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Abstract

We consider, in an open subset Ω of RN , energies depending on the perimeter of a subset

E ⊂ Ω (or some equivalent surface integral) and on a function u which is defined only on

E. We compute the lower semicontinuous envelope of such energies. This relaxation has

to take into account the fact that in the limit, the “holes” Ω \ E may collapse into a

discontinuity of u, whose surface will be counted twice in the relaxed energy. We discuss

some situations where such energies appear, and give, as an application, a new proof of

convergence for an extension of Ambrosio-Tortorelli’s approximation to the Mumford-Shah

functional.

1 Introduction

In this paper we consider energies defined on pairs function/open subset of Rn, of the form

F (u, E) =
∫

E

f(∇u) dx +
∫

∂E

ϕ(ν) dHn−1,

with interacting bulk and surface energies. Here E is though to be smooth enough (e.g., with
Lipschitz boundary) so that ∂E coincides Hn−1-a.e. with the essential boundary of E; i.e., with
the interface between the ‘interior’ and ‘exterior’ of E, and u ∈ W 1,p(Ω; Rm). Energies of this
type arise in physical problems for example when dealing with small drops or thin films, when
bulk and surface energies can be thought to be of the same order (see, e.g., [7] for a variational
problem set in this framework).

Functionals as F appear also in some disguised form in many problems related to variational
models in Image Segmentation, such as that by Mumford and Shah [18, 19]. A particularly
successful approach to deal with such problems has proven to be the application of the direct
methods of the Calculus of Variations in the framework of the special functions of bounded varia-
tion to obtain existence and regularity results. In order to apply these existence results to Image
Segmentation problems a further step is necessary, of approximating free-discontinuity energies,
containing competing bulk and surface integrals, by energies to which numerical methods can
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be more easily applied. This has been done in many different ways, using elliptic energies with
an additional variable, finite-difference energies, non-local integrals, etc. A commom pattern
can be traced in all those approximations, that start from an ansatz on the desired form of an
‘approximate solution’. While it is easily seen, by construction of the approximating energies,
that the candidate approximate solutions give the desired limit energy, it is less immediate to
check that this behaviour is ‘optimal’. To prove this fact (in the language of Γ-convergence we
would call this the ‘liminf inequality’) a crucial point is, given an arbitrary sequence of minimiz-
ers, to distinguish sets in which the approximating energies computed on these functions behave
as ‘bulk energies’, and complementary sets which we may regard as ‘blurred’ discontinuity sets
(typically these are sets where ‘gradients are high’). This point can be rephrased as comparing
the candidate approximating energies with an energy as F above defined on pairs function-set,
whose form is in general dependent only on the ‘target’ free-discontinuity energy. In the case
of the Mumford and Shah functional

MS(u) =
∫

Ω

|∇u|2 dx +Hn−1(S(u) ∩ Ω)

(S(u) denotes the set of discontinuity points of u), we often end up with energies of the form

F̃ (u, E) = a

∫
Ω\E

|∇u|2 dx + bHn−1(Ω ∩ ∂E).

The ‘liminf inequality’ is then rephrased in terms of the lower semicontinuous envelope of F̃ ,
and an optimization on the constants a and b. This remark is essentially already contained
in a paper by Bourdin and Chambolle [8], but therein it is not stated explicitly in terms of a
relaxation result, and is obtained by applying more elaborated approximation results.

Note that at fixed E the functional F (·, E) is weakly lower semicontinuous on W 1,p, provided
some standard convexity and growth conditions on f are required, and that, at fixed u, F (u, ·)
can be extended to a lower semicontinuous energy on sets with finite perimeter if ϕ is a norm.
On the contrary, the functional defined on pairs (u, E) is not lower semicontinuous. Loosely
speaking, if (uj , Ej) is a sequence with equi-bounded energy and converging to some (u, E),
the limit u may be discontinuous on Ω \ E, and its set of discontinuity points S(u) may be
the limit of a portion of ∂Ej . In this paper we compute the lower-semicontinuous envelope of
functionals F in a direct way, and characterize it in the whole class of pairs (u, E), where E is
a set of finite perimeter and u is such that u(1 − χE) belongs to the space GSBV (Ω; Rm) of
Ambrosio and De Giorgi’s generalized special function of bounded variation (Theorem 2). We
show that it takes the form

F (u, E) =
∫

Ω\E
f(∇u) dx +

∫
∂∗E∩Ω

ϕ(ν) dHn−1 +
∫

S(u)∩Ω∩E0

ϕ̃(ν) dHn−1,

where E0 denotes the points of density zero of E and ϕ̃(ν) = ϕ(ν) + ϕ(−ν). The result
is proved by providing separately a lower bound and an upper bound. The lower bound is
obtained by reducing to the one dimensional case through Ambrosio’s slicing techniques. The
crucial technical point is here to check that, loosely speaking, for almost all directions, the
traces of one-dimensional sections of E have density 0 on the jump set S(u) precisely on the
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intersection of E0 and S(u) (Lemma 5). The upper bound is obtained by a direct construction
if S(u) is smooth enough, and by approximation in the general case. We show two ways to
obtain such an approximation. The first one (Lemma 12) consists in applying a ‘strong SBV
approximation’ result by Braides and Chiadò Piat [11] to a suitable modification of the function
u(1−χE), and then construct optimal pair from this sequence of approximating functions. The
second one (Remark 13) uses a mollification argument for approximating the set E first, and
then the coarea formula to select approximating sets, on which then to obtain an approximation
of the target u.

As applications of this result, we first give an approximation of the Mumford-Shah energy
by a sequence of functions defined on pairs set-functions, by noting that F (u, E) reduces to
a functional on GSBV (Ω) when E = ∅, so that E0 = Ω. Subsequently, we give a different
proof of Ambrosio-Tortorelli’s elliptic approximation result [5]. At the same time we provide a
generalization by replacing their one-well potential by perturbed double-well potentials, which
give a different smoother form of the optimal profile of solutions. This result formalizes a
method that has already been used by Braides and March [13] to obtain minimizing sequences
bounded in H2 for problems in which a term penalizing the curvature of the discontinuity
set is added. Finally, we outline applications to the study of crystalline films on a substrate
and to water waves. As an interesting additional object for perspective work, we mention
the interaction with boundary conditions and microgeomerty, that would lead to interesting
problems of homogenization, as shown by Alberti and De Simone [1] already in the case when no
bulk term is present. As a final bibliographical information, the results in this paper concerning
the Ambrosio-Tortorelli approximation previously circulated in the form of the manuscript [14].

