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Abstract

We construct a deterministic, Lagrangian many-particle approximation to a class of nonlocal transport 
PDEs with nonlinear mobility arising in many contexts in biology and social sciences. The approximating 
particle system is a nonlocal version of the follow-the-leader scheme. We rigorously prove that a suitable 
discrete piece-wise density reconstructed from the particle scheme converges strongly in L1

loc
towards the 

unique entropy solution to the target PDE as the number of particles tends to infinity. The proof is based on 
uniform BV estimates on the approximating sequence and on the verification of an approximated version 
of the entropy condition for large number of particles. As part of the proof, we also prove uniqueness of 
entropy solutions. We further provide a specific example of non-uniqueness of weak solutions and discuss 
the interplay of the entropy condition with the steady states. Finally, we produce numerical simulations 
supporting the need of a concept of entropy solution in order to get a well-posed semigroup in the continuum 
limit, and showing the behaviour of solutions for large times.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A wide range of phenomena in biology and social sciences can be described by the combi-
nation of classical (local) – linear or nonlinear – diffusion with some nonlocal transport effects. 
Examples can be found in bacterial chemotaxis [25,27], animal swarming phenomena [20,6], 

* Corresponding author.
E-mail addresses: marco.difrancesco@univaq.it (M. Di Francesco), simone.fagioli@univaq.it (S. Fagioli), 

emanuela.radici@univaq.it (E. Radici).
https://doi.org/10.1016/j.jde.2018.08.047
0022-0396/© 2018 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2018.08.047
http://www.elsevier.com/locate/jde
mailto:marco.difrancesco@univaq.it
mailto:simone.fagioli@univaq.it
mailto:emanuela.radici@univaq.it
https://doi.org/10.1016/j.jde.2018.08.047
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2018.08.047&domain=pdf


M. Di Francesco et al. / J. Differential Equations 266 (2019) 2830–2868 2831
pedestrian movements in a dense crowd [23], and more in general in socio-economical sciences 
[31,1]. In a fairly general setting, a set of N individuals x1, . . . , xN located in a sub-region of the 
Euclidean space Rd are subject to a drift which is affected by the status of each other individual. 
In most of the above-mentioned applications, such a “biased drift” can be expressed through a 
set of first order ordinary differential equations

ẋi (t) = v[(x1(t), . . . , xN(t)], i = 1, . . . ,N, (1.1)

in which the velocity law v is known. Having in mind a particle system obeying the laws of 
classical mechanics or electromagnetism, the set of equations (1.1) is quite unconventional due 
to the absence of inertia. On the other hand, this choice is very common in the modelling of 
socio-biological systems, mainly due to the following three reasons.

• Inertial effects are negligible in many socio-biological aggregation phenomena. Even in 
cases in which the system is appropriate for a fluid-dynamical description, a ‘thinking fluid’ 
model, with a velocity field already adjusted to equilibrium conditions, is often preferable 
compared to a second order approach. The typical examples are in traffic flow and pedestrian 
flow modelling. Moreover, it is well known in the context of cells aggregation modelling that 
the time of response to the chemoattractant signal is, most of the times, negligible. Finally, 
inertia is almost irrelevant in many contexts of socio-economical sciences, such as opinion 
formation dynamics.

• First-order modelling turns out to simulate real patterns in concrete relevant situations arising 
in traffic flow, pedestrian motion, and cell-aggregation, and such an achievement is satisfac-
tory in many situations, in applied fields often lacking a unified rigorous modelling approach.

• In several practical problems such as the behaviour of a crowd in a panic situation, the model 
can be seen as the outcome of an optimization process performed externally, in which the 
“best strategy” needed to solve the problem under study (reaching the exit in the shortest 
possible time, in the crowd example) is transmitted to the individuals in real time (e.g. a set 
of “dynamic” evacuation signals in a smart building).

In addition to the ‘discrete’ approach (1.1), these models are often posed in terms of a “con-
tinuum” PDE approach via a continuity equation

∂tρ + div(ρv[ρ]) = 0, (1.2)

in which ρ(·, t) is a time-dependent probability measure expressing the distribution of individuals 
on a given region at a given time, and in which the continuum velocity map v = v[ρ] is detected 
as a reasonable “cross-grained” version of its discrete counterpart in (1.1). The modelling of 
biological movements and socio-economical dynamics is often simulated at the continuum level 
as the PDE approach is more easy-to-handle in order to analyse the qualitative behaviour of 
the whole system, in the form e.g. of the emergence of a specific pattern, or the occurrence of 
concentration phenomena, or the formation of shock waves or travelling waves. In this regard, 
the descriptive power of the qualitative properties of the solutions in the continuum setting is an 
argument in favour of the PDE approach (1.2). On the other hand, the intrinsic discrete nature of 
the applied target situations under study would rather suggest an ‘individual based’ description as 
the most natural one. For this reason, the justification of continuum models (1.2) as many-particle 
limits of (1.1) in this context is an essential requirement to validate the use of PDE models.
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As briefly mentioned above, the velocity law v = v[ρ] in the PDE approach (1.2) may include 
several effects ranging from diffusion to external force fields, from nonlinear convection effects 
to nonlocal interaction terms. We produce here a non-exhaustive list of results available in the 
literature in which the continuum PDE (1.2) is obtained as the limit of a system of interacting 
particles, with a special focus on deterministic particle limits, i.e. in which particles move accord-
ing to a system of ordinary differential equations (i.e. without any stochastic term). The presence 
of a diffusion operator has several possible counterparts at the discrete level. The literature on 
this subject involving probabilistic methods is extremely rich and, by now, well established, see 
e.g. [32,21,10] only to mention a few. A first attempt (mainly numerical) to a fully deterministic 
approach to diffusion equations is due to [30], see [19] for the case of nonlinear diffusion.

Without diffusion and with only a local dependence v = v(ρ), an extensive literature has been 
produced based on probabilistic methods (exclusion processes), see e.g. [16,17]. A first rigorous 
result based on fully deterministic ODEs at the microscopic level for a nonlinear conservation law 
was recently obtained in [15]. Nonlocal velocities v = W ∗ ρ have been considered as a special 
case of the theory developed in [7], with W a given kernel (possibly singular) using techniques 
coming from kinetic equations, see [22]. In all the above mentioned results, the particle system 
is obtained as a discretised version of the Lagrangian formulation of the system.

A slightly more difficult class of problems is the one in which the velocity v = v[ρ] depends 
both locally and non-locally from ρ. Several results about the mathematical well-posedness of 
such models are available in the literature, which use either classical nonlinear analysis tech-
niques or numerical schemes. In the paper [8] a similar model is studied in the context of 
pedestrian movements, and the existence and uniqueness of entropy solutions is proven. We 
also mention [9], which covers a more general class of problems, and [2] covering a similar 
model in the context of granular media. A quite general result was obtained in [28] in which 
the velocity map ρ �→ v[ρ] is required to be Lipschitz continuous as a map from the space of 
probability measures (equipped with some p-Wasserstein distance) with values in C(Rd), and 
the authors prove convergence of a time-discretised Lagrangian scheme. We also mention [3], in 
which a special class of local–nonlocal dependencies has been considered, however in a different 
numerical framework. We also recall at this stage the related results in [4,5] on the overcrowd-
ing preventing version of the Keller–Segel system for chemotaxis, in which the existence and 
uniqueness of entropy solutions is proven. To our knowledge, no papers in the literature provide 
(so far) a rigorous result of convergence of a deterministic particle system of the form (1.1) to-
wards a PDE of the form (1.2) in the case of local–nonlocal dependence v = v[ρ]. Indeed, the 
result in [28] does not apply to this case in view of the Lipschitz continuity assumption on the 
velocity field, see also a similar result in [18].

In this paper we aim at providing, for the first time, a rigorous deterministic many-particle 
limit for the one-dimensional nonlocal interaction equation with nonlinear mobility

∂tρ − ∂x(ρv(ρ)K ∗ ρ) = 0, (1.3)

in which v and K satisfy the following set of assumptions:

(Av) v ∈ C1([0, +∞)) is a decreasing function such that v(0) = vmax > 0, v(M) = 0 for some 
M > 0, v′ < 0 on interval (0, M], v ≡ 0 on [M, +∞).

(AK) K ∈ L1
loc(R) is a nonlocal attractive potential, radially symmetric, with K ′(x) > 0 for 

every x > 0. Moreover, by denoting � = meas(supp(ρ̄)), we assume that
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sup
x∈[−2�, 2�]

|K ′′(x)| < L1 , and sup
x∈[−2�, 2�]

|K ′′′(x)| < L2 ,

for some positive constants L1, L2. Then we set L := max{L1, L2}.

Also in view of the applications in mind, the unknown ρ = ρ(x, t) in (1.3) will be assumed to be 
non-negative throughout the whole paper. The PDE (1.3) is coupled with an initial condition

ρ(x,0) = ρ̄(x), ρ̄ ∈ L∞(R) ∩ BV (R), 0 ≤ ρ̄(x) ≤ M, supp(ρ̄) compact. (1.4)

The constant M here plays the role of a maximal density, which is supposed not to be exceeded 
by the density for all times. Clearly, the property ρ ∈ [0, M] has to be proven to be invariant with 
respect to time. We notice that the total mass of ρ in (1.3) is formally conserved. For simplicity, 
throughout the paper we shall set

‖ρ̄‖L1(R) = 1 .

We set [x̄min, x̄max] as the closed convex hull of supp(ρ̄).
Our goal is to approximate rigorously the solution ρ to (1.3) with initial datum ρ̄ via a set 

of moving particles. More precisely, we aim to proving that the entropy solution of the Cauchy 
problem for (1.3) can be obtained as the large particle limit of a discrete Lagrangian approxi-
mation of the form (1.1). Such a Lagrangian approximation can be introduced as follows as a 
reasonable generalization of particle approximations considered previously in the literature in 
[15,12–14]. For a fixed integer N sufficiently large, we split [x̄min, x̄max] into N intervals such 
that the integral of the restriction of ρ̄ over each interval equals 1/N . More precisely, we let 
x̄0 = x̄min and x̄N = x̄max , and define recursively the points x̄i for i ∈ {1, . . . , N − 1} as

x̄i = sup

⎧⎪⎨⎪⎩x ∈ R :
xˆ

x̄i−1

ρ̄(x)dx <
1

N

⎫⎪⎬⎪⎭ . (1.5)

It is clear from the construction that 
´ x̄N

x̄N−1
ρ̄(x)dx = 1/N and x̄0 < x̄1 < . . . < x̄N−1 < x̄N . 

