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Abstract. Compensated compactness is an important method used to solve nonlinear PDEs,
in particular in the study of hyperbolic conservation laws. One of the simplest formulations of
a compensated compactness problem is to ask for conditions on a compact set K ⊂ Mm×n such
that

lim
j→∞
‖dist(Duj,K)‖Lp = 0 and sup

j
‖uj‖W1,p < ∞ ⇒ {Duj}j is precompact in Lp. (1)

Let M1, M2, . . . , Mq denote the set of all minors of Mm×n. A sufficient condition for (1) is that
any probability measure µ supported on K satisfying∫

Mk(X)dµ(X) = Mk

(∫
Xdµ(X)

)
for all k (2)

is a Dirac measure. We call measures that satisfy (2) Null Lagrangian Measures and following
[Mü 99], we denote the set of Null Lagrangian Measures supported on K by Mpc(K). For
general m, n, a necessary and sufficient condition for triviality ofMpc(K) was an open question
even in the case where K is a linear subspace of Mm×n. We answer this question and provide
a necessary and sufficient condition for any linear subspace K ⊂ Mm×n. The ideas also allow
us to show that for any d ∈ {1, 2, 3}, d-dimensional subspaces K ⊂ Mm×n support non-trivial
Null Lagrangian Measures if and only if K has Rank-1 connections. This is known to be false
for d ≥ 4 from [Bh-Fi-Ja-Ko 94].

Further using the ideas developed we are able to answer a question of Kirchheim, Müller and

Šverák [Ki-Mü-Sv 03]. Let P1(u, v) :=

 u v
a(v) u

ua(v) 1
2 u2 + F(v)

 and K1 := {P1(u, v) : u, v ∈ IR}

for some function a and its primitive F. The set K1 arises in the study of entropy solutions to
the 2× 2 system of conservation laws

ut = a(v)x and vt = ux .

In [Ki-Mü-Sv 03], the authors asked what are the conditions on the function a such thatMpc(K1 ∩
U) consists of Dirac measures, where U is an open neighborhood of an arbitrary matrix in K1.
Given α = (α1, α2) ∈ IR2, if a′(α2) > 0 then we construct non-trivial measures in Mpc(K1 ∩
Bδ (P1(α))) for any δ > 0. On the other hand if a′(α2) < 0 then for sufficiently small δ > 0, we
show thatMpc(K1 ∩ Bδ (P1(α))) consists of Dirac measures.

1. Introduction

Compensated compactness (coupled with a-priori Lp bounds) is an important method
of solving nonlinear PDEs. Amongst its most celebrated successes are the proofs of the
first existence theorems for solutions of systems of hyperbolic conservation laws with large
data by Tartar [Ta 79], [Ta 83] and DiPerna [DP 83], [DP 85]. One of the simplest and most
natural formulations of compensated compactness is to ask for conditions on a compact set
of matrices K ⊂ Mm×n such that for any sequence {uj} ⊂ W1,p(Ω; IRm), 1 ≤ p < ∞, defined
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on a bounded domain Ω ⊂ IRn, if

lim
j→∞
‖dist(Duj,K)‖Lp(Ω) = 0 and uj ⇀ u in W1,p(Ω; IRm) as j→ ∞, (3)

then there exists a subsequence such that

Dujk → Du in Lp(Ω; IRm) as k→ ∞. (4)

It turns out that a necessary and sufficient condition on a compact set K for hypothesis (3) to
imply (4) is the following: for any probability measure µ with Sptµ ⊂ K, if∫

f (X)dµ(X)≥ f
(∫

Xdµ(X)

)
for all Quasiconvex functions f ,

then µ is a Dirac measure. Firstly note that by Corollary 3 in [Mü 99’], since K is compact, we
can without loss of generality assume

{
uj
}
⊂W1,∞(Ω; IRm). Then this follows from Theorem

4.7 in [Mü 99] (see [Ki-Pe 91, Ki-Pe 94] for the original source) and the fundamental theorem
of Young measures (Theorem 3.1 and Corollary 3.2 in [Mü 99]). However Quasiconvex func-
tions are very hard to understand 1, so more commonly a smaller class of functions known as
Polyconvex functions are considered. These functions were introduced by Ball [Ba 77] in his
fundamental work on existence of minimizers of elasticity functionals. Given X ∈ Mm×n, let
X̂ denote the vector of all minors of X. A polyconvex function is a function f : Mm×n → IR
that can be written as f (X) = g(X̂) where g is convex.

