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Abstract. We prove that, for every closed (not necessarily convex) hypersurface Σ in Rn+1 and every
p > n, the Lp-norm of the trace-free part of the anisotropic second fundamental form controls from
above the W 2, p-closeness of Σ to the Wulff shape. In the isotropic setting, we provide a simpler proof.
This result is sharp since in the subcritical regime p ≤ n, the lack of convexity assumptions may lead
in general to bubbling phenomena. Moreover, we obtain a stability theorem for quasi Einstein (not
necessarily convex) hypersurfaces and we improve the quantitative estimates in the convex setting.

1. Introduction

The umbilical theorem, [36, Lemma 1, p. 8], is a rigidity result which states that: given a closed,
connected and smooth hypersurface Σ of Rn+1, if Σ is umbilical, i.e. the trace free part of the second
fundamental form is constantly equal to 0, then Σ is homothetic to a sphere. The stability of this result
has been addressed in [4, 5, 20, 31, 33, 34, 35], and produced important applications in the foliation of
asymptotically flat three–manifolds by surfaces of prescribed mean curvature (see [25, 26, 28]).

The umbilical theorem holds also in the anisotropic setting: in [21] it is shown that the only smooth
closed hypersurface with anisotropic second fundamental form which is a constant multiple of the
identity is the Wulff shape, see also [15] for the low-regularity case of finite perimeter sets. In [13,
Theorem 1.2], the authors have recently proved qualitative and quantitative stability for the anisotropic
rigidity result. Namely, given p ∈ (1, +∞) and Σ a closed hypersurface in Rn+1, which is the boundary
of a convex, open set, then the W 2, p-closeness of Σ to the Wulff shape is controlled by the Lp-norm of
the trace-free part of the anisotropic second fundamental form. For n ≥ 3, the convexity assumption
on the hypersurface Σ is a necessary condition in order to avoid bubbling phenomena, as observed
with a counterexample in [13, Appendix A]. In this respect, in the recent paper [7], it is proven that
if Σ is a closed hypersurface (not necessarily convex) with anisotropic mean curvature L2-close to a
constant, then Σ is L1-close to a finite union of Wulff shapes, extending the seminal work [2].

The aim of this paper is to show that in the supercritical regime p > n, the convexity assumption on
Σ can be dropped. This problem was open also for the area funtional. In Section 3 we provide a simpler
proof in the isotropic case, while in Section 4 we give the general proof for the anisotropic setting.
Moreover, in Section 5, we prove a similar theorem for non convex, quasi Einstein hypersurfaces. If
n ≥ 3 and Σ is an Einstein closed hypersurface in Rn+1, it is well-known that it must be a round
sphere. We prove that if an hypersurface is quasi Einstein in an Lp-sense, then it is W 2, p-close to a
sphere with a quantitative estimate.

Nearly umbilical hypersurfaces. In order to state our main results, we introduce some notation.
We consider a smooth anisotropic function defined on the n-sphere:

F : Sn −→ (0, ∞).
For every closed smooth hypersurface Σ in Rn+1, we define its anisotropic surface energy as

F(Σ) :=
ˆ

Σ
F (νΣ) dV,

where νΣ will denote throughout the paper the outer normal vector field associated to Σ. In particular,
the isotropic surface energy Voln(Σ) corresponds to the energy F(Σ) associated to the function F ≡ 1.
An increasing interest has been recently devoted to anisotropic energy functionals [3, 9, 10, 11, 12, 14].

In [38], J. Taylor has proved that the isoperimetrical shape, i.e. the solution of the variation problem
inf {F(Σ) : Σ = ∂U, | U | = m } , with m > 0 fixed

is homothetic to a closed, convex hypersurface W called Wulff shape. This hypersurface is explicitely
defined by the equation

W := {F ∗ = 1 } ,
1
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where F ∗ : Rn+1 7→ [0,+∞) is the gauge function defined below:

F ∗(x) := sup
v∈Rn+1

{
〈x, v〉 : |v|F

(
v

|v|

)
≤ 1

}
.

We recall that the differential of the gauge function satisfies the following property, see [29, p. 8]:
(1.1) dF ∗|z [c] = 〈νW(z), c〉, ∀z ∈ W.

Denoting by D2F
∣∣
x the intrinsic Hessian of F on Sn at the point x, we define the map AF : x ∈

Sn 7→ AF |x valued in the space of symmetric matrices as follows

AF |x [z] := D2F
∣∣∣
x

[z] + F (x)z for every x ∈ Sn, z ∈ TxSn.

Throughout the paper, we will assume that F is an elliptic integrand, i.e. D2F
∣∣
x is positive definite at

every x ∈ Sn.
For any smooth closed hypersurface Σ, we can define the anisotropic second fundamental form SF as

SF |x : TxΣ −→ TxΣ, SF |x := AF |νΣ(x) ◦ dνΣ|x ,

and the trace free part of SF as

S̊F := SF −
HF

n
g, with HF := trg(SF ),

where g := δ|Σ and δ is the flat metric on Rn+1, see [24].
Then the anisotropic rigidity result proved in [21, Theorem 1.2] can be stated as follows:

Theorem 1.1. Let n ≥ 2 and Σ be a closed, oriented hypersurface with S̊F ≡ 0, then Σ is homothetic
to the Wulff shape.

Theorem 1.1 turns out to be stable with respect to theW 2.p-norm, under the assumption of convexity
of the surface Σ, as proved in [13, Theorem 1.2]. Convexity is deeply used in [13]; for instance it
directly implies the existence of a parametrization of Σ on W. Moreover it is a necessary assumption
for general p, as showed with the couterexample [13, Appendix A]. In Section 4 of this paper, we show
how to drop the convexity assumption in [13, Theorem 1.2] for p > n, proving the following:

Theorem 1.2. Let n ≥ 2, Σ be a closed hypersurface in Rn+1 and p > n be given. We assume that
there exists c0 > 0 such that Σ satisfies the conditions
(1.2) Voln(Σ) = Voln(W), ‖SF ‖Lp(Σ) ≤ c0.

There exist δ0, C0 > 0 depending only on n, p, c0 and W such that, if

(1.3) ‖S̊F ‖Lp(Σ) ≤ δ0,

then there exist a parametrization ψ : W −→ Σ and a vector c = c(Σ) satisfying

(1.4) ‖ψ − Id−c‖W 2, p(W) ≤ C0‖S̊F ‖Lp(Σ).

The strategy to remove the convexity assumption in Theorem 1.2 is the following. First we want
to obtain a graph parametrization of Σ on W with small C1-norm, Proposition 4.4. Since a priori Σ
is not convex, we do not have a priori a parametrization of Σ on W. To solve this obstruction, we
implement a compactness theorem for immersions in W 2,p, Proposition 4.3. The pinching condition
(1.2) is inherited by the limit immersion, thanks to the lower semicontinuity of ‖SF ‖Lp with respect to
the W 2,p-weak convergence, Lemma 4.5. Hence, we obtain a map from W to Σ satisfying a C1-bound.
However, to produce the desired graph parametrization, we need to show that the projection map from
Σ onto W is a diffeomorphism, via a tilt-estimate of the normal. This provides Proposition 4.4, from
which we can conclude the proof of Theorem 1.2 via a centering argument.

In Section 3, we provide an easier proof of Theorem 1.2 in the isotropic case F ≡ 1, which generalizes
the main result in [20] to not necessarily convex hypersurfaces. In this isotropic setting, the Wulff shape
is the round sphere Sn, SF becomes the classical second fundamental form h, and we can give a simpler
proof, which does not involve abstract compactness arguments, but simple topological considerations.

Theorem 1.3. Let n ≥ 2, Σ be a closed hypersurface in Rn+1 and let p > n be given. We assume that
there exists c0 > 0 such that Σ satisfies the conditions
(1.5) Voln(Σ) = Voln(Sn), ‖h‖Lp(Σ) ≤ c0.
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There exist positive numbers δ0, C0 > 0 depending only on n, p, c0 with the following property: if

‖̊h‖Lp(Σ) ≤ δ0

then there exists a vector c = c(Σ) such that Σ− c is a graph over the sphere, namely there exists a
parametrization

ψ : Sn −→ Σ, ψ(x) := ef(x)x,

and f satisfies the estimate

(1.6) ‖f‖W 2, p(Sn) ≤ C‖̊h‖Lp(Σ).

Quasi Einstein hypersurfaces. The second main result of this paper concerns quantitative stability
estimates for quasi Einstein hypersurfaces. In this respect, we need further notation. Let Σ be a closed
hypersurface in Rn+1 and let us denote with Ric and R respectively the Ricci tensor and the scalar
curvature. We say that Σ is an Einstein manifold if the trace-free part of the Ricci tensor

R̊ic := Ric− 1
n
Rg

is identically 0. In the ’30s Thomas (see [37]) and Fialkov (see [16]) independently proved that an
Einstein hypersurface Σ in Rn+1 with positive scalar curvature is isometric to the round sphere:

Theorem 1.4 ([16], [37]). Let Σ be a closed, connected hypersurface in Rn+1 such that

R̊ic = 0

at every point. Then Σ is a round sphere.

The stability properties of this result in the convex setting have been studied in [19]. The assumption
for the validity of the main result in [19] is the control 0 ≤ h ≤ Λg on the second fundametal form
h of Σ, which is clearly sub-optimal. Indeed, the bound from below on h implies the convexity of Σ
(see [31, Prop. 3.2] for instance), while the bound from above implies a posteriori a W 2,∞ bound on
the closeness to the sphere. Since the main result in [19] provides just a W 2, p bound, this hypothesis
appears abundant. One of the aims of this paper is to weaken the assumption on h, allowing us to
prove in Section 5 the following theorems:

Theorem 1.5. Let n ≥ 3, Σ be a closed hypersurface in Rn+1 with induced metric g and let 1 < p <∞
be given. We assume that Σ satisfies the conditions

(1.7) Voln(Σ) = Voln(Sn), Λg ≤ h for some Λ > 0.

There exist δ0, C0 > 0 depending only on n, p, Λ with the following property: if∥∥∥R̊ic
∥∥∥
Lp(Σ)

≤ δ0

then there exists a parametrization ψ : Sn −→ Σ and a vector c = c(Σ) such that

(1.8) ‖ψ − Id−c‖W 2, p(Sn) ≤ C0
∥∥∥R̊ic

∥∥∥
Lp(Σ)

.

Theorem 1.6. Let n ≥ 3, Σ be a closed hypersurface in Rn+1 and let p > n be given. We assume that
there exists c0 > 0 such that Σ satisfies the conditions

(1.9) Voln(Σ) = Voln(Sn), ‖h‖Lp(Σ) ≤ c0.

Then for every q ∈ (n, p) there exist δ0, C0 > 0 depending only on n, p, q, c0 with the following
property: if

(1.10) ‖R̊ic‖Lp(Σ) ≤ δ0,

then there exist a parametrization ψ : Sn −→ Σ and a vector c = c(Σ) such that

(1.11) ‖ψ − Id−c‖W 2, q(Sn) ≤ C0
∥∥∥R̊ic

∥∥∥α
Lp(Σ)

,

where α is defined as:

α(p, q) :=
{

1, if n < q ≤ p/2,
p/q − 1, if p/2 ≤ q < p.
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In Theorem 1.5 we remove the assumption on the upper bound on h, but we strengthen the convexity,
with a uniform bound from below on h. In Theorem 1.6 instead, we completely remove any convexity
assumption, obtaining the slightly weaker estimate (1.11). We conjecture that the exponent α in the
inequality (1.11) is not optimal.

The assumptions (1.2), (1.5) and (1.10) are often referred to as pinching condition in the literature.

2. Notation, preliminaries and strategy of the proof

Notation. Throughout the paper, we will use the following notation:

Voln n-dimensional Hausdorff measure;
〈·, ·〉 Euclidean scalar product in Rn+1;
〈·, ·〉L2 scalar product in L2;
dHD Hausdorff distance;
Sn standard sphere in Rn+1;
W Wulff shape;
Σ closed, n-dimensional hypersurface in Rn+1;
νΣ outer normal vector field associated to Σ;
δ standard metric in Rn+1;
σ standard metric on Sn;
g restriction of δ to Σ;
h second fundamental form for W or Σ depending on the context;
h̊ trace-free part of the second fundamental of Σ;
H classical mean curvature;

Bg
r (x) geodesic ball in Σ centred in x, of radius r;

Riem Riemann tensor associated to the metric g;
Ric Ricci tensor associated to the metric g;
R scalar curvature associated to the metric g;

Bkr (x) ball in Rk centred in x, of radius r (when x = 0, we write Bkr );
∂ usual derivative in Rn+1;
D Levi-Civita connection associated to Sn;
∇ Levi-Civita connection associated to Σ or to W.

