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Abstract. We consider the Cauchy problem for the continuity equation in space
dimension d ≥ 2. We construct a divergence-free velocity field uniformly bounded in all
Sobolev spaces W 1,p, for 1 ≤ p <∞, and a smooth compactly supported initial datum such
that the unique solution to the continuity equation with this initial datum and advecting
field does not belong to any Sobolev space of positive fractional order at any positive time.
We also construct velocity fields in W r,p, with r > 1, and solutions of the continuity equation
with these velocities that exhibit some loss of regularity, as long as the Sobolev space W r,p

does not embed in the space of Lipschitz functions. Our constructions are based on examples
of optimal mixers from the companion paper Exponential self-similar mixing by incompress-
ible flows (Preprint arXiv:1605.02090), and have been announced in Exponential self-similar
mixing and loss of regularity for continuity equations (C. R. Math. Acad. Sci. Paris, 352
(2014), no. 11).

1. Introduction

We study the issue of propagation of regularity of the initial datum ρ̄ for solutions ρ to the
Cauchy problem for the continuity equation in d space dimensions:{

∂tρ+ div (uρ) = 0
ρ(0, ·) = ρ̄ ,

(1)

where the velocity field u = u(t, x) : R+ × Rd → Rd and the datum ρ̄ = ρ̄(x) : Rd → R are
given, and ρ = ρ(t, x) : R+ × Rd → R. We restrict to velocity fields for which the (distri-
butional) spatial divergence div u vanishes, in which case the continuity equation coincides
with the transport equation ∂tρ+u ·∇ρ = 0. Specific regularity assumptions on the velocity
field will be introduced later in the paper.

By propagation of regularity we mean the following statement: if ρ̄ belongs to some
regularity space, then the solution ρ(t, ·) at time t > 0 belongs to the same regularity space
with an estimate on the norm.

The question whether propagation of regularity holds for solutions of equation (1) has
a classical and simple answer when the velocity field is regular enough, namely Lipschitz
continuous with respect to space uniformly with respect to time, i.e.,

|u(t, x)− u(t, y)| ≤ L|x− y|, (2)
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for any t ≥ 0 and x, y ∈ Rd, for some constant L > 0 depending on u, but not on t, x, y.
The infimum over all L satisfying the above estimate is called the Lipschitz constant of u
and denoted by Lip(u).

With this regularity on the velocity field, the classical Cauchy-Lipschitz theory applies,
and the Cauchy problem for the continuity equation (1) has a unique solution, which is
moreover transported by the unique flow of the velocity field u, that is,

ρ(t, x) = ρ̄
(
X(t, ·)−1(x)

)
, (3)

where the flow X = X(t, x) : R+ × Rd → Rd is the solution of{
Ẋ(t, x) = u(t,X(t, x))

X(0, x) = x .
(4)

Grönwall’s estimate ensures that the flow and its inverse are Lipschitz continuous with respect
to space with a bound on their Lipschitz constant that is exponential in time and in L, where
L is as the constant appearing in (2):

Lip
(
X(t, ·)

)
≤ exp(tL) , Lip

(
X(t, ·)−1

)
≤ exp(tL). (5)

In particular, from (3) it follows that

Lip
(
ρ(t, ·)

)
≤ Lip (ρ̄) exp(tL) , (6)

and an analogous result holds for the Hölder regularity of the solution. Alternatively, the
exponential bound in (6) can be proved by performing simple energy estimates directly on
the continuity equation (1).

When the velocity field is not Lipschitz continuous, but still retains some weak regular-
ity, a theory of well posedness for the continuity equation (1) and the ordinary differential
equation (4) has been developed, starting with the seminal works by DiPerna-Lions [10] and
Ambrosio [3]. In these two papers, the velocity field is assumed to have, respectively, Sobolev
or BV regularity with respect to the spatial variables, with an integral dependence on time.
(By BV regularity we mean that the velocity is of bounded variation.) In this setting, one
can prove existence, uniqueness, and stability of weak solutions of the partial differential
equation (PDE) (1), and of suitable flows (the so-called regular Lagrangian flows), solutions
of the ordinary differential equation (ODE) (4). (See [4] for a recent survey on research in
this area.)

The well-posedness of the continuity equation with only Sobolev or BV velocities makes it
rather natural to ask whether any propagation of regularity for solutions of (1) holds when
the advecting field has only the weak regularity in [3, 10]. A positive answer to this question
would be very relevant in particular for applications to non-linear problems, as propagation
of regularity would imply strong compactness of solutions, allowing the use of approximation
schemes for non-linear problems that include continuity equations.

