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Abstract
The aim of this note is to provide regularity results for Regular Lagrangian flows of Sobolev

vector fields over compact metric measure spaces verifying the Riemannian curvature dimension
condition.

We first prove, borrowing some ideas already present in the literature, that flows generated by
vector fields with bounded symmetric derivative are Lipschitz, providing the natural extension
of the standard Cauchy-Lipschitz theorem to this setting. Then we prove a Lusin-type regularity
result in the Sobolev case (under the additional assumption that the m.m.s. is Ahlfors regular)
therefore extending the already known Euclidean result.
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Introduction
The theory of metric measure spaces with Riemannian Ricci curvature bounded from below and
dimension bounded from above (RCD∗(K,N) metric measure spaces for short), although being
very recent, is a very rapidly increasing research area with several contributions that, apart from
their own theoretical interest, have often given new insights in the understanding of more classical
questions of analysis and Riemannian geometry.

The introduction of the notion of metric measure spaces with Ricci curvature bounded from
below and dimension bounded from above (CD(K,N) m.m.s. for short) dates back to the seminal
and independent works of Lott-Villani [LV09] and Sturm [S06a], [S06b]. Crucial properties of this
theory (which is therein formulated in terms of convexity-type properties of suitable energies over
the Wasserstein space) are the compatibility with the case of smooth Riemannian manifolds and
the stability w.r.t. suitable notions of convergence of metric measure spaces.

Many geometrical and analytical properties have been proven for CD(K,N) metric measure
spaces (see for instance [V09]). However this class turns to be too large for some purposes, since it
includes for instance smooth Finsler manifolds. In order to single out spaces with a Riemannian
like behaviour from the above introduced broader class, in [AGS14] the authors proposed a notion
of m.m.s. with Riemannian Ricci curvature bounded from below, adding to the CD condition the
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requirement of linearity of the heat flow (which is the gradient flow of the so-called Cheeger energy).
Later on the theory was adapted in [G15], [AMS15] and [EKS15] to the dimensional case, with the
introduction of the RCD(K,N) condition 1.

This paper deals with the regularity of flows of vector fields over RCD∗(K,N) metric measure
spaces. To better introduce the reader to the notions that will be considered in the rest of the
paper we briefly recall the Euclidean side of the story, which has been considered from much more
time in the literature (but still deserves challenging open problems and questions).

In the Euclidean setting the Cauchy-Lipschitz theory grants existence, uniqueness and Lipschitz
regularity for flows of Lipschitz vector fields. It is well known instead that lowering the regularity
assumptions on the vector field might lead to non-uniqueness for integral curves, moreover, if one
considers vector fields that are not defined everywhere but only Lebesgue-almost everywhere there
is also need to introduce a notion of flow more general w.r.t. the one adopted in the smooth case.

Motivated by the study of some PDEs in kinetic theory and fluid mechanics, Di Perna and Lions
introduced in [DPL98] a suitable notion of flow of Sobolev vector field and studied the associated
existence and uniqueness problem. Later on their theory was revisited and extended to the case
of vector fields with BV spatial regularity by Ambrosio in [A04], where the notion of Regular
Lagrangian Flow was introduced as a good global selection of integral curves of the vector field.
Moreover Crippa and De Lellis in [CDL08] were able to prove a mild regularity result for Regular
Lagrangian Flows of Sobolev vector fields, namely that (locally) they are Lipschitz if we neglect a
subset of the domain whose measure can be made arbitrary small (where, of course, we have to
pay the price that the Lipschitz constant becomes arbitrary large). Such a result, known in the
literature as Lusin-type regularity, holds true for instance for real valued Sobolev functions (and it
is already known to be true also when the domain is a sufficiently regular metric measure space,
see [ACDM15]).

Over an arbitrary metric measure space (X, d,m) vector fields can be defined both as derivations
over an algebra of scalar functions (which is the interpretation adopted in [AT14]) and as sections of
the tangent modulus (see [G14] for the latter viewpoint and for the equivalence with the first one).
Moreover, restricting the analysis to more regular metric measure spaces (such as RCD(K,∞) metric
measure spaces) where a second order differential calculus can be developed, one can introduce also
reasonable notions of Sobolev vector fields (see again [AT14] and [G14] for the definitions of the
spaces of vector fields with symmetric derivative in L2 and of Sobolev vector fields, respectively).

A remark concerning the discussion above is in order. On metric measure spaces we do not have
a priori at our disposal a notion of Lipschitz vector field (and also in the case of smooth Riemannian
manifolds this notion is less natural and more subtle, since it requires parallel transport to compare
tangent vectors at different points); in addition we do not have a notion of tangent vector at a
given point. With this said, when trying to develop a theory of flows of vector fields in this very
abstract setting, it is more natural to look at the generalized theory of Regular Lagrangian Flows
than at the Cauchy-Lipschitz theory. In [AT14] Ambrosio and Trevisan were able to prove that
this theory was the right one in order to get existence and uniqueness of flows of vector fields with
symmetric covariant derivative in L2 on a large class of metric measure spaces including that one
of RCD(K,∞) spaces.

After having established such a result one might wonder if the flow maps have some further
regularity property. At a speculative level, proving such a result for a certain class of metric measure
spaces could give new insights about their geometry and their regularity. We remark that this very
recent theory has already been useful in some applications (see [GR17], [H17] and [GKKO17]).

The main result of this note is Theorem 3.11 below, where we extend the Lusin-type regularity
result by Crippa-De Lellis from the Euclidean setting to that one of compact RCD∗(K,N) metric
measure spaces n-Ahlfors regular for some 1 < n ≤ N < +∞. We remark that, up to our knowledge,
this is also the first intrinsic proof of the regularity result over smooth compact Riemannian manifolds,
since it avoids any use of local charts.

1We will work with the slightly modified RCD∗(K, N) condition in this paper. We avoid any further comment
about the differences w.r.t. the RCD(K, N) condition in this introduction but we remark that very recently Cavalletti
and Milman proved their equivalence in [CM16]
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This paper is organized as follows: in the preliminary section 1 we introduce the main notations
and collect the basic results of the theory of RCD metric measure spaces and Regular Lagrangian
flows that are needed in the rest of the work. Then, in section 2, following some ideas already
present in [H17] and [S14], we provide a full Lipschitz regularity result for flows of vector fields
with bounded symmetric derivative. Finally, in section 3, which is the core of this note, we prove
the sought Lusin-type regularity results.

Acknowledgements The authors would like to thank Luigi Ambrosio for suggesting them the
study of this problem and for kind and numerous comments and suggestions. They acknowledge
the support of the PRIN2015 MIUR Project “Calcolo delle Variazioni”.

1 Preliminaries
1.1 RCD metric measure spaces
Throughout this note by metric measure space (m.m.s. for short) we mean a triple (X, d,m) where
(X, d) is a complete and separable metric space and m is a probability measure defined on the Borel
σ-algebra of (X, d).

We shall adopt the standard metric notation: we will indicate by B(x, r) the open ball of radius
r centred at x ∈ X, by Lip(X, d) the space of Lipschitz functions over (X, d), by Lip f the Lipschitz
constant of f ∈ Lip(X, d). Moreover we introduce the notation

lip f(x) := lim sup
y→x

|f(x)− f(y)|
d(x, y) ,

for the so-called slope of a function f : X → R.
We will denote by Lp(X,m) = Lp(X) = Lp the spaces of Borel p-integrable functions over

(X,m) for any 1 ≤ p ≤ +∞ and by L0(X,m) the space of m-measurable functions over X.
Unless otherwise stated from now on we assume (X, d,m) to be a compact RCD∗(K,N) metric

measure space for some K ∈ R (lower bound on the Ricci curvature) and 1 ≤ N < +∞ (upper
bound on the dimension). Let us assume without loss of generality that m is fully supported on X,
this assumption is justified by the fact that if (X, d,m) is RCD∗(K,N) then so is (suppm, d,m).

We remark that the notion of RCD∗(K,N) m.m.s. was introduced and firstly studied in [G15],
[AMS15] and [EKS15]), while the introduction of the RCD(K,∞) condition dates back to the work
[AGS14]. We just recall that those spaces can be introduced and studied both from an Eulerian
point of view (based on the so-called Γ-calculus) and from a Lagrangian point of view (based on
optimal transportation techniques).

Below we briefly describe the main analytic and geometric properties of RCD∗(K,N) metric
measure spaces that will play a role in our work.

As a first geometric property we recall that RCD∗(K,N) metric measure spaces satisfy the
Bishop-Gromov inequality (which holds true more generally for any CD∗(K,N) m.m.s., see [LV09]).
Together with the compactness assumption, the Bishop-Gromov inequality implies that (X, d,m) is
doubling, that is there exists cD > 0 such that

m(B(x, 2r)) ≤ cDm(B(x, r))

for any x ∈ X and for any r > 0.
For any f ∈ L1(X,m) we will denote by Mf the Hardy-Littlewood maximal function of f ,

which is defined by
Mf(x) := sup

r>0
−
∫
B(x,r)

|f(z)|dm(z), (1.1)

where
−
∫
B(x,r)

f(z) dm(z) := 1
m(B(x, r))

∫
B(x,r)

f(z) dm(z).

We recall that, since (X, d,m) is a doubling m.m.s., the maximal operator M is bounded from
Lp(X,m) into itself for any 1 < p ≤ +∞.

We go on with a brief discussion about Sobolev functions and vector fields over (X, d,m) referring
to [AGS13], [AGS14] and [G14] for a more detailed discussion about this topic.
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Definition 1.1. For any 1 < p < +∞ we define W 1,p(X, d,m)(= W 1,p(X)) to be the space of
those f ∈ Lp(X,m) such that there exists a sequence fn → f in Lp(X,m) with fn ∈ Lip(X, d) for
any n ∈ N and supn ‖lip fn‖Lp < +∞.

The definition of Sobolev space is strongly related to the introduction of the Cheeger energy
Chp : Lp(X,m)→ [0,+∞] which is defined by

Chp(f) := inf
{

lim inf
n→∞

∫
(lip fn)p dm : fn → f in Lp, fn ∈ Lip(X, d)

}
(1.2)

and turns out to be a convex and lower semicontinuous functional from Lp(X,m) to [0,+∞] whose
finiteness domain coincides with W 1,p(X, d,m).

By looking at the optimal approximating sequence in (1.2) one can identify a distinguished object,
called minimal relaxed gradient and denoted by |∇f |p, which provides the integral representation

Chp(f) =
∫
X

|∇f |pp dm,

for any f ∈ W 1,p(X, d,m). As the notation suggests |∇f |p depends a priori on the integrability
exponent p.

