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Abstract. We consider a nonlocal version of the Allen-Cahn equation, which mod-
els phase transitions problems. In the classical setting, the connection between the
Allen-Cahn equation and the classification of entire minimal surfaces is well known and
motivates a celebrated conjecture by E. De Giorgi on the one-dimensional symmetry of
bounded monotone solutions to the (classical) Allen-Cahn equation up to dimension 8.
In this note, we present some recent results in the study of the nonlocal analogue of this
phase transition problem. In particular we describe the results obtained in several con-
tributions [8, 9, 13, 14, 25, 41, 44, 46] where the classification of certain entire bounded
solutions to the fractional Allen-Cahn equation has been obtained. Moreover we describe
the connection between the fractional Allen-Cahn equation and the fractional perimeter
functional, and we present also some results in the classifications of nonlocal minimal
surfaces obtained in [16, 42, 10, 21].

1. Introduction

In this note we present some recent results concerning the classification of certain solu-
tions to the fractional Allen-Cahn equation

(1.1) (−∆)su = u− u3 in Rn,

where s is a real parameter in (0, 1). More precisely, we are interested in the analogue,
for problem (1.1), of a well known conjecture by E. De Giorgi for solutions of the classical
Allen-Cahn equation.

In 1978, De Giorgi conjectured that the level sets of every bounded solution of

(1.2) −∆u = u− u3 in Rn,

which is monotone in one direction, must be hyperplanes at least if n 6 8. That is, such
solutions depend only on one Euclidean variable.

The original motivation for this conjecture was given by a classical result in the Calculus
of Variations due to Modica and Mortola [36], who proved that, after a suitable rescaling,
the energy functional associated to (1.2), Γ-converges to the perimeter functional (see
Section 2 for more details). Moreover, the classification of area-minimizing surfaces was
known: any area-minimizing set in the whole Rn is necessarily flat if n 6 7. The dimension
7 is optimal, indeed in R8 there exists an area-minimizing singular cone, the Simons cone,
defined in the following way:

C := {(x1, . . . , x8) ∈ R8 |x2
1 + · · ·+ x2

4 = x2
5 + · · ·+ x2

8}.
A related result concerns the classification of minimal graphs (the so-called Bernstein

problem): any area-minimizing graph in Rn is necessarily a hyperplane if n 6 8.
Coming back to the Allen-Cahn equation, by the Modica-Mortola result, one knows

that the level sets of solutions to −∆u = u − u3 are asymptotically area-minimizing
1
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surfaces. Moreover, if we assume the solution to be monotone in some direction, we
have that the level sets are graphs. Hence, by the previous result on the classification
of entire minimal graph, we know that the level sets of bounded monotone solutions to
the Allen-Cahn equation are asymptotically flat. The De Giorgi conjecture asserts that
they are indeed flat, not only asymptotically. The fact that a function u has level sets
which are parallel hyperplanes, means that u depends only on one Euclidean direction
(the direction perpendicular to all these hyperplanes). When this happens, we say that u
has one-dimensional symmetry, or is 1-D, for short.

We consider now the fractional version of the Allen-Cahn equation (1.1) and we are
interested in the validity of the analogue of the De Giorgi conjecture. First of all, a
natural question is whether a Modica-Mortola type result is valid for the energy functional
associated to (1.1) and whether there is a natural connection with an area-minimizing
problem. The answer to this question was given by Savin and Valdinoci in [45]: they
proved that, after a suitable rescaling the energy associated to (1.1) Γ-converges to the
classical perimeter functional if 1/2 6 s < 1 and to the so-called nonlocal perimeter if
0 < s < 1/2. Hence, when 1/2 6 s < 1, one expects the analogue of the De Giorgi
conjecture to be true up to dimension n = 8 as in the classical setting. While, when
0 < s < 1/2, the level sets of solutions to (1.1) looks, at large scales, like nonlocal minimal
surfaces.

The nonlocal (or fractional) s-perimeter functional was introduced by Caffarelli, Roque-
joffre, and Savin in [16] (see formula (4.1) in Section 4) and the classification of minimizers
for this functional is still widely open. In [42], Savin and Valdinoci proved that any s-
minimal set in R2 is necessarily an half-plane. Moreover in [32], Figalli and Valdinoci
addressed the nonlocal analogue of the Bernstein problem and they obtained flatness of
s-minimal graphs in R3. These are the only known results about the classification for
s-minimal surfaces, except for some asymptotic results that are valid only for s sufficiently
close to 1/2 (see Section 4 for all the precise results).

This lack of information in large dimensions for the geometric problem, is reflected on
the PDE side, where the De Giorgi conjecture for s below 1/2 is still open in dimensions
n > 3. We recall here the main references for the fractional De Giorgi conjecture: it has
been proven in dimension n = 2 and for any s ∈ (0, 1) in [13, 42], in dimension n = 3 for
s ∈ [1/2, 1) in [8, 9], in dimension n = 3 for s ∈ (0, 1/2) in [25] and in the forthcoming
paper [11], in dimensions 4 6 n 6 8 for 1/2 < s < 1 (under an additional assumption on
the limits at infinity of the solution) in [41]. In this last reference [41], the author also
announces that in a forthcoming paper he will prove the same result for s = 1/2.

We comment now on the proof of the De Giorgi conjecture for the fractional problem
(1.1). As in the classical setting, two different approaches have been used to deal with
the low or high dimensional case. Indeed, for the classical Allen-Cahn equation, the
proof of the conjecture in dimensions n = 2, 3 is a purely PDE proof, which relies on
some energy estimates and a Liouville-type argument, but never uses the classification
for area-minimizing surfaces (see [2, 4, 34]). Instead, for 4 6 n 6 8, the fact that the
only area-minimizing surfaces in the whole Rn are hyperplanes if n 6 7 plays a crucial
role. The proof of the conjecture in dimensions larger than 3 was given by Savin in [40]
who, using the so-called improvement of flatness, proved that if the level sets of certain
solutions are asymptotically flat, then the solution needs to be one-dimensional. In [40]
all the ingredients needed in the proofs (energy estimates, density estimates, improvement
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of flatness) require the solution to be a minimizer for the associated energy functional.
A first result in Savin’s paper is, in fact, the validity of the De Giorgi conjecture for
minimizers in dimensions n 6 7. On the geometric side, this statement corresponds to
the fact that any area-minimizing surface in the whole Rn is flat if n 6 7. The original
conjecture by E. De Giorgi was for bounded monotone solutions (which in general are
not minimizers without further assumption). A second result in [40] asserts that if u is a
bounded monotone solution for the classical Allen-Cahn equation in Rn (e.g. uxn > 0),
such that limxn→±∞ u(x) = ±1, then u is 1-D for n 6 8. This statement corresponds,
on the geometric side, to the fact that any area-minimizing graph is flat up to dimension
n = 8. We stress that the additional assumption on the limits at infinity are needed
to ensure that the solution is a minimizer. The conjecture in dimension 4 6 n 6 8 for
monotone solutions without the limits assumption is still open.

Concerning the fractional case, when n = 2 for any 0 < s < 1, and when n = 3 for
1/2 6 s < 1 the pure PDE proof, which uses the ideas developed in [4] for the classical
conjecture in the low-dimensional case, still works (see [8, 9, 13, 42]). While for treating
the case n = 3 and 0 < s < 1/2 (see [25, 27]), and the case 4 6 n 6 8 with 1/2 < s < 1
(see [41]) one needs to use the idea of Savin based on an improvement of flatness result.
As said above, in this approach, the classification for nonlocal minimal surfaces is crucial,
that is why when 0 < s < 1/2 and n > 3 the conjecture is still open.