To the best of our knowledge, the literature addressing this question is rather limited.
Several results of classical flavor for “almost Lipschitz” velocity fields (i.e., with a modulus
of continuity satisfying the Osgood condition) are collected for instance in [5]. Whether
or not any propagation of regularity holds seems a subtle question that, in particular, will
depend on dimension. As a matter of fact, while in one space dimension it is not difficult to



LOSS OF REGULARITY FOR THE CONTINUITY EQUATION 3

see that BV regularity of the initial datum is propagated in time for solutions of the transport
equation with a Sobolev velocity field, without additional conditions on its divergence, in [7]
the authors show that, in two space dimensions, neither BV regularity nor continuity of the
data are preserved under the flow, if the velocity field lies in the intersection of a Sobolev and
a Hölder space. Their construction is based on the lack of pointwise uniqueness for solutions
of (4), which can be used to generate trajectories that collapse quickly by time reversion.
See also [11] for a related analysis concerning H3/2 velocity fields on the circle.

On the other hand, a few positive results on propagation of some (low) regularity have be-
come available recently in the literature. The quantitative estimates for regular Lagrangian
flows in [8] show that any regular Lagrangian flow can be approximated (in the Lusin sense)
with Lipschitz maps, with a quantitative control on the Lipschitz constant of the approx-
imation that depends exponentially on the size of the neglected set. This approximation
result implies the propagation of a suitable “Lipexp regularity” of the initial datum (see [8]).
More recently, in [6] the authors prove preservation under the flow of “a logarithm of a
derivative” for the solution of the continuity equation, without even assuming boundedness
of the divergence of the velocity field, and use it for a new theory of existence of solutions
to the compressible Navier-Stokes equations. This result is obtained by means of a delicate
argument, which utilizes the propagation of a weighted norm of the solution, with a suitable
choice of weights, via an adjoint problem. See also [15] for a related approach in the context
of incompressible velocity fields, described in terms of Fourier multipliers and proved with
the use of multilinear harmonic analysis [16].

In view of the above results, it is interesting to try and understand whether any regularity
measured in terms of weak derivatives in standard ways, e.g. Sobolev regularity, is propa-
gated when the advecting velocity has only Sobolev or BV regularity. This is again a rather
delicate question because the flow map may be discontinuous.

In this article, we work directly with the continuity equation, rather than with the flow
induced by the advecting velocity, that is, we employ directly the PDE and we do not
explicitly refer to the underlying ODE for the flow. We exploit results on optimal mixing,
which give a sharp rate of decay to zero of negative norms, and interpolation to show blow
up on positive norms, whenever these are available.

Our main result shows that, for a Sobolev but not Lipschitz velocity field, the (fractional)
Sobolev regularity of the data is not maintained for positive time. The loss of regularity is
particularly striking when the velocity field has only one derivative in Lp, for 1 ≤ p <∞. In
this case, the initial data looses any positive fractional Sobolev regularity instantaneously,
even when the datum is smooth and compactly supported.

Theorem 1. Assume d ≥ 2. There exists a bounded velocity field v and a bounded solution
θ of the continuity equation (1) with velocity v, both defined for t ≥ 0, such that:

(i) for any 1 ≤ p <∞ the velocity field v is bounded in Ẇ 1,p(Rd) uniformly in time;
(ii) the initial datum θ̄ := θ(0, ·) belongs to C∞c (Rd);

(iii) the solution θ(t, ·) does not belong to Ḣs(Rd) for any s > 0 and t > 0.

Moreover both v and θ are compactly supported in space, and can be taken to be smooth on
the complement of a point in Rd.
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Remark 2. This dramatic loss of regularity indicates a severe lack of continuity of the solution
map in Sobolev spaces. Indeed, the inverse flow map X−1(t, ·) cannot be in any Ḣs(Rd),
with s > 0, for t > 0, otherwise the solution would retain Sobolev regularity from formula
(3) as the initial data is smooth. The representation formula (3) is still valid, though not
pointwise, for the unique weak and renormalized solution to (1). In a recent paper [14], Jabin
gives in fact an example of a velocity field in the Sobolev space W 1,p(Rd), for 1 ≤ p < ∞,
with respect to the space variables, for which the associated regular Lagrangian flow is not
in W 1,p̃(Rd) for any p̃. The proof exploits a randomization argument in the choice of the
rotations of certain basic blocks. In fact, Jabin observed that his construct gives the same
lack of regularity for the flow in case of velocity fields in W r,p(Rd), provided p < d

r−1
, where

r is even allow to be larger than 1 and p to be smaller than 1. Compare this with our
Theorem 3 below.

In the above Theorem 1, we employ homogeneous Sobolev spaces (defined below in Sec-
tion 2), since our construction is based on a suitable rescaling argument of certain building
blocks. Homogeneous Sobolev norm have the sharpest behavior under rescaling as opposed
to non-homogeneous spaces. In our context, working with homogeneous spaces is not a
restriction, since in the example we construct both the velocity field and the solution are
uniformly bounded, hence the inhomogeneous norm will be bounded if and only if the ho-
mogeneous norm is bounded. Additionally, we state the loss of regularity for the solution
only in terms of L2-based Sobolev spaces Hs, s ∈ R+. While these norms have physical
meaning, using L2-based Sobolev norms is a technical restriction, which allows us to use
equivalent Gagliardo-type norms for the fractional spaces Hs, 0 < s < 1. These norms in
turn imply an almost orthogonality property (see Lemma 7) in these spaces. We expect that
a statement analogous to that of Theorem 1 can be made concerning blow-up of Lp-Sobolev
norms, 1 < p <∞.