Preliminary results. Important tools we will use are the graph parametrizations:

Definition 2.1. Let Σ be a closed hypersurface in Rn+1, and q ∈ Σ a given point. We say that ϕq is a
graph parametrization around q with width R > 0 if ϕq has the following form:

(2.1) ϕq : BnR −→ Σ, ϕq(z) = q + Φq

(
z

uq(z)

)
,

where Φq : Rn+1 −→ Rn+1 is a matrix in the orthogonal group O(n+ 1) chosen so that Φq[Rn×{ 0 }] =
TqΣ, Φq[en+1] = νΣ(q).

Graph parametrizations have great importance in the non-convex case, in view of Lemma 2.2, proved
in [31, Lemma 1.7], and Remark 2.3, which justifies the need of the assumption p > n:

Lemma 2.2. [31, Lemma 1.7] Let n ≥ 2 be given. Let Σ be a closed hypersurface in Rn+1. Assume
there exist L, R > 0 with the following property. For every q ∈ Σ there exists a graph parametrization
ϕq around q with width R > 0 (as in (2.1)), such that uq is an L-Lipschitz function.

Then, for every 0 < ρ ≤ R, the geodesic ball Bg
ρ(q) satisfies the inclusion

(2.2) ϕq

(
Bn 1

1+Lρ

)
⊂ Bg

ρ(q) ⊂ ϕq
(
Bnρ
)
.

In particular, for every q ∈ Σ the geodesic ball Bg
R(q) is contained in the chart, and Σ can be covered

with N such geodesic balls, where N is a natural number depending on n, L, R.

Remark 2.3. As shown in [31, Section 2.1-2.3], if Σ satisfies (1.5) with p > n, then we can find
positive constants L and R depending on c0, n and p such that: for every q ∈ Σ there exists a graph
parametrization ϕq around q with width R > 0, such that uq is an L-Lipschitz function. In particular
Lemma 2.2 applies. This control can be realized also in the anisotropic case. Indeed condition (1.2)
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implies condition (1.5), as shown in [13, Proposition 3.3]. Although [13, Proposition 3.3] is stated
requiring the convexity assumption, one can easily check in its proof that the lower bound estimate

‖h‖Lp(Σ) ≤ C‖SF ‖Lp(Σ)

works also in the non convex setting. The convexity assumption is just needed in the proof of the upper
bound ‖SF ‖Lp(Σ) ≤ C(1 + ‖S̊F ‖Lp(Σ)).

Throughout all the paper, we shall use only the parametrizations provided by Remark 2.3 by means
of (1.5) and will denote them by ϕq. We will use the ϕq to obtain local estimates and Lemma 2.2 to
make them global. Since we will now work with graph parametrizations, we will use the following
lemma, which is stated in [31, Lemma 1.3]:

Lemma 2.4. Let ϕq be a graph parametrization for Σ. Then the following formulas hold:
gij = δij + ∂iuq∂juq,(2.3)

gij = δij − ∂iuq∂
juq

1 + |∂uq|2
,(2.4)

νΣ = 1√
1 + |∂uq|2

Φq

(
∂uq
−1

)
(2.5)

hij = ∂i

 ∂juq√
1 + |∂uq|2

(2.6)

The proof of Lemma 2.4 in [31] is actually made with the graph parametrisation ϕ(x) = (x, u(x)),
i.e. with q = 0, Φq = Id. However, it can be noted that the action of the isometries does not change
the obtained expressions, because the translations disappear with derivatives and the rotations satisfy
〈Φ[v], Φ[w]〉 = 〈v, w〉.

To prove the main results, we will need an oscillation estimate. This is given by the following
proposition, whose proof is postponed to Appendix 6

Proposition 2.5. Let n ≥ 2, n < p <∞ and c0 > 0 be given, and let Σ be a closed hypersurface in
Rn+1 with fixed volume V . Let F be an elliptic integrand. Assume Σ satisfies

‖h‖Lp(Σ) ≤ c0.

Then the following estimate is satisfied:
min
λ∈R
‖SF − λ Id‖Lp(Σ) ≤ C(n, p, c0, F )‖S̊F ‖Lp(Σ).

3. The isotropic case

In this section we prove Theorem 1.3. We define for a closed hypersurface Σ a radial parametrization
to be as follows:
(3.1) ψ : Sn −→ Σ, ψ(x) := ef(x)x.

Moreover we define the barycenter of Σ as

b(Σ) :=
 

Σ
z dVg(z).

The main ingredient for the proof of Theorem 1.3 is the following proposition:

Proposition 3.1. Let n ≥ 2 and p > n. For every ε > 0 there exists 0 < δ0 = δ0(n, p, c0, ε) with the
following property.

Let Σ be a closed hypersurface in Rn+1 satisfying (1.5). If

‖̊h‖Lp(Σ) ≤ δ0,

then, up to translation, the radial parametrization ψ : Sn −→ Σ as in (3.1) is well defined, and the
logarithmic radius f satisfies

‖f‖C1(Sn) ≤ ε.

Proposition 3.1 is the cornerstone of the section, because it builds the radial parametrization and
gives a qualitative estimate of it.
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Proof of Proposition 3.1. We split the proof of Proposition 3.1 in two parts. In the first part we
achieve a C0-closeness, in the second part we show how to use this result to build the parametrization.

We start with a preliminary lemma:

Lemma 3.2. For every ε > 0 there exists 0 < δ0 = δ0(n, p, c0, ε) with the following property.
Let Σ be a closed hypersurface in Rn+1 satisfying (1.5). If ‖h− λ0g‖Lp ≤ δ0 for some λ0 6= 0, then

for every q ∈ Σ, for every graph parametrization ϕq around q, we have the following estimate:∥∥∥∥uq(·)− λ−1
0

(√
1− λ2

0| · |2 − 1
)∥∥∥∥

C1
≤ ε.

Proof. By contradiction, let (Σk)k∈N be a sequence of closed hypersurfaces satisfying (1.5) and limk‖hk−
λ0g

k‖Lp(Σk) = 0. Let (qk)k∈N be a sequence of points qk ∈ Σk such that the associated graph
parametrizations satisfy ∥∥∥∥uk(·)− λ−1

0

(√
1− λ2

0| · |2 − 1
)∥∥∥∥

C1
≥ ε0 > 0.

We show how this is not possible, using an idea of [31, Cor. 1.2]. Firstly, we can assume w.l.o.g. that
every qk is equal to λ−1

0 en+1 and Φqk = Id. Since every Σk satisfies (1.5), by Remark 2.3 we consider
the graph parametrizations ϕk associated to qk. The properties of ϕk combined with (1.5) grant us:

sup
k
‖uk‖W 2, p(BnR) ≤ c(n, p, c0) < +∞.

Let us set vk := ∂uk√
1+|∂uk|2

. Then, from (2.6) and the contradiction hypothesis, we obtain

lim
k
‖∂vk − λ0 Id‖Lp(BR) = lim

k
‖∂
(
vk − λ0x

)
‖Lp(BR) = 0.

Setting ck =
ffl
vk, we get from Sobolev inequalities

lim
k
‖vk − ck − λ0x‖W 1, p(BnR) = 0.

Now, since ck is clearly bounded and vk(0) = 0 for every k ∈ N and n < p, we also obtain the
convergence

lim
k
‖vk − λ0x‖W 1, p(BnR) = 0.

Let us define the function
ξ : Bn1 −→ Rn, ξ(x) := x√

1− |x|2
.

The function ξ is smooth and has bounded derivatives in the ball Bnρ with ρ ≤ 1
2 . Moreover it satisfies

the equality

ξ(vk) = 1√
1 + |∂uk|2

∂uk√
1− |∂uk|2/(1 + |∂uk|2)

= ∂uk.

We obtain:

lim
k
‖ξ(vk)− ξ(λ0x)‖W 1, p(BnR) =

∥∥∥∥∥∥∂uk − λ0x√
1− λ2

0|x|2

∥∥∥∥∥∥
W 1, p(BnR)

= lim
k

∥∥∥∥∂(uk − λ−1
0

√
1− λ2

0|x|2
)∥∥∥∥

W 1, p(BnR)
= 0.

With the same argument as before, we observe that uk is converging in W 2, p to λ−1
0

√
1− λ2

0|x|2, and
this is the desired contradiction. �

Remark 3.3. We remark that in Lemma 3.2 we do not claim that λ0 has to be equal to 1. The problem
of finding the “right” λ0 will be solved in the second part, when we will build the parametrization. The
requirement of λ0 being not 0 is instead necessary, however as shown in [31, Remark 1.9] a closed
hypersurface Σ must satisfy the lower bound
(3.2) ‖h‖Lp(Σ) ≥ C(n, p, Voln(Σ)).
Since in our case Voln(Σ) = Voln(Sn), we avoid such degenerate cases.

Next we show how Lemma 3.2 leads to a C1-closeness to the sphere.
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Corollary 3.4. For every ε > 0 there exists 0 < δ0 = δ0(n, p, c0, ε) such that, under the hypothesis of
Lemma 3.2,

(3.3) dHD
(
Σ, Sn|λ0|−1

)
≤ ε, and

∣∣∣TqΣ− 〈q〉⊥∣∣∣ ≤ ε ∀q ∈ Σ.

Proof. Let Σ, 0 < ε and 0 < δ0 be given as in Lemma 3.2. We choose a point q ∈ Σ, then rotate and
translate Σ so that q = −λ−1

0 en+1, TqΣ = Rn × { 0 }. Hence the parametrization has the simpler form
ϕq(x) = −λ−1

0 en+1 + (x, uq(x)) and parametrizes a portion of the sphere Sn|λ0|−1 . For every q̃ ∈ ϕq(BnR),
we consider z̃ ∈ BnR such that q̃ = ϕq(z̃). Then the following inequalities easily hold:∣∣∣∣q̃ − (z̃, λ−1

0

√
1− λ2

0|z̃|2
)∣∣∣∣ ≤ ε,

∣∣∣∣∣Tq̃Σ−
〈(

z̃, λ−1
0

√
1− λ2

0|z̃|
2
)〉⊥∣∣∣∣∣ ≤ ε

Now we apply Lemma 2.2: For every parametrisation ϕq we can find a geodesic ball Bg
ρ(q) with

ρ = ρ(n, p, c0) and satisfying condition (2.2), namely

ϕq

(
Bn 1

1+Lρ

)
⊂ Bg

ρ(q) ⊂ ϕq
(
Bnρ
)
.

Via Lemma 2.2 we can easily obtain a covering of N geodesic balls Bg(q1), . . . Bg(qN ), where N ≤
N0(n, p, c0) such that Lemma 3.2 holds for ϕq1 , . . . ϕqN . By a simple induction we easily find a constant
c(n, p, c0) such that for every q ∈ Σ

(3.4)
∣∣∣∣q − |λ0|−1 q

|q|

∣∣∣∣ ≤ cε, ∣∣∣TqΣ− 〈q〉⊥∣∣∣ ≤ cε.
This proves the C0-closeness. �

We finish the proof of Proposition 3.1 by proving that Σ can be parametrized on the sphere as in
(3.1) and that λ0 = 1. We define the projection

p : Σ −→ Sn|λ0|−1 , p(q) := |λ0|−1 q

|q|
.

We start by proving that p is a local diffeomorphism. The map is clearly differentiable, and a straight
computation proves that the differential of p at q ∈ Σ is given by

dp|q : TxΣ −→ Tp(q)Sn, dp|q [v] = |λ0|−1

|q|

(
v −

〈
v,

q

|q|

〉
q

|q|

)
.

It is easy to see that ker dp|q = { tq | t ∈ R }. We want to prove that the differential dp|q has maximal
rank at every q, and this will prove that p is a local diffeomorphism. In order to achieve this goal,
we just need to show that for every q ∈ Σ, q does not belong to TqΣ, and this is exactly what (3.3)
implies. Hence p is a local diffeomorphism. Let us show that it is a global one. Indeed, we consider the
multiplicity function

η : Sn −→ N, η(x) :=
∑

p(q)=x
1.

