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1 Introduction
The theory of curvature-dimension bounds for nonsmooth spaces has several motivations:
the study of functional and geometric inequalities in structures which are very far from
being Euclidean, therefore with new non-Riemannian tools, the description of the “closure”
of classes of Riemannian manifolds under suitable geometric constraints, the stability of
analytic and geometric properties of spaces (e.g. to prove rigidity results). Even though
these goals may occasionally be in conflict, in the last few years we have seen spectacular
developments in all these directions, and my text is meant both as a survey and as an
introduction to this quickly developing research field.

I will mostly focus on metric measure spaces (m.m.s. in brief), namely triples (X, d,m),
where (X, d) is a complete and separable metric space and m is a non-negative Borel
measure, finite on bounded sets, typically with suppm = X. The model case that should
always be kept in mind is a weighted Riemannian manifold (M, g,m), with m given by

m := e−V volg (1.1)

for a suitable weight function V : M→ R. It can be viewed as a metric measure space by
taking as d = dg the Riemannian distance induced by g.

In order to achieve the goals I mentioned before, it is often necessary to extend many
basic calculus tools from smooth to nonsmooth structures. Because of this I have organized
the text by starting with a presentation of these tools: even though some new developments
of calculus in m.m.s. have been motivated by the theory of curvature-dimension bounds,
the validity of many basic results does not depend on curvature and it is surely of more
general interest. In this regard, particularly relevant are results which provide a bridge
between the so-called “Eulerian” point of view (when dealing with gradients, Laplacians,
Hessians, etc.) and the so-called “Lagrangian” point of view (when dealing with curves in
the ambient space). In the theory of curvature-dimension bounds, these bridges are crucial
to connect the Lott-Villani and Sturm theory, based on Optimal Transport (therefore
Lagrangian) to the Bakry-Émery theory, based on Γ-calculus (therefore Eulerian), in many
cases of interest.

The limitation on the length of this text forced me to make difficult and subjective
choices, concerning both references and topics; for this reason and not for their lack of
importance I will not mention closely related areas of investigation, such as the many
variants and regularizations of optimal transport distances, curvature-dimension bounds
in sub-Riemannian structures, rigidity results, time-dependent metric measure structures,
and others.
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2 Calculus tools in metric spaces
Let us start with some basic tools and terminology, at the metric level. Recall that a curve
γ : [0, T ]→ X is said to be absolutely continuous if there exists g ∈ L1(0, T ) satisfying

d(γs, γt) ≤
∫ t

s
g(r) dr ∀0 ≤ s ≤ t ≤ T.

Among absolutely continuous curves, Lipschitz curves play a special role. Among them, we
shall denote by Geo(X) the class of constant speed geodesics γ : [0, 1]→ X, characterized
by

d(γs, γt) = |s− t|d(γ1, γ0) ∀s, t ∈ [0, 1].

A metric space (X, d) is said to be geodesic if any pair of points can be connected by at
least one γ ∈ Geo(X).

In this survey, K-convex functions, with K ∈ R, play an important role. In the smooth
setting, K-convexity corresponds to the lower bound Hess f ≥ K Id on the Hessian of f ,
but the definition is immediately adapted to the metric setting, by requiring that f ◦ γ is
K-convex (i.e. t 7→ f(γt)− 1

2Kt
2d2(γ0, γ1) is convex in [0, 1]) for all γ ∈ Geo(X).

Definition 2.1 (Metric derivative). Let γ : [0, T ]→ X be absolutely continuous. Then, it
can be proved that for L 1-a.e. t ∈ (0, T ) the limit

|γ′|(t) := lim
h→0

d(γt+h, γt)
|h|

exists. We call this limit metric derivative: it is indeed the minimal function g ∈ L1(0, T ),
up to L 1-negligible sets, such that the inequality d(γs, γt) ≤

∫ t
s g(r) dr holds for all

0 ≤ s ≤ t ≤ T .

Building on this definition, one can define the space of curves ACp([0, T ];X), 1 ≤ p ≤ ∞,
by requiring p-integrability of the metric derivative. Also, as in the smooth setting, the
metric derivative provides an integral representation to the curvilinear integrals∫

γ
g dσ :=

∫ T

0
g(γs)|γ′|(s) ds =

∫
g dJγ with Jγ := γ#(|γ′|L 1) (2.1)

which otherwise should be defined using integration on γ([0, T ]) w.r.t. the 1-dimensional
Hausdorff measure H 1 (counting multiplicities if γ is not 1-1). In turn, the inequality

|f(γ1)− f(γ0)| ≤
∫
γ
g dσ, (2.2)

valid with g = |∇f | in a smooth setting, leads to the notion of upper gradient [70].

Definition 2.2 (Upper gradient). We say that a Borel function g : X → [0,∞] is an upper
gradient of f : X → R if the inequality (2.2) holds for any γ ∈ AC([0, 1];X).

Clearly the upper gradient should be thought of as an upper bound for the modulus of
the gradient of f1. Without appealing to curves, the “dual” notion of slope (also called
local Lipschitz constant) simply deals with difference quotients:

1Strictly speaking it should be the modulus of the differential, the natural object in duality with curves,
but the “gradient” terminology is by now too estabilished to be changed. However, as emphasized in [55,
Sec 3], this distinction is crucial for the development of a good theory.
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Definition 2.3 (Slope). For f : X → R the slope |∇f |(x) of f at a non-isolated point
x ∈ X is defined by

|∇f |(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x) .

It is simple to check that the slope is an upper gradient for Lipschitz functions. In
the theory of metric gradient flows a key role is also played by the descending slope, a
one-sided counterpart of the slope:

|∇−f |(x) := lim sup
y→x

max{f(x)− f(y), 0}
d(x, y) . (2.3)

The notion of gradient flow, closely linked to the theory of semigroups, also plays an
important role. If we are given a K-convex and lower semicontinuous function F : X →
(−∞,∞], with X Hilbert space, the theory of evolution problems for maximal monotone
operators (see for instance [30]) provides for any x̄ ∈ {F <∞} a locally absolutely
continuous map xt : (0,∞)→ X satisfying

d

dt
xt ∈ −∂KF (xt) for L 1-a.e. t ∈ (0,∞), lim

t→0
xt = x̄, (2.4)

where ∂KF stands for the K-subdifferential of F , namely

∂KF (x) :=
{
ξ ∈ X : F (y) ≥ F (x) + 〈ξ, y − x〉+ K

2 |y − x|
2 ∀y ∈ X

}
.

Besides uniqueness, a remarkable property of the gradient flow xt is a selection principle,
which turns the differential inclusion into an equation: for L 1-a.e. t ∈ (0,∞) one has that
− d
dtxt is the element with minimal norm in ∂KF (xt). Moreover, differentiating the square

of the Hilbert norm one can write (2.4) in an equivalent form, called Evolution Variational
Inequality (in short EVIK)

d

dt

1
2 |xt − y|

2 ≤ F (y)− F (xt)−
K

2 |y − xt|
2 L 1-a.e. in (0,∞), for all y ∈ X. (2.5)

This way, the scalar product does not appear anymore and this formulation, involving
energy and distance only, makes sense even in metric spaces.

We conclude this section by recalling the metric notion of gradient flow, based on
a deep intuition of E.De Giorgi, see [3] for much more on this subject. Assume for the
moment that we are in a smooth setting (say F of class C1 on a Hilbert space X). Then,
we can encode the system of ODE’s γ′ = −∇F (γ) into a single differential inequality:
−2(F ◦ γ)′ ≥ |γ′|2 + |∇F |2(γ). Indeed, for any γ ∈ C1 one has

−2(F ◦ γ)′ = −2〈∇F (γ), γ′〉 ≤ 2|∇F |(γ)|γ′| ≤ |γ′|2 + |∇F |2(γ).

Now, the first inequality is an equality iff ∇F (γ) is parallel to −γ′, while the second one is
an equality iff |∇F |(γ) = |γ′|, so that by requiring the validity of the converse inequalities
we are encoding the full ODE. In the metric setting, using metric derivatives and the
descending slope (2.3) and moving to an integral formulation of the differential inequality,
this leads to the following definition:

Definition 2.4 (Metric gradient flow). Let F : X → (−∞,∞] and x̄ ∈ {F <∞}. We say
that a locally absolutely continuous curve γ : [0,∞)→ X is a metric gradient flow of F
starting from x̄ if

F (γt) +
∫ t

0

1
2 |γ
′|2(r) + 1

2 |∇
−F |2(γr) dr ≤ F (x̄) ∀t ≥ 0. (2.6)
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Under the assumption that |∇−F | is an upper gradient of F (this happens for Lipschitz
functions or, in geodesic spaces, for K-convex functions) one obtains that equality holds
in (2.6), that t 7→ F (γt) is absolutely continuous in [0,∞), and that |γ′| = |∇−F |(γ)
L 1-a.e. in (0,∞). Reasoning along these lines one can prove that, for K-convex and lower
semicontinuous functions in Hilbert spaces, the metric and differential notions of gradient
flow coincide. However, in general metric spaces the existence of an EVIK-flow is a much
stronger requirement than the simple energy-dissipation identity (2.6): it encodes not only
the K-convexity of Φ (this has been rigorously proved in [45]) but also, heuristically, some
infinitesimally Hilbertian behaviour of d.

3 Three basic equivalence results
Curvature conditions deal with second-order derivatives, even though often - as happens
for convexity - their synthetic formulation at least initially involves difference quotients or
first-order derivatives. Before coming to the discussion of synthetic curvature conditions,
in this section I wish to describe three basic equivalence results at the level of “first order
differential calculus” (weakly differentiable functions, flow of vector fields, metric versus
energy structures), which illustrate well the Eulerian-Lagrangian duality I mentioned in
the introduction.

3.1 Cheeger energy and weakly differentiable functions

The theory of weakly differentiable functions, before reaching its modern form developed
along different paths, with seminal contributions by B.Levi, J.Leray, L.Tonelli, C.B.Morrey,
G.C.Evans, S.L.Sobolev (see [85] for a nice historical account). In Euclidean spaces, we
now recognize that three approaches are essentially equivalent: approximation by smooth
functions, distributional derivatives and of good behaviour along almost all lines. More
surprisingly, this equivalence persists even in general metric measure structures. In what
follows, I will restrict my discussion to the case of p-integrable derivatives with 1 < p <∞;
in the limiting case p = 1 the results are weaker, while for BV functions the full equivalence
still persists, see [8, 48, 14].

To illustrate this equivalence, let me start from the approximation with smooth functions,
now replaced by Lipschitz functions in the m.m.s. category. The following definition is
inspired by Cheeger’s [36], who dealt with a larger class of approximating functions (the
functions with p-integrable upper gradient), see also [38, Appendix 2].

Definition 3.1 (H1,p Sobolev space). We say that f ∈ Lp(X,m) belongs to H1,p(X, d,m)
if there exist a sequence (fi) ⊂ Lipb(X, d) with fi → f in Lp and supi ‖|∇fi|‖p <∞.

This definition is also closely related to the so-called Cheeger energy Chp : Lp(X,m)→
[0,∞], namely

Chp(f) := inf
{

lim inf
i→∞

∫
X
|∇fi|p dm : fi → f in Lp(X,m), fi ∈ Lipb(X, d)

}
, (3.1)

which turns out to be a convex and Lp(X,m)-lower semicontinuous functional, whose
finiteness domain coincides with H1,p and is dense in Lp. Then, by looking for the optimal
approximation in (3.1), J.Cheeger identified a distinguished object, the minimal relaxed
slope, denoted |∇f |∗: it provides the integral representation

Chp(f) =
∫
X
|∇f |p∗ dm ∀f ∈ H1,p(X, d,m)
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which corresponds, in the smooth setting and for p = 2, to the weighted Dirichlet energy∫
M |∇f |2e−V dvolg.

Even at this high level of generality one can then estabilish basic calculus rules, such as
the chain rule. In addition, f 7→ |∇f |∗ has strong locality properties, which pave the way
to connections with the theory of Dirichlet forms, when p = 2 and Chp is a quadratic form.

The convexity and lower semicontinuity of Chp allow us, when p = 2, to apply the
well-estabilished theory of gradient flows in Hilbert spaces to provide, for all f̄ ∈ L2(X,m)
the unique gradient flow of 1

2 Ch2 starting from f̄ . In addition, the selection principle of
the Hilbertian theory of gradient flows motivates the following definition and terminology,
consistent with the classical setting.

Definition 3.2 (Laplacian ∆ and Heat flow Pt). Let g ∈ L2(X,m) be such that ∂0 Ch2(g)
is not empty. We call Laplacian of g, and denote ∆g, the element with minimal norm
in −1

2∂0 Ch2(g). With this notation, for all f ∈ L2(X,m) we denote by Ptf the unique
solution to (2.4) with F = 1

2 Ch2, thus solving the equation

d

dt
Ptf = ∆Ptf for L 1-a.e. t ∈ (0,∞).