Our proof is based on a previous construction [2] (see also [1]) of optimal mixers in the
context of two-dimensional incompressible flows under Sobolev bounds on the velocity. In-
formally, mixing of the passive scalar ρ amounts to creation of stretching and filamentation
in the scalar field that accounts for a small negative Sobolev norm of ρ. Since the L2 norm
of the solution is preserved under the flow, by interpolation positive Sobolev norms have to
be large. The strategy of proof has two main steps:

Step 1. Construction of a basic element that saturates the Grönwall estimate (5)–(6) in
integral sense: positive Sobolev norms of the solution grow exponentially in time.
This construction is essentially taken from our previous paper [2].

Step 2. Iteration and scaling, which turn the exponential growth into an instantaneous blow
up for the positive Sobolev norms of the solution, while still keeping a control on
the regularity of the velocity field and the initial datum.

We notice that it is straightforward to saturate the Grönwall estimate for Step 1 above in
pointwise sense. The relevance of our example is, instead, to saturate it in integral sense.

As a matter of fact, one can prove a complementary result to that in Theorem 1 in the
setting of velocity fields with higher regularity, showing loss of some regularity. By higher
regularity, we mean here in higher Sobolev space W r,p with r > 1, as long as they do not
embed in the Lipschitz class.
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Theorem 3. Assume d ≥ 2. Let r > 1 and 1 ≤ p <∞ be such that p < d
r−1

. Let T > 0 and
σ > 0 be fixed. Then there exists a bounded velocity field v and a solution θ of the continuity
equation (1) with velocity v, both defined for 0 ≤ t ≤ T , such that:

(i) the velocity field v is bounded in Ẇ r,p(Rd) uniformly in time;
(ii) the initial datum θ̄ := θ(0, ·) belongs to Ḣσ(Rd);

(iii) the solution θ(t, ·) does not belong to Ḣσ(Rd) for any t > 0.

Moreover, there is µ̄ = µ̄(r, p, d) < 1 such that

(iv) for any µ > µ̄ the solution θ(T, ·) does not belong to Ḣµσ(Rd) at the final time T .

Moreover both v and θ are compactly supported in space, and can be taken smooth on the
complement of a point in Rd.

Some comments are in order.
(1) The loss of regularity in Theorem 3 is much weaker than that in Theorem 1. This is

due to the fact that the examples of optimal mixers in [2] allow for exponential mixing only
when the velocity field has a uniform in time bound on the first derivative in Lp. If the bound
is on higher derivatives, then the mixing is only polynomial in time, which is not sufficient
to show instantaneous blow up of the positive norms by rescaling. If we could construct
an example of more than polynomial mixing with equibounds on higher derivatives, then
we could prove a stronger version of Theorem 3. (See Theorem 8 for more details on the
examples of optimal mixers from [2].)

(2) If r < 1 and we assume the velocity field is in W r,p, then in general solutions are not
unique. However, we can prove the existence of one solution as in Theorem 1.

(3) The solution in Theorem 3 is unique in L2 if p ≥ 2. If σ > d/2, the solution can be
taken to be bounded, and is the unique one for any p ≥ 1.

(4) In the proof of both theorems we do not discuss the case p = 1 for the velocity. This
choice is by convenience, since we define Sobolev spaces using Fourier multipliers and this
definition is not equivalent to the definition using weak derivatives and interpolation for
p = 1 and p = ∞. Clearly, the result holds also for p = 1 as stated by embedding, as
W r,p ⊂ W r,1 for any p > 1.

Remark 4. Further variants of Theorem 1 are possible. For example, by modifying the
proof of Theorem 3, one can prove instantaneous loss of some regularity, but with further
constraints on the regularity of the velocity field and of the initial data. Informally, the
regularity index r > 1 must be sufficiently close to 1, σ must be sufficiently large, and s
sufficiently close to σ. Furthermore, these conditions are coupled together. For sake of clarity
and to keep the article contained, we opt not to include a precise statement and a proof of
these variants.