2 The relaxation result

Let f : Rm×n → R be a quasiconvex function satisfying the growth condition

c1(|ξ|p − 1) ≤ f(ξ) ≤ c2(1 + |ξ|p)

for some positive constants c1 and c2, and p > 1, and let ϕ : Rn → [0,+∞) be a convex and
positively homogeneous function of degree one, with ϕ(z) > 0 if z 6= 0. For every u ∈ L1(Ω)
and E measurable subset of Ω, we define

F (u, E) =


∫

Ω\E
f(∇u) dx +

∫
Ω∩∂E

ϕ(νE) dHn−1 if u ∈ H1(Ω; Rm) and ∂E Lipschitz

+∞ otherwise,

where νE denotes the interior normal to E.
We will prove the following relaxation theorem, in whose statement we adopt standard nota-

tion for generalized functions of bounded variations (see [4]); in particular, S(u) and νu denote
the set of essential discontinuity points of u and its measure-theoretical normal, respectively.
We say that Ej → E if χEj

→ χE in L1(Ω); M(Ω) denotes the family of measurable subsets of
Ω and GSBV (Ω; Rm) the space of Rm-valued generalized special functions of bounded variation
on Ω.
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Theorem 1. The lower-semicontinuous envelope of the functional F , with respect to the
L1(Ω; Rm) × L1(Ω; Rm) topology, is the functional F : L1(Ω; Rm) ×M(Ω) → [0,+∞] defined
as:

F (u, E) =



∫
Ω\E

f(∇u)dx +
∫

Ω∩∂∗E

ϕ(νE) dHn−1 +
∫

Ω∩S(u)∩E0

(ϕ(νu) + ϕ(−νu)) dHn−1

if uχE0 ∈ GSBV (Ω; Rm)

+∞ otherwise,

where ∂∗E is the reduced boundary of E and E0 is the set of the points where E has density 0.
Furthermore, if 0 < |E| ≤ |Ω| then for every pair (u, E) there exists a recovery sequence

(uj , Ej) such that limj F (uj , Ej) = F (u, E) and |Ej | = |E|.

The proof of Theorem 1 will be given in Sections 3 and 4, by showing, respectively, a
lower and an upper inequality. The proof will be given in detail in the case when m = 1,
f(∇u) = a|∇u|2 and ϕ(z) = b|z|/2 (so that ϕ(ν) + ϕ(−ν) = b if |ν| = 1) not to overburden
notation, while the extension of the proof to the general case is given at the end of each section.

3 The lower inequality

For every u ∈ L1(Ω) and E measurable subset of Ω, we define

F (u, E) =


a

∫
Ω\E

|∇u|2dx +
b

2
Hn−1(Ω ∩ ∂E) if u ∈ H1(Ω) and ∂E Lipschitz

+∞ otherwise,

where a, b are positive parameters. For this choice of F Theorem 1 reads as follows.

Theorem 2. The lower-semicontinuous envelope of the functional F with respect to the L1(Ω)×
L1(Ω) topology, is the functional F : L1(Ω)×M(Ω) → [0,+∞] defined as:

F (u, E) =


a

∫
Ω\E

|∇u|2dx +
b

2
Hn−1(∂∗E ∩ Ω) + bHn−1(S(u) ∩ Ω ∩ E0)

if uχE0 ∈ GSBV (Ω)

+∞ otherwise,

where ∂∗E is the reduced boundary of E and E0 is the set of the points where E has density 0.

In order to prove a lower bound for the relaxation of F we will use the ‘slicing’ method
(see [10] Chapter 15) that allows to reduce to the study of energies defined on one-dimensional
sections. To this end we will need to define as customary the ‘localized’ versions of our energies
as follows. For every u ∈ L1(Ω), E measurable subset of Ω, and for every A open subset of Ω,
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we define

F (u, E;A) =


a

∫
A\E

|∇u|2dx +
b

2
Hn−1(∂E ∩A) if u ∈ H1(Ω) and ∂E Lipschitz

+∞ otherwise.

Similarly, we define F (u, E;A).
Setting, for every u ∈ L1(Ω), E ∈M(Ω) and A open subset of Ω :

F ′(u, E;A) = inf
{
lim inf
j→∞

F (uj , Ej ;A) : uj → u, Ej → E in L1(Ω)
}
,

we show the following inequality:

F ′(u, E;A) ≥ F (u, E;A). (1)

This corresponds to proving the following

Proposition 3. Let u ∈ L1(Ω), E ∈ M(Ω) and A be an open subset of Ω. For every sequence
{(uj , Ej)} in L1(Ω)×M(Ω), such that uj → u and Ej → E in L1(Ω) :

lim inf
j→+∞

F (uj , Ej ;A) ≥ F (u, E;A).

Proof. We start by stating the result concerning the one-dimensional functionals.

- The lower inequality in the 1-dimensional case

Let I ⊂ R be an interval, u ∈ L1(I) and let E be a measurable subset of I. Let {uj} be a
sequence in L1(I), and let {Ej} be a sequence of measurable subsets of I, such that

uj → u in L1(I) and Ej → E as j → +∞.

We can assume supj F (uj , Ej ; I) ≤ c; then, uj ∈ H1(I), the number of the connected
components of Ej is uniformly bounded, and we can find a finite set S = {s1, . . . , sL} ⊂ E0, a
finite set of intervals {[a1, b1], . . . , [aM , bM ]} and a subsequence (not relabelled) such that

∀ η > 0 ∃j ∈ N ∀ j ≥ j : Ej ⊂
L⋃

i=1

[si − η, si + η] ∪
M⋃
i=1

[ai − η, bi + η].