The function η is well-defined, and since p is a local diffeomorphism, it is continuous, thus necessarily
constant, say η ≡ Q. Then it is a Q-covering, but since Sn is simply connected, we must have Q = 1,
and hence p is a diffeomorphism. Let us define ψ := p−1. By construction, we find that ψ(x) = ef(x)x
as in (3.1), and (3.3) tells us that f has small C1-norm. This concludes the construction.

Finally we can conclude the proof of the proposition. Let us argue by compactness and consider
a sequence of closed hypersurfaces (Σk)k∈N satisfying (1.5), and ‖̊hk‖Lp(Σk) → 0, where h̊k is the
trace-free part of the second fundamental form of Σk. From Proposition (2.5) applied with F ≡ 1, we
are able to find a sequence (λk)k∈N such that, for every k ∈ N,

‖hk − λk Id‖Lp(Σk) ≤ C(n, p, c0)‖̊hk‖Lp(Σk) → 0.

The sequence (λk)k∈N is clearly bounded. Up to extraction of a subsequence we can assume λk → λ0
which has to be non-zero because of (3.2). We show the equality |λ0| = 1 as an application of the
area formula. Indeed, combining Lemma 3.2 and Corollary 3.4 we obtain that, up to translations, the
hypersurfaces Σk are radially parametrized by a map

ψk : Sn|λ0|−1 −→ Σ, ψ(x) = ef
k(x)x, with ‖f‖C1 ≤ ε.
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Then, we have:

1 = Voln(Σ)
Voln(Sn) = |λ0|−1

 
Sn
|λ0|−1

enf
k
√

1 + |∇fk|2 dVσ = |λ0|−1
(
1 +O

(
‖fk‖C1

))
.

For k →∞ we obtain that |λ0| = 1. The conclusion of the proposition follows by showing that λ0 = 1,
thus implying that every subsequence of (λk)k∈N converges to 1 and hence the whole sequence. Firstly,
we notice that every nλk must be close to the average of the mean curvature Hk. Indeed,

|Hk − nλk| ≤
 

Σk

∣∣∣Hk − nλk
∣∣∣ =

 
Σk

∣∣∣〈hk − λkgk, gk〉∣∣∣ ≤ C(n, p, c0)‖̊hk‖Lp(Σk) ↓ 0.

Now we show that Hk must be close to n and conclude. This follows by a simple estimate.

Hk =
 
Sn
ne(n−1)fk −

 
Sn

div

 ∇fk√
1 + |∇fk|2

e(n−1)fk
√

1 + |∇fk|2

= n

 
Sn
ne(n−1)fk +

 
Sn
e(n−1)fk

(n− 1)|∇fk|2√
1 + |∇fk|2

+ ∇
2fk[∇fk, ∇fk]
1 + |∇fk|2


Since every Σk satisfies (1.5), we easily obtain that the sequence (fk)k∈N is uniformly W 2, p-bounded,
and thus ∣∣∣Hk − n

∣∣∣ ≤ C(n, p, c0)‖fk‖C1 ↓ 0.
This shows that λ0 must be equal to 1, and all the computations we have made do not actually depend
on the chosen subsequence.

Conclusion. Insofar we have found a qualitative convergence. We will now make it quantitative.
Indeed, with the very same proof of [20, Proposition 2.3], we are able to show the following result.

Notice that the convexity assumption in [20, Proposition 2.3] is actually never used in its proof.

Proposition 3.5. Let Σ be a closed hypersurface in Rn+1 satisfying (1.5). Then for every ε > 0 there
exists 0 < δ = δ(ε, n, p, c0) wit the following property: if

‖̊h‖Lp ≤ δ,
then Σ admits a radial parametrization and its radius f satisfies the following inequality

‖f − ϕf‖W 2, p(Sn) ≤ C
(
‖̊h‖Lp(Σ) +

√
ε‖f‖W 2, p(Sn)

)
,

where C = C(n, p, c0), and we have denoted

ϕf (z) := 〈z, vf 〉, where vf := 1
n+ 1

 
Sn
zf(z) dV.

In order to prove Theorem 1.3, we just have to show that we can center Σ so that vf = 0. This can
be done by proving that we can center the hypersurface so that b(Σ) = 0.

Since Σ is not convex, it can be a priori impossible to translate it and keep a radial parametrization.
However, this is not a problem, and it is done by looking carefully at the proof of Lemma 3.2. In the
proof of Lemma 3.2 we chose a random point qk ∈ Σk and fix it to be −λ0en+1, then we perform our
analysis. In order to center Σ better, we just improve the proof in Lemma 3.2 by choosing better qk.
Indeed, let again (Σk)k∈N be a sequence of hypersurfaces satisfying (1.5) and limk‖̊hk‖Lp(Σk) = 0. We
apply a translation so that b(Σk) = 0 for every k, and choose qk so that

|qk|2 = max
q∈Σ
|q|2.

It is easy to see that for such choice we have the equality TqkΣk = 〈qk〉⊥. The study we made above
also grants us the limit:

lim
k
‖hk − Id‖Lp(Σk) = 0.

We follow again the same argument of Lemma 3.2, choosing this time qk as first point for the covering
argument, and obtain that the sequence (Σk)k∈N is converging to a sphere Sn(c) with center c. Since
the barycenter condition b(Σk) = 0 passes to the limit, we also obtain that this sphere must satisfy
b(Sn(c)) = 0, therefore implying c = 0. Now we repeat the same argument, and obtain the following
improved version of Proposition 3.1:
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Proposition 3.6. For every 0 < ε there exists 0 < δ0 = δ0(n, p, c0, ε) with the following property.
If Σ is a closed hypersurface satisfying (1.5) and ‖̊h‖Lp(Σ) ≤ δ0, then there exists a vector c ∈ Rn+1

such that b(Σ− c) = 0 and the radial parametrization

ψ : Sn −→ Σ− c, ψ(x) = ef(x)x

is well defined. Moreover, ‖f‖C1(Σ) ≤ ε.

Via this proposition and the discussion above, we obtain Theorem 1.3.

4. The anisotropic case

We define the parametrization ψ we will use in the proof of Theorem 1.2. Let Σ be a closed
hypersurface in Rn+1 which is contained in the tubular neighborhood Bε(W) associated to W, that is
the set

Bε(W) := { z ∈ Rn+1 | z = x+ ρνW(x), ∀x ∈ W, 0 ≤ ρ < ε } .
We refer the reader to [22, Chapter 5] for the proof of the following properties on the tubular
neighborhoods. We recall that there exits ε > 0 sufficiently small such that, for every r < ε, Br(W)
is an open, bounded set with smooth boundary diffeomorphic to W. We say that Σ admits a radial
parametrization if there exists a diffeomorphism

(4.1) ψ : W −→ Σ, ψ(x) = x+ u(x)νW(x), for some u ∈ C∞(W).

The function u shall be called the radius of Σ.
In order to further exploit radial parametrizations, we need the following notation:

Definition 4.1. For every c ∈ Rn+1, we define

(4.2) ϕc : W −→ R, ϕc(y) := 〈c, νW(y)〉.

We fix the vectors {wi }n+1
i=1 ⊂ Rn+1 such that the associated functions ϕwi are an orthonormal frame in

L2 for the vector space {ϕc }c∈Rn+1. For every function u : W −→ R, we define the vector vu ∈ Rn+1

vu :=
n+1∑
i=1
〈u, ϕwi〉L2wi.

A useful tool about radial parametrizations is the following theorem (see [13, Theorem 5.1]), which
allows us to pass from a qualitative closedness to a quantitative one:

Theorem 4.2. Let n ≥ 2, p > n and let Σ be a closed, radially parametrized hypersurface in Rn+1,
satisfying (1.2) and having radius u verifying

‖u‖C0 ≤ ε, ‖∇u‖C0 ≤ C(n, F )
√
ε.

Then there exists a constant C = C(n, p, F ) > 0 such that

inf
c∈Rn+1

‖u− ϕc‖W 2, p(W) ≤ C
(
‖S̊F (Σ)‖Lp(Σ) +

√
ε‖u‖W 2, p(W)

)
.

Although it is stated in [13, Theorem 5.1] under the convexity hypothesis, the proof makes no other
use of it rather than allowing Proposition 2.5 (Theorem 3.1 in [13]). As we discussed in Remark 2.3,
we can just replace the convexity assumption with the hypothesis (1.2) when p > n. The use of the
linear projections ϕc defined in (4.2) appears natural in view of [13, Theorem 5.4], which characterizes
these functions as the only elements of the kernel of the anisotropic stability operator.

The cornerstone of the proof is the following proposition:

Proposition 4.3. Let n ∈ N, n < p, 0 < A, V, R positive constants. Let F be the set of all couples
(M, f) with the following properties:

• M is an n-dimensional, compact manifold (without boundary).
• f ∈W 2, p(M, Rn) is an immersion with

‖h(f)‖Lp(M) ≤ A, Voln(M) ≤ V, f(M) ⊂ BnR.

Then for every sequence fi : Mi −→ Rn in F there exist a subsequence fj , a mapping f : M −→ Rn in
F, and a sequence of diffeomorphisms ϕ : M −→Mj, such that fj ◦ϕj converges weakly in W 2, p(M, Rn)
to f .
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Proposition 4.3 is part of a series of compactness theorems on immersions started in [27], where
the author proves the result for immersed surfaces in R3, and then continued in [8] for immersed
hypersurfaces, and in [1] for the general case. The proposition we want to prove is the following:

Proposition 4.4. Let Σ be a closed hypersurface in Rn+1 satisfying (1.2). For every 0 < ε sufficiently
small there exists a 0 < δ = δ(ε, n, p, c0, W) with the following property. If Σ satisfies (1.3), then it
admits an anisotropic radial parametrization as in (4.1). Moreover the radius u satisfies the estimate
(4.3) ‖u‖C1 ≤ ε.

We will see in the conclusion how the qualitative C1-closeness will bring the desired quantitative
one.

Proof of Proposition 4.4. The proof of Proposition 4.4 uses strongly the compactness result of
Proposition 4.3. Firstly, we prove the following two lemmas.

Lemma 4.5. Let ϕk : M −→ Rn+1 be a sequence of immersions of a closed manifold. Assume ϕk
satisfies (1.2), and ϕk converges to an immersion ϕ0, weakly in W 2, p . Then we have the inequality

‖SF (ϕ0)‖Lp(M) ≤ lim inf
k
‖SF (ϕk)‖Lp(M).

Lemma 4.6. Let (Σk)k∈N be a sequence of hypersurfaces satisfying (1.2), and such that we have
also limk‖S̊kF ‖Lp(Σk) = 0. Then there exist a non relabeled subsequence (Σk)k∈N and parametrizations
ηk : W −→ Σk such that ηk converges weakly in W 2, p to the identity map Id : W −→W.

Let us prove the lemmas and then show how they imply Proposition 4.4.

Proof of Lemma 4.5. We introduce the map
Ψ: Sn −→ Rn+1, Ψ(x) := gradσ F (x) + F (x)x.

From [30] we know that the map Ψ parametrizes the Wulff shape. It is immediate to show the equality
(4.4) SF := AF ◦ dν = d(Ψ ◦ ν).
Indeed, the differential of Ψ has the following form:

dΨ
[
∂

∂ϑi

]
= ∂

∂ϑi
(gradσ F ) + ∂iF Id︸ ︷︷ ︸

=Di(DF )

+F ∂

∂ϑi
= (AF )ji

∂

∂ϑj
,

where we have denoted by D the Levi-Civita connection compatible with the canonical metric on the
round sphere. Taking the composition we obtain (4.4). Let now (νk)k∈N be the sequence of outer
normals associated to ϕk, i.e. the sequence of mappings νk : M −→ Sn such that

〈νk(q), dϕk|q [v]〉 = 0, ∀ v ∈ TqM,

and with orientation fixed so every νk is the outer normal for ϕk(M) = Σk. We claim that the sequence
(νk)k∈N is bounded in W 1, p(M, Rn+1). Firstly, since SkF = AF ◦ hk, we obtain

‖hk‖Lp(Σk) =
∥∥∥(AF )−1SkF

∥∥∥
Lp(Σk)

≤ c(F ) c0 = C(F, c0),

and thus (1.2) implies (1.5). Now we show how the Lp-boundedness of the second fundamental forms
gives us the Lp-boundedness of the differential of the normals. The key is the following proposition,
proved in [8, Thm. 6.3].