We conclude this Introduction, commenting on the class of solutions for which one
expects 1-D symmetry to hold true. As already mentioned, the original conjecture was for
monotone solutions, which corresponds to having area-minimizing graphs on the geometric
side. For these solutions the conjecture is true up to dimension 8 for s ∈ (1/2, 1] with the
additional assumptions on the limits at infinity (as we will see in Section 3, when n = 3 this
additional assumption is not needed). On the other hand the problem has a variational
structure and it is natural to ask the same question for minimizers of the energy: in this
version the conjecture is true up to dimension 7 for s ∈ (1/2, 1]. Another class of solutions
for which one expects the conjecture to hold true is the one of stable solutions (here
stability is in the variational sense, that is one requires the second variation of the energy
functional to be nonnegative). For stable solutions, even the conjecture for the classical
Allen-Cahn equation is still open in all dimensions n > 2. This lack of information for the
PDE is reflected at the geometric level: it is still an open question whether stable minimal
surfaces are necessarily hyperplanes in dimension 3 < n 6 7 (see Section 4 for the precise
references). We stress that, instead, stable minimal cones are completely classified: they
are hyperplanes in dimensions n 6 7. In R8 the Simons cone is an example of stable
singular cone. One would expect that this classification of stable cones would imply an
analogue classification for any stable surfaces and, on the PDE side, the 1-D symmetry
of stable solutions. One of the main obstruction in classifying stable objects is given by
the lack of energy estimates. Surprisingly, in the nonlocal setting, some techniques have
been recently developed to attack the study of stable objects and some results (such as
energy and BV estimates) have been obtained. The analogue results in the local setting
are still unknown and the study of stable solutions to the Allen-Cahn equation (and of
stable classical minimal surfaces) is still widely open. We will address the classification
of stable objects for both the Allen-Cahn equation and the theory of minimal surfaces, in
the last section.

The paper is organized as follows:
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• In Section 2, we describe the connections between the fractional Allen-Cahn equa-
tion and the theory of local/nonlocal minimal surfaces. The main results of this
Section have been obtained in [43, 45];
• Section 3 deals with the De Giorgi conjecture for the fractional Allen-Cahn equa-

tion. In particular we address the low dimensional case, giving a sketch of the
proofs of the results contained in [8, 9].
• In Section 4, we describe some recent results concerning the classification of non-

local minimal surfaces contained in [21, 10, 42];
• In Section 5 we present some very recent results on the classification of stable ob-

jects, both for the fractional Allen-Cahn equation and for the fractional perimeter
and we conclude with some related open questions.

2. Γ-convergence results for nonlocal phase transitions

The classical setting. We start by describing a classical model for phase transitions
and the rigorous mathematical results which explained the connection between the Allen-
Cahn equation and the theory of minimal surfaces. For this part, we refer to [1] and
references therein.

Let us consider a container, represented by a bounded and regular subset Ω of R3, which
is filled with two phases of the same fluid. The configuration of the system is described
by a function u. There are two different models for the phase transition phenomenon,
depending whether the transition between the two phases is given by a separating interface
or is a continuous transition which occurs in a thin layer.

In the first model, usually called sharp-interface model, the configuration function u
only takes two values, e.g. +1 and −1, which corresponds to the two pure phases. The
classical theory of phase transitions, assume that at equilibrium the two fluids arrange
themselves in order to minimize the area of the separating interface, that is the measure
of the jump set of u. Hence, in this model, the energy of the system is a pure interface
energy given by

(2.1) F (u) = σH2(Su),

where Su denotes the jump set of u, H2 the 2-dimensional Hausdorff measure, and σ is a
parameter representing the surface tension between the two phases.

Imposing a volume constraint, the space of all admissible configurations is given by
A = {u : Ω → {−1, 1} :

∫
Ω u = V }, where −|Ω| < V < |Ω| and the configuration of the

system at equilibrium is obtained by minimizing F over A.
The second model, often called the diffusive model, was proposed by J.W. Cahn and

J.E. Hilliard and allows a fine mixture of the two phases, which corresponds to the fact
that the configuration function u can take values in the whole interval [−1, 1]. Now, the
space of all admissible configurations is given by A = {u : Ω → [−1, 1] :

∫
Ω u = V } and

the energy has the following form:

(2.2) Eε(u,Ω) =

∫
Ω

(
ε2

2
|∇u|2 +W (u)

)
dx,

where ε > 0 is a small parameter and W is a continuous function which vanishes only at
−1 and 1 and is positive elsewhere (usually called a double-well potential). We observe
that the Dirichlet term and the potential one are in competition, indeed W (u) forces the



FLATNESS RESULTS FOR NONLOCAL PHASE TRANSITIONS 5

configurations to take values close to −1 and 1 and hence favourites the separation of the
two phases, while the first term in the energy penalizes the spatial inhomogeneity of u.
For small ε the potential term prevails, and the minimum of Eε is attained by a function uε
which takes values close to −1 and 1 and the transition between these two phases happens
in a thin layer of thickness ε.

The Euler-Lagrange equation for the energy (2.2) is given by the (rescaled) Allen-Cahn
equation

ε2∆u = W ′(u).

A rigorous mathematical justification of the connection between the sharp-interface
and the diffuse models was given by Modica and Mortola in [36]. They proved that,
when ε → 0, the rescaled functional ε−1Eε Γ-converges to F defined by (2.1), and hence
minimizers of Eε converges to minimizers of F (this Γ-convergence result holds in any
dimension n). The right setting for functions u0 obtained as limits of minimizers uε of
Eε is the one of BV functions and the limit functional is the perimeter in the sense of
De Giorgi of the sublevelsets of u0 (which agrees with the (n− 1)-dimensional Hausdorff
measure for smooth objects). The Modica-Mortola theorem establishes convergence, in
the L1-sense, for sequences of minimizers uε to a BV function taking values in {−1, 1},
whose jump set is an area-minimizing surface. Later, in [15] Caffarelli and Cordoba proved
that actually the convergence of minimizers is not only in L1 but in the Hausdorff distance
sense.

The nonlocal setting. We pass now to describe what happens when one replaces
the standard Dirichlet energy with a nonlocal term which takes into account long range
interactions. For a bounded subset Ω of Rn, we consider an energy functional of the form

(2.3) Es(u,Ω) =
1

2

∫∫
(Rn×Rn)\(Ωc×Ωc)

|u(x)− u(x̄)|2

|x− x̄|n+2s
dx dx̄+

∫
Ω
W (u) dx,

where Ωc denotes the complement of Ω.
Observe that the set of integration in the Dirichlet term is given by (Rn×Rn)\(Ωc×Ωc).

This term represents to contribution of the Hs-seminorm of u in Ω and takes into account
the interactions between all possible couple of points x, x̄ except the ones for which both
x and x̄ do not belong to Ω. The reason for this choice is that the energy in the whole
space Rn × Rn could not be finite, and the notion of minimality that we consider is the
one with fixed ”boundary” data, that is competitors must agree with the minimizer u in
the complement of Ω, according to the following definition.

Definition 2.1. We say that a function u is a minimizer for the energy Es if

Es(u,Ω) 6 Es(w,Ω), for any w such that u ≡ w in Ωc.

In [45], Savin and Valdinoci proved a Γ-convergence result for the (suitably rescaled)
functional Es, that is the analogue of the Modica-Mortola theorem in the nonlocal setting.
Interestingly, the Γ-limit of Es is different depending whether s is below or above 1/2.
Before stating the main result in [45], we introduce all the necessary ingredients.

