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We investigate the existence of weak type solutions for a class of aggregation–diffusion
PDEs with nonlinear mobility obtained as large particle limit of a suitable nonlocal
version of the follow-the-leader scheme, which is interpreted as the discrete Lagrangian
approximation of the target continuity equation. We restrict the analysis to bounded,
non-negative initial data with bounded variation and away from vacuum, supported in a
closed interval with zero-velocity boundary conditions. The main novelties of this work
concern the presence of a nonlinear mobility term and the non-strict monotonicity of
the diffusion function. As a consequence, our result applies also to strongly degenerate
diffusion equations. The results are complemented with some numerical simulations.
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1. Introduction

A variety of models in mathematical biology such as chemotaxis, animal swarming,
pedestrian movements etc. concern with aggregation and diffusion phenomena. A
large number of works have focused on this type of description, see Refs. 7, 34,
36, 41, 45 and 46 for a classical and incomplete list of references. One of the rele-
vant features of biological models is the possibility to describe phenomena at two
different scales: microscopic (individual based) and macroscopic (locally averaged
quantities).

∗Corresponding author.
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Given a certain biological population composed by N agents located in the
positions x1, . . . , xN in R

d, the aggregation–diffusion process acts as a drift V on
the agents. The microscopic approach focuses on evolution in time of the positions
and in most of the applications this evolution is of first-order type since inertial
effects can be neglected. The resulting system of ordinary differential equations
possesses as continuum (macroscopic) counterpart the continuity equation

∂tρ + div(ρV ) = 0, (1.1)

where ρ is the averaged density of particles and V describes the macroscopic law
for the velocity. One of the mathematical problems arising in the modeling is the
rigorous justification of the micro-macro equivalence, namely the construction of
(1.1) via a many particle limit.

In this work, we study the convergence of a deterministic particles approxima-
tion towards weak solutions of the following one-dimensional aggregation–diffusion
equation

∂tρ = ∂x(M(ρ)∂x(a(ρ) + K ∗ ρ)), (1.2)

posed in a closed interval [0, �] ⊂ R equipped with no-slip (zero velocity) boundary
conditions, see (1.4) below for a precise statement. Diffusion processes are due
to short-range repulsions between particles and are modeled by the function a,
that is in general a nonlinear function of the density, while long-range attraction
phenomena are modeled by the attractive interaction kernel K. Typical examples
of K are the power laws K(x) = |x|α, for α > 1, the Gaussian kernels K(x) =
−Ce−|x|2/l and the Morse kernels K(x) = −Ce−|x|/l, see Ref. 45.

We consider the nonlinear mobility term M(ρ) depending on the density only,
and in the form

M(ρ) = ρv(ρ).

This choice can be made more general, for instance considering mobilities that
depend on the velocity gradient, see Ref. 56. Assuming that the velocity map v(ρ)
is degenerate for a certain value ρmax, the above expression of M(ρ) is expected to
prevent the overcrowding effect. This assumption can be applied to extend classical
chemotaxis models (take as reference example the Keller–Segel model41) that may
produce blow-up in finite time, see Refs. 4, 6, 37 and 54 and their references,
to a more realistic behavior in which this phenomenon is prevented: agents stop
aggregating after a certain maximal density ρmax is reached, see Refs. 10, 8 and 48
and the references therein.

The particle approximation of linear and nonlinear diffusion equations dates
back to the pioneering works by Refs. 21, 35 and 53 involving probabilistic methods.
A deterministic approach was introduced in Refs. 9, 20, 42, 50 and 51, mainly
with numerical purpose, and gained a lot of attentions in recent years after the
equation was formulated as gradient flow of a proper energy functional in the space
of probability measures, see Ref. 1, 47, 52 and 57. If one considers the linear mobility
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M(ρ) = ρ, zero nonlocal interaction K = 0 and the energy functional

F [ρ] =
∫

Ω

A(ρ)dx, where A(ρ) =
∫ ρ

0

a(ζ)dζ,

it is possible to rewrite, formally at this stage, (1.2) as

∂tρ = ∂x

(
ρ∂x

(
δF
δρ

[ρ]
))

.

A key tool to prove this is the so-called JKO-scheme,38 that consists in constructing
recursively a time-approximation for the density via a variational interpretation of
the Implicit Euler scheme.

This gradient flow formulation carries out a naturally induced Lagrangian
description, the so-called pseudo-inverse formalism, see Ref. 17. The first use of
this approach dates back to a couple of papers by Gosse e Toscani,32,33 where
the authors introduce a time-space discretization of the pseudo-inverse equation
and study several numerical properties of this scheme. One of the reasons why the
interest of the scientific community is growing more and more on this topic is,
indeed, the feasibility to design powerful numerical scheme, see Refs. 11, 13–16, 39.
Most of these works deal with the discretization of the JKO-scheme and conver-
gence of the particle method via variational techniques. In Ref. 43, Matthes and
Osberger show the convergence of the Lagrangian approximation to a weak solution
of the diffusion equation posed in a bounded interval with zero velocity boundary
conditions and density away from zero (no vacuum). The key ingredients in the
proof are the min–max principle and the BV estimates on the discretized density.
The diffusion they consider falls in the classical set of assumptions for nonlinear
(possibly degenerate) diffusion equations: defining

P (ρ) =
∫ ρ

0

ζa′(ζ)dζ,

with P ′(0) = 0, P ′(ρ) > 0 for ρ > 0, and under suitable regularity assumptions, the
nonlinear diffusion equation, i.e. (1.2) with K = 0, can be rephrased in the Laplacian
form ∂tρ = ∂xxP (ρ). A reference example is the porous medium equation,55 where
P (ρ) = ρm and a(ρ) = m(m − 1)−1ρm−1 for some m > 1.

In a later work,44 Matthes and Söllner tackle the problem of particle approx-
imation for aggregation–diffusion through the discretization of the JKO. In that
paper, they prove convergence of the approximating particle sequence to the weak
solutions of the pseudo-inverse equation.

One of the novelties of our work is the presence of the nonlinear mobility M(ρ).
This term complicates the problem because it prevents the construction of the
approximating sequence via discretization of the JKO-scheme, as it is done instead
in most of the papers quoted above. The reason is that, in this case, the Wasserstein
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distance is not explicit but it can only be expressed in the Benamou–Brenier for-
mulation, see Ref. 12, even if the equation preserves a gradient flow structure, see
Ref. 22. However, in presence of the nonlinear mobility, it is easy to reformulate
the diffusion equation in Laplacian form by calling

φ(ρ) =
∫ ρ

0

ζv(ζ)a′(ζ)dζ. (1.3)

The main difference between φ and P is that φ′ vanishes together with v for some
values ρ > 0, in contrast with the classical porous medium type equations where
the degeneracy is allowed only in ρ = 0. From the above considerations, we can
deduce that the natural assumptions on φ are

Lipschitz regularity and non-decreasing monotonicity,

see hypothesis (Diff) below for a precise statement. Included in this class of diffu-
sions are the classical porous medium equations (one-point degeneracy), the two-
phase reservoir flow equations (two-point degeneracy), the so-called strongly degen-
erate diffusion equations where φ′(ρ) = 0 for ρ ∈ [ρ1, ρ2], see Refs. 5 and 40.