Notice that ∆, also called weighted Laplacian or Witten Laplacian in the smooth
context, depends both on d and m: this can be immediately understood in the setting of
weighted Riemannian manifolds, since ∇f depends on d (i.e. the Riemannian metric g)
but the divergence, viewed as adjoint of the gradient operator in L2(X,m), depends on m,
so that

∆f = ∆gf − 〈∇V,∇f〉 (3.2)
and ∆ reduces to the Laplace-Beltrami operator ∆g when V ≡ 0 in (1.1).

By the specific properties of Ch2, under the global assumption (5.11) the semigroup
Pt can also be extended to a semigroup of contractions in every Lp(X,m), 1 ≤ p ≤ ∞,
preserving positivity, mass, and constants. We retain the same notation Pt for this
extension.

As simple examples illustrate (see Section 3.2), Ch2 need not be a quadratic form, so
that in general neither the operator ∆ nor the semigroup Pt are linear; nevertheless basic
calculus rules and differential inequalities still apply, see [6, 55].

Coming back to our discussions about Sobolev spaces, one can try to define/characterize
weakly differentiable functions by appealing to the behaviour of functions along lines (and,
in a nonsmooth setting, curves). Actually, this is the very first approach to the theory of
weakly differentiable functions, pioneered by B.Levi in 1906 [75] in his efforts to put the
Dirichlet principle on firm grounds. Later on, it was revisited and, at the same time, made
frame-indifferent by B.Fuglede [51] in this form: f : Ω ⊂ RN → R belongs to the Beppo
Levi space if, for some vector ∇f ∈ Lp(Ω;RN ), one has

f(γ1)− f(γ0) =
∫
γ
∇f for Modp-almost every γ.

Here Fuglede used a potential-theoretic notion, the so-called p-Modulus: for a family Γ of
(non parametric) curves, in RN , one defines

Modp(Γ) := inf
{∫

RN
ρp dm :

∫
γ
ρ dσ ≥ 1 ∀γ ∈ Γ

}
. (3.3)

In more recent times, N.Shanmughalingam [98] adapted this concept to the metric measure
setting, with the introduction of the Newtonian space N1,p(X, d,m); notice that the notion
of p-Modulus immediately extends to the metric measure setting, understanding curvilinear
integrals as in (2.1).
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Definition 3.3 (N1,p Sobolev space). We say that f ∈ Lp(X,m) belongs to N1,p(X, d,m)
if there exist f̃ : X → R and g ∈ Lp(X,m) non-negative such that f̃ = f m-a.e. in X and
|f̃(γ1)− f̃(γ0)| ≤

∫
γ g dσ holds for Modp-almost every curve γ.

Even in this case one can identify a distinguished object playing the role of the
modulus of the gradient, namely the g with smallest Lp-norm among those satisfying
|f̃(γ1) − f̃(γ0)| ≤

∫
γ g dσ Modp-a.e.: it is called minimal p-weak upper gradient, and

denoted by |∇f |w. This point of view has been deeply investigated by the Finnish school,
covering also vector-valued functions and the relation with the original H Sobolev spaces
of [36], see the recent monographs [27], [64].

Having in mind the theory in Euclidean spaces, we might look for analogues in the
metric measure setting of the classical point of view of weak derivatives, within the theory
of distributions. I will describe this last point of view, even though for the moment it does
not play a substantial role in the theory of curvature-dimension bounds for m.m.s. On a
Riemannian manifold (M, g), with m = VolM, it is natural to define the weak gradient ∇f
by the integration by parts formula∫

g(∇f, b) dm = −
∫
fdiv b dm (3.4)

against smooth (say compactly supported) vector fields b. In the abstract m.m.s. setting,
the role of vector fields is played by derivations, first studied in detail by N.Weaver in [109].
Here we adopt a definition close to the one adopted in [109], but using [56] to measure of
the size of a derivation.

Definition 3.4 (Derivations and their size). An Lp-derivation is a linear map from Lipb(X)
to Lp(X,m) satisfying:

(a) (Leibniz rule) b(f1f2) = f1b(f2) + f2b(f1);

(b) for some g ∈ Lp(X,m), one has |b(f)| ≤ g|∇f |∗ m-a.e. in X for all f ∈ Lipb(X);

(c) (Continuity) b(fn) weakly converge to b(f) in Lp(X,m) whenever fn → f pointwise,
with supX |fn|+ Lip(fn) ≤ C <∞.

The smallest function g in (b) is denoted by |b|.

Now, the definition of divergence div b of a derivation is based on (3.4), simply replacing
g(∇f, b) with b(f), and we define

Divq(X, d,m) :=
{
b : |b| ∈ Lq(X,m), div b ∈ L1 ∩ L∞(X,m)

}
.

According to the next definition, bounded Lipschitz functions f in Lp(X,m) belong to the
W 1,p Sobolev space (with L(b) = b(f)) introduced in [48] (in the Euclidean setting, but
already with general reference measures, a closely related definition appeared also in [29]):

Definition 3.5 (W 1,p Sobolev space). We say that f ∈ Lp(X,m) belongs to the space
W 1,p(X, d,m) if there exists a Lipb-linear functional Lf : Divq(X, d,m)→ L1(X,m) satis-
fying ∫

Lf (b) dm = −
∫
fdiv b dm ∀b ∈ Divq(X, d,m),

where q = p/(p− 1) is the dual exponent of p.
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The following result has been established for the H1,p and N1,p spaces first in the case
p = 2 in [6], then in [5] for general p. In [48] the equivalence has been completed with the
W 1,p spaces.

Theorem 3.6. For all p ∈ (1,∞) the spaces H1,p, N1,p, W 1,p coincide. In addition the
minimal relaxed slope coincides m-a.e. with the minimal p-weak upper gradient.

Finally, let me conclude this “calculus” section with a (necessarily) brief mention of
other important technical aspects and research directions.
Test plans. In connection with Theorem 3.6, the inclusion H1,p ⊂ N1,p is not hard to
prove, while the converse requires the construction of a “good” approximation of f by
Lipschitz functions, knowing only the behaviour of f along Modp-almost all curves. To
achieve this goal, in [6, 5] besides nontrivial tools (Hopf-Lax semigroup (4.3), superposition
principle, etc, described in the next sections) we also use a new and more “probabilistic”
way to describe the exceptional curves. This is encoded in the concept of test plan.

Definition 3.7 (Test plan). We say that η ∈ P(C([0, T ];X)) is a p-test plan if it is
concentrated on ACq([0, 1];X), with q = p/(p− 1), and there exists C = C(η) ≥ 0 such
that

(et)#η ≤ Cm ∀t ∈ [0, 1], where et : C([0, 1];X)→ X, et(γ) := γt.

Then, we say that a Borel set Γ ⊂ C([0, T ];X) is p-negligible if η(Γ) = 0 for any
p-test plan η. Now, we can say that a function f ∈ Lp(X,m) belongs to the Beppo Levi
space BL1,p(X, d,m) if, for some g ∈ Lp(X,m), the upper gradient property (2.2) holds
for p-almost every curve. Since Modp-negligible sets are easily seen to be p-negligile one
has the inclusion N1,p ⊂ BL1,p, and with the proof of the equality BL1,p = H1,p we have
closed the circle of equivalences.

Test plans are useful not only to describe null sets of curves. They are natural objects in
the development of calculus in metric measure spaces (for instance the proof of Theorem 3.9
below deeply relies on this concept), since they induce vector fields, i.e. derivations, via
the formula ∫

X
bη(f)φdm :=

∫ ∫ 1

0
φ ◦ γ d

dt
f ◦ γ dt dη(γ) ∀φ ∈ L1(X,m),

which implicity defines bη. These connections are further investigated in [55], where the
notion of test plan representing the gradient of a function is introduced, see also [97], where
an analogous analysis is done with the so-called Alberti representations

∫
Jγ dη(γ) of m,

with J the measure-valued operator on AC([0, 1];X) defined in (2.1). In addition, along
these lines one obtains [13] also a useful “dual” representation of the p-Modulus:

(
Modp(Γ)

)1/p = sup
{

1
‖barη‖q

: η(Γ) = 1, η ∈ Tq

}
, (3.5)

where q = p/(p− 1) and Tq ⊂P(C([0, 1];X)) is defined by the property
∫
Jγ dη(γ)� m,

with density, the barycenter barη, in Lq(X,m).
Differentiable structures on metric measure spaces. One of the main motivation
of the seminal paper [36] has been the statement and proof of a suitable version of
Rademacher’s theorem in m.m.s. Roughly speaking, J.Cheeger proved that in doubling
m.m.s. satisfying the Poincaré inequality (the so-called PI spaces, see [64] for much more
on this subject) one has a countable Borel atlas Xi and Lipschitz maps F i : X → RNi
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with the property that supiNi < ∞ and, for any i and f ∈ Lipb(X) , there exist αi =
(αi,1, . . . , αi,Ni) : Xi → RNi with∣∣∇(f(·)−

∑
j≤Ni

αi,j(x)F ij (·)
)∣∣(x) = 0 for m-a.e. x ∈ Xi.

By letting Fi play the role of local coordinates, this fact can be used to develop a good
first order (nonsmooth) differential geometry and to prove, among other things, reflexivity
of the spaces H1,p(X, d,m). An abstraction of this property has led to the concept of
Lipschitz differentiability space, now studied and characterized by many authors (see e.g.
[41] and the references therein). A somehow parallel philosophy, not based on a blow-up
analysis and initiated by N.Weaver [109], aims instead at a kind of implicit description of
the tangent bundle via the collection of its sections, i.e. the family of derivations. It is
proved in [56] that the L∞-module generated by gradient derivations is dense in the class of
L2 derivations and that, within the class of PI spaces, the two points of view are equivalent.
Finally, notice that the point of view of Γ-calculus seems to be closer to Weaver’s one,
since as we will see several objects (carré du champ, Hessian, etc.) are defined by their
action against gradient derivations.

3.2 Metric versus energy structures

In this section I want to emphasize key connections between metric and energy structures,
using for the latter point of view the well-established theory of Dirichlet forms [52, 81].
In this text, by Dirichlet form we mean a L2(X,m)-lower semicontinuous quadratic form
E : L2(X,m) → [0,∞] with the Markov property (E(η(f)) ≤ E(f) for any 1-Lipschitz
function with η(0) = 0) and with a dense finiteness domain V. The domain V is endowed
with the Hilbert norm ‖ · ‖2V = E + ‖ · ‖22. Even if this is not strictly needed, to simplify the
discussion I assume that (X, τ) is a Hausdorff topological space and that m is a non-negative
and finite Borel measure in X.

Still denoting by E the associated symmetric bilinear form, we also assume the following
properties:

(a) (strong locality) E(u, v) = 0 if u(c+ v) = 0 m-a.e. in X for some c ∈ R;

(b) (carré du champ) there exists a continuous bilinear form Γ : V× V→ L1(X,m) such
that ∫

X
gΓ(f, f) dm = E(fg, f)− 1

2E(f2, g) ∀f, g ∈ V ∩ L∞(X,m).

If we apply these constructions to the Dirichlet energy on a Riemannian manifold, we
see that Γ(f, g) corresponds to the scalar product between ∇f and ∇g; in this sense we
may think that Lipschitz functions provide a differentiable structure (with global sections
of the tangent bundle provided by gradient vector fields) and Dirichlet forms provides a
metric structure (via the operator Γ).

We may move from the metric to the “energy” structure in a canonical way, setting
E = Ch2 if Cheeger’s energy Ch2 is a quadratic form. However, this property of being
a quadratic form is far from being true in general: for instance, if we apply Cheeger’s
construction to the metric measure structure (RN , d,L N ), where d(x, y) = ‖x− y‖ is the
distance induced by a norm, we find that |∇f |∗ = ‖∇f‖∗ for all f ∈ H1,p, where ∇f is the
weak (distributional) derivative and ‖ · ‖∗ is the dual norm. Hence, the norm is Hilbertian
iff Ch2 is a quadratic form. This motivates the following terminology introduced in [55].
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Definition 3.8 (Infinitesimally Hilbertian m.m.s.). We say that a m.m.s. (X, d,m) is
infinitesimally Hilbertian if Cheeger’s energy Ch2 in (3.1) is a quadratic form in L2(X,m).

For infinitesimally Hilbertian m.m.s., the following consistency result has been proved
in [7, Thm. 4.18], see also [55].

Theorem 3.9. If (X, d,m) is infinitesimally Hilbertian, then Ch2 is a strongly local
Dirichlet form and its carré du champ Γ(f) coincides with |∇f |2∗.