In particular, we can assume E =
⋃M

i=1[ai, bi]. Then, setting Λη =
⋃L

i=1[si − η, si + η] and
Eη =

⋃M
i=1[ai − η, bi + η] : ∫

I\(Λη∪Eη)

|u′j |2dx ≤ c;

by the arbitrariness of η > 0, it follows that u ∈ H1((I \ E) \ S), hence u ∈ SBV (I \ E) and
S(u) ∩ E0 ⊂ S. This allows to conclude

lim inf
j→+∞

F (uj , Ej ; I) ≥ F (u, E; I). (2)

It is easy to check that for every J open subset of I :

lim inf
j→+∞

F (uj , Ej ; J) ≥ F (u, E; J). (3)

5



- The lower inequality in the n-dimensional case.
We recall some definitions and properties related to the slicing procedure. For every ξ ∈

Sn−1 let Πξ be the (n− 1)-dimensional linear subspace of Rn orthogonal to ξ. If B ⊆ Rn then
Bξ be the orthogonal projection of B on Πξ. For every y ∈ Bξ set Bξy = {t ∈ R : y + tξ ∈ B}.
If f : B → R let fξy : Bξ,y → R be defined by fξ,y(t) = f(y + tξ).

The following results hold [4]:

(i) Let u ∈ GSBV (Ω) and let Dku stand for any of Da, Dj or Dc (the absolutely continuous,
jump or Cantor part of the derivative). Then, for every ξ ∈ Sn−1 and forHn−1-a.e. y ∈ Ωξ

we have uξy ∈ GSBV (Ωξy); moreover, denoting by 〈Dku, ξ〉 the component of Dku along
ξ, the following representation holds:∫

B

〈Dku, ξ〉 =
∫

Bξ

Dkuξy(Bξy)dHn−1(y).

(ii) Let u ∈ L1(Ω); assume that uξy ∈ SBV (Ωξy) for every ξ in a basis of Rn and for a.e.
y ∈ Ωξ, and that ∫

Ωξ

|Duξy|(Ωξy)dHn−1(y) < +∞.

Then u ∈ SBV (Ω).

Before proceeding in the proof we recall a result concerning the supremum of a family of
measures (see [10] Lemma 15.2)

Proposition 4. Let Ω be an open subset of Rn and µ a finite, positive set function defined
on the family of open subsets of Ω. Let λ be a positive Borel measure on Ω, and {gi}i∈N a
family of positive Borel functions on Ω. Assume that µ(A) ≥

∫
A

gi dλ for every A and i, and
that µ(A ∪ B) ≥ µ(A) + µ(B) whenever A,B ⊂⊂ Ω and A ∩ B = ∅ (superadditivity). Then
µ(A) ≥

∫
A

(
supi gi) dλ for every A.

Moreover, we will use the following property.

Lemma 5. Let Γ ⊂ E0 be a (n − 1)-rectifiable subset, ξ ∈ Sn−1 such that ξ is not orthogonal
to the normal νΓ to Γ at any point of Γ; then, for almost every y ∈ Πξ, for every t ∈ Γξy, Eξy

has density 0 in t.

Proof of Lemma 5. Since Γ is contained in a countable union of C1-hypersurfaces, up to
localization on one of those surfaces and a deformation argument, we can assume Γ ⊂ Πξ.

We set:
Γk =

{
y ∈ Γ : Θ(0, Eξy) ≥ 1

k

}
, Γ+ =

⋃
k∈N

Γk,

where Θ(0, Eξy) denotes the (one-dimensional) density of the set Eξy in 0.

Let us assume by contradiction, that Hn−1(Γ+) > 0. Then, there exists k such that
Hn−1(Γk) > 0. Since Γk ⊂ E0, Lebesgue’s dominated convergence theorem gives (up to subse-
quences):

lim
%→0

∫
Γk

|E ∩Qξ
%(x)|

%n
dHn−1(x) = 0.
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Then

0 = c(ξ) lim inf
%→0

1
%n−1

∫
Γk

∫
Γk∩Qξ

%(x)

|Eξy ∩ (−%/2, %/2)|
%

dy dx

= c(ξ) lim inf
%→0

1
%n−1

∫
Γk

∫
Γk∩Qξ

%(y)

|Eξy ∩ (−%/2, %/2)|
%

dx dy

= c(ξ) lim inf
%→0

∫
Γk

( 1
%n−1

|Γk ∩Qξ
%(y)|

) |Eξy ∩ (−%/2, %/2)|
%

dy

≥ c(ξ)
∫

Γk

lim inf
%→0

|Eξy ∩ (−%/2, %/2)|
%

dy ≥ c(ξ)
Hn−1(Γk)

k
,

where c(ξ) is a positive constant depending on the angle between ξ and νΓ; this gives the
contradiction.

Now we apply the slicing method to complete the proof of Proposition 3.
Let φ and φ denote the one dimensional versions of the functionals F and F , respectively.

For every ξ ∈ Sn−1 we define F ξ : L1(Ω)×M(Ω)×A(Ω) → [0,+∞] as

F ξ(v,B;A) =
∫

Πξ

φ(vξ,y, Bξ,y;Aξ,y) dHn−1(y).

Note that F ≥ F ξ for every ξ.

An application of the Fatou Lemma and the one dimensional inequality (3) give

F ′(u, E;A) ≥ F
ξ
(u, E;A),

where, for v ∈ L1(Ω) and B ∈ P(Ω) :

F
ξ
(v,B;A) =

∫
Πξ

φ(vξy, Bξy;Aξy) dHn−1(y).

Thus, if F ′(u, E;A) is finite, it follows that Eξy is a finite union of intervals which we can
suppose closed, and that uξy ∈ SBV (Aξy \ Eξy) for a.a. y in Πξ; moreover∫

Πξ

( ∫
Aξy\Eξy

|(uξy)′|2dt +H0((S(uξy) ∩ (Eξy)0 ∩Aξy))
)
dHn−1(y) < +∞.

Then, if in addition u ∈ L∞(Ω), we get∫
Πξ

|D(uξy)|(Aξ,y \ Eξy)dHn−1(y) < +∞.