Since the lagrangian procedure illustrated above seems not be applicable in the
presence of nonlinear mobility, we tackle the problem of particle approximation of
(1.2), among all the possible strategies, by adapting the techniques used in Ref. 29.
This approximation approach is based on a deterministic ODEs strategy, the so-
called Follow-the-Leader model, introduced in Refs. 2 and 58. In Refs. 25 and 29,
the authors prove convergence in the large particle limit of the Follow-the-Leader
model to local nonlinear conservation laws having in mind applications to traffic
models. This technique was also extended to other traffic/pedestrian models such
as the Hughes model and Aw–Rascle–Zhang model, see Ref. 26–28. The discrete-
to-continuum limit is largely studied in the contest of vehicular traffic by using
different approaches, we mention here the derivation from kinetic models in Ref. 19,
the paper3 where the microscopic scale is modeled by methods of game theory, and
the probabilistic approach in Refs. 30 and 31 and their references.

The link between Eq. (1.2) and scalar conservation laws should not be surpris-
ing since, in the intervals where φ′ is zero (degenerate diffusion), (1.2) reduces to
a conservation law with nonlocal flux, see Ref. 5. In Ref. 24, the Follow-the-Leader
particle method is extended to conservation laws with nonlocal flux proving con-
vergence of the approximation to entropy solutions of the problem.

The precise statement of the Initial-boundary value problem we study is the
following:

∂tρ = ∂xxφ(ρ) + ∂x(ρv(ρ)K ′ ∗ ρ) (t, x) ∈ (0, T )× [0, �],

ρ(0, x) = ρ̄(x) (t, x) ∈ {0} × [0, �],

v(ρ)(∂xa(ρ) + K ′ ∗ ρ) = 0 (t, x) ∈ (0, T )× {0} ∪ (0, T ) × {�},
(1.4)
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where a and φ are coupled by (1.3). The initial datum ρ̄ satisfies the following
assumptions:

(In1) ρ̄ ∈ BV ([0, �]; R+) with
∫ �

0 ρ̄(x)dx = σ, for some σ > 0,
(In2) there are some fixed parameters m, M > 0 such that m ≤ ρ̄(x) ≤ M for every

x ∈ [0, �].

Clearly, these conditions are not in contradiction as soon as m ≤ σ
� ≤ M . The

diffusive term φ, the velocity v and the interaction kernel K are taken under the
following assumptions

(Diff) φ : [0,∞) → R is a nondecreasing Lipshcitz function, with φ(0) = 0;
(Vel) v : [0,∞) → R is monotone decreasing and piecewise C1 function such that

v(z) = 0 for every z ≥ M
σ .

(Ker) K ∈ L1
loc(R) is a nonlocal attractive potential, radially symmetric: K ′(x) > 0

for every x > 0, K ′(0) = 0 and K ′(x) < 0 for x < 0. Moreover, we assume
that K ′ is a L1-Lipschitz continuous at least on [−2�, 2�] and

sup
x∈[−2�, 2�]

|K ′′(x)| < L2, and sup
x∈[−2�, 2�]

|K ′′′(x)| < L3,

for some positive constants L2, L3. Then we set L := max{L1, L2, L3}.
The particle approximation we are dealing with can be formally derived in this way.
Assume that ρ has unit mass and consider the cumulative distribution function
associated to ρ

F (t, x) =
∫ x

−∞
ρ(t, y)dy,

and its pseudo-inverse

X(t, z) = inf{F (t, x) ≥ z} for z ∈ [0, 1],

see Sec. 2 below. A formal computation17 shows that the pseudo-inverse function
satisfies the following equation:

Xt(t, z) = −
(

φ

(
1

Xz(t, z)

))
z

− v

(
1

Xz(t, z)

) ∫ 1

0

K ′ (X(t, z)− X(t, ζ)) dζ.

(1.5)

Suppose now that we want to solve (1.5) numerically. A first attempt can be a finite
difference approximation in space: consider N ∈ N and a uniform partition of the
interval [0, 1] of size ∆z with nodes {zi}N

i=0. Let us denote Xi(t) = X(t, zi). Since
the space step ∆z (again formally) can be considered as a mass variable the ratio

ρi(t) =
∆z

Xi+1(t) − Xi(t)
,
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is a good candidate for approximating our density in the interval [Xi(t), Xi+1(t)].
Then Eq. (1.5) reduces to the following system of ODEs:

Ẋi(t) =
1

∆z
(φ(ρi−i(t)) − φ(ρi(t))) − v(ρi(t))∆z

N∑
i=0

K ′(Xi(t) − Xj(t, )).

In this work, we prove that a proper definition of discrete density in the spirit of
the scheme formally sketched above converges to a solution of the initial-boundary
value problem (1.4) in a suitable weak sense under the assumptions (In1), (In2),
(Diff), (Vel) and (Ker).

The paper is organized as follows. In the first part of Sec. 2, we define in
details our particle scheme and the corresponding discrete density and we state
our main result in Theorem 2.1, after that we recall the notion of Wasserstein
distance together with some useful properties and we close the section proving a
discrete version of the min–max principle in Proposition 2.1. Section 3 is entirely
devoted to the proof of Theorem 2.1. Finally, in Sec. 4, we provide some numeri-
cal simulations in order to show some evidence of patterns formation that can be
interesting from the modeling point of view.

2. Particle Approximation and Statement of the Main Result

In this section, we define the particle approximation scheme formally sketched
above, and we give the statement of the main Theorem 2.1, in terms of the den-
sity approximation defined in the discrete structure. Then we recall the definition
and some basic properties of the one-dimensional Wasserstein distance that will
be useful to study the convergence in suitable topology of the sequence of the dis-
crete densities and we conclude the section showing that the maximum–minimum
principle holds in our setting, thus preventing from blow-up behavior as well as
vacuum zones. Given an initial datum ρ̄ : [0, �] → R satisfying (In1) and (In2), a
final time T > 0 and N ∈ N, we atomize ρ̄ in N + 1 particles: set x0(0) = 0 and
define recursively

xi(0) = sup

{
x ∈ R :

∫ x

xi−1(0)

ρ̄(z)dz <
σ

N

}
, ∀ i = 1, . . . , N − 1.

It is easy to check that xN (0) = � and xi+1(0) − xi(0) ≥ σ
MN for every i =

0, . . . , N −1. Taking the above construction as initial condition, we let the particles
evolve for all t ∈ [0, T ] accordingly to the following ODEs system:

ẋ0(t) = 0,

ẋi(t) = ẋd
i (t) + ẋnl

i (t) i = 1, . . . , N − 1,

ẋN (t) = 0,

(2.1)
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where we have set for i = 1, . . . , N − 1,

ẋd
i (t) = N(φ(Ri−1(t)) − φ(Ri)(t)), (2.2)

ẋnl
i (t) = −v(Ri(t))

N

∑
j>i

K ′(xi(t) − xj(t))

− v(Ri−1(t))
N

∑
j<i

K ′(xi(t) − xj(t)). (2.3)

and

Ri(t) :=
σ

N(xi+1(t) − xi(t))
, i = 0, . . . , N − 1.