Consider then N + 1 particles located at initial time at the positions x̄i and let them evolve 
accordingly to the following system ODEs

ẋi (t) = −v(Ri(t))

N

∑
j>i

K ′(xi(t) − xj (t)) − v(Ri−1(t))

N

∑
j<i

K ′(xi(t) − xj (t)) , (1.6)

with i ∈ {0, . . . , N}, where the discrete density Ri(t) is defined as follows

Ri(t) := 1

N(xi+1(t) − xi(t))
, i = 0, . . . ,N − 1.

In (1.6), each particle xi has mass 1/N . We are then in position to define the N -discrete density

ρN(t, x) :=
N−1∑

Ri(t)χ[xi (t), xi+1(t))(x). (1.7)

i=0
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We observe that ρN(t, ·) has total mass equal to 1 for all times. The Ri are actually dependent 
on the number of particles N , but we will drop the N -dependence to simplify the notation. We 
refer to system (1.6) as non-local Follow-the-leader scheme, as in fact this system is a non-local 
extension of the classical Follow-the-leader scheme previously considered in the literature. More 
in detail, system (1.6) is motivated as follows. The right-hand side of (1.6) represents the velocity 
of each particle. Therefore, it has to be reminiscent of a discrete Lagrangian formulation of the 
Eulerian velocity −v(ρ)K ′ ∗ ρ in the continuity equation (1.3). Now, since we are in one-space 
dimension, the discrete density Ri is a totally reasonable replacement for the continuum density 
ρ, except that one has to decide whether the discrete density should be constructed in a forward, 
backward, or centred fashion. Our choice of splitting the velocity ẋi into a backward and forward 
term is motivated by the sign of the nonlocal interaction K ′(xi − xj ), which has the same sign 
as xi − xj . Hence, since K ′(x) is negative on x < 0, particles labelled by xj with xj > xi yield 
a drift on xi oriented towards the positive direction. Since the role of the nonlinear mobility term 
ρv(ρ) is that of preventing overcrowding at high densities (consistently with the assumption 
of v being monotone decreasing), such a drift term should be “tempered” by the position of 
the (i + 1)-th particle. This motivates the use or v(Ri) in the sum with xj > xi . A symmetric 
argument justifies the use of v(Ri−1) in the remaining part of the sum with xj < xi .

Our main results concerns with the study of the many particle limit as N → ∞ for the discrete 
density ρN defined above. Apart from the above mentioned assumptions on v and K and ρ̄, we 
shall also assume that ρ̄ ∈ BV (R). Such a condition is crucial in order to prove the needed 
estimate which guarantees that ρN converge (up to a subsequence) to some limiting density ρ
in a strong enough topology. As a minimal requirement, the limit ρ should satisfy (1.3) in a 
distributional sense. On the other hand, the presence of a nonlinear convection in (1.3) suggests 
the possibility of multiple weak solutions for fixed initial data. A notion of entropy solution in the 
sense of Kruzkov [26] is therefore needed to ensure uniqueness. Motivated by this remark, we 
shall actually prove that the limit density ρ of the above particle scheme is an entropy solution 
to (1.3) with initial condition ρ̄, in the sense of the following definition.

Definition 1.1 (Entropy solution). Let ρ̄ ∈ L∞(R) ∩ L1+(R). Denoting f (z) := zv(z), we say 
that ρ : [0, +∞) × R → [0, +∞) is an entropy solution of (1.3) with initial condition ρ̄ if ρ ∈
L∞([0, ∞), L1(R, [0, 1])) and, for all constants c ≥ 0 and for all ϕ ∈ C∞

c ([0, +∞) × R) with 
ϕ ≥ 0 one has

0 ≤
ˆ

R

|ρ̄(x) − c|ϕ(0, x) dx

+
+∞ˆ

0

ˆ

R

|ρ − c|ϕt − sign(ρ − c)[(f (ρ) − f (c))K ′ ∗ ρϕx − f (c)K ′′ ∗ ρϕ]dxdt,

where we define the sign function at the origin as sign(0) = 0.

We are now ready to state the main result of our paper.

Theorem 1.2. Assume v and K satisfy (Av) and (AK) respectively. Let ρ̄ ∈ BV (R) ∩ L1+(R) be 
a compactly supported function with total unit mass and such that ρ̄ ≤ M . Then, for all T > 0, 
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the discrete density ρN constructed in (1.7) converges almost everywhere and in L1([0, T ] ×R)

to the unique entropy solution ρ of the Cauchy problem{
∂tρ = ∂x(ρv(ρ)K ′ ∗ ρ) (t, x) ∈ (0, T ] ×R ,

ρ(0, x) = ρ̄(x) x ∈ R .
(1.8)

As a by-product, the above result also imply existence of entropy solutions for (1.8), a task 
which has been touched in other papers previously [8,9,4,3]. Implicitly, our result also asserts the 
uniqueness of entropy solutions for (1.3), a side result that we shall prove as well in the paper, 
similarly to what done in [4,5].

The need of the entropy condition to define a suitable notion of solution semigroup for (1.3)
is not only motivated by the possibility of proving its uniqueness. We actually prove in the pa-
per that a mere notion of weak solution does not yield the well-posedness of the semigroup as 
multiple weak solutions can be produced with the same initial condition.

Our paper is structured as follows. In Section 2 we introduce the nonlocal follow-the-leader 
particle scheme and prove that it satisfies a discrete maximum principle, a crucial ingredient in 
order to deal with the particle approximation in the sequel of the paper. In Section 3 we prove all 
the estimates needed in order to detect strong L1 compactness for the approximating sequence 
ρN . The main ingredient of this section is the BV estimate proven in Proposition 3.3. We em-
phasize that the presence of an attractive interaction potential in the particle system implies most 
likely a growth w.r.t. time of the total variation. Therefore, one has to check that the blow-up in 
finite time of the total variation is avoided. In Section 4, we prove that the limit of the approxi-
mating sequence is an entropy solution in the sense of Definition 1.1. This task is quite technical 
as it requires checking a discrete version of Kruzkov’s entropy condition. In Section 5 we provide 
an explicit example of non uniqueness of weak solutions, which has links with the admissibility 
of steady states. Finally, in Section 6 we complement our results with numerical simulations.

2. The non-local follow-the-leader scheme

In this section we introduce and analyse in detail our approximating particle scheme (1.6). 
Here the macroscopic variable ρ does not need to be labelled by N , as N is supposed to be 
fixed throughout the whole section. The regularity assumptions on v and K in (Av) and (AK) 
imply that the right-hand side of (1.6) is locally Lipschitz with respect to the N + 1-tuple 
(x0, x1, . . . , xN) as long as we can guarantee that the denominator in Ri does not vanish. Such 
a property is a consequence of the following Discrete Maximum Principle, ensuring that the 
particles cannot touch each other at any time. This implies both the (global-in-time) existence 
of solutions of the system (1.6) for all times t > 0, and the conservation of the initial particle 
ordering during the evolution.

Lemma 2.1 (Discrete Maximum Principle). Let N ∈ N be fixed and assume that (Av) and (AK) 
hold. In particular, let M > 0 be as in assumption (Av). Let x̄0 < x̄1 < . . . < x̄N be the initial 
positions for (1.6), and assume that

x̄i+1 − x̄i ≥ 1

MN
(2.1)

Then every solution xi(t) to the system (1.6) satisfies
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MN
≤ xi+1(t) − xi(t) for all i ∈ {0, . . . , N − 1} and for all t ∈ [0, +∞). (2.2)

Consequently, the unique solution (x0(t), . . . , xN(t)) to (1.6) with initial condition (x̄0, . . . , x̄N )

exists globally in time.

Proof. Let Tmax > 0 be the maximal existence time for (1.6). Due to the assumptions (Av) and 
(AK), the local-in-time solution (x0(t), . . . , xN(t)) is C1 on [0, Tmax). If we prove that (2.2)
holds on [0, Tmax), this will automatically prove global existence by a simple continuation prin-
ciple. Arguing by contradiction, assume that t1 < Tmax is the first instant where two consecutive 
particles are at distance 1/MN and get closer afterwards, i.e.

t1 = inf{t ∈ [0, T ] : there exists i : xi+1(t) − xi(t) = 1/MN},
and there exists t2 ∈ (t1, T ] such that

xi+1(t) − xi(t) <
1

MN
∀t ∈ (t1, t2] .

Notice that the minimality of t1 ensures that all particles maintain their initial order for all t ∈
[0, t1). At time t1 we have Ri(t1) = 0 due to (Av). Substituting this value in the equation (1.6) for 
xi , we easily see that only the terms j < i survive in the nonlocal part, thus yielding ẋi(t1) ≤ 0. 
Similarly, we get ẋi+1(t1) ≥ 0. For similar reasons, if ẋi+1(t1) = 0 then the ODE for xi+1 implies 
that at time ti we have Ri+1(t1) = M , or equivalently xi+2(t1) − xi+1(t1) = 1/MN . Similarly, if 
ẋi (t1) = 0 then xi(t1) − xi−1(t1) = 1/MN . Let us now assume for the moment that xi+2(t1) −
xi+1(t1) = xi(t1) − xi−1(t1) = 1/MN . Then, with similar arguments as above one can show 
that ẋi−1(t1) ≤ 0 and ẋi+2(t1) ≥ 0, and we can repeat the same argument above to obtain that 
ẋi−1(t1) = 0 implies xi−1(t1) −xi−2(t1) = 1/MN and ẋi+2(t1) = 0 implies xi+3(t1) −xi+2(t1) =
1/MN . Such a procedure can be iterated to conclude that there exists either some index k ≥ i

with ẋk+1(t1) > 0 or some index h ≤ i such that ẋk(t1) < 0, otherwise any two consecutive 
particles would be placed at distance 1/MN and the system would be static for all t ∈ (t1, T ], 
which would contradict the existence of t2.

The above considerations imply that we can assume, without loss of generality, that

ẋi+1(t1) > 0, and ẋi (t1) ≤ 0 .

Let εi+1 > 0 be small enough such that t1 + εi+1 < t2, then by Taylor expansion one has

xi+1(t) = xi+1(t1) + ẋi+1(t1)(t − t1) + o(|t − t1|) ,

where, up to taking εi+1 even smaller, the contribute o(t − t1) does not affect the sign of 
ẋi+1(t1)(t − t1). As a consequence, xi+1(t) > xi+1(t1) for all t ∈ (t1, t1 + εi+1) and a symmetric 
argument gives also xi(t) ≤ xi(t1) for all t ∈ (t1, t1 + εi). In particular, we deduce that

xi+1(t) − xi(t) ≥ xi+1(t1) − xi(t1) = 1

MN
∀t ∈ (t1, t1 + min{εi, εi+1})

and this contradicts the existence of t2. This argument ensures both the validity of (2.2) and the 
existence of solutions for all times t > 0. �
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Let us consider the discrete density

ρ(t, x) :=
N−1∑
i=0

Ri(t)χ[xi (t), xi+1(t))(x).