In the sequel, W will denote a potential with a double-well structure, i.e. we assume
that

W : [−1, 1]→ [0,+∞), W ∈ C2([−1, 1]), W > W (±1) = 0 in (−1, 1)

W ′(±1) = 0 and W ′′(±1) > 0.
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The class of admissible functions is given by

X = {u ∈ L∞(Rn) | ||u||∞ 6 1}.
We set

Esε (u,Ω) =
1

2
ε2s

∫∫
Rn×Rn\(Ωc×Ωc)

|u(x)− u(x̄)|2

|x− x̄|n+2s
dx dx̄+

∫
Ω
W (u) dx,

and we consider the functional

Fsε (u,Ω) =


ε−2sEsε (u,Ω) if 0 < s < 1/2

|ε log ε|−1Esε (u,Ω) if s = 1/2

ε−1Esε (u,Ω) if 1/2 < s < 1.

We can now state the main result in [45].

Theorem 2.2 (Theorem 1.4 in [45]). Let s ∈ (0, 1) and Ω be a bounded Lipschitz domain
of Rn.

Then,

Fsε (u,Ω)
Γ−→ F(u,Ω) as ε→ 0,

where F(u,Ω) is defined as follows:

if 0 < s < 1/2 F(u,Ω) =

{
Pers(E) if u|Ω = χE − χEc for some E ⊂ Ω

+∞ otherwise,

if 1/2 6 s < 1 F(u,Ω) =

{
c∗Per(E) if u|Ω = χE − χEc for some E ⊂ Ω

+∞ otherwise,

and c∗ is a constant depending on n, s and W .

The s-perimeter Pers will be precisely defined in Section 4 below. This Γ-convergence
theorem, together with a compactness result (see Theorem 1.5 in [45]), implies that if
uε is a sequence of minimizers for Fsε such that Fsε are uniformly bounded as ε → 0,
then there exists a subsequence, that we still call uε, which converges in L1 to a function
u0 = χE−χEc where E is a minimizer for the fractional perimeter Pers in Ω if 0 < s < 1/2
and a minimizer for the classical perimeter Per in Ω if 1/2 6 s < 1.

As for the case of the classical phase transition model, one can prove that the conver-
gence is not just in L1 but in a stronger sense. In [43], Savin and Valdinoci proved some
density estimates for minimizers of Es which gives a bound on the measure of the volume
occupied by the level sets of a minimizer in a ball. As a consequence of the density esti-
mates, we have that level sets of minimizers of Esε converges locally uniformly as ε → to
a nonlocal s-minimal surface when 0 < s < 1/2, and to a classical minimal surface when
1/2 6 s < 1.

As already explained in the Introduction, this convergence results motivates the ana-
logue of the De Giorgi conjecture for certain solutions (monotone solutions and minimizers)
to the fractional Allen-Cahn equation, which is the Euler-Lagrange equation of the en-
ergy functional Esε . More precisely, since the Γ-limit of Esε when 1/2 6 s < 1 is exactly
the same as in the local case, one expects to have one-dimensional symmetry of bounded
monotone solutions up to dimension n = 8. This has been proven in [8, 9, 13, 42] in the
low-dimensional case n = 2, 3, and in [41], under the additional assumption on the limits
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at infinity, for 4 6 n 6 8 . In [41], the author also announces that in a forthcoming paper
he will prove the same result for s = 1/2. Instead, when 0 < s < 1/2, the level sets of
minimizers for Es are asymptotically nonlocal minimal surfaces, and not much is known
yet on their classification. For this range of s, the conjecture is known to be true only in
dimensions n = 2, 3 (see [13, 42, 25]), while it is still open in dimensions n > 3.

3. The De Giorgi conjecture for the fractional Laplacian

In this section we describe the main ideas in the proof of the one-dimensional symmetry
for minimizers and bounded monotone solutions to

(3.1) (−∆)su = f(u) in Rn,

in the low-dimensional case, that is for n = 2 with 0 < s < 1, and for n = 3 with
1/2 6 s < 1. These results are contained in [8, 9, 14, 12, 46]. In all these works,
in order to prove the De Giorgi conjecture for solutions to the nonlocal equation (3.1),
the authors considered the, so-called, Caffarelli-Silvestre extension (that we recall in the
next subsection) and work with solutions to a local problem in the half-space Rn+1

+ . We
emphasize that a new proof of the conjecture in dimension n = 2 and for any 0 < s < 1
has been found by Bucur and Valdinoci in [7], without making use of the extension and
working ”downstairs”. This proof is based on some techniques introduced in [21] and it
works only in dimension n = 2.

Here, we present the proofs in [8, 9] that cover both cases n = 2 with 0 < s < 1 and
n = 3 with 1/2 6 s < 1. As already explained in the Introduction, in this setting the
same approach used to prove the original De Giorgi conjecture in dimension n = 3 in [2, 4]
based on some sharp energy estimates and a Liouville-type argument, works. We stress
that this approach allows to consider general nonlinearity f , not necessarily associated to
a double well potential.

We give now the precise statement of this result.

Theorem 3.1 (see [8, 9, 13, 42]). Let f be any C1,γ nonlinearity with γ > max{0, 1− 2s}
and u be either a bounded minimizer or a bounded solution which is monotone in some
direction, of

(−∆)su = f(u) in Rn.

Then, if n = 2 and 0 < s < 1 or n = 3 and 1/2 6 s < 1, u depends only on one
variable, or equivalently, the level sets of u are flat.

Here below, we describe the main steps of the proof of Theorem 3.1, emphasizing which
are the main difficulties in the nonlocal setting. The notion of minimizer that we use is
given precisely in Definition 3.2 below.

The proof uses the Caffarelli-Silvestre extension and is based on the three following
main ingredients:

• stability of solutions;
• a Liouville-type result;
• energy estimates.

In the following subsections we recall briefly all these ingredients.
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3.1. The Caffarelli-Silvestre extension and the notion of minimality. In [17],
Caffarelli and Silvestre gave an equivalent formulation for nonlocal problems involving
the fractional Laplacian in Rn, introducing a new local problem in the positive half-space
Rn+1

+ . More precisely, they established that a bounded function u is a solution of (3.1) if
and only if v is a solution of

(3.2)

{
div(y1−2s∇v) = 0 in Rn+1

+

−ds limy→0 y
1−2s∂yv = f(v(x, 0)) in Rn,

where v is the bounded extension in the positive half-space of u, that is v(x, 0) = 0 in
Rn, and ds is a positive constant depending only on s. Here, we denote by (x, y) =
(x1, . . . , xn, y) a point in Rn+1

+ = Rn × R+.
In the sequel we will call the extension v satisfying (3.2), the s-extension of u.
We set a := 1 − 2s, so that −1 < a < 1 for any 0 < s < 1. We recall that the

first equation in (3.2) is an equation in divergence form with a weight that belongs to
the Muckenhoupt class A2 and hence is a ”good” weight, in the sense that we have a
Poincaré inequality, Harnack inequality and Hölder regularity of weak solutions for this
kind of equations by the theory of Fabes, Kenig and Serapioni, developed in [29]. We
observe moreover that, depending whether s is above or below 1/2, the equation becomes
degenerate or singular.

Problem (3.2) has a variational structure and therefore it is natural to consider the
associated energy functional and the related notion of minimizer. Let BR denote the ball
in Rn centered at 0 and of radius R and let CR = BR×(0, R) denote the cylinder of radius
R and height R in the positive half-space Rn+1

+ . We consider a localized energy functional
(since the energy in the whole space is not finite in general) in cylinders, which has the
following form:

Es(v, CR) =
1

2

∫
CR

ya|∇v|2 dx dy +

∫
BR

W (v(x, 0)) dx,

where the potential W is such that W ′ = −f .
We can now give the notion of minimizer for problem (3.2).

Definition 3.2. We say that a bounded C1(Rn+1
+ ) function v is a minimizer for (3.2) if

Es(v, CR) 6 Es(w,CR)

for every R > 0 and for every bounded competitor w such that v ≡ w on ∂CR ∩ {y > 0}.
We say that a bounded C1(Rn) function u is a minimizer for (3.1) if its s-extension v is a
minimizer for (3.2).