For future use, we compute

Ṙi(t) = −NR2
i (t)(ẋi+1(t) − ẋi(t)). (2.4)

According to our formal considerations in Sec. 1, the functions Ri are good candi-
dates to be considered as approximation for solution of (1.4) in the space interval
(xi+1(t), xi(t)). Hence, we define the N -discrete density as

ρN (t, x) :=
N−1∑
i=0

Ri(t)χ[xN
i (t), xN

i+1(t))
(x) for (t, x) ∈ [0, T ]× [0, �]. (2.5)

Note that, by construction, ρN has the same mass of ρ̄.
In the following definition, we introduce the notion of weak solutions we are

dealing with.

Definition 2.1. (Weak Solution) A function ρ ∈ L∞([0, T ]× [0, �]) is a weak solu-
tion of the initial-boundary value problem (1.4) if ρ(0, ·) = ρ̄ and ρ satisfies∫ T

0

∫ �

0

[ρϕt + φ(ρ)ϕxx − ρv(ρ)K ′ ∗ ρ ϕx]dxdt = 0,

for all ϕ ∈ C∞
c ([0, T ]× [0, �]) such that ϕx(·, 0) = ϕx(·, �) = 0.

The main result of our work is stated in the following theorem.

Theorem 2.1. Consider φ, v, K satisfying the conditions (Diff ), (Vel) and (Ker )
respectively and let ρ̄ : [0, �] → R be as in (In1) and (In2) and let T > 0 be
fixed. Then the discretized densities ρN as defined in (2.5) strongly converge up to
a subsequence in L1([0, T ] × [0, �]) to a limit ρ ∈ L∞ ∩ BV ([0, T ] × [0, �]) which
solves the initial-boundary value problem (1.4) in the sense of Definition 2.1.

Let us introduce now the main concepts about the one dimensional Wasserstein
distances, see Refs. 1, 52 and 57 for further details. As already mentioned, we deal
with probability densities with constant mass in time and we need to evaluate their
distances at different times in the Wasserstein sense.
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For a fixed mass σ > 0, we consider the space

Mσ
.= {µ Radon measure on R with compact support: µ ≥ 0 and µ(R) = σ}.

Given µ ∈ Mσ, we introduce the pseudo-inverse variable Xµ ∈ L1([0, σ]; R) as

Xµ(z) .= inf{x ∈ R : µ((−∞, x]) > z}. (2.6)

For σ = 1, the one-dimensional 1-Wasserstein distance between ρ1, ρ2 ∈ M1 see
e.g. Ref. 17 can be defined as

dW 1(ρ1, ρ2)
.= ‖Xρ1 − Xρ2‖L1([0,1];R).

We introduce the scaled 1-Wasserstein distance between ρ1, ρ2 ∈ Mσ as

dW 1,σ(ρ1, ρ2)
.= ‖Xρ1 − Xρ2‖L1([0,σ];R). (2.7)

A sequence (ρn)n in Mσ converges to ρ ∈ Mσ in dW 1,σ if and only if for any
ϕ ∈ C0([0, �]; R) growing at most linearly at infinity

lim
n→+∞

∫ �

0

ϕ(x) dρn(x) =
∫ �

0

ϕ(x) dρ(x).

We now state a technical result which will serve in the sequel.

Theorem 2.2. (Generalized Aubin–Lions Lemma, Ref. 49) Let τ > 0 be fixed. Let
ηN be a sequence in L∞((0, τ); L1(R)) such that ηN (t, ·) ≥ 0 and ‖ηN(t, ·)‖L1(R) =
1 for every N ∈ N and t ∈ [0, τ ]. If the following conditions hold :

(I) supN

∫ τ

0
[‖ηN (t, ·)‖L1(R)dt + TV [ηN (t, ·)] + meas(supp[ηN (t, ·)])]dt < ∞,

(II) there exists a constant C > 0 independent from N such that dW 1(ηN (t, ·),
ηN (s, ·)) < C|t − s| for all s, t ∈ (0, τ),

then ηN is strongly relatively compact in L1([0, τ ] × R).

We conclude this section showing that the unique solution to (2.1) is well defined
for every t ∈ [0, T ]. It is enough to prove that the distances xi+1(t) − xi(t) never
degenerate. However, in our case, we can prove something stronger, i.e. the discrete
densities never exceed a uniform bound from above and below that depends only
on ρ̄ and T .

Proposition 2.1. (Discrete Min–Max Principle) Let T > 0 be fixed and ρ̄ under the
assumptions (In1) and (In2). Let c be a positive constant satisfying c > 2m vmax L�

σ .
Then

σ

MN
≤ xi+1(t) − xi(t) ≤ 2

ecTσ

mN
, (2.8)

for every i = 0, . . . , N − 1 and t ∈ [0, T ].

Proof. Note that, since m ≤ ρ̄ ≤ M , then by definition σ
MN < xi+1(0) − xi(0) <

σ
mN . We want to show that similar bounds are preserved during the evolution. Let
us first focus on the lower one. Thanks to the regularity of K ′, v and φ and since

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
M

PE
R

IA
L

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
07

/0
4/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

June 25, 2018 19:27 WSPC/103-M3AS 1840006

Aggregation–diffusion equations via deterministic particles 9

xi+1(0) − xi(0) ≥ σ
MN for i = 0, . . . , N − 1, we deduce that ẋi is continuous at

least on a short time interval. Let now t1 be the first instant for which there is an
index i such that xi+1(t1) − xi(t1) = σ

MN and assume, for sake of contradiction,
that there exists t2 > t1 such that xi+1(t) − xi(t) < σ

MN for t ∈ (t1, t2]. Since
xj+1(t1)−xj(t1) ≥ σ

MN for all j �= i, we obtain that Ri(t1) ≥ Rj(t1) for every j �= i

and, in particular,

Ri(t1) ≥ Ri−1(t1) and Ri(t1) ≥ Ri+1(t1).

Now, from the monotonicity of φ, the sign of K ′ and (Vel), we deduce that
v(Ri(t1)) = 0 and

ẋi+1(t1) = N(φ(Ri(t1)) − φ(Ri+1(t1)))

− v(Ri+1(t1))
N

∑
j>i+1

K ′(xi+1(t1) − xj(t1)) ≥ 0,

ẋi(t1) = N(φ(Ri−1(t1)) − φ(Ri(t1)))

− v(Ri−1(t1))
N

∑
j<i

K ′(xi(t1) − xj(t1)) ≤ 0.

Then the regularity of ẋi and ẋi+1 ensures that

xi+1(t) − xi(t) ≥ xi+1(t1) − xi(t1) =
σ

MN
,

for all t ∈ (t1, t1 +ε] for some ε > 0 small enough and this contradicts the existence
of t2. A consequence of the lower bound of (2.8) and of the zero velocity boundary
condition is that all the particles stay inside the domain [0, �] and maintain their
initial order for all times.

We focus now on the upper bound in (2.8). Let us call

τ1 := inf
{
s ∈ (0, T ] :∃ i :xi+1(s) − xi(s) > ecs σ

mN

}
.

