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Abstract

The paper deals with the ergodicity of deterministic zero-sum differential games with long-
time-average cost. Some new sufficient conditions are given, as well as a class of games that
are not ergodic. In particular, we settle the issue of ergodicity for the simple games whose
associated Isaacs equation is a convex-concave eikonal equation.

Introduction

We consider a nonlinear system in Rm controlled by two players

ẏ(t) = f(y(t), a(t), b(t)), y(0) = x, a(t) ∈ A, b(t) ∈ B, (1)

and we denote with yx(·) the trajectory starting at x. We are also given a bounded, uniformly
continuous running cost l, and we are interested in the payoffs associated to the long time average
cost (briefly, LTAC), namely,

J∞(x, a(·), b(·)) := lim sup
T→∞

1
T

∫ T

0

l(yx(t), a(t), b(t)) dt,

J∞(x, a(·), b(·)) := lim inf
T→∞

1
T

∫ T

0

l(yx(t), a(t), b(t)) dt.

We denote with u− val J∞(x) (respectively, l − val J∞(x)) the upper value of the zero-sum game
with payoff J∞ (respectively, the lower value of the game with payoff J∞) which the 1st player a(·)
wants to minimize while the 2nd player b(·) wants to maximize, and the values are in the sense of
Varaiya-Roxin-Elliott-Kalton. We look for conditions under which

u− val J∞(x) = l − val J∞(x) = λ ∀x,

for some constant λ, a property that was called ergodicity of the LTAC game in [3]. The terminology
is motivated by the analogy with classical ergodic control theory, see, e.g., [30, 14, 28, 9, 25, 6, 7, 2].
Similar problems were studied for some games by Fleming and McEneaney [21] in the context of
risk-sensitive control, by Carlson and Haurie [16] within the turnpike theory, by Kushner [29] for
controlled nondegenerate diffusion processes. There is a large literature on related problems for
discrete-time games, see the survey by Sorin [35].

More recently, several sufficient conditions for the ergodicity of the LTAC game were given by
Ghosh and Rao [24] and by Alvarez and the author [3]. Among other things these papers clarified
the connections with the solvability of the stationary Hamilton-Jacobi-Isaacs equation associated
to the problem and with the long-time behavior of the value functions of the finite horizon games
with the same running cost. In particular, under the classical Isaacs’ condition

min
b∈B

max
a∈A

{−f(y, a, b) · p− l(y, a, b)} = max
a∈A

min
b∈B

{−f(y, a, b) · p− l(y, a, b)}, ∀y, p ∈ Rm, (2)
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the LTAC game is ergodic with value λ if the viscosity solution u(t, x) of the evolutive Hamilton-
Jacobi-Isaacs equation

∂u

∂t
+ min

b∈B
max
a∈A

{−f(y, a, b) ·Dxu− l(y, a, b)} = 0, u(0, x) = 0,

satisfies

lim
t→+∞

u(t, x)
t

= λ, locally uniformly in x,

a property called ergodicity of the lower game. However, the results of the quoted papers do not
give much information on some very simple games such as{

ẏA(t) = a(t), yA(0) = xA ∈ Rm/2, |a(t)| ≤ 1,

ẏB(t) = b(t), yB(0) = xB ∈ Rm/2, |b(t)| ≤ γ.
(3)

with running cost l = l(yA, yB) independent of the controls and Zm-periodic. This is related to
the asymptotic behavior of the solution to the convex-concave eikonal equation

ut + |DxAu| − γ|DxBu| = l(xA, xB), u(0, xA, xB) = 0,

where DxAu, DxBu denote, respectively, the gradient of u with respect to the xA and the xB

variables. From [3] we can only say that the lower game and the LTAC game are ergodic if l has
a saddle, namely

min
xA

max
xB

l(xA, xB) = max
xB

min
xA

l(xA, xB) =: l,

and then the ergodic value is λ = l. Nothing seems to be known if, for instance, l(xA, xB) =
n(xA − xB).