Proposition 4.7. Let 2 ≤ p, and ψ : BnR −→ Rn+1, ψ(x) = (x, ξ(x)) be a graph parametrisation, with
ξ smooth function. Then the following estimate holds:

(4.5) ‖∂2ξ‖Lp(BnR) ≤ (1 + ‖∂ξ‖0)
3p−1
p ‖h‖Lp .

Estimate (4.5) allows us to conclude. Indeed, since our hypersurfaces satisfy (1.2), then by Remark
2.3 we can apply Lemma 2.2. Plugging (4.5) we can easily find a radius R depending on n, p, c0 such
that the estimate

‖dνk‖Lp(BgkR (q)) ≤ C(n, p, c0)‖hk‖Lp ≤ C(n, p, c0, F )‖SkF ‖Lp

holds for every point q ∈M . Then we make this estimate global via Lemma 2.2, and obtain:
‖dνk‖Lp ≤ C(n, p, c0, W)‖SkF ‖Lp .
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Therefore our sequence (νk)k∈N is bounded in W 1, p. Since n < p, every weak W 1, p-limit point ν0 is
also a strong C0, α-limit point, and satisfies

|ν0(q)| = 1, 〈ν0(q), dϕ0|q [v]〉 = 0, for every q ∈M and v ∈ TqM.

This shows that ν0 is the outer normal associated to the immersion ϕ0, and moreover dνk ⇀ dν0. In
order to complete the proof, we simply consider equality (4.4): since the map Ψ is smooth, we obtain
that Ψ ◦ νk converges to Ψ ◦ ν0 weakly in W 1, p, and the result follows from classical Sobolev theory. �

With the help of Lemma 4.5 we prove Lemma 4.6.

Proof of Lemma 4.6. Let us argue by contradiction, and assume there exists a sequence of closed
hypersurfaces (Σk)k∈N satisfying (1.2), limk‖S̊kF ‖Lp(Σk) = 0, all enclosed in a ball Bn+1

R , and such that
the conclusion of the proposition does not hold.

We apply Proposition 4.3, and find a non-relabeled subsequence (Σk)k∈N, a closed manifold M ,
parametrizations ϕk : M −→ Σk converging weakly in W 2, p to an immersion ϕ0. From (1.2), Remark
2.3 and Proposition 2.5, we find the existence of a bounded sequence (λk)k∈N such that

‖SkF − λk Id‖Lp(Σk) ≤ C‖S̊kF ‖(Σk) ↓ 0.

Up to subsequences, we assume λk = λ0 for every k ∈ N. Then λ0 must be different from 0 because of
the estimate

‖SF ‖Lp(Σ) ≥ C(n, p, F )‖h‖Lp(Σ) ≥ C(n, p, F, Voln(Σ)) = C(n, p, F ).

Since SF = d(Ψ ◦ νh), we apply Lemma 4.5 to the sequence Ψ ◦ νh − λ0x, and obtain that the limit
immersion ϕ0 satisfies the equality

SF = λ0 Id
weakly. From it we easily infer

(4.6) h(ϕ0) = λ0(AF )−1.

Now we take the trace in (4.6), and obtain that in every graph parametrisation around every point
q ∈ Σ, the function uq that parametrizes the immersion is Lipschitz and satisfies an equality of the
following type:

div

 ∂uq√
1 + |∂uq|2

 = f(uq, ∂uq),

for a certain smooth function f . This tells us that the function uq is smooth. Since then (4.6) holds
classically, uq is also convex, and we obtain that ϕ0 is a smooth immersion and Σ0 := ϕ0(M) is a
smooth, convex hypersurface of Rn+1. Since Σ0 is diffeomorphic to a round sphere, the same argument
used to build the parametrization in the proof of 3.1 tells us that ϕ0 is actually an embedding. From [30]
and the volume condition in (1.2), we conclude that λ0 = 1 and ϕ0(M) must be a Wulff shape W + c
for some vector c ∈ Rn+1. Up to translation, we assume c = 0. Now we easily define ηk : W −→ Σk,
ηk = ϕk ◦ ϕ−1

0 and obtain that ηk converges to the identity map Id : W −→W weakly in W 2, p. �

The results obtained give us a priori only a qualitative C1-closeness. Insofar we have proved the
following result:

Corollary 4.8. Let Σ ⊂ Rn+1 be a closed hypersurface satisfying conditions (1.2). Then for every
ε > 0 there exists δ0(n, p, W, c0) > 0 with the following property. If Σ satisfies (1.3), then there exists
a map η : W −→ Σ such that
(4.7) ‖η − Id‖C1, α(W) ≤ ε.

We show how (4.7) yields the desired graph parametrization. Let Σ be a closed hypersurface that
satisfies the assumptions of Corollary 4.8. Let Bε(W) be the tubular neighbourhood associated to W.
We denote by P the natural projection over the Wulff shape, that is

P : Bε(W) −→W, P : q = x+ ρνW(x) −→ x.

The map P is Lipschitz and smooth. Moreover, it can be proved that for every q ∈ BεW , the differential
dP |q : Rn+1 −→ TP (q)W is surjective and satisfies the property

(4.8) dP |q [z] = 0 ⇔ z = λνW(P (q)), λ ∈ R.
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See [22, Ch. 5] for the details. Since Σ satisfies Corollary 4.8 and hence estimate (4.7), then Σ ⊂ Bε(W)
and we can set p := P |Σ. Therefore, p is a smooth, Lipschitz map from Σ to W and satisfies
(4.9) sup

q∈Σ
|q − p(q)| ≤ ε.

We claim that p also satisfies:
(4.10) sup

q∈Σ
|νΣ(q)− νW(p(q))| ≤ C(n, W)ε.

If the claim is true, then p is a local diffeomorphism: indeed, since νW(p(q)) /∈ TqΣ for every q ∈ Σ, by
(4.8) dp|q has maximal rank at every point q ∈ Σ. Hence p is a local diffeomorphism, and since the
Wulff shape is diffeomorphic to the sphere, the same argument made in the isotropic case proves it is a
global diffeomorphism. Then the inverse ψ(x) = x+ u(x)νW(x) is the desired radial parametrization
and from inequalities (4.9) and (4.10) we obtain that u is small in the C1-norm.

Now we prove the claim. Let q ∈ Σ be fixed, and let z ∈ W be given so that q = η(z). From (4.9)
we know that

|q − p(q)| ≤ ε,
and from (4.7) we know that
(4.11) |q − z| ≤ ε, |νΣ(q)− νW(z)| ≤ ε.
Patching the inequalities together, we get

|p(q)− z| ≤ 2ε.
Since the Wulff shape is convex, necessarily z must belong to a graph parametrisation ϕp(q) : BnR −→W
centered in p(q), provided that ε > 0 is sufficiently small. By convexity, we easily notice that

|νW(p(q))− νW(z)| ≤ c(n, W)ε.
Patching this inequality with (4.11) we obtain the claim, and we conclude the proof of Proposition 4.4.

Conclusion. Recalling Definition 4.1 and combining Proposition 4.4, Theorem 4.2 and [13, Proposition
7.1], we obtain the following result.

Proposition 4.9. Under the hypothesis of Proposition 4.4, we have the additional estimate:

(4.12) ‖u− ϕvu‖W 2, p(W) ≤ C
(
‖S̊F (Σ)‖Lp(Σ) + ε‖u‖W 2, p(W)

)
.

where C = C(n, p, W).

We end the section by getting rid of the function ϕvu in estimate (4.12), that is, proving the following:

Proposition 4.10. Let Σ be a closed hypersurface in Rn+1 satisfying (1.2) and (1.3), so that the
estimates of Propositions 4.4 and 4.9 hold for a radial anisotropic parametrization ψ. There exist
ε0 > 0, C0 > 0 depending only on W with the following property. If (4.3) holds with ε ≤ ε0, then there
exists c = c(Σ) ∈ Rn+1 such that Σ− c still admits a radial parametrization

ψc : W −→ Σ− c, ψc(x) := x+ uc(x)νW(x),
and uc satisfies: {

‖uc‖C1 ≤ C0ε,

〈uc, ϕw〉L2 = 0 for every ϕw defined as in (4.2).

Proof. We divide the proof into three main steps.
Step 1. For any positive constant C1 there exist positive numbers ε, C2 depending only on W, C1 with
the following property. For every c ∈ Bn+1

C1ε
, the hypersurface Σc := Σ− c is still a graph over W, and

its radius uc satisfies
‖uc‖C1(W) ≤ C2ε.

We consider ε so small that Σc is still in the 2ε-tubular neighborhood of W. Again, we argue by
proving that the projection map

pc : Σc −→W, pc : q = x+ ucνW(x) 7−→ x

is a diffeomorphism. Following the same strategy of the proof of Proposition 4.4, we just need to show
that νW(pc(q)) /∈ TqΣc for every q ∈ Σc. Let then q ∈ Σc be given. By the very definition of Σc, we
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have that q̃ := q − c ∈ Σ. Moreover, since Σ is a graph over W with radius u, there exists x ∈ W such
that q̃ = x+ u(x)νW(x). By the computation made in [13, App. B], we deduce

(4.13) |νΣ(q̃)− νW(x)| ≤ C(W)ε.

Since Σc = Σ + c, we know that νΣ(q̃) = νΣc(q̃ + c) = νΣc(q). On the other hand,

(4.14) |νW(pc(q))− νW(x)| ≤ ε.

Combining (4.13) with (4.14), we deduce that

|νΣc(q)− νW(pc(q))| = |νΣ(q̃)− νW(pc(q))| ≤ |νΣ(q̃)− νW(x)|+ |νW(x)− νW(pc(q))|
(4.13),(4.14)
≤ Cε.

This shows that for ε sufficiently small, νW(pc(q)) /∈ TqΣc, and thus we can conclude as in the proof
of Theorem 4.4.
Step 2. We consider the map

Φ: Bn+1
C1ε
−→ Rn+1, Φ(c) :=

n∑
i=1
〈uc, ϕwi〉L2wi

where ϕwi, wi are defined in Definition (4.1). Then there exists a constant C3 depending on C1 such
that the following estimate holds:

(4.15) |Φ(c)− Φ(0)− c| ≤ C3ε
2.

Indeed, for every c such that |c| < C1 ε we find

dHD(Σ− c, W) ≤ dHD(Σ− c, Σ) + dHD(Σ, W) ≤ (C1 + 1)ε.

Arguing as in the Step 1, it is easy to see that also the function uc satisfies the estimates

(4.16) ‖uc‖C1 ≤ C(n, W)ε,

We start the linearisation with the following simple consideration: for every z ∈ W there exists
xc = xc(z) ∈ W so that

ψc(z) = ψ(xc(z))− c.
We expand this equality and find

(4.17) z + uc(z) νW(z) = xc(z) + u(xc(z))νW(xc(z))− c.

Using the C0-smallness of u and uc, we can easily see that xc = xc(z) satisfies the relation

|xc(z)− z| ≤ C(n, W)ε.

This approximation, combined with (4.16), gives an estimate of u close to z:

(4.18) |u(xc(z))− u(z)| ≤ C(n, W)ε2.

We evaluate F ∗ in the point in (4.17):

F ∗(z + uc(z) νW(z))︸ ︷︷ ︸
=1+uc(z)dF ∗|z [νW (z)]+R

= F ∗(xc(z) + u(xc(z)) νW(xc(z))− c)︸ ︷︷ ︸
=1+u(xc(z))dF ∗|xc(z)[νW (xc(z))]−dF ∗|xc(z)[c]+R

,

where
|R| ≤ C(n, W)ε2.

Plugging in the previous equality the gauge property (1.1), we obtain

|uc(z)〈νW(z), νW(z)〉 − u(xc(z))〈νW(xc), νW(xc)〉+ 〈c, νW(xc)〉| ≤ C(n, W)ε2,

which by (4.18) reads

(4.19) |uc(z)− u(z) + 〈c, νW(z)〉︸ ︷︷ ︸
=ϕc(z)

| ≤ C(n, W)ε2.

Integrating over W and using (4.19), we conclude the proof of Step 2.
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Step 3. Conclusion. In order to obtain the thesis, we will prove the following claim (the proof of Claim
is postponed right after this proof):
Claim Let G be a continuous map G : Bn+1

1 −→ Rn+1 which satisfies the estimate

(4.20) |G(x)− a− x| ≤ ε ∀x ∈ Bn+1
1 with |a| < 1

10 .