In order to move in the opposite direction, we need to build a distance out of E . The
canonical construction starts from the class

C := {f ∈ V ∩ Cb(X, τ) : Γ(f) ≤ 1 m-a.e. in X}

and defines the intrinsic distance by

dE(x, y) := sup {|f(x)− f(y)| : f ∈ C} . (3.6)

Under the assumption that C generates a finite distance (this is not always the case, as
for the Dirichlet form associated to the Wiener space, leading to extended metric measure
structures [15]) and assuming also that the topology induced by dE coincides with τ , we
have indeed obtained a metric measure structure. This happens for instance in the classical
case of quadratic forms in L2(RN ) induced by symmetric, uniformly elliptic and bounded
matrices A:

EA(f) :=
{∫

RN 〈A(x)∇f(x),∇f(x)〉 dx if f ∈ H1(RN );
+∞ otherwise.

(3.7)

Given that, with some limitations, one can move back and forth from metric to energy
structures, one may wonder what happens when we iterate these procedures, namely from
E one builds dE and then the Cheeger energy Ch2,dE induced by dE (or, conversely, one
first moves from the metric to the energy structure and then again to the metric structure).
To realize that this is a nontrivial issue, I recall what happens at the level of the relation
between energy and distance in the case of the quadratic forms EA in (3.7): first, even
though EA is in 1-1 correspondence with A (and this observation is at the basis of the
theories of G-convergence for diffusion operators A, and of Γ-convergence), we also know
from [103] that EA need not be uniquely determined by dEA . Moreover, the analysis of the
construction in [103] reveals that, given an intrinsic distance d induced by some EB, there
is no “minimal” EA whose intrinsic distance is d. Second, an example in [71] shows that,
for some E = EA, the Cheeger energy Ch2,dE need not be a quadratic form as in (3.7).

In order to clarify the relations between these objects in the general setting, the following
property plays an important role.

Definition 3.10 (τ -upper regularity). We say that E is τ -upper regular if for all f ∈ V
there exist fi ∈ Lipb(X, dE) and upper semicontinuous functions gi ≥ Γ(fi) m-a.e. in X
with fi → f in L2(X,m) and

lim sup
i→∞

∫
X
gi dm ≤ E(f).

The definition can also be adapted to the metric measure setting, replacing Γ(f) with
|∇f |2∗. It has been proved in [5] that Ch2 is always τ -upper regular, with τ given by the
metric topology.

The following result, taken from [12, 15] (see also [71], under additional curvature
assumptions), deals with the iteration of the two operations I described above and provides
a “maximality” property of Cheeger’s energy.
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Theorem 3.11. Assume that E is a Dirichlet form satisfying (a) and (b), and that dE
induces the topology τ . Then E ≤ Ch2,dE , with equality if and only E is τ -upper regular.
Conversely, if we start from an infinitesimally Hilbertian m.m.s. (X, d,m), and if we set
E = Ch2, then Ch2,dE = E and dE ≥ d. Equality holds iff one has the “Sobolev-to-Lipschitz”
property: any f ∈ H1,2(X, d,m) ∩ Cb(X) with |∇f |∗ ≤ 1 is 1-Lipschitz.

3.3 Flow of vector fields and the superposition principle

Let bt, t ∈ (0, T ), be a time-dependent family of vector fields. In a nice (say Euclidean or
Riemannian) framework, it is a classical fact that the ordinary differential equation

(ODE)
{
γ′t = bt(γt)
γ0 = x

is closely related to the continuity equation

(CE) d

dt
%t + div (bt%t) = 0, %0 = %̄.

Indeed, denoting by
X(t, x) : [0, T ]×X → X

the flow map of the ODE, under appropriate assumptions, the push-forward measures
µt := X(t, ·)#(ρ̄m) are shown to be absolutely continuous w.r.t. m and their densities %t
solve the weak formulation of (CE), namely

d

dt

∫
X
φ%t dm =

∫
X
〈bt,∇φ〉%t dm (3.8)

for any test function φ (notice that the operator div in (CE), according to (3.4), does
depend on the reference measure m). Under appropriate regularity assumptions (for instance
within the Cauchy-Lipschitz theory) one can then prove that this is the unique solution
of (CE). Starting from the seminal paper [49], these connections have been extended to
classes of nonsmooth (e.g. Sobolev, or even BV [2]) vector fields, with applications to fluid
mechanics and to the theory of conservation laws, see the lecture notes [9] for much more
information on this topic. One of the basic principles of the theory is that, as I illustrate
below, well-posedness can be transferred from the (ODE) to (CE), and conversely.

More recently it has been understood in [10] that not only can one deal with nonsmooth
vector fields, but even with general (nonsmooth) metric measure structures. Therefore
from now on I come back to this high level of generality. We have already seen that in the
m.m.s. setting the role of vector fields is played by derivations, and that the divergence
operator can be defined; on the other hand, the definition of solution to the ODE is more
subtle. If we forget about the measure structure, looking only at the metric one, there is by
now a well-established theory for ODE’s b = −∇E of gradient type [3]: in this setting, as
we have seen in Section 2, one can characterize the gradient flow by looking at the maximal
rate of dissipation of E . In general, for vector fields which are not gradients, one can use
all Lipschitz functions as “entropies”; taking also into account the role of the measure
m, this leads to the following definition of regular Lagrangian flow, an adaptation to the
nonsmooth setting of the notion introduced in [2].

Definition 3.12 (Regular Lagrangian Flow). Let bt be derivations. We say that X(t, x)
is a regular Lagrangian flow relative to bt (in short RLF) if the following three properties
hold:
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(a) X(·, x) ∈ AC([0, T ];X) for m-a.e. x ∈ X;

(b) for all f ∈ Lipb(X) and m-a.e. x ∈ X, one has d
dtf(X(t, x)) = bt(f)(X(t, x)) for

L 1-a.e. t ∈ (0, T );

(c) for some C ≥ 0, one has X(t, ·)#m ≤ Cm for all t ∈ [0, T ].

The basic principle of the theory is the following result, reminiscent of the uniqueness
in law/pathwise uniqueness results typical of the theory of stochastic processes.

Theorem 3.13. Assume that |bt| ∈ L1((0, T );L2(m)). Then (CE) is well-posed in the
class

L :=
{
% ∈ L∞((0, T );L1 ∩ L∞(X,m)) : %t ≥ 0, %t w∗ − L∞(X,m) continuous

}
(3.9)

if and only if there exists a unique Regular Lagrangian Flow X.

It is clear, by the simple transfer mechanism I described at the beginning of this section,
that distinct RLF’s lead to different solutions to (CE). The description of the path from
existence of solutions to (CE) to existence of the RLF deserves instead more explanation,
and requires a basic result about moving from Eulerian to Lagrangian representations,
the superposition principle. Its origins go back to the work of L.C.Young (see [26]), but
in its modern form it can be more conveniently stated in the language of the theory
of currents, following S.Smirnov [102]: any normal 1-dimensional current in RN can be
written as the superposition of elementary 1-dimensional currents associated to curves (see
also [91] for versions of this result within the metric theory of currents I developed with
B.Kirchheim [1]). The version of this principle I state below, taken from [10], is adapted
to the space-time current J = (%tm, bt%tm) associated to (CE), see also [3, Thm. 8.2.1] for
stronger formulations in Euclidean spaces:

Theorem 3.14 (Superposition principle). Let bt, %t ∈ L be as in Theorem 3.13. If %t
solves (CE), then there exists η ∈P(C([0, T ];X)) concentrated on absolutely continuous
solutions to (ODE), such that

%tm = (et)#η ∀t ∈ [0, T ], where et : C([0, T ];X)→ X, et(γ) := γt. (3.10)

Using this principle, as soon as we have w∗-L∞ continuous solutions to (CE) starting
from %0 ≡ 1 we can lift them to probabilities η in C([0, T ];X) concentrated on solutions to
(ODE), thus providing a kind of generalized solution to the (ODE). The uniqueness of (CE)
now comes into play, in the proof that the conditional measures ηx associated to the map
e0(γ) = γ0 should be Dirac masses, so that writing ηx = δX(·,x) we recover our RLF X.

As the theory in Euclidean spaces shows (see [9]), some regularity of the vector
field is necessary to obtain uniqueness of solutions to (CE), even within the class L in
(3.9). Assuming until the end of the section that (X, d,m) is infinitesimally Hilbertian,
we introduce the following regularity property for derivations; for gradient derivations
bh(f) = Γ(f, h) it corresponds to the integral form of Bakry’s definition of Hessian (see
(5.10) and [21]).

Definition 3.15 (Derivations with deformation in L2). Let b be a derivation in L2. We
write Dsymb ∈ L2(X,m) if there exists c ≥ 0 satisfying∣∣∣∣∫ Dsymb(f, g) dm

∣∣∣∣ ≤ c‖Γ(f)‖1/22 ‖Γ(g)‖1/22 , (3.11)
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for all f, g ∈ H1,2(X, d,m) with ∆f, ∆g ∈ L4(X,m), where∫
Dsymb(f, g) dm := −1

2

∫ [
b(f)∆g + b(g)∆f − (div b)Γ(f, g)

]
dm. (3.12)

We denote by ‖Dsymb‖2 be the smallest constant c in (3.11).

Under a mild regularizing property of the semigroup Pt, satisfied for instance in all
RCD(K,∞) spaces (see [10, Thm. 5.4] for the precise statement), the following result
provides well posedness of (CE), and then existence and uniqueness of the RLF X, in a
quite general setting.

Theorem 3.16. If

|bt| ∈ L1((0, T );L2(X,m)), ‖Dsymbt‖2 ∈ L2(0, T ), |div bt| ∈ L1((0, T );L∞(X,m)),

then (CE) is well posed in the class L in (3.9).

4 Background on optimal transport
Building on the metric structure (X, d), optimal transport provides a natural way to
introduce a geometric distance between probability measures, which reflects well the metric
properties of the base space. We call P2(X) the space of Borel probability measures with
finite quadratic moment, namely µ belongs to P2(X) if

∫
X d2(x, x̄) dµ(x) <∞ for some

(and thus any) x̄ ∈ X. Given µ0, µ1 ∈P2(X) we consider the collection Plan(µ0, µ1) of
all transport plans (or couplings) between µ0 and µ1, i.e. measures µ ∈P(X ×X) with
marginals µ0, µ1, i.e. µ0(A) = µ(A×X), µ1(A) = µ(X ×A). The squared Kantorovich-
Rubinstein-Wasserstein distance W2(µ0, µ1) (Wasserstein distance, in short) is then defined
as

W2
2(µ0, µ1) := min

µ∈Plan(µ0,µ1)

∫
X×X

d2(x0, x1) dµ(x0, x1). (4.1)

The duality formula

1
2W2

2(µ0, µ1) = sup
f∈Lipb(X)

∫
X

Q1f dµ1 −
∫
X
f dµ0 (4.2)

where Qt is the Hopf-Lax semigroup

Qtf(x) := inf
y∈Y

f(y) + 1
2td

2(x, y), t > 0, Q0f(x) = f(x) (4.3)

plays an important role in the proof of many estimates (e.g. contractivity properties)
involving W2.

The distance W2 induces on P2(X) the topology of weak convergence with quadratic
moments, i.e. continuity of all the integrals µ 7→

∫
X φdµ with φ : X → R continuous and

with at most quadratic growth. The metric space (P2(X),W2) is complete and separable
and it inherits other useful properties from (X, d) such as compactness, completeness,
existence of geodesics, nonnegative sectional curvature (see e.g. [3, 95, 107]). Particularly
relevant for our discussion are the geodesic properties. In the same spirit of the concepts
illustrated in Section 3 (regular Lagrangian flows, test plans, superposition principle, etc.)
there is a close connection between Geo(X) and Geo(P2(X)): very informally we can say
that “a geodesic in the space of random variables is always induced by a random variable
in the space of geodesics”.
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Proposition 4.1. Any η ∈ P(Geo(X)) with (e0, e1)#η optimal transport plan induces
µt := (et)#η ∈ Geo(P2(X)). Conversely, any µt ∈ Geo(P2(X)) is representable (in
general not uniquely) in this way.

In the sequel we shall denote by OptGeo(X) the optimal geodesic plans, namely the
distinguished class of probabilities η in Geo(X) which induce optimal plans between their
marginals at time 0, 1. By the previous proposition, these probability measures canonically
induce geodesics in P2(X) by taking the time marginals, and it will be very useful to lift
all geodesics in P2(X) to elements of OptGeo(X).