The space W 1,p(X, d,m) is a Banach space when endowed with the norm ‖f‖pW 1,p := ‖f‖pLp +
Chp(f), moreover it holds that the inequality |∇f |p ≤ lip f holds true m-a.e. on X for any
f ∈ Lip(X, d).

We point out that to single out RCD∗(K,N) metric measure spaces form the broader class
of CD∗(K,N) metric measure spaces one adds the request that Ch := Ch2 is a quadratic form
on L2(X,m) to the curvature-dimension condition. In this way the space W 1,2(X, d,m), which in
general is only a Banach space, turns to be a Hilbert space.

This global assumption has in turn strong consequences on the infinitesimal behaviour of the
space (indeed any m.m.s such whose W 1,2 is a Hilbert space is called infinitesimally Hilbertian).
In particular, in the smooth setting it allows to single out Riemannian manifolds in the class of
Finsler manifolds.

For any f, g ∈W 1,2(X, d,m) we define a function ∇f · ∇g ∈ L1(X m) by

∇f · ∇g(x) := 1
4 |∇(f + g)|2 (x)− 1

4 |∇(f − g)|2 (x) for m-a.e. x ∈ X.

It is proved in [GH16] that under the RCD(K,∞) assumption the minimal relaxed gradient
|∇f |p does not depend on p, for this reason we will use the notation |∇f |.

In order to introduce the heat flow and its main properties we begin by recalling the notion of
Laplacian.

Definition 1.2. The Laplacian ∆ : D(∆)→ L2(X,m) is a densely defined linear operator whose
domain consist of all functions f ∈W 1,2(X, d,m) satisfying∫

hg dm = −
∫
∇h · ∇f dm ∀h ∈W 1,2(X, d,m)

for some g ∈ L2(X,m). The unique g with this property is denoted by ∆f .2

On any compact RCD∗(K,N) m.m.s the operator −∆ is densely defined, self-adjoint and
compact. We will denote by (λi)i∈N its spectrum (where the eigenvalues are counted with multiplicity
and in increasing order, λi ≥ 0 for any i and λi → ∞ as i goes to infinity) and by (ui)i∈N the
associated eigenfunctions, normalized in such a way that ‖ui‖L2 = 1 for any i ∈ N. Recall that
(ui)i∈N is an orthonormal basis of L2(X,m). Furthermore the sequence (λi)i∈N has more than linear
growth at infinity. A standard reference for this result in the smooth framework is [L12, Chapter
10] and the arguments therein presented can be adapted to the case of our interest.

2The linearity of ∆ follows from the quadraticity of Ch.
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The heat flow Pt is defined as the L2(X,m)-gradient flow of 1
2Ch, whose existence and uniqueness

follow from the Komura-Brezis theory. It can equivalently be characterized by saying that for any
u ∈ L2(X,m) the curve t 7→ Ptu ∈ L2(X,m) is locally absolutely continuous in (0,+∞) and satisfies

d
dtPtu = ∆Ptu for L 1-a.e. t ∈ (0,+∞).

Under our assumptions the heat flow provides a linear, continuous and self-adjoint contraction
semigroup in L2(X,m). Moreover Pt extends to a linear, continuous and mass preserving operator,
still denoted by Pt, in all the Lp spaces for 1 ≤ p < +∞.

In [AGS14] it is proved that for RCD(K,∞) metric measure spaces the dual semgiroup P̄t :
P(X)→P(X) of Pt, defined by∫

X

f dP̄tµ :=
∫
X

Ptf dµ ∀µ ∈P(X), ∀f ∈ Lipb(X),

for t > 0, maps probability measures into probability measures absolutely continuous w.r.t. m.
Then, for any t > 0, we can introduce the so called heat kernel pt : X ×X → [0,+∞) by

pt(x, ·)m := P̄tδx.

From now on for any f ∈ L∞(X,m) we will denote by Ptf the representative pointwise everywhere
defined by

Ptf(x) =
∫
X

f(y)pt(x, y) dm(y).

Since RCD∗(K,N) metric measure spaces are doubling, as we already remarked, and they satisfy
a local Poincaré inequality (see [V09]) the general theory of Dirichlet forms (see [S96]) grants that
we can find a locally Hölder continuous representative of p on X ×X × (0,+∞).

We also recall from [AHT17] the spectral identity which provides an explicit expression for the
heat kernel in terms of the eigenfunctions of the Laplacian, namely

pt(x, y) =
∞∑
i=0

e−λitui(x)ui(y), (1.3)

for any t > 0, where, by choosing the Hölder continuous representative of ui, whose Hölder norm
growths linearly with λi, one obtains the Hölder continuous representative of pt (taking into account
that, as we already remarked, the sequence of eigenvalues growths at least linearly at infinity).

Moreover in [JLZ14] the following finer properties of the heat kernel have been proven: there
exist constants C1 ≥ 1, C2 > 0 and C3 ≥ 0 depending only on K and N such that

1
C1

1
m(B(x,

√
t))

exp
{
−d

2(x, y)
3t − C3t

}
≤ pt(x, y) ≤ C1

1
m(B(x,

√
t))

exp
{
−d

2(x, y)
5t + C3t

}
,

(1.4)
for any x, y ∈ X and for any t ∈ (0,+∞) and

|∇pt(x, ·)|(y) ≤ C2
1

m(B(x,
√
t))
√
t

exp
{
−d

2(x, y)
5t + C3t

}
for m-a.e. y ∈ Y, (1.5)

for any t ∈ (0,+∞) and for any x ∈ X.
We go on by stating a few regularity properties of RCD∗(K,N) metric measure spaces (which

hold true more generally for any RCD(K,∞) m.m.s.) referring again to [AGS14] for a more detailed
discussion and the proofs of these results.

First we have the Bakry-Émery contraction estimate:

|∇Ptf |2 ≤ e−2KtPt |∇f |2 m-a.e. (1.6)

for any t > 0 and for any f ∈W 1,2(X, d,m).
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Another non trivial regularity property is the so-called L∞ − Lip regularization of the heat flow,
that is for any f ∈ L∞(X,m) we have that Ptf ∈ Lip(X) with√

2I2K(t) Lip(Ptf) ≤ ‖f‖L∞ for any t > 0, (1.7)

where IL(t) :=
∫ t

0 e
Lr dr.

Then we have the so-called Sobolev to Lipschitz property: any f ∈W 1,2(X, d,m) with |∇f | ∈
L∞(X,m) admits a Lipschitz representative f̄ such that Lip f ≤ ‖∇f‖∞, that actually implies the
equality Lip f = ‖∇f‖∞ since, in general, Lip f ≥ ‖lip f‖∞ and lip f ≥ |∇f | m- a.e. on X.

Following [G14] we introduce the space of “test” functions Test(X, d,m) by

Test(X, d,m) := {f ∈ D(∆) ∩ L∞(X,m) : |∇f| ∈ L∞(X) and ∆f ∈W1,2(X, d,m)} (1.8)

and we remark that for any g ∈ L∞(X) it holds that Ptg ∈ Test(X, d,m) for any t > 0, thanks to
(1.6), (1.7), the fact that Pt maps L2(X,m) in D(∆) and the commutation

∆Ptf = Pt∆f ∀f ∈ D(∆),

between ∆ and Pt.
We conclude this preliminary section with some finer regularity properties which hold true under

the stronger assumption that the metric measure space is Ahlfors regular.

Definition 1.3. We say that (X, d,m) is n-Ahlfors regular for some 1 ≤ n < +∞ if there exist
constants 0 < c1 ≤ c2 such that

c1r
n ≤ m(B(x, r)) ≤ c2rn (1.9)

for any 0 < r < D and for any x ∈ X, where we denoted by D the diameter of X.

Remark 1.4. Let us observe that assumption (1.9) grants integrability of certain powers of the
distance function, namely for any x ∈ X and for any α < n we have that y 7→ d(x, y)−α is
m-integrable. Indeed by Cavalieri’s formula we have that∫

X

1
d(x, y)α dm(x) =

∫ ∞
0

m({ y : d(x, y)−α > λ }) dλ

=
∫ ∞

0
m(B(x, λ−1/α)) dλ

≤D−α + c1

∫ ∞
D−α

λ−n/α dλ.

In RCD∗(K,N) spaces it can be proved that eigenfunctions of the Laplacian have Lipschitz
representatives. The result of the forthcoming Lemma 1.5 provides also quantitative estimates on
their Lipschitz norms, under the additional assumption that m is Ahlfors regular.

Lemma 1.5. Let ui be an eigenfunction of −∆ associated to the eigenvalue λi. Then ui has a
Lipschitz representative. Moreover it holds

‖ui‖L∞ ≤
C1e

c1
(C3 + λi)n/2, ‖∇ui‖L∞ ≤

√
(λi + |K|)/2 ‖ui‖L∞ . (1.10)

Proof. Observe that by (1.9) and (1.4) we get

pt(x, y) ≤ C1e
C3t

c1tn/2
∀x, y ∈ X,

which yields the ultracontractivity property of the heat semigroup, namely

‖Ptu‖L∞ ≤
C1e

C3t

c1tn/2
‖u‖L1 ∀t > 0, (1.11)

for any u ∈ L1(X,m).
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Observe that, since −∆ui = λiui, it holds that Ptui = e−λitui for any t > 0.
An application of (1.11) with t = 1/(C3 + λi) yields now to the desired estimate

‖ui‖∞ ≤
C1e

c1
(C3 + λi)n/2,

since ‖ui‖L1 ≤ ‖ui‖L2 = 1.
In order to prove the second estimate in (1.10) we apply (1.7) to get

‖∇ui‖L∞ = eλit ‖∇Ptui‖L∞ = eλit Lip(Ptui) ≤
eλit√

2I2K(t)
‖ui‖L∞ .

Observing that IL(s) ≥ se−|L|s and choosing t := 1/(λi + |K|) we obtain the desired conclusion.

1.2 Regular Lagrangian flows
In this subsection we recall the notion of regular Lagrangian flow (RLF for short) firstly introduced
in the Euclidean setting by Ambrosio in [A04] (inspired by the earlier work by Di Perna and Lions
[DPL98]).

The notion of regular Lagrangian flow was introduced to study ordinary differential equations
associated to weakly differentiable vector fields. It is indeed well-known that, in general, it is
not possible to define in a unique way a flow associated to a non Lipschitz vector field since the
trajectories starting from a fixed point are often not unique. Roughly speaking, the RLF is a
selection of trajectories that provides a very robust notion of flow.

In order to define the concept of regular Lagrangian flow over RCD∗(K,N) spaces we introduce
the notion of vector field through that one of derivation that has been adopted in [AT14].