Remark 5. Quoc-Hung Nguyen pointed out to us that the same strategy of proof of The-
orems 1 and 3 can be used to construct a divergence-free velocity field in W 1,p(Rd), for a
given 1 ≤ p < ∞, and an initial datum in Ḣσ(Rd) for some σ > 0, such that some log-
arithmic regularity of the solution is instantaneously lost, that is, for α > 0 sufficiently
large

∫
Rd
∣∣ log |ξ|

∣∣α |θ̂(t, ξ)|2 dξ =∞ for t > 0. Compare with the positive results in [8, 6, 15],
which guarantees propagation of such a logarithmic regularity with α ≤ 1 if 1 < p ≤ ∞, and
with α ≤ 2 if 2 ≤ p ≤ ∞.
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2. Preliminaries: fractional Sobolev spaces

We begin by recalling some basic definitions and properties of homogeneous Sobolev spaces
of real order that will be extensively used in this paper. For a complete exposition we refer
the reader for instance to [5, 9, 12, 18].

Let s ≥ 0 and 1 < p < ∞. We say that a tempered distribution f ∈ S ′(Rd) belongs to

the homogeneous Sobolev space Ẇ s,p(Rd) if the Fourier transform f̂ of f belongs to L1
loc(Rd)

and

F−1
(
|ξ|sf̂(ξ)

)
∈ Lp(Rd) . (7)

If this is the case, we define ‖f‖Ẇ s,p(Rd) to be the Lp(Rd) norm of the function in (7).

If s = k ∈ N, then Ẇ k,p(Rd) ∩ Lp(Rd) coincides with the usual Sobolev space W k,p(Rd)
consisting of those Lp(Rd) functions possessing weak derivatives of order less or equal than
k in Lp(Rd). This equivalence however does not hold in the borderline cases p = 1 and
p = ∞. We also recall the well-known fact that Ẇ r,p(Rd) continuously embeds into the
space of Lipschitz continuous functions provided p > d

r−1
.

We will be frequently interested in the behavior of homogeneous Sobolev norms under
rescaling of a given function f . If we set

fλ(x) = f
(x
λ

)
,

then it holds

‖fλ‖Ẇ s,p(Rd) = λ
d
p
−s ‖f‖Ẇ s,p(Rd) . (8)

In the particular case p = 2 we use the notation Ḣs(Rd). For s ∈ R, a tempered distribu-
tion f ∈ S ′(Rd) belongs to the homogeneous Sobolev space Ḣs(Rd) if the Fourier transform

f̂ of f belongs to L1
loc(Rd) and

‖f‖2
Ḣs(Rd)

=

∫
Rd
|ξ|2s|f̂(ξ)|2 dξ <∞ . (9)

As before, it holds

‖fλ‖Ḣs(Rd) = λ
d
2
−s ‖f‖Ḣs(Rd) . (10)

In fact, more general definitions can be given removing the requirement that f̂ ∈ L1
loc(Rd),

setting the entire theory in the context of tempered distributions modulo polynomials (as
done for instance in [12]). In this paper we always deal with bounded functions with compact
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support, for which the local summability of the Fourier transform is guaranteed. Therefore
we prefer to follow the somehow simplified approach above.

In our work, homogeneous spaces will be used only to measure the “size” of given functions
and velocity fields, which in fact will be typically regular but with large norm. In particular,
the issue of completeness (which holds only for specific values of s given our definition) and
seminorms will not arise. With abuse of language, we will then refer to seminorms as norms.

The following interpolation property holds. If s1 < s < s2 and s = ϑs1 + (1− ϑ)s2, then

‖f‖Ḣs(Rd) ≤ ‖f‖
ϑ
Ḣs1 (Rd)

‖f‖1−ϑ
Ḣs2 (Rd)

. (11)

In particular Ḣs1(Rd) ∩ Ḣs2(Rd) ⊂ Ḣs(Rd). Analogous inequalities hold for Ẇ s,p(Rd), but
we will not need them in this paper.

We recall that, for every 0 < s < 1, the Ḣs(Rd) (semi) norm is equivalent (up to a
dimensional factor) to the Gagliardo (semi) norm, given by :(∫

Rd

∫
Rd

|f(x)− f(y)|2

|x− y|d+2s
dx dy

)1/2

. (12)

We recall that one can equivalently introduce Gagliardo (semi) norms that are Lp based for
1 ≤ p <∞: (∫

Rd

∫
Rd

|f(x)− f(y)|p

|x− y|d+sp
dx dy

)1/p

.

However, the space of Lp functions for which this norm is finite is a Besov space, namely the
space Ḃs

p,p, and Ẇ s,p = Ḃs
p,p if and only if p = 2 (see e.g. [18, Chapter 2]). This is one of the

reasons why we state the loss of regularity in L2-Sobolev spaces only.
Using (12), we prove a localization property in Ḣs in the following sense. If a function

has compact support, then we exhibit a quantitative relation between the Sobolev norm of
this function on the whole space and the Sobolev norm of the function localized on a set
containing its support. This lemma is essentially Lemma 5.1 in [9], and we include a proof
here for the reader’s sake.