In the present paper we present some new conditions for ergodicity and a class of non-ergodic
differential games. The sufficient conditions for ergodicity assume some form of controllability of
each player on some state variables. Different from the controllability conditions in [3], they depend
on the running cost l, that is assumed independent of the controls, and give an explicit formula
for the ergodic value λ in terms of l. The result of non-ergodicity holds for systems of the form{

ẏA(t) = g(y(t), a(t)), yA(0) = xA ∈ Rm/2, a(t) ∈ A,

ẏB(t) = g(y(t), b(t)), yB(0) = xB ∈ Rm/2, b(t) ∈ B,
(4)

with A = B, and running cost l(x) = n(xA − xB) + h(xA, xB) with a smallness assumption on h.
As a special case we settle the issue of the game (3) with the running cost l(x) = n(xA − xB) and
of the convex-concave eikonal equation: it is ergodic if and only if γ 6= 1.

Undiscounted infinite horizon control problems arise in many applications to economics and
engineering, see [17, 14, 28] and [16, 21, 35] for games. Our additional motivation is that ergodicity
plays a crucial role in the theory of singular perturbation problems for the dimension reduction of
multiple-scale systems [27, 14, 28, 23, 36, 26, 32] and for the homogenization in oscillating media
[31, 19, 5]. A general principle emerging in the papers [8, 1, 2, 4] is that an appropriate form of
ergodicity of the fast variables (for frozen slow variables) ensures the convergence of the singular
perturbation problem, in a suitable sense. The explicit applications of the results of the present
paper to singular perturbations will be presented in a future article.

The paper is organized as follows. Section 1 recalls some definitions and known results.
Section 2 gives two different sets of sufficient conditions for the ergodicity of the finite horizon
games. Section 3 presents the non-ergodic games. Section 4 applies the preceding results to a
slight generalization of the system (3) and of the convex-concave eikonal equation.
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1 Definitions and preliminary results

About the system (1) and the cost we assume throughout the paper that f : Rm × A × B 7→ Rm

and l : Rm × A × B 7→ R are continuous and bounded, A and B are compact metric spaces, f is
Lipschitz continuous in x uniformly in a, b.

We consider the cost funtional

J(T, x) = J(T, x, a(·), b(·)) :=
1
T

∫ T

0

l(yx(t), a(t), b(t)) dt,

where yx(·) is the trajectory corresponding to a(·) and b(·). We denote with A and B, respectively,
the sets of open-loop (measurable) controls for the first and the second player, and with Γ and
∆, respectively, the sets of nonanticipating strategies for the first and the second player, see, e.g.,
[18, 20, 9] for the precise definition. Following Elliott and Kalton [18], we define the upper and
lower values for the finite horizon game with average cost

u− val J(T, x) := sup
β∈∆

inf
a∈A

J(T, x, a, β[a]),

l − val J(T, x) := inf
α∈Γ

sup
b∈B

J(T, x, α[b], b).

The player using nonanticipating strategies has an information advantage with respect to the other,
so the inequality l−val J(T, x) ≤ u−val J(T, x) holds, see [18, 20, 9]. Moreover, all other reasonable
notion of value are between l − val J and u − val J , see [18] or Chapter 8 of [9] for a discussion.
Therefore, when the game has a value, i.e., l− val J = u− val J , all notions of value coincide. For
the LTAC game we define

u− val J∞(x) := sup
β∈∆

inf
a∈A

lim sup
T→∞

J(T, x, a, β[a]),

l − val J∞(x) := inf
α∈Γ

sup
b∈B

lim inf
T→∞

J(T, x, α[b], b).

Note that we chose lim supT→∞ for the upper value and lim infT→∞ for the lower value, so we
expect again that any other definition of ergodic value falls between them.

We say that the the lower game is (locally uniformly) ergodic if the long time limit of the
finite horizon value exists, locally uniformly in x, and it is constant, i.e.,

l − val J(T, ·) → λ as T →∞ locally uniformly in Rm.

Similarly, the upper game is ergodic if

u− val J(T, ·) → Λ as T →∞ locally uniformly in Rm.

The next result gives the precise connection between these properties and the LTAC game.