Definition 1.6. We say that a linear functional b : Lip(X, d) → L0(X,m) is a derivation if it
satisfies the Leibniz rule, that is

b(fg) = b(f)g + fb(g), (1.12)

for any f, g ∈ Lip(X, d).
Given a derivation b we will write |b| ∈ Lp if there exist some function g ∈ Lp(X,m) such that

b(f) ≤ g |∇f | m-a.e. on X, (1.13)

for any f ∈ Lip(X, d) and we will denote by |b| the minimal (in the m-a.e. sense) g with such
property.

We will also use the notation b · ∇f in place of b(f) in the rest of the paper.
We remark that if a derivation b is in Lp then it can be extended in a unique way to a linear

functional on W 1,q(X, d,m) still satisfying (1.13), where q is the dual exponent of p. Moreover,
any f ∈ W 1,2(X, d,m) defines in a canonical way a derivation bf in L2 through the formula
bf (g) = ∇f · ∇g, usually called the gradient derivation associated to f .

A notion of divergence can be introduced by integration by parts.

Definition 1.7. Let b be a derivation with |b| ∈ L1(X,m). We say that div b ∈ Lp(X,m) if there
exists g ∈ Lp(X,m) such that ∫

X

b(f) dm = −
∫
X

gf dm

for any f ∈ Lip(X, d). By a density argument it is easy to check that such a g is unique (when it
exists) and we will denote it by div b.

In the rest of the note we will write b ∈ Lp(TX) to denote a derivation such that |b| ∈ Lp(X,m).
We refer to [G14] for the introduction of the so-called tangent and cotangent moduli over an
arbitrary metric measure space and for the identification results between derivations and elements
of the tangent modulus which stand behind the use of this notation.

We also introduce here the notion of time dependent vector field.
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Definition 1.8. Let us fix T > 0, and p ∈ [1,+∞]. We say that a map b : [0, T ]→ Lp(TM) is a
time dependent vector field if for every f ∈W 1,q(X, d,m) the map

(t, x) 7→ bt · ∇f(x),

is measurable with respect to the product sigma-algebra L 1 ⊗B(X). We say that b is bounded if

‖b‖L∞ := ‖|b|‖L∞([0,T ]×X) <∞,

and that b ∈ L1((0, T );Lp(X,m)) if ∫ T

0
‖|bs|‖Lp ds <∞.

In the context of RCD∗(K,N) spaces the definition of Regular Lagrangian flow reads as follows
(see [AT14] and [AT15]).

Definition 1.9. Let us fix a time dependent vector field bt (see Definition 1.8). We say that a
map X : [0, T ]×X → X is a Regular Lagrangian flow associated to bt if the following conditions
hold true:

1) X(0, x) = x and X(·, x) ∈ C([0, T ];X) for every x ∈ X;

2) there exists a positive constant L, called compressibility constant, such that

X(t, ·)#m ≤ Lm,

for every t ∈ [0, T ];

3) for every f ∈ Test(X, d,m) the map t 7→ f(X(t, x)) is absolutely continuous on [0, T ] and

d
dtf(X(t, x)) = bt · ∇f(X(t, x)) for a.e. t ∈ (0, T ), for m-a.e x ∈ X;

.

The selection of “good” trajectories is encoded in condition 2), which is added to ensure that
the trajectories of the flow do not concentrate with respect to the measure m.

In the definition we are assuming that X is defined in every point x ∈ X. Actually the notion
of RLF is stable under modification in a negligible set of initial conditions, but we prefer to work
with a pointwise defined map in order to avoid technical issues.

The theory of Regular Lagrangian flows in the context of metric measure spaces was developed
by Ambrosio and Trevisan in [AT14]. The authors work with a very weak notion of symmetric
derivative for a vector field.

Definition 1.10. Let b ∈ L2(TX) with div b ∈ L2(X,m). We say that |∇symb| ∈ L2(X,m) if there
exists a constant c ≥ 0 satisfying∣∣∣∣∫

X

∇symb(∇f,∇g) dm
∣∣∣∣ ≤ c ‖|∇f |‖L4 ‖|∇g|‖L4 , (1.14)

for every f, g ∈ Test(X,d,m), where∫
X

∇symb(∇f,∇g) dm := −1
2

∫
X

{b · ∇f∆g + b · ∇g∆f − (div b)∇f · ∇g} dm.

We let ‖∇symb‖L2 be the smallest admissible c in (1.14).

The results of [AT14] grant in particular existence and uniqueness of the RLF associated to
a bounded vector field b, with symmetric derivative (in the sense of Definition 1.10) in L2 and
bounded divergence, in the context of RCD∗(K,N) spaces, which is the one we will be interested
on in the rest of this note.

We conclude this section recalling a deep relation between the Regular Lagrangian flow of bt
and solutions of the continuity equation induced by bt (see [AT14]).
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Proposition 1.11. Let Xt be a Regular Lagrangian flow of bt. Then, for any µ0 ∈P(X) absolutely
continuous w.r.t. m and with density bounded from above, defining µt := (Xt)#µ0, we have that µt
solves the continuity equation

d
dtµt + div(btµt) = 0 (1.15)

in the distributional sense, that is the function t 7→
∫
φ dµt is in W 1,1(0, T ) and it holds

d
dt

∫
φdµt =

∫
bt · ∇φ dµt, (1.16)

for L 1-a.e. t ∈ (0, T ), for any φ ∈ Lip(X, d).

Remark 1.12. We remark that it is possible to find a common L 1-negligible set N ⊂ (0, T ) in such
a way that (1.16) is satisfied for any t ∈ (0, T ) \ N for any φ ∈ Lip(X, d) (see [GH15a, Proposition
3.7])

2 Regularity in the “Lipschitz” case
The aim of this section is to provide a full Lipschitz regularity result for flows of (possibly time
dependent) regular vector fields with bounded symmetric covariant derivative (where the right
notions of symmetric covariant derivative and “regular” are introduced in Definition 2.3 below).

We have to remark that, while the regularity assumption seems to be not too restrictive in view
of the possible applications of this result, the assumption that the symmetric covariant derivative is
bounded is very restrictive and it could happen that, for a general RCD∗(K,N) metric measure
space, there are no vector fields satisfying this constraint. Nevertheless, we find it interesting to
present this result, both to better introduce the reader to the study of flows of vector fields over non
smooth spaces, both since techniques very similar to the one we are going to present have already
proven to be useful in the study of some rigidity problems such as in [GR17] and [GKKO17].

The proof of the sought regularity result follows the strategy of the Lipschitz regularity of flows
of Lipschitz vector fields in the Euclidean case, based on the differentiation of the distance between
two flow lines of the vector field. To rule out the possible non-smoothness of the space we work at the
level of curves of absolutely continuous measures (exploiting the result of Proposition 1.11) following
some ideas taken from [S14] and the very recent [H17]. Let us remark, for sake of correctness, that
the strategy we implement, based on the application of the second order differentiation formula
along W2-geodesics, was already suggested in [H17] (see in particular Remark 3.18 and Remark
3.19 therein).

We assume the reader to be familiar with the basic notions and notations of optimal transporta-
tion (referring for instance to [AGS13] for their introduction).

Below we state two preliminary results that play a key role in the proof of Theorem 2.7. For
the moment we don’t need to add any extra regularity assumption to the time dependent vector
field (bt)t∈[0,T ] apart from measurability w.r.t. time.

Lemma 2.1. Let (µt)t∈[0,T ] be a solution of the continuity equation (1.15) such that µt ≤ Cm for
any t ∈ [0, T ] for some C > 0 and fix any ν ∈P(X). Then it holds

d
dt

1
2W

2
2 (µt, ν) =

∫
bt · ∇φt dµt for L 1-a.e. t ∈ (0, T ), (2.1)

where φt is any optimal Kantorovich potential for the transport problem between µt and ν.

Proof. The result is stated and proved in a much more general framework in [GH15a, Proposition
3.11].

Corollary 2.2. Let (µt)t∈[0,T ] and (νt)t∈[0,T ] be solutions with uniformly bounded densities to the
continuity equation induced by bt starting from µ0 and ν0 respectively as in (1.16). Then it holds
that

d
dt

1
2W

2
2 (µt, νt) ≤

∫
bt · ∇φt dµt +

∫
bt · ∇ψt dνt for L 1-a.e. t ∈ (0, T ), (2.2)

where (φt, ψt) is any couple of optimal Kantorovich potentials between µt and νt.
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Proof. The desired conclusion can be obtained with almost the same proof of Lemma 2.1 above.
We report here a few more details for sake of completeness.

The results of [GH15a] grant that the curves (µt)t∈[0,T ] and (νt)t∈[0,T ] are absolutely continuous
with values in (P(X),W2). It easily follows that the curve t 7→W 2

2 (µt, νt) is absolutely continuous,
hence it is differentiable L 1-a.e. over (0, T ). It follows from Remark 1.12 and what we just observed
that we can find a full L 1-measure set C ⊂ (0, T ) such that, for any t ∈ C, s 7→ W 2

2 (µs, νs) is
differentiable at s = t and it holds

d
ds |s=t

∫
φ dµs =

∫
bt∇ · φ dµt,

d
ds |s=t

∫
ψ dνs =

∫
bt · ∇ψ dνt. (2.3)

Let now (φt, ψt) be any couple of optimal Kantorovich potentials between µt and νt. It follows
by the duality results for the optimal transport problem that for any h > 0 sufficiently small it
holds

1
2W

2
2 (µt+h, νt+h)− 1

2W
2
2 (µt, νt) ≥

∫
φt dµt+h +

∫
ψt dνt+h −

∫
φt dµt −

∫
ψt dνt. (2.4)

The desired conclusion follows from (2.4) dividing by h, taking the limit as h → 0 at both sides
and taking into account (2.3).

Before going on we introduce following [G14] the notion of Sobolev vector field with symmetric
covariant derivative in L2 over an arbitrary RCD(K,∞) m.m.s. (X, d,m) and the associated space
W 1,2
C,s(X, d,m).
We refer to [G14] for the construction of the modulus L2(T⊗2X) (starting from the tangent

modulus L2(TX)) and for the introduction of the broader space W 1,2
C (X, d,m) of vector fields with

full covariant derivative in L2.

Definition 2.3. The Sobolev space W 1,2
C,s(TX) ⊂ L2(TX) is the space of all b ∈ L2(TX) for which

there exists a tensor S ∈ L2(T⊗2X) such that for any h, g1, g2 ∈ Test(X, d,m) it holds∫
hS(∇g1,∇g2) dm = 1

2

∫
{−b(g2) div(h∇g1)− b(g1) div(h∇g2) + div(hb)∇g1 · ∇g2} dm. (2.5)

In this case we shall call the tensor S symmetric covariant derivative of b and we will denote it by
∇symb. We endow the space W 1,2

C,s(TX) with the norm ‖·‖W 1,2
C,s

(TX) defined by

‖b‖2W 1,2
C,s

(TX) := ‖b‖2L2(TX) + ‖∇symb‖2L2(T⊗2TX) .