If the ambient space X is Euclidean or Riemannian, it was understood at the end of the
90s that even the Riemannian structure could be lifted from X to P2(X), see [25, 88, 65].
In this direction the key facts are the Benamou-Brenier formula

(BB) W2
2(µ0, µ1) = inf

{∫ 1

0

∫
X
|bt|2 dµt dt : d

dt
µt + div (btµt) = 0

}
and the Jordan-Kinderlehrer-Otto interpretation of the heat flow Ptf as the gradient flow
of the Entropy functional

Ent(µ) :=
{∫

X % log % dm if µ = %m,

+∞ otherwise
(4.4)

w.r.t. W2. In particular, according to Otto’s calculus [88] we may at least formally endow
P2(X) with the metric tensor2

gµ(s1, s2) :=
∫
X
〈∇φ1,∇φ2〉 dµ where −div (∇φiµ) = si, i = 1, 2,

so that, after recognizing that gradient velocity fields bt = ∇φt are the optimal ones in
(BB) (see also (4.6) below), we may interpret the (BB) formula by saying that W2 is
the Riemannian distance associated to the metric g (see also [76], with calculations of
curvature tensors in P2(X) along these lines). Similarly, according to this calculus, the
heat equation can be interpreted as the gradient flow with respect to this “Riemannian
structure”; as illustrated in [88, 89] and many subsequent papers (see e.g. [32] and other
references in [3]), this provides a very powerful heuristic principle which applies to many
more PDE’s (Fokker-Planck equation, porous medium equation, etc.) and to the proof of
functional/geometric inequalities. Particularly relevant for the subsequent developments is
the formula ∫

{%>0}

|∇%|2

%
dm = |∇−Ent|2(%m) (4.5)

which corresponds to the energy dissipation rate of Ent along the heat equation, when
seen from the classical, “Eulerian”, point of view (the left hand side) and from the new,
“Lagrangian”, point of view (the right hand side). The left hand side, also called Fisher
information, can be written in the form 4

∫
|∇√%|2 dm.

After these discoveries, many attempts have been made to develop a systematic theory
based on Otto’s calculus, even though no approach based on local coordinates seems to
be possible. In this direction, the building block in [3] is the identification of absolutely
continuous curves in (P2(X),W2) (a purely metric notion) with solutions to the continuity
equation (a notion that appeals also to the differentiable structure).

2Compare with Fisher-Rao’s metric tensor, used in Statistics, formally given by gµ(s1, s2) =
∫
X
s1s2 dµ,

with siµ tangent vectors.
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Theorem 4.2. Assume that either X = RN , or X is a compact Riemannian manifold.
Then, for any µt ∈ AC2([0, 1]; (P2(X),W2)) there exists a velocity field bt such that
the continuity equation d

dtµt + div (btµt) = 0 holds, and
∫
X |bt|2 dµt ≤ |µ′t|2 for L 1-

a.e. t ∈ (0, 1). Conversely, for any solution (µt, b̃t) to the continuity equation with∫ 1
0
∫
X |b̃t|2 dµtdt <∞ one has that µt ∈ AC2([0, 1]; (P2(X),W2)) with |µ′t|2 ≤

∫
X |b̃t|2 dµt

for L 1-a.e. t ∈ (0, 1). Finally, the minimal velocity field bt is characterized by

bt ∈ {∇φ : φ ∈ C∞c (X)}L
2(µt) for L 1-a.e. t ∈ (0, 1). (4.6)

While for applications to PDE’s it is very useful to transfer differential information
from X to P2(X), it has been realized only more recently that also the converse path can
be useful, namely we may try to use information at the level of P2(X) to get information
on the energy/differentiable structure of X, or its curvature, that seem to be difficult to
obtain, or to state, with different means. Besides the Lott-Villani and Sturm theory, one of
the first applications of this viewpoint and of the identification (4.5) has been the following
result from [4] (the full strength of the analogous identification (5.15) in CD(K,∞) spaces
will also play an important role in Section 6).

Theorem 4.3. Let X be an Hilbert space and let m ∈P(X) be log-concave, i.e.

logm
(
(1− t)A+ tB

)
≥ (1− t) logm(A) + t logm(B) ∀t ∈ [0, 1]

for any pair of open sets A, B in X. Then the quadratic form

E(f) :=
∫
X
|∇f |2 dm f smooth, cylindrical

is closable in L2(X, γ), and its closure is a Dirichlet form.

While traditional proofs of closability use quasi-invariant directions (whose existence is
an open problem for general log-concave measures), here the proof is based on (4.5): lower
semicontinuity of |∇−Ent|, granted by the convexity of Ent along W2-geodesics, provides
lower semicontinuity in L1

+(X,m) of Fisher information, and then closability of E .

5 Curvature-dimension conditions
In this section I will illustrate two successful theories dealing with synthetic notions of Ricci
bounds from below and dimension bounds from above. The first one, the Bakry-Émery
theory, can be formulated at different levels of smoothness; I have chosen to describe
it at the level of Dirichlet forms and Γ-calculus (see Section 3.2), since at this level the
comparison with the Lott-Villani and Sturm theory (or, better, the Riemannian part of it)
is by now well understood.

In the Bakry-Émery theory the starting point is Bochner-Lichnerowicz’s formula

1
2∆g

(
|∇f |2

)
− 〈∇f,∇∆gf〉 = |Hess f |2 + Ric(∇f,∇f), (5.1)

valid in Riemannian manifolds, and its modification, accounting for the weight, on weighted
Riemannian manifolds. We have already seen in (3.2) that the natural operator in the
weighted setting is ∆f = ∆gf − 〈∇V,∇f〉, and the replacement of ∆g with ∆ in the left
hand side of (5.1) gives

1
2∆
(
|∇f |2

)
− 〈∇f,∇∆f〉 = |Hess f |2 + Ricm(∇f,∇f) (5.2)
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where now Ricm is the “weighted” Ricci tensor

Ricm := Ric + HessV.

Still in the smooth setting, the starting point of the CD theory, instead, is a concavity
inequality satisfied by the Jacobian function

J (s, x) := det
[
∇xexp(s∇φ(x))

]
,

in N -dimensional manifolds with Ric ≥ K g, as long as J (s, x) > −∞. Namely, a careful
ODE analysis (see [107, Thm. 14.12]) shows that

J 1/N (s, x) ≥ τ (s)
K,N (θ)J 1/N (1, x) + τ

(1−s)
K,N (θ)J 1/N (0, x) ∀s ∈ [0, 1] (5.3)

where θ = d(x, exp(∇φ(x)), τ (s)
K,N (θ) = s1/Nσ

(s)
K/(N−1)(θ)

1−1/N and, for s ∈ [0, 1],

σ(s)
κ (θ) :=


sκ(sθ)
sκ(θ) if κθ2 6= 0 and κθ2 < π2,
s if κθ2 = 0,
+∞ if κθ2 ≥ π2,

(5.4)

with

sκ(r) :=


sin(
√
κr)√
κ

if κ > 0,
r if κ = 0,
sinh(

√
−κr)√
−κ if κ < 0.

(5.5)

For κθ < π2, the coefficients σ(s)
κ (θ) solve the ODE σ′′ + κθ2σ = 0 on [0, 1], with σ(0) = 0,

σ(1) = 1. In the limit as N →∞ the inequality (5.3) becomes

logJ (s, x) ≥ s logJ (1, x) + (1− s) logJ (0, x) +K
s(1− s)

2 θ2. (5.6)

5.1 The BE theory

In the framework of Dirichlet forms and Γ-calculus (see Section 3.2) there is still the
possibility to write (5.2) in the weak form of an inequality. Let us start from the observation
that, because of the locality assumption, one has Γ(f) = 1

2∆f2− f∆f . Now, we may write
(5.2) in terms of the iterated Γ operator Γ2(f) = 1

2∆Γ(f)− Γ(f,∆f), to get the formula

Γ2(f) = |Hess f |2 + Ricm(∇f,∇f). (5.7)

Still, using only Γ and ∆ the left hand side in (5.7) can be given a meaning, if one has an
algebra A of “nice” functions dense in V, where nice means stable under the actions of the
operators Γ and ∆ (such as C∞c in Riemannian manifolds, smooth cylindrical functions in
Gaussian spaces, etc.). By estimating from below the right hand side in (5.7) with objects
which makes sense in the abstract setting, this leads to the the following definition:

Definition 5.1 (BE(K,N) condition). Let K ∈ R and N ∈ [1,∞). We say that the
Bakry-Émery condition BE(K,N) holds if

Γ2(f) ≥ (∆f)2

N
+KΓ(f) ∀f ∈ A. (5.8)
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It is not hard to see that this is a strongly consistent definition of upper bound on
dimension and lower bound on Ricci tensor, in the smooth setting of weighted n-dimensional
Riemannian manifolds: more precisely when V is constant BE(K,n) holds if and only if
Ric ≥ Kg and, when N > n, BE(K,N) holds if and only if

Ricm ≥ Kg + 1
N − n

∇V ⊗∇V. (5.9)

The expression Ricm − (N − n)−1∇V ⊗ ∇V appearing in (5.9) is also called Bakry-
Émery N -dimensional tensor and denoted RicN,m, so that the formula reads RicN,m ≥ Kg.
The possibility to introduce an “effective” dimension, possibly larger than the topological
one is a richness of the BE and the CD theories. This separation of dimensions is very
useful to include warped products, collapsing phenomena (i.e. changes of dimension under
measured Gromov-Hausdorff limits) and it reveals to be a crucial ingredient also in the
localization technique (see Section 5.3 below), where N -dimensional isoperimetric problems
are factored into a family on N -dimensional isoperimetric problems on segments endowed
with a weighted Lebesgue measure.

Last but not least, it is remarkable [21] that iterated Γ operators can also provide a
consistent notion of Hessian in this abstract setting, via the formula

Hess f(∇g,∇h) := 1
2
[
Γ(g,Γ(f, h)) + Γ(h,Γ(f, g))− Γ(f,Γ(g, h))

]
. (5.10)

As illustrated in the recent monograph [23], curvature-dimension bounds in the synthetic
form (5.8), when combined with clever interpolation arguments originating from [20], lead
to elegant and general proofs of many functional inequalities (Poincaré, Sobolev and
Logarithmic Sobolev, Nash inequalities, Gaussian isoperimetric inequalities, etc..), often
with sharp constants.

5.2 The CD theory

This theory is formulated in terms of suitable convexity properties, along geodesics in
P2(X), of integral functionals. A good analogy that should be kept in mind is with the
purely metric theory of Alexandrov spaces (see e.g. [31]), where lower bounds on sectional
curvature depend on concavity properties of d2(·, y), y ∈ X. The main new ingredient in
the CD theory is the role played by the reference measure m.

Throughout this section we assume that the reference measure m satisfies the growth
condition

m(Br(x̄)) ≤ a eb r2 ∀r > 0, for some x̄ ∈ X and a, b ≥ 0. (5.11)

In his pioneering paper [82], McCann pointed out the interest of convexity along
constant speed geodesics of P2(X) of integral functionals in Euclidean spaces such as
the logarithmic entropy in (4.4), introducing the notion of displacement convexity, i.e.
convexity along Geo(P2(X)). More generally, by considering the dimensional counterparts
of Ent, Rényi’s entropies

EN (µ) := −
∫
X
%1/N dm if µ = %m + µ⊥, (5.12)

(here ρm + µ⊥ denotes the Radon-Nikodym decomposition of µ w.r.t. m) he provided an
elegant proof of the Brunn-Minkowksi inequality in RN based on displacement convexity.
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Moving from Euclidean spaces to Riemannian manifolds it was soon understood in
[44, 89] on the basis of (5.6) or Otto’s calculus that the lower bound Ric ≥ K implies the
K-convexity inequality

Ent(µs) ≤ (1− s)Ent(µ0) + sEnt(µ1)− K

2 s(1− s)W
2
2(µ0, µ1). (5.13)

The key idea is to average the distorsion of volume along geodesics, using the inequality
(5.6). Therefore (5.13) provides a consistent definition of Ricci lower bounds of Riemannian
manifolds, later on proved to be strongly consistent in [106] (namely on Riemannian
manifolds, (5.13) implies Ric ≥ Kg). This motivated the definition of CD(K,∞), given
independently by Sturm [104, 105] and Lott-Villani [77].

Definition 5.2 (CD(K,∞) condition). A m.m.s. (X, d,m) satisfies the CD(K,∞) condi-
tion if Ent is geodesically K-convex in (P2(X),W2): every couple µ0, µ1 ∈ D(Ent) can
be connected by µs ∈ Geo(P2(X)) along which (5.13) holds.

For this and the many variants of the CD condition we will add the adjective strong to
mean that the convexity property holds for all geodesics, and the suffix loc to mean that
the property is only satisfied locally (i.e. for measures with localized support).

A crucial advantage of the CD theory is a clear separation of the roles of the distance
d and the reference measure m: the former enters only in W2, the latter enters only in
Ent; in the theories based on energy structures, instead, the measure m and the “metric” Γ
both enter in the construction of a single object, namely E . The following result, obtained
in [6] (see also [58], dealing with Alexandrov spaces) extends the key identity (4.5) and
the representation of Pt as metric gradient flow of Ent w.r.t. W2 to the whole class of
CD(K,∞) m.m.s. Its proof motivated some of the development of calculus in m.m.s.
(particularly the notion of test plan) I illustrated in Section 3: in particular it involves a
metric version of the superposition principle [74] and the validity of the Hamilton-Jacobi
equation

d

dt
Qtf(x) + 1

2 |∇Qtf |2(x) = 0 (5.14)

even in the metric setting (with a few exceptional points in space-time). From (5.14) one
can obtain [72] another key connection between the Lagrangian and Eulerian points of
view: the estimate of metric derivative with Fisher information:

|µ′t|2 ≤
∫
{Pt%>0}

|∇Pt%|2∗
Pt%

dm for L 1-a.e. t > 0, with µt := Pt%m.