Theorem 1 [21, 3] If the lower game is ergodic, then

l − val J∞(x) = lim
T→∞

l − val J(T, x) = λ ∀x ∈ Rm; (5)

if the upper game is ergodic, then

u− val J∞(x) = lim
T→∞

u− val J(T, x) = Λ ∀x ∈ Rm. (6)

If the classical Isaacs’ condition (2) holds then the finite horizon game has a value, which
we denote with valJ(T, x), see [20, 9]. Therefore we immediately get the following consequence of
Theorem 1.
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Corollary 1 Assume (2) and that either the lower or the upper game is ergodic. Then the LTAC
game is ergodic, i.e.,

l − val J∞(x) = u− val J∞(x) = lim
T→∞

val J(T, x) = λ, ∀x ∈ Rm.

Remark The ergodic value can also be characterized as the limit as δ → 0 of δwδ where wδ

solves
δwδ + min

b
max

a
{−f(y, a, b) ·Dwδ − l(y, a, b)} = 0, in Rm,

and as the unique constant λ such that there exists a solution of

λ + min
b

max
a
{−f(y, a, b) ·Dχ− l(y, a, b)} = 0, in Rm,

see [2, 3, 24] for the precise statements. We will not use these properties in the present paper.

2 Sufficient conditions of ergodicity

In this section we prove two results on the ergodicity of the LTAC games. Both make controllability
assumptions on at least one of the players, but they are weaker than those of Theorem 2.2 in [3].
On the other hand, here we assume the running cost l = l(y) depends only on the state variables
and the controllability assumptions are designed to get as value of the LTAC game a number
depending explicitly on l. In the first result this is either min l or max l.

We denote with KL the class of continuous functions η : [0,+∞) × [0,+∞) → [0,+∞)
strictly increasing in the first variable, strictly decreasing in the second variable, and satisfying

η(0, t) = 0 ∀t ≥ 0, lim
t→+∞

η(r, t) = 0 ∀r ≥ 0. (7)

Given a closed target T ⊆ Rm, we say that the system (1) is (uniformly) asymptotically controllable
to T in the mean by the first player if the following holds: there exists a function η ∈ KL and for
all x ∈ Rm, there is a strategy α̃ ∈ Γ such that

1
T

∫ T

0

dist(yx(t), T ) dt ≤ η(‖x‖, T ), ∀b ∈ B, (8)

where yx(·) is the trajectory corresponding to the strategy α̃ and the control function b, i.e., it
solves

ẏ(t) = f(y(t), α̃[b](t), b(t)), y(0) = x. (9)

Here ‖x‖ := |x| in the general case, whereas when the state space is the m-dimensional torus
Tm = Rm/Zm (i.e., all data are Zm-periodic)

‖x‖ := min
k∈Zm

|x− k|,

and dist(z, T ) := infw∈T ‖z−w‖. The condition (8) means that the first player can drive asymptot-
ically the state y(t) near the target T , in the sense that the average distance tends to 0, uniformly
with respect to x and the control of the other player b.

Symmetrically, we say that the system (1) is (uniformly) asymptotically controllable to T by
the second player if for all x ∈ Rm, there is a strategy β̃ ∈ ∆ such that

1
T

∫ T

0

dist(yx(t), T ) dt ≤ η(‖x‖, T ), ∀a ∈ A,

where yx(·) is the trajectory corresponding to the strategy β̃ and the control function a, i.e., it
solves

ẏ(t) = f(y(t), a(t), β̃[a](t)), y(0) = x.
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In the next result we will use as target either the set

argmin l := {y ∈ Rm : l(y) = min l}

or the set
argmax l := {y ∈ Rm : l(y) = max l}.

Proposition 1 Assume the running cost is uniformly continuous and independent of the controls,
i.e., l = l(y).
If the system (1) is asymptotically controllable to T = argmin l in the mean by the first player,
then the lower game is ergodic with value λ = min l.
If the system (1) is asymptotically controllable to T = argmax l in the mean by the second player,
then the upper game is ergodic with value λ = max l.