A straightforward consequence of Lemma 2.1 is that

ρ(t, x) ≤ M for all (t, x) ∈ [0,+∞) ×R.

Moreover, we observe that ρ has unit mass on R for all times.
As already mentioned before, a straightforward consequence of the above Maximum Principle 

is that the particles can never touch or cross each other. In particular, the particle x0 will have 
no particles at its left for all times, which means that the ODE for x0 will only feature terms 
with j > 0 on the nonlocal sum. A symmetric statement holds for xN . As a consequence of that 
ẋ0(t) ≥ 0 and ẋN (t) ≤ 0 for all t , thus the support of ρ(t, ·) is bounded by � uniformly in N
and t . We summarize this property in the next lemma.

Lemma 2.2. Under the same assumptions of Lemma 2.1, the support of ρ(t, ·) is contained in 
the interval [x̄0, x̄N ] for all times t ∈ [0, +∞).

3. Convergence of particle scheme

We now focus on the converge of the particle scheme (1.6), where the initial condition (1.5) is 
constructed from an L∞(R)-initial density ρ̄ having compact support and finite total variation.

The proof of Theorem 1.2 relies on two main steps: the first one consists in proving that the 
discrete density ρN defined in (1.7) is strongly convergent (up to a subsequence) to a limit ρ in 
L1([0, T ] × R), the second one is to show that the limit ρ is a weak entropy solution of (1.8)
according to Definition 1.1. In this section we take care of the former step. As we will show 
in Propositions 3.3 and 3.4 below, the sequence (ρN)N∈N satisfies good compactness properties 
with respect to the space variables but, on the other hand, we cannot reach a uniform L1 control 
on the time oscillations. In our case, we are only able to prove a uniform time-continuity estimate 
with respect to the 1-Wasserstein distance (see [33]), which nevertheless will suffice to achieve 
the required compactness in the product space. Such a strategy recalls the one used in [15] for the 
case of a scalar conservation law. The main result of this section is the content of the following

Theorem 3.1. Under the assumptions of Theorem 1.2, the sequence ρN is strongly relatively 
compact in L1([0, T ] ×R).

The proof of Theorem 3.1 relies on a generalized statement of the celebrated Aubin–Lions 
Lemma (see [29,11,12]) that we recall here for the reader’s convenience. In what follows, d1 is 
the 1-Wasserstein distance.

Theorem 3.2 (Generalized Aubin–Lions Lemma). Let τ > 0 be fixed. Let ηN be a sequence in 
L∞((0, τ); L1(R)) such that ηN(t, ·) ≥ 0 and ‖ηN(t, ·)‖L1(R) = 1 for every N ∈ N and t ∈
[0, τ ]. If the following conditions hold

I) supN

´ τ [‖ηN(t, ·)‖L1(R)dt + T V
[
ηN(t, ·)]+ meas(supp[ηN(t, ·)])]dt < ∞,
0
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II) there exists a constant C > 0 independent from N such that dW 1

(
ηN(t, ·), ηN(s, ·)) <

C|t − s| for all s, t ∈ (0, τ),

then ηN is strongly relatively compact in L1([0, τ ] ×R).

In view of Theorem 3.2, the result in Theorem 3.1 will follow as a consequence of the follow-
ing two propositions.

Proposition 3.3. Let ρ̄, v, K and T be as in the statement of Theorem 1.2. Then, there exists a 
positive constant C > 0 (only depending on K , v, and on supp(ρ̄)) such that for every N ∈ N

one has

T V [ρN(t, ·)] ≤ T V [ρ̄]eCt for all t ∈ [0, T ] . (3.1)

Proposition 3.4. Let ρ̄, v, K and T be as in the statement of Theorem 1.2. Then, there exists a 
positive constant C > 0 (only depending on K) such that

dW 1

(
ρN(t, ·), ρN(s, ·))< C|t − s| for all s, t ∈ (0, T ), and for all N ∈N . (3.2)

The remaining part of this section is devoted to the proof of Propositions 3.3 and 3.4. For 
future use we compute

Ṙi(t) = − N(Ri)
2(ẋi+1 − ẋi )

= − N(Ri)
2
[
− 2v(Ri)

1

N
K ′(xi+1 − xi)

− (v(Ri+1) − v(Ri))
1

N

∑
j>i+1

K ′(xi+1 − xj )

− v(Ri)
1

N

∑
j>i+1

(
K ′(xi+1 − xj ) − K ′(xi − xj )

)
− (v(Ri) − v(Ri−1))

1

N

∑
j<i

K ′(xi − xj )

− v(Ri)
1

N

∑
j<i

(
K ′(xi+1 − xj ) − K ′(xi − xj )

)]
. (3.3)

Proof (of Proposition 3.3). It is easy to see that T V [ρN(0, ·)] ≤ T V [ρ̄]. Then estimate (3.1)
follows by Gronwall Lemma as soon as we show that

d

dt
T V [ρN(t, ·)] ≤ C T V [ρN(t, ·)], (3.4)

for a suitable constant C > 0. The total variation of ρN at time t is given by
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T V [ρN(t, ·)] = R0(t) + RN(t) +
N−1∑
i=0

|Ri+1(t) − Ri(t)|

=
N−1∑
i=1

Ri[sign(Ri − Ri−1) − sign(Ri+1 − Ri)] − R0(sign(R1 − R0) − 1)

+ RN(sign(RN − RN−1) + 1)

= μ0(t)R0(t) + μN(t)RN +
N−1∑
i=1

Riμi,

where we set for brevity

μi(t) := sign(Ri(t) − Ri+1(t)) − sign(Ri−1(t) − Ri(t)) i = 1, . . . ,N − 1,

μ0(t) = (1 − sign(R1 − R0)
)
,

μN(t) = (1 + sign(RN − RN−1)
)
.

Then we can compute

d

dt
T V [ρN(t, ·)] = Ṙ0(t) + ṘN(t) +

N−1∑
i=0

sign
(
Ri+1(t) − Ri(t)

)(
Ṙi+1(t) − Ṙi(t)

)

= μ0(t)Ṙ0(t) + μN(t)ṘN (t) +
N−1∑
i=1

μ(Ri(t))Ṙi(t) .

The value of the coefficient μi(t) clearly depends on the positions of the consecutive particles: it 
is easy to see that for i ∈ {1, . . . , N − 1}

μi(t) =
⎧⎨⎩

−2 if Ri+1 > Ri and Ri−1 > Ri,

2 if Ri+1 < Ri and Ri−1 < Ri,

0 if Ri+1 ≥ Ri ≥ Ri−1 or Ri−1 ≥ Ri ≥ Ri+1,

moreover

μ0(t) =
{

0 if R1 < R0,
2 if R1 > R0,

μN(t) =
{

0 if RN−1 > RN ,
2 if RN−1 < RN .

Recalling (3.3), we can rewrite

d

dt
T V [ρN(t, ·)] = μ0(t)Ṙ0(t) + μN(t)ṘN (t) −

N−1∑
i=1

μi(t)(Ri(t))
2Ii

−
N−1∑

μi(t)Ri(t)IIi , (3.5)

i=1
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where

Ii = −(v(Ri+1(t)) − v(Ri(t))
) ∑

j>i+1

K ′(xi+1(t) − xj (t))

−(v(Ri(t)) − v(Ri−1(t))
)∑

j<i

K ′(xi(t) − xj (t)) ,

and

IIi = − Ri(t)v(Ri(t))
∑

j �=i, i+1

(
K ′(xi+1(t) − xj (t)) − K ′(xi(t) − xj (t))

)
− 2Ri(t)v(Ri(t))K

′(xi+1(t) − xi(t)) .

Let us first estimate − 
∑N−1

i=1 μi(t)(Ri(t))
2Ii in (3.5). Clearly, the only relevant contributions in 

the sum come from the particles xi for which μi(t) �= 0. However, if the index i is such that 
μi(t) = −2, then Ri+1, Ri−1 > Ri and the monotonicity of v imply

v(Ri+1(t)) − v(Ri(t)) < 0 , and v(Ri(t)) − v(Ri−1(t)) > 0 .

The assumption (AK) on K ensures that Ii < 0, thus, on the other hand, μi(t)(Ri(t))
2Ii < 0. An 

analogous argument implies that, if i such that μi(t) = 2, then Ii > 0 and 2(Ri(t))
2Ii > 0. These 

considerations lead immediately to

−
N−1∑
i=1

μi(t)(Ri(t))
2Ii < 0 . (3.6)

Let us now focus on − 
∑N−1

i=1 μ(Ri(t))Ri(t)IIi . In this case, we would like to obtain an upper 
bound in terms of T V [ρN(t, ·)] and for this purpose we need to estimate |IIi|. We get

|IIi | =Ri(t)|v(Ri(t))|
∣∣∣∣∣−2K ′(xi+1(t) − xi(t))

−
∑

j �=i, i+1

(
K ′(xi+1(t) − xj (t)) − K ′(xi(t) − xj (t))

)∣∣∣∣∣
≤Ri(t)LC

N − 2

N

1

Ri(t)
+ 2L

1

N
≤ C , (3.7)

for some constant C > 0. We have

−
N−1∑
i=1

μ(Ri(t))Ri(t)IIi = B.T . +
N−2∑
i=1

sign(Ri−1 − Ri)(Ri − Ri−1)IIi

+
N−2∑

sign(Ri−1 − Ri)Ri(IIi − IIi−1),
i=2
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and thanks to (3.7) it is easy to see that

|B.T .| +
∣∣∣∣∣
N−2∑
i=1

sign(Ri−1 − Ri)(Ri − Ri−1)IIi

∣∣∣∣∣≤ C1 + C2

N−1∑
i=2

|Ri − Ri−1|

≤ C1 + C2T V [ρN(t)], (3.8)

then it remains to check the term involving IIi − IIi−1. It is easy to see that IIi − IIi−1 may be 
written as a sum of three terms IIAi

+ IIBi
+ IICi

, where

IIAi
=(Ri−1v(Ri−1)

− Riv(Ri))

[
2K ′(xi+1 − xi) +

∑
j �=i,i+1

(K ′(xi+1 − xj ) − K ′(xi − xj ))

]
,

I IBi
=2Ri−1v(Ri−1)(K

′(xi − xi−1) − K ′(xi+1 − xi)),

I ICi
=Ri−1v(Ri−1)

[ ∑
j �=i−1,i

(K ′(xi − xj ) − K ′(xi−1 − xj ))

−
∑

j �=i+1,i

(K ′(xi+1 − xj ) − K ′(xi − xj ))

]
.