Recalling (ii), we deduce that, assuming u ∈ L∞(Ω), if F ′(u, E;A) is finite, then uχE0 ∈
SBV (A). A truncation argument allows to conclude that F ′(u, E;A) is finite only if uχE0 ∈
GSBV (A); in order to conclude applying (i), we need to prove that S(uξy)∩(E0)ξy ⊂ (S(uξy)∩
Eξy)0; this follows from Lemma 5, with Γ = S(u) ∩ E0 ∩ {〈ξ, νu〉 6= 0} Now, recalling (i), we
get:

F
ξ
(u, E;A) = a

∫
A

|〈∇u, ξ〉|2dx + b

∫
A∩S(u)∩E0

|〈νu, ξ〉|dHn−1 +
b

2

∫
A∩∂∗E

|〈νE , ξ〉|dHn−1.
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Since, if uχE0 ∈ GSBV (A), the set function F ′(u, E; ·) is superadditive on disjoint open sets,
an application of Proposition 4 with λ = Ln +Hn−1 (S(u) ∩ E0) +Hn−1 ∂∗E, and

gi(x) =


a|〈∇u, ξi〉|2 if x ∈ Ω \

(
(S(u) ∩ E0) ∪ ∂∗E

)
b|〈νu, ξi〉| if x ∈ S(u) ∩ E0
b
2 |〈νE , ξi〉| if x ∈ ∂∗E,

where {ξi} is a dense sequence in Sn−1 such that 〈ξi, νu〉 6= 0 Hn−1-a.e. on S(u) ∩ E0, gives

F ′(u, E;A) ≥ F (u, E;A)

as desired.

Remark 6. The same proof allows to treat the case when m ≥ 1

F (u, E;A) =


c

∫
A\E

‖∇u‖pdx +
∫

∂E∩A

ϕ(νE)dHn−1 if u ∈ W 1,p(Ω; Rm) , ∂E Lipschitz

+∞ otherwise.

where ‖∇u‖ = sup{∇uξ : |ξ| = 1} and c is a positive constant, obtaining the lower inequality
with F as in the thesis of Theorem 1. The necessary modifications to the slicing procedure are
standard and can be found in [9] Section 4.1.2.

Remark 7. For general quasiconvex f as in Theorem 1 we may consider the lower semicon-
tinuous functional [4] on GSBV (Ω; Rm) defined by

G(v;A) =
∫

A

f(∇v) dx + cHn−1(S(v)).

If uj → u and Ej → E we have, setting vj = uj(1− χEj
) and v = u(1− χE)

lim inf
j

F (u, E;A) ≥ lim inf
j

(
G(vj , A)− |A ∩ Ej |f(0)

)
≥ G(v,A)− |A ∩ E|f(0)

=
∫

A

f((1− χE)∇u) dx + cHn−1(S(v))− |A ∩ E|f(0)

≥
∫

A\E
f(∇u) dx.

Note that this identification of F with G gives a lower bound that is optimal for the bulk term
but not for the surface energy.

Remark 8 (Proof of the lower bound in the general case). Let now F be defined as in
Theorem 1 and let u and E be such that uχE0 ∈ GSBV (Ω; Rm) and F ′(u, E;A) < +∞. By
the growth conditions on f and Remark 6 we then have

F ′(u, E;A) ≥
∫

A∩∂∗E

ϕ(νE) dHn−1 +
∫

A∩S(u)∩E0

(ϕ(νu) + ϕ(−νu)) dHn−1;
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by Remark 7 on the other hand we obtain

F ′(u, E;A) ≥
∫

A\E
f(∇u) dx.

We can define apply Proposition 4 with µ(A) = F ′(u, E;A), the measure λ defined by λ(A) =
|A|+Hn−1(A∩(S(u)∩E0))+Hn−1(A∩∂∗E), g1(x) = f(∇u)χE0\S(u) and g2(x) = ϕ(νE)χ∂∗E +
(ϕ(νu) + ϕ(−νu))χS(u)∩E0 , to obtain the lower inequality in the general case.

4 The upper inequality

In order to give an upper estimate, we introduce, for every u ∈ L1(Ω), E ∈M(Ω) and A open
subset of Ω :

F ′′(u, E;A) = inf
{
lim sup
j→+∞

F (uj , Ej ;A) : uj → u, Ej → E in L1(Ω),
}
.

The proof of Theorem 2 is complete if we show that the following inequality holds for every
u ∈ L1(Ω), E ∈M(Ω) and A open subset of Ω :

F ′′(u, E;A) ≤ F (u, E;A). (4)

It is clearly sufficient to prove the following:

Proposition 9. Let u ∈ L1(Ω), E ∈ M(Ω) such that uχE0 ∈ GSBV (Ω). Then, there exists a
sequence {(uj , Ej)} ∈ H1(Ω) ×M(Ω), with ∂Ej of class C∞, such that uj → u, Ej → E in
L1(Ω), and

lim sup
j→+∞

F (uj , Ej) ≤ F (u, E).

In order to construct the recovery sequence, let us recall the definition of strong conver-
gence in SBV p, introduced in [11], and an approximation lemma for SBV p with piecewise C1

functions.

Definition 10. ([11]) Let {uj} be a sequence of functions in SBV p. We say that uj converges
strongly to u in SBV p if

- uj → u in L1(Ω),

- ∇uj → ∇u strongly in Lp(Ω; Rn),

- Hn−1(S(uj)∆S(u)) → 0,

-
∫

S(uj)∪S(u)

(|u+
j − u+|+ |u−j − u−|)dHn−1 → 0

(we choose the orientation νuj
= νu Hn−1-a.e. on S(uj) ∩ S(u); recall that if v ∈ BV (Ω) then

we set v+ = v− = ṽ on Ω \ S(v))
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Lemma 11. ([11]) If u ∈ SBV p(Ω)∩L∞(Ω) then there exists a sequence {uj} in SBV p(Ω)∩
L∞(Ω) with ‖uj‖∞ ≤ ‖u‖∞, strongly converging to u in SBV p, such that for each j ∈ N there
exists a closed rectifiable set Rj such that uj ∈ C1(Ω \Rj). Moreover, Rj can be chosen so that
its Minkowski content coincides with Hn−1(Rj); i.e.,

Hn−1(Rj) = lim
ρ→0+

1
2ρ
|{x : dist(x,Rj) < ρ}|.