Following [Mü 99], given K ⊂ Mm×n, we denote

Mpc(K) :=
{

ν ∈ P(Mm×n) : Spt(ν) ⊂ K,
∫

f (X)dν(X)≥ f
(
X
)

for all
polyconvex functions f , where X =

∫
Xdν(X)

}
.

A function g : Mm×n → IR is a Null Lagrangian if g(X) is an affine combination of the minors
of X ∈ Mm×n. Clearly if g is a Null Lagrangian then both g and −g are polyconvex. Therefore
µ ∈ Mpc(K) if and only if∫

M(X)dµ(X) = M
(∫

Xdµ(X)

)
for all minors M.

For this reason we shall call measures µ ∈ Mpc(K) Null Lagrangian Measures.
As we will briefly sketch, the heart of a number of well known compensated compactness

results is a proof that for some submanifold K in the space of matrices, Mpc(K) consists
of Dirac measures. There is overall little understanding of what general conditions a set K
has to have in order for Mpc(K) to consist of Dirac measures only, i.e., to be trivial. Even
in the case when K is a linear subspace in the space of matrices, it was an open problem to
determine necessary and sufficient conditions on K forMpc(K) to be trivial 2. Our Theorem
2 answers this question. First we require some definition.

Definition 1. A set S ⊂ IRn is a cone if λx ∈ S whenever x ∈ S and λ > 0. A subset V ⊂ IRn

is called a (real) algebraic set if V is the locus of common zeros of some collection of polynomial
functions on IRn. An algebraic cone in IRn is a cone that is also an algebraic set.

Remark 1. We say V ⊂ Mm×n is an algebraic cone if V identified as a subset of IRmn is an
algebraic cone.

1Indeed one of the most important problems in Calculus of Variations is the question of whether in 2× 2 matrices,
Rank-1 convex functions are Quasiconvex [Ba 85], [Ast 98].

2This was asked to the first author by V. Šverák during a brief sabbatical visit to Minnesota in 2016.
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Theorem 2. Let K ⊂ Mm×n be a linear subspace. Let M1, . . . , Mq1 : Mm×n → IR be the set of
all minors in Mm×n and Mq1+1, . . . , Mq1+mn : Mm×n → IR be the projections onto the entries in
Mm×n. ThenMpc(K) consists of Dirac measures if and only if

for each non-trivial algebraic cone V ⊂ K there exists β ∈ IRq1+mn \ {0}

such that
q1+mn

∑
k=1

βk Mk(ζ) ≥ 0 for all ζ ∈ V and
q1+mn

∑
k=1

βk Mk 6≡ 0 on V. (5)

Our Theorem 2 is actually a special case of a more general result for measures that com-
mute with a class of homogeneous polynomials. Since the statement of the more general
theorem requires more background notations we postpone it until Section 2 (see Theorem 8).

We say that a set Σ ⊂ Mm×n has Rank-1 connections if and only if there exist A, B ∈ Σ such
that A 6= B and Rank(A− B) = 1. Note that if K ⊂ Mm×n is a subspace that satisfies (5),
then K has no Rank-1 connections. Indeed, were this not the case, there would be a Rank-1
line V ⊂ K which forms a non-trivial algebraic cone in K such that Mk(A) = 0 for all k =
1, 2, . . . , q1. However every linear combination of the projection mappings Mq1+1, . . . , Mq1+mn
either is trivial or changes sign on V, which contradicts condition (5). Note that in [Sv 93],
Šverák proved the beautiful result that for connected sets K ⊂ M2×2,Mpc(K) is trivial if and
only if K does not contain Rank-1 connections. So a natural question is whether condition (5),
and thus triviality ofMpc(K), is equivalent to K having no Rank-1 connections for subspaces
K. We have the following:

Theorem 3. Let d ∈ {1, 2, 3} and K ⊂ Mm×n be a d-dimensional subspace, thenMpc(K) consists
of Dirac measures if and only if K does not contain Rank-1 connections.