3.2. Stability of solutions. We recall the definition of stable solution for (3.1).

Definition 3.3. We say that a bounded solution v of (3.2) is stable if∫
Rn+1
+

ya|∇ξ|2 dx dy −
∫
Rn×{y=0}

f ′(u)ξ2 dx > 0

for every function ξ ∈ C1
0 (Rn+1

+).

We say that a bounded function u is a stable solution for (3.1) if its s-extension v is a
stable solution for (3.2).
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We observe that if u is a minimizer for (3.1) then, in particular, it is a stable solution.
Moreover, as established in Lemma 6.1 in [13], we have a characterization of stability in
terms of existence of a positive solution for the linearized problem. More precisely one
can prove that a solution u to (3.1) is stable if and only if there exists a positive Hölder

continuous function ϕ ∈ H1
loc(R

n+1
+ , ya) with ϕ > 0 in Rn+1

+ , satisfying

(3.3)

{
div(ya∇ϕ) = 0 in Rn+1

+

−ya∂yϕ = f ′(u)ϕ on {y = 0}.
Suppose that u is monotone in some direction, e.g. ∂xnu > 0 then, as an application

of the maximum principle, one can easily see that its s-extension v satisfies ∂xnv > 0 in
the whole Rn+1

+ . By using the previous characterization of stability, we deduce that v is a
stable solution to (3.2) since its derivative in the xn direction is a positive solution to the
linearized problem (3.3).

3.3. A Liouville-type result. We introduce the following weighted Sobolev space:

H1
loc(R

n+1
+ , ya) = {σ : Rn+1

+ → R | ya(σ2 + |∇σ|2) ∈ L1
loc(R

n+1
+ )}.

A second ingredient in the proof of the De Giorgi conjecture is the following Liouville-type
lemma.

Lemma 3.4 (Theorem 6.1 in [8] and Theorem 4.10 in [13]). Let ϕ be a positive function

in L∞loc(R
n+1
+ ), σ ∈ H1

loc(Rn+1
+, y

a) such that:{
−σdiv(yaϕ2∇σ) 6 0 in Rn+1

+

yaσ ∂σ∂ν 6 0 on Rn × {y = 0}
in the weak sense. If in addition:

(3.4)

∫
CR

ya
(
ϕσ
)2
6 CR2 logR

holds for every R > 1, then σ is constant.

For the proof of this lemma under the stronger assumption that the quantity in (3.4)
grows at most like R2 (instead of R2 logR) it is enough to multiply the equation by a
cutoff function and integrate by parts. For allowing the logarithmic term one needs a
refinement of this argument found in [37].

3.4. Sketch of the proof of the De Giorgi conjecture in low dimensions. We can
now describe the main ideas in the proof of the one-dimensional symmetry of minimizers
and monotone solutions for n = 2 with 0 < s < 1 and n = 3 with 1/2 6 s < 1.

In order to prove that the solution u to (3.1) is one-dimensional, we will show that its
s-extension v is depend only on y and on one direction in Rn.

Suppose that u is a stable solution to (3.1) and v is its s-extension, that is a stable
solution for problem (3.2). By the characterization of stability, we know that there exists
some positive function ϕ satisfying (3.3) (if in particular v is monotone in the xn direction,
one can take ϕ = vxn).

For any i = 1, . . . , n, we define the functions

σi :=
vxi
ϕ
.
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An easy computation shows that ϕ2∇σi = ϕ∇vxi − vxi∇ϕ and using that both vxi and
ϕ satisfy the linearized problem (3.3), we deduce

(3.5) div(yaϕ2∇σi) = 0 in Rn+1
+ .

Moreover, using again that vxi and ϕ satisfy the same linearized problem (in particular
they have the same Neumann condition on {y = 0}), we have

(3.6) yaσi∂yσi = ya
vxi
ϕ2
vxiy − ya

v2
xi

ϕ2

ϕy
ϕ

= 0 on Rn × {y = 0}.

Suppose now that the following estimate for the Dirichlet energy of v holds:∫
CR

ya|∇v|2 dx dy 6 CR2 logR.

Then, we can apply Lemma 3.4 with σ = σi. Indeed (3.3) is satisfied by (3.5) and (3.6),
moreover,∫

CR

ya(ϕσi)
2 dx dy =

∫
CR

ya|vxi |2 dx dy 6
∫
CR

ya|∇v|2 dx dy 6 CR2 logR.

Hence we deduce that σi is constant for any i = 1, . . . , n. This concludes the proof
observing that if c1 = · · · = cn = 0 then v is constant. Otherwise we have civxj = cjvxi = 0
for every i 6= j and we deduce that v depends only on y and on the variable parallel to
the vector (c1, . . . , cn).

Hence, the crucial missing ingredient to conclude the proof is the following estimate for
the Dirichlet energy

(3.7)

∫
CR

ya|∇v|2 dx dy 6 CR2 logR.

3.5. Energy estimates. By the previous discussion, in order to conclude the proof of
Theorem 3.1, it remains to prove that both minimizers and bounded monotone solutions
(which are in particular stable solutions) satisfy estimate (3.7), in R2 with 0 < s < 1 and
in R3 with 1/2 6 s < 1. This is the aim of this subsection.

We start by stating the energy estimate for minimizers contained in [8, 9], which holds
in any dimension n.

Theorem 3.5 (Theorem 1.2 in [9]). Let f ∈ C1,γ(R), with γ > max{0,−a}, and let v be
a bounded minimizer for problem (3.2).

Then, the following estimates hold

(3.8) Es(v, CR) 6


CRn−2s if 0 < s < 1/2

CRn−1 logR if s = 1/2

CRn−1 if 1/2 < s < 1,

for any R > 2.

In dimension n = 3, the same energy estimate holds also for bounded monotone solu-
tions, according to the following result
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Theorem 3.6 (Theorem 1.4 in [9]). Let f ∈ C1,γ(R), with γ > max{0,−a}, and let v be
a bounded solution of (3.2) with n = 3 such that its trace u(x) = v(x, 0) is monotone in
some direction.

Then, the following estimates hold

(3.9) Es(v, CR) 6


CR3−2s if 0 < s < 1/2

CR2 logR if s = 1/2

CR2 if 1/2 < s < 1,

for any R > 2.

As a consequence of Theorems 3.5 and 3.6, we have that the required estimate (3.7)
is satisfied by minimizers and bounded monotone solutions in dimension n = 2 for any
s ∈ (0, 1) and in dimension n = 3 for s ∈ [1/2, 1).

We stress that the main difficulty in the proof of the fractional De Giorgi conjecture in
low dimensions, relies precisely in establishing the sharp energy estimates for minimizers,
since all the other ingredients (the characterization of stability and the Liouville-type
result described above are not difficult adaptations of the analogous local results to the
nonlocal setting). The energy estimates for minimizers have also been proven by Savin
and Valdinoci in [45], without making use of the extension and working with the nonlocal
energy functional associated to (3.1). Here, we present the approach via extension of [9],
since, as already explained at the beginning of this section, the extension is needed in
order to prove the De Giorgi conjecture for the fractional Laplacian in dimension n = 3
and for 1/2 6 s < 1.

Before giving an idea of the proof of Theorem 3.5, we recall how one can get the sharp
energy estimate for minimizers of the classical Allen-Cahn equation −∆u = u−u3, whose
associated energy functional is given by

E(u,BR) =

∫
BR

(
1

2
|∇u|2 +W (u)

)
dx.