If τ1 = T then the right inequality of (2.8) follows trivially because ecτ1 = ecT . It
remains to discuss the case when τ1 < T . For sake of contradiction, assume that
there is τ2 ∈ (τ1, T ] such that

xi+1(t) − xi(t) > ect σ

mN
for every t ∈ (τ1, τ2]. (2.9)

The contradiction occurs as soon as we prove that

d

dt
[e−ct(xi+1(t) − xi(t))]|t=τ1

< 0. (2.10)

Indeed, being this function smooth, there exists some positive ε � 1 for which
τ1 + ε < τ2 and d

dt [e
−ct(xi+1(t) − xi(t))] < 0 for all t ∈ (τ1, τ1 + ε]. Then, for such
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t, (2.10) implies

e−ct(xi+1(t) − xi(t)) =
σ

mN
+

∫ t

τ1

d

ds
[e−cs(xi+1(s) − xi(s))]ds ≤ σ

mN
,

which clearly contradicts (2.9). Therefore, the above estimate of (2.8) follows if we
show the validity of (2.10). At the time τ1, we know that

xi+1(τ1) − xi(τ1) = ecτ1
σ

mN
and xj+1(τ1) − xj(τ1) ≤ ecτ1

σ

mN
∀ j �= i,

thus, in particular,

Ri+1(τ1) ≥ Ri(τ1) and Ri−1(τ1) ≥ Ri(τ1).

Then the assumptions on (Diff), (Vel) and (Ker) ensure that

d

dt
[e−ct(xi+1(t) − xi(t))]|t=τ1

= e−cτ1 [(ẋi+1(τ1) − ẋi(τ1)) − c(xi+1(τ1) − xi(τ1))]

= e−cτ1N [(φ(Ri(τ1)) − φ(Ri+1(τ1))) − (φ(Ri−1(τ1)) − φ(Ri(τ1)))] − c
σ

mN

− e−cτ1

v(Ri+1(τ1)) − v(Ri(τ1))
N

∑
j>i+1

K ′(xi+1 − xj)


+ e−cτ1

v(Ri−1(τ1)) − v(Ri(τ1))
N

∑
j<i

K ′(xi − xj)


− e−cτ1

v(Ri(τ1))
N

∑
j �=i, i+1

[K ′(xi+1 − xj) − K ′(xi − xj)]

− 2e−cτ1
v(Ri(τ1))

N
K ′(xi+1(τ1) − xi(τ1))

≤ e−cτ1
2vmaxL�

N
− c

σ

mN
≤ e−cτ1

N

(
2vmaxL� − c

σ

m

)
< 0,

where the last inequality holds because of our initial choice of c.

Remark 2.1. Proposition 2.1 easily implies a uniform bound in time on φ. Indeed,
thanks to (2.8), we obtain

e−cTm ≤ Ri(t) ≤ M for all i = 0, . . . , N − 1,

and from the regularity of φ required in (Diff), we deduce the existence of a constant
C = C(M, T ) > 0 such that

sup
t∈[0,T ]

φ(Ri(t)) < C, (2.11)

for every i = 0, . . . , N − 1.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
M

PE
R

IA
L

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
07

/0
4/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

June 25, 2018 19:27 WSPC/103-M3AS 1840006

Aggregation–diffusion equations via deterministic particles 11

3. Proof of the Main Result

The proof of Theorem 2.1 relies on two main steps: the first is prove that (ρN ) is
strongly converging to a limit ρ in L1([0, T ]× [0, �]), the second is show that ρ is a
weak solution of the initial-boundary value problem (1.4). In this section, we take
care of both these steps. As we will show in Proposition 3.1, the sequence (ρN )
satisfies good compactness estimates with respect to the space variables. On the
other hand, we do not have good control on the time oscillations of the discrete
densities, thus the L1-compactness in the product space is not straightforward.
Nevertheless, Theorem 2.2 ensures that a uniform continuity estimate in time of
the 1-Wasserstein distance is enough to pass to the limit. This will be the content
of Proposition 3.2. Summarizing, the main result of the first part of the section is
the following.

Theorem 3.1. Under the assumptions of Theorem 2.1, there exists a probability
density ρ : [0, T ] × [0, �] → [m, M ] such that ρN L1-converges strongly to ρ in the
product topology.

In the second part of the section, instead, we take care of the second step.
Indeed, we show that the limit ρ obtained in Theorem 3.1 solves Problem (1.4) in
the sense of Definition 2.1.

In the following two propositions, we prove a uniform bound on the total
variations of the discrete densities ρN and a uniform Lipschitz control of the 1-
Wasserstein distance with respect to the time variable. For simplicity and w.l.g. we
assume from now on that σ = 1.

Proposition 3.1. Let T > 0 and ρ̄, v, φ, K under the assumptions of Theorem 2.1.
Then for every N ∈ N, one has

TV [ρN (t, ·)] ≤ TV [ρ̄]C(K, T ) ∀ t ∈ [0, T ], (3.1)

where C(K, T ) is a positive constant depending only on the Lipschitz property of
K ′ and on the final evolution time T .

Proof. It is easy to show that

TV [ρN (0, ·)] ≤ TV [ρ̄].

The total variation of ρN at time t is exactly

TV [ρN (t, ·)] = R0(t) + RN (t) +
N−1∑
i=0

|Ri+1(t) − Ri(t)|

=
N−1∑
i=1

Ri[sign(Ri − Ri−1) − sign(Ri+1 − Ri)]

−R0(sign(R1 − R0) − 1) + RN (sign(RN − RN−1) + 1)
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= (1 + sign(R0 − R1))R0 + (1 − sign(RN−1 − RN ))RN

+
N−1∑
i=1

Riµ(Ri),

where we set for brevity µ(R0) = (1 − sign(R1(t) − R0(t))), µ(RN ) = (1 +
sign(RN (t) − RN−1(t))) and

µ(Ri(t)) := sign(Ri(t) − Ri+1(t)) − sign(Ri−1(t) − Ri(t)).

The idea is to obtain (3.1) with a Gronwall type argument, therefore we compute

d

dt
TV [ρN (t, ·)] = Ṙ0(t) + ṘN (t) +

N−1∑
i=0

sign(Ri+1(t) − Ri(t))(Ṙi+1(t) − Ṙi(t))

= (1 + sign(R0(t)−R1(t)))Ṙ0(t)+ (1− sign(RN−1 − RN (t)))ṘN (t)

+
N−1∑
i=1

(sign(Ri(t) − Ri+1(t)) − sign(Ri−1(t) − Ri(t)))Ṙi(t).

The value of the coefficient µ(Ri(t)) clearly depends on the positions of the consec-
utive particles, it is easy to see that for i ∈ {1, . . . , N − 1}

µ(Ri(t)) =


−2 if Ri+1 > Ri and Ri−1 > Ri,

2 if Ri+1 < Ri and Ri−1 < Ri,

0 if Ri+1 > Ri > Ri−1 or Ri−1 > Ri > Ri−1,

therefore

1 + sign(R0 − R1) =

{
0 if R1 < R0,

2 if R1 > R0,

1 − sign(RN−1 − RN ) =

{
0 if RN−1 > RN ,

2 if RN−1 < RN .

Recalling the explicit formula of Ṙi computed before, we can rewrite
N−1∑
i=1

µ(Ri(t))Ṙi(t) = −
N−1∑
i=1

µ(Ri(t))(Ri(t))2Ii

−
N−1∑
i=1

µ(Ri(t))Ri(t)IIi −
N−1∑
i=1

µ(Ri(t))(Ri(t))2IIIi,

where

Ii = −(v(Ri+1(t)) − v(Ri(t)))
∑

j>i+1

K ′(xi+1(t) − xj(t))

− (v(Ri(t)) − v(Ri−1(t)))
∑
j<i

K ′(xi(t) − xj(t)),
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and

IIi = −Ri(t)v(Ri(t))
∑

j �=i, i+1

(K ′(xi+1(t) − xj(t)) − K ′(xi(t) − xj(t)))

− 2Ri(t)v(Ri(t))K ′(xi+1(t) − xi(t)),

and

III i = N2[(φ(Ri(t)) − φ(Ri+1(t))) − (φ(Ri−1(t)) − φ(Ri(t)))].