Then G must have 0 in its image if ε is sufficiently small.
This claim gives us the thesis since we can always reduce to this case by choosing a C1 big enough

(depending only on n and W) and via a proper rescaling. Indeed, we can define

Φ̃ : Bn+1
1 −→ Rn+1, Φ̃(c) := Φ(C1εc)

C1ε

and observe that ∣∣∣∣Φ̃(c)− Φ(0)
C1ε

− c
∣∣∣∣ = 1

C1ε
|Φ(C1εc)− Φ(0)− C1εc|

(4.15)
≤ C(n, W)ε

C1
.

Moreover,
|Φ(0)|
C1ε

ε ≤ C(n, W)
C1

≤ 1
10

if we choose the proper C1(n, W). Therefore, by the claim, we can find c̃ ∈ Bn+1
1 such that Φ̃(c̃) = 0,

i.e. Φ(C1εc̃) = 0, and we have finished. �

Proof of Claim. We argue by contradiction, and assume that 0 is not in the image of G. Therefore,
the rescaled map

ξ := G

|G|
: Bn+1

1 −→ Sn

is well defined. Now, we know that G satisfies (4.20). Thus, we obtain:
|G(x)|2 = |a+ x|2 + |G(x)− a− x|2 + 2〈a+ x, G(x)− a− x〉 = 1 + |a|2 + 2〈a, x〉+R,(4.21)

where |R| ≤ C(n, W)ε. From (4.21) we have:

(4.22) 79
100 − C(n, W)ε ≤ |G(x)|2 ≤ 121

100 + C(n, W)ε.

We use inequalities (4.20) (4.21) and (4.22) to infer the following estimate:

|ξ(x)− x| =
∣∣∣∣ G(x)
|G(x)| − x

∣∣∣∣ = 1
|G(x)| |G(x)− |G(x)|x|

= 1
|G(x)| |G(x)− a− x+ a+ x(1− |G(x)|)| ≤ 1

|G(x)|(|a|+ Cε+ |1− |G(x)||)

≤ 10√
79− Cε

(
1
10 +

√
21

10 + C
√
ε

)
≤ 1 +

√
21√

79− Cε
(
1 + C

√
ε
)
≤
√

2
2 + C

√
ε

where the constant C depends only on n and W. Therefore, for every 0 < ε < 1 sufficiently small, we
obtain
(4.23) |ξ(x)− x| < 2 for every x ∈ Sn.
Therefore the map ξ := ξ|Sn defined as the restriction of ξ to the sphere is well defined. The thesis
follows by a simple application of topological degree theory, which can be found in [22, Ch.5]: since
ξ is the restriction of a map on the sphere, it must have degree equal to 0, but (4.23) easily implies
that ξ is homotopic to the identity, and therefore it must have degree equal to 1, giving the desired
contradiction. �

Proof of Theorem 1.2. We observe that Proposition 4.10 implies that uc satisfies an improved version
of (4.12), that is:

‖uc‖W 2, p(W) ≤ C
(
‖S̊F (Σ)‖Lp(Σ) + ε‖uc‖W 2, p(W)

)
.

This in particular concludes the proof of Theorem 1.2. �

5. Quasi Einstein Hypersurfaces

In this section we focus on the proof of Theorem 1.5 and Theorem 1.6. We first recall the geometric
quantities involved:
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Geometric quantities. We fix the sign convention for the main geometric quantities we are going to
study in this section. We define

R(X, Y )Z := ∇2
Y,XZ −∇2

X,Y Z

The Riemann curvature is the 4-covariant tensor given by lowering one index in the previous expression.
Riem(X, Y, Z, W ) = 〈R(X, Y )Z, W 〉

The Ricci curvature is the 2-covariant tensor given by taking the (1, 3)-trace of the Riemann curvature:
Ricij := gpq Riemipjq .

Finally, the scalar curvature is given by taking the trace of the Ricci curvature:
R = gij Ricij .

We recall the following well known corollary of the differential Bianchi identity (see [17, p. 184]), which
relates the derivatives of the Ricci curvature with the derivatives of the scalar curvature.
Lemma 5.1. Let (M, g) be an n-dimensional Riemannian manifold, with n ≥ 3. The following
equation holds:

div Ric = 1
2∇R

Moreover, we recall the Gauss equation for hypersurfaces in a Euclidean space (see [17, Thm 5.5]):
Theorem 5.2. Let Σ be a hypersurface in Rn+1. Then the following equation holds:

(5.1) Riemijkl = 1
2(h? h)ijkl = hik hjl − hil hjk.

Contracting the indices in (5.1) we obtain
Ricij = Hhij − hki hkj .

We now proceed to give the idea of the proof of Theorem 1.5 and Theorem 1.6. The strategy we
would like to use is basically the same as the one used for Theorem 1.3, that is:

Let us consider a sequence of hypersurfaces (Σk)k∈N satisfying either (1.7) or (1.9), and

lim
k
‖R̊ick‖Lp(Σk) = 0.

Firstly, we estimate the diameter of Σk and consider a (not relabeled) subsequence Σk that converges
in the Hausdorff distance to a subset Σ0 ⊂ Rn+1. If Σ0 were a smooth manifold, and if the decay of
the traceless Ricci tensor passed to the limit, than Σ would be a smooth, closed Einstein manifold
in Rn+1, which is necessarily the round sphere. Then, performing a fine analysis of the ϕq, we would
obtain than every graph parametrisation of Σk must converge to the graph parametrisation of the
sphere, and thus we could build the same proof made for Theorem 1.3.

The problem here are the two ifs above, which need to be motivated. First of all, the set Σ0 we
will find is a priori only a compact subset in Rn+1; moreover, the Ricci operator is not elliptic when
viewed as a differential operator acting on the function which describes Σ as a graph parametrisation.
Also if we consider the Gauss equation (5.1) and consider the associated polynomial equation for the
eigenvalues of h, then the equality

Ric = (n− 1)λ
implies h = λ Id only when λ > 0. Thus, we also need to prove the positivity of λ in order to achieve
our result.

We split the proof of the qualitative closeness into two main propositions.
Proposition 5.3. Let ϕk : BnR −→ Rn+1 be a sequence of graph parametrizations, and let then
Graph(uk, BnR) be their image. Assume that every uk satisfies the following properties:

• uk(0) = 0, ∂uk(0) = 0;
• ‖uk‖W 2, p ≤ c0;
• uk ⇀ u0 weakly in W 2, p;
• the sequence of hypersurfaces (Graph(uk, Bn

R))k∈N satisfies

lim
k
‖Rick−(n− 1)λ0g

k‖Lp = 0.

Then there exists a radius 0 < ρ0 = ρ0(n, p, c0) such that the function u0 is smooth (actually analytic)
in Bnρ0, and the hypersurface Graph(u0, Bnρ0) is Einstein.
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Proposition 5.4. For every ε > 0 there exists 0 < δ = δ(n, p, c0, ε) with the following property.
Let Σ be a closed hypersurface in Rn+1 satisfying either (1.7) or (1.9). If ‖Ric−(n− 1)λ0g‖Lp ≤ δ,

then λ0 > 0, and for every q ∈ Σ, the graph parametrisation ϕq satisfies:∥∥∥∥uq(·)− µ−1
0

(√
1− µ2

0| · |2 − 1
)∥∥∥∥

C1
≤ ε,

where µ0 =
√
λ0.

Combining these two propositions, we obtain the C1-closeness, and then we show how to conclude,
proving an improved oscillation result:

Proposition 5.5. Let n ≥ 2 be given, ad let Σ be a closed hypersurface in Rn+1 such that Voln(Σ) =
Voln(Sn). Assume Σ satisfies one of two following hypothesis:

a) Σ is convex, and ‖h‖Lp(Σ) ≤ c0 for some 1 < p <∞.
b)

ffl
ΣR =: R > 0 and ‖h‖Lp(Σ) ≤ c0 for some n < p <∞.

Then the following inequality holds.

(5.2)
∥∥∥∥∥Riem− R

2n(n− 1)g ? g

∥∥∥∥∥
Lp(Σ)

≤ C(n, p, c0)‖R̊ic‖Lp(Σ).

5.1. Proof of the C1-closeness. We start by proving the first proposition.

Proof of Proposition 5.3. The proof uses the concept of harmonic coordinates. We recall the definition:
given a manifold (M, g) and an open set U ⊂M a mapping y : U −→ Rn+1 is said to be a harmonic
chart if it is a diffeomorphism and if it satisfies the equation

∆gy = 0.

The functions y1, . . . yn are called harmonic coordinates. A detailed study on the topic can be found
in [23, Sec. 8.10, p.523] or [32, Ch. 10, Sec. 2.3]. Harmonic coordinates have several properties which
make them very suitable for our problem. Indeed, the following expression holds:

(5.3) − 1
2∆ggij +Qij(g, ∂g) = Ricgij for every indices i, j,

where gij := g
(
∂
∂yi
, ∂
∂yj

)
, Qij is a universal polynomial depending on g and its first derivatives ∂g.

The computations can be found in [32, Ch. 10, Sec. 2.3].
In the aforementioned references however, the authors work under stronger regularity assumptions

on the metric. In our case we ought to perform a finer study. We prove the following result.

Lemma 5.6. Let u : BnR −→ R be given so that u(0) = 0, ∂u(0) = 0, ‖u‖W 2, p(BnR) ≤ c0. Set
Gρ := Graph(u, Bnρ ) for 0 < ρ ≤ R. Then there exist 0 < ρ0 = ρ0(n, p, c0) and a diffeomorphism
η : Gρ0 −→ Rn such that

∆gη = 0, ‖η‖W 2, p(Gρ0 ) ≤ c0,

with ∆g being the Laplace-Beltrami operator associate to the manifold Gρ0.

Proof. By pull-back we work on the sequence
(
BnR, gk

)
k∈N

, with gk = δ + ∂uk ⊗ ∂uk. We are going to
show the existence of a 0 < ρ0 = (n, p, c0) < R such that the map η : Bnρ0 −→ Rn defined by∆gη = 0 in Bnρ0 ,

η|∂Bnρ0 = x

is a diffeomorphism and satisfies ‖η‖W 2, p ≤ c0. In order to simplify the proof, we will consider a
rescaled version the problem. Firstly, let us recall the expression in chart of the Laplace-Beltrami
operator:

(5.4) ∆g = 1√
det g

∂i
(√

det ggij∂j
)
.

Let η : Bnρ −→ Rn be a map satisfying ∆gη = 0. We say that the map

ηρ : Bn1 −→ Rn, ηρ(z) := η(ρz)
ρ
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satisfies ∆gpηp = 0, where ∆gρ is the Laplace-Beltrami operator associated to the metric gρ(z) := g(ρz),
defined on the ball Bn1 . Indeed, if we set aij :=

√
det ggij and aijρ :=

√
det gρgijρ , then

∂i
(
aijρ ∂jηρ

)
(z) = ∂ia

ij
ρ (z)∂jηρ(z) + aijρ (z)∂2

ijηρ(z)

= ρ
(
∂ia

ij(ρz)∂jη(ρz) + aij(ρz)∂2
ijη(ρz)

)
= ρ∂i

(
aij∂jη

)
(ρz) = 0.

Moreover, since g = δ + ∂u⊗ ∂u and u satisfies u(0) = |∂u(0)| = 0 and ‖u‖2, p ≤ c0, then we also have
lim
ρ→0
‖gρ − δ‖W 1, p(Bn1 ) = 0.

We have reduced the problem to the following formulation:
Claim There exists 0 < ε0 = ε0(n, p) with the following property. If g is a metric on Bn1 such that

‖g − δ‖W 1, p ≤ ε0, then there exists a diffeomorphism η : Bn1 −→ Rn such that
∆gη = 0, ‖η − Id‖W 2, p ≤ ε0.

We now prove the Claim showing that the only solution η of the problem{
∆gη = 0,
η|∂B1

= x

is a diffeomorphism, provided that ε0 is sufficiently small. The solution η exists and it is smooth, since
the coefficients are smooth. We prove that η satisfies the aforementioned a priori W 2, p-estimate and is
a diffeomorphism in B1. From (5.4) we get that our equation is of the divergence form:

∂i
(
aij∂jη

)
= 0, where ‖aij − δij‖W 1, p ≤ ε0.