The proof of this Lemma in [11] consists in finding first a compact set K ⊂ S(u) such that
Hn−1(S(u) \K) << 1 (which will be the main part of Rj) and then then approximating u on
Ω \K by a Mumford-Shah type functional.

In the following Mn−1(B) stands for the Minkowski content of a set B. As an intermediate
step in the construction of the recovery sequence {(uj , Ej)}, we apply the approximation result
of Lemma 11 to prove the following:

Lemma 12. Let E be a set of finite perimeter with E = Ω \ E0 and u ∈ L∞(Ω), such that
uχE0 ∈ SBV (Ω). Then, there exist a sequence of closed rectifiable sets {Sj}, a sequence of
measurable subsets {Fj}, with ∂Fj closed rectifiable and Lipschitz in Ω \ Sj, and a sequence of
functions {wj} in SBV (Ω) ∩ C1(Ω \ (Sj ∪ ∂Fj)) such that

- wj → u and Fj → E in L1(Ω);

- Hn−1(Sj \ (S(wj) ∩ (Fj)0)) = o(1)j→+∞;

- Hn−1(∂Fj) = Mn−1(∂Fj), Hn−1(Sj) = Mn−1(Sj);

- lim sup
j→+∞

F (wj , Fj) ≤ F (u, E).

Proof. We can suppose ‖u‖∞ = 1; we set

u :=

{
u in Ω \ E

2 in E.

From Lemma 11, for every j there exist a closed rectifiable set Rj and a function uj ∈ C1(Ω\Rj),
such that uj strongly converges to u, and Hn−1(Rj \ S(uj)) → 0.

Setting vj = (uj ∨ 1) ∧ 2 and v = (u ∨ 1) ∧ 2, it follows that the sequence {vj} strongly
converges to v; in particular,

|Dvj |(Ω) =
∫

Ω

|∇vj | dx +
∫

S(vj)

|v+
j − v−j | dH

n−1 →
∫

Ω

|∇v| dx +
∫

S(v)

|v+ − v−| dHn−1,

and
|Dv|(Ω) = Hn−1(S(v)) = Hn−1(∂∗E).

The coarea formula gives, for A open subset of Ω:

Hn−1(∂∗E ∩A) = lim
j→+∞

∫ 2

1

Hn−1(∂∗Et
j ∩A) dt

10



where Et
j = {x ∈ A : uj ≥ t}. Fixing δ > 0, there exists tj ∈ (1, 2 − δ) such that, setting

Fj = E
tj

j ,

Hn−1(∂Fj ∩A) ≤ 1
1− δ

Hn−1(∂E ∩A) (5)

and ∂Fj is Lipschitz in Ω \Rj .
Now, we define the sequence {wj} as:

wj := ujχ(Fj)0 ;

it follows that wj ∈ C1(Ω \ (Rj ∪ ∂Fj)), and setting Sj = Rj ∩ (Fj)0 we get

Hn−1(Sj \ (S(wj) ∩ (Ej)0)) = o(1)j→+∞.

Moreover:∫
Ω

|∇u|2 dx ≤ lim inf
j→+∞

∫
Ω

|∇wj |2 dx ≤ lim inf
j→+∞

∫
Ω

|∇uj |2 dx =
∫

Ω

|∇u|2 dx =
∫

Ω

|∇u|2 dx,

and this implies the convergence

∇wj → ∇u in L2(Ω). (6)

The strong convergence uj → u entails:

Hn−1(∂E) +Hn−1(S(u) \ E) = Hn−1(S(u))

= lim
j→+∞

Hn−1(S(uj))

= lim
j→+∞

(
Hn−1(S(uj) \ Fj) +Hn−1(S(uj) ∩ Fj)

)
= lim

j→+∞

(
Hn−1(S(wj) \ Fj) +Hn−1(S(uj) ∩ Fj)

)
(7)

Again from the strong convergence uj → u we obtain, in particular:

lim
j→+∞

∫
∂E\(S(uj)∩Fh)

(|1− (uj)−|+ |2− (uj)+|) dHn−1 = 0;

since |1− (uj)−|+ |2− (uj)+| ≥ δ in ∂E \ (S(uj) ∩ Fj), it follows that

lim
j→+∞

Hn−1(∂E \ (S(uj) ∩ Fj)) = 0.

Then, we obtain

Hn−1(∂E) = lim
j→+∞

Hn−1(∂E ∩ (S(uj) ∩ Fj))

≤ lim inf
j→+∞

Hn−1(S(uj) ∩ Fj).

This inequality, taking into account (7), allows to deduce that:

lim sup
j→+∞

Hn−1(S(wj) \ Fj) ≤ Hn−1(S(u) \ E) = Hn−1(S(u) \ E), (8)

concluding the proof of the Lemma.
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Proof of Proposition 9. To prove Proposition 9, we consider a function u and a set E such that
F (u, E) is finite. A truncation argument allows us to suppose u ∈ L∞(Ω). Now, we consider
the sequences {wj}, {Fj} and {Sj} given by Lemma 12. From the coarea formula, recalling
that Hn−1(Sj) = Mn−1(Sj) and |∇dist(·, Sj)| = 1 a.e., for fixed j it follows:

k

∫ 1/k

0

Hn−1(∂∗{x ∈ Ω : dist(x, Sj) < r}) dr =
∫
{dist(·,Sj)<1/k}

|∇dist(x, Sj)| dx

= k
∣∣∣{x ∈ Ω : dist(x, Sj) <

1
k

}∣∣∣ = 2Hn−1(Sj) + o(1)k→+∞ (9)

so that there exists rk
j ∈ (0, 1/k) with, letting Σk

j = {x ∈ Ω : dist(x, Sj) < rk
j },

Hn−1(∂Σk
j ) ≤ 2Hn−1(Sj) + o(1)k→+∞.

Upon choosing a suitable sequence kj and defining Σj = Σkj

j , we then have

Hn−1(∂Σj) ≤ 2Hn−1(Sj) + o(1)j→+∞.