Lemma 6. Let 0 < s < 1. Let K ⊂ Ω ⊂ Rd and assume dist (K,Ωc) = λ > 0. Then, for
every function f ∈ Ḣs(Rd) with support contained in K, it holds∫

Rd

∫
Rd

|f(x)− f(y)|2

|x− y|d+2s
dx dy ≤

∫
Ω

∫
Ω

|f(x)− f(y)|2

|x− y|d+2s
dx dy +

Cd
s

1

λ2s
‖f‖2

L2(Rd) ,

where Cd is a dimensional constant.

Proof. Since f vanishes in the complement of Ω, we have∫
Rd

∫
Rd

|f(x)− f(y)|2

|x− y|d+2s
dx dy =

∫
Ω

∫
Ω

|f(x)− f(y)|2

|x− y|d+2s
dx dy + 2

∫
Ωc

∫
Ω

|f(x)|2

|x− y|d+2s
dx dy .
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Therefore we need to estimate the last integral. We can compute∫
Ωc

∫
Ω

|f(x)|2

|x− y|d+2s
dx dy =

∫
Ω

|f(x)|2
∫

Ωc

1K(x)

|x− y|d+2s
dy dx

≤
∫

Ω

|f(x)|2
∫
B(x,λ)c

1K(x)

|x− y|d+2s
dy dx

= Cd

∫
Ω

|f(x)|2
∫ ∞
λ

rd−1

rd+2s
dr =

Cd
2s

1

λ2s
‖f‖2

L2(Rd) .

This concludes the proof. �

We use the previous lemma to show a sort of “orthogonality property” for Sobolev func-
tions with disjoint supports.

Lemma 7. Let 0 < s < 1. For i = 1, 2, let Ki ⊂ Ωi ⊂ Rd and assume dist (Ki,Ω
c
i) = λi > 0.

Moreover, assume Ω1∩Ω2 = ∅. Then, given fi ∈ Ḣs(Rd) with support contained in Ki, there
exists a dimensional constant Cd such that:

‖f1 + f2‖2
Ḣs(Rd)

≥ ‖f1‖2
Ḣs(Rd)

+ ‖f2‖2
Ḣs(Rd)

− Cd
s

[
1

λ2s
1

‖f1‖2
L2(Rd) +

1

λ2s
2

‖f2‖2
L2(Rd)

]
.

The above formula generalizes to:∥∥∥∥∥∑
n

fn

∥∥∥∥∥
2

Ḣs(Rd)

≥ lim sup
N→∞

N∑
n=1

[
‖fn‖2

Ḣs(Rd)
− Cd

s

1

λ2s
n

‖fn‖2
L2(Rd)

]
. (13)

We note that, for s = 0, s = 1, we have true orthogonality:

‖f1 + f2‖2
Ḣs(Rd)

= ‖f1‖2
Ḣs(Rd)

+ ‖f2‖2
Ḣs(Rd)

,

owing to the local nature of the corresponding norms.

Proof of Lemma 7. It is enough to observe that∫
Rd

∫
Rd

|f1(x) + f2(x)− f1(y)− f2(y)|2

|x− y|d+2s
dx dy

≥
∫

Ω1

∫
Ω1

|f1(x)− f1(y)|2

|x− y|d+2s
dx dy +

∫
Ω2

∫
Ω2

|f2(x)− f2(y)|2

|x− y|d+2s
dx dy

and to apply the previous lemma. �

3. An example of exponential mixing

As outlined in the Introduction, the first step in proving our main result, Theorem 1, is
the construction of a regular velocity field u and of a regular solution ρ to the continuity
equation with velocity u such that u is Lipschitz uniformly in time and the positive Sobolev
norms of ρ grow exponentially in time.

Given that all Lebesgue norms of ρ are constant in time, one way to achieve the exponential
growth in time of the positive Sobolev norms is to ensure an exponential decay of the negative
norms in view of the interpolation inequality (11). Negative Sobolev norms will decay in
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time if the flow of u is sufficiently “mixing”, which informally means that the action of the
flow generates small scales in the scalar field. It was recently shown [13, 17] that, under a
W 1,p bound on u uniform in time, where 1 < p ≤ ∞, the rate of decay of negative Sobolev
norms for the advected scalar is indeed at most exponential in time.

In [2], we constructed examples of velocity fields satisfying the required W 1,p bound and
passive scalar fields advected by u that saturate the exponential rate of decay of the negative
norms (see [19] for a related example). We will refer to these examples as “optimal mixers”.
We also consider velocity fields with higher regularity, see (14) and (15) below. Our examples
are based on a quasi self-similar geometric construction.