To give a bound for the energy of a minimizer u, we argue using a comparison argument,
that is we construct a suitable competitor w, which agrees with u on ∂BR and whose energy
is bounded above by CRn−1 (we recall that in the classical setting the energy of minimizers
grows like Rn−1, that is exactly the same growth as the case 1/2 < s < 1 in Theorem 3.5).

Given a cut-off function η(x) = η(|x|) compactly supported in BR and identically equal
to 1 in BR−1, we define the competitor w = η + (1− η)u in the whole Rn, so that

w =

{
1 in BR−1

u on ∂BR.

With this choice of w, it is easy to verify that

E(u,BR) 6 E(w,BR) =

∫
BR

(
1

2
|∇w|2 +W (w)

)
dx

=

∫
BR\BR−1

(
1

2
|∇w|2 +W (w)

)
dx 6 CRn−1,

(3.10)
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where in the first inequality we have used the minimality of u and in the last inequality
we have used that |∇u| ∈ L∞(Rn) by standard elliptic estimates, and that the measure of
the annulus BR \BR−1 in Rn is estimated by CRn−1.

We consider now the case of the fractional Laplacian. In this case, we need to construct
a suitable competitor w for the minimizers v of Es in CR, which fulfills the energy estimates
of Theorem 3.5. We recall that, due to the Neumann condition in problem (3.2), now the
competitor w has to agree with v on ∂CR ∩ {y > 0} but it is free on the bottom of the
cylinder ∂CR×{y = 0}. This fact will play a crucial role in the construction of w. On the
other hand, let us emphasize that now the cylinder CR is an (n + 1)-dimensional object,
and we hope for an estimate for the energy that grows at most like Rn−1 logR.

Let us describe now how we build the competitor w. We start by defining a function
w̄ on ∂CR. Then, we will define w as a suitable extension of w̄ inside CR. First of all, in
order to use a comparison argument, w̄ needs to agree with v on ∂CR∩{y > 0}. Secondly,
since the potential energy appears only as a boundary term on the bottom of the cylinder
CR, and in this part of the boundary w is free, we define w̄ as done for the local case,
that is in such a way that it agrees with v(x, 0) on BR × {y = 0} and is identically 1 in
BR−1 × {y = 0}. Resuming, w̄ is defined on the whole ∂CR and satisfies

w̄ =

{
1 in BR−1 × {y = 0}
u on ∂CR ∩ {y > 0}.

It remains now to extend w̄ to a function w defined on the whole cylinder CR. Since
we want w to have the least possible Dirichlet energy, we choose w to be the solution of
the Dirichlet problem

(3.11)

{
div(ya∇w) = 0 in CR

w = w̄ on ∂CR.

With this choice of w, we have

Es(v, CR) 6 Es(w,CR) =

∫
CR

ya|∇w|2 dx dy+

∫
BR

W (w) dx 6
∫
CR

ya|∇w|2 dx dy+CRn−1.

The final step of the proof of the energy estimate for minimizers consists in giving
an estimate for the Dirichlet energy of w. This is achieved in [8, 9] using some suitable
trace inequalities and optimal gradient bounds for the solutions of (3.2) (for details see
Theorems 1.7 and 1.9 in [9]).

To conclude, we comment on the proof of the energy estimate for monotone solutions.
In [8, 9], the authors follow the idea of [2] which is based on the following result: bounded
monotone solutions are minimizers in the restricted class of functions

Av := { lim
xn→−∞

v 6 w 6 lim
xn→+∞

v}.

This result can be proven by a sliding argument and the use of the maximum principle
(see proof of Proposition 6.1 in [9]). Once one has this minimality property of monotone
solutions, it is enough to show that the competitor w constructed in the proof of Theorem
3.5 belongs to the class Av. For this last step we refer to Lemma 6.1 and the proof of
Theorem 1.4 in [9].
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4. Classification for nonlocal minimal surfaces

We start by recalling the notion of fractional perimeter, which was introduced in [16].
Let s ∈ (0, 1/2) and let Ω be a bounded domain in Rn. We define the fractional

s-perimeter of a measurable set E ⊂ Rn relative to Ω as

(4.1) Pers(E,Ω) :=

∫
E∩Ω

∫
Ec

1

|x− x̄|n+2s
dx dx̄+

∫
E\Ω

∫
Ω\E

1

|x− x̄|n+2s
dx dx̄,

where Ec denotes the complement of E in Rn.
Observe that here we use the notation Pers for the perimeter associated with the kernel

|z|−n−2s, with 0 < s < 1/2. In many references the order 2s is replaced by s, that is
one writes Pers for the perimeter associated to the power |z|−n−s and in this notation s
belongs to (0, 1). Here, we use the first notations for consistency with the notations used
for the fractional Laplacian (−∆)s.

The choice of the set of integration in the definition of the fractional perimeter is the
natural one, similarly as for the Dirichlet term in the energy Es defined in (2.3), in order
to avoid infinite contributions coming from the complement of Ω and it does not change
the variational structure of the functional once we have fixed the set E outside of Ω. More
precisely, similarly to Definition 3.2, we give the following definition.

Definition 4.1. We say that a set E is a minimizer for the s-perimeter in Ω if

Pers(E,Ω) 6 Pers(F,Ω), for all F such that E \ Ω = F \ Ω.

Moreover, we say that E is a minimizer for the s-perimeter in Rn, if E is a minimizer
in BR for all R > 0.

The (boundaries of) minimizers of the s-perimeter are usually called nonlocal minimal
(or s-minimal) surfaces.

While the classical perimeter (in the De Giorgi sense) of a set E relative to Ω is the
BV -seminorm of the characteristic function χE in Ω, the s-perimeter is the Hs (or W 2s,1)
seminorm of the characteristic function χE in Ω (we remind that the characteristic function
of a set belongs to Hs only if 0 < s < 1/2). Hence, a nonlocal minimal surface is the
boundary of a set E, whose characteristic function minimize the Hs seminorm, among all
sets which coincide with E in the complement of Ω.

Another motivation for referring to Pers as a fractional perimeter comes from the asymp-
totics of this nonlocal functional as s → 1/2. Indeed it is known that the s-perimeter
(multiplied by the factor 1/2 − s) tends to the classical perimeter as s → 1/2, up to a
dimensional constant. This fact has been established in several contributions where differ-
ent notions of convergence are considered (see [23] for the precise limit in the class of BV
functions, [18, 19] for a geometric approach to prove regularity and [5] for a Γ-convergence
result). The limit as s→ 0 was studied in [26], where the authors proved that it is related
to the Lebesgue measure of the sets E ∩ Ω and Ω \ E.

Making the first variation of the nonlocal perimeter functional, one can introduce the
notion of nonlocal mean curvature. The nonlocal mean curvature of a set E at a point
x ∈ ∂E is defined as follows

Hs
E(x) :=

∫
Rn

χEc(y)− χE(y)

|x− y|n+2s
dy.
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Hence, a necessary condition for a set E to be an s-minimal surface is that Hs
E = 0 (see

Theorem 5.1 in [16]). The first example of a surface with zero nonlocal mean curvature is
a half-space. Other examples of sets with vanishing nonlocal mean curvature have been
studied in the recent contributions [20, 24]. In [24], the nonlocal analogue of catenoids are
constructed, but they differ from the standard catenoids since they approach a singular
cone at infinity instead of having a logarithmic growth. These surfaces are constructed
using perturbative methods, by performing small perturbation along the normal vector to
∂E. Instead in [20] it is proven that the standard helicoids are surfaces with zero nonlocal
mean curvature.

We pass now to describe the main results in the study of regularity of nonlocal minimal
surfaces. In [16], Caffarelli, Roquejoffre, and Savin established some results that are
fundamental tools in the study of regularity, such as density estimates, the improvement
of flatness for minimizers, a monotonicity formula, a blow up and a dimension reduction
argument. Nevertheless, the study of regularity for minimizers of the fractional perimeter
is still widely open. In this section we recall the main results related to the classification
of entire s-minimal surfaces and to the study of regularity, and we describe the main open
questions in the field.