Now, setting
Ej = Fj ∪ Σj ,

since Hn−1(Sj) = Hn−1(S(wj) ∩ E0) + o(1)j→+∞, we get:

Hn−1(∂Ej) ≤ Hn−1(∂Fj) + 2Hn−1(S(wj)) + o(1)j→+∞. (10)

For every Ej , it is easy to show that there exists a set E′
j of class C∞ such that Ej ⊂ E′

j

and Hn−1(∂E′
j) = Hn−1(∂Ej) + o(1), so we can assume Ej of class C∞. Then we can find,

for every j, a function ũj ∈ H1(Ω) such that the restriction of uj to the set (Ej)0 coincides
with the restriction of wj . We then set uj = φj ũj + (1− φj)vj , where vj are smooth functions
converging to u in L1(Ω), and φj are smooth functions with φj = 1 on (Ej)0 and φj(x) = 0
if dist(x, (Ej)0) > 1/(2rj). Clearly, the sequence {uj} converges to u in L1(Ω); the inequality
(10) implies:

lim sup
j→+∞

F (uj , Ej) ≤ lim sup
j→+∞

F (uj , Ej),

and this completes the proof of the upper inequality and of the Proposition 9.

Remark 13. An alternative proof of the upper inequality would consist in first approximating
the set E as follows: since χE ∈ BV (Ω), by standard results [17] there exists a sequence
{vj} ⊂ C∞(Ω), converging to χE in L1(Ω) and such that

∫
Ω
|∇vj | → |DχE | = Hn−1(∂∗E). It

is easy to show that for all s ∈ (0, 1), χ{vj≥s} → χE in L1(Ω).
Moreover, for a.a. s ∈ (0, 1), ∂{vj ≥ s} ∩ Ω is C∞ (by Sard’s lemma), and using the coarea

formula we find
Hn−1(∂{vj ≥ s} ∩ Ω) → Hn−1(∂∗E).

From the construction in [17] (made by locally convolving χE with suitable mollifiers) we also
can assume that

vj(x) →


0 in E0

1 in E1
1
2 in E1/2

Hn−1 - a.a. x,
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where E1/2 is the set of points where E has density 1
2 . Hence, for s < 1

2 , it follows that:

χ{vj≥s}(x) →

{
0 in E0

1 in Ω \ E0,
Hn−1 - a.a. x,

recalling that Hn−1(Ω \ (E0 ∪ E1 ∪ E1/2)) = 0; in particular, for s < 1
2 :∫

∂∗E

χ{vj≥s}(x) dHn−1 → Hn−1(∂∗E).

Then, for ε > 0, we can choose s < 1
2 such that, setting Fj = {vj ≥ s} :

Hn−1(∂∗E \ Fj) < ε for j large enough. (11)

Now, let u ∈ SBV (Ω). We let u′j = u|Ω\Fj
, which is viewed as a function defined in the

open set Ω \ Fj . Clearly u′ ∈ SBV (Ω \ Fj), and one has

S(u′j) ⊂ (∂∗E \ Fj) ∪ (S(u) ∩ E0),

so that
Hn−1(S(u′j)) ≤ Hn−1(S(u) ∩ E0) + ε. (12)

By standard approximation results, for every j there exists uj ∈ SBV (Ω \ Fj) with ‖uj −
u′j‖L1 < 1/j, and such that: Hn−1(S(uj) \ S(uj)) = 0 (so that Hn−1(S(uj)) = Mn−1(S(uj))),
uj ∈ C1((Ω \ Fj) \ S(uj)), and

Hn−1(S(uj)) ≤ Hn−1(S(u′j)) + ε.

Recalling (11), this inequality and (12), we find:

Hn−1(S(uj)) ≤ Hn−1(S(u) ∩ E0) + 2ε.

We can now select an appropriate neighborhood Σj of Sj = S(uj) as in the previous proof,
and letting Ej = Fj ∪ Σj , we conclude as before.

Remark 14 (Proof of the upper bound in the general case). The proof is not much
modified in the general case since the main difficulty is the construction of the approximating
sets, which is independent of m and of the particular energy.

Some care must be taken while following the reasoning in (9). In case ϕ is even, then
standard results on the anisotropic Minkowski contents (where the distance function is replaced
with ϕ◦ : x 7→ supϕ(ξ)≤1 ξ ·x, the polar of ϕ, see [6]) allow to adapt easily the previous proof to
the anisotropic case. However, the nonsymmetric case is not covered by these results (although
it is very likely that they extend to this situation).

We first note that if Sj is composed of a finite number of compact subsets of C1 hypersur-
faces, by the condition Mn−1(Sj) = Hn−1(Sj) we have

k
∣∣∣{x ∈ Ω : dist(x, Sj) <

1
k

}∣∣∣ = k
∣∣∣{y + tν(y) : y ∈ Sj , |t| <

1
k

}∣∣∣ + o(1)k→+∞ (13)
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(but in the second representation, the same point might correspond to two or more values of y

and t). We then have

k

∫ 1/k

0

∫
∂∗{x∈Ω:dist(x,Sj)<r}

ϕ(∇dist(x, Sj)) dHn−1

=
∫
{dist(·,Sj)<1/k}

ϕ(∇dist(x, Sj))|∇dist(x, Sj)| dx

≤ k

∫
Sj

∫ 1/k

−1/k

ϕ(∇dist(y + tν(y), Sj)) dt dHn−1(y) + o(1)k→+∞

=
∫

Sj

(ϕ(ν) + ϕ(−ν)) dHn−1 + o(1)k→+∞

since Hn−1-a.e. on Sj ,
lim

t→0±
∇dist(y + tν(y), Sj) = ±ν(y) .

If we define Σk
j as before, we find that

lim sup
k→∞

∫
∂∗Σk

j

ϕ(∇dist(x, Sj)) dHn−1

= lim sup
k→∞

∫
∂∗Σk

j

ϕ(νΣk
j
) dHn−1 ≤

∫
Sj

(ϕ(ν) + ϕ(−ν)) dHn−1

and are able to carry on the proof of Proposition 9. In the general case we can split Sj in a
part composed of a finite union of compact subsets of C1 hypersurfaces and a remainder whose
Minkowski content is arbitrarily small, and proceed likewise.