Theorem 8 ([2]). Assume d ≥ 2 and let Q ⊂ Rd be the open cube with unit side centered
at the origin of Rd. There exist a velocity field u ∈ C∞([0,+∞[×Rd) and a corresponding
(non trivial) solution ρ ∈ C∞([0,+∞[×Rd) of the continuity equation (1) such that:

(i) u(t, ·) is bounded, divergence-free, and compactly supported in Q for any t;
(ii) ρ(t, ·) has zero average and is bounded and compactly supported in Q for any t;

(iii) u(t, ·) belongs to Lip (Rd) uniformly in time;
(iv) for any r ≥ 0 and 1 ≤ p ≤ ∞, there exist constants b > 0 and Br > 0 such that

‖u(t, ·)‖Ẇ r,p(Rd) ≤ Br exp
(
(r − 1) bt

)
; (14)

(v) for any 0 < s < 2, there exist constants c > 0 and Ĉs > 0 such that

‖ρ(t, ·)‖Ḣ−s(Rd) ≤ Ĉs exp(−sct) t ≥ 0 . (15)

Remark 9. By the interpolation formula (11) with s1 = −s, s2 = s, and ϑ = 1/2, which
reads

‖ρ(t, ·)‖L2(Rd) ≤ ‖ρ(t, ·)‖1/2

Ḣ−s(Rd)
‖ρ(t, ·)‖1/2

Ḣs(Rd)
,

together with the fact that the L2 norm of the solution ρ is conserved in time, estimate (15)
implies the following lower bound:

‖ρ(t, ·)‖Ḣs(Rd) ≥ ‖ρ(t, ·)‖2
L2(Rd)‖ρ(t, ·)‖−1

Ḣ−s(Rd)
≥ ‖ρ(0, ·)‖2

L2(Rd)Ĉ
−1
s exp(sct)

= Cs exp(sct) for every 0 < s < 2.
(16)

This bound can be seen as saturating Grönwall inequality (5)–(6) and will be used in the
proof of Theorems 1 and 3.

Remark 10. In fact, the example in [2] was constructed in two space dimensions. However,
it is not difficult to modify such construction to make it d dimensional. One can argue as
follows. Call ũ(t, x1, x2) and ρ̃(t, x1, x2) the velocity field and solution constructed in [2]. Fix
η = η(x3, . . . , xd) smooth, with compact support in B(0, 1/4) ⊂ Rd−2 and η = 1 on B(0, 1/8).
Moreover, fix η̄ = η̄(x3, . . . , xd) smooth, with compact support in B(0, 1/2) ⊂ Rd−2 and η̄ = 1
on B(0, 1/4). Then, setting

u(t, x1, . . . , xd) = ũ(t, x1, x2)η̄(x3, . . . , xd) , ρ(t, x1, . . . , xd) = ρ̃(t, x1, x2)η(x3, . . . , xd),

yields a velocity field u and solution ρ defined on Rd that satisfy the conclusions of Theorem 8.
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4. Proof of Theorems 1 and 3

The main idea in the proof of both Theorems 1 and 3 consists in constructing the velocity
field v and the associated solution θ by patching together a countable number of velocity
fields un and solutions ρn saturating Grönwall’s inequality, the existence of which follows
from Theorem 8 (see also Remark 9), after rescaling in both space and time, and in size as
well for the solution, in a suitable manner. We then translate them so as to be supported in
cubes that accumulate towards a point in space. The pairs un, ρn serve as building blocks
in our construction.

The choice of the rescaling parameters is the key point of the proof and is done in such
a way that the regularity of the velocity field and that of the initial datum for the solution
can be controlled, while at the same time any regularity of the solution at later times is
destroyed.

In the proof of Theorem 1, we choose the parameters for the rescaling to ensure that the
velocity field has Sobolev regularity uniformly in time, while we exploit that the rescaling
in time can be chosen so that the rate of exponential growth of the Sobolev norms of the
solution grows enough at each step to become in the limit an instantaneous blow up.

When r > 1, in view of estimate (14), the Sobolev norm of order r of the velocity field
is not uniformly bounded in time, rather it grows exponentially in time. One then needs to
balance this exponential growth with the exponential growth for the Sobolev norms of the
solution, which accounts for the weaker result in Theorem 3.

4.1. A geometric construction. Fix a sequence {λn}, with λn > 0 and λn ↓ 0, to be
determined later. For every n consider an open cube Qn in Rd with side of length 3λn. The
first condition we impose on {λn} is that

{Qn} can be chosen to be contained
in a compact set and convergent to a point

}
⇐=

∑
n

λn <∞ . (A)

If (A) is satisfied, we can choose the centers of the cubes so that all cubes are contained in a
compact set in Rd and accumulate to a point, i.e., every open ball centered at such a point
contains all the cubes but finitely many. By saying that condition (A) is satisfied, we mean
that the condition on the right hand side, which implies the one on the left, is satisfied. The
same will be true for conditions (B)–(D) (and variants) below.

Given u and ρ as in Theorem 8, we fix two more sequences {τn} and {γn} with τn > 0
and γn > 0 to be also determined later, where τn ↓ 0. Up to a translation, in each cube Qn

we set

un(t, x) =
λn
τn
u

(
t

τn
,
x

λn

)
, ρn(t, x) = γn ρ

(
t

τn
,
x

λn

)
. (17)

It is immediate to check that ρn is a solution of the continuity equation with velocity field
un, that is

∂tρn + div (unρn) = 0 on Rd. (18)

Moreover, we observe that for every n we have

dist (Supp ρn , Q
c
n) ≥ λn ,
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since the support of ρn is contained in a square of side λn with the same center as Qn, the
side of which has length 3λn.