We can notice immediately that

|IIBi
| ≤ 2L‖v‖L∞Ri−1|(xi−1 − xi) − (xi+1 − xi)| = 2L

N
‖v‖L∞Ri−1

|Ri−1 − Ri |
Ri−1Ri

, (3.9)

while, recalling that the functions f (z) = zv(z) and K ′ are Lipschitz,

|IIAi
| ≤ Lip[f ]NL(xi+1 − xi)|Ri − Ri−1|. (3.10)

On the other hand,

|IICi
| ≤ |B̃Ti | + ‖v‖L∞Ri−1

∑
j �=i±1,i

|2K ′(xi − xj ) − K ′(xi+1 − xj ) − K ′(xi−1 − xj )|,

so, if we expand K ′(xi±1 − xj ) at the first order w.r.t. K ′(xi − xj ) and recall that K ′′ and K ′′′
are bounded in [0, �], we get

Ri |IICi
| ≤ |RiB̃Ti | + ‖v‖L∞RiRi−1

∑
j �=i±1,i

|K ′′(xi − xj )||(xi − xi−1) − (xi+1 − xi)|

+ ‖v‖L∞

2
RiRi−1

∑
‖K ′′′‖L∞([−�,�])[(xi−1 − xi)

2 + (xi+1 − xi)
2]
j �=i±1,i
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≤ C̃ + ‖v‖L∞

N
L|Ri − Ri−1| + ‖v‖L∞

2
L(Ri(xi − xi − 1)

+ Ri−1(xi+1 − xi)). (3.11)

Thanks to (3.9), (3.10) and (3.11) and the fact that the support of ρN is uniformly bounded in 
time for every N , we then obtain

N−2∑
i=2

|sign(Ri−1 − Ri)Ri(IIi − IIi−1)| ≤
N−2∑
i=2

Ri[|IIAi
| + |IIBi

| + |IICi
|]

≤ C + CL(Lip[f ] + 2‖v‖L∞

N
+ ‖v‖L∞)

N−2∑
i=2

|Ri − Ri−1| + L‖v‖L∞
N−1∑
i=0

|xi+1 − xi |

≤ C(1 + T V [ρN(t, ·)]),
and, together with (3.8), this implies∣∣∣∣∣−

N−1∑
i=1

μ(Ri(t))Ri(t)IIi

∣∣∣∣∣≤ C1 + C2 T V [ρN(t, ·)]. (3.12)

We can now focus on Ṙ0 and ṘN . Since the setting is symmetric, we only present the argument 
for μ0(t)Ṙ0 and leave the one for μN(t)ṘN to the reader. Since μ0(t) �= 0 only if R1(t) > R0(t), 
without restriction we can assume (v(R1) − v(R0)) ≤ 0 and can compute

μ0Ṙ0 = μ0R0[R0v(R1)
∑
j>1

(
K ′(x1 − xj ) − K ′(x0 − xj )

)+ 2R0v(R0)K
′(x1 − x0)]

+ μ0(R0)
2(v(R1) − v(R0))

∑
j>1

K ′(x0 − xj )

≤ μ0R0[R0v(R1)
∑
j>1

(
K ′(x1 − xj ) − K ′(x0 − xj )

)+ 2R0v(R0)K
′(x1 − x0)] .

Moreover, ∣∣∣∣∣∣R0v(R1)
∑
j>1

(
K ′(x1 − xj ) − K ′(x0 − xj )

)+ 2R0v(R0)K
′(x1 − x0)

∣∣∣∣∣∣
≤ vmax L

N − 1

N
+ 2vmax L

N
.

In particular, μ0Ṙ0 ≤ (3CL)R0 and

μ0Ṙ0 + μ(RN)ṘN ≤ 3vmax L (R0 + RN) ≤ 3vmax LT V [ρN(t, ·)] . (3.13)

By putting together (3.6), (3.12) and (3.13) we get estimate (3.4), and (3.1) follows as a conse-
quence of the Gronwall Lemma. �
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We now prove the equi-continuity w.r.t. time with respect to the 1-Wasserstein distance 
for ρN .

Proof (of Proposition 3.4). Assume without loss of generality that 0 < s < t < T . Our goal then 
is to investigate the continuity in time of the discrete density ρN with respect to the 1-Wasserstein 
distance. We exploit the well known relation between the 1-Wasserstein distance of two proba-
bility measures and the L1 distance of their respective pseudo inverse functions. More precisely, 
for any two probability measures μ, ν the following identity holds

d1(μ, ν) = ‖Xμ − Xν‖L1([0, 1]),

where Xμ and Xν are the pseudo inverses of the cumulative distribution functions of μ and 
ν respectively. The assertion of the proposition will follow once we prove that there exists a 
constant C > 0 independent of N such that

‖XρN(t,·) − XρN(s, ·)‖L1([0,1]) < C|t − s|,

for all s, t ∈ (0, T ). By the definition of ρN we can explicitly compute

XρN(t, ·)(z) =
N−1∑
i=0

(
xN
i (t) +

(
z − i

1

N

)
1

Ri(t)

)
χ[i 1

N
, (i+1) 1

N
)
(z) .

Therefore,

d1
(
ρN(t, ·), ρN(s, ·))= ‖XρN(t, ·) − XρN(s, ·)‖L1([0, 1])

≤
N−1∑
i=0

(i+1)/Nˆ

i/N

∣∣∣∣xN
i (t) − xN

i (s) +
(

z − i

N

)(
1

Ri(t)
− 1

Ri(s)

)∣∣∣∣dz

≤
N−1∑
i=0

1

N
|xN

i (t) − xN
i (s)| +

N−1∑
i=0

∣∣∣∣ 1

Ri(t)
− 1

Ri(s)

∣∣∣∣
(i+1)/Nˆ

i/N

(
z − i

N

)
dz

=
N−1∑
i=0

1

N
|xN

i (t) − xN
i (s)| +

N−1∑
i=0

1

2N2

tˆ

s

∣∣∣∣ d

dτ

1

Ri(τ )

∣∣∣∣dτ

≤ 3
N∑

i=0

1

N

tˆ

s

∣∣∣ẋN
i (τ )

∣∣∣dτ ,

where in the last inequality we used that∣∣∣∣ d 1
∣∣∣∣= N |ẋN

i+1(τ ) − ẋN
i (τ )| ≤ N |ẋN

i+1(τ )| + N |ẋN
i (τ )| .
dτ Ri(τ )
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Notice that we can control |ẋN
i (τ )| uniformly in N and in τ . Indeed, recalling the assumption 

(AK), setting L as the Lipschitz constant of K ′ on the interval [−2�, 2�] as in the proof of 
Proposition 3.3, we have

|ẋN
i (τ )| = 1

N

∣∣∣∣∣∣−v(Ri(t))
∑
j>i

K ′(xi − xj ) − v(Ri−1)
∑
j<i

K ′(xi − xj )

∣∣∣∣∣∣≤ 2LNvmax

N
= 2Lvmax,

which gives

d1
(
ρN(t, ·), ρN(s, ·))≤ 6Lvmax |t − s|

N∑
i=0

1

N
≤ 12Lvmax |t − s|,

and (3.2) is proven. �
4. Consistency of the many particle scheme: convergence to the entropy solution

In this section we show that any limit ρ obtained in Section 3 satisfies the entropy condition 
in the sense of Definition 1.1. Moreover, we can prove that ρ is the unique entropy solution of 
the Cauchy problem {

∂tρ = ∂x(ρv(ρ)K ′ ∗ ρ) t ∈ (0, T ],
ρ(0, ·) = ρ̄.

(4.1)

The first step consists in showing that the discrete densities satisfy an analogous version of the 
entropy condition. For technical reasons arising in the proof of the convergence to entropy so-
lutions, we need to introduce another approximating sequence of the solution ρ, namely the 
N -empirical measure

ρ̂N (t, x) := 1

N

N∑
i=0

δxi(t)(x).

In the next lemma we show that ρ̂N and ρN are arbitrarily close in the 1-Wasserstein distance, 
which implies that ρ̂N converge up to a subsequence to the same limit ρ obtained in the previous 
section.

Lemma 4.1. For all N ∈ N, we have

d1(ρ
N(t, ·), ρ̂N (t, ·)) ≤ C

N
,

for some constant C only depending on ρ̄.

Proof. In view of the standard isometric mapping between the 1-Wasserstein space of proba-
bility measures and the convex cone of non-decreasing functions in L1([0, 1]), similarly to the 
proof of Proposition 3.4, we have
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d1(ρ
N(t, ·), ρ̂N (t, ·)) ≤

N−1∑
i=0

(i+1)/Nˆ

i/N

∣∣∣∣(z − i
1

N

)
1

Ri(t)

∣∣∣∣ dz

= 1

2N

N−1∑
i=0

(xN
i+1(t) − xN

i (t)) = 1

2N

(
xN
N (t) − xN

0 (t)
)

≤ 1

2N
meas(supp(ρ̄)),

which proves the assertion. �
Remark 4.2. Let W ∈ C(R) be even and locally Lipschitz. Then, there exists a constant C > 0
depending only on ρ̄ such that

sup
t≥0

‖W ∗ ρN(t, ·) − W ∗ ρ̂N (t, ·)‖L1 ≤ C

N
,

for all N ∈ N. To prove this, let γ N
o (t) be an optimal plan between ρN(t, ·) and ρ̂N (t, ·) with 

respect to the cost c(x) = |x|. We then estimate, for all t ≥ 0,

‖W ∗ ρN − W ∗ ρ̂N‖L1(R) =
ˆ

R

∣∣∣∣∣∣
ˆ

R

W(x − y)dρN(t, ·)(y) −
ˆ

R

W(x − y)dρ̂N(t, ·)(y)

∣∣∣∣∣∣ dx

=
ˆ

R

∣∣∣∣∣∣∣
¨

R2

(W(x − y) − W(x − z)) dγ N
0 (t)(y, z)

∣∣∣∣∣∣∣ dx

≤ C

ˆ

R

¨

R2

|y − z|dγ N
0 (t)(y, z)dx,

where we have used that the supports of ρN and ρ̂N are contained in supp(ρ̄) which is bounded 
and independent of time. By definition of 1-Wasserstein distance we therefore have

‖W ∗ ρN − W ∗ ρ̂N‖L1(R) ≤ Cd1(ρ
N(t, ·), ρ̂N (t, ·)) ≤ C̃

N
,

for some suitable constant C̃ > 0 in view of Lemma 4.1.