Theorem 5.3. Let (X, d,m) be a CD(K,∞) metric measure space and let % ∈ L1(X,m)
be non-negative with %m ∈P2(X). Then:

(a) the curve of measures µt := Pt%m is the unique W2-gradient flow of Ent starting
from %m;

(b) |∇−Ent|(%m) is finite if and only if Ch2(√%) <∞ and

|∇−Ent|2(%m) =
∫
{%>0}

|∇%|2∗
%

dm = 4 Ch2(√%). (5.15)

Even though the two notions of heat flow can be identified, they are conceptually
different and their natural domains differ (in particular when, thanks to contractivity, the
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W2-gradient flow of Ent can be extended to the whole of P2(X)). For this reason we will
use the distinguished notation

Htµ := Pt%m whenever µ = %m ∈P2(X). (5.16)

Let us move now to the “dimensional” theory, i.e. when we want to give an upper
bound N < ∞ on the dimension, with N > 1. In this case the convexity conditions
should take into account also the parameter N , and the distorsion coefficients τ (s)

K,N (θ) =
s1/Nσ

(s)
K/(N−1)(θ)

1−1/N are those of (5.3), (5.4). In this text I follow more closely Sturm’s
axiomatization [104, 105] (J.Lott and C.Villani’s one [77] uses a more general classes of
entropies, not necessarily power-like, singled out by R.McCann).

Definition 5.4 (CD(K,N) spaces). We say that (X, d,m) satisfies the curvature dimension
condition CD(K,N) if the functionals EM in (5.12) satisfy: for all µ0 = %0m, µ1 = %1m ∈
P2(X) with bounded support there exists η ∈ OptGeo(µ0, µ1) with

EN ′(µs) ≤ −
∫ [
τ

(1−s)
K,N ′ (d(γ0, γ1))%−1/N ′

0 (γ0) + τ
(s)
K,N ′(d(γ0, γ1))%−1/N ′

1 (γ1)
]
dη(γ) (5.17)

for all N ′ ≥ N and s ∈ [0, 1], where µs := (es)]η.

Besides N -dimensional Riemannian manifolds with Ricci ≥ K Id and Finsler manifolds
[86], it has been proved by A.Petrunin in [92] that the class CD(0, N) includes also positively
curved N -dimensional spaces, in the sense of Alexandrov. The definition is built in such a
way that the curvature dimension condition becomes weaker as N increases, and it implies
(by taking N ′ →∞ in (5.17) and using that N ′ +N ′EN ′ → Ent) the CD(K,∞) condition.
These curvature dimension conditions, besides being stable w.r.t. m-GH convergence, can
be used to establish functional and geometric inequalities, often with sharp constants, see
Section 5.3. However, except in the cases K = 0 or N =∞ (and under the non-branching
assumption) it is not clear why the CD condition holds globally, when it holds locally, and
T.Rajala built indeed in [93] a highly branching CDloc(0, 4) space which, for no value of
K and N , is CD(K,N). This globalization problem is a fundamental issue, since only the
global condition, without artificial scale factors, can be proved to be stable w.r.t. m-GH
convergence. Recently, in the class of essentially non-branching m.m.s. (see Definition 5.6
below), the globalization problem has been brilliantly solved by F.Cavalletti and E.Milman
in [35], building on a very refined analysis of the metric Hamilton-Jacobi equation (5.14)
and the regularity of Qt. The globalization problem led K.Bacher and K.T.Sturm to the
introduction in [19] of a weaker curvature-dimension condition CD∗, involving the smaller
coefficients σ(s)

κ (θ):

Definition 5.5 (CD∗(K,N) spaces). We say that (X, d,m) satisfies the reduced curvature
dimension condition CD∗(K,N) if the functionals EM in (5.12) satisfy: for all µ0 =
%0m, µ1 = %1m ∈P2(X) with bounded support there exists η ∈ OptGeo(µ0, µ1) with

EN ′(µs) ≤ −
∫ [
σ

(1−s)
K/N ′ (d(γ0, γ1))%−1/N ′

0 (γ0) + σ
(s)
K/N ′(d(γ0, γ1))%−1/N ′

1 (γ1)
]
dη(γ) (5.18)

for all N ′ ≥ N and s ∈ [0, 1], where µs := (es)]η.

At the local level the two classes of spaces coincide, more precisely⋂
K′<K

CD∗loc(K ′, N) ∼
⋂

K′<K

CDloc(K ′, N).
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In addition, the inclusion CD(K,N) ⊂ CD∗(K,N) can be reversed at the price of replacing,
in CD(K,N), K with K∗ = K(N−1)/N (in particular one can still obtain from CD∗(K,N)
functional inequalities, but sometimes with non-optimal constants). More results can be
established in the class of the essentially non-branching m.m.s., first singled out in [94].
Recall that a metric space (X, d) is said to be non-branching if the map (e0, et) : Geo(X)→
X2 is injective for all t ∈ (0, 1] (for instance Riemannian manifolds and Alexandrov spaces
are non-branching). Analogously we can define the non-branching property of a subset E
of Geo(X).

Definition 5.6 (Essential non-branching). We say that (X, d,m) is essentially non-
branching if any η ∈ OptGeo(µ0, µ1) with µi ∈ P2(X) and µi � m is concentrated
on a Borel set of non-branching geodesics.

It has been proved in [94] that strong CD(K,∞) spaces are essentially non-branching.
In the class of essentially non-branching m.m.s. the CD∗ condition gains the local-to-global
property, namely CD∗loc(K,N) ∼ CD∗(K,N).

Finally, we can complete the list of CD spaces with the entropic CDe spaces, introduced
in [50]. Their definition involves the new notion of (K,N)-convexity. In a geodesic space
X, a function S is said to be (K,N)-convex if for any pair of points γ0, γ1 ∈ X there exists
γ ∈ Geo(X) connecting these two points such that (S ◦ γ)′′ ≥ Kd2(γ1, γ0) + |(S ◦ γ)′|2/N
in (0, 1), in the sense of distributions. In the smooth setting, this is equivalent to either
the inequalities

HessS ≥ K Id + 1
N

(
∇S ⊗∇S), HessSN ≤ −

K

N
SN (5.19)

for SN := exp(−S/N), while in the metric setting this property can be formulated in terms
of the inequality

SN (γt) ≥ σ(1−t)
K/N (d(γ0, γ1))SN (γ0) + σ

(t)
K/N (d(γ0, γ1))SN (γ1) t ∈ [0, 1], , γ ∈ Geo(X).

These facts, and the differential inequality `′′(s) ≥ (`′(s))2/n + Ric (γ′(s), γ′(s)), valid
in the smooth setting with `(s) = − logJ (s, x) and γ(s) = exp(s∇φ(x)), motivate the
following definition.

Definition 5.7 (CDe(K,N) spaces). We say that (X, d,m) satisfies the entropic curvature
dimension condition CDe(K,N) if the functional Ent is (K,N)-convex in P2(X).

The following result (due for the first part to [50], for the second part to [35]) provides,
under the essential non-branching assumption, a basic equivalence between all these
definitions. In addition, [35] provides also equivalence with another definition based on
disintegrations of m (as in Alberti’s representations mentioned in Section 3.1) induced by
transport rays of the optimal transport problem with cost=distance.

Theorem 5.8 (Equivalence under essential non-branching). Let (X, d,m) be an essentially
non-branching m.m.s. with m(X) <∞. Then (X, d,m) is CDe(K,N) iff it is CD∗(K,N)
iff it is CD(K,N).

Finally, inspired by the calculations done in the smooth setting in [107] (see (29.2)
therein) we also proved in [16] that, for essentially non-branching m.m.s., the CD∗(K,N)
condition is equivalent to a distorted convexity inequality for Rényi’s entropy

EN (µs) ≤ (1− s)EN (µ0) + sEN (µ1)−KA(s)
N (µ) ∀s ∈ [0, 1],
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where the dimensional distorsion is present also in the action term

A(s)
N (µ) :=

∫ 1

0

∫
X
G(t, s)%1−1/N

t |vt|2 dm dt µt = %tm + µ⊥t .

Here |vs| is the minimal velocity field of µs (which still makes sense in the metric setting,
by an adaptation of Theorem 4.2) and G is a suitable Green function. In the limit as
N →∞, along geodesics µs � m, the action term converges to 1

2s(1− s)W
2
2(µ0, µ1).

5.3 Geometric and functional inequalities

We recall here some of the most important geometric and functional inequalities by now
available in the settting of CD(K,N) spaces.
Bishop-Gromov inequality and Bonnet-Myers diameter estimate: [107] The map

r 7→ m(Br(x0))∫ r
0 s

K,N (t) dt is nonincreasing for all x0 ∈ X.

When N is an integer sK,N can be interpreted as the functions providing the measure
of the spheres in the model space of Ricci curvature K and dimension N . If K > 0 the
diameter of X is bounded by π

√
(N − 1)/K.

Upper bounds on ∆d2: [56] Under a suitable strict convexity assumption of Ch2, in
CD∗(K,N) spaces one has the upper bound ∆d2 ≤ γK,N (d)m in the weak sense (with
γ0,N ≡ 2N).
Spectral gap and Poincaré inequality: If K > 0 then∫

X
(f − f̄)2 dm ≤ N − 1

NK

∫
X
|∇f |2∗ dm, with f̄ =

∫
X
f dm.

In more recent times, B.Klartag used L1 optimal transportation methods and the
localization technique (going back to the work of Payne-Weinberger [80] and then further
developed in the context of convex geometry by Gromov-Milman and Kannan-Lovàsz-
Simonovitz) to provide in [69] a new proof of the Levy-Gromov isoperimetric inequality
in Riemannian manifolds, one of the few inequalities not available with Γ-calculus tools.
Shortly aftwerwards, F.Cavalletti and A.Mondino have been able to extend in [33, 34] the
localization technique to obtain in the class of essentially non-branching CD(K,N) m.m.s.
this and many other inequalities with sharp constants.
Levy-Gromov inequality: [33] If m(X) = 1 and K > 0, then for any Borel set E ⊂ X
one has

m+(E) ≥ |∂B|
|S|

where m+(E) = lim infr↓0(m(Er) − m(E))/r is the Minkowski content of E (coinciding
with the perimeter of the boundary, for sufficiently nice sets E) and B is a spherical cap in
the N -dimensional sphere S with Ricci curvature equal to K such that |B|/|S| = m(E).
This is part of a more general isoperimetric statement proved in [33] involving isoperimetric
profiles and model spaces for manifolds with dimension smaller than N , Ricci curvature
larger than K and diameter smaller than D discovered in [78]. In RCD(K,∞) spaces see
also [23, Cor. 8.5.5], [17].
Log-Sobolev and Talagrand inequalities: If K > 0 and m(X) = 1 then

KN

2(N − 1)W2
2(%m,m) ≤ Ent(%m) ≤ N − 1

2KN

∫
{%>0}

|∇%|2∗
%

dm.
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Sobolev inequalities: If K > 0, N > 2, 2 < p ≤ 2N/(N − 2), then (see also [23,
Thm. 6.8.3])

‖f‖2Lp ≤ ‖f‖2L2 + (p− 2)(N − 1)
KN

∫
X
|∇f |2∗ dm.

6 Stability of curvature-dimension bounds and heat flows
In this section we deal with pointed m.m.s. (X, d,m, x̄), a concept particularly useful when
(X, d) has infinite diameter and blow-up procedures are performed. Pointed metric measure
structures are identified by measure-preserving isometries of the supports which preserve
the base points. Remarkably, Gromov’s reconstruction theorem [62] (extended in [59] to
spaces with infinite mass), characterizes the equivalence classes by the family of functionals

ϕ?
[
(X, d,m, x̄)

]
:=
∫
XN

ϕ
(
d(xi, xj)Ni, j=1

)
dδx̄(x1) dm⊗N−1(x2, . . . , xN ), (6.1)

where N ≥ 2 and ϕ : RN2 → R is continuous with bounded support.
A fundamental property of the CD condition is the stability w.r.t. (pointed) measured

Gromov-Hausdorff convergence, established (in slightly different settings) in [77, 104, 105].
Building on Gromov’s seminal work [62] on convergence for metric structures, this notion
of convergence for (pointed) metric measure structures was introduced by K.Fukaya in
connection with spectral stability properties, and then it has been a crucial ingredient in
the remarkable program developed in the 90’s by J.Cheeger and T.Colding [37, 38, 39, 40],
dealing with the fine structure of Ricci limit spaces (particularly in the collapsed case).