Then the time derivative of the total variation can be reads as

d

dt
TV [ρN (t, ·)] = µ(R0)Ṙ0(t) + µ(RN )ṘN (t) −

N−1∑
i=1

µ(Ri(t))(Ri(t))2(Ii + IIIi)

−
N−1∑
i=1

µ(Ri(t))Ri(t)II i.

Then estimate (3.1) follows thanks to a Gronwall argument as soon as we show
that

d

dt
TV [ρN (t, ·)] ≤ C1 + C2 TV [ρN (t, ·)], (3.2)

for some constants C1/2 = C1/2(K, L, �). We will see that the first three terms will
not cause problems since Ṙ0, ṘN are bounded and −∑N−1

i=1 µ(Ri(t))(Ri(t))2(Ii +
IIIi) is always negative, while it will be less easy to show that the last term satisfies
the desired Gronwall type estimate.

Let us start with −∑N−1
i=1 µ(Ri(t))(Ri(t))2(Ii + IIIi). We can already observe

that the only relevant contributions in the sum come from the particles xi for
which µ(Ri(t)) �= 0. However, if the index i is such that µ(Ri(t)) = −2, then
Ri+1, Ri−1 > Ri and the monotonicity of v and φ imply

v(Ri+1(t)) − v(Ri(t)) < 0, v(Ri(t)) − v(Ri−1(t)) > 0,

φ(Ri(t)) − φ(Ri+1(t)) < 0, φ(Ri−1(t)) − φ(Ri(t)) > 0.

The sign of K ′ ensures that Ii < 0, thus, on the other hand, −2(Ri(t))2Ii > 0. An
analogous argument implies that, if i is such that µ(Ri(t)) = 2, then Ii > 0 and
2(Ri(t))2Ii > 0. These considerations lead immediately to

−
N−1∑
i=1

µ(Ri(t))(Ri(t))2(Ii + IIIi) < 0. (3.3)

Let us now focus on −∑N−1
i=1 µ(Ri(t))Ri(t)IIi. In this case, we would like to obtain

an upper bound in terms of TV [ρN (t, ·)] and for this purpose we need to estimate
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|IIi|. We get

|IIi| = Ri|v(Ri)|
∣∣∣∣∣∣−2K ′(xi+1 − xi) −

∑
j �=i, i+1

(K ′(xi+1 − xj) − K ′(xi − xj))

∣∣∣∣∣∣
≤ RiLC

N − 2
N

1
Ri(t)

+ 2L
1
N

≤ C, (3.4)

for some constant C > 0. We have

−
N−1∑
i=1

µ(Ri(t))Ri(t)IIi = B.T. +
N−2∑
i=1

sign(Ri−1 − Ri)(Ri − Ri−1)IIi

+
N−2∑
i=2

sign(Ri−1 − Ri)Ri(IIi − IIi−1),

and thanks to (3.4) it is easy to see that

|B.T.| +
∣∣∣∣∣
N−2∑
i=1

sign(Ri−1 − Ri)(Ri − Ri−1)IIi

∣∣∣∣∣ ≤ C1 + C2

N−1∑
i=2

|Ri − Ri−1|

≤ C1 + C2TV [ρN (t)], (3.5)

then it remains to check the term involving IIi − IIi−1. It is easy to see that
IIi − IIi−1 may be written as a sum of three terms IIAi + IIBi + IICi , where,
recalling that f(z) = zv(z),

IIAi = (f(Ri−1)− f(Ri))

2K ′(xi+1 − xi)+
∑

j �=i,i+1

(K ′(xi+1 − xj)−K ′(xi − xj))

,

IIBi = 2f(Ri−1)(K ′(xi − xi−1) − K ′(xi+1 − xi)),

IICi = f(Ri−1)

 ∑
j �=i−1,i

(K ′(xi − xj) − K ′(xi−1 − xj))


− f(Ri−1)

 ∑
j �=i+1,i

(K ′(xi+1 − xj) − K ′(xi − xj))

.

We can note immediately that

|IIBi | ≤ 2L‖v‖L∞Ri−1|(xi−1 − xi) − (xi+1 − xi)|

=
2L

N
‖v‖L∞Ri−1

|Ri−1 − Ri|
Ri−1Ri

, (3.6)
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while, recalling that the functions f(z) = zv(z) and K ′ are Lipschitz,

|IIAi | ≤ Lip[f ]NL(xi+1 − xi)|Ri − Ri−1|. (3.7)

On the other hand,

|IICi | ≤ |B̃Ti| + ‖v‖L∞Ri−1

∑
j �=i±1,i

|2K ′(xi − xj)

−K ′(xi+1 − xj) − K ′(xi−1 − xj)|,

so, if we expand K ′(xi±1 − xj) at the first order with respect to K ′(xi − xj) and
recall that K ′′ and K ′′′ are bounded in [0, �], we get

Ri|IICi | ≤ |RiB̃Ti|+ ‖v‖L∞RiRi−1

×
∑

j �=i±1,i

|K ′′(xi − xj)||(xi − xi−1)− (xi+1 − xi)| + ‖v‖L∞

2
RiRi−1

×
∑

j �=i±1,i

‖K ′′′‖L∞([−�,�])[(xi−1 − xi)2 + (xi+1 − xi)2]

≤ C̃ +
‖v‖L∞

N
L|Ri − Ri−1|

+
‖v‖L∞

2
L(Ri(xi − xi − 1) + Ri−1(xi+1 − xi)). (3.8)

Thanks to (3.6), (3.7) and (3.8) and the fact that the support of ρN is uniformly
bounded in time for every N , we then obtain

N−2∑
i=2

|sign(Ri−1 − Ri)Ri(IIi − IIi−1)| ≤
N−2∑
i=2

Ri[|IIAi | + |IIBi | + |IICi |]

≤ C + CL

(
Lip[f ] +

2‖v‖L∞

N
+ ‖v‖L∞

) N−2∑
i=2

|Ri − Ri−1|

+ L‖v‖L∞

N−1∑
i=0

|xi+1 − xi| ≤ C(1 + TV [ρN (t, ·)]),

and, together with (3.5), this implies∣∣∣∣∣−
N−1∑
i=1

µ(Ri(t))Ri(t)IIi

∣∣∣∣∣ ≤ C1 + C2 TV [ρN (t, ·)]. (3.9)

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
M

PE
R

IA
L

 C
O

L
L

E
G

E
 L

O
N

D
O

N
 o

n 
07

/0
4/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

June 25, 2018 19:27 WSPC/103-M3AS 1840006

16 S. Fagioli & E. Radici

Consider then with Ṙ0 and ṘN . The argument is similar, then we deal only with
µ(R0)Ṙ0. Since (v(R1) − v(R0)) ≤ 0, we can compute

µ(R0)Ṙ0 = µ(R0)R0

R0v(R1)
∑
j>1

(K ′(x1 − xj) − K ′(x0 − xj))


+ 2µ(R0)(R0)2v(R0)K ′(x1 − x0)

+ µ(R0)(R0)2(v(R1) − v(R0))
∑
j>1

K ′(x0 − xj)

≤ µ(R0)R0

R0v(R1)
∑
j>1

(K ′(x1 − xj) − K ′(x0 − xj))


+ 2µ(R0)(R0)2v(R0)K ′(x1 − x0);

and also∣∣∣∣∣∣R0v(R1)
∑
j>1

(K ′(x1 − xj) − K ′(x0 − xj)) + 2R0v(R0)K ′(x1 − x0)

∣∣∣∣∣∣ ≤ CL
N + 1

N
.