Such equivalence relation is false even for subspaces K ⊂ Mm×n with dim(K) ≥ 4 (see the
Appendix 10.3 for a counter example given in [Bh-Fi-Ja-Ko 94]). Thus Theorem 3 is optimal.
Note that for the applications that we have developed in this paper (and an application in
a previous preprint version [Lo-Pe 18], Section 9), condition (5) is actually more useful and
informative.

Note that the set of k-dimensional subspaces in Mm×n is essentially the Grassmannian
space G(k, mn). As is well known, G(k, mn) forms a k(mn− k)-dimensional smooth compact
connected manifold, see [Pi-Ta 08] or Section 7, Lemma 21. As such we say that a property
holds “generically” for k-dimensional subspaces in Mm×n if the set of subspaces for which
the property does not hold can be covered by the Lipschitz images of a finite collection of
submanifolds in IRk(mn−k) of dimension less than k(mn − k), see Definition 22. Using this
point of view, we have the following result:

Theorem 4. Suppose k, m, n are positive integers with m, n ≥ 2 and k ≤ 1
2 min {m, n}. Then for a

“generic” k-dimensional subspace K ⊂ Mm×n,Mpc(K) consists of Dirac measures and hence K has
no Rank-1 connections.

Contrast this with the interesting result of Bhattacharya, Firoozye, James and Kohn (Propo-
sition 4.4 in [Bh-Fi-Ja-Ko 94]), in which it is shown that l(m, n) ≤ mn − n, where l(m, n)
denotes the maximum possible dimension of a linear subspace in Mm×n that does not have
Rank-1 connections. So Theorem 4 is completely false for higher dimensional subspaces.
The bound k ≤ 1

2 min {m, n} is surely not sharp, and an interesting and possibly accessible
question is to determine the sharp bound on k such that the conclusion of Theorem 4 holds
true. Although Theorem 4 is not a consequence of Theorem 2, the ideas of its proof are very
closely related to those of the proof of Theorem 2.
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One of the motivations for studying Null Lagrangian Measures supported on subspaces
is that such results might rather directly yield insights into how to prove triviality or non-
triviality of Mpc(K ∩ U) where K⊂ Mm×n is any smooth submanifold and U is a small
neighborhood around an arbitrary point ζ ∈ K. Since K ∩U can be arbitrarily well approxi-
mated by its tangent plane at ζ, we might expect condition (5) to be relevant in understanding
the structure of Mpc(K ∩U) and indeed this turns out to be the case. In the following sub-
section we apply these insights to study a well known 2× 2 system of conservation laws.
As we will outline, the study of the weak solutions of the system that arise via compensated
compactness is intimately connected with the structure ofMpc(K) for a smooth submanifold
K in matrix space. In the case where the system is adjoined by a single additional entropy
inequality, it is a model problem for systems of conservation laws in higher dimensions and
the related set K1 ⊂ M3×2 has numerous open questions about its structure ([Ki-Mü-Sv 03],
Section 7). Using the ideas developed in the proof of Theorem 2, we answer the question of
the structure ofMpc(K1).

1.1. Connections and applications to conservation laws. As mentioned above one of the
main successes of compensated compactness is the proof of existence theorems for hyperbolic
conservation laws. To sketch this briefly, the standard way to solve a scalar equation is to add
a viscosity term and obtain a solution to

uε
t + G(uε)x = εuε

xx in (0, ∞)× IR. (6)

Assuming {uε}ε is bounded in L∞((0, ∞)× IR) we can extract a subsequence uεk
∗
⇀ u in

L∞((0, ∞)× IR). Letting νt,x be the Young measure associated with the weak* convergence,
i.e., u(t, x) =

∫
IR y dνt,x, we have G(uεk )

∗
⇀ G in L∞((0, ∞)× IR) where G(t, x) =

∫
G(y) dνt,x.