Since n < p, we have that the Sobolev closeness is also a C0, α-closeness, thus we obtain that for ε0
sufficiently small the matrix a = aij satisfies the bound

1
2δ ≤ a ≤ 2δ

in the sense of quadratic forms. This bound will be useful when we will deal with sequences of metrics
converging weakly, because it passes to the limit and triggers the classical elliptic theory for weak
solutions (see [18]). Now we conclude:

‖η − x‖W 2, p(Bn1 ) ≤ C(n, p)‖∆g(η − x)‖Lp(Bn1 ) = C‖∆gx‖Lp(Bn1 ),

and therefore

∆gx
k = 1√

det g
∂i
(√

det ggij∂jxk
)

= 1√
det g

∂i
(√

det ggik
)

= ∂ig
ik + tr(gpq∂igpq)gik.

From this computation we obtain
‖η − x‖W 2, p(Bn1 ) ≤ C(n, p)‖g − δ‖W 1, p(Bn1 ) ≤ Cε0,

and for ε0 sufficiently small we obtain the desired Claim. �

We use Lemma 5.6 to prove Proposition 5.3. Indeed, let ϕk, uk and Graph(uk, BnR) be as in the
hypothesis of Proposition 5.3. Using the pull-back, we work in

(
BnR, gk

)
. Since uk ⇀ u0 weakly in

W 1, p and n < p by hypothesis, we know that uk → u0 strongly in C1, α, then ∂uk ⊗ ∂uk → ∂u0 ⊗ ∂u0
strongly in C1, α, and
(5.5) ∂2uk ⊗ ∂uk + ∂uk ⊗ ∂2uk︸ ︷︷ ︸

∂(∂uk⊗∂uk)

⇀ ∂2u0 ⊗ ∂u0 + ∂u0 ⊗ ∂2u0︸ ︷︷ ︸
∂(∂u0⊗∂u0)

in Lp.

From (5.5) we deduce gk ⇀ g0 = δ + ∂u0 ⊗ ∂u0 in W 1, p. We consider then harmonic coordinates
ηk : Bnρ0 −→ Rn built as in Lemma 5.6. From the discussion made above, one can easily infer that ηk
converges weakly in W 2, p to the vector valued function η0 which is of class W 2, p and weakly solves
the system ∆g0η0 = 0,

η0|∂Bnρ0 = x,
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Let us now call

gkij := gk
(

∂

∂ηik
,
∂

∂ηjk

)
, where ∂

∂ηi
:= dη

[
∂

∂xi

]
.

Then every gkij solves system (5.3), namely

−1
2∆gkg

k
ij +Qij(gk, ∂gk) = Rickij ,

with Rickij := Rick
(

∂
∂ηi
k

, ∂

∂ηj
k

)
. Then, this equation passes to the limit in g0

ij = g0
(

∂
∂ηi0

, ∂

∂ηj0

)
, which

solves the distributional equation

(5.6) − 1
2∆g0g0

ij +Qij(g0, ∂g0) = λ0g
0
ij .

Following the computations leading to equation (5.3) as made in [32, Sec. 2.3], we can easily notice
that the polynomial Qij(g0, ∂g0) is of class Lp/2. Therefore we can apply the bootstrap technique to
deduce regularity. Indeed, every g0

ij is a W 1, p-weak solution of the equation

L[v] = f,

where f is a Lp/2-function. By the Morrey estimates, we know that every g0
ij is actually in W 2, p/2,

and in particular

∂g0 ∈ L(p/2)∗ , where (p/2)∗ = n(p/2)
n− (p/2) = np

2n− p.

A straightforward computation shows

(p/2)∗ > p⇔ np

2n− p > p⇔ p > n,

and therefore every Qij(g0, ∂g0) ∈ Lp1/2 for some p1 = (p/2) > p. We proceed inductively until we
find Qij(g0, ∂g0) ∈ LpN/2 for some pN > 2n. In this case, we obtain that every g0

ij ∈ C1, α. At this
point, we notice that Qij(g0, ∂g0) ∈ C0, α. From the Schauder estimates we infer that every g0

ij ∈ C2, α,
thus rendering aij , Qij ∈ C1, α. Inductively we obtain that g0 is in Ck, α, therefore it is smooth. It
can be also proved, that in this context, the metric is actually analytic, and hence we obtain our
desired regularity. We refer to [18] for an overall synthesis on all the aforementioned estimates and
elliptic regularity results. Since g0 is regular and satisfies (5.6), then the hypersurface Graph(u0, Bnρ0)
is Einstein and Ric0 = λ0g

0. �

Now we deal with Proposition 5.4

Proof of Proposition 5.4. Again we need a useful lemma.

Lemma 5.7. If Σ satisfies either (1.7) or (1.9), then there exists 0 < D0 = D0(n, p, c0) such that

diamg Σ ≤ D0.

Proof. A smooth, closed hypersurface satisfying either (1.7) or (1.9) allows us to apply Lemma 2.2
(see Remark 2.3). Now we consider two points p0, q ∈ Σ, such that dg(p0, q) = diamg(Σ). Such points
clearly exist by compactness. By virtue of Lemma 2.2 we are able to find Q geodesic balls Bg

1 , . . . B
g
Q,

with the following properties: p0 ∈ Bg
1 , q ∈ B

g
Q, B

g
i ∩ B

g
i+1 6= ∅ and Q ≤ N , where N = N(n, c0, p)

is the natural number given by Lemma 2.2. Then, for every i = 1, . . . , Q − 1 we choose a point
pi ∈ Bg

i ∩B
g
i+1, and set pQ := q. Naturally, since pi, pi+1 ∈ Bg

i , the following inequality holds:

dg(pi, qi) ≤ 2R.

Then by triangle inequality, we find our desired bound.

diamg(Σ) = dg(p0, q) = dg(p0, pQ) ≤
Q−1∑
i=0

dg(pi, pi+1) ≤ 2QR = D(n, p, c0).

�
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We now come to the proof of Proposition 5.4. Let us argue by compactness, and let (Σk)k∈N be a
sequence of closed hypersurfaces satisfying either (1.7) or (1.9) and satisfying

lim
k
‖Ricgk −(n− 1)λ0g

k‖Lp
k

= 0.

Up to translations, we can assume b(Σk) = 0 for every k ∈ N, where

b(Σk) :=
 

Σk
x dVgk(x)

denotes again the barycentre of Σk. Then, by Lemma 5.7, the sequence (Σk)k∈N is a sequence of
compact sets, all enclosed in a ball. Hence, we can use the classical compactness theorem of Hausdorff
to extract a subsequence converging in the Hausdorff distance to a compact set Σ0 ⊂ Rn+1. Let q0 ∈ Σ0
be a point that attains the maximum distance from 0, i.e.

|q0|2 = max
q∈Σ0
|q|2.

Let then (qk)k∈N be a sequence of points qk ∈ Σk converging to q0, and ϕk be the associated graph
parametrizations with center qk and width R. Then, up to subsequences, ϕk converges weakly in W 2, p

to a function ϕ0 : BnR −→ Rn+1. Since

ϕk(z) = qk + Φk

(
z

uk(z)

)
,

it is obvious that Φk → Φ0 and uk ⇀ u0 weakly in W 2, p. Hence ϕ0 is a graph parametrisation, and
ϕ0(0) = q0, ϕ0(BnR) ⊂ Σ0. Moreover, since the isometries Φk clearly alter neither the final result nor the
proof, we are therefore in the hypothesis of Proposition 5.3, and obtain that u0 is actually smooth and
ϕ0(Bnρ0) = Graph(u0, Bnρ ) ⊂ Σ0 is a smooth, Einstein manifold. The map ϕ0 has another remarkable
property: it satisfies

|ϕ(0)|2 = |q0|2 = max
z∈Bnρ0

|ϕ(z)|2.

Deriving twice, we obtain the following equalities holding in 0:

〈∂iϕ0, ϕ0(0)〉 = 0︸ ︷︷ ︸
⇒〈q0〉⊥=Tq0Σ

, ∂2ϕ(0) ≤ 0⇒ 〈∂2
ijϕ0, ϕ0(0)〉︸ ︷︷ ︸
=−|q0|−1Aij

+ 〈∂iϕ0, ∂jϕ0〉︸ ︷︷ ︸
=gij

≤ 0,

from which we obtain the equality

(5.7) h|q0 ≥
1
|q0|

g|q0 .

Equality (5.7) holds just in one point, but it is enough: indeed, ϕ0(Bnρ0) is smooth and Einstein, thus
at q0 we also have the estimate:

(n− 1)λ0g = Ric ≥ (n− 1)
|q0|2

g ≥ (n− 1)
D2

0
g ⇒ λ ≥ 1

D2
0
,

and hence λ0 > 0. Since ϕ0 parametrizes an Einstein hypersurface, the equality holds in the whole
ball Bnρ0 . Thanks to Theorem 1.4 we obtain that h = µ0g, where µ0 =

√
λ0. This tells us that ϕ0

parametrizes a portion of a round sphere with radius µ−1
0 . Since ϕk converges weakly to ϕ0 in W 2, p, we

obtain that also the associated function uk converge to µ−1
0

(√
1− µ2

0|x|2 − 1
)

weakly in W 2, p. Since

n < p the convergence is also strong in C1, α. The study we made insofar works not only for ϕ0 but for
every possible parametrization: let us go back to our sequence (Σk)k∈N of closed hypersurface. Now
we know that λ0 > 0, and thus for every sequence qk ∈ Σk, for every ϕk graph parametrisation with
center qk and width ρ0, we obtain that every weak limit must parametrize a portion of a sphere with
radius Sn

µ−1
0

with u0(x) = µ−1
0

(√
1− µ2

0|x|2 − 1
)

as parametrization, and the convergence is strong in

C1. This proves the proposition. �

Now we repeat the very same passages made in the proof of Theorem 1.3, and we easily obtain the
corollary:
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Corollary 5.8. For every 0 < ε there exists 0 < δ = δ(n, p, c0, ε) with the following property.
Let Σ be a closed hypersurface in Rn+1 satisfying either (1.7) or (1.9). If ‖R̊ic‖Lp(Σ) = 0, then there

exists a vector c ∈ Rn+1 such that b(Σ− c) = 0, and the radial parametrization
ψ : Sn −→ Σ, ψ(x) = ef(x)x

is well defined. Moreover ‖f‖C1 ≤ ε.
This concludes the study of the qualitative C1-closeness.

5.2. The oscillation argument: proof of Proposition 5.5. The proof of Proposition 5.5 relies on
the following oscillation lemma, whose L2-version has been proved under weaker assumptions in [6].
Lemma 5.9. Let Σ be a closed, convex hypersurface in Rn+1. Assume Σ satisfies condition a) or
condition b) as in Proposition (5.5). In the latter one, the positivity assumption of R is not required.
Then the following inequality holds.∥∥∥R−R∥∥∥

Lp(Σ)
≤ C(n, p, c0)‖R̊ic‖Lp(Σ).

We prove Lemma 5.9 in Appendix 6. From Lemma 5.9 we wish to derive Proposition 5.5. Since
the second fundamental form is a symmetric tensor, we know by the spectral theorem that it is
diagonalizable. Let λ1, . . . λn be its eigenvalues. Our idea to use equation (5.1) in order to interpret
(5.2) as a polynomial inequality involving the eigenvalues of h. Let us define indeed the polynomials

p(λ) = 1
4 |h(λ) ? h(λ)− κδ ? δ|2 =

∑
i 6=j

(λiλj − κ)2,(5.8)

q(λ) =
∣∣∣H(λ)h(λ)− h(λ)2 − (n− 1)κδ

∣∣∣2 =
∑
i

λi
∑
i 6=j

λj

− (n− 1)κ

2

.(5.9)

Here κ ∈ R, and in general we choose it so that n(n − 1)κ = R. Using this notation we can let
Proposition 5.5 easily follow from the following lemma.
Lemma 5.10. Let 0 < κ be given. Then there exist constants c1, c2, depending on n such that

c1 ≤
p(λ)
q(λ) ≤ c2, for any λ ∈ R.