4.1. The classical setting. We start by recalling the main results in the theory of clas-
sical area minimizing surfaces:

a) Every minimal cone in Rn is a hyperplane, whenever n < 8;
b) In R8 the Simons cone defined as

C := {x ∈ R8 |x2
1 + · · ·+ x2

4 = x2
5 + · · ·+ x2

8}
is a minimizer for the perimeter functional;

c) If E is a minimizer of the perimeter functional in the whole Rn, then E is a
half-space, whenever n < 8;

d) If E is a minimizer of the perimeter functional and ∂E is a graph, then E is a
half-space, whenever n < 9;

e) Any area-minimizing surface is smooth outside of a singular set Σ of Hausdorff
dimension n− 8.

The classification of minimal cones (point a) is one of the basic tools in both the clas-
sification of entire minimal surfaces (that is surfaces that are minimizer of the perimeter
functional in the whole Rn) and in the study of regularity for minimizers of the perimeter
in a bounded set Ω. Indeed, the classification of minimal cones leads, on side, to the
classification of any entire area minimizing surfaces (point c) via a blow-down argument.
On the other hand the nonexistence of singular minimal cones in space dimension n 6 7
implies, via a blow up and a dimension reduction argument, that any minimal surface is
C1,α outside of a singular set of Hausdorff dimension n− 8 (point e). Moreover, again the
classification of minimal cones leads to the classification of entire minimal graphs (the so
called Bernstein problem). Note that the critical dimension for a graph to be flat is one
more than the one for a general set (point d). The main ingredients in the proof of these
results are given by density estimates, perimeter estimates, improvement of flatness for
minimizers and a monotonicity formula.

4.2. The nonlocal setting. We describe now, more in details, what is known in the
nonlocal framework and which are the main open questions in the field.
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The study of regularity for nonlocal minimal surfaces was started in [16], where density
and perimeter estimates, the improvement of flatness and a monotonicity formula were
established. With these tools, the authors could reduce the study of regularity for nonlocal
minimal surfaces to the classification of nonlocal minimal cones. More precisely they
proved that, if the blow up, around the origin, of an s-minimal set E is flat, then ∂E
is C1,α in a neighborhood of the origin (see Theorem 9.4 in [16]). As a consequence of
a dimension reduction argument they proved C1,α regularity outside of a singular set of
Hausdorff dimension at most n − 2 (see Theorem 10.4 in [16]). The bound n − 2 on the
dimension of the singular set was not optimal due to the fact that in [16] the classification
of nonlocal minimal cones was not known, not even in R2. Basically, they had all the
needed ingredients to pass from a) to e) in the above scheme, but the starting point a)
was missing.

Later, in [42] Savin and Valdinoci proved that in R2 an s-minimal cone is necessarily a
half-plane. As a consequence they could improve the bound on the Hausdorff dimension
of the singular set from n − 2 to n − 3 and via a blow-down argument they obtained
the classification of any s-minimal surface in R2. Moreover, in [6] Barrios, Figalli, and
Valdinoci shows that if E is an s-minimal set such that ∂E ∈ C1,α, then ∂E is in fact C∞.
This is a consequence of a more general regularity result for solutions to integro-differential
equations via a bootstrap argument. In [32], Figalli and Valdinoci address the fractional
version of the Bernstein problems and they prove that, if there are not s-minimal singular
cones in Rn, then the only entire s-minimal graphs in Rn+1 are the hyperplanes (they show
how to pass from point a) to point d) in the nonlocal analogue of the previous scheme).

Resuming all these results, we have the following statement:

Theorem 4.2. (1) Every s-minimal cone in R2 is a hyperplane ([42]);
(2) If E is a minimizer of the s-perimeter in the whole R2, then E is a half-plane

([42]);
(3) If E is a minimizer of the s-perimeter in Rn and ∂E is a graph, then E is a

half-space, whenever n 6 3 ([32]);
(4) If E is a minimizer of the s-perimeter, then ∂E is C∞ outside of a singular set Σ

of Hausdorff dimension n− 3 ([6, 16, 42]).

In addition, when s is close to 1/2 Caffarelli and Valdinoci proved that all the regularity
results that hold in the classical setting are inherited, by a compactness argument, by s-
nonlocal minimal surfaces (see [18, 19]).

Theorem 4.3 ([19]). There exists ε0 ∈ (0, 1/2) such that if s > 1/2 − ε0, then any
s-minimal surfaces is C∞ outside of a singular set Σ of Hausdorff dimension n− 8.

Finally, in the very recent contribution [10], Cabré, Serra and the author proved flatness
for nonlocal s-minimal cones in R3 for s close to 1/2 (see Theorem 5.3 of the next Section).
We emphasize that in this last result, the proof is not by compactness perturbing from
s = 1/2 and it gives a quantifiable value for the required closeness of s to 1/2. This
last result holds not only for cones that are minimizers for the s-perimeter, but for the
more general class of stable cones. We will describe this result more in details in the next
Section, were we address the classification for stable objects.

We focus now on the classification of s-minimal cones in R2 proven in [42] (i.e. point 1)
in Theorem 4.2). The idea of the proof of this result relies in considering perturbations of
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the minimizer E, that are translations of E inside a ball BR/2 and that coincide with E
outside the double ball BR. The authors work with the extended problem (the Caffarelli-
Silvestre extension but, in this setting, for functions that take only values ±1 on the
boundary of the positive half-space) and compare the energy of (the extension of) these
competitors with the energy of (the extension of) E itself. A computation shows that
this difference in energy is controlled from above with Rn−2s−2. Hence, when n = 2,
the difference in energy between E and the competitors can be made arbitrarily small as
R → ∞. On the other hand, if E was not a half-plane, they showed that it could be
modified in order to decrease its energy by a small but fixed amount and this leads to a
contradiction. We emphasize here that this argument works only in dimension n = 2 since
a crucial fact that is needed is that the estimate Rn−2s−2 goes to 0 as R → ∞, and this
holds true only when n = 2. We emphasize that the factor Rn−2s comes from an optimal
bound for the perimeter of minimizers. Indeed, by a comparison argument one can show
that if E is a minimizers for the s-perimeter in BR, then

Pers(E,BR) 6 CRn−2s,

and this bound is optimal.
These ideas were recently used in [21] to prove a quantitative version of this 2-dimensional

flatness result. By point 1) in Theorem 4.2, we know that if E is a minimizer for the non-
local perimeter in the whole R2 (that is, it is a minimizer in balls BR of radius R for any
R > 1), then E is a half-plane.
Suppose now that E is a minimizer for Pers in a ball BR for some R large enough. Can
we deduce that E is “close” to be a half-plane in B1? Moreover, can we give an estimate
on this closeness depending on R? The following result, contained in [21] gives an answer
to these questions.

Theorem 4.4 (Theorem 1.3 in [21]). Let n = 2. Let R > 2 and E be a minimizer for the
s-perimeter in the ball BR ⊂ R2.

Then, there exists a halfl-plane h such that

(4.2) |(E4h) ∩B1| 6 CR−s.
Moreover, after a rotation, we have that E ∩ B1 is the subgraph of a measurable func-

tion g : (−1, 1)→ (−1, 1) with osc g 6 CR−s outside a “bad” set B ⊂ (−1, 1) with measure
CR−s.

The above result can be seen as a quantitative version of the flatness result of Savin and
Valdinoci. It says that if E is a minimizer for Pers in BR, with R large but fixed, then E is
close, in the L1-sense, to be a half-plane in B1. The second part of the statement gives an
even more precise information: outside of a bad set B of small measure, E ∩B1 coincides
with the subgraph of a function g which has small oscillation. Again, the smallness of
both the bad set and the oscillation of g is given explicitly in terms of R.