Now for any convex function Φ : IR→ IR, define Ψ(y) :=
∫ y

0 Φ′(s)G′(s)ds. The pair (Φ, Ψ)
is called an entropy/entropy flux pair. The key point is that by virtue of the Div-Curl lemma
we know that ∫

(G(y)Φ(y)− yΨ(y)) dνt,x = G(t, x)Φ(t, x)− u(t, x)Ψ(t, x), (7)

where Φ(t, x) =
∫

Φ(y)dνt,x and Ψ(t, x) =
∫

Ψ(y)dνt,x. Define PΦ : IR → M2×2 by PΦ(z) :=(
G(z) z
Ψ(z) Φ(z)

)
and the measure µΦ on the set KΦ := {PΦ(z) : z ∈ IR} by µΦ := (PΦ)]νt,x,

the push forward of νt,x by the mapping PΦ. By (7), µΦ ∈ Mpc(KΦ). So to prove triviality
of νt,x it suffices to prove Mpc(KΦ) is trivial for any choice of convex function Φ. As this is
such a wide class, for a lot of scalar conservation laws, one can find an appropriate convex
function Φ for which Mpc(KΦ) is trivial, and hence the Young measures are trivial. The
fact that u is a weak solution to (6) without viscosity term follows from triviality of Young
measures in a standard way.

For systems of conservation laws (other than 2× 2 systems or scalar conservation laws)
there are only finitely many entropy/entropy flux pairs (Φ1, Ψ1), (Φ2, Ψ2), . . . , (Φm, Ψm).
By analogous argument to the scalar case, the Young measures can be pushed forward into
Mpc(K), where K is the subset of matrices whose rows consist of the conservation laws
and the entropy/entropy flux pairs (Φj, Ψj). Then triviality of the Young measures and
hence (given appropriate a-priori Lp bounds) proof of existence of solutions via compensated
compactness comes down to proving triviality ofMpc(K).

One of the best known results in this area is the work of DiPerna [DP 83] on strong con-
vergence of solutions to a class of systems of two genuinely nonlinear conservation laws in
one dimension, where the hypotheses are compactness in W−1,2 of every entropy/entropy
flux pair acting on the approximating solutions. As a particular example, the result applies
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to the system with the form of the Lagrangian equations of elasticity given by{
vt − ux = 0,
ut − a(v)x = 0

(8)

for some given smooth function a : IR → IR that is strictly convex and increasing. Possibly
motivated by the question of compactness for higher dimensional systems, in another well
known work DiPerna [DP 85] proves a local existence result for the system (8) with just two
entropy/entropy flux pairs. Following [DP 85] we introduce the natural entropy/entropy
flux pair (η1, q1) associated to the system (8). More precisely, we define

η1(u, v) :=
1
2

u2 + F(v), q1(u, v) := −ua(v),

where F(ξ) =
∫ ξ

0 a(s)ds. As in [Ki-Mü-Sv 03], we consider entropy solutions of (8) defined as
L∞ functions (u, v) satisfying 

vt − ux = 0,
ut − a(v)x = 0,
(η1)t + (q1)x ≤ 0

(9)

in the sense of distributions. Adding a viscosity term to the first two equations of (9) we
obtain the pair (uε, vε) that solves

vε
t − uε

x = εvε
xx, uε

t − a (vε)x = εuε
xx.

Assuming appropriate bounds on uε, vε, uε
x, vε

x (see (5.38) of [Ev 90]), we obtain the system (9)
with right hand side precompact in W−1,2

loc . Hence as we have sketched for scalar equations,
we have (uε, vε)

∗
⇀ (u, v) in L∞ and the Young measures can be pushed forward into the set

K1 where

K1 :=


 u v

a(v) u
ua(v) 1

2 u2 + F(v)

 : u, v ∈ IR

 . (10)

By use of the Div-Curl lemma we have measures inMpc(K1).
Thus understanding the structure of K1 plays a fundamental role in understanding the

system (9). If there is so little rigidity of the structure of K1 that certain subset Krc
1 of Kpc

1
(Kpc

1 and Krc
1 are called the Polyconvex hull and Rank-1 convex hull of K1, respectively, see