Proof We prove only the first statement because the proof of the second is analogous. Set
v(T, x) := l − val J(T, x).

Fix x and consider the strategy α̃ ∈ Γ from the asymptotic controllability assumption. If
yx(·) = yx(·, b) is the corresponding trajectory and z(t) is its projection on the target, i.e.,

dist(yx(t), T ) = ‖yx(t)− z(t)‖, z(t) ∈ T ,

then the choice T = argmin l gives

l(yx(t)) ≤ ωl(‖yx(t)− z(t)‖) + l(z(t)) = ωl(dist(yx(t), T )) + min l,

where ωl is the modulus of continuity of l. We recall that ωl is defined by

|l(x)− l(y)| ≤ ωl(‖x− y‖), ∀x, y ∈ Rm, lim
r→0

ωl(r) = 0,

and it is not restrictive to assume its concavity. Therefore Jensen’s inequality and (8) imply, for
all b ∈ B,

1
T

∫ T

0

ωl(dist(yx(t), T )) dt ≤ ωl(η(‖x‖, T )).

Then

v(T, x) ≤ sup
b∈B

1
T

∫ T

0

l(yx(t)) dt ≤ ωl(η(‖x‖, T )) + min l.

On the other hand v(T, x) ≥ min l by definition, thus

lim
T→∞

v(T, x) = min l,

uniformly in x for ‖x‖ bounded. 2

An immediate consequence of this proposition and of Corollary 1 is the following.

Corollary 2 Assume the Isaacs’ condition (2) and that the system (1) is asymptotically control-
lable either to argmin l by the first player or to argmax l by the second player. Then the LTAC
game is ergodic, i.e.,

l − val J∞(x) = u− val J∞(x) = lim
T→∞

val J(T, x) = λ, ∀x ∈ Rm.

Moreover, λ = min l in the former case and λ = max l in the latter.
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Remark The main improvement of this result with respect to Corollary 2.1 in [3] is that here we
assume only the controllability in the mean to a target, instead of the bounded-time controllability
to each point of the state space. On the other hand here we must assume the independence of l
from the controls a, b.

Remark A sufficient condition for the asymptotic controllability in the mean is that the system
(1) be locally-bounded-time controllable to T by the first player, i.e., for each x there exist S(‖x‖) >
0 and a strategy α̃ ∈ Γ such that for all control functions b ∈ B there is a time t# = t#(x, α̃, b, T )
with the properties

t# ≤ S(‖x‖) and yx(t) ∈ T for all t ≥ t#.

In other words, the first player can drive the system from any initial position x to some point of
the target T within a time that is uniformly bounded for bounded x, and keep it forever on T , for
all possible behaviors of the second player. The proof of Proposition 1 shows that this strategy is
optimal for the first player. This kind of behavior is called a turnpike, see [17, 16].

The sufficient condition described above can be better studied by splitting it in two: reaching
T and remaining in T afterwards. The first amounts to the local boundedness of the lower value
of the generalized pursuit-evasion game with target T . This occurs if such value function is finite
and continuous, and a sufficient condition for it is the existence of a continuous supersolution U of
the Isaacs equation for minimum-time problems

min
b∈B

max
a∈A

{−f(y, a, b) ·DU} ≥ 1 in Rm \ T ,

such that U = 0 on T , see [12, 33]. As for the second property, it is the viability of T by the first
player against the second. This is well understood and has explicit characterizations, see [15, 11].

Remark Another sufficient condition for the asymptotic controllability in the mean is that the
system (1) be worst-case stabilizable to T by the first player, i.e., there exists κ ∈ KL and for each
x there exists a strategy α̃ ∈ Γ such that

dist(yx(t), T ) ≤ κ(‖x‖, t), ∀b ∈ B, ∀t ≥ 0, (10)

where yx(·) is the trajectory corresponding to the strategy α̃ and the control function b. In fact,
it is enough to take

η(r, T ) =
1
T

∫ T

0

κ(r, t) dt.