Remark 2.4. It easily follows from the definition that the symmetric covariant derivative is actually
symmetric.

Moreover, for any b ∈W 1,2
C (TX) it holds that b ∈W 1,2

C,s(TX) and ∇symb is the symmetric part
of ∇b (we refer to [G14, Section 3.4] for the definition of the covariant derivative).

In order to compare the notion of Sobolev vector field introduced above with that one introduced
in Definition 1.10 we observe that the first one is easily seen to be stronger than the second one.
Indeed it is sufficient to take h = 1 in Equation 2.5 and to apply the Young inequality with
exponents 2, 4 and 4 to get the claimed conclusion.

We define the space TestV(X, d,m) ⊂ L2(TX) of test vector fields to be the set of linear
combinations of the form

n∑
i=1

gi∇fi,

where gi, fi ∈ Test(X, d,m) for any i = 1, . . . , n.
We recall that TestV(X) ⊂W1,2

C (X) and we will denote by H1,2
C,s(X) the closure of TestV(X) in

W 1,2
C,s(X) w.r.t. the W 1,2

C,s-norm.
Below we quote from [GT17b] a useful differentiation formula for H1,2

C,s-vector fields along
Wasserstein geodesics obtained by the authors as a corollary of the second order differentiation
formula for H2,2-Sobolev functions proven in [GT17a].
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Theorem 2.5. Let (X, d,m) be a compact RCD∗(K,N) m.m.s. for some 1 ≤ N < +∞. Let
(ηs)s∈[0,1] be a W2-geodesic connecting probability measures η0 and η1 absolutely continuous w.r.t.
m and with bounded densities and assume that b ∈ H1,2

C,s(X, d,m). Then one has that the curve

s 7→
∫
b · ∇φs dηs

is C1 on [0, 1], where φs is any function such that for some r ∈ [0, 1] with s 6= r it holds that
−(r − s)φs is an optimal Kantorovich potential from ηs to ηr. Moreover it holds that

d
ds

∫
b · ∇φs dηs =

∫
∇symb(∇φs,∇φs) dηs

for any s ∈ [0, 1].

Remark 2.6. We remark that Theorem 2.5 is actually stated in [GT17b] only for vector fields in
H1,2
C (X). However, since the strategy of the proof goes via approximation through elements of

TestV(X) and the statement just involves the symmetric part of the covariant derivative, it easily
extends to H1,2

C,s(X).

We remark that it makes sense to say that an element of L2(T⊗2X) belongs to L∞(T⊗2X) and
to consider its L∞-norm. With this said, we will denote by

L := sup
t∈(0,T )

‖∇symbt‖L∞

and from now on to the basic assumptions of subsection 1.2 we add the assumption that L < +∞.
Below we state and prove the key result of this section, that will allow us to obtain both

uniqueness and Lipschitz regularity for Regular Lagrangian Flows.

Theorem 2.7. Let (X, d,m) be a compact RCD∗(K,N) m.m.s. and (bt)t∈[0,T ] be a time dependent
vector field verifying the above discussed assumptions. Let (µt)t∈[0,T ] and (νt)t∈[0,T ] denote solutions
of the continuity equation induced by bt, absolutely continuous and with uniformly bounded densities.
Then it holds that

W2(µt, νt) ≤ eLtW2(µ0, ν0)

for any t ∈ [0, T ].

Proof. Applying first Corollary 2.2 and then Theorem 2.5 we obtain that, for L 1-a.e. t ∈ (0, T ),

d
dt

1
2W

2
2 (µt, νt) ≤

∫
bt · ∇Q1

3(−φt) dνt −
∫
b·∇− φt dµt (2.6)

=
∫ 1

0

∫
∇symbt(∇φst ,∇φst ) dηst ds, (2.7)

where we denoted by φt an optimal Kantorovich potential from µt to νt, (ηst )s∈[0,1] the W2-geodesic
joining µt with νt and by φst the intermediate time potential such that

d
dsη

s
t + div(∇φstηst ) = 0.

Observe that we are in position to apply Theorem 2.5 since µt and νt are by assumption absolutely
continuous with bounded densities for any t ∈ [0, T ].

Recalling that, as a consequence of the metric Brenier theorem (see [AGS14, Proposition 3.5 ]),∫
|∇φst |

2 dηst = W 2
2 (µt, νt),

for L 1-a.e. s ∈ (0, 1) and for any t ∈ [0, T ], we can conclude from (2.6) that

d
dt

1
2W

2
2 (µt, νt) ≤ ‖∇symbt‖L∞W

2
2 (µt, νt) ≤ LW 2

2 (µt, νt)
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for a.e. t ∈ (0, T ).
An application of Gromwall’s lemma yields now the desired conclusion, namely that

W 2
2 (µt, νt) ≤ e2LtW 2

2 (µ0, ν0)

for any t ∈ [0, T ].

As a corollary of Theorem 2.7, under our more restrictive assumptions about the regularity
of the vector field, we can prove uniqueness (avoiding the theory of renormalized solutions) and
Lipschitz regularity of Regular Lagrangian flows.

Theorem 2.8. Let (X, d,m) be a RCD∗(K,N) m.m.s. and let (bt)t∈[0,T ] satisfy the assumptions
of Theorem 2.7. Then there exist a unique Regular Lagrangian flow (Xt)t∈[0,T ] of (bt)t∈[0,T ].

Proof. We do not give a complete proof of this statement. We just say here that Theorem 2.7
gives uniqueness of solutions to the continuity equation induced by (bt) in the class of probability
measures a.c. with respect to m and with bounded density. Thus we are in position to proceed as
in the proof of [AT15, Theorem 7.7] to obtain uniqueness of the RLF.

Theorem 2.9. Let (X, d,m) and (bt)t∈[0,T ] be as before. Then for any t ∈ [0, T ] we can find a
representative of the RLF Xt satisfying the Lipschitz estimate

d(Xt(x),Xt(y)) ≤ eLtd(x, y),

for any x, y ∈ X.

Proof. As for the proof of Theorem 2.8 above we do not give all the details. We just say here
that the Lipschitz estimate for trajectories (which can be thought as solutions to the continuity
equation starting from Dirac deltas) follows from Theorem 2.7 from an approximation procedure
whose details can be found for instance in the proof of [H17, Theorem 3.14] or in [S14].

3 Regularity in the Sobolev case
In this section we prove a regularity property of regular Lagrangian flows associated to Sobolev
vector fields in the context of (compact) Ahlfors regular RCD∗(K,N) metric measure spaces (see
Definition 1.3). In order to better present the result and the main ideas of the proof we begin
from the Euclidean setting, that is our starting point (even though non compactness requires some
modification w.r.t. the strategy that we will adopt in the core of this section).

In (Rd, | · |,L d) the theory was developed by Crippa and De Lellis in [CDL08] (implementing
some ideas that were already present in [ALM05]), the main regularity result therein proved is the
following one.

Theorem 3.1. Let Xt be a regular Lagrangian flow associated to a time dependent vector field
bt ∈ L1((0, T );W 1,p(Rd;Rd))∩L∞((0, T );L∞(Rn;Rn)) with p > 1, and fix R > 0. For every ε > 0
there exists a compact set K ⊂ BR such that L d(BR \K) < ε and

Lip(Xt|K) ≤ exp

C
(

1 +
∫ T

0 ‖∇bt‖Lp(BR̃) dt
)

ε1/p

 ,

for any t ∈ [0, T ], where R̃ := R+ T ‖b‖L∞ and C depends only on d,R, p and L.

The technique adopted in [CDL08] is based on a priori estimates of the functionals

Qt,r(x) := −
∫
B(x,r)

log
(

1 +
(
|Xt(x)−Xt(y)|

r

))
dy,

which represent a sort of non-convex, discrete Cheeger energies associated to X.
Any Lp bound of the function x→ supr>0Qt,r(x), depending only on the Sobolev norm of b,

can be seen to imply a Lusin-type regularity property for Xt similar to the one in Theorem 3.1.
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In order to find bounds for Qt,r one starts differentiating with respect to the time variable:

d
dtQt,r(x) = −

∫
B(x,r)

d
dt |Xt(x)−Xt(y)|
r + |Xt(x)−Xt(y)| dy ≤ −

∫
B(x,r)

|bt(Xt(x))− bt(Xt(y))|
r + |Xt(x)−Xt(y)| dy.

To go on it suffices to recall the maximal estimate:

|bt(Xt(x))− bt(Xt(y))|
|Xt(x)−Xt(y)| ≤ C(M |∇b|(Xt(x)) +M |∇b|(Xt(y))). (3.1)

Now, using the assumption that X has bounded compression and the Lp integrability of the
maximal operator for p > 1, it is simple to find an Lp bound of x→ supr>0Qt,r(x) depending only
on the Sobolev norm of b.

Inequality (3.1) in the Euclidean case follows applying the well-known Lusin-approximation
property of scalar Sobolev functions with Lipschitz functions to the components of the vector field.
Even though the scalar Lusin-approximation property is a very robust result (it holds true in every
doubling metric measure space [ACDM15] and in a rich class of non-doubling spaces [ABT17] ), it
is non trivial to extend a similar property to vector fields out of the Euclidean setting.

We are now ready to state the main result of this section. We refer to Theorem 3.11 below for a
more quantitative version of this statement.

Theorem 3.2. Let (X, d,m) be a compact RCD∗(K,N) m.m.s. and assume that it is n-Ahlfors
regular for some 1 < n ≤ N (see Definition 1.3). Let (bt)t∈[0,T ] be a bounded time dependent vector
field with |∇symbt| ,div bt ∈ L1((0, T );L2(X,m)). Let Xt be a regular Lagrangian flow associated to
bt with compressibility constant L. Then for every ε > 0 there exists a Borel set E ⊂ X such that
m(X \ E) < ε and for every x, y ∈ E

d(Xt(x),Xt(y)) ≤ Cn,D exp
{
Cn,T

L
∫ t

0 ‖|∇symbs|+ |div bs|‖L2 ds+ 1
√
ε

}
d(x, y),

for every t ∈ [0, T ].

The Ahlfors regularity property, crucial in our proof, is a non trivial assumption. However the
class of spaces we are able to treat is not poor, since it includes, for instance, Alexandrov spaces
and non-collapsed RCD∗(K,N) metric measure spaces (see [DPG17]).

We conclude this preliminary discussion describing the main ideas in the proof of our result.
Trying to perform the Crippa-De Lellis’ scheme the biggest difficulty to overcome comes from the
study of the quantity

d
dtd(Xt(x),Xt(y)). (3.2)

Indeed in the metric setting it is not clear up to now how to obtain a useful estimate of the
quantity

b · ∇dx(y) + b · ∇dy(x) (3.3)

in terms of the covariant derivative of the vector field b (a part from the case of bounded symmetric
derivative which, however, seems to be too specific for the applications).