We set

v :=
∑
n

un , θ :=
∑
n

ρn , (19)

where convergence of both series is taken pointwise almost everywhere. We will prove later
that, for a suitable choice of the three sequences of parameters, λn, τn, γn, the function θ is
a (weak) solution of the continuity equation with velocity field v:

∂tθ + div (vθ) = 0 . (20)

4.2. Regularity of the velocity field. We estimate the Ẇ r,p(Rd) norm of the velocity
field v, at a fixed time t:

‖v(t, ·)‖Ẇ r,p(Rd)

(19)

≤
∑
n

‖un(t, ·)‖Ẇ r,p(Rd)

(17)
=
∑
n

λn
τn

∥∥∥∥u( t

τn
,
·
λn

)∥∥∥∥
Ẇ r,p(Rd)

(8)
=
∑
n

λn
τn
λ
d
p
−r

n

∥∥∥∥u( t

τn
, ·
)∥∥∥∥

Ẇ r,p(Rd)

(14)

≤
∑
n

λ
1−r+ d

p
n

τn
Br exp

(
(r − 1)bt

τn

)
,

where we have explicitly referenced which property we are using for each inequality. There-
fore, the fact that v(t, ·) belongs to Ẇ r,p(Rd) is implied by the following condition:

v(t, ·) ∈ Ẇ r,p(Rd) ⇐=
∑
n

λ
1−r+ d

p
n

τn
exp

(
(r − 1)bt

τn

)
<∞ . (B)

Moreover, the definition of un, which is given in (17), and the fact that the cubes {Qn} have
been chosen to be pairwise disjoint, gives the following implication:

v(t, ·) ∈ L∞(Rd) uniformly in t ⇐=

{
λn
τn

}
bounded. (B̃)

4.3. Regularity of the initial datum. For a given σ ≥ 0, we estimate the Ḣσ(Rd) norm
of the initial datum θ̄ = θ(0, ·) as follows:

‖θ̄(·)‖Ḣσ(Rd)

(19)

≤
∑
n

‖ρn(0, ·)‖Ḣσ(Rd)

(17)
=
∑
n

γn

∥∥∥∥ρ(0,
·
λn

)∥∥∥∥
Ḣσ(Rd)

(10)
=
∑
n

γnλ
d
2
−σ

n ‖ρ‖Ḣσ(Rd) .

Hence, we obtain the further condition

θ̄ ∈ Ḣσ(Rd) ⇐=
∑
n

γnλ
d
2
−σ

n <∞ . (C)
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In Theorem 1, we require that the solution θ is bounded, which follows if θ̄ is bounded.
Using the definition of ρn in (17) and again the fact that the cubes {Qn} have been chosen
to be pairwise disjoint gives the following implication:

θ(t, ·) ∈ L∞(Rd) uniformly in t ⇐= {γn} bounded. (C̃)

In Theorem 3, we only require that θ belongs to L2(Rd) uniformly in time, which again
follows if θ̄ ∈ L2(Rd). This requirement corresponds to condition (C) with σ = 0, that is,

θ(t, ·) ∈ L2(Rd) uniformly in t ⇐=
∑
n

γnλ
d
2
n <∞ . (Ĉ)

4.4. Loss of regularity for the solution. To show loss of regularity for θ at any t > 0,
it is enough to show that the solution does not belong to Ḣs(Rd), for 0 < s < 1, since θ

is at least in L2 (by condition (C̃) or (Ĉ) and the compact support above) and Hs(Rd) =
Ḣs(Rd) ∩ L2(Rd) forms a scale of spaces. We then fix an arbitrary 0 < s < 1, and estimate
the norm of θ in Ḣs(Rd) from below as follows:

‖θ(t, ·)‖2
Ḣs(Rd)

(13)

≥ lim sup
N→∞

N∑
n=1

(
‖ρn(t, ·)‖2

Ḣs(Rd)
− Cd

s

1

λ2s
n

‖ρn(t, ·)‖2
L2(Rd)

)
(17)
= lim sup

N→∞

N∑
n=1

(
γ2
n

∥∥∥∥ρ( t

τn
,
·
λn

)∥∥∥∥2

Ḣs(Rd)

− Cd
s

1

λ2s
n

γ2
n

∥∥∥∥ρ( t

τn
,
·
λn

)∥∥∥∥2

L2(Rd)

)
(10)
= lim sup

N→∞

N∑
n=1

γ2
nλ

d−2s
n

[∥∥∥∥ρ( t

τn
, ·
)∥∥∥∥2

Ḣs(Rd)

− Cd
s

∥∥∥∥ρ( t

τn
, ·
)∥∥∥∥2

L2(Rd)