This property was studied by Soravia [33, 34] and the author and Cesaroni [10]. They characterized
it in terms of the existence of a Lyapunov pair, that is, a lower semicontinuous W , continuous at
∂T and proper, and a Lipschitz h, both positive off T and null on T , such that

min
b∈B

max
a∈A

{−f(y, a, b) ·DW} ≥ h(x) in Rm,

in the viscosity sense. Related notions are known in the context of robust control [13, 22].

The second result of this section concern systems of the form
ẏA(t) = fA(y(t), a(t), b(t)), yA(0) = xA ∈ RmA ,

ẏB(t) = fB(y(t), a(t), b(t)), yB(0) = xB ∈ RmB ,

y(t) = (yA(t), yB(t)).
(11)

We will assume the asymptotic controllability by the first player to the target

T ∗ :=
{

(zA, zB) ∈ Rm : l(zA, zB) ≤ max
yB

min
yA

l(yA, yB)
}

. (12)
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Moreover, we will assume for some closed set TB ⊆ RmB that the state variables yB are (uniformly)
asymptotically controllable to TB in the mean by the second player in the following sense: there
exists a function η : [0,∞) → [0,∞) satisfying (7) and for all x ∈ Rm there is a strategy β̃ ∈ ∆
such that

1
T

∫ T

0

dist(yB
x (t), TB) dt ≤ η(‖x‖, T ), ∀a ∈ A. (13)

Proposition 2 Assume the system (1) is of the form (11), l = l(yA, yB), and (2) holds. Suppose
also that the system is asymptotically controllable in the mean by the first player to T ∗ and the
state variables yB are asymptotically controllable in the mean by the second player to

TB = argmax min
yA

l(yA, ·) :=
{

zB ∈ RmB : min
yA

l(yA, zB) = max
yB

min
yA

l(yA, yB)
}

.

Then the LTAC game is ergodic and its value is

l − val J∞(x) = u− val J∞(x) = λ := max
yB

min
yA

l(yA, yB), ∀x ∈ Rm. (14)

Proof The Isaacs conditions (2) implies the existence of the value of the finite horizon games
and we set v(T, x) := l − val J(T, x) = u − val J(T, x). By repeating the proof of Proposition 1
with the target T ∗ we obtain

l(yx(t)) ≤ ωl(‖yx(t)− z(t)‖) + l(z(t)) ≤ ωl(dist(yx(t), T )) + max
yB

min
yA

l(yA, yB),

and then
v(T, x) ≤ ωl(η(‖x‖, T )) + λ.

To get the opposite inequality fix x and consider the strategy b̃ ∈ ∆ from the asymptotic
controllability assumption on the yB variables. Let yx(·) = yx(·, a) be the corresponding trajectory
and zB(t) the projection of its component yB

x (t) on the target TB , i.e.,

dist(yB
x (t), TB) = ‖yB

x (t)− zB(t)‖, zB(t) ∈ TB .

Then the definition of TB gives

l(yx(t)) ≥ l(yA
x (t), zB(t))− ωl(‖yB

x (t)− zB(t)‖) ≥ max
yB

min
yA

l(yA, yB)− ωl(dist(yB
x (t), TB)),

where the modulus of continuity ωl is defined by (2). The concavity of ωl, Jensen’s inequality, and
(13) imply, for all a ∈ A,

1
T

∫ T

0

ωl(dist(yB
x (t), TB)) dt ≤ ωl(η(‖x‖, T )).

Finally, the definition of upper value gives

v(T, x) ≥ inf
a∈A

1
T

∫ T

0

l(yx(t)) dt ≥ λ− ωl(η(‖x‖, T ))

and therefore limT→∞ v(T, x) = λ uniformly in x, for ‖x‖ bounded. 2

Remark The main differences of this result with respect to Proposiion 2.2 in [3] is that here we
do not assume that the cost l has a saddle and we make different controllability assumptions that
give an advantage to the first player.