Section 4.4 in [Mü 99]) is sufficiently non-trivial, then a very different kind of non-trivial
solution to (9) can be obtained as a differential inclusion into K1

3. There have been enor-
mous interests and spectacular progresses in reformulating PDEs as differential inclusions
and obtaining solutions via convex integration [De-Sz 09], [De-Sz 13], [Bu-De-Is-Sz 15], [Is 17].
Some of the initial impetus for these works come from the pioneering work on Calculus of
Variations by [Mü-Sv 96], [Mü-Sv 03], [Mü-Sy 01], [Ki 01], [Ki 03]. For this reason Kirchheim,
Müller and Šverák [Ki-Mü-Sv 03] asked the following question with respect to the system
(9) and its associated differential inclusion into the set K1 under more general conditions
on the function a, namely, what are the natural assumptions on the function a such that the
following statement is true:

(S1) For each point ζ ∈ K1, there exists a neighborhood U ⊂ M3×2 of ζ such thatMpc(K1 ∩
U) is trivial.

3Note that a differential inclusion into set K1 gives a solution to (9) with the inequality replaced by an equality.



6 A. LORENT, G. PENG

For the system (8) without implementing any entropy/entropy flux pairs, the statement
(S1) for the corresponding set K0 :=

{( u v
a(v) u

)
: u, v ∈ IR

}
is well understood using results

in [Sv 93]. On the other hand, it is proved in [DP 85] that a set analogous to K1 obtained
by inclusion of an additional dual entropy/entropy flux pair satisfies statement (S1) if the
function a has the properties a′ > 0 and a′′ 6= 0. However, this question (as well as some other
related properties) for the set K1 defined in (10) (which is associated with system (9) with just
one entropy/entropy flux pair) remained open. (For more details, see [Ki-Mü-Sv 03], Section
7.)

For the convenience of later discussions, we parametrize the set K1 by the mapping

P1(u, v) :=

 u v
a(v) u

ua(v) 1
2 u2 + F(v)

 . (11)

In this notation, K1 = {P1(u, v) : u, v ∈ IR}. In Section 9, given a point P1 ((α̃1, α̃2)) ∈ K1, we
will show that statement (S1) is false if a′(α̃2) > 0 and true if a′(α̃2) < 0. Specifically, we have

Theorem 5. Suppose a ∈ C2(IR). Given α̃= (α̃1, α̃2) ∈ IR2, if a′(α̃2) > 0, then there exist non-
trivial measures inMpc (K1 ∩ Bδ(P1(α̃))) for all δ > 0. On the other hand, if a′(α̃2) < 0, then there
exists δ0 > 0 depending on the function a and α̃2 such that Mpc (K1 ∩ Bδ(P1(α̃))) is trivial for all
0 < δ ≤ δ0.

Indeed the second part of Theorem 5 can be made a bit stronger. More precisely, recall that
K0 :=

{( u v
a(v) u

)
: u, v ∈ IR

}
. Given α̃ ∈ IR2, if a′(α̃2) < 0 thenMpc

(
K0 ∩ Bδ

((
α̃1 α̃2

a(α̃2) α̃1

)))
is

trivial for sufficiently small δ > 0 depending on a and α̃2. AsMpc(K1) can be naturally em-
bedded intoMpc(K0), this implies the second part of the theorem (see the proof of Theorem
5 in Section 9). Theorem 5 is closely related to Theorem 2. Indeed, one can check directly
that for the submanifold K1 given in (10), there does not exist non-trivial linear combination
of all three minors that remains non-negative. Nevertheless, it should be noted that the set
K1 given in (10) is a nonlinear submanifold in the space of 3× 2 matrices whose nonlinear
structure poses extremely delicate issues. As a result, the arguments needed are significantly
beyond those used for subspaces. Our proof of the first part in Theorem 5 is constructive and
allows to produce infinitely many non-trivial elements inMpc(K1) (see Theorem 29).