The proof of Theorem 4.4 follows the main ideas contained in the proof of flatness
of s-minimal cones in R2 in [42]. We consider again perturbations of the minimizer E
obtained by small translations in some fixed direction and we try to refine the arguments
in [42] in order to get some quantitative estimates. Differently from [42], we do not use the
Caffarelli-Silvestre extension. This will allow us to obtain a statement analogous to the
one of Theorem 4.4 for more general notions of nonlocal perimeter (such as the anisotropic
fractional perimeter). Here below, we explain the main steps in the proof of Theorem 4.4.
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Sketch of the proof of Theorem 4.4. We start by defining two (small) perturbations of the
minimizer E. Let ϕR be a smooth function such that

ϕR(x) =

{
1 for |x| < R/2

0 for |x| > R.

For v ∈ Sn−1 := {x ∈ Rn : |x| = 1} and t ∈ [0, 1] we define

(4.3) ΨR,+(x) := x+ tϕR(x)v and ΨR,−(x) := x− tϕR(x)v.

We set u = χE and define the new functions

(4.4) u±R(x) := u
(
Ψ−1
R,±(x)

)
.

In set notations, we are considering the sets E+
R and E−R defined as

(4.5) E±R = {x : u±R(x) = 1}.

We recall the following crucial energy estimate for minimizers, obtained via a comparison
argument: if E is a minimizer for the s-perimeter in BR, then

(4.6) Pers(E,BR) 6 CRn−2s.

We divide the proof in three steps:

• Step 1: Estimating the difference Pers(E
±
R , BR)−Pers(E,BR) (see Lemma 2.1 in

[21]): using the change of variable formula and after some computations one can
prove that

(4.7) Pers(E
+
R , BR) + Pers(E

−
R , BR)− 2Pers,BR

(E) 6 Ct2
Pers(E,BR)

R2
.

Using the estimate (4.6) and the fact that we are in dimension n = 2, we get

Pers(E
+
R , BR) + Pers(E

−
R , BR)− 2Pers(E,BR) 6 Ct2R−2s.

Observe that here the fact that the we are working in dimension 2 is crucial in
order to get a bound that goes to 0 as R→∞. As described above, in [42] this fact
leads to a contradiction if E was not flat. Here we refine this argument, by keeping
the above estimate R−2s in order to get a quantitative estimate (depending on R)
on how E differs from being a half-plane.

• Step 2: a purely nonlocal Lemma:

Lemma 4.5 (Lemma 2.2 in [21]). Let E, F ⊂ R2. Assume that E is a minimizer
for Pers in BR and that F coincides with E outside BR, that is, E \BR = F \BR.
Assume moreover that

(4.8) Pers(F,BR) 6 Pers(E,BR) + δ.

Then,

2

∫
F\E

∫
E\F

1

|x− x̄|2+2s
dxdx̄ 6 δ.
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Applying this Lemma to F = E+
R (and similarly to E−R ), we deduce that∫

E+
R\E

∫
E\E+

R

1

|x− x̄|2+2s
dxdx̄ 6 Ct2R−2s.

Therefore, in B1 we have that for any v ∈ S1 and any t ∈ (0, 1):∣∣{(E + tv) \ E} ∩B1

∣∣ · ∣∣{E \ (E + tv)} ∩B1

∣∣ 6 Ct2R−2s

and thus

(4.9) min

{∣∣{(E + tv) \ E} ∩B1

∣∣ , ∣∣{E \ (E + tv)} ∩B1

∣∣} 6 CtR−s.
In this step, the nonlocal character of the s-perimeter is crucial and allows to

pass from an estimate in the difference of the s-perimeter between the minimizer E
and the competitors E±R to an estimate on the volume of their symmetric difference.

Setting u := χE , estimate (4.9) can be written as

(4.10) min

{∫
B1

(
u(x+ tv)− u(x)

)
+
dx ,

∫
B1

(
u(x+ tv)− u(x)

)
− dx

}
6 CtR−s.

• Step 3: Some geometric lemmas and conclusion. Dividing (4.10) by t and taking
the limit as t→ 0, we deduce that for any v ∈ S1, the following holds:

(4.11) min {(∇u · v)+(B1), (∇u · v)−(B1)} 6 CR−s,
where ∇u ·v denotes the distributional derivative in the direction v of u. This last
part of the proof is more technical and needs several geometric lemmas (for the
details, we refer to Lemma 2.5 and to all lemmas and propositions of Section 4 in
[21]). The main underlying idea is the following: If we set Φ±(v) := (∇u ·v)±(B1),
by (4.11) we have that

min {Φ+(v),Φ−(v)} 6 CR−s, for any v ∈ S1.

Moreover, since
Φ+(v) = Φ−(−v),

by a continuity argument we have that there exists v∗ ∈ S1 such that

max {(∇u · v∗)+(B1), (∇u · v∗)−(B1)} 6 CR−s.
Hence, except for a bad set B of measure less than CR−s the function u = χE
restricted to all lines parallel to v∗ will be at the same time monotone nondecreas-
ing and non-increasing; i.e., constant. Since we also have that u is also monotone
along most (for large R) lines perpendicular to v∗, the only possibility is that the
set E = {u = 1} is equal to a half plane up to the bad set B with |B| 6 CR−s.
The rigorous proof for this fact is contained in Section 4 of [21].

�

We emphasize that in [42], the authors first prove a flatness result for minimizing cones,
and then they deduce, by a blow-down argument, flatness for any s-minimal set in R2.
In this blow-down procedure the monotonicity formula is needed and unfortunately such
a formula is available only for the energy functional of the extended problem (see [16]).
Instead, in the proof of Theorem 4.4, we consider E to be any set which minimizes the
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s-perimeter, not necessarily a cone and, as a consequence of the quantitative estimate
(4.2) after letting R → ∞, we deduce that if E is a minimizer in the whole R2, then
E is an half-plane. Hence, we give an alternative proof of the classification result in
[42], without using the Caffarelli-Silvestre extension and without needing a monotonicity
formula. For this reason, we can generalize our Theorem 4.4 and hence the classification
of nonlocal minimal surfaces in R2 to more general notions of nonlocal perimeter, such as
the anisotropic fractional perimeter (see [21]).

The techniques developed in [21] and, more precisely, the estimate (4.11) implies also
some estimates for the s-perimeter and the classical perimeter of an s-minimal set E.
More interestingly, these estimates holds true in the more general class of stable sets. We
are going to state and comment on these results on stable sets in the next section.

5. What about stable objects?

In this section we present some very recent results in the study of stable solutions to
the fractional Allen-Cahn equation and of stable nonlocal minimal surfaces. In both cases
the notion of stability that we use is the variational one, that is the nonnegativity of the
second variation of the associated energy functional. Surprisingly, some results recently
established for stable objects in the nonlocal setting, are still unknown in the local setting.
The nonlocality of the energy functional (for the Allen-Cahn equation or for the nonlocal
perimeter) helps in giving sharp estimates that are crucial for classifying stable solutions.
In order to explain which are the main difficulties in this setting and to compare the local
and nonlocal framework, we start by recalling what is known for classical stable minimal
surfaces.

5.1. The classical setting. Stable minimal cones (for the classical perimeter) are com-
pletely classified: they are hyperplanes in space dimensions n 6 7. In R8, the Simons cone
is an example of stable cone which is singular. The classification that we have presented
in the previous section for classical minimal surfaces holds true for stable cones. In order
to pass from the classification of stable cones to the classification of any stable surface in
the whole Rn, one would like to perform a blow-down procedure using the monotonicity
formula. A crucial tool needed for using a blow-down argument would be an optimal esti-
mate for the perimeter of stable sets. It is well known that any minimizer of the classical
perimeter in a ball BR satisfies the estimate

(5.1) Per(E,BR) 6 CRn−1.