From Lemma 5.10 we easily conclude by integrating the inequality for the eigenvalues of h. Indeed,
if the mean of the scalar curvature R is positive, then from Lemmas 5.9 and 5.10 we obtain:∥∥∥∥∥Riem− R

2n(n− 1)g ? g

∥∥∥∥∥
p

=
∥∥∥∥Riem−κ2 g ? g

∥∥∥∥
p
≤ C(n, p)‖Ric−(n− 1)κg‖p ≤ C(n, p, c0)‖R̊ic‖p.

The positivity of the quantity R is easily recovered also in case a): it is straightforward to prove
that closed, convex and smooth manifolds have positive mean of the scalar curvature. This quantity is
trivially non-negative since we have the formula

R =
∑
i 6=j

λiλj ,

and all the λi are non-negative by convexity. Let us show that the quantity R is actually positive. We
consider the function

ξ : p ∈ Σ 7−→ |p|2.
Let p0 be a maximum for ξ, and ϕ0 : BnR −→ Σ be a graph parametrisation around p0, i.e. ϕ0(0) = p0.
Since p0 is the maximum of ξ, we notice that ϕ0 satisfies

|ϕ(0)|2 = |p0|2 = max
z∈Bnρ0

|ϕ(z)|2.

Deriving twice, we obtain the following equalities holding in 0:
〈∂iϕ0, ϕ0(0)〉 = 0︸ ︷︷ ︸
⇒〈p0〉⊥=Tp0Σ

, ∂2ϕ(0) ≤ 0⇒ 〈∂2
ijϕ0, ϕ0(0)〉︸ ︷︷ ︸
=−|p0|−1hij

+ 〈∂iϕ0, ∂jϕ0〉︸ ︷︷ ︸
=gij

≤ 0,

from which we obtain the equality
h|p0
≥ 1
|p0|

g.
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Thus the function R =
∑
i 6=j λiλj is non-negative and positive in a neighbourhood of p0, hence R > 0.

Let us prove Lemma 5.10 and conclude.

Proof of Lemma 5.10. We first show that the polynomials p and q defined by (5.8) and (5.9) have the
same zeros. Let Z(p) := { p = 0 } and Z(q) := { q = 0 } be the zero sets of p, q, respectively. We claim
that:

(5.10) Z(p) = Z(q) =
{√

κe, −
√
κe
}
, where e :=

n∑
i=1

ei.

We split the proof of Lemma 5.10 into four main parts. In the first two parts we prove Claim (5.10)
for p and q respectively. In the third part we study the behaviour of the ratio p/q as |λ| approaches ∞.
In the fourth part we study the behaviour of p/r as λ→ ±

√
κe. From this analysis the lemma will

easily follow.
Zeros of p. Let λ = (λ1, . . . λn) be given so that p(λ) = 0. Since p is a sum of squares, we get:

(5.11) λiλj = κ, for every i 6= j.

Since 0 < κ we also know that λi 6= 0 for every i. Then, for every i 6= j 6= k we immediately find:

λiλj = λjλk ⇒ λj = λk =: t,

from which we deduce λ = te for some t 6= 0. From (5.11) we immediately deduce t2 = κ and the
thesis.
Zeros of q. Let λ = (λ1, . . . λn) be given so that q(λ) = 0. Since q is a sum of squares, we infer the
following system:

(5.12) Hλi − λ2
i = (n− 1)κ, for every i,

where we have set

H :=
n∑
i=1

λi = 〈λ, e〉.

Notice that from (5.12) we have that λi 6= 0 for every i. Again, we claim that λi = λj for every i, j. If
the claim is true, system (5.12) for λ = te is reduced to

(n− 1)t2 = (n− 1)κ,

and this proves our claim. Let us assume by contradiction that there exist two indices i, j such that
λi 6= λj . From (5.12) we infer

(5.13) Hλi − λ2
i = Hλj − λ2

j ⇒ H(λi − λj) = λ2
i − λ2

j ⇒ H = λi + λj .

Substituting (5.13) in (5.12), we obtain

λiλj = (n− 1)κ,(5.14)
(λi + λj)λh − λ2

h = (n− 1)κ, for every h 6= i, j.(5.15)

Assume there exists λh 6= λi. From equalities (5.14) and (5.15) we obtain:

λiλj = (λi + λj)λh − λ2
h ⇒ λj(λi − λh) = λh(λi − λh),

from which we easily infer λh = λj . Therefore the coefficients λ1, . . . λn of the point λ can take at
most two different values. Call them a and b, and assume a appears k times and b appears n− k times
in the coordinates of λ. From equality (5.13) we have

(k − 1)a+ (n− k − 1)b = 0.

If both k − 1 and n− k − 1 are positive, then a and b must have different sign, and equation (5.14) is
violated. If one of them is 0, say k − 1 = 0, then we must have b = 0, but again equation (5.14) would
be violated. Hence all the values are equal, and we easily find the thesis. Notice how the estimate fails
when n = 2. In this case, equality (5.13) is not useful, and the polynomials p and q degenerate to

p(λ) = q(λ) = (λ1λ2 − κ)2,

and therefore Z(p) = Z(q) =
{

(x, y) ∈ R2 ∣∣ xy = κ
}
.
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Boundedness at infinity. Now we show that the ratio p(λ)/q(λ) is bounded from above and below when
|λ| attains large values. A simple computation shows:

lim inf
|λ|→∞

p(λ)
q(λ) = inf

λ∈Sn

∑
i 6=j λ

2
iλ

2
j∑

i λ
2
i

(∑
i 6=j λj

)2 , lim sup
|λ|→∞

p(λ)
q(λ) = sup

λ∈Sn

∑
i 6=j λ

2
iλ

2
j∑

i λ
2
i

(∑
i 6=j λj

)2 .

Note that this case represents the study of the ratio p(λ)/q(λ) in the case κ = 0. Let us do the
computation. Firstly, we claim that in this case the zero sets in the sphere of p and q are finite and
satisfy

Z(p) = Z(q) = { ±e1, · · · ± en } .
The claim is straightforward for p. For q, let us consider a point λ ∈ Sn so that q(λ) = 0. Keeping the
notation used above, we have the equality:

(5.16) λ2
i (H − λi)

2 = 0, for every i.

Since λ ∈ Sn, then there must exist an index i such that λi 6= 0. Therefore H = λi must hold. If λj = 0
for all indices j 6= i, then necessarily λ = λiei and λi = ±1, as claimed. If λj 6= 0 for some j, then the
equality H = λj must hold and hence λj = λi. We immediately deduce that the set { λ1, . . . λn } can
take only the values 0 and t for some t 6= 0, and not all λi can be 0 because λ ∈ Sn. Let us assume
w.l.o.g. that λ1 = · · · = λk = t and λk+1 = · · · = λn = 0. From this we can write the equation (5.16)
as

k(k − 1)t4 = 0,
from which we infer k = 1, and thus the claim.

We show now how the ratio p/q is bounded near the zeros of p and q. By symmetry, it is enough
to consider the limit for λ→ e1. Now we write µ := λ− e1, so that we can study the limit as µ→ 0.
Denoting p̃(µ) := p(e1 + µ), q̃(µ) := q(e1 + µ), we easily obtain

p̃(µ) = 2
n∑
j=2

µ2
j +O(|µ|3), q̃(µ) =

n∑
j=2

µ2
j +

 n∑
j=2

µj

2

+O(|µ|3),

where O(|µ|k) is a quantity which satisfies |O(|µ|k)| ≤ C(n, k)|µ|k. Therefore we can rewrite the ratio
as

p̃(µ)
q̃(µ) = 2 +O(|µ|)

1 +R(µ) +O(|µ|) ,

where R satisfies

0 ≤ R(µ) =

(∑n
j=2 µj

)2

∑n
j=2 µ

2
j

≤ C(n),

from which we easily deduce the upper and lower bounds.
Boundedness near the zeros. We study now the behaviour of the ratio p(λ)/q(λ) when λ approaches
the values ±

√
κe. Again, by symmetry it is enough to study the limit at

√
κe. We write µ := λ−

√
κe,

and define again p̃(µ) := p(
√
κe1 + µ), q̃(µ) := q(

√
κe1 + µ). A straight computation for p̃ shows:

p̃(µ) =
∑
i 6=j

((
µi +

√
κ
)(
µj +

√
κ
)
− κ

)2 =
∑
i 6=j

(√
κ(µi + µj) + µiµj

)2
= κ

∑
i 6=j

(µi + µj)2 +O(|µ|3) = κ
n∑
i=1

n∑
j=1
j 6=i

µ2
i + 2µiµj + µ2

j +O(|µ|3) = 2κ(n− 2)|µ|2 +O(|µ|3).

For q̃ we have a similar expression:

q̃(µ) =
n∑
i=1

(µi +
√
κ
)∑
j 6=i

(
µj +

√
κ
)
− (n− 1)κ

2

=
n∑
i=1

√κ
(n− 1)µi +

∑
j 6=i

µj

+O(|µ|2)

2

=
n∑
i=1

(√
κ((n− 2)µi +H(µ)) +O(|µ|2)

)2
= κ

n∑
i=1

((n− 2)µi +H)2 +O(|µ|2)

= (n− 2)2κ|µ|2 + (3n− 4)κH(µ)2 +O(|µ|3),
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where again H(µ) =
∑
i µ. From these computations we can easily deduce the lemma. Indeed,

p̃(µ)
q̃(µ) = 2 +O(|µ|)

n− 2 +R(µ) +O(|µ|) ,

where

0 ≤ R(µ) = (3n− 4)H(µ)2

(n− 2)|µ|2 ≤ C(n),

and the lemma is proved. �

5.3. Conclusion. Corollary 5.8 is not enough to conclude the estimate, because the Ricci operator
seen as differential operator on f is not elliptic. We shall conclude the proof of Theorem 1.5 and
Theorem 1.6 with an idea, that reduces it to an application of Theorem 1.3. First of all, let us show an
easy corollary of 5.8.

Corollary 5.11. Under the hypothesis of Corollary 5.8, we have the inequality:

|R− n(n− 1)| ≤ C(n, p, c0)ε.

Proof. The proof has basically already been given in [19, Lemma 3.7]. Indeed, although we lack the
convexity assumption, from the C1-closeness we are still able to obtain [19, Equation (3.29)]

(5.17) R = n(n− 1)− 2(n− 1)(∆σf + f) + (∆f)2 − |∇2f |2 +R,

where R satisfies
|R| ≤ Cε

(
|f |+ |∇f |+ |∇2f |

)
.

Since ∣∣∣∣ˆ
Sn
R
∣∣∣∣ ≤ C(n, p, c0)ε,

we integrate (5.17) and obtain the corollary. �

Now we can complete the proof of Theorem 1.5 and Theorem 1.6.

Proof of Theorem 1.5. This will follow directly by the proof of Theorem 1.3. Indeed, in this case the
strict convexity is translated into an inequality between the traceless Ricci and the traceless second
fundamental form, that we would not normally have. Contracting the indices in (5.1), we have the
equation:

Ricij = Hhij − hikhkj .
Let then λ1 ≤ · · · ≤ λn be the eigenvalues of h. Then the Ricci tensor has eigenvalues Λ1, . . .Λn which
satisfy the following equality:

Λj = λj
∑
j 6=k

λk, ∀j = 1, . . . , n.

By assumption (1.7), we know that λj ≥ Λ for every j = 1, . . . , n, and this allows us to perform the
following estimate:

|R̊ic|2 =
∑
i 6=j
|Λi − Λj |2 =

∑
i 6=j

 ∑
k 6=i, j

λk

2

|λi − λj |2 ≥ (n− 2)2Λ2∑
i 6=j
|λi − λj |2 = (n− 2)2Λ2 |̊h|2,

from which we deduce
‖̊h‖Lp(Σ) ≤ C(n, p, Λ)‖R̊ic‖Lp(Σ).

This shows how in the strictly convex case, having small Lp-norm of the traceless Ricci tensor implies
having small Lp-norm of the traceless second fundamental form.

We choose δ0 sufficiently small so that the hypothesis of 1.3 holds, and thus we find a vector c = c(Σ)
such that the associated radial parametrization ψ : Sn −→ Σ− c satisfies

‖ψ − Id‖W 2, p(Sn) ≤ C‖̊h‖Lp ≤ C‖R̊ic‖Lp(Σ),

as desired. �
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Proof of Theorem 1.6. Let us write R = n(n− 1)κ, and assume |κ− 1| ≤ 1
2 .