1.2. Acknowledgments. The first author is very grateful to V. Šverák for many very helpful
conversations during a two-week visit to Minnesota in November of 2016. These conver-
sations essentially introduced us to this topic and led to some initial ideas for Theorem 2.
Both authors are very grateful for a great deal of very helpful correspondence since then. We
would also like to thank S. Müller for providing us with a proof of Lemma 26. The proof pro-
vided is considerably simpler and more elegant than our original proof. The second author
would like to thank Y. Shi for helpful discussions on elementary algebraic geometry.

2. A more general formulation of Theorem 2

In this section, we give a more general formulation of Theorem 2 in terms of homogeneous
polynomials (see Theorem 8 below). To state the theorem, we need some preparation.

Given a set S ⊂ IRn, let P(S) denote the space of probability measures supported on
S. Given a collection of homogeneous polynomials F =

{
f1, f2, . . . , fM0

}
on IRn, let L(F )

denote the set of linear combinations of the functions in F , i.e.,

L(F ) :=

{
M0

∑
i=1

λi fi + λ0 : fi ∈ F , λ0, λ1, . . . , λM0 ∈ IR

}
. (12)
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Definition 6. We say that a collection of homogeneous polynomials F on IRn satisfies property R if

f (z− z0) ∈ L(F ) for any f ∈ F and any z0 ∈ IRn.

Definition 7. We define the set of Null Lagrangian Measures with respect to a set of homogeneous
polynomials F on IRn by

M
pc
F :=

{
µ ∈ P(IRn) : f

(∫
z dµ(z)

)
=
∫

f (z) dµ(z) for all f ∈ F
}

,

and further we define M
pc
F (v) :=

{
µ ∈M

pc
F :

∫
z dµ(z) = v

}
.

Now we are ready to state the more general formulation of Theorem 2. Recalling the
definition of algebraic cone in Definition 1, we have

Theorem 8. Let F =
{

f1, f2, . . . , fM0 , fM0+1, . . . , fM0+n
}

be a collection of homogeneous polyno-
mials on IRn satisfying fM0+j(z) = zj for j = 1, . . . , n and the property R as in Definition 6. Then
M

pc
F consists of Dirac measures if and only if

for each non-trivial algebraic cone V ⊂ IRn there exists y ∈ IRM0+n\ {0}

such that
M0+n

∑
k=1

yk fk ≥ 0 and
M0+n

∑
k=1

yk fk 6≡ 0 on V. (13)

The reason why we are interested in homogeneous polynomials is clear: minors in Mm×n

are simply homogeneous polynomials. In Section 4, our efforts will be devoted to proving
Theorem 8. As can be seen in Section 5, Theorem 2 is a fairly straightforward consequence
of the above theorem.

3. Proof Sketch

In this section we will sketch briefly the main ideas of the proofs of our main theorems.

3.1. Sketch of proofs of Theorems 8 and 2. To illustrate the key ideas, we sketch the proof
in the special case where v = 0. Let µ ∈M

pc
F (0). By definition, we have that∫

fk(z)dµ(z) = fk

(∫
z dµ(z)

)
= 0 for k = 1, 2, . . . , M0 + n. (14)

If the condition (13) is satisfied, then we can find some y ∈ IRM0+n \ {0} such that g(z) :=
∑M0+n

k=1 yk fk ≥ 0 on IRn. It is not hard to show that the highest degree terms in g, denoted
by g1 which is homogeneous, is also non-negative and non-trivial on IRn. By (14), we have∫

g1(z)dµ(z) = 0, and therefore Sptµ ⊂ V := {z : g1(z) = 0} and V is an algebraic cone. By
assumption, we can find another linear combination that is non-trivial and non-negative on
V. This way we can iteratively reduce the support of µ onto cones of smaller and smaller
dimensions until the support is reduced to the origin.