]
(16)

≥ lim sup
N→∞

N∑
n=1

γ2
nλ

d−2s
n

[
C2
s exp

(
2sct

τn

)
− CdĈ0

s

]
,

where again we have referenced the property used at each step. In the last inequality, we
have denoted the L2(Rd) norm of ρ, which is conserved in time, by Ĉ0. Therefore, since we
require τn ↓ 0, for any given t > 0 we have

θ(t, ·) 6∈ Ḣs(Rd) ⇐=
∑
n

γ2
nλ

d−2s
n exp

(
2sct

τn

)
=∞ . (D)

4.5. Verify that θ is a solution of the continuity equation with velocity v. We
assume that the sequences {λn}, {τn}, and {γn} have been chosen so that conditions (B),

(B̃), and (C̃) (or (Ĉ)) are satisfied. Then, the series in (19) converge strongly in L2
loc(Rd) on

any finite time interval. This fact, together with the validity of (18) and the fact that the
cubes {Qn} have been chosen to be pairwise disjoint, implies the validity of (20).

4.6. Proof of Theorem 1. We are now in the position to complete the proof of our main
result.
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In the case r = 1, condition (B) becomes

v(t, ·) ∈ Ẇ 1,p(Rd) ⇐=
∑
n

λ
d
p
n

τn
<∞ . (B̂)

Our task is to find sequences {λn}, {τn}, and {γn} such that conditions (A), (B̂), (B̃), (C),
(C̃), and (D) are satisfied, for any 1 < p <∞, σ > 0, s > 0, and t > 0. Choosing

τn =
1

n3
and λn = e−n , (21)

we immediately see that (A), (B̂), and (B̃) are satisfied. If we take

γn = e−n
2

, (22)

we see that (C) and (C̃) are satisfied. We are left with having to check condition (D). With
the choices in (21) and (22) for the parameters, the series appearing in condition (D) reads:∑

n

exp(−2n2) exp
(
− (d− 2s)n

)
exp(2sctn3),

which clearly diverges since sct > 0. This concludes the proof of Theorem 1. �

4.7. Proof of Theorem 3. The proof is a variation of the previous one. We fix T > 0 and
choose

τn =
1

n
.

We want to check (B) for 0 ≤ t ≤ T . Such a condition now reads∑
n

nλ
1−r+ d

p
n exp

(
n(r − 1)bT

)
<∞ . (23)

By the assumption p < d
r−1

(expressing the fact that we consider a Sobolev space that does
not embed in the Lipschitz class), we have that

β = 1− r +
d

p
> 0 .

For α > 0 to be determined, we choose

λn = exp(−αTn) .

Then, condition (23) becomes∑
n

n exp(−αβTn) exp
(
n(r − 1)bT

)
<∞ .

This series indeed converges provided that

− αβT + (r − 1)bT < 0 , i.e. α >
(r − 1)b

β
, (24)

which is admissible. Under this condition, (B) holds and also (A) and (B̃) follow.
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With this choice of λn, condition (C) becomes∑
n

γn exp

(
α

(
σ − d

2

)
Tn

)
<∞ .

We can guarantee that this condition holds if

γn =
1

n2
exp

(
α

(
d

2
− σ

)
Tn

)
.

Moreover, condition (Ĉ) becomes

∑
n

1

n2
exp

(
α

(
d

2
− σ

)
Tn

)[
exp(−αTn)

] d
2

=
∑
n

1

n2
exp (−ασTn) <∞ ,

and we can verify that it is satisfied. We note in passing that, in the case σ > d/2, the
stronger condition (C̃) in fact holds.

We now substitute all the above expressions into (D) and obtain that this condition is
equivalent to having:∑

n

(
γnλ

d
2
−σ

n

)2

λ2(σ−s)
n exp

(
2sct

τn

)
=
∑
n

1

n4
exp

(
− 2(σ − s)αTn

)
exp

(
2sctn

)
=
∑
n

1

n4
exp

(
2n
(
− (σ − s)αT + sct

))
=∞ .

The above series diverges if
−(σ − s)αT + sct > 0 ,

which is (trivially) the case for any t ≥ 0 when s > σ. In the relevant case 0 < s ≤ σ, we
see that the norm of the solution in Ḣs(Rd) becomes infinity only after a time (σ− s)αT/sc.
Recalling that we control the Sobolev norm of the velocity field up to time T only, only those
regularity indices s that satisfy

(σ − s)αT
sc

< T ⇐⇒ (σ − s)α < sc , (25)

lead to blow up of the norm. Recalling (24), we can rewrite (25) as

(σ − s)(r − 1)b

scβ
< 1 ⇐⇒ s

σ
> 1− cβ

cβ + (r − 1)b
= µ̄ ,

and 0 < µ̄ < 1. Therefore, the amount of regularity for the solution that can be lost is µ̄σ.
Theorem 3 is now proved. �
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