Remark By exchanging the assumptions on the two players and repalcing maxmin with minmax
in the targets it is easy to give a symmetric result where the value of the LTAC game is

λ = min
yA∈RmA

max
yB∈RmB

l(yA, yB).
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Remark No controllability assumption is necessary for ergodicity, and in general the ergodic
value λ can be any number between min l and max l. For instance, by a classical result of Jacobi
(see, e.g., [7, 2]), the system ẏ(t) = ξ with ξ · k 6= 0 for all k ∈ Zm is uniformly ergodic for all
Zm-periodic l, and the ergodic value is λ =

∫
[0,1]m

l(y) dy.

Remark The results of this section can be extended to control systems driven by stochastic
differential equations, as in Section 4 of [3]. We postpone this to a future paper.

3 Sufficient conditions for non-ergodicity

In this section we give some examples of games that are not ergodic. Let us first recall that a
simple reason for non-ergodicity is the unboundedness of the trajectories, as shown in the next
example.
Example. Consider the system ẏ = y and running cost l such that there exist the limits
limx→+∞ l(x) = l+ and limx→−∞ l(x) = l−. Then val J(T, x) = 1

T

∫ T

0
l(xet) dt converges as

t → +∞ to l+ if x > 0, to l(0) if x = 0, and to l− if x < 0.
However, also on a compact state space such as T2, many systems are not ergodic, such as the
next simple example.

Example In R2 take the system ẏ = (1, 0) and l Z2-periodic. Then val J(T, x) = 1
T

∫ T

0
l(x1 +

t, x2) dt converges as t → +∞ to
∫
[0,1]2

l(s, x2) ds.

The main result of the section is about systems of the form (11) under assumptions that
allow the controllability of the variables yA by the first player and of yB by the second player as
in the ergodic games described in [3]. However, the running cost does not have a saddle and the
system is completely fair, in the sense that both groups of variables have the same dynamics. Here
are the precise assumptions. Suppose first that the vector field fA is independent of b, fB does
not depend on a, and l depends only on the state y. Then the Isaacs condition (2) holds and the
Hamiltonian takes the split form

H(y, p) := min
b∈B

max
a∈A

{−f(y, a, b) · p− l(y, a, b)}

= max
a∈A

{−fA(y, a) · pA}+ min
b∈B

{−fB(y, b) · pB} − l(y), p = (pA, pB).

Assume further that A = B, mA = mB = m/2, and fA = fB =: g, so the system takes the form
(4). Then, if we define the reduced Hamiltonian

Hr(y, q) := max
a∈A

{−g(y, a) · q}, q ∈ Rm/2,

the Hamiltonian H becomes

H(y, p) = Hr(y, pA)−Hr(y,−pB)− l(y), p = (pA, pB). (15)

We will also take the running cost of the form

l(y) = n(yA − yB) + h(yA, yB), y = (yA, yB), (16)

and make assumptions of the functions n : Rm/2 → R and h : Rm → R.

Theorem 2 Assume the Hamiltonian H has the form (15) with running cost of the form (16) and
n, h bounded and uniformly continuous. If

suph− inf h < supn− inf n, (17)

then the lower and the upper game are not ergodic.
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Proof We explain first the idea in the special case h ≡ 0, n ∈ C1. In this case u(t, y) :=
t n(yA − yB) solves the Hamilton-Jacobi-Isaacs equation

ut + Hr(y, DyAu)−Hr(y,−DyBu) = n(yA − yB).

If v(t, y) is the value function of the finite horizon game, then tv(t, y) solves the partial differential
equation in viscosity sense [20, 9] and takes the same initial value 0 at t = 0. By the uniqueness
of the viscosity solution to the Cauchy problem [9], tv(t, y) = u(t, y). Then v(t, y) = n(yA − yB)
does not converge to a constant as t →∞ because n is not constant.