The necessity part of the proof is a bit more intricate. Suppose there exists a cone V such
that

M0+n

∑
k=1

yk fk changes sign on V for every y ∈ IRM0+n \ {0}. (15)

To construct a non-trivial measure in M
pc
F (0) it suffices to find points ζ1, ζ2, . . . , ζm0 ∈ IRn and

weights γ1, γ2, . . . , γm0 ≥ 0 satisfying
m0

∑
l=1

γl fk(ζl) = 0 for all k = 1, 2, . . . , M0 + n and
m0

∑
l=1

γl = 1. (16)
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Then defining µ := ∑m0
l=1 γlδζl we have µ ∈M

pc
F (0). Indeed, if we find solutions to (16), then

simply because the set of functions F contains the projections fM0+j(z) = zj we automatically
have µ = ∑m0

l=1 γlζl = 0. Further the equations for fk for k = 1, . . . , M0 imply that µ commutes
with these functions.

Now define a(ζ) :=
(

f1(ζ), . . . , fM0+n(ζ)
)
, A := {a(ζ) : ζ ∈ V\ {0}} and b = 0 ∈ IRM0+n.

Finding ζ1, ζ2, . . . , ζm0 and γ1, γ2, . . . , γm0 ≥ 0 that satisfy (16) is equivalent to showing b ∈
Conv(A). Suppose this was false, then by the Hyperplane Separation Theorem we must
be able to find some c ∈ IR and y ∈ IRM0+n such that y · w ≥ c for all w ∈ Conv(A)
and y · b≤c. However for any such y, by (15) there must exist some ζy ∈ V\ {0} such that

∑M0+n
k=1 yk fk(ζy) = a(ζy) · y < 0, which implies that c ≤ a(ζy) · y < 0 = b · y. Thus b cannot

be separated from Conv(A) by any hyperplane and so b ∈ Conv(A). There are nevertheless
technicalities to ensure that the linear combination given by (15) is not trivial. These are
overcome by restricting to a basis of F on V.

3.1.1. Sketch of proof of Theorem 2. Let σ : IRM → K be a linear isomorphism where M =
dim(K). We define fk(z) := Mk(σ(z)) for k = 1, 2, . . . , q1, where Mk are minors in Mm×n and
thus fk are homogeneous polynomials. Further define fq1+j(z) := zj for j = 1, . . . , M. By
properties of determinants (see Lemmas 33 and 34) it is not hard to see this set of functions
satisfy property R. It is also straightforward to show that measures in M

pc
F can be pushed

forward via σ to form measures in Mpc(K). As such Theorem 2 is essentially a corollary to
Theorem 8.

3.2. Sketch of proof of Theorem 3. From Theorem 2 we have learned that given µ ∈ Mpc(K),
to show that the support of µ can be reduced to a lower dimensional cone we need only to
find a linear combination of minors that is non-negative and non-trivial on K. Further if the
minors we use are 2× 2 minors then our cone is actually a subspace.

Let σ : z ∈ IRd 7→

 a11 · z . . . a1n · z
. . . . . .

am1 · z . . . amn · z

 ∈ K be a linear isomorphism. A major sim-

plification comes from the following observation: by performing row and column operations

on the matrix σ(z) we arrive at a matrix σ̃(z) :=

 ã11 · z . . . ã1n · z
. . . . . .

ãm1 · z . . . ãmn · z

, and defining

K̃ :=
{

σ̃(z) : z ∈ IRd
}

, we arrive at a different subspace. If K has no Rank-1 connections, then

K̃ also has no Rank-1 connections. Further

Span
{

M1(σ(z)), . . . , Mq0(σ(z))
}
= Span

{
M1(σ̃(z)), . . . , Mq0(σ̃(z))

}
, (17)

where M1, . . . , Mq0 are all 2× 2 minors in Mm×n. This is the content of Lemma 15. Thus if
we can find a sequence of row and column operations to reduce σ(z) to a matrix σ̃(z) which
has a simpler structure that allows to find a linear combination of minors that is non-trivial
and non-negative, then by (17) there must exist a linear combination which also works for
the subspace K.

It turns out that the restrictions on
{

aij
}

imposed by K having no Rank-1 connections
are such that one can transform σ(z) to some σ̃(z) such that (5) can be checked relatively
easily. The most delicate step in the proof is when K is isomorphic to a three-dimensional
subspace in M3×3, in which case we need to invoke an argument of Šverák to show that all
three-dimensional subspaces in M3×3

sym must contain Rank-1 connections. If K 6⊂ M3×3
sym , then

carefully checking all 