Our next goal is to prove that the entropy inequality

0 ≤
T̂ ˆ

|ρN − c|ϕt − sign(ρN − c)[(f (ρN) − f (c))K ′  ρ̂Nϕx − f (c)K ′′ ∗ ρ̂Nϕ]dxdt
0 R
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holds for every non-negative test function ϕ with compact support in C∞
c ((0, +∞) × R), every 

constant c ≥ 0, and in the N → ∞ limit. Such a goal, which requires some tedious calculations, 
is however not enough to prove that the limit ρ of the previous section is an entropy solution 
because of the discontinuity of the sign function in the above inequality, which does not allow 
us to pass to the limit for ρN → ρ almost everywhere and in L1. To bypass this problem we 
introduce in Lemma 4.4 a δ-regularization of the sign function in order to first let N → +∞
and then δ ↘ 0. In the last part of the section we prove the uniqueness of entropy solutions, 
which allows us to conclude that the whole approximating sequence ρN converges to ρ, thus 
completing the proof of our main Theorem 1.2.

Lemma 4.3. For every non negative ϕ ∈ C∞
c ((0, +∞) × R), c ≥ 0 and N ∈ N the following 

inequality holds

lim inf
N→+∞

T̂

0

ˆ

R

|ρN − c|ϕt

−sign(ρN − c)[(f (ρN) − f (c))K ′ ∗ ρ̂Nϕx − f (c)K ′′ ∗ ρ̂Nϕ]dxdt ≥ 0. (4.2)

Proof. Let T > 0 such that suppϕ ⊂ [0, T ] × R. The basic idea of the proof is rather simple, 
although the computations are quite technical: we need to rewrite the left-hand side of the in-
equality so that it is possible to isolate a term with positive sign and then show that the remaining 
terms give negligible contributions as N → ∞. By definition of ρN and ρ̂N we obtain

T̂

0

ˆ

R

|ρN − c|ϕt − sign(ρN − c)[(f (ρN) − f (c))K ′ ∗ ϕx − f (c)K ′′ ∗ ρNϕ]dxdt

= B.T .1 +
N−1∑
i=0

Ii +
N−1∑
i=0

IIi,

where

Ii :=
T̂

0

xi+1ˆ

xi

|Ri − c|ϕt dxdt,

IIi := −
T̂

0

xi+1ˆ

xi

sign(Ri − c)(f (Ri) − f (c))K ′ ∗ ρ̂Nϕx dxdt

+
T̂ xi+1ˆ

f (c)sign(Ri − c)K ′′ ∗ ρ̂Nϕ dxdt,
0 xi
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B.T .1 :=
T̂

0

x0ˆ

−∞
cϕt − f (c)[K ′ ∗ ρ̂Nϕx + K ′′ ∗ ρ̂Nϕ]dxdt

+
T̂

0

∞̂

xN

cϕt − f (c)[K ′ ∗ ρ̂Nϕx + K ′′ ∗ ρ̂Nϕ]dxdt.

For simplicity of notation we set SN
i := sign(Ri − c), we omit the dependence on N and t

wherever it is clear from the context. Moreover, we use the label B.T .i (or B.T .ij ) to denote the 
contribution of the “boundary terms”. Integrating by parts and recalling the definition of ρ̂N and 
the expression for Ṙi , we can rewrite Ii as

Ii =
T̂

0

SiRi(ẋi+1 − ẋi )

⎛⎝ −
xi+1ˆ

xi

ϕ(t, x)dx − ϕ(t, xi+1)

⎞⎠dt

+
T̂

0

Si[Ri(ẋi+1 − ẋi )ϕ(t, xi+1) − (Ri − c)(ẋi+1ϕ(t, xi+1) − ẋiϕ(t, xi))]dt,

and IIi as

IIi = −
T̂

0

Si

(f (Ri) − f (c))

N

N∑
j=0

(K ′(xi+1 − xj )ϕ(t, xi+1) − K ′(xi − xj )ϕ(t, xi))dt

+
T̂

0

Si

f (Ri)

N

N∑
j=0

xi+1ˆ

xi

K ′′(x − xj )ϕ(t, x)dxdt .

Then the sum Ii + IIi becomes

Ii + IIi = A1
i + A2

i + Zi,

where we set

A1
i =

T̂

0

SiRi(ẋi+1 − ẋi )

⎛⎝ −
xi+1ˆ

xi

ϕ(t, x)dx − ϕ(t, xi+1)

⎞⎠dt,

A2
i =

T̂

0

Si

f (Ri)

N

N∑
j=0

xi+1ˆ

xi

K ′′(x − xj )ϕ(t, x)dxdt,

and
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Zi = −
N−1∑
i=0

T̂

0

Siϕ(t, xi+1)[Riẋi + f (Ri)

N

N∑
j=0

K ′(xi+1 − xj )]dt

+
N−1∑
i=0

T̂

0

Siϕ(t, xi+1)[cẋi+1 + f (c)

N

N∑
j=0

K ′(xi+1 − xj )]dt

+
N−1∑
i=0

T̂

0

Siϕ(t, xi)[Riẋi + f (Ri)

N

N∑
j=0

K ′(xi − xj )]dt

−
N−1∑
i=0

T̂

0

Siϕ(t, xi)[cẋi + f (c)

N

N∑
j=0

K ′(xi − xj )]dt.

By performing a summation by parts, we get

N−1∑
i=0

Zi = B.T .2 +
N−1∑
i=1

T̂

0

ϕ(t, xi)Si

⎛⎝Riẋi + f (Ri)

N

N∑
j=0

K ′(xi − xj )

⎞⎠dt

−
N−1∑
i=1

T̂

0

ϕ(t, xi)Si−1

⎛⎝Ri−1ẋi−1 + f (Ri−1)

N

N∑
j=0

K ′(xi − xj )

⎞⎠dt

+
N−1∑
i=1

T̂

0

ϕ(t, xi)(Si−1 − Si)

⎛⎝cẋi + f (c)

N

N∑
j=0

K ′(xi − xj )

⎞⎠dt

= B.T .2 + B.T .3 +
N−2∑
i=1

(A3
i + A4

i ) +
N−1∑
i=1

Bi,

where B.T .2 and B.T .3 involve the external particles. More precisely, B.T .2 = B.T .21 +B.T .22, 
where

B.T .21 =c

T̂

0

ϕ(t, xN)SN−1
v(c) − v(RN−1)

N

N∑
j=0

K ′(XN − xj )dt

− c

T̂

ϕ(t, x0)S0
v(c) − v(R0)

N

N∑
j=0

K ′(X0 − xj )dt,
0
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B.T .22 =
T̂

0

ϕ(t, x0)S0R0

⎛⎝ẋ0 + v(R0)

N

N∑
j=0

K ′(X0 − xj )

⎞⎠dt

−
T̂

0

ϕ(t, xN)SN−1RN−1

⎛⎝ẋN−1 + v(RN−1)

N

N∑
j=0

K ′(XN − xj )

⎞⎠dt,

and B.T .3 corresponds to

B.T .3 =
T̂

0

ϕ(t, xN−1)SN−1

⎛⎝RN−1ẋN−1 + f (RN−1)

N

N∑
j=0

K ′(xN−1 − xj )

⎞⎠dt

−
T̂

0

ϕ(t, x0)S0

⎛⎝R0ẋ0 + f (R0)

N

N∑
j=0

K ′(x1 − xj )

⎞⎠dt.

The terms A3
i , A

4
i and Bi involve, instead, the internal particles and they are defined as follows

A3
i =

T̂

0

ϕ(t, xi)Si

f (Ri)

N

N∑
j=0

[K ′(xi − xj ) − K ′(xi+1 − xj )]dt,

A4
i =

T̂

0

(ϕ(t, xi) − ϕ(t, xi+1))SiRi

⎛⎝ẋi + v(Ri)

N

N∑
j=0

K ′(xi+1 − xj )

⎞⎠dt,

Bi =
T̂

0

ϕ(t, xi)(Si−1 − Si))

⎛⎝cẋi + f (c)

N

N∑
j=0

K ′(xi − xj )

⎞⎠dt.

Summarizing, we can rewrite B.T .1 +∑N−1
i=0 (Ii + IIi) as

B.T .1 + B.T21 + B.T .22 + B.T .3 +
N−1∑
i=0

(A1
i + A2

i ) +
N−2∑
i=1

(A3
i + A4

i ) +
N−1∑
i=1

Bi,

then estimate (4.2) follows if we prove that such sum is non negative when N � 1, and this can 
be done by showing that

B.T .1 + B.T .21 +
N−1∑
i=1

Bi > 0, (4.3)

while



2850 M. Di Francesco et al. / J. Differential Equations 266 (2019) 2830–2868
∣∣∣∣∣B.T .22 + B.T .3 +
N−1∑
i=0

(A1
i + A2

i ) +
N−2∑
i=1

(A3
i + A4

i )

∣∣∣∣∣≤ C

N
(4.4)

for a positive constant C = C(ϕ, K, ρ̄, v, T ). The remaining part of the proof is devoted to show-
ing the validity of (4.3) and (4.4). We focus first on (4.3). Integrating by parts, recalling that 
ϕ(0, ·) = ϕ(T , ·) = 0, ϕ(t, ·) ≥ 0 and the assumption (AK), we immediately obtain

B.T .1 = −f (c)

N

T̂

0

⎛⎝ϕ(t, xN)

N∑
j=0

K ′(xN − xj ) + ϕ(t, x0)

N∑
j=0

K ′(x0 − xj )

⎞⎠> 0. (4.5)

Because of the monotonicity of v (see (Av)), for all times t we know that

S0(t)(v(c) − v(R0(t))) ≥ 0, and SN−1(t)(v(c) − v(RN−1(t))) ≥ 0

thus, recalling again (AK), we deduce

B.T .21 ≥ 0. (4.6)

Let us now consider the generic term Bi . Substituting the expression of ẋi , we get

Bi =
T̂

0

ϕ(t, xi)(Si−1 − Si)

[
v(c) − v(Ri)

N

∑
j>i

K ′(xi − xj )

+v(c) − v(Ri−1)

N

∑
j<i

K ′(xi − xj )

]
dt.

Now, if Ri(t), Ri−1(t) are both strictly bigger than c or strictly smaller than c, then Si−1(t) −
Si(t) = 0. Otherwise, since v is decreasing (and we assume sign(0) = 0), we get

Ri(t) ≥ c ≥ Ri−1(t) ⇒ − 2 ≤ Si−1(t) − Si(t) ≤ 0, v(c) − v(Ri(t)) ≥ 0,

v(c) − v(Ri−1) ≤ 0

Ri−1(t) ≥ c ≥ Ri(t) ⇒ 0 ≤ Si−1(t) − Si(t) ≤ 2, v(c) − v(Ri(t)) ≤ 0,

v(c) − v(Ri−1) ≥ 0

and, recalling that K ′ is symmetric and K ′(x) > 0 if x > 0, for all times it holds

(Si−1 − Si)

⎡⎣v(c) − v(Ri)

N

∑
j>i

K ′(xi − xj ) + v(c) − v(Ri−1)

N

∑
j<i

K ′(xi − xj )

⎤⎦≥ 0.