The general case is a perturbation of the preceding one. Take a mollification nε ∈ C1 of
n such that nε → n as ε → 0 uniformly in Rm/2. Consider u(t, y) := t nε(yA − yB) + tc, for a
constant c to be determined. Then

ut + Hr(y, DyAu)−Hr(y,−DyBu) = nε(yA − yB) + c (18)

and the right hand side is ≥ n(yA − yB) + h(y) for c = suph + δ, δ > 0, if ε is small enough.
Therefore the comparison principle between viscosity sub- and supersolutions [9] gives

v(t, y) ≤ nε(yA − yB) + c, ∀ t, y,

and for y1 such that n(yA
1 − yB

1 ) is close to inf n and ε small enough

v(t, y1) ≤ inf n + suph + 2δ. (19)

On the other hand, the right hand side of (18) is ≤ n(yA − yB) + h(y) for c = inf h− δ and
ε small enough. Then

v(t, y) ≥ nε(yA − yB) + c, ∀ t, y

and
v(t, y2) ≥ supn + inf h− 2δ, (20)

if n(yA
2 −yB

2 ) is close to sup n and ε is small enough. By condition (17) we can choose δ so that the
right hand side of (19) is smaller than the right hand side of (20). Then v(t, y) cannot converge
to a constant as t →∞. 2

4 An example: the convex-concave eikonal equation

In this section we fix g : Rm → R Lipschitzean and such that g(y) ≥ go > 0, and discuss the
ergodicity of the games where the system is

ẏA(t) = g(y(t))a(t), yA(0) = xA ∈ Rm/2, |a(t)| ≤ 1,

ẏB(t) = g(y(t))b(t), yB(0) = xB ∈ Rm/2, |b(t)| ≤ γ,

y(t) = (yA(t), yB(t)),
(21)

for all values of the parameter γ > 0. For a running cost l independent of the controls the finite
horizon game has a value val(t, x) := l−val J(t, x) = u−val J(t, x), and u(t, x) = t val(t, x) solves
the Hamilton-Jacobi-Isaacs equation

ut + g(x)|DxAu| − γg(x)|DxBu| = l(x), u(0, x) = 0, (22)

that we call the convex-concave eikonal equation. As in the preceding section we take l of the form

l(y) = n(yA − yB) + h(yA, yB), y = (yA, yB).

We also need a compact state space, so we assume for simplicity that all data g, n, h are Zm periodic.
We recall that the paper by Alvarez and the author [3] covers only the case that n ≡ 0 and h has
a saddle point, and then the value of the LTAC game is λ = minyA∈Rm/2 maxyB∈Rm/2 h(yA, yB) =
maxyB∈Rm/2 minyA∈Rm/2 h(yA, yB).
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Corollary 3 Under the preceding assumptions the upper, the lower, and the LTAC game are
ergodic under either one of the following conditions:

i) γ < 1 and h = h(yB) is independent of yA, and in this case

lim
t→∞

v(t, x) = minn + max h;

ii) γ > 1 and h = h(yA) is independent of yB, and in this case

lim
t→∞

v(t, x) = max n + minh.

If, instead, γ = 1 and
suph− inf h < supn− inf n,

then the upper and the lower game are not ergodic.

Proof If γ < 1, since the dynamics of the yA and the yB variables is the same, but the
first player can drive yA at higher speed, for any fixed z ∈ Rm/2 the first player can drive the
system from any initial position to yA = yB + z in finite time for all controls of the second player.
Since Tm is compact this can be done in a uniformly bounded time. In particular, the system is
asymptotically controllable by the first player to the set

Tn :=
{
(yA, yB) ∈ Rm : yA − yB ∈ argmin n

}
.

If h ≡ 0 we can conclude by Proposition 1. Note that in this case we do not need the controllability
of yB by the second player.

In the general case we observe that Tn is a subset of the target T ∗ defined by (12), because
here

max
yB∈Rm/2

min
yA∈Rm/2

l(yA, yB) = minn + max
yB∈Rm/2

h(yB).

Therefore the system is asymptotically controllable to T ∗ by the first player.
On the other hand, the variables yB are bounded time controllable by the second player to

any point of Rm/2, therefore they are also asymptotically controllable to TB . Then Proposition 2
gives the conclusion i).

The statement ii) is proved in the same way by reversing the roles of the two players. In
this case

min
yA∈Rm/2

max
yB∈Rm/2

l(yA, yB) = max n + min
yA∈Rm/2

h(yA).

Finally, the case γ = 1 follows immediately from Theorem 2. 2
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