: Project (SP (P1, . . . , Pnd), θweights) with Algorithm 1 to obtain an admissible

couple (SP (P1, . . . , Pnd), θweights).
step 2: Locate points P1, . . . , Pnd in the mesh T .
step 3: Compute the intersection of every arc of SP (P1, . . . , Pnd) with every triangle

of T to evaluate Vlengths(P1, . . . , Pnd , θweights).
step 4: Assemble matrixKT

x VlengthsKx+KT
y VlengthsKy and solve linear system (5.3)

to compute its solution U .
Return: 1

2 U
T
KU + m

2 U
T(
KT
x VlengthsKx +KT

y VlengthsKy

)
U −MF

three steps procedure to produce an admissible pair
(
SP (P1, . . . , Pnd

)
, θweights) for

a given triplet of parameters
(
SP (P1, . . . , Pnd), θweights, hs

)
.

5.3. Technical details and complexity. We summarize in Algorithm 2 the dif-
ferent steps required to compute the cost associated to a given set of parameters,
that we choose as

(
SP (P1, . . . , Pnd), θweights, hs

)
.

We give below some technical details and underline the computational complexity
of every step.

In the first phase of projection, only the final step of the procedure is not compu-
tationally trivial. Whereas the projection of a point onto an hyperplane can be ana-
lytically described, the projection on an hyperplane intersected with a box requires
a specific attention. In all our experiments, we used Dai and Fletcher algorithm [12]
to obtain a fast and precise approximation of this projection.

Observe that the spanning tree SP (P1, . . . , Pnd) is precisely by construction of
length hsL ≤ L which implies that constraints (5.2) and θweights ≥ 1 are compatible.
In our situation, an order of only nd iterations was required to reach a relative error
of 10−6 on first order optimality conditions with respect to the infinity norm which
reduces to a complexity of order n2

d.
The second and third steps have been carried out using an hash structure repre-

sentation of the mesh T combined with a Quad-tree associated to its vertices. Using
those precomputed information, these operations required in practice an order of
(nd + np) log(nd + np) operations.

Finally, assembling and solving the linear system has been performed by a stan-
dard Cholesky decomposition which concentrated the main part of the computational
effort in our experiments where the number of parameters 3nd was negligible with
respect to np which was of order 104.

5.4. Numerical experiments. Based on previous discretization, we approximate
optimal triplet solutions (S, θ, u) of problem (5.1) using a stochastic algorithm. We
focus our study on the homogeneous load case corresponding to f constantly equal
to 1 and on the sum of two Dirac masses f = δ(−1/2,0) − δ(1/2,0).

In all our experiments, we used the NLopt library (see [15]) and its implementation
of ISRES algorithm with its default parameters which combine local and global
stochastic optimization.

We carried out optimization runs limited to five hours of computation leading to
an order of 2 × 106 cost function evaluations based on algorithm 2 on a standard
computer for a mesh made of 104 triangles.
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In Figures 1 and 3 we describe the optimal configurations we obtained for L = 1
to L = 6 with nd = 20. Observe that the resulting number of parameters in the
triplet is exactly 3nd. Moreover, in order to obtain a fine and stable description of
optimal structures, we performed a local optimization step of the obtained structure
increasing the number of points to nd = 50. We used the NLopt implementation
of the BOBYQA algorithm for this final step which does not require gradient base
information.

Finally, we give in Table 1 several numerical estimates obtained on a fine mesh
with 105 elements of our computed sets and also of natural networks which could be
guess to be optimal. As illustrated by these numerical values, neither the radius (for
L = 1), a diameter (for L = 2), a triple junction (for L = 3) or a cross for (L = 4)
seem to be optimal.

We recover the fact, described in Proposition 4.1, that, for optimal structures,
the tangential gradient of u is almost constant where θ > 1 whereas we can observe
drastic changes of magnitude where θ = 1 (see Figures 1, 3 and 2).

Length constraint Theoretical guesses Computed optimal networks
1 -0.179471 (radius) -0.178873
2 -0.165095 (diameter) -0.161944
3 -0.152676 (star) -0.149601
4 -0.141969 (cross) -0.138076
5 - -0.127661
6 - -0.117140

Table 1. Reinforcement values computed on a fine mesh of 106 ele-
ments for classical and computed connected sets for m = 0.5

6. Remarks and open questions

There are several remarks and open problems related to the optimization prob-
lem (1.3) and the relaxed optimization problem (1.5); we list below those we deem
more interesting.

Remark 6.1. In general the functional Ef (·) is not weakly* continuous on ML. We
prove this claim by an explicitly example. We let S ⊂ Ω be a closed segment with
length 2δ, which we identify with the interval [−δ, δ], and let f be a signed measure
of the form f := ρH 1xS where ρ is a function on S with integral 0.

We then consider the measures µn := θn H 1xS where θn(s) := g(ns/δ) and g is
the 2-periodic function on R defined by g = 1 on [−1, 0) and g = 2 on [0, 1). Thus
µn converge to µ := 3

2 H 1xS. However, the functionals

F (µn, u) :=
1

2

∫
S
|∇τu|2dµn −

∫
S
u df =

∫ δ

−δ

θn
2
|u̇|2 − ρu ds

Gamma-converge (on H1(S) endowed with the weak topology) to

F (u) :=

∫ δ

−δ

2

3
|u̇|2 − ρu ds ,

and F (u) < F (µ, u) for every non constant u (because 2/3 is strictly less than 3/4,
which is the density of µ divided by 2). In particular if f is not a.e. equal to 0 then

lim
n→∞

min
u
F (µn, u) = min

u
F (u) < min

u
F (µ, u)



22 G. Alberti, G. Buttazzo, S. Guarino Lo Bianco and É. Oudet

(all minima are taken over u ∈ H1(S)). Using the strict inequality we can prove
that if the constant m that appears in (2.2) is sufficiently large, then

lim sup
n→∞

Emf (µn) < Emf (µ) .