In particular, Bi ≥ 0 and
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N−1∑
i=1

Bi ≥ 0. (4.7)

Then estimate (4.3) is a direct consequence of (4.5), (4.6) and (4.7). Let us consider now (4.4). 
First of all, observe that Lemma 2.2 ensures that the support of ρN is always contained in the 
support of ρ̄. Therefore, since we assume K ′ locally Lipschitz, there exists a constant L > 0 such 
that

L = sup
{|K ′′(x)| , x ∈ [−(x̄max − x̄min), (x̄max − x̄min)]

}
.

Since the argument is quite technical, it is more convenient to split the left hand side of (4.4) in 
three parts:

�1 = B.T .22 + B.T .3 + A2
0 + A2

N−1, �2 =
N−1∑
i=0

A1
i +

N−2∑
i=1

A4
i , �3 =

N−2∑
i=1

(A2
i + A3

i ).

Recalling that K ′, ϕ and v are uniformly bounded and Lipschitz, we get

|�1| ≤4L‖ϕ‖L∞‖v‖L∞

T̂

0

(R0(x1 − x0) + RN−1(xN − xN−1))dt

+ 2L‖v‖L∞Lip[ϕ]
T̂

0

RN−1(xN − xN−1)dt ≤ C(ϕ,v,L,T )

N
(4.8)

Then, inserting the expression of ẋi , we can rearrange �2 in such a way that

|�2| ≤ 3
N−1∑
i=0

T̂

0

Ri

∣∣∣∣∣∣ −
xi+1ˆ

xi

ϕ(t, x) − ϕ(t, xi+1)

∣∣∣∣∣∣ |v(Ri+1) − v(Ri)|
N

N∑
j=0

|K ′(xi+1 − xj )|dt

+
N−1∑
i=0

T̂

0

Ri

∣∣∣∣∣∣ −
xi+1ˆ

xi

ϕ(t, x) − ϕ(t, xi+1)

∣∣∣∣∣∣ v(Ri)

N

N∑
j=0

|K ′(xi − xj ) − K ′(xi+1 − xj )|dt

+
N−2∑
i=1

T̂

0

Ri |ϕ(t, xi) − ϕ(t, xi+1)| |v(Ri−1) − v(Ri)|
N

N∑
j=0

|K ′(xi − xj )|dt

+
N−2∑
i=1

T̂

0

Ri |ϕ(t, xi) − ϕ(t, xi+1)|v(Ri)

N

N∑
j=0

|K ′(xi − xj ) − K ′(xi+1 − xj )|dt,

and using the Lipschitz and the uniform regularity of K ′, ϕ, v, estimate (3.1) and the uniform 
bound on the support of ρN , it is easy to see that
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|�2| ≤4LLip[ϕ]Lip[v]T V [ρ̄]
T̂

0

eCt

N−1∑
i=0

Ri(xi+1 − xi)dt

+ 2L‖v‖L∞Lip[ϕ]
T̂

0

N−1∑
i=0

Ri(xi+1 − xi)
2dt ≤ C(ϕ,v,K, ρ̄, T )

N
. (4.9)

It remains to show that also �3 vanishes as N → ∞. In this case, the uniform bound on K ′′
implies

|�3| ≤
N−2∑
i=1

T̂

0

|f (Ri)|
N

xi+1ˆ

xi

|ϕ(t, x) − ϕ(t, xi)|
N∑

j=0

|K ′′(x − xj )|dxdt

≤ L‖v‖L∞Lip[ϕ]
T̂

0

Ri

xi+1ˆ

xi

(x − xi)dxdt ≤ C(ϕ,v,K, ρ̄, T )

N
. (4.10)

Finally, by combining (4.8), (4.9) and (4.10), we obtain (4.4) and, recalling also (4.3), (4.2). �
We are now in the position to prove that the large particle limit ρ that we obtained in the 

previous section is an entropy solution for the PDE.

Lemma 4.4. Let ρ be the limit of ρN up to a subsequence. For every non negative ϕ ∈
C∞

c ([0, +∞) ×R) and c ≥ 0, one has

0 ≤
ˆ

R

|ρ̄ − c|ϕ(0, x)dx +
+∞ˆ

0

ˆ

R

|ρ − c|ϕt

−sign(ρ − c)[(f (ρ) − f (c))K ′ ∗ ρ ϕx − f (c)K ′′ ∗ ρ ϕ]dxdt. (4.11)

Proof. Let T > 0 be such that supp(ϕ) ⊂ [0, T ). Roughly speaking, the statement holds provided 
we can show that it is possible to pass to the limit as N → ∞ in the inequality (4.2). More 
precisely, we need to prove the following

lim
N→∞

ˆ

R

|ρN(0, x) − c|ϕ(0, x)dx =
ˆ

R

|ρ̄ − c|ϕ(0, x)dx,

lim
N→∞

T̂ ˆ
|ρN − c|ϕt dxdt =

T̂ ˆ
|ρ − c|ϕt dxdt,
0 R 0 R
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lim
N→∞

T̂

0

ˆ

R

sign(ρN − c)(f (ρN) − f (c))K ′ ∗ ρ̂N ϕx dxdt

=
T̂

0

ˆ

R

sign(ρ − c)(f (ρ) − f (c))K ′ ∗ ρ ϕx dxdt,

lim
N→∞

T̂

0

ˆ

R

f (c)sign(ρN − c)K ′′ ∗ ρ̂N ϕ dxdt =
T̂

0

ˆ

R

f (c)sign(ρ − c)K ′′ ∗ ρ ϕ dxdt.

The first two limits are immediate in view of the strong L1-convergence of ρN(0, x) to ρ̄ and of 
the convergence of ρN to ρ almost everywhere in L1([0, T ] ×R) respectively. Notice now that 
the continuity of f ensures the continuity of the function h(μ) := sign(μ − c)(f (μ) − f (c)). 
We have

T̂

0

ˆ

R

[sign(ρN − c)(f (ρN) − f (c))K ′ ∗ ρ̂N − sign(ρ − c)(f (ρ) − f (c))K ′ ∗ ρ]ϕx dxdt

=
T̂

0

ˆ

R

(h(ρ) − h(ρN))K ′ ∗ ρ ϕx dxdt +
T̂

0

ˆ

R

h(ρN)K ′ ∗ (ρ − ρ̂N )ϕx dxdt,

then the regularity of h and K ′ required in the assumptions (Av) and (AK), the convergence of 
ρN to ρ almost everywhere in [0, T ] × R and the strong L1-convergence of K ′ ∗ ρ̂N to K ′ ∗ ρ

established in Remark 4.2 imply that

T̂

0

ˆ

R

|[(h(ρ) − h(ρN))K ′ ∗ ρ + h(ρN)K ′ ∗ (ρ − ρ̂N )]ϕx |dxdt → 0 (4.12)

as N tends to +∞. Concerning the fourth limit, instead, we can see that

T̂

0

ˆ

R

f (c)[sign(ρN − c)K ′′ ∗ ρ̂N − sign(ρ − c)K ′′ ∗ ρ]ϕ dxdt

=
T̂

0

ˆ

R

f (c)sign(ρN − c)K ′′ ∗ (ρ̂N − ρ)ϕ dxdt

+
T̂

0

ˆ

R

f (c)(sign(ρN − c) − sign(ρ − c))K ′′ ∗ ρ ϕ dxdt.

The first of the two terms can be handled as above. By using Remark 4.2 and Lemma 4.1, we get
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T̂

0

ˆ

R

|f (c)sign(ρN − c)K ′′ ∗ (ρ̂N − ρ)ϕ dx|dt ≤ C(K ′′,‖f ‖∞, ϕ)

N
. (4.13)

On the other hand, passing to the limit in the terms including the difference sign(ρN − c) −
sign(ρ − c) is less straightforward because of the discontinuity of the sign function. Let us then 
focus on the proof of

lim
N→∞

T̂

0

ˆ

R

f (c)(sign(ρN − c) − sign(ρ − c))K ′′ ∗ ρ ϕ dxdt = 0 .

In order to get rid of the discontinuity, we need to introduce two smooth approximations of the 
sign function, we call them η±

δ , so that

sign(z) − η+
δ (z) ≥ 0 and sign(z) − η−

δ (z) ≤ 0.

Let us recall that the regularity of K ensures the existence of a constant L > 0 such that |K ′′(z)| ≤
L for every z ∈ [−2meas(supp(ρN)), 2meas(supp(ρN))] and every N . Then we can estimate

T̂

0

ˆ

R

f (c)sign(ρN − c)K ′′ ∗ ρϕ

=
T̂

0

ˆ

R

f (c)sign(ρN − c)(K ′′ − L) ∗ ρ ϕ +
T̂

0

ˆ

R

f (c)sign(ρN − c)L ∗ ρ ϕ

≤
T̂

0

ˆ

R

f (c)η+
δ (ρN − c)(K ′′ − L) ∗ ρ ϕ +

T̂

0

ˆ

R

f (c)η−
δ (ρN − c)L ∗ ρ ϕ ,

where the inequality holds because

(sign(ρN − c) − η+
δ (ρN − c))(K ′′ − L) ∗ ρ ≤ 0,

(sign(ρN − c) − η−
δ (ρN − c))L ∗ ρ ≤ 0.

Now, observe that

lim
N→∞f (c)

T̂

0

ˆ

R

(η+
δ (ρN − c) − η+

δ (ρ − c))(K ′′ − L) ∗ ρ ϕ

≤ lim
N→∞f (c)

T̂ ˆ
|η+

δ (ρN − c) − η+
δ (ρ − c)||(K ′′ − L) ∗ ρ ϕ|
0 R
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≤ lim
N→∞f (c)2L‖ϕ‖∞Lip[η+

δ ]
T̂

0

ˆ

R

|ρN − ρ|

≤ C(L,ϕ,η+
δ ) lim

N→∞‖ρN − ρ‖L1([0,T ]×R) = 0

and in a similar way we get also

lim
N→∞

T̂

0

ˆ

R

f (c)(η−
δ (ρN − c) − η−

δ (ρ − c))L ∗ ρ ϕ = 0 ,

thus implying that

lim sup
N→∞

T̂

0

ˆ

R

f (c)sign(ρN −c)K ′′ ∗ρ ϕ ≤
T̂

0

ˆ

R

f (c)[η+
δ (ρ−c)(K ′′−L)∗ρ+η−

δ (ρ−c)L∗ρ]ϕ.