In particular, µ(R0)Ṙ0 ≤ (3CL)R0 and

µ(R0)Ṙ0 + µ(RN )ṘN ≤ 3CL(R0 + RN ) ≤ (3CL)TV [ρN (t, ·)]. (3.10)

By putting together (3.3), (3.9) and (3.10), we get estimate (3.2) and (3.1) follows
as a consequence of Gronwall Lemma.

Proposition 3.2. Let T > 0 and ρ̄, v, φ, K under the assumptions of Theorem 2.1.
Then there exists C > 0 that does not depend on N such that

dW 1(ρN (t, ·), ρN (s, ·)) < C|t − s| ∀ s, t ∈ (0, T ), ∀N ∈ N. (3.11)

Proof. Assume without loss of generality that 0 < s < t < T . We want to inves-
tigate the continuity in time of the discrete density ρN with respect to the 1-
Wasserstein distance. Despite this step is more involved in higher dimensions, in
the one-dimensional case, we can take advantage of the well-known relation between
the 1-Wasserstein distance of two probability measures and the L1 distance of their
respective pseudo-inverse functions, see Sec. 2. The claim follows once we show that

‖XρN (t,·) − XρN (s, ·)‖L1([0,1]) < C|t − s|,
for all s, t ∈ (0, T ) independently on N , where XρN (t,·) is the pseudo-inverse of the
discretize density. By the definition of ρN , we can explicitly compute

XρN (t, ·)(z) =
N−1∑
i=0

(
xi(t) +

(
z − i

1
N

)
1

Ri(t)

)
1[i 1

N , (i+1) 1
N )(z).
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Let us observe that

|ẋi(t)| ≤ NLip[φ]|Ri(t) − Ri−1(t)|

+

∣∣∣∣∣∣v(Ri(t))
N

∑
j>i

K ′(xi − xj) − v(Ri−1)
N

∑
j<i

K ′(xi − xj)

∣∣∣∣∣∣,
and, thanks to (3.1), we obtain

N∑
i=0

|ẋi(t)| ≤ 2N2C(K, φ, T, ρ̄).

Having in mind that (3.12) and∣∣∣∣ d

dτ

1
Ri(τ)

∣∣∣∣ = N |ẋi+1(τ) − ẋi(τ)| ≤ N |ẋi+1(τ)| + N |ẋi(τ)|,

we directly conclude

dW 1(ρN (t, ·), ρN (s, ·))
= ‖XρN (t, ·) − XρN (s, ·)‖L1([0, 1])

≤
N−1∑
i=0

∫ (i+1)/N

i/N

∣∣∣∣xi(t) − xi(s) +
(

z − i

N

)(
1

Ri(t)
− 1

Ri(s)

)∣∣∣∣ dz

≤
N−1∑
i=0

1
N

|xi(t) − xi(s)| +
N−1∑
i=0

∣∣∣∣ 1
Ri(t)

− 1
Ri(s)

∣∣∣∣ ∫ (i+1)/N

i/N

(
z − i

N

)
dz

=
N−1∑
i=0

1
N

|xi(t) − xi(s)| +
N−1∑
i=0

1
2N2

∫ t

s

∣∣∣∣ d

dτ

1
Ri(τ)

∣∣∣∣ dτ

≤ 3
N

N∑
i=0

∫ t

s

|ẋi(τ)| dτ ≤ C(K, φ, T, ρ̄)|t − s|.

Proof of Theorem 3.1. By construction, the densities ρN are always non-
negative, with constant mass ‖ρN(t, ·)‖L1([0,�]) = 1 and they are bounded uniformly
in L∞([0, T ]×[0, �]) thank to (2.8). Moreover, estimates (3.1) and (3.11) ensure that
conditions I and II in Theorem 2.2 hold and ρN converges, up to a subsequence, to
a strong L1-limit ρ in the product space [0, T ]× [0, �]. Finally, from (2.8), we deduce
that m ≤ ρ(t, x) ≤ M everywhere in [0, T ]× [0, �], then the proof is concluded.

We are finally in position to prove Theorem 2.1. We deduce from Theorem 3.1
the existence of a strong L1-limit of the approximations, then we only need to show
that this limit is a weak solution of (1.4) in terms of Definition 2.1.
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Proof of Theorem 2.1. Thanks to Theorem 2.2, we know that, up to a subse-
quence, ρN converges to ρ in L1([0, T ] × [0, �]). There would be nothing to prove
if we knew that for every N the discrete density ρN is a weak solution of (1.4).
Unfortunately, this is not true in general but we can prove that the mismatch is
vanishing as N → ∞. We claim that for every ϕ ∈ C∞

c ([0, T ] × [0, �]) such that
ϕx(·, 0) = ϕx(·, �) = 0, one has

∫ T

0

∫ �

0

ρNϕt + φ(ρN )ϕxx − ρNv(ρN )K ′ ∗ ρNϕxdxdt → 0, (3.12)

as N → ∞. In order to simplify the notation, we omit the dependence on the
variable t whenever it is clear from the context. Substituting the definition of ρN ,
the left-hand side of (3.12) becomes

N−1∑
i=0

∫ T

0

∫ xi+1

xi

Riϕt(x)dxdt +
∫ T

0

N−1∑
i=0

φ(Ri)(ϕx(xi+1) − ϕx(xi))dt

−
∫ T

0

N−1∑
i=0

∫ xi+1

xi

Riv(Ri)ϕx(x)

N−1∑
j=0

Rj(K(x − xj+1) − K(x − xj))

 dxdt.

Let us observe that, integrating by part twice and using (2.4), the first term in the
above expression can be rewritten as follows:

∫ T

0

N−1∑
i=0

∫ xi+1

xi

Riϕt(x)dxdt =
∫ T

0

N−1∑
i=0

Ri(ẋi+1 − ẋi)
∫ xi+1

xi

ϕ(x)dxdt

−
∫ T

0

N−1∑
i=0

Ri(ϕ(xi+1)ẋi+1 − ϕ(xi)ẋi)dt.