The only technical point where some extra care must be used is the truncation argument at
the beginning of the proof of Proposition 9. That argument is straightforward in the scalar case
while in the vector case some more elaborate but by now standard truncation lemmas must be
used (for example [12] Lemma 3.5).

It remains to prove that if 0 < |E| ≤ Ω then we can find a recovery sequence with |Ej | = |E|.
The case |E| = Ω is trivial. In the case 0 < |E| < Ω we can simply modify Ej by inserting or
removing suitable balls with suitable volume close to ||E| − |Ej || (and possibly smoothing the
resulting sets if needed). The location of the centres of such balls must be chosen as a point of
density 0 or 1 for E, respectively. Details can be found, e.g., in [2] Theorem 3.3.

5 Applications

5.1 An approximation of the Mumford-Shah functional

As a byproduct of Theorem 2 we have an approximation of the Mumford-Shah functional by
energies defined on pairs function-set defined as follows. Let rε be a family of strictly positive
numbers converging to 0; for every ε > 0 we set

Hε(u, E) =

{
F (u, E) if |E| ≤ rε

+∞ otherwise.
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Theorem 15. The functionals Hε Γ-converge to the energy (equivalent to the Mumford-Shah
functional)

H(u, E) =

a

∫
Ω

|∇u|2 + bHn−1(S(u)) if u ∈ GSBV (Ω), |E| = 0

+∞ otherwise.

Proof. Note that if lim infε→0 Hε(uε, Eε) then |Eε| → 0 and hence we can limit our analysis to
|E| = 0. The lower inequality immediately follows by applying Theorem 2, and noticing that
for such E we have E0 = Ω. The same inequality implies that u ∈ GSBV (Ω).

Conversely, again by Theorem 2 we have that for every u ∈ GSBV (Ω) we can find sets
Ej with |Ej | → 0 and functions uj such that H(u, E) = limj F (uj , Ej). For fixed {εj}, upon
extracting a subsequence of Ej , we can always suppose that |Ej | ≤ rεj

, so that H(u, E) =
limj Hεj

(uj , Ej). By the arbitrariness of {εj} the upper bound is proved.

5.2 A generalization of the Ambrosio and Tortorelli approximation

result

In this paragraph we use Theorem 15 to give a proof of the Ambrosio-Tortorelli result [5]. We
take the chance for a slight generalization.

Let V : [0, 1] → [0,+∞) be a continuous function vanishing at the point 1 and strictly
positive on (0, 1), and let Vε : [0, 1] → [0,+∞) be continuous functions converging uniformly
to V such that Vε(1) = 0, Vε > 0 on [0, 1) and there exist Kε → 0 such that ε << Kε and a
neighbourhood [0, η] of 0 independent of ε where Vε ≥ Kε. The prototype situation is choosing
V vanishing also in 0 (a ‘double-well potential’) and Vε(z) = V (z) +

√
ε(1− z).

For every ε > 0, we consider the functional Gε : L1(Ω)× L1(Ω) → [0,+∞] defined by:

Gε(u, v) =


∫

Ω

(
v2|∇u|2 +

Vε(v)
ε

+ ε|∇v|2
)

dx if u, v ∈ H1(Ω) and 0 ≤ v ≤ 1 a.e.

+∞ otherwise.

For u, v ∈ L1(Ω), we denote by G′(u, v) the functional

Γ- lim inf
ε→0

Gε(u, v) = inf
{
lim inf
j→∞

Gεj (uj , vj) : εj → 0, uj → u, vj → v in L1(Ω)
}
.

Theorem 16. For every (u, v) ∈ L1(Ω)× L1(Ω) :

G′(u, v) ≥ G(u, v),

where

G(u, v) =



∫
Ω

|∇u|2 dx + 4
∫ 1

0

√
V (s) ds Hn−1(S(u)) if u ∈ GSBV (Ω)

and v = 1 a.e.

+∞ otherwise.
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Proof of Theorem 16. We prove that, if G′(u, v) is finite, then v = 1 a.e., u ∈ GSBV (Ω) and

G′(u, v) ≥
∫

Ω

|∇u|2 dx + 4
∫ 1

0

√
V (s) ds Hn−1(S(u)).

Assume G′(u, v) < +∞, and uε → u, vε → v be such that Gε(uε, vε) ≤ c < +∞. Then∣∣∣{vε ≤ η
}∣∣∣ ≤ ε

Kε
Gε(uε, vε) = o(1)

implies that v ≥ η in measure. Since Vε → V uniformly, and V (z) vanishes only at the point 1
for z ≥ η, we deduce that that v = 1 a.e.

We introduce, for every A open subset of Ω, the localized functionals:

Gε(u, v;A) =



∫
A

(
v2|∇u|2 +

V (v)
ε

+ ε|∇v|2
)

dx if u, v ∈ H1(Ω),

and 0 ≤ v ≤ 1 a.e.

+∞ otherwise.

Clearly, since G′(u, v) < +∞, it follows that G′(u, v;A) := Γ-lim infε→0 G(u, v;A) < +∞ for
every A.

Let {εj} be a positive infinitesimal sequence, and {uj}, {vj} sequences in H1(Ω) respectively
converging in L1(Ω) to u and v, with 0 ≤ vj ≤ 1 a.e. An application of the coarea formula
gives:

Gεj
(uj , vj ;A) ≥

∫
A

|∇uj |2 dx + 2
∫

A

(√
V (vj) + o(1)

)
|∇vj | dx

≥
∫

A

|∇uj |2 dx + 2
∫ 1

0

(√
V (vj) + o(1)

)
Hn−1(∂{vj < s} ∩A) ds.