Once here, the dominated convergence Theorem ensures that we can pass to the limit as δ ↓ 0 to 
get

lim sup
N→∞

f (c)

T̂

0

ˆ

R

sign(ρN − c)K ′′ ∗ ρ ϕ ≤
T̂

0

ˆ

R

sign(ρ − c)K ′′ ∗ ρ ϕ.

A symmetric argument provides the inverse inequality with the lim inf replacing the lim sup, 
hence we obtain

lim
N→∞f (c)

T̂

0

ˆ

R

(sign(ρN − c) − sign(ρ − c))K ′′ ∗ ρ ϕ = 0. (4.14)

The above argument, together with (4.12)–(4.14), implies estimate (4.11), and the proof is com-
plete. �

We now tackle another crucial task for our result, namely the uniqueness of the entropy solu-
tion for a fixed initial datum. To perform this task we rely on a stability result due to Karlsen and 
Risebro [24], which we report here for the sake of completeness in an adapted version.

Theorem 4.5. Let f, P, Q be such that

f is locally Lipschitz, P,Q ∈ W 1,1(R) ∩ C(R), Px,Qx ∈ L∞(R),

and let p, q ∈ L∞([0, T ]; BV (R)) be respectively entropy solutions to{
pt = (f (p)P (x))x p(0, x) = p0(x),

q = (f (q)Q(x)) q(0, x) = q (x),
t x 0
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where the initial data (p0, q0) are in L1(R) ∩L∞(R) ∩BV (R). Then for almost every t ∈ (0, T )

one has

‖p(t) − q(t)‖L1(R) ≤ ‖p0 − q0‖L1(R) + t (C1‖P − Q‖L∞(R) + C2‖P − Q‖BV (R)) (4.15)

where C1 = Lip[f ] min{‖P ‖BV (R), ‖Q‖BV (R)} and C2 = ‖f ‖L∞ .

We are now ready to prove our main theorem.

Proof (of Theorem 1.2). The results in Theorem 3.1 and Lemma 4.4 imply that there exists 
a subsequence of ρN converging almost everywhere on [0, +∞) ×R and in L1

loc to an entropy 
solution ρ to (1.8) in the sense of Definition 1.1. Therefore, the proof of Theorem 1.2 is concluded 
once we show that ρ is the unique entropy solution. We argue by contradiction. Assume that 
there exist two different functions ρ and � satisfying Definition 1.1 with ρ(0, ·) = �(0, ·) = ρ̄, 
so that we can define two vector fields P(t, x) = K ′ ∗ ρ(t, x) and Q(t, x) = K ′ ∗ �(t, x). In 
order to apply Theorem 4.5 to P and Q, let us check that all assumptions therein are satisfied. 
First of all, P and Q are locally Lipschitz w.r.t. x on R thanks to the assumption (AK), thus 
Px, Qx ∈ L∞

loc(R). Then, we observe that

|P(t, x) − Q(t, x)| =
∣∣∣∣∣∣
ˆ

R

K ′(x − y)ρ(t, y)dy −
ˆ

R

K ′(x − y)�(t, y)dy

∣∣∣∣∣∣
≤
ˆ

R

|K ′(x − y)(ρ(t, y) − �(t, y))|dy ≤ Lρ̄‖ρ − �‖L∞([0,T ];L1(R)),

and ˆ

R

|Px(s, x) − Qx(s, x)|dx =
ˆ

R

|K ′′ ∗ ρ(t, x) − K ′′ ∗ �(t, x)|dx

=
ˆ

R

|K ′′ ∗ (ρ − �)(t, x)|dx ≤ Lρ̄‖ρ − �‖L∞([0,T ];L1(R)),

where Lρ̄ = max{‖K ′‖L∞(Iρ̄ ), ‖K ′′‖L1(Iρ̄ )}, and Iρ̄ = [−2meas(supp(ρ̄)), 2meas(supp(ρ̄))]. As 
a consequence

‖P − Q‖L∞([0,T ]×R) ≤ Lρ̄‖ρ − �‖L∞([0,T ];L1(R))

‖P − Q‖L∞([0,T ];BV (R)) ≤ Lρ̄‖ρ − �‖L∞(0,T ;L1(R)).

By applying Theorem 4.5 to ρ, �, P and Q we obtain

‖ρ(t) − �(t)‖L1(R) ≤ C(K, ρ̄)t‖ρ(t) − �(t)‖L1(R). (4.16)

Assume that there exists an open interval (t1, t2) ⊂ [0, T ] such that ρ(t, ·) and �(t, ·) differ in 
L1(R) on t ∈ (t1, t2). Then, due to the fact that (1.3) is invariant with respect to time-translations, 
inequality (4.16) implies



M. Di Francesco et al. / J. Differential Equations 266 (2019) 2830–2868 2857
‖ρ(t, ·) − �(t, ·)‖L1(R) ≤ C(K, ρ̄)(t − t1)‖ρ(t, ·) − �(t, ·)‖L1(R) ∀ t ∈ (t1, t2). (4.17)

Now, let t∗ ∈ (t1, t2) be such that C(K, ρ̄)(t∗ − t1) < 1/2. Then, (4.17) implies that

‖ρ(t, ·) − �(t, ·)‖L1(R) = 0 for all t ∈ [t1, t∗],

which contradicts the assumption on the time interval (t1, t2). By arbitrariness of t1, t2, we get 
ρ(t, ·) ≡ �(t, ·) a.e. on [0, T ] ×R and the proof is complete. �
5. Non-uniqueness of weak solutions and steady states

The use of the notion of entropy solutions in the present context is not merely motivated by 
the technical need of identifying a notion of solution (stronger than weak solutions) allowing to 
prove uniqueness. Similarly to what happens for scalar conservation laws, we prove that there are 
explicit examples of initial data in BV for which there exists two weak solutions to the Cauchy 
problem (1.8).

For simplicity, we use

v(ρ) = (1 − ρ)+.

Consider the initial condition

ρ̄(x) = χ[−1,−1/2] + χ[1/2,1].

Clearly, the stationary function

ρs(t, x) = χ[−1,−1/2] + χ[1/2,1]

is a weak solution to (1.8) with initial condition ρ̄. To see this, let ϕ ∈ C1
c ([0, +∞) × R). We 

have

+∞ˆ

0

ˆ

R

[
ρsϕt + ρsv(ρs)K

′ ∗ ρϕx

]
dxdt +

ˆ

R

ρ̄ϕ(0, x)dx

=
+∞ˆ

0

d

dt

⎛⎜⎝ ˆ

[−1,−1/2]∪[1/2,1]
ϕdx

⎞⎟⎠dt +
ˆ

[−1,−1/2]∪[1/2,1]
ϕ(0, x)dx = 0.

We now prove that ρs is not an entropy solution, in that it does not satisfy the entropy condition 
in Definition 1.1. Let ψ ∈ C∞

c (R) be a standard non-negative mollifier supported on [−1/4, 1/4]. 
Let T > 0 and consider the test function ϕ(t, x) = φ(x)ξ(t) with

φ(x) =

⎧⎪⎨⎪⎩
ψ(x + 1/2) if −3/4 ≤ x ≤ −1/4

ψ(x − 1/2) if 1/4 ≤ x ≤ 3/4

0 otherwise,
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and ξ ∈ C∞([0, +∞)) with ξ(t) = 1 for t ≤ T , ξ(t) = 0 for t ≥ T + 1 and ξ non-increasing. Let 
us set c = 1/2, I = [1/4, 3/4], and compute

ˆ

R

|ρs − c|φdx +
+∞ˆ

0

ˆ

R

[|ρs − c|φ(x)ξ ′(t) − sign(ρs − c)(f (ρ) − f (c))K ′ ∗ ρsφ
′(x)ξ(t)

−f (c)K ′′ ∗ ρsφ(x)ξ(t)
]

dxdt

≤ 2
ˆ

I

ϕdx + 1

4

T +1ˆ

0

ξ(t)dt

⎡⎢⎣ ˆ

(−I )∩(−∞,1/2]
K ′ ∗ ρsϕxdx −

ˆ

(−I )∩[1/2,+∞)

K ′ ∗ ρsϕxdx

−
ˆ

I∩(−∞,1/2]
K ′ ∗ ρsϕxdx +

ˆ

I∩[1/2,+∞)

K ′ ∗ ρsϕxdx −
ˆ

(−I )∪I

K ′′ ∗ ρsϕdx

⎤⎥⎦

= 2
ˆ

I

ϕdx − 1

4

T +1ˆ

0

ξ(t)dt

⎡⎢⎣ ˆ

(−I )∩(−∞,1/2]
K ′′ ∗ ρsϕdx −

ˆ

(−I )∩[1/2,+∞)

K ′′ ∗ ρsϕdx

−
ˆ

I∩(−∞,1/2]
K ′′ ∗ ρsϕdx +

ˆ

I∩[1/2,+∞)

K ′′ ∗ ρsϕdx +
ˆ

(−I )∪I

K ′′ ∗ ρsϕdx

⎤⎥⎦ .

Now, since K ′′ and ρs are even, the same holds for K ′′ ∗ ρs . Therefore we get

ˆ

R

|ρs − c|ϕdx

+
T̂

0

ˆ

R

[|ρs − c|ϕt − sign(ρs − c)(f (ρ) − f (c))K ′ ∗ ρsϕx − f (c)K ′′ ∗ ρsϕ
]

dxdt

≤ 2
ˆ

I

ϕdx − 1

2

T +1ˆ

0

ξ(t)dt

¨

I×I

(
K ′′(x − y) + K ′′(x + y)

)
ϕ(x)dydx. (5.1)

Let us now require for simplicity the following additional assumption:

K ′′(x) > 0 for all x ∈ R. (5.2)

Actually, such an assumption can be relaxed, see Remark 5.2 below. Then, the last integral in 
(5.1) is clearly positive, and recalling that ξ(t) = 1 on t ∈ [0, T ], we can choose T large enough 
so that the whole right-hand side of (5.1) is strictly negative, thus contradicting Definition 1.1.

The above argument shows that ρs is a weak solution but not an entropy solution. On the 
other hand, the initial condition ρs is L∞ and BV , therefore it must generate an entropy solution 
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according to our main Theorem 1.2. Clearly, such solution cannot coincide with ρs . We have 
therefore proven the following theorem.

Theorem 5.1. Assume (Av), (AK), and (5.2) are satisfied. Then, there exists an initial condition 
ρ̄ ∈ L∞(R) ∩BV (R) such that the Cauchy problem (1.8) has more than one distributional weak 
solution.

Remark 5.2. The assumption (5.2) can be relaxed to include also Gaussian kernels K(x) =
−Ae−Bx2

with A, B > 0. Indeed, in order to fulfil

¨

I×I

(
K ′′(x − y) + K ′′(x + y)

)
ϕ(x)dydx > 0

one has to choose the size of the interval I small enough. We omit the details.