Recalling the expressions for ẋd
i and ẋnl

i in (2.2) and (2.3), respectively, the conver-
gence in (3.12) follows as soon as we show that limN→∞ Id

N = limN→∞ IInl
N = 0,

where we have defined

Id
N :=

∫ T

0

N−1∑
i=0

Ri(ẋd
i+1 − ẋd

i )
∫ xi+1

xi

ϕ(x)dxdt

−
∫ T

0

N−1∑
i=0

Ri(ϕ(xi+1)ẋd
i+1 − ϕ(xi)ẋd

i )dt

+
∫ T

0

N−1∑
i=0

φ(Ri)(ϕx(xi+1) − ϕx(xi))dt,
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and

IInl
N :=

∫ T

0

N−1∑
i=0

Ri(ẋnl
i+1 − ẋnl

i )
∫ xi+1

xi

ϕ(x)dxdt

−
∫ T

0

N−1∑
i=0

Ri

(
ϕ(xi+1)ẋnl

i+1 − ϕ(xi)ẋnl
i

)
dt

−
∫ T

0

N−1∑
i=0

∫ xi+1

xi

Riv(Ri)ϕx(x)

N−1∑
j=0

Rj(K(x − xj+1) − K(x − xj))

dxdt,

We first focus on the limit of the diffusive term. If we expand ϕ at the first order
with respect to xi+1 and xi, respectively, for some αi ∈ (xi, x), βi ∈ (x, xi+1),
we get

Id
N =

∫ T

0

N−1∑
i=0

Riẋ
d
i+1

( ∫ xi+1

xi

ϕ(x)dx − ϕ(xi+1)
)

dt

−
∫ T

0

N−1∑
i=0

[
iẋ

d
i

( ∫ xi+1

xi

ϕ(x)dx − ϕ(xi)
)

+ φ(Ri)(ϕx(xi+1) − ϕx(xi))
]

dt

=
∫ T

0

N−1∑
i=0

(φ(Ri) − φ(Ri+1))
(
−ϕx(xi+1)

2
− ϕxx(βi)

6
(xi+1 − xi)

)
dt

−
∫ T

0

N−1∑
i=0

(φ(Ri−1) − φ(Ri))
(

ϕx(xi)
2

− ϕxx(αi)
6

(xi+1 − xi)
)

dt

+
∫ T

0

N−1∑
i=0

φ(Ri)(ϕx(xi+1) − ϕx(xi))dt

= B.T. +
∫ T

0

N−1∑
i=1

(xi+1 − xi)(φ(Ri+1) − φ(Ri))
ϕxx(βi)

6

+
∫ T

0

N−1∑
i=1

(xi+1 − xi)(φ(Ri) − φ(Ri−1))
ϕxx(αi)

6
,

where B.T. involves the terms related to x0 and xN . Since ϕx(t, x0) = ϕx(t, xN ) = 0
for all t because of the zero velocity condition and ϕ has compact support in [0, �],
by using the upper bound of (2.8) and (2.11), B.T. can be easily estimated as
follows:

|B.T.| ≤ ‖ϕxx‖L∞
C(φ, T )

N
. (3.13)
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While, thanks to, (3.1) and the upper bound of (2.8), we deduce∫ T

0

N−1∑
i=1

∣∣∣∣(xi+1 − xi)
[
(φ(Ri+1) − φ(Ri))

ϕxx(βi)
6

+ (φ(Ri) − φ(Ri−1))
ϕxx(αi)

6

]∣∣∣∣ dt

≤ 4
6
‖ϕxx‖L∞

∫ T

0

N−1∑
i=0

|xi+1 − xi||φ(Ri+1) − φ(Ri)|dt

≤ ‖ϕxx‖L∞
C(T, ρ̄, φ)

N
, (3.14)

then (3.13) and (3.14) together imply that

lim
N→∞

Id
N = 0. (3.15)

Let us focus now on the nonlocal term IInl
N . For future use, we compute∫ T

0

N−1∑
i=0

(ẋnl
i+1(t) − ẋnl

i (t))dt ≤ 2Lip[v]LT TV [ρ̄] + vmaxL�. (3.16)

Note that, expanding ϕ to the first order, one can find ϑi ∈ (xi, xi+1) such that

IInl
N +

∫ T

0

N−1∑
i=0

∫ xi+1

xi

Riv(Ri)ϕx(x)

N−1∑
j=0

Rj(K(x − xj+1) − K(x − xj))

 dxdt

=
∫ T

0

N−1∑
i=0

Ri(ẋnl
i+1 − ẋnl

i )
[ ∫ xi+1

xi

ϕ(x)dx − ϕ(xi+1)
]

−
∫ T

0

N−1∑
i=0

Riẋ
nl
i (ϕ(xi+1) − ϕ(xi))dt

=
∫ T

0

N−1∑
i=0

(ẋnl
i+1 − ẋnl

i )
(

ϕx(xi+1)
2N

+ ϕxx(ϑi)
(xi+1 − xi)

3N

)
dt

−
∫ T

0

N−1∑
i=0

Riẋ
nl
i

∫ xi+1

xi

ϕx(x)dxdt.

Then we can rewrite IInl
N as the sum of three terms

Anl
N :=

∫ T

0

N−1∑
i=0

(ẋnl
i+1 − ẋnl

i )
ϕx(xi+1)

2N
dt,

Bnl
N :=

∫ T

0

N−1∑
i=0

(ẋnl
i+1 − ẋnl

i )
ϕxx(ϑi)(xi+1 − xi)

3N
dt,

Cnl
N :=

∫ T

0

N−1∑
i=0

Ri

∫ xi+1

xi

ϕx(x)

ẋnl
i +

v(Ri)
N

N−1∑
j=0

Rj(K(x − xj) − K(x − xj+1))

,
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so the remaining part of proof consists in showing that |Anl
N |, |Bnl

N |, |Cnl
N | vanishes

as N → ∞. The first two terms are immediate, indeed

|Anl
N | ≤ ‖ϕx‖L∞

2N

∫ T

0

N−1∑
i=0

|ẋnl
i+1 − ẋnl

i |dt and

|Bnl
N | ≤ �‖ϕxx‖L∞

2N

∫ T

0

N−1∑
i=0

|ẋnl
i+1 − ẋnl

i |dt,

which, thanks to (3.16), immediately imply

|Anl
N | + |Bnl

N | ≤ C(T, K, v, ρ̄)
N

. (3.17)

On the other hand, the term Cnl
N is less straightforward. Expanding K at the first

order, for every j = 0, . . . , N − 1, we can find some βj ∈ (x − xj+1, x − xj) such
that

Cnl
N =

∫ T

0

N−1∑
i=0

Ri

∫ xi+1

xi

ϕx
v(Ri)

N

×
K ′(x − xi) +

∑
j �=i

K ′(x − xj) − K ′(xi − xj)

 dxdt

+
∫ T

0

N−1∑
i=1

Ri

∫ xi+1

xi

ϕx

v(Ri) − v(Ri−1)
N

∑
j<i

K ′(xi − xj)

 dxdt

+
∫ N

0

N−1∑
i=0

Ri

∫ xi+1

xi

ϕx
v(Ri)
N2

N−1∑
j=0

K ′′(βj)(xj+1 − xj)dxdt.