Now, we fix δ ∈ (0, 1). The Mean Value Theorem ensures the existence of tδj ∈ (δ, 1) such that∫ 1

δ

√
V (s)Hn−1(∂{vj < s} ∩A) ds ≥

∫ 1

δ

√
V (vj)ds Hn−1(∂Eδ

j ∩A),

where Eδ
j = {vj < tδj}; hence

Gεj (uj , vj ;A) ≥ δ2

∫
A\Eδ

j

|∇uj |2 dx + 2
∫ 1

δ

(√
V (vj) + o(1)

)
ds Hn−1(∂Eδ

j ∩A). (14)

Since v = 1 a.e. in Ω, it follows that |Eδ
j | → 0 as j → +∞, for every δ. An application of

Theorem 15 with a = δ2 and b = 4
∫ 1

δ

√
V (s)ds allows to deduce that u ∈ GSBV (Ω); moreover,

lim inf
j→+∞

(
δ2

∫
A\Eδ

j

|∇uj |2 dx + 2
∫ 1

δ

√
V (s)ds Hn−1(∂Eδ

j ∩A)
)

≥ δ2

∫
A

|∇u|2dx + 4
∫ 1

δ

√
V (s)ds Hn−1(S(u) ∩A).
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Therefore, recalling (14), for every δ ∈ (0, 1) we get:

lim inf
j→+∞

Gεj
(uj , vj ;A) ≥ δ2

∫
A

|∇u|2dx + 4
∫ 1

δ

√
V (s)ds Hn−1(S(u) ∩A). (15)

In order to apply Proposition 4 to the set function

µ(A) = Γ- lim inf
ε→0

Gε(u, v;A),

which is superadditive on disjoint open sets when u ∈ GSBV (Ω) and v = 1 a.e., we define:

gi(x) =

{
δ2
i |∇u|2 if x ∈ Ω \ S(u)

4
∫ 1

δi

√
W (s)ds if x ∈ S(u),

where {δi} is a dense sequence in (0, 1), and λ = Ln + Hn−1 S(u). From (15) we have
µ(A) ≥ supi

∫
A

gidλ; then Proposition 4 gives

µ(A) ≥
∫

A

|∇u|2 dx + 4
∫ 1

0

√
V (s)dsHn−1(S(u) ∩A),

concluding the proof.

5.3 Other applications

We quickly mention two other applications in which an energy, similar to our F (u, E), is used.

5.3.1 Crystalline film on a substrate

In [7, 16], the following energy is introduced:

E(u, h) =
∫
{0<xn<h(x′)}

W (∇u(x)) dx +
∫

ω

√
1 + |∇h(x′)|2 dx′ (16)

where: ω = Rn−1/Zn−1 is the (n−1)-dimensional torus, h : Ω → [0,+∞) is a smooth function,
W : Rn×n → [0,+∞) is a quasiconvex function with growth p > 1, and u is a Rn-valued
displacement. This energy is supposed to be a simplified model for a thin layer of crystal
(whose reference configuration is Ωh = {x = (x′, xn) : x′ ∈ Ω , 0 < xn < h(x′)}, the subgraph
of h), deposited on a crystalline substrate {x : xn ≤ 0}. Due to the mismatch between both
crystalline lattices, the crystal layer is stretched at the interface {xn = 0}. This is expressed by
a Dirichlet condition on the displacement u: u(x′, 0) = (δ x′, 0) (for instance) on this interface
(δ 6= 0 is a parameter related to the mismatch). Moreover, it is assumed for simplicity that
ω 3 x′ 7→ u(x′, xn)−(δ x′, 0) is periodic (for all xn), in other words: u−(δ x′, 0) ∈ W 1,p(Ωh; Rn).

The effect of the surface tension of the crystal is represented by the term
∫

ω

√
1 + |∇h|2

which penalizes its total surface. A competition occurs between the elastic term of the energy
(which would like to release the stress induced by the mismatch: one easily sees that infinitely
many vertical fractures can totally release this stress and make the elastic energy as small as
wanted) and the surface tension (which would like, on the contrary, the surface of the crystal
to be as flat as possible).
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In [7], the two-dimensional case (n = 2) is considered. The material is supposed to be
linear-elastic, that is, W (∇u) = (Ae(u)) : e(u) where e(u) is the symmetrized gradient of u

and the tensor A defines the Hooke’s law of the material. A relaxation formula is given, that
extends (16) to any lower-semicontinuous h, and any u ∈ SBV (Ωh; R2). An Ambrosio-Tortorelli
type approximation is introduced, and the result of numerical experiments are shown.

In [16], the last two authors have tried to extend the mathematical results of [7] to higher
dimension. Similar results are shown but the proofs are significantly more technical.

When computing the lower semicontinuous envelope of (16) (in some reasonable topology),
as in the present paper one computes a lower estimate and show that it is also an upper estimate.
Up to minor technical details, the lower estimate is easily deduced from the present paper. The
main difficulties arise when showing the upper estimate. In (16), the role of the “hole” E is
played by the complement of Ωh, {x : xn ≥ h(x′)}. It is thus constrained to be a supergraph.
One therefore needs to show that any “generalized” supergraph (in some sense) is approximated
by smoother sets that are still supergraphs, with almost the same surface tension.

5.3.2 Water waves

In a forthcoming study, the second author and Eric Séré introduce the following problem, which
models a periodic water wave in presence of gravity and surface tension:

min
u,F

{
µ

V −
∫

F
|∇u(x)|2 dx

+ β

∫
F

x2 dx + H1(∂F )
}

. (17)

Here, F ⊂ ω × (0,+∞), where ω = R/Z is the one-dimensional torus, and u is such that
u(x1, x2) − x1 is periodic (that is, in H1(F )). The constant V is the (fixed) volume of F . In
this setting, the set F represent a “column” of water in the ocean (of depth V ), in a frame
which is moving at constant speed −1, which is the speed of the wave. The speed of the water
is ∇u (in the frame of the wave, hence ∇u − (1, 0) in a fixed frame). The second term in the
energy is a gravity term, while the length H1(∂F ) is the surface energy of the free surface of
the water (more precisely, it should be written H1(∂(F ∪ (ω × (−∞, 0])))).

The functional in (17), and in particular its first term, is inspired by a recent work of
Boris Buffoni [15]. The special form of this term rules out the trivial solution u ≡ (x, 0),
F = ω× (0, V ) (no wave, still water). Again, the functional in (17) is a variant of the functional
F (u, E) which is studied in the present paper and its relaxation can be derived from the result
in Section 2.
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