Remark 5.3. The fact that the initial condition red ρ̄ will not give rise to a stationary entropy 
solution can also be seen intuitively by using the result in Theorem 1.2. Let us approximate ρ̄
with 2(N + 1) particles with mass 1/(2(N + 1)), with N integer, and with the particles located 
at x̄i , i = 1, . . . , 2(N + 1), with

x̄i = −1 + i

2(N + 1)
, i = 0, . . . ,N

x̄i = 1/2 + i − N

2(N + 1)
, i = N + 1, . . . ,2N + 1.

Let us now make the particles’ positions evolve with the usual ODE system

ẋi = −v(Ri)

N

∑
j>i

(xi − xj ) − v(Ri−1)

N

∑
j<i

(xi − xj ).

It can be easily proven (we omit the details) that the solution to the particle system preserves the 
even symmetry of the initial condition. Moreover, the particle xN – i.e. the leading particle of 
the left bump of the initial condition – has a positive initial speed which can be controlled from 
below by a constant provided that, for example, K ′ is supported on R and is strictly monotone 
on (0, +∞). Indeed, as all particles xi with i < N are posed at minimal distance at t = 0 and the 
initial distance xN+1 − xN = 1, we have

ẋN (0) = v(1/N)
1

N

∑
j>N

K ′(xj (0) − xN(0)) ≥ v(1/N)
N + 1

N
K ′(2) > v(1/2)K ′(2) > 0.

Similarly, one can show that all particles i = 0, . . . , N − 1 ‘move’ from their initial position, 
although their initial speed is zero. A numerical simulation performed in Section 6 actually show 
that for large N the discrete density tends to form a unique bump for large times. Hence, since 
Theorem 1.2 shows that the particle solution is arbitrarily close in L1

loc to the entropy solution, 
this argument supports the evidence that the entropy solution is not stationary.
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Apart from producing an explicit example of non-uniqueness of weak solutions, the above ex-
ample shows that there are stationary weak solutions that are not entropy solutions, and therefore 
cannot be considered as stationary solutions to our problem according to Definition 1.1. This 
raises the following natural question: what are the steady states of (1.3) in the entropy sense? 
Before asking this question, it will be useful to tackle another task: as the approximating particle 
system converges to the entropy solutions, detecting the steady states of (1.6) will give us a useful 
insight about the steady states at the continuum level.

Let us restrict, for simplicity, to the case of an even initial condition ρ̄, such that ‖ρ̄‖L1 = 1
and N ∈ N fixed. We assume here that K ′ is supported on the whole R. Consider the following 
particle configuration, ⎧⎪⎨⎪⎩

x̃1 = − 1
2 + 1

2N
,

x̃i+1 = x̃1 + i
N

, i = 1, ...,N − 2,

x̃N = x̃1 + N−1
N

= 1
2 − 1

2N
.

(5.3)

With this choice we get

Ri = 1

N(x̃i+1 − x̃i )
= 1, v(Ri) = 0 ∀i = 1, ...,N − 1,

and it is easy to show that this configuration is a stationary solution for system (1.6). Actually, up 
to space translations, this is the only possible stationary solution. In order to prove that, assume 
that we have a particle configuration as in (5.3) but with only one particle labelled I such that

x̃I = x̃1 + I − 1

N
, x̃I+1 = x̄ > x̃I + 1

N
.

For such a configuration

RI = m

N(x̃I+1 − x̃I )
< 1, v(RI ) > 0, and v(Ri) = 0 ∀i �= I,

and the I particles evolves according to

˙̃xI = −v(RI )

N

∑
j>I

K ′(x̃I − x̃j ) = −v(RI )

N

∑
j>I

K ′
(

1

N
(I − j)

)
> 0,

and then x̃I moves with positive velocity.
We observe that, as N → ∞, the piecewise constant density reconstructed by configuration 

(5.3) converges in L1 to the step function

ρS = χ[− 1
2 , 1

2 ].

The above discussion suggests that all initial data with multiple bumps only attaining the values 
0 and 1 are (weak solutions but) not entropy solutions except ρS . Actually, this statement can be 
proven exactly in the same way as we proved Theorem 5.1, as it is clear that the position of the 
decreasing discontinuity at x = −1/2 and of the increasing discontinuity at x = 1/2 do not play 
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an essential role. By choosing the test function ϕ suitably, one can easily show that the entropy 
condition can be contradicted by suitably centring ϕ around the non-admissible discontinuities. 
We omit the details. As a consequence, we can assert that ρS is the only stationary solution to 
(1.3) in the sense of Definition 1.1.

6. Numerical simulations

The last section of the paper is devoted to present some numerical experiments based on 
the particle methods presented in the paper, supporting the results in the previous sections. The 
qualitative property that emerges more clearly in the simulations below is that solutions tend to 
aggregate and narrow their support. However, the maximal density constraint avoids the blow-up, 
and the density profile tends for large times towards the non-trivial stationary pattern presented 
at the end of the previous section. We compare our particle method with a classical Godunov 
method for (1.2).

Particle simulations We first test the particle method introduced in Section 2. We proceed as 
follows: we set the number of particles as N and we reconstruct the initial distribution according 
to (1.5) (for step functions we simply set the particles initially at distance �

N
from each other 

where � is the length of the support). Once we have defined the initial distribution, we solve the 
system (1.6) with a MATLAB solver and we reconstruct the discrete density as

Ri(t) = m

2N(xi+1(t) − xi−1(t))
, i = 2, ...,N − 1. (6.1)

The choice of central differences does not affect the particle evolution, since in solving sys-
tem (1.6) we define Ri with forward differences. The choice in (6.1) is only motivated by the 
symmetry of the patterns we expect to achieve for large times.

Remark 6.1. In the construction of the discrete densities we get the problem of giving density to 
the first and the last particles (or only to the last one if we use forward differences). Among all 
the possible choices we set at zero these two densities, namely

R1(t) = RN(t) = 0.

This is a natural choice if we are dealing with step functions but it is not suitable with more 
general initial conditions, see Fig. 3.

In all the simulations we set

v(ρ) = 1 − ρ, K(x) = C√
2π

e− x2
2 and N = 300.

In the particles evolution we do not fix any time step that is automatically determined by the 
solver.

The first example we provide is the case of a single step function with symmetric support,

ρ̄(x) = 0.3 x ∈ [−1,1] . (6.2)
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Fig. 1. On the left: initial condition as in (6.2); on the right: the final stationary configuration. We plot the discrete density 
in (red)-continuous line and the particles positions in (blue)-circles on the bottom of the picture. (For interpretation of 
the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Evolution of the discrete density for the initial configuration (6.2).

For this initial condition m = 0.6, so the final configuration will be a step function of value ρ = 1
supported in [−0.3,0.3]. In Fig. 1 we plot initial (left) and final (right) configurations, while in 
Fig. 2 evolution in time is plotted.

Next we show the evolution corresponding to the following initial condition,

ρ̄(x) = 3
(1 − x2), x ∈ [−1,1] . (6.3)
4
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Fig. 3. For the initial condition (6.3) the initial particle configuration is obtained thanks to (1.5). The discrete density 
behaves suitably around all the particles except the first and the last one. See Remark 6.1.

Even in this case the function is symmetric with respect to the origin so it will converge to the 
unitary step function supported in [−0.5,0.5] since ρ̄ has normalized mass. As in the previous 
example initial and final configurations and time evolution of the solution are plotted in Fig. 3.

We conclude with step functions with disconnected support. We first study the case

ρ̄(x) =
{

0.2 x ∈ [−0.5,0] ,

0.6 x ∈ [0.5,1] ,
(6.4)

showing that the two bumps merge into a single step. Since symmetry is lost, it is not straightfor-
ward to determine where this final configuration will stabilize, but in Fig. 4 we can see that they 
still aggregate in a step of unitary density and support of length m.
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Fig. 4. Evolution of a two steps initial condition (6.4). The pattern on the left is the one with less density and moves faster 
attracted by the one on the right and they merge in a single step of unitary density.

More interesting is the case of the following initial condition:

ρ̄(x) =
{

1 x ∈ [−0.5,0] ,

1 x ∈ [0.5,1] .
(6.5)

This initial condition is a weak stationary solution to (1.3). However, the particle scheme con-
verges to another solution, actually the unique entropy solution to (1.8). The picture shows how 
the two ‘internal’ discontinuities are not admissible in the entropy sense, and they are therefore 
‘smoothed’ immediately after t = 0. In Fig. 5 we plot the time evolution of this initial configura-
tion.

Comparison with classical Godunov method In order to validate the previous simulations we 
compare the results with a classical Godunov method. The main issue in this case is to deal with 
the two directions in the transport term. More precisely, since the kernel K is an even function, 
we can rephrase (1.2) as
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Fig. 5. Solution to (1.8) with initial condition (6.5). The initial condition is a weak stationary solution to (1.3). However, 
the particle scheme converges to another solution, actually the unique entropy solution to (1.8). The picture shows how 
the two ‘internal’ discontinuities are not admissible in the entropy sense, and they are therefore ‘smoothed’ immediately 
after t = 0.

∂tρ = ∂x(ρv(ρ))K+
ρ (x) + ∂x(ρv(ρ))K−

ρ (x) + ρv(ρ)K ′′ ∗ ρ, (6.6)

where

K+
ρ (x) =

ˆ

x≥y

K ′(x − y)ρ(y)dy ≥ 0,

K−
ρ (x) =

ˆ

x<y

K ′(x − y)ρ(y)dy ≤ 0.

The evolution of ρ is driven by two transport fields: K+
ρ pushing the density from left to right 

and K−
ρ pushing the density from right to left. The third term on the r.h.s. in (6.6) plays the 

role of a source term. Following the standard finite volume approximation procedure on N cells [
x 1 , x 1

]
, the discrete equation reads as
j− 2 j+ 2
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Fig. 6. Comparison between particles (red stars) and Godunov (green continuous line) methods at final time t = 1. On 
the top: solutions corresponding to initial condition (6.2) (left) and (6.3) (right). On the bottom: final configurations for 
(6.4) (left) and (6.5).

d

dt
ρ̃j = K+

ρ (xj )

F+
j+ 1

2
− F+

j− 1
2

�x
+ K−

ρ (xj )

F−
j+ 1

2
− F−

j− 1
2

�x
+ ρ̃j v(ρ̃j )dKj

where F+
j+ 1

2
and F−

j+ 1
2

are the Godunov approximations of the fluxes and dKj is an approxi-

mation of the convolution in the reaction term obtained via a quadrature formula. We integrate 
in time with a time step satisfying the CFL condition of the method. In Fig. 6 we compare the 
solutions obtained with the two methods in all the examples illustrated above.
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