According to local and global assumptions on the sequence of metric measure structures,
several definitions of convergence are possible. For the sake of illustration, I follow here the
definition of pointed measured Gromov convergence in [59, 61], based on the reconstruction
theorem. As for Sturm’s D-convergence [104], this notion of convergence, while avoiding
at the same time finiteness of the measure and local compactness, is consistent with
pointed mGH-convergence when the pointed m.m.s. have more structure (e.g. under a
uniform doubling condition, ensured in the CD(K,N) case, N <∞, by the Bishop-Gromov
inequality). Within this approach, not relying on doubling and local compactness, general
CD(K,∞) spaces can also be treated (see also [104, 100] for a comparison with Gromov’s
notions [62] of box and concentration convergence).

Definition 6.1 (pmG-convergence). We say that (Xh, dh,mh, x̄h) converge to (X, d,m, x̄)
if for every functional ϕ? as in (6.1) one has

lim
h→∞

ϕ?
[
(Xh, dh,mh, x̄h)

]
= ϕ?

[
(X, d,m, x̄)

]
.

The following result from [59], which includes as a particular case those proved in
[40] for Ricci limit spaces and those proved in [99] for Finsler manifolds, provides not
only stability of the CD(K,∞) condition, but also convergence of Cheeger’s energies and
heat flows; for Cheeger’s energies, the right notion of convergence is Mosco convergence
[84], a notion of variational convergence particularly useful in connection to stability of
variational inequalities, that can be adapted also to the case when sequences of metric
measure structures are considered.

Theorem 6.2. Assume that (Xh, dh,mh, x̄h) are CD(K,∞) pointed m.m.s., pmG-convergent
to (X, d,m, x̄). Then:

(a) (X, d,m) is CD(K,∞);
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(b) the Cheeger energies Ch2,h relative to (Xh, dh,mh) Mosco converge to the Cheeger
energy Ch2 relative to (X, d,m);

(c) the heat flows Pht relative to (Xh, dh,mh) converge to the heat flow Pt relative to
(X, d,m).

In order to give a mathematically rigorous and specific meaning to (b) and (c) one has
to use the so-called extrinsic approach, embedding isometrically all spaces into a single
complete and separable metric space (Z, dZ); within this realization of the convergence,
which is always possible, pmG-convergence corresponds to weak convergence of mh to
m. The proof of parts (b) and (c) of Theorem 6.2 relies once more on Theorem 5.3 and
particularly on the key identification (5.15), to transfer information from the Lagrangian
level (the one encoded in the definition of convergence) to the Eulerian level.

7 Adding the Riemannian assumption
One of the advantages of the CD theory, when compared to the BE theory dealing essential
with quadratic energy structures, is its generality: it provides a synthetic language to state
and prove functional and geometric inequalities in structures which are far, even on small
scales, from being Euclidean. On the other hand, as advocated in [63] and [38, Appendix 2],
the description of the closure with respect to m-GH convergence of Riemannian manifolds
requires a finer axiomatization, possibly based on the linearity of the heat flow. Within
the CD theory, a good step forward in this direction has been achieved in [7], see also [11]:

Definition 7.1 (RCD(K,∞) condition). A (X, d,m) m.m.s. satisfies the RCD(K,∞)
condition if it is CD(K,∞) and Ch2 is a quadratic form, i.e. if (X, d,m) is infinitesimally
Hilbertian according to Definition 3.8.

This new definition is useful (for instance in the proof of rigidity results by compactness
arguments) only if the additional “Riemannian” axiom, equivalent to the linearity of the
semigroup Pt, is stable with respect to the measured Gromov-Hausdorff convergence and
its variants. Simple examples show that, by itself, it is not. However, the remarkable fact is
that the extra axiom is stable, when combined with the CD(K,∞) condition. This stability
property could be seen as a consequence of Mosco convergence (see Theorem 6.2), since
quadraticity is stable under Mosco convergence. However, the original proof of stability of
the RCD(K,∞) condition given in [7] uses the full strength of the Riemannian assumption
and relies on the characterization of RCD(K,∞) in terms of the EVIK-property of the
heat flow Ht.

Theorem 7.2 ([7], [11]). (X, d,m) is RCD(K,∞) if and only if the heat semigroup Ht in
(5.16) satisfies the EVIK property

d

dt

1
2W2

2(Htµ, ν) ≤ Ent(ν)− Ent(Htµ)− K

2 W2
2(Htµ, ν) (7.1)

for all initial datum µ = %m ∈P2(X), and all ν ∈P2(X).

Since EVIK solutions are metric gradient flows, the previous theorem could also have
been stated in terms of a semigroup satisfying the EVIK property (this formulation, only
apparently weaker, is useful for instance in connection with the stability of heat flows in
the RCD setting). EVIK solutions are a crucial technical tool for more than one reason:
first, as we have seen in Theorem 7.2, they encode in a single condition both the CD and

22



the Riemannian assumption; even more (see [3, 46] for a more complete account of the
EVI theory), they enjoy strong stability and contractivity properties that allow at once
the extension of Ht to the whole of P2(X), with W2(Htµ,Htν) ≤ e−KtW2(µ, ν). Finally,
S.Daneri and G.Savaré discovered in [45] that the existence of EVIK solutions, for a given
function S in a geodesic space, encodes also the strong convexity (i.e. convexity along all
constant speed geodesics). As a consequence, RCD(K,∞) spaces are strong CD(K,∞)
spaces and we obtain from [94] also the essential non-branching property of this new class
of spaces.

In [7] we proved several properties of RCD spaces, and many more have been proved
in subsequent papers (see the next section). To conclude this section, I will describe
results which establish an essential equivalence between the RCD and the BE theories,
both in the dimensional and adimensional case. The connection can be established in one
direction using Cheeger’s energy Ch2, in the other direction using the intrinsic distance dE .
A precursor of these results is K.Kuwada’s paper [72], which first provided the equivalence
in the Riemannian setting of gradient contractivity |∇Ptf |2 ≤ e−2KtPt|∇f |2 (namely the
integrated form of BE(K,∞)) and contractivity of W2 under the heat flow. The advantages
of this “unification” of the theories are evident: at the RCD level one can use (with the
few limitations I already mentioned) all power of Γ-calculus, having at the same time all
stability and geometric properties granted by the metric point of view.

For the sake of simplicity, I will state the next results for the case when m is finite
measure, but most results have been proved also in the more general setting, under suitable
global assumptions analogous to (5.11).

Theorem 7.3 ([7], [12]). If (X, d,m) is a RCD(K,∞) m.m.s., then the Dirichlet form
E = Ch2 in L2(X,m) satisfies the BE(K,∞) condition. Conversely, assume that (X, τ)
is a topological space, that E : L2(X,m) is a strongly local Dirichlet form with a carré du
champ and that

(a) the intrinsic distance dE induces the topology τ and is complete;

(b) any f ∈ V with Γ(f) ≤ 1 has a τ -continuous representative;

(c) the condition BE(K,∞) holds.

Then the m.m.s. (X, dE ,m) is a RCD(K,∞) space.

From RCD to BE. This implication, in Theorem 7.3, requires strictly speaking a weaker
formulation of BE(K,∞), since in the metric measure setting no algebra stable under the
action both of ∆ and Γ is known. Nevertheless, not only can BE(K,∞) be written in weak
form, but it can be even proved (adapting to this setting Bakry’s estimates in the frame of
Γ-calculus, see [24]) that

TestF(X, d,m) :=
{
f ∈ Lipb(X) ∩H1,2(X, d,m) : ∆f ∈ H1,2(X, d,m)

}
(7.2)

is an algebra, and that the restriction of the iterated Γ operator Γ2 to TestF(X, d,m) is
measure-valued, with absolutely continuous negative part, and density bounded from below
as in (5.8), see [96].
From BE to RCD. The proof is based on the verification of the EVIK-property using
the (BB) representation of W2

2 and suitable action estimates, an approach discovered for
the purpose of contractivity in [90], and then improved and adapted to the metric setting
in [46]. A different strategy, illustrated in [23] (and then used also in [15], in the class of
extended m.m.s.) involves instead the dual representation (4.2) of W2

2.
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Moving now to the dimensional case, the following definition (first proposed in [55]) is
natural.

Definition 7.4 (RCD∗(K,N) condition). For N ≥ 1, a CD∗(K,N) m.m.s. (X, d,m) satis-
fies the RCD∗(K,N) condition if Ch2 is a quadratic form, i.e. if (X, d,m) is infinitesimally
Hilbertian according to Definition 3.8.

In light of the recent equivalence result [35] between the CD∗ and CD conditions in
essential non-branching m.m.s. (since, as we have seen, RCD(K,∞) spaces are essentially
non-branching), we now know that RCD∗(K,N) is equivalent to RCD(K,N), i.e. CD(K,N)
plus infinitesimally Hilbertian.

Building on Theorem 7.2, the equivalence between the BE(K,N) and RCD∗(K,N) with
N < ∞ has been proved, independently, in [50] and [16]. The “distorsion” of the EVIK
property due to the dimension has been treated quite differently in the two papers: in
[50], instead of Rényi’s entropies, a suitable dimensional modification of Ent, the so-called
power entropy functional

EntN (µ) := exp
(
− 1
N

Ent(µ)
)

(7.3)

has been used. We have already seen in (5.19) that, in the smooth setting, the (K,N)-
convexity condition for S can also be reformulated in terms of SN = exp(−S/N). It turns
out that, still in a Riemannian setting, the (K,N)-convexity condition can be formulated
in terms of a EVIK,N condition satisfied by the gradient flow γt of S: more precisely

d

dt
s2
K/N

(1
2d(γt, z)

)
+Ks2

K/N

(1
2d(γt, z)

)
≤ N

2

(
1− SN (z)

SN (γt)

)
for all z ∈ X, where sκ are defined in (5.5).

These facts are at the basis of the following result from [50].

Theorem 7.5. (X, d,m) is a RCD∗(K,N) m.m.s. if and only if (X, d) is a length space
and the heat semigroup Ht starting from any µ ∈P2(X) satisfies the EVIK,N property:

d

dt
s2
K/N

(1
2W2(Htµ, ν)

)
+Ks2

K/N

(1
2W2(Htµ, ν)

)
≤ N

2

(
1− EntN (ν)

EntN (Htµ)

)
(7.4)

for all ν ∈P2(X).

The characterization of RCD∗(K,N) provided in [16], involves, instead, a distorted
EVI property of McCann’s N -displacement convex entropies

∫
X U(%) dm and their gradient

flow, which is a nonlinear diffusion equation

d

dt
%t = ∆P (%t) with P (z) := zU ′(z)− U(z).

This is very much in the spirit of Otto’s seminal paper [88], motivated precisely by the
long term behaviour, in Euclidean spaces, of solutions to these equations.

As we will see in Section 8, distorted Evolution Variational Inequalities lead also to new
contractivity estimates, besides those which already characterize the curvature-dimension
condition [108] and those that can be obtained by adapting Γ-calculus techniques to the
RCD setting.
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8 Properties of RCD spaces
Heat kernel and contractivity. In RCD(K,∞) spaces, the EVIK-property of the heat
flow immediately leads to W2

2(Htµ,Htν) ≤ e−2KtW2
2(µ, ν) and then, by duality to the

gradient contractivity property |∇Ptf |2∗ ≤ e−2KtPt|∇f |2∗ and to the Feller property, namely
Pt : L∞(X,m) → Cb(X), t > 0. Wang’s log-Harnack inequality [108] also implies the
regularization of Ht, t > 0, from P2(X) to absolutely continuous probability measures
with density in LlogL. These inequalities can be improved, taking the dimension into
account, in various ways, see [108] and the more recent papers [28, 50]. On the Lagrangian
side, from (7.4) one obtains

s2
K/N

(1
2W2(Htµ,Hsν)

)
≤ e−K(s+t)s2

K/N

(1
2W2(Htµ,Hsν)

)
+N

K

(
1−e−K(s+t))(

√
s−
√
t)2

2(s+ t) ,

while on the Eulerian side one can recover in the RCD setting the inequality

|∇Ptf |2∗ + 4Kt2

N(e2Kt − 1) |∆Ptf |2 ≤ e−2KtPt|∇f |2∗ m-a.e. on X

proved by Γ-calculus techniques in [22]. In connection with nearly optimal heat kernel
bounds, see [73].
Li-Yau and Harnack inequalities: If K ≥ 0, N <∞, f > 0 then the Γ-techniques (see
for instance [23, Cor. 6.7.6]) have been adapted in [53] to the RCD setting to obtain the
Li-Yau and Harnack inequalities:

∆(log Ptf) ≥ −N2t t > 0, Ptf(x) ≤ Pt+sf(y)
(
t+ s

t

)N/2
ed2(x,y)/(2s).