Unfortunately, an estimate like (5.1) is not known to hold for stable sets, unless we
are in dimension n = 3 and we require some topological assumption on the set E (see
Theorem 5.1 below). While for proving an energy estimate for minimizers it is enough to
construct a suitable competitor, which has to agree with E outside BR but can be modified
arbitrarily in BR, and that satisfies the needed estimate, for proving such an estimate for
stable sets we are allowed to consider only competitors which are small perturbations of
the given set E.

We recall here below the perimeter estimate for classical stable sets, which was proven
by Pogorelov [39], and Colding and Minicozzi [22] —see also [35, Theorem 2] and [47,
Lemma 34].
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Theorem 5.1 ([39, 22]). Let D be a simply connected, immersed, stable minimal disk of
geodesic radius r0 on a minimal (two-dimensional) surface Σ ⊂ R3, then

πr2
0 6 Area (D) 6

4

3
πr2

0.

In dimension n > 3 the perimeter estimate for stable sets is still completely open.
As explained above, having a universal bound for the classical perimeter of embedded
minimal surfaces in every dimension n > 3 would be a decisive step towards proving the
following well-known and long standing conjecture: The only stable embedded minimal
(hyper)surfaces in Rn are hyperplanes as long as the dimension of the ambient space is
less than or equal to 7. On the other hand, without a universal perimeter bound, the
sequence of blow-downs could have perimeters converging to ∞.

In a similar way, one can ask whether the De Giorgi conjecture on one-dimensional
symmetry for solutions to the Allen-Cahn equation, holds in the more general class of
stable solutions. This is known only in dimension n = 2 and it is still open in higher
dimensions. We have already seen in Section 3 that stability plays a crucial role in the
proof of the conjecture, but again another fundamental ingredient was given by the energy
estimate (3.10). Also in this case the optimal estimate is known to hold only for minimizers
(and for monotone solutions in dimension 3) and it is completely open for stable sets.
Nevertheless, when n = 2 one can prove the conjecture for stable solutions because, in
order to apply the Liouville-type argument described in Section 3, an estimate of the form

E(u,BR) 6 CR2,

is enough. In R2 this (not sharp) estimate holds true since the measure of BR is of order
R2 (and |∇u| is bounded by standard elliptic estimates).

One important open question in the classification of solutions to the classical Allen-Cahn
equation is, then, the following:

Open Question: Is it true that any bounded stable solution of −∆u = u − u2 in Rn
is one-dimensional for 3 6 n 6 7?

One would expect a positive answer to this question for all dimensions 3 6 n 6 7, in the
same way one expects a positive answer to the conjecture for stable minimal surfaces stated
above. Starting from dimension n = 8, instead there are examples of stable solutions to
the Allen-Cahn equations which are not one-dimensional. This was established by Pacard
and Wei in [38].

5.2. The nonlocal setting. Surprisingly, when dealing with stable sets for the nonlocal
perimeter (or the nonlocal Allen-Cahn equation) some of the above open problems received
a positive answer, at least in some particular cases.

Since the notion of stability that we consider is the one of nonnegativity for the second
variation of the s-perimeter functional, we recall here the expression for ∂2Pers, given in
[30, 24].

Let E ⊂ Rn be such that ∂E is C2 away from 0. We denote by Hn−1 the (n − 1)-
dimensional Hasudorff measure. Then, the second variation of the s-perimeter is given
by ∫

∂E
c2
s,∂E(x)|ζ(x)|2 dHn−1(x)−

∫∫
∂E×∂E

∣∣ζ(x)− ζ(x̄)
∣∣2

|x− x̄|n+2s
dHn−1(x) dHn−1(x̄),
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where

c2
s,∂E(x) :=

∫
∂E

∣∣νE(x)− νE(x̄)
∣∣2

|x− x̄|n+2s
dHn−1(x̄),

νE(x) denotes the outward normal vector to ∂E at x ∈ ∂E and ζ ∈ C2
0 (Rn \ {0}).

In Section 3 of [10], we deal with different possible notions of stability, that, in the case
of smooth sets E, are equivalent to require that the expression above is nonnegative for
any ζ ∈ C2

c (Rn \ {0}).
As anticipated in the previous section, the techniques developed in [21] allow to prove

some perimeter and energy estimates for nonlocal stable sets.

Theorem 5.2 (Theorem 1.1 in [21]). Let s ∈ (0, 1), R > 0 and E be a stable set in the
ball B2R for the nonlocal s-perimeter functional. Then,

Per(E,BR) 6 CRn−1,

and

Per2s(E,BR) 6 CRn−2s.

As a consequence of Theorem 5.2, in [21] we obtained that any nonlocal stable set in
the whole R2 is a half-plane (by using the same argument that we sketch in the proof of
Theorem 4.4 in the previous Section).

Analogue estimates for classical stable surfaces are not known when n > 2, and even
comparing our result with the 2-dimensional result of Theorem 5.1 above, we stress that
here we do not need ∂E to be simply connected. In fact, an estimate exactly like ours
can not hold for classical stable minimal surfaces since a large number of parallel planes
is always a classical stable minimal surface with arbitrarily large perimeter in B1.

Moreover, we believe that our result in Theorem 5.2 can be used to reduce the classi-
fication of stable s-minimal surfaces in the whole Rn to the classification of stable cones,
by means of a blow-down argument and using a monotonicity formula. Somehow the dif-
ficulties in the local/nonlocal setting are interchanged: in the local setting we have the
complete classifications of stable cones but it is not known yet how to pass from the clas-
sification of cones to the classification of any stable surfaces (due to the lack of perimeter
estimates). On the other hand, in the nonlocal setting, we have the energy estimates for
stable sets, but the classification of stable s-minimal cones is still widely open.

Concerning the classification of stable s-minimal cones, in [10], Cabré, Serra and the
author, proved the following Theorem, which is the first result in the 3-dimensional case.

Theorem 5.3 (Theorem 1.2 in [10]). There exists s∗ ∈ (0, 1) such that for every s ∈ (s∗, 1)
the following statement holds.

Let Σ ⊂ R3 be a cone with nonempty boundary of class C2 away from 0. Assume that
Σ is a stable set for the s-perimeter. Then, Σ is a half-space.

In the proof of Theorem 5.3, the estimate of Theorem 5.2 plays a crucial role, together
with several other ingredients, such as the fractional Hardy inequality and some geometric
lemmas. We stress that our result is not a perturbative result from s = 1/2 which can be
obtained by some sort of compactness argument. In fact, a careful inspection of our proof
gives an explicit (computable) value for s∗, something impossible when using compactness
arguments.
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We conclude with some considerations and open problems on the classification of stable
solutions for the fractional Allen-Cahn equation. As in the classical setting, when the di-
mension n = 2, one can prove that any bounded stable solution to (3.1) is one-dimensional
for any 0 < s < 1, using the same approach described in Section 3. Indeed, in this case a
not optimal energy estimate is enough to apply the Liouville-type argument. What about
n > 3? In the very recent contribution [31], Figalli and Serra proved that when n = 3 and
s = 1/2, any stable bounded solutions to (3.1) is one-dimensional. Again, surprisingly, in
the nonlocal case (even if only for the half-Laplacian) something that is not known for the
local case, has been established. To conclude, we announce that the forthcoming paper
[11] will contain a careful study of stable solutions to the fractional Allen-Cahn equation
in the case 0 < s < 1/2, including energy estimates, density estimates, convergence of
blow-down and some new classification results.
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