Then we want to show that each of the three terms has order 1/N . For the first one,
we use the Lipschitz regularity of K ′ and the uniform bound on ϕ and v, indeed∫ T

0

N−1∑
i=0

Ri

∫ xi+1

xi

ϕx
v(Ri)

N

K ′(x − xi) +
∑
j �=i

K ′(x − xj) − K ′(xi − xj)

 dxdt

≤ L‖v‖L∞‖ϕx‖L∞

∫ T

0

N−1∑
i=0

Ri

∫ xi+1

xi

v(Ri)
∑
j>i

|x − xi|dxdt

≤ ‖ϕx‖L∞
C(K, T, v, �)

N
. (3.18)

Recalling (3.1), the Lipschitz regularity of v, and the uniform bound of K ′, we can
estimate the second term as follows:∫ T

0

N−1∑
i=1

Ri

∫ xi+1

xi

ϕx

v(Ri) − v(Ri−1)
N

∑
j<i

K ′(xi − xj)

 dxdt
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= L Lip[v]‖ϕx‖L∞
1
N

∫ T

0

N−1∑
i=1

|Ri − Ri−1|dt

≤ ‖ϕx‖L∞([0, T ]×R)
C(K, T, v, ρ̄)

N
. (3.19)

We take care now of the term involving K ′′. In this case, we can even achieve an
upper bound of order N−2. Recalling that L is so that ‖K ′′‖L∞([−�,�]) < L, we get∫ T

0

N−1∑
i=0

Ri

∫ xi+1

xi

ϕx
v(Ri)

N

N−1∑
j=0

K ′′(βj)(xj+1 − xj)dxdt

≤ L‖v‖L∞‖ϕx‖L∞
1

N2

∫ T

0

N−1∑
j=0

(xj+1 − xj)dxdt

≤ ‖ϕx‖L∞([0, T ]×R)
C(K, v, T, �)

N2
. (3.20)

Summarizing, estimates (3.18), (3.19), (3.20) imply that

|Cnl
N | ≤ C(ϕ, K, �, T, v)

N
,

and, together with estimates (3.17) and (3.15), that limN→∞ IInl
N = 0 and the

validity of (3.12).

4. Numerical Simulations

This last section of the paper is devoted to the numerical study of Eq. (1.4) in
order to compare the different results that came from different possible choices
of the diffusion function. More precisely, we implement the procedure introduced
in Sec. 2, first solving numerically the ODE system in (2.1) and then taking the
piecewise constant reconstruction (2.5) as a numerical approximation for the cor-
responding PDE. Most of the examples below highlight the competition between
diffusive phenomena and aggregation phenomena. Assumptions in (Ker) allow us
to analyze only smooth enough kernels and it is not too restrictive to consider in
all the simulations K as an attractive Gaussian potential

K(x) = K(
1 − e−|x|2), K > 0. (4.1)

The velocity function v in the mobility term will be taken in the form

v(ρ) = (1 − ρ)+,

that is a usual choice in the applications. We will show different behaviors in the
following depending on the choice of the diffusion function φ. In Fig. 1, we compare
final configurations for the aggregation–diffusion problem in which the diffusion of
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Fig. 1. Final configurations to aggregation–diffusion equations with φPM given by (4.2) for
different values of the diffusion coefficient ε.

porous medium type depends on a parameter ε

φPM (ρ) =
ε

2
ρ2, (4.2)

while the aggregation term is the Gaussian (4.1) with K = 1. We set final time T =
1, N = 300 particles and we consider as initial configuration a uniform distributed
density ρ̄(x) = 0.7 for x ∈ [0, 1]. As shown in Fig. 1, the final configurations for
ε = 1, 0.1, 0.05, are (numerically) stable, i.e. diffusion and aggregation phenomena
compensate each other.

Even if the diffusion coefficients are very small, and hence the aggregation effect
is leading, the vacuum regions are forbidden. This is evident in Fig. 2 where we
plot the stable density related to the case ε = 0.001.
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Fig. 2. Top. For ε = 0.001 in (4.2), we are in the aggregation-dominated regime. The degeneracy
of v stops the aggregation when the value ρ = 1 is reached.
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Fig. 3. Final configurations to aggregation–diffusion equations with φTP given by (4.3) for dif-
ferent values of the diffusion coefficient ε.

In Fig. 3, we test the same initial condition with a diffusion function that
presents a two-point degeneracy. We set

φTP (ρ) = ε

∫ ρ

0

ζ(1 − ζ)ζm−2dζ =
ε

m
ρm − ε

m + 1
ρm+1, (4.3)

that is exactly a diffusion of porous medium type with nonlinear mobility, see (1.3).
The quadratic case plotted in Fig. 3 shows the weaker effect of this diffusion func-
tions. Indeed, if one takes as a reference the case ε = 1, the plot in Fig. 3 is more
concave than the respective one in Fig. 1.

Let us present now some simulations in the strongly degenerate diffusion regime.
We consider

φSD(ρ) =



ε

2
ρ2, ρ ∈

[
0,

2
5

)
,

2ε

25
, ρ ∈

[
2
5
,
3
5

)
,

2ε

25
+

ε

2

(
ρ − 3

5

)2

, ρ ≥ 3
5
.

(4.4)

Since we are in a smooth setting, in the time intervals in which φ′
SD ≡ 0, the

evolution is driven only by the aggregation term. This may result in formation
of discontinuities in the density profile, similarly to the flux-saturated degenerate
parabolic equations, see Ref. 18. In the left column of Fig. 4, we plot the evolution
of an initial datum that is constantly equal to a value in the range of degeneracy of
φ′

SD. In the right column of Fig. 4, instead, we consider a two steps initial datum
with only one of the two values is critical for φ′

SD.
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Fig. 4. (Color online) The horizontal (green) lines denotes the range of degeneracy of φ′
SD. (Left)

Initial and final configurations (top) and particles trajectories (bottom) for constant initial value
with strongly degenerate diffusion. (Right) Initial and final configurations and particles trajectories
for the two steps initial value with strongly degenerate diffusion.
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Fig. 5. Comparison between the final configurations for Gaussian potential (4.1), diffusion φPM ,
φTP and φSD and initial datum as in (4.5). The particle trajectories on the right correspond to
the strongly degenerate case.
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In the last example, see Fig. 5, we compare the evolutions of the oscillating
initial datum

ρ̄(x) =
1
2
(cos(4πx) + 1), x ∈ [0, 2], (4.5)

with respect to the same aggregation potential (4.1) and the different diffusion
functions φPM , φTP and φSD.

5. Conclusions and Perspectives

The main purpose of this paper is to use a deterministic (ODEs) particle approxi-
mation method to construct solutions to a fairly wide class of aggregation–diffusion
equations with nonlinear mobility, which are largely used in several contexts in
population biology (see the Introduction). We stress that the presence of nonlin-
ear mobility is new compared to several results available in the literature (see for
instance Ref. 44). This issue, together with the presence of the nonlocal transport
term, suggests us to adapt to our case the strategy developed in Ref. 29 for scalar
conservation laws. As a main result, we prove that a suitable piecewise constant
density reconstruction converges strongly to weak solutions of the aggregation–
diffusion equation in the sense of Definition 2.1. We highlight that our approach is
alternative to other possible approaches, such as the kinetic or probabilistic meth-
ods mentioned in the Introduction. In particular, the diffusion term is described
by means of the deterministic discrete osmotic velocity as in the seminal paper by
Russo in the 90s. This type of description is able to catch the degenerate diffusion
case that can be useful in the modeling of biological phenomena. In this sense, we
rely on the approach by Ref. 32. An interesting aspect of this deterministic approach
is the capability of being designed as a powerful numerical scheme: by solving the
system of ODEs (2.1) and reconstructing the density as in (2.5), we are able to
catch interesting phenomena, such as the formation of discontinuities. This feature
is of great use in the class of equations we consider here, in which the degeneracy
of the diffusion term in some nontrivial intervals allows for the formation of shocks
as we show in our simulations.

We plan to extend our approach to systems with many species, see Ref. 23 as
an example in predator–prey interactions, and to the multidimensional case in the
spirit of Ref. 14.
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