Tensorization: Tensorization is the persistence of geometric/analytic properties when we
we consider two factors (X1, d1,m1), (X2, d2,m2) having both these properties, and their
product(

X1 ×X2, d,m1 ×m2
)

with d2((x′1, x′2), (x1, x2)) := d2
1(x1, x

′
1) + d2

2(x2, x
′
2).

For instance, it is easily seen that the completeness and geodesic properties tensorize.
At the level of CD spaces, we know from [105, 19, 107] that essentially non-branching
CD(0, N), CD(K,∞) and CD∗(K,N) spaces all have the tensorization property. When
we add the Riemannian assumption we get the strong CD(K,∞) property and then the
essential non-branching property. Therefore, taking also into account the tensorization
of the infinitesimally Hilbertian property [7, 14], we obtain that all spaces RCD∗(K,N)
tensorize. Alternatively, one can use the equivalence results of Theorem 7.2 and Theorem 7.5
to obtain the tensorization from the BE theory.
Improved stability results: Thanks to the more refined calculus tools available in
RCD spaces, and to the gradient contractivity available in the RCD setting, in [18] the
convergence result of Theorem 6.2 has been extended to the whole class of p-th Cheeger
energies Chp, including also the total variation norm. This gives, among other things, also
the stability of isoperimetric profiles and Cheeger’s constant.
Splitting theorem: In [54], N.Gigli extended to the RCD setting the Cheeger-Gromoll
splitting theorem: If K ≥ 0, N ∈ [2,∞) and X contains a line, i.e. there exists γ : R→ X
such that d(γ(s), γ(t)) = |t − s| for every s, t ∈ R, then (X, d,m) is isomorphic to the
product of R and a RCD(0, N − 1) space.
Universal cover: [79] RCD∗(K,N) have a universal cover, this is the first purely topo-
logical result available on this class of spaces.
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Maximal diameter theorem: [68] If (X, d,m) is a RCD(N,N + 1) space with N > 0
and there exist x, y ∈ X with d(x, y) = π, then (X, d,m) is isomorphic to the spherical
suspension of [0, π] and a RCD(N − 1, N) space with diameter less than π.
Volume-to-metric cones: [57] If K = 0, there exists x̄ ∈ X such that m(BR(x̄)) =
(R/r)Nm(Br(x̄)) for some R > r > 0 and ∂BR/2(x̄) contains at least 3 points, then BR(x̄)
is locally isometric to the ball BR(0) of the cone Y built over a RCD(N − 2, N − 1) space.
This extends the Riemannian result of [37].
Local structure: The k-dimensional regular set Rk of a RCD∗(K,N)-space (X, d,m) is
the set of points x ∈ suppm such that

(X, r−1d, sx,rm, x) m−GH→ (Rk, dRk , ckH k, 0) as r → 0+,

where c−1
k =

∫
B1(0)(1− |x|) dH k(x), and s−1

x,r =
∫
Br(x)(1− d(x, ·)/r) dm. For k ≥ 1 integer,

we say that a set S ⊂ X is (m, k)-rectifiable if m-almost all of S can be covered by Lipschitz
images of subsets of Rk. The following theorem provides some information on the local
structure of RCD∗(K,N) spaces, analogous to those obtained for Ricci limit spaces in
[38, 39, 40]; see [83] for the proof of the first two statements (more precisely, it has been
proved the stronger property that m-almost all of Rk can be covered by bi-Lipschitz charts
with bi-Lipschitz constant arbitrarily close to 1) and [67, 47, 60] for the proof of the
absolute continuity statement.

Theorem 8.1. Let (X, d,m) be a RCD∗(K,N) space with N ∈ (1,∞). For all k ∈ [1, N ]
the set Rk is (m, k)-rectifiable and

m
(
X \

⋃
1≤k≤N

Rk
)

= 0.

In addition, the restriction m Rk of m to Rk is absolutely continuous w.r.t. H k.

Second order calculus: Building on Bakry’s definition of Hessian (5.10), N.Gigli has
been able to develop in [56] a full second-order calculus in RCD(K,∞) spaces, including
covariant derivatives for vector fields, connection Laplacian, Sobolev differential forms
of any order and Hodge Laplacian. The starting points are, besides the formalism of
Lp-normed modules inspired by [109], the Riemannian formulas

〈∇∇gX,∇h〉 =
〈
∇〈X,∇g〉,∇h

〉
−Hess (h)(X,∇g),

dω(X1, X2) = 〈X1,∇ω(X2)〉 − 〈X2,∇ω(X1)〉 − ω(∇XY −∇YX)

which grant the possibility, as soon as one has a good definition of Hessian, to define first
the covariant derivative of X and then the exterior differential of ω. The RCD assumption
enters to provide good integrability estimates and non-triviality of the objects involved
(for instance the existence of a rich set of H2,2(X, d,m) functions). Remarkably, at the end
of this process also the Hessian term in the right hand side of (5.7) is well defined, so that
one can define a measure-valued Ricci tensor by Γ2(f)−Hess (f) and the lower bounds on
Ricci tensor can be localized.

9 Open problems
Finally, I wish to conclude this survey by stating a few open questions, on which I expect
to see new developments in the near future.
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• As we have seen, many equivalence and structural results of the CD theory hold under
the essential non-branching assumption. At this moment, the only stable class of spaces
satisfying this condition is the one of RCD(K,∞) spaces. Is there a larger “non-Riemannian”
stable class satisfying this condition, or how should the notion of essential non-branching
be adapted to this purpose?
• Presently, as we have seen, the BE and CD theories can be closely related only in the
class of infinitesimally Hilbertian m.m.s. Is there a “nonlinear” BE theory corresponding to
the CD theory, without assuming Ch2 to be quadratic? In the setting of Finsler manifolds
some important steps in this direction have already been achieved, see the survey paper
[87].
• In connection with Theorem 8.1, in a remarkable paper T.Colding and A.Naber [42]
proved that, for Ricci limit spaces, only one of the sets Rk has positive m-measure (so that
the dimension is constant). Is this property true also for RCD∗(K,N) spaces?
• Even though many properties of Ricci limit spaces (i.e. limits of Riemannian manifolds)
are being proved for RCD spaces, the characterization of limit spaces within RCD ones is a
challenging question. Using the fact that 3-dimensional non-collapsed limits are topological
manifolds [101] as well as the existence of RCD∗(0, 3) spaces which are not topological
manifolds3, a gap between Ricci limits and RCD spaces surely exists, at least if one looks
at non-collapsed limits.
• The definition of Laplacian in the metric measure setting corresponds, in the smooth
setting, to the (weighted) Laplacian with homogeneous Neumann boundary conditions.
For this reason the “boundary” is somehow hidden and it is not clear, not even in the RCD
setting, how a reasonable definition of boundary can be given at this level of generality.
A definition based on the n-dimensional Hausdorff measure of small balls, thus using
only the metric structure, is proposed in [66], dealing with geodesic flow in n-dimensional
Alexandrov spaces.

References
[1] L. Ambrosio, B. Kirchheim. Currents in metric spaces. Acta Math., 185:1–80, 2000

[2] L. Ambrosio. Transport equation and Cauchy problem for BV vector fields. Inventiones
Mathematicae, 158:227–260, 2004.

[3] L. Ambrosio, N. Gigli, G. Savaré. Gradient flows in metric spaces and in the space of
probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel,
second edition, 2008.

[4] L. Ambrosio, G. Savaré, L. Zambotti. Existence and stability results for Fokker-
Planck equations with log-concave reference measures. Probab. Theory Related Fields,
145:517–564, 2009.

[5] L. Ambrosio, N. Gigli, G. Savaré. Density of Lipschitz functions and equivalence
of weak gradients in metric measure spaces. Revista Matematica Iberoamericana,
29:969–986, 2013.

[6] L. Ambrosio, N. Gigli, G. Savaré. Calculus and heat flow in metric measure spaces and
applications to spaces with Ricci bounds from below. Invent. Math., 195(2):289–391,
2014.

3Personal communication of G.De Philippis, A.Mondino and P.Topping.

27



[7] L. Ambrosio, N. Gigli, G. Savaré. Metric measure spaces with Riemannian Ricci
curvature bounded from below. Duke Math. J., 163(7):1405–1490, 2014.

[8] L. Ambrosio, S. DiMarino. Equivalent definitions of BV space and of total variation
on metric measure spaces. J. Funct. Anal., 266(7):4150–4188, 2014.

[9] L. Ambrosio, G. Crippa. Continuity equations and ODE flows with non-smooth
velocity. Proc. Roy. Soc. Edinburgh Sect. A, 144:1191–1244, 2014.

[10] L. Ambrosio, D. Trevisan. Well posedness of Lagrangian flows and continuity equations
in metric measure spaces. Analysis & PDE, 7:1179–1234, 2014.

[11] L. Ambrosio, N. Gigli, A. Mondino, T. Rajala. Riemannian Ricci curvature lower
bounds in metric measure spaces with σ-finite measure. Transactions of the AMS,
367:4661–4701, 2015.

[12] L. Ambrosio, N. Gigli, G. Savaré. Bakry-Émery curvature-dimension condition and
Riemannian Ricci curvature bounds. Ann. Probab., 43(1):339–404, 2015.

[13] L. Ambrosio, S. DiMarino, G. Savaré. On the duality between p-modulus and proba-
bility measures. Journal of the EMS, 17:1817–1853, 2015.

[14] L. Ambrosio, A. Pinamonti, G. Speight. Tensorization of Cheeger energies, the space
H1,1 and the area formula. Advances in Mathematics, 281:1145–1177, 2015.

[15] L. Ambrosio, M. Erbar, G. Savaré. Optimal transport, Cheeger energies and contrac-
tivity of dynamic transport distances in extended spaces. Nonlinear Anal., 137:77–134,
2016.

[16] L. Ambrosio, A. Mondino, G. Savaré. Nonlinear diffusion equations and curvature
conditions in metric measure spaces. ArXiv preprint 1509.07273.

[17] L. Ambrosio, A. Mondino. Gaussian-type isoperimetric inequalities in RCD(K,∞)
probability spaces for positive K. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.,
27(4):497–514, 2016.

[18] L. Ambrosio, S. Honda. New stability results for sequences of metric measure spaces
with uniform Ricci bounds from below. Measure Theory in Non-Smooth Spaces,
N.Gigli ed., 1–51, De Gruyter Open, 2016.

[19] K. Bacher, K.T. Sturm. Localization and tensorization properties of the curvature-
dimension condition for metric measure spaces. Journal of Functional Analysis,
259:(28-56), 2010.

[20] D. Bakry, M. Émery. Diffusions hypercontractives. In Séminaire de probabilités, XIX,
1983/84, volume 1123, pages 177–206. Springer, Berlin, 1985.

[21] D. Bakry. On Sobolev and logarithmic Sobolev inequalities for Markov semigroups.
New trends in stochastic analysis (Charingworth, 1994), World Sci. Publ., 43–75, 1997.

[22] D. Bakry, M. Ledoux. A logarithmic Sobolev form of the Li-Yau parabolic inequality.
Rev. Mat. Iberoam., 22(2):683–702, 2006.

[23] D. Bakry, I. Gentil, M. Ledoux. On Harnack inequalities and optimal transportation.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14(3):705–727, 2015.

28



[24] D. Bakry, I. Gentil, M. Ledoux. Analysis and geometry of Markov diffusion operators.
Grundlehren der Mathematischen Wissenschaften, 348, 2014.

[25] J.-D. Benamou, Y. Brenier. A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem. Numer. Math., 84(3):375–393, 2000.

[26] P. Bernard. Young measures, superposition and transport. Indiana Univ. Math. J.,
57(1):247–275, 2008.

[27] A. Björn, J. Björn. Nonlinear potential theory on metric spaces. EMS Tracts in
Mathematics, volume 17. European Mathematical Society, Zürich, 2011.

[28] F. Bolley, I. Gentil, A. Guillin. Dimensional contraction via Markov transportation
distance. J. London Math. Soc., 90:309–332, 2014.

[29] G. Bouchitte, G. Buttazzo, P. Seppecher. Energies with respect to a measure and
applications to low dimensional structures. Calc. Var. Partial Differential Equations,
5:37–54, 1997.

[30] H. Brézis. Opérateurs maximaux monotones et semi-groupes de contractions dans les
espaces de Hilbert. North-Holland, 1973.

[31] D. Burago, Y. Burago, S. Ivanov. A course in metric geometry. Graduate Studies in
Mathematics, 33, AMS, 2001.

[32] J. Carrillo, R. McCann, C. Villani. Kinetic equilibration rates for granular media and
related equations: entropy dissipation and mass transportation estimates. Rev. Mat.
Iberoamericana, 19:971–1018, 2003.

[33] F. Cavalletti, A. Mondino. Sharp and rigid isoperimetric inequalities in metric-measure
spaces with lower Ricci curvature bounds. Invent. Math., 208(3):803–849, 2017.

[34] F. Cavalletti, A. Mondino. Sharp geometric and functional inequalities in metric
measure spaces with lower Ricci curvature bounds. Geom. Topol., 21(1):603–645, 2017.

[35] F. Cavalletti, E. Milman. The globalization theorem for the curvature-dimension
condition. ArXiv Preprint 1612.07623.

[36] J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom.
Funct. Anal., 9(3):428–517, 1999.

[37] J. Cheeger, T. H. Colding. Lower bounds on Ricci curvature and the almost rigidity
of warped products. em Ann. of Math., 144(2):189–237, 1996.

[38] J. Cheeger, T. H. Colding. On the structure of spaces with Ricci curvature bounded
below. I. J. Differential Geom., 46(3):406–480, 1997.

[39] J. Cheeger, T. H. Colding. On the structure of spaces with Ricci curvature bounded
below. II. J. Differential Geom., 54(1):13–35, 2000.

[40] J. Cheeger, T. H. Colding. On the structure of spaces with Ricci curvature bounded
below. III. J. Differential Geom., 54(1):37–74, 2000.

[41] J. Cheeger, B. Kleiner, A. Schioppa. Infinitesimal structure of differentiability spaces,
and metric differentiation. Analysis and Geometry in Metric Spaces, 4:104–159, 2016.

29



[42] T. Colding, A. Naber. Sharp Hölder continuity of tangent cones for spaces with a
lower Ricci curvature bound and applications. Annals of Math., 176:1173–1229, 2012.

[43] D. Cordero-Erausquin, R. J. McCann, M. Schmuckenschläger. A Riemannian inter-
polation inequality à la Borell, Brascamp and Lieb. Invent. Math., 146(2):219–257,
2001.

[44] D. Cordero-Erausquin, R. J. McCann, M. Schmuckenschläger. Prékopa-Leindler type
inequalities on Riemannian manifolds, Jacobi fields, and optimal transport. Ann. Fac.
Sci. Toulouse Math. (6), 15(4):613–635, 2006.

[45] S. Daneri, G. Savaré. Eulerian calculus for the displacement convexity in the Wasser-
stein distance. SIAM J. Math. Anal., 40(3):1104–1122, 2008.

[46] S. Daneri, G. Savaré. Lecture notes on gradient flows and optimal transport. In: Op-
timal transportation, 100–144, London Math. Soc. Lecture Note Ser., 413, Cambridge
Univ. Press, 2014.

[47] G. De Philippis, A. Marchese, F. Rindler. On a conjecture of Cheeger. Measure
Theory in Non-Smooth Spaces, N.Gigli ed., 145–152, De Gruyter Open, 2016.

[48] S. Di Marino. Sobolev and BV spaces on metric measure spaces via derivations and
integration by parts. ArXiv preprint 1409.5620.

[49] R. DiPerna, P.L. Lions. Ordinary differential equations, transport theory and Sobolev
spaces. Invent. Math., 98:511–547, 1989.

[50] M. Erbar, K. Kuwada, K.-T. Sturm. On the equivalence of the entropic curvature-
dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math.,
201(3):993–1071, 2015.

[51] B. Fuglede. Extremal length and functional completion. Acta Math., 98:171–219,
1957.

[52] M. Fukushima, Y. Oshima, M. Takeda. Dirichlet forms and symmetric Markov
processes. De Gruyter Studies in Mathematics 19, Walter de Gruyter & Co., Berlin,
2011.

[53] N. Garofalo, A. Mondino. Li-Yau and Harnack inequalities in RCD∗(K,N) metric
measure spaces. Nonlinear Analysis TMA, 95:721–734, 2014.

[54] N. Gigli. An overview of the proof of the splitting theorem in spaces with non-negative
Ricci curvature. Anal. Geom. Metr. Spaces, 2:169–213, 2014.

[55] N. Gigli. On the differential structure of metric measure spaces and applications.
Mem. Amer. Math. Soc., 236(1113):vi+91, 2015.

[56] N. Gigli. Nonsmooth differential geometry - An approach tailored for spaces with
Ricci curvature bounded from below. To Mem. Amer. Math. Soc., ArXiv:1407.0809,
2015.

[57] N. Gigli, G. de Philippis. From volume cone to metric cone in the nonsmooth setting.
Geom. Funct. Anal., 26(6):1526–1587, 2016.

[58] N. Gigli, K. Kuwada, S. Ohta. Heat flow on Alexandrov spaces. Comm. Pure Appl.
Math., 66:307–331, 2013.

30



[59] N. Gigli, A. Mondino, G. Savaré. Convergence of pointed non-compact metric measure
spaces and stability of Ricci curvature bounds and heat flows. Proc. Lond. Math. Soc.
(3), 111(5):1071–1129, 2015.

[60] N. Gigli, E. Pasqualetto. Behaviour of the reference measure on RCD spaces under
charts. ArXiv preprint 1607.05188.

[61] A. Greven, P. Pfaffelhuber, and A. Winter. Convergence in distribution of random
metric measure spaces (Λ-coalescent measure trees). Probab. Theory Related Fields,
145(1-2):285–322, 2009.

[62] M. Gromov. Metric structures for Riemannian and non-Riemannian spaces. Modern
Birkhäuser Classics. Birkhäuser, Boston, 2007.

[63] M. Gromov. Sign and geometric meaning of curvature. Rend. Sem. Mat. Fis. Milano,
61:9–123 (1994), 1991.

[64] J. Heinonen, P. Koskela, N. Shanmugalingam, J. Tyson. Sobolev spaces on metric
measure spaces. An approach based on upper gradients. New Mathematical Monographs,
volume 27. Cambridge University Press, Cambridge, 2015.

[65] R. Jordan, D. Kinderlehrer, F. Otto. The variational formulation of the Fokker-Planck
equation. SIAM J. Math. Anal., 29(1):1–17, 1998.

[66] V. Kapovitch, A. Lytchak, A. Petrunin. Metric-measure boundary and geodesic flow
on Alexandrov spaces. ArXiv preprint 1705.04767.

[67] M. Kell, A. Mondino. On the volume measure of non-smooth spaces with Ricci
curvature bounded below. ArXiv preprint 1607.02036.

[68] C. Ketterer. Cones over metric measure spaces and the maximal diameter theorem. J.
Math. Pures Appl., 103(5):1228–1275, 2015.

[69] B. Klartag. Needle decomposition in Riemannian geometry. ArXiv preprint 1408.6322.

[70] P. Koskela, P. MacManus. Quasiconformal mappings and Sobolev spaces. Studia
Math., 131:1–17, 1998.

[71] P. Koskela, N. Shanmugalingam, Y. Zhou. Geometry and Analysis of Dirichlet forms
(II). Journal of Functional Analysis, 267:2437–2477, 2014.

[72] K. Kuwada. Duality on gradient estimates and Wasserstein controls. J. Funct. Anal.,
258(11):3758–3774, 2010.

[73] R. Jiang, H. Li, H. Zhang. Heat kernel bounds on metric measure spaces and some
applications. Potential Analysis, 44:601–627, 2016.

[74] S. Lisini. Characterization of absolutely continuous curves in Wasserstein spaces. Calc.
Var. Partial Differential Equations, 28:85–120, 2007.

[75] B. Levi. Sul principio di Dirichlet. Renc. Circ. Mat. Palermo, 22:293–359, 1901.

[76] J. Lott. Some geometric calculations in Wasserstein space. Comm. Math. Phys,
277(2):423–437, 2008.

31



[77] J. Lott, C. Villani. Ricci curvature for metric-measure spaces via optimal transport.
Ann. of Math. (2), 169(3):903–991, 2009.

[78] E. Miman. Sharp isoperimetric inequalities and model spaces for curvature-dimension-
diameter condition. Journal of the EMS, 17:1041–1078, 2015.

[79] A. Mondino, G. Wei. On the universal cover and the fundamental group of an
RCD∗(K,N) space. ArXiv preprint 1605.02854.

[80] L.E. Payne, H.F. Weinberger. An optimal Poincaré inequality for convex domains.
Arch. Rational Mech. Anal., 5:286–292, 1960.

[81] Z.-M. Ma, M. Röckner. Introduction to the Theory of (Non-symmetric) Dirichlet
Forms. Springer, New York, 1992.

[82] R. J. McCann. A convexity principle for interacting gases. Adv. Math., 128(1):153–179,
1997.

[83] A. Mondino, A. Naber. Structure theory of metric measure spaces with lower Ricci
curvature bounds. ArXiv preprint 1405.2222.

[84] U. Mosco. Convergence of convex sets and of solutions of variational inequalities.
Advances in Math., 3:510–595, 1969.

[85] J. Naumann. Notes on the prehistory of Sobolev spaces. Bol. Soc. Port. Mat., 63:13–55,
2010.

[86] S.I. Ohta. Finsler interpolation inequalities. Calc. Var. Partial Differential Equations,
36(2):211–249, 2009.

[87] S.I. Ohta. Nonlinear geometric analysis on Finsler manifolds.

[88] F. Otto. The geometry of dissipative evolution equations: the porous medium equation.
Comm. Partial Differential Equations, 26:101–174, 2001.

[89] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with
the logarithmic Sobolev inequality. J. Funct. Anal., 173(2):361–400, 2000.

[90] F. Otto and M. Westdickenberg. Eulerian calculus for the contraction in the Wasser-
stein distance. SIAM J. Math. Anal., 37(4):1227–1255 (electronic), 2005.

[91] E. Paolini, E. Stepanov. Decomposition of acyclic normal currents in a metric space.
J. Funct. Anal., 263(11):3358–3390, 2012.

[92] A. Petrunin. Alexandrov meets Lott-Villani-Sturm. Munster J.Math., 4:53–64, 2011.

[93] T. Rajala. Failure of the local-to-global property for CD(K,N) spaces. Ann. Sc.
Norm. Super. Pisa Cl. Sci., 15(2):45–68, 2016.

[94] T. Rajala, K.T. Sturm. Non-branching geodesics and optimal maps in strong CD(K,∞)
spaces. Calc. Var. Partial Differential Equations, 50:831–846, 2014.

[95] F. Santambrogio. Optimal transport for applied mathematicians, volume 87 of Progress
in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer,
Cham, 2015. Calculus of variations, PDEs, and modeling.

32



[96] G. Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contrac-
tion of the heat flow in RCD(K,∞) metric measure spaces. Discrete Contin. Dyn.
Syst., 34:1641–1661, 2014.

[97] A. Schioppa. Derivations and Alberti representations. Advances in Math., 293:436–528,
2016.

[98] N. Shanmugalingam. Newtonian spaces: an extension of Sobolev spaces to metric
measure spaces. Rev. Mat. Iberoamericana, 16:243–279, 2000.

[99] Z. Shen. The non-linear Laplacian for Finsler manifolds. In: The theory of Finslerian
Laplacians and applications, vol. 459 of Math. Appl., pages 187–198. Kluwer Acad.
Publ., Dordrecht, 1998.

[100] T. Shioya. Metric Measure Geometry. Gromov’s theory of convergence and concen-
tration of metrics and measures. IRMA Lectures in Mathematics and Theoretical
Physics, 25, EMS, 2016.

[101] M. Simon. Ricci flow of non-collapsed 3-manifolds whose Ricci curvature is bounded
from below. J. Reine Angew. Math., 662:59–94, 2012.

[102] S.K. Smirnov. Decomposition of solenoidal vector charges into elementary solenoids
and the structure of normal one-dimensional currents. St. Petersburg Math. J., 5:841–
867, 1994.

[103] K.-T. Sturm. Is a diffusion process determined by its intrinsic metric? Chaos Solitons
Fractals, 8(11):1855–1860, 1997.

[104] K.-T. Sturm. On the geometry of metric measure spaces. I. Acta Math., 196(1):65–131,
2006.

[105] K.-T. Sturm. On the geometry of metric measure spaces. II. Acta Math., 196(1):133–
177, 2006.

[106] K.-T. Sturm, M.-K. von Renesse. Transport inequalities, gradient estimates, entropy,
and Ricci curvature. Comm. Pure Appl. Math., 58(7):923–940, 2005.

[107] C. Villani. Optimal transport. Old and new, volume 338 of Grundlehren der Mathe-
matischen Wissenschaften. Springer-Verlag, Berlin, 2009.

[108] F.-Y. Wang. Equivalent semigroup properties for the curvature-dimension condition.
Bull. Sci. Math., 135(6-7):803–815, 2011.

[109] N. Weaver. Lipschitz algebras and derivations. II. Exterior differentiation. J. Funct.
Anal., 178:64–112, 2000.

33


	Introduction
	Calculus tools in metric spaces
	Three basic equivalence results
	Cheeger energy and weakly differentiable functions
	Metric versus energy structures
	Flow of vector fields and the superposition principle

	Background on optimal transport
	Curvature-dimension conditions
	The BE theory
	The CD theory
	Geometric and functional inequalities

	Stability of curvature-dimension bounds and heat flows
	Adding the Riemannian assumption
	Properties of RCD spaces
	Open problems