Problem 6.2. We do not know if problem (1.5) is the relaxation of problem (1.3).
In other words, we do not know if the following approximation property holds: for
every µ ∈ML there exists a sequence of sets Sn ∈ AL such that

H 1xSn → µ and Ef (Sn)→ Ef (µ) . (6.1)

Indeed, by the definition of ML every µ in this class is the limit of H 1xSn for some
sequence of sets Sn ∈ AL, but since Ef is not continuous (Remark 6.1), the second
limit in (6.1) does not necessarily hold.

Remark 6.3. If the approximation in energy (6.1) does not hold, then some kind
of Lavrentiev phenomenon may occur. This means that
• the value of the maximum/supremum in the original optimization prob-
lem (1.3) could be strictly smaller than the value of the maximum in the
relaxed optimization problem (1.5);
• given a maximizing sequence (Sn) for problem (1.3), the associated measures

H 1xSn may not converge to a solution of the relaxed problem (1.5).

Remark 6.4. Assume that f belongs to Lp(Ω) for some p > 1 and that µ is a
measure in ML with support S, and let µa be the absolutely continuous part of
µ with respect to H 1xS. Using Lemma 3.7, Lemma 3.11 and Proposition 2.11
we easily obtain the following: the relaxation of Ef (µ, u) with u ∈ C∞c (Ω) is the
functional E∗f (µa, u) with u ∈ H1

0 (Ω) ∩H1(S).
Notice that for f = 0 we can rewrite E0(µ, u) as

F (u) :=
1

2

∫
|∇u|2dλ

where λ := dx + mµ, dx is the Lebesgue measure on Ω, and m is the number that
appears in (2.2). Functionals of this type has been studied in detail in [4], where it
is proved that the relaxation of F (u) with u ∈ C∞c (Ω) is

F ∗(u) :=
1

2

∫
|∇λu|2dλ , u ∈ H1(λ) ,

where the space H1
λ and the operator ∇λ are defined in a suitable abstract sense.

Thus the relaxation result stated above can be rephrased as follows: the space H1
λ

agrees with H1
0 (Ω) ∩H1(S) and the operator ∇λ agrees with the full gradient ∇ for

Lebesgue-a.e. x, with the tangential gradient ∇τ for H 1-a.e. x ∈ S, and with the
null-operator for µs-a.e. x, where µs is the singular part of µ w.r.t. H 1xS.

Problem 6.5. We denote by µ = θH 1xS a solution of problem (1.5) given in The-
orem 2.6, and by u the unique minimizer of E∗f (µ, ·). Here are some open questions
concerning µ and u.

(a) Intuition tells that it is never convenient to use part of S to reinforce the
boundary the membrane, because it is already reinforced by the Dirichlet boundary
condition inscribed in the problem. On the other hand, the requirement that S be
connected might force part of it to lie on the boundary of Ω, even if this part does
not contribute to reinforcing the membrane. Here are two plausible statements that
would be interesting to investigate:
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• for some non-convex domain Ω the set S ∩ ∂Ω may have positive length, but
S cannot be entirely contained in ∂Ω;
• if Ω is strictly convex then the set S ∩ ∂Ω has zero-length, and perhaps it is
even finite.

Note that using the second part of Theorem 2.6 (and in particular assuming that
the support of f is Ω) we can prove the following: if Ω is strictly convex then S∩∂Ω
does not contain any arc.

(b) In principle the density θ belongs to L1(S). It would be interesting to in-
vestigate if θ is bounded and, possibly refining the assumptions on the data, prove
further regularity properties.

(c) According to the numerical simulations we made, the set S never contains
closed curves; it would be interesting to show this fact under general assumptions.

(d) Numerical simulations also show that S may present branching points at least
for values of L large enough. However, the regularity of the set S seems a difficult
issue: is it true that, under suitable assumptions on the data, the set S is smooth
except a finite number of branching points? And if a branching occurs, what are the
necessary condition of optimality for the related angles?

(e) When the support of f is Ω and the total length L tends to +∞, then the
optimal set S tends to fill the entire Ω. Can we say more on the asymptotic behavior
of S in this regime? This question is reminiscent of a Γ-convergence result for the
irrigation problem proved in [16].
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Figure 1. Approximation of globally optimal reinforcement struc-
tures for m = 0.5, L = 1, 2 and 3. The upper colorbar is related to
the weights θ which colors the optimal reinforcement set on the left,
whereas the lower colorbar stands for the tangential gradient plotted
on the connected set on the right picture
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Figure 2. Approximation of globaly optimal reinforcement
strucutres for m = 0.5, L = 1.5, 2.5 and 5 for a source consisting
of two dirac masses. The upper colorbar is related to the weights θ
which colors the optimal reinforcement set on the left, whereas the
lower colorbar stands for the tangential gradient plotted on the con-
nected set on the right picture



Optimal reinforcing networks 27

Figure 3. Approximation of globaly optimal reinforcement struc-
tures for m = 0.5, L = 4, 5 and 6. The upper colorbar is related to
the weights θ which colors the optimal reinforcement set on the left,
whereas the lower colorbar stands for the tangential gradient plotted
on the connected set on the right picture
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