We denote with λ1 ≤ · · · ≤ λn the eigenvalues of h and we consider κ := 1
n(n−1)R. As proved in

Corollary 5.11, we can choose δ ≤ δ0 so that κ is between 1/2 and 2. Then, given Proposition 5.5, we
rewrite inequality (5.2) in terms of the eigenvalues of h and obtain

(5.18) ‖λiλj − κ‖Lp ≤ C‖R̊ic‖Lp , ∀ i 6= j.

From (5.18), we easily infer for every k = 1, . . . , n

(5.19) ‖λk(λi − λj)‖Lp ≤ C‖R̊ic‖Lp .

Now, for every 0 < Λ2 < κ, we define

EΛ := { q ∈ Σ : | λn(q)| > Λ } .

We use the set EΛ and its complement in order to perform an estimate on the difference |λi − λj |.
Indeed, since λ1 ≤ · · · ≤ λn ≤ Λ for every q ∈ EcΛ, we get the bounds

|κ− Λ2| |EcΛ|
1
p ≤ ‖λiλj − κ‖Lp(EcΛ) ≤ C‖R̊ic‖Lp ,

which hold for every i 6= j and 0 < Λ2 < κ. Thus we have found

(5.20) |EcΛ|
1
p ≤ C

|κ− Λ2|
‖R̊ic‖Lp .

On the other hand, for any i, j = 1, . . . n− 1, i 6= j we find:

‖λi − λj‖Lp(EΛ) ≤
1
Λ ‖λn(λi − λj)‖Lp(EΛ)

(5.19)
≤ C

Λ ‖R̊ic‖Lp ,

which gives us

(5.21) ‖λi − λj‖Lp(EΛ) ≤
C

Λ ‖R̊ic‖Lp .

Combining (5.20) and (5.21) we obtain

(5.22) ‖λi − λj‖Lp ≤ C
( 1

Λ + 1
|κ− Λ2|

)
‖R̊ic‖Lp .

This estimate holds for every i 6= j, i, j = 1, . . . n− 1 and for every 0 < Λ2 < κ. Equation (5.22) is
not sufficient to conclude, because it does not give an estimate on the quantity |λn − λj |. This is the
only quantity that prevents this proof to give a linear estimate in (1.11), forcing us to introduce the
exponent α. Indeed, to deal with |λn − λj |, we define

ẼΛ := { q ∈ Σ | |λn−1(q)| > Λ } .

With the very same considerations used to deduce (5.20), we obtain

(5.23)
∣∣∣ẼcΛ∣∣∣ 1

p ≤ C

κ− Λ2 ‖R̊ic‖Lp .

Now we fix q ∈ (n, p). Then, via Hölder inequality we get

(5.24) ‖λn − λj‖Lq(ẼcΛ) ≤ C(n, p, c0)‖R̊ic‖αLp ,

where α is defined as in Theorem 1.6. Combining (5.23) with (5.24), we obtain

(5.25) ‖λn − λj‖Lq ≤ C
( 1
|κ− Λ2|

+ 1
)
‖R̊ic‖αLp .

Choosing Λ =
√

κ
2 and plugging together (5.22) and (5.25), we deduce

‖̊h‖Lq ≤
C√
κ
‖R̊ic‖αLp ≤

√
2C‖R̊ic‖αLp .

We are thus under the assumptions of Theorem 1.3, which provide a radial parametrization ψ : Sn −→ Σ,
ψ = ef Id, and a vector c = c(Σ) such that 1.11 holds. �
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6. Appendix

Proof of Proposition 2.5 and Lemma 5.9. We recall the equations we are going to study.
∇HF = divSF .(6.1)

∇R = 2n
n− 2 div R̊ic,(6.2)

These equations present clear similarities, since they are all variations of the equation
∇u = div f

in a closed manifold. In both cases, an immediate but naive covering argument may show the existence
of a number λ such that
(6.3) ‖u− λ‖Lp(M) ≤ C(M)‖f‖Lp(M).

The problem in such argument is that we do not only have to obtain an estimate, but also to keep an
eye on the constant C, which in our case has to depend only on general parameters. We are going
to show an improved estimate which is basically (6.3), but gives a better control on the bounding
constant. The technique we are going to use has been used and developed in [31], where the author
deals with the isotropic version of equation (6.1). Considered the massive use we are making of this
type of estimates and ideas throughout the paper, we have decided to report the proof. We split it
into the following steps.

• We show by direct computation in graph parametrisation how the two equations can be written
as particular cases of a more general lemma.
• We obtain a local estimate of our desired inequality, with the bounding constant depending on
determined parameters.
• We show how to make the local estimate global without losing the information on the bounding
constant.

Step 1: Unifying the equations. We recall that from Lemma 2.4, if M = Graph(u, Bn) is a smooth
graph, then the following formulas hold:

gij = δij + ∂iu ∂ju(6.4)

gij = δij − ∂iu ∂ju

1 + |∂u|2(6.5)

dVg =
√

1 + |∂u|2 dx(6.6)

gΓkik = vkhij , where v = ∂u√
1 + |∂u|2

.(6.7)

We compute the divergence term of equations (6.1), (6.2) in graph parametrisation, and notice how
this does not depend on Christoffel symbols.
(6.1) Firstly, we need to prove that equation (6.1) holds. This follows from the computation below.

For notation simplicity, we drop the subscript F from (SF )ij = Sij and (AF )ij = Aij :

divg Sk = ∇iSik = ∇i
(
Aip

∣∣∣
ν
hpk

)
= ∇i

(
Aip

∣∣∣
ν

)
hpk + Aip

∣∣∣
ν
∇ihpk

= DqA
i
p

∣∣∣
ν
hqih

p
k + Aip

∣∣∣
ν
∇ihpk = DpA

i
q

∣∣∣
ν
hqih

p
k + Aip

∣∣∣
ν
∇phik

= ∇k
(
Aip

∣∣∣
ν
hpi

)
= ∇kHF .

Now we notice how also the last divergence term can be written as a flat divergence. We find
divg Sk = ∇iSik = ∂iS

i
k + ΓiipS

p
k − ΓpikS

i
p = ∂iS

i
k + vihipS

p
k − v

phikS
i
p

= ∂iS
i
k + vihipA

p
qh
q
k − v

phikA
q
ph
i
q = ∂iS

i
k + viApq(hiphqk − hpkhqi)

= ∂iS
i
k + vihiphqk(Apq −Aqp) = ∂iS

i
k.

(6.2) We compute the divergence term in equation (6.2). Firstly we compute the divergence of the
Ricci tensor:
∇i Ricik = ∂i Ricik +Γiip Ricpk−Γpik Ricip = ∂i Ricik +vihip Ricpk−v

phik Ricip
= ∂i Ricik +vihip

(
Hhpk − h

p
qh
q
k

)
− vphik

(
Hhip − hiqhqp

)
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= ∂i Ricik +H
(
vihiph

p
k − v

phikh
i
p

)
︸ ︷︷ ︸

=vihiphpk−vihpkh
p
i=0

+
(
vphikh

i
qh
q
p − vihiphpqh

q
k

)
︸ ︷︷ ︸

=vp(hikhiqh
q
p−hpqhqih

i
k
)=0

= ∂i Ricik .

Now we write R̊icij = Ricij −R
n δ

i
j , and notice that δ is a symmetric tensor. The computation of

it is identical to the previous one, and we are done.
Lastly we write in graph chart ∇f = ∂f , since at the first order the Levi-Civita coincides with the
classical derivations. These computations show how we have reduced the two problems to the following:

Lemma 6.1. Let M ⊂ Rn+1 be a closed hypersurface. Assume Σ has fixed volume V and satisfies the
assumptions of Lemma 2.2, i.e. admits two numbers L and R such that around every q ∈ Σ we can
find a chart defined on the ball BnR, which is the graph of a smooth, L-Lipschitz function uq. Assume
there are u : M −→ R, f ∈ Γ(T ∗M ⊗ T ∗M) that satisfy a differential relation which in every graph
parametrisation at every point admits the following form:

(6.8) ∂ku = ∂if
i
k in BnR.

Then there exists a λ ∈ R, such that the following estimate holds.

‖u− λ‖Lp(M) ≤ C(n, p, V, R, L)‖f‖Lp(M).

Notice that in both cases we are studying, the manifold M satisfies the assumptions of Lemma 2.2,
as explained in Remark 2.3. These will be crucial in the proof. In the next step, we prove Lemma 6.1.

Step 2: Obtaining local estimates: Proof of Lemma 6.1. We begin by working in the graph, and observe
that u has to satisfy the equation:

∆δu = ∂k∂if
i
k,

where ∆δ is the flat laplacian. The estimate for this equation follows by applying the classic Calderon-
Zygmund theorem (See [31, Prop. 1.11] for a detailed proof in this particular case). We find a constant
C0 := C(n, p) and a number λ such that

(6.9) ‖u− λ‖Lp(Bn
R/2) ≤ C0‖f‖Lp(BnR)

Estimate (6.9) is almost what we want. It is indeed a local estimate, but it concerns all Euclidean
quantities. We show how to swap Euclidean measures with manifold metrics, and how to substitute
Euclidean balls with geodesic balls.

The first follows easily from equation (6.6) and Remark (2.3). Since Lip(u) ≤ L, we obtain indeed

dx ≤
√

1 + |∂u|2 dx = dVg ≤
√

1 + L2 dx.

Thus the measures are equivalent, and the control constants depend only on L. The same constant L
controls the switch from the Euclidean metric δ to the metric g.

Now Lemma 2.2 allows us to pass from Euclidean to geodesic balls and grants our privileged covering
of balls. In particular, we obtain the existence of a radius R such that

min
λ∈R
‖u− λ‖Lp(Bgr (q)) ≤ C(n, p, V, L, R)‖f‖Lp(M), for every 0 < r ≤ R.

Step 3: Making the estimate global. To make the estimate global, we follow the technique used in [31,
p. 6-7] and prove the following lemma.

Lemma 6.2. Let M be a closed manifold, with fixed volume Voln(M) = V . Suppose u ∈ C∞(M) has
the following property. There is a radius ρ such that for every x ∈M the following local estimate is
satisfied:

(6.10) ‖u− λ(x)‖Lp(Bgr (x)) ≤ β,

where λ(x) is a real number depending on x, r ≤ 2ρ and β does not depend on x. Then there exists
λ ∈ R such that

‖u− λ‖Lp(M) ≤ C(n, ρ, V )β.

Proof. We choose a finite covering of balls { (Bg
j , λj) }

N

j=1 which satisfies the following properties. Every
ball Bg

j has radius 2ρ, estimate (6.10) holds with λj , and for every j, k there exists a ball of radius ρ
contained in Bg

j ∩B
g
k .
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Therefore, given two balls Bg
j and Bg

k whose intersection is non empty, we have:

|λj − λk| =
1

Voln(Bg
j ∩B

g
k)

1
p

‖λj − λk‖Lp(Bgj∩B
g
k

) = 1
Voln(Bg

j ∩B
g
k)

1
p

‖λj − u + u− λk‖Lp(Bgj∩B
g
k

)

≤ 1
Voln(Bg

j ∩B
g
k)

1
p

(
‖u− λk‖Lp(Bgj∩B

g
k

) + ‖u− λk‖Lp(Bgj∩B
g
k

)

)
≤ 2β

Voln(Bg
j ∩B

g
k)

1
p

.

Using the properties of the covering we obtain

|λj − λk| ≤ 2 Voln(Bg
ρ)−

1
pβ.

Define λmin := min1≤j≤n λj and λmax := max1≤j≤n λj . Consider a path joining the ball in the cover
with λmin to the one with λmax. Since this path can cross at most N different balls, we obtain

|λmax − λmin| ≤ 2N Voln(Bg
ρ)−

1
pβ = C(n, p, ρ)β.

For every λmin ≤ λ ≤ λmax we have

‖u− λ‖Lpσ(Sn) ≤
N∑
j=1
‖u− λ‖Lpσ(Bgj ) ≤

N∑
j=1
‖u− λj + λj − λ‖Lpσ(Bgj )

≤
N∑
j=1
‖u− λj‖Lpσ(Bgj ) + |λj − λ|Voln(Bg

j )−
1
p

≤
N∑
j=1
‖u− λj‖Lpσ(Bgj ) + |λmax − λmin|Voln(Bg

j )−
1
p ≤ C2(n, p, ρ)β

and the proof of Lemma 6.2 is completed. �
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