Our strategy instead consists in considering a suitable power of the Green function G(x, y) =
Gx(y) instead of the distance function in (3.2) (we have been inspired by the survey [CM12]).

It is a well-known fact that on certain classes of Riemannian manifolds the Green function is
equivalent to a negative power of the distance function; we extend this result to Ahlfors regular
RCD∗(K,N) spaces.

Instead of (3.3), we need now to estimate

b · ∇Gx(y) + b · ∇Gy(x); (3.4)

assuming for simplicity that div b = 0 and thanks to the fundamental property of the Green’s
function

∆Gx = δx,
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(actually ∆Gx = δx −m in the case of compact manifolds) we formally compute

b · ∇Gx(y) + b · ∇Gy(x) =
∫
X

[b(z) · ∇Gx(z)∆Gy(z) + b(z) · ∇Gy(z)∆Gx(z)] dm(z)

= −2
∫
X

∇symb(∇Gx,∇Gy) dm,

that, with a little bit of work, provides a maximal estimate that plays the same role of (3.1) in the
Euclidean setting.

As just said, throughout this section we make the additional assumption that (X, d,m) is
n-Ahlfors regular for some 1 < n ≤ N (and it is still assumed to be a compact RCD∗(K,N) m.m.s.
for some 1 < N < +∞).

The main technical ingredients are developed in subsection 3.1, where we prove that, for the
class of spaces we are interested in, the Green function of the Laplace operator is comparable with a
negative power of the distance function (extending a well-known result of Riemannian geometry, see
[Au98]). In subsection 3.2 we turn the assumption on the Sobolev regularity of a vector field into a
point-wise information obtaining a crucial maximal-type estimate. Through these two subsections
we make the additional assumption that n > 2, needed for technical reasons related to the different
behaviour of the Green function in dimension two. Finally in subsection 3.4 we propose a short
argument to extend the main result to the missing case n = 2. We remark that, due to the results
of [MN14], the Ahlfors regularity assumption forces n to be an integer between 1 and N . Therefore
the only remaining case would be that of n = 1, that can be considered by iterating twice the
procedure described in subsection 3.4.

In order to let the notation be shorter we adopt the following convention: every positive constant
that depends only on the “structural” coefficients of the space, i.e. K,N, n,D, (λi)i∈N, C1, C2, C3, c1, c2
and on universal numerical constants, will be denoted by C.

3.1 The Green function
Let us introduce now a key object for the rest of this note, namely the Green function

G(x, y) :=
∫ ∞

0
(pt(x, y)− 1) dt, ∀x, y ∈ X. (3.5)

In Proposition 3.3 below we prove that G is well defined and we collect some important properties,
extending to the case of our interest some known estimates in Riemannian geometry (see [Au98]
and [Gr06]).

Recall that we are assuming n > 2.

Proposition 3.3. The Green function G in (3.5) is well defined and finite for every x 6= y ∈ X.
For every f ∈ Test(X, d,m) it holds∫

X

G(x, y)∆f(y) dm(y) =
∫
X

f dm− f(x) (3.6)

for every x ∈ X.
Moreover, G is equivalent to the function d(x, y)−n+2 up to a constant, i.e. there exist A ≥ 1

and Ā > 0, depending only on (X, d,m), such that

|G(x, y)| ≤ A

d(x, y)n−2 , ∀x, y ∈ X (3.7)

and
G(x, y) ≥ 1

Ad(x, y)n−2 − Ā ∀x, y ∈ X. (3.8)

Finally, setting Gx(y) := G(x, y), there exists C > 0 such that

lipGx(y) ≤ C

d(x, y)n−1 ∀x 6= y ∈ X, (3.9)

in particular Gx, lipGx ∈ Lp(X,m) for every p ∈ [1, n/(n− 1)).
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Proof. Let us prove that the integral
∫∞

0 (pt(x, y)− 1) dt is absolutely convergent. We assume for
simplicity that the diameter D of the space is equal to 1. Let us fix x 6= y ∈ X, using the estimates
(1.4) for the heat kernel, identity (1.3), the Ahlfors regularity (1.9) and (1.10), we have∫ ∞

0
|pt(x, y)− 1|dt =

∫ 1

0
|pt(x, y)− 1|dt+

∫ ∞
1
|pt(x, y)− 1|dt

≤ 1 +
∫ 1

0

C1

m(B(x,
√
t))
e−

d2(x,y)
5t +C3t dt+

∫ ∞
1

∑
i≥1

e−λit|ui(x)||ui(y)|dt

≤ 1 +
∫ 1

0

C

tn/2
e
−d2(x,y)

5t dt+
∑
i≥1

Ce−λi

λi
(C3 + λi)n.

Observe now that the series
∑
i≥1

Ce−λi

λi
(C3 + λi)n is convergent (since the eigenvalues have more

than linear growth) and that∫ 1

0

C

tn/2
e−

d2(x,y)
5t dt ≤ 1

d(x, y)n−2

∫ ∞
0

e−
1

5t

tn/2
dt ≤ C

d(x, y)n−2 ,

where in the last inequality the assumption that n > 2 enters into play. All in all we have∣∣∣∣∫ ∞
0

(pt(x, y)− 1) dt
∣∣∣∣ ≤ C

d(x, y)n−2 + C ≤ C

d(x, y)n−2 ,

that provides the good definition of G and (3.7).
In order to prove (3.8) observe that∫ ∞

0
(pt(x, y)− 1) dt =

∫ 1

0
(pt(x, y)− 1) dt+

∫ ∞
1

∑
i≥1

e−λitui(x)ui(y) dt.

Using again (1.4) and (1.9), we obtain∫ 1

0
(pt(x, y)− 1) dt ≥ C

d(x, y)n−2 − 1.

Recalling that ∣∣∣∣∣∣
∫ ∞

1

∑
i≥1

e−λitui(x)ui(y) dt

∣∣∣∣∣∣ ≤
∑
i≥1

Ce−λi

λi
(C3 + λi)n <∞

we conclude the proof of (3.8).
Let us estimate now the slope of Gx(·) at y ∈ X, y 6= x. Let us fix a parameter 0 < ε < d(x, y),

and a point z ∈ B(y, ε/2); observe that d(x, z) > ε/2. We wish to estimate the incremental ratio

|Gx(z)−Gx(y)|
d(z, y) ≤

∫ 1

0

|pt(x, z)− pt(x, y)|
d(z, y) dt+

∫ ∞
1

∑
i≥1

e−λit|ui(x)| |ui(z)− ui(y)|
d(y, z) dt =: I + II.

In order to estimate I we observe that the slope of pt(x, ·) is bounded in X \B(x, ε/2) uniformly
in time and that a geodesic from y to z does not intersect B(x, ε/2). Thus, using the fact that
the slope of a Lipschitz function is an upper gradient we obtain that the family |pt(x,z)−pt(x,y)|

d(z,y)
is uniformly bounded when z ∈ B(y, ε/2). By the dominated convergence theorem and (1.5) we
obtain

lim sup
z→y

∫ 1

0

|pt(x, z)− pt(x, y)|
d(z, y) dt ≤

∫ 1

0
|∇pt(x, ·)|(y) dt

≤
∫ 1

0

C

m(B(x,
√
t))
√
t
e−

d2(x,y)
5t dt

≤ C

d(x, y)n−1 .

15



The estimate of II is simple. Indeed from (1.10) we obtain

lim sup
z→y

∫ ∞
1

∑
i≥1

e−λit|ui(x)| |ui(z)− ui(y)|
d(y, z) dt ≤

∫ ∞
1

∑
i≥1

e−λitC(C3 + λi)n(|K|+ λi)1/2 dt < +∞.

Putting all together we conclude

lipGx(y) ≤ C

d(x, y)n−1 + C ≤ C

d(x, y)n−1 .

By Remark 1.4 it easily follows that Gx, lipGx ∈ Lp(X,m) for every p ∈ [1, n/(n− 1)).
Finally we prove (3.6). Let us fix f ∈ Test(X, d,m). We first observe that∫

X

G(·, y)∆f(y) dm(y) ∈ L∞(X,m), (3.10)

as a consequence of ∆f ∈ L∞(X,m) and Remark 1.4. Fix any ϕ ∈ L2(X,m), applying Fubini’s
theorem we get∫

X

ϕ(x)
∫
X

G(x, y)∆f(y) dm(y) dm(x) =
∫ ∞

0

∫
X

ϕ(x)
∫
X

(pt(x, y)− 1)∆f(y) dm(y) dm(x) dt

=
∫ ∞

0

∫
X

ϕ(x)Pt∆f(x) dm(x) dt

=
∫ ∞

0

d

dt

∫
X

Ptf(x)ϕ(x) dm(x) dt

=
∫
X

(∫
X

f dm− f(x)
)
ϕ(x) dm(x),

where all the integrals are well-defined thanks to (3.10).

Let us introduce a “regularized” version Gε, ε > 0, of G setting

Gε(x, y) :=
∫ ∞
ε

(pt(x, y)− 1) dt ∀x, y ∈ X.

We will often write Gεx(y) = Gε(x, y). Observe that Gε is well defined and finite for every x, y ∈ X.
Estimates (3.7) and (3.9) still hold true for Gε, namely

|Gε(x, y)| ≤ C

d(x, y)n−2 , lipGεx(y) ≤ C

d(x, y)n−1 (3.11)

for every x, y ∈ X, and they can be proved with the the same strategy described above. In
Lemma 3.4 below we state an important regularity property of Gεx.

Lemma 3.4. For every x ∈ X it holds that Gεx ∈ Test(X, d,m) and

∆Gεx(y) = 1− pε(x, y). (3.12)

for m-a.e. y ∈ X.

Proof. Arguing as in the proof of (3.7) we easily obtain Gεx ∈ L∞(X,m) and, with a simple
application of Fubini-Tonelli theorem, we get

Gεx = Pε/2G
ε/2
x .

Taking into account the regularizing properties of the heat flow that we remarked after (1.8), we
obtain Gεx ∈ Test(X, d,m).

Identity (3.12) follows arguing as in the proof of (3.6).

Finally we observe that, for every x ∈ X, the family of functions (Gε(x))ε>0 is equibounded
in W 1,p(X, d,m) for some p > 1, and strongly convergent as ε→ 0 to Gx, details can be found in
Lemma 3.5 below.
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Lemma 3.5. For every x ∈ X and for every p ∈ [1, n
n−1 ) it holds that Gx, Gεx ∈W 1,p(X, d,m) and

lim
ε→0

Gεx = Gx, strongly in W 1,p.

Proof. From (3.7), (3.11) and Remark 1.4 it immediately follows that Gx, Gεx ∈ Lp(X,m) for every
p ∈ [1, n/(n−2)), with a bound on Lp norms independent of ε. Moreover Gεx is a Lipschitz function,
thus

|∇Gεx| ≤ lipGεx ≤
C

d(x, y)n−1 , m-a.e. on X.

Using Remark 1.4 again we conclude that supε>0 ‖Gεx‖W 1,p < ∞. It is simple to check that
Gεx(y)→ Gx(y) for any y 6= x, when ε→ 0 and by (3.11) and the dominated convergence theorem
we get

Gεx → Gx in Lp for all p ∈ [1, n/(n− 2)). (3.13)

Let us fix p ∈ [1, n
n−1 ). It is now obvious that Gx ∈W 1,p(X, d,m), since by the reflexivity of W 1,p

for p > 1 (see [ACDM15]) and (3.13) we deduce that (Gεx)ε>0 weakly converges to Gx. It remains
to prove that the convergence of Gεx → Gx is actually strong in W 1,p. To this aim it is enough to
show

lim
ε→0

∫
X

|∇Gεx|dm =
∫
X

|∇Gx|dm,

since Gεx → Gx weakly in W 1,p and the space W 1,p(X, d,m) is equivalent to a uniformly convex
space (see [ACDM15, Theorem 7.4]). Using a p-version of (1.6) (see [GH16, Proposition 3.1]) and
the identity PεGx = Gεx (where the action of the semigroup is understood in Lp(X,m)) we have
that ∫

X

|∇Gε|p(y) dm(y) ≤ e−pKε
∫
X

|∇G|p(y) dm(y).

Therefore
lim sup
ε→0

∫
X

|∇Gε|p(y) dm(y) ≤
∫
X

|∇G|p(y) dm(y).

Using the lower semicontinuity of the Sobolev norm with respect to the weak topology we conclude
the proof.

3.2 Maximal estimates for vector fields
In this section we state and prove a maximal estimate which turns out to be crucial in the sequel.

Proposition 3.6. There exists a positive constant C = C(X, d,m) such that, for every b ∈ L2(TX)
with div b,∇symb ∈ L2(X,m), it holds

|b · ∇Gx(y) + b · ∇Gy(x)| ≤ C

d(x, y)n−2 [M(|∇symb|+ |div b|)(x) +M(|∇symb|+ |div b|)(y)],

for m×m a.e. (x, y) ∈ X ×X.

In some sense the result of Proposition 3.6 could be seen as a quantitative Lusin-type approxi-
mation property for the vector valued case. Indeed it plays in our proof the role played by (3.1) in
the original Crippa-De Lellis’ scheme (see [CDL08]).

The notion of symmetric covariant derivative we are adopting in Proposition 3.6, is the following
one.

Definition 3.7. Take any b ∈ L2(TX) with div b ∈ L2. We say that b has symmetric derivative in
L2 if there exists a non negative function G ∈ L2(X,m) such that

1
2

∣∣∣∣∫
X

{b · ∇g∆f + b · ∇f∆g − div b(∇f · ∇g)} dm
∣∣∣∣ ≤ ∫

X

G|∇f ||∇g|dm, (3.14)

for every f, g ∈ Test(X). We call |∇symb| the G ∈ L2(X,m) with minimal norm4.
4Up to now we do not know if |∇symb| has to be the minimal object also in the pointwise m-a.e. sense.
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This definition appears as intermediate between the notion adopted by Ambrosio and Trevisan
in [AT14] (see Definition 1.10) and the one proposed by Gigli in [G14] (see Definition 2.3). Indeed
it follows from the very definitions that if a vector field admits a symmetric covariant derivative
in L2 according to Definition 3.7 then it also admits a covariant derivative in L2 according to
Ambrosio-Trevisan. On the other hand if a vector field belongs to W 1,2

C,s (see Definition 2.3), then
it has symmetric covariant derivative in L2 according to Definition 3.7. We chose to work with
this intermediate notion of symmetric derivative since it is the assumption we really need for our
purposes.

We start with a technical lemma.

Lemma 3.8. There exists a positive constant C = C(X,d,m) such that for every non negative
function f ∈ L1(X,m) it holds∫

X

f(z) 1
d(x, z)n−1

1
d(y, z)n−1 dm(z) ≤ C

d(x, y)n−2 (Mf(x) +Mf(y)) .

Proof. Set r := d(x, y)/2. We split the integral∫
X

f(z) 1
d(x, z)n−1

1
d(y, z)n−1 dm(z) = I + II + III,

where
I :=

∫
B(x,r)

f(z) 1
d(x, z)n−1

1
d(y, z)n−1 dm(z),

II :=
∫
B(y,r)

f(z) 1
d(x, z)n−1

1
d(y, z)n−1 dm(z), (3.15)

and
III :=

∫
{d(x,z)≥r, d(y,z)≥r}

f(z) 1
d(x, z)n−1

1
d(y, z)n−1 dm(z).

In order to estimate I we observe that d(y, z) ≥ d(y, x) − d(x, z) ≥ d(x, y)/2 for all z ∈ B(x, r),
thus ∫

B(x,r)
f(z) 1

d(x, z)n−1
1

d(y, z)n−1 dm(z) ≤ 2n−1

d(x, y)n−1

∫
B(x,r)

f(z) 1
d(x, z)n−1 dm(z).

Arguing exactly as in the proof of (3.10), we find∫
B(x,r)

f(z) 1
d(x, z)n−1 dm(z) ≤ Cd(x, y)Mf(x),

and we conclude
I ≤ C

d(x, y)n−2Mf(x). (3.16)

The estimate
II ≤ C

d(x, y)n−2Mf(y), (3.17)

follows by the same reasoning.
We are left with the estimate of III. By Young’s inequality we have

III ≤ 1
2

∫
{d(x,z)≥r}

f(z) 1
d(x, z)2n−2 dm(z) + 1

2

∫
{d(y,z)≥r}

f(z) 1
d(y, z)2n−2 dm(z).
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Using the Ahlfors regularity (1.9), for every w ∈ X, we obtain

∫
d(w,z)≥r

f(z) 1
d(w, z)2n−2 dm(z) =

log2(D/2r)∑
k=0

∫
B(w,r2k+1)\B(w,r2k)

f(z)
d(w, z)2n−2 dm(z)

≤
log2(D/2r)∑

k=0

m(B(w, r2k+1))
(2kr)2n−2

1
m(B(w, r2k+1))

∫
B(w,r2k+1)

f(z) dm(z)

≤C
log2(D/2r)∑

k=0

(r2k+1)n

(2kr)2n−2Mf(w)

≤ C

d(w, y)n−2Mf(w)
log2(D/2r)∑

k=0
2−k(n−2).

Putting this last estimate, applied with w = x and w = y, together with (3.16) and (3.17) we
obtain the desired conclusion.

Proof of Proposition 3.6. First of all we remark that |b · ∇Gx(y) + b · ∇Gy(x)| is well defined
m×m-a.e., since b is a bounded vector field and Gx, Gy ∈W 1,p for some p > 1. As a first step we
prove the following

Claim: for every ε > 0 it holds that

|Pε(b · ∇Gεx)(y) +Pε(b · ∇Gεy)(x)| ≤ C

d(x, y)n−2 [M(|∇symb|+ |div b|)(x) +M(|∇symb|+ |div b|)(y)],

for every x, y ∈ X.
Recalling the result of Lemma 3.4 we have

|Pε(b · ∇Gεx)(y)+Pε(b · ∇Gεy)(x)|

=
∣∣∣∣∫
X

b · ∇Gεx(z)pε(y, z) dm(z) +
∫
X

b · ∇Gεy(z)pε(x, z) dm(z)
∣∣∣∣

=
∣∣∣∣−∫

X

[
b · ∇Gεx∆Gεy(z) + b · ∇Gεy(z)∆Gεx + div b(Gεx +Gεy)

]
dm(z)

∣∣∣∣
≤
∣∣∣∣−∫

X

[
b · ∇Gεx∆Gεy(z) + b · ∇Gεy(z)∆Gεx − div b(∇Gεx · ∇Gεy)

]
dm(z)

∣∣∣∣
+
∣∣∣∣∫
X

div b(Gεx +Gεy +∇Gεx · ∇Gεy) dm(z)
∣∣∣∣

=2
∣∣∣∣∫
X

∇symb(∇Gεx,∇Gεy) dm(z)
∣∣∣∣+
∣∣∣∣∫
X

div b(Gεx +Gεy +∇Gεx · ∇Gεy) dm(z)
∣∣∣∣ .

Now using (3.7) and (3.9) we get

|Pε(b · ∇Gεx)(y)+Pε(b · ∇Gεy)(x)|

≤C
∣∣∣∣∫
X

(|∇symb|(z) + |div b(z)|) 1
d(x, z)n−1

1
d(y, z)n−1 dm(z)

∣∣∣∣ ,
where we have implicitly exploited the inequality 1

d(·,z)n−2 ≤ D
d(·,z)n−1 . Applying Lemma 3.8 with

f := |∇symb|+ |div b| we conclude the proof of the claim.
We want to prove now that

Pε(b · ∇Gεx)(y) + Pε(b · ∇Gεy)(x)→ b · ∇Gx(y) + b∇ ·Gy(x)

strongly in Lp(X × X,m × m) when ε → 0; this convergence result together with the uniform
estimate we proved above will yield the desired conclusion (by considering a sequence (εi)i∈N such
that εi → 0 and the above considered convergence holds in the m×m-a.e. sense).
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Entering into the details we are going to prove that∫
X

∫
X

|Pε(b · ∇Gεx)(y)− b · ∇Gx(y)|p dm(x) dm(y)→ 0 (ε→ 0) .

Recalling the Lp-norm contractivity property of the semigroup Pt we have that for any fixed
x ∈ X it holds

‖Pε(b · ∇Gεx)− b · ∇Gx‖Lp ≤‖Pε(b · ∇G
ε
x)− Pε(b · ∇Gx)‖Lp + ‖Pε(b · ∇Gx)− b · ∇Gx‖Lp

≤‖|b|‖L∞ ‖∇(Gεx −Gx)‖Lp + ‖Pε(b · ∇Gx)− b · ∇Gx‖Lp .

The last two terms go to zero when ε→ 0, moreover they are uniformly bounded in x, thus

∫
X

∫
X

|Pε(b · ∇Gεx)(y)− b · ∇Gx(y)|p dm(y) dm(x)

≤
∫
X

‖b‖L∞ ‖∇(Gεx −Gx)‖Lp dm(x) +
∫
X

‖Pε(b · ∇Gx)− b · ∇Gx‖Lp dm(x)

goes to zero by the dominated convergence theorem.

3.3 A Lusin-type regularity result
Throughout this section the time dependent vector field bt and the regular Lagrangian flow Xt

associated to bt, with compressibility constant L, are fixed. Our aim is to implement a strategy very
similar to the one developed in [CDL08] in order to prove our main regularity result Theorem 3.2.

We begin by observing that the results of Proposition 3.3 ensure that, possibly increasing the
constant A and setting Ḡ(x, y) := G(x, y) + Ā we have

1
Ad(x, y)n−2 ≤ Ḡ(x, y) ≤ A

d(x, y)n−2 , (3.18)

for any x, y ∈ X such that x 6= y. It follows in particular that Ḡ(x, y) > α > 0 for any x, y ∈ X
such that x 6= y.

Observe that, in terms of the function Ḡ, the statement of Proposition 3.6 can be rewritten as

|b · ∇Ḡx(y) + b · ∇Ḡy(x)| ≤ CḠ(x, y)[M(|∇symb|+ |div b|)(x) +M(|∇symb|+ |div b|)(y)], (3.19)

for m×m-a.e. (x, y) ∈ X ×X.
We introduce, for any t ∈ [0, T ] and for any 0 < r ≤ D, the functional

Qt,r(x) := −
∫
B(x,r)

log
(

1 + 1
A

(
d(Xt(x),Xt(y))

r

)n−2
)

dm(y),

where A is the constant introduced in (3.18). Moreover we set

Q∗(x) := sup
0≤t≤T

sup
0<r≤D

Qt,r(x). (3.20)

With the aim of finding bounds on Q∗, we first state and prove a technical lemma.

Lemma 3.9. Assume that b ∈ L1((0, T ), L2(TM)) and that it is bounded. Then, for m× m-a.e.
(x, y) ∈ X × Y the map t→ G(Xt(x),Xt(y)) belongs to W 1,1((0, T )) and its derivative is given by
the formula

d

dt
G(Xt(y),Xt(x)) = bt · ∇GXt(x)(Xt(y)) + bt · ∇GXt(y)(Xt(x)), (3.21)

for a.e. t ∈ (0, T ).
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Proof. From (1.3) and the definition of Gε we find the pointwise identity

Gε(x, y) =
∞∑
i=0

e−λiε

λi
ui(x)ui(y), (3.22)

for every x, y ∈ X. Setting

Gε,N (x, y) :=
N∑
i=0

e−λiε

λi
ui(x)ui(y),

we have that, for m × m-a.e. (x, y) ∈ X × X, the map t 7→ Gε,N (Xt(x),Xt(y)) is absolutely
continuous for every N ∈ N. Moreover, for a.e. t ∈ (0, T ), it holds

d

dt
Gε,N (Xt(x),Xt(y)) =

N∑
i=0

e−ελi

λi
(bt · ∇ui(Xt(x))ui(Xt(y)) + ui(Xt(x))bt · ∇ui(Xt(y))) (3.23)

=bt · ∇Gε,NXt(x)(Xt(y)) + bt · ∇Gε,NXt(y)(Xt(x)), (3.24)

since ui ∈ Test(X, d,m) for any i ∈ N. Our aim is to pass to the limit (3.23), first letting N →∞
and then ε→ 0. Observe that, for every ε > 0, when N →∞ we have Gε,N → Gε in W 1,2(X ×X)
(moreover it holds Gε,Nx → Gx strongly in W 1,2(X), uniformly in x ∈ X) and also, when ε → 0,
Gε → G in L1(X ×X), and Gεx → Gx in W 1,p(X) for every p ∈ [1, n

n−1 ), uniformly in x ∈ X (see
Lemma 3.5). Moreover Gε ∈ Test(X×X) (it can be proved arguing as in Lemma 3.4).

With this said, in order to conclude the proof, it suffices to show the following technical result:
let (Fn(x, y))n∈N be a sequence of symmetric functions belonging to Test(X×X), assume that Fn
satisfies (3.23) for every n ∈ N. If Fn → F in L1(X×X) and there exists p > 1 such that, for every
x ∈ X, Fn(x, ·) := Fnx (·)→ Fx(·) in W 1,p(X), uniformly w.r.t. x ∈ X, then t→ F (Xt(x),Xt(y))
belongs to W 1,1((0, T )) for m×m-a.e. (x, y) ∈ X ×X and satisfies (3.23).

Let us fix t ∈ [0, T ], starting from the m×m-a.e. equality

Fn(Xt(x),Xt(y))− Fn(x, y) =
∫ t

0

{
bs · ∇FnXs(x)(Xs(y)) + bs · ∇FnXs(y)(Xs(x)))

}
ds, (3.25)

we wish to pass to the limit for n→∞. Observe that the left hand side converges to F (Xt(x),Xt(y))−
F (x, y) in L1(X ×X) (here the compressibility property of Xt plays a role), it remains only to
prove that the right hand side converges to∫ t

0

{
bs · ∇FXs(x)(Xs(y)) + bs · ∇FXs(x)(Xs(y))

}
ds, in L1(X ×X).

Using again the compressibility property of Xt we have∫
X×X

∣∣∣∣∫ t

0
bs · ∇FnXs(x)(Xs(y)) ds−

∫ t

0
bs · ∇FXs(x)(Xs(y)) ds

∣∣∣∣p dm(x) dm(y)

≤t1−1/p ‖b‖L∞
∫ t

0

∫
X

∫
X

|∇(FnXs(x) − FXs(x))|p(Xs(y)) dm(y) dm(x) ds

≤L2t2−1/p ‖b‖L∞
∫
X

‖∇(Fnx − Fx)‖pLp dm(x),

that, under our assumptions on the sequence Fn, goes to zero when n→∞. Arguing similarly for
the term

∫ t
0 ∇bs · F

n
Xs(y)(Xs(x)) ds we conclude the proof.

Theorem 3.10. Let b be a time dependent vector field, assume that |∇symb| and div b belong to
L1((0, T );L2(X,m)). Let Xt be a Regular Lagrangian flow associated to b, with compressibility
constant L. Then, with the above introduced notation, we have

‖Q∗‖L2 ≤ C

[
L

∫ T

0
‖|∇symbs|+ |div bs|‖L2 ds+ 1

]
,

where C = C(T,X, d,m).
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Proof. As a first step we introduce the functional

Φt,r(x) := −
∫
B(x,r)

log
(

1 + 1
rn−2Ḡ(Xt(x),Xt(y)))

)
dm(y), (3.26)

for r ∈ (0, D) and t ∈ [0, T ].
We observe that the monotonicity of the logarithm and our construction grant that Qt,r ≤ Φt,r

pointwise for any t ∈ [0, T ] and for any 0 < r ≤ D.
What we just proved tells that it suffices to bound Φt,r (which in some sense is a more “regular”

functional) in order to bound Qt,r. To this aim we fix r > 0 and t ∈ [0, T ]. By Lemma 3.9 we have
that t → Φt,r(x) belongs to W 1,1((0, T )) for m-a.e. x ∈ X (actually it is absolutely continuous
since it is continuous) and it holds

Φt,r(x) =Φ0,r(x) +
∫ t

0

d

ds
Φs,r(x) ds

≤Φ0,r(x) +
∫ t

0
−
∫
B(x,r)

| dds Ḡ(Xs(x),Xs(y))|
Ḡ(Xs(x),Xs(y))

· 1
Ḡ(Xs(x),Xs(y))rn−2 + 1

dm(y) ds

≤Φ0,r(x) +
∫ t

0
−
∫
B(x,r)

|bs · ∇ḠXs(x)(Xs(y)) + bs · ∇ḠXs(y)(Xs(x))|
Ḡ(Xs(x),Xs(y))

dm(y) ds.

Setting gs := |∇symbs|+ |div bs|, from Proposition 3.6 and (3.19) we obtain

Φt,r(x) ≤
∫ t

0
−
∫
B(x,r)

|bs · ∇ḠXs(x)(Xs(y)) + bs · ∇ḠXs(y)(Xs(x))|
Ḡ(Xs(x),Xs(y))

dm(y) ds+ Φ0,r

≤C
∫ t

0
−
∫
B(x,r)

(Mgs(Xs(x)) +Mgs(Xs(y))) dm(y) ds+ Φ0,r

≤C
∫ t

0
[Mgs(Xs(x)) +M(MgsXs(·))(x)] ds+ 1/A

for m a.e. x ∈ X, and the negligible set does not depend on r. From (3.8) we get

sup
0≤t≤T

sup
0<r≤D

Qt,r(x) ≤ sup
0≤t≤T

sup
0<r≤D

Φt,r(x)

≤ C
∫ T

0
[Mgs(Xs(x)) +M(Mgs(Xs(·))(x)] ds+ 1/A,

for m a.e. x ∈ X. Taking the L2-norms (here the assumption that the RLF has compressibility
constant L < +∞ enters into play once more) we obtain our thesis.

Below we state and prove the main regularity result for regular Lagrangian flows.

Theorem 3.11. Let b be a time dependent vector field and let X be a regular Lagrangian flow
associated to b with compressibility constant L. For any x, y ∈ X and for any t ∈ [0, T ] it holds

d(Xt(x),Xt(y)) ≤ CeC(Q∗(x)+Q∗(y))d(x, y), (3.27)

where Q∗ has been defined in (3.20), and C = C(X, d,m).
Moreover, when b is bounded and |∇sym| b,div b ∈ L1((0, T );L2(X,m)), for every ε > 0 there

exists a Borel set E ⊂ X such that m(X \ E) < ε and for every x, y ∈ E

d(Xt(x),Xt(y)) ≤ C exp
(

2C
‖Q∗‖L2√

ε

)
d(x, y) (3.28)

for every t ∈ [0, T ], where we remark that this last statement makes sense since, under our regularity
assumptions on b, Theorem 3.10 grants that ‖Q∗‖L2 < +∞.
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Proof. Fix any x, y ∈ X such that x 6= y and set r := d(x, y). Exploiting the inequality (a+ b)m ≤
2m−1(am + bm) ≤ 2m(am + bm), the triangular inequality and the subadditivity and monotonicity
of t 7→ log(1 + t), we obtain that

log
(

1 + 1
A

(
d(Xt(x),Xt(y))

2r

)n−2
)
≤ log

(
1 + 1

A

(
d(Xt(x),Xt(z))

r

)n−2
)

+ log
(

1 + 1
A

(
d(Xt(z),Xt(y))

r

)n−2
)
,

for any z ∈ X. Let us fix w ∈ X such that d(x,w) = d(y, w) = r/2 (observe that such a point
exists, since (X, d) is a geodesic metric space) and we take the mean value of the above written
inequality (w.r.t. the z variable) over B(w, r/2) obtaining

log
(

1 + 1
A

(
d(Xt(x),Xt(y))

2r

)n−2
)
≤−
∫
B(w,r/2)

log
(

1 + 1
A

(
d(Xt(x),Xt(z))

r

)n−2
)

dm(z)

+−
∫
B(w,r/2)

log
(

1 + 1
A

(
d(Xt(z),Xt(y))

r

)n−2
)

dm(z)

≤C−
∫
B(x,r)

log
(

1 + 1
A

(
d(Xt(x),Xt(z))

r

)n−2
)

dm(z)

+ C−
∫
B(y,r)

log
(

1 + 1
A

(
d(Xt(z),Xt(y))

r

)n−2
)

dm(z),

where in the second inequality we enlarge the domain of integration and control the ratios between
volumes of balls with radii r/2 and r in a uniform way, thanks to the Ahlfors regularity assumption.

It follows by the definition of Q∗ that for any x, y ∈ X such that x 6= y and for any t ∈ [0, T ] it
holds

log
(

1 + 1
A

(
d(Xt(x),Xt(y))

2d(x, y)

)n−2
)
≤ C (Q∗(x) +Q∗(y)) ,

which easily yields (3.27).
Let us define E := {x ∈ X : Q∗(x) ≤ ‖Q∗‖L2 /

√
ε }, by Chebyshev inequality we deduce that

m(X \ E) < ε. The conclusion of (3.28) now directly follows from (3.27).

3.4 The case n = 2
In order to conclude the proof of our result Theorem 3.2 we have to deal with the case n = 2.

In order to reduce this case to an application of the result we proved for n > 2 we “add a
dimension” to the given space by considering its product with the standard S1.

To this aim, given a 2-Ahlfors regular RCD∗(K,N) m.m.s. (X, d,m) we define (X̄, d̄, m̄) by

1) X̄ := X × S1;

2) d̄2((x, s), (x′, s′)) := d2
X(x, x′) + d2

S1(s, s′) for every x, x′ ∈ X and s, s′ ∈ S1;

3) m̄ := m× ds, where ds is the (normalized) volume measure of S1.

Then (X̄, d̄, , m̄) is an RCD∗(K,N + 1) m.m.s. (see [AGS14, sect. 6] and [BS10]) and it is 3-Ahlfors
regular, as an elementary application of Fubini’s theorem shows.

We will denote by π1 and π2 the canonical projections from X̄ to X and S1 respectively. With
this said we introduce the so-called algebra of tensor products by

A :=


n∑
j=1

gj ◦ π1hj ◦ π2 : n ∈ N, gj ∈W 1,2 ∩ L∞(X) and hj ∈W 1,2 ∩ L∞(S1)∀j = 1, . . . , n

 .
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A crucial property for the rest of the discussion in this section is the strong form of density
of the product algebra A (the terminology is borrowed from [GR17]), namely it holds that for
any f ∈W 1,2(X̄) ∩ L∞(X) there exists a sequence (fn)n∈N with fn ∈ A uniformly bounded and
converging to f in W 1,2(X̄). This property can be proved with minor modifications of the strategy
developed in [GH15], where the case of products with the Euclidean line or intervals is considered.
We also remark that a more direct approach to the proof of this density result can be obtained
exploiting the result of [AST17, Theorem B.1]. Indeed, knowing that the algebra generated by
distances from points is dense, the observation that the distance squared from a point in the
product belongs to the product algebra (actually d̄2((x, s), ·) = d2

X(x, ·) + d2
S1(s, ·)) together with

an approximation procedure (which is needed to recover the distance from the distance squared)
yields the desired conclusion.

In order to be able to apply Theorem 3.2 in the space X̄ we are going to lift the given vector
field bt on X to a vector field b̄t on X̄.

In [GR17] the study of tangent and cotangent moduli of product spaces is performed in great
generality. We just observe here that, in the case of our interest, we are in position to lift bt in a
trivial way by saying that, for any f ∈W 1,2(X̄),

b̄t · ∇f(x, s) = bt · ∇fs(x)

for m̄-a.e. (x, s) ∈ X̄, where fs(x) := f(s, x) and we are implicitly exploiting the tensorization
property of the Cheeger energy (see [AGS14]). Observe that if bt ∈ L∞((0, T );L∞(TX)) then
b̄t ∈ L∞((0, T );L∞(TX̄)) and the norms are actually preserved.

Given a RLF Xt of bt on (X, d,m) we go on by setting

X̄t(x, s) := (Xt(x), s) ∀x ∈ X, ∀s ∈ S1,

for every t ∈ [0, T ].
In Lemma 3.12 and Lemma 3.13 below we prove that Xt is a Regular Lagrangian flow of b̄t

and that b̄t inherits the Sobolev regularity from bt. These remarks will put us in position to apply
Theorem 3.11.

Lemma 3.12. Under the previous assumptions (X̄t)t∈[0,T ] is a Regular Lagrangian flow of b̄t.

Proof. We begin by observing that, if Xt has compression bounded by L, then X̄t has compression
bounded by L itself, as a simple application of the change of variables formula shows.

With this said it remains to check that condition 3 in Definition 1.9 is satisfied (since the
trajectories of X̄t inherit the continuity from the trajectories of Xt). To this aim let Ã be the
algebra generated by functions of the form f ◦ π1g ◦ π2, where g ∈ Test(X, d,m) and f ∈ Test(S1).
Observe that, for f ∈ Ã, the identity

d
dtf(X̄t(x, s)) = b̄t · ∇f(X̄t(x, s)) (3.29)

for m̄-a.e. (x, s) and for L 1-a.e. t ∈ (0, T ) directly follows from the assumption that Xt is a
Regular Lagrangian flow of bt on X and from the definition of b̄t. To conclude that (3.29) holds
true for any f ∈ Test(X̄) it is now sufficient to take into account the density of the product algebra
in the strong form.

Lemma 3.13. Assume that b ∈ L2(TX) has divergence in L2(m). Then b̄ has divergence in L2(m̄)
and it holds div b̄(x, s) = div b(x) for m̄-a.e. (x, s) ∈ X̄.

Moreover, if b has symmetric derivative in L2(m) according to Definition 3.7, then b̄ has
symmetric derivative in L2(m̄) itself and it holds

∥∥∇symb̄∥∥L2(m̄) ≤ ‖∇symb‖L2(m), where we omitted
the implicit dependence from the space of the divergence and the symmetric covariant derivative.

Proof. The proof of the first conclusion can be found in [GR17, Proposition 3.15].
We pass to the proof of the second statement, which is strongly inspired by the proof of an

analogous result concerning the Hessian that can be found in [GR17, Appendix A].
Recall that we defined

∣∣∇symb̄∣∣ to be the function h ∈ L2(m̄) with smallest L2-norm such that

1
2

∣∣∣∣∫
X̄

b̄ · ∇g∆f + b̄ · ∇f∆g − div b̄(∇f · ∇g) dm̄
∣∣∣∣ ≤ ∫

X̄

h|∇f ||∇g|dm̄ (3.30)
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for any f, g ∈ Test(X̄). Therefore to prove the desired conclusion it suffices to show that h(x, s) :=
|∇symb| (x) is an admissible function in (3.30). Moreover, thanks to the strong density of the
algebra A and to the approximation result of [GR17, Lemma A.3], it is sufficient to verify (3.30) in
the case where f, g ∈ Ã, where the algebra Ã was introduced in the proof of Lemma 3.12.

Denoting by ∆X and ∆S1 the Laplacians on X and S1 respectively, we recall from [AGS14, pg.
52] that (with a slight abuse of notation) it holds ∆X̄ = ∆X + ∆S1 .

Then we compute

1
2

∫
X̄

b̄ · ∇f∆g + b̄ · ∇g∆f − div b̄∇f · ∇g dm̄

=1
2

∫
S1

[∫
X

b · ∇Xf∆Xg + b · ∇Xg∆Xf − div b ∇Xf · ∇Xg dm
]

ds

+ 1
2

∫
S1

[∫
X

b · ∇Xf∆S1g + b · ∇Xg∆S1f − div b ∇S1f · ∇S1g dm
]

ds,

where we exploited the definition of b̄, the previously proven identity div b̄ = div b ◦ π1 and the
tensorization of the Cheeger energy again. The first of the two terms appearing above is bounded
by ∫

X̄

h |∇Xf | |∇Y g|dm̄ ≤
∫
X̄

h |∇f | |∇g|dm̄,

since b has symmetric derivative in L2.
To conclude we are going to prove that

R :=
∫
S1

[∫
X

b · ∇Xf∆S1g + b · ∇Xg∆S1f − div b ∇S1f · ∇S1g

]
dmds = 0.

Observe that applying the Leibniz rule for the divergence and integrating by parts we obtain∫
S1

∫
X

b · ∇Xf∆S1g dmds =−
∫
S1

∫
X

div b f ∆S1g dm ds+
∫
S1

∫
X

div(bf)∆S1g dmds

=
∫
X

div b
∫
S1
∇S1f · ∇S1g dsdm−

∫
S1

∫
X

f b · ∇X(∆S1g) dmds

=
∫
S1

∫
X

div b ∇S1f · ∇S1g dmds−
∫
S1

∫
X

f b · ∇X(∆S1g) dmds,

which yields to

R =
∫
S1

∫
X

f [∆S1(b · ∇Xg)− b · ∇X(∆S1g)] dmds.

To get the desired conclusion we just observe that, for any g ∈ Ã, it holds

∆S1(b · ∇Xg) = b · ∇X(∆S1g).

As we anticipated the results of Lemma 3.12 and Lemma 3.13 put us in position to apply
Theorem 3.2 to X̄t.

It follows that there exist a function Q∗(x, s) and a constant C = C(X, d,m) such that

d̄(X̄t(x, s), X̄t(x′, s′)) ≤ CeC(Q∗(x,s)+Q∗(x′,s′))d̄((x, s), (x′, s′)),

for every x, x′ ∈ X and s, s′ ∈ S1. Choosing s = s′ and setting Q∗(x) := sups∈S1 Q∗(x, s) we obtain
that

d(Xt(x),Xt(y)) ≤ CeC(Q∗(x)+Q∗(y))d(x, y),
for any x, y ∈ X. Moreover, it follows from the proof of Theorem 3.10 and from the result (and the
proof) of Lemma 3.13 that

sup
s∈S1

Q∗(x, s) ≤ C
∫ T

0
[Mgt(Xt(x)) +M(Mgt(Xt(·)))(x)] ds+ C, (3.31)
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where g := |∇symbt|(x) + |div bt|(x). Thus there exists C = C(T,X, d,m) such that

‖Q∗‖L2 ≤ C

[
L

∫ T

0
‖|∇symbt|+ |div bt|‖L2 dt+ 1

]
.

The regularity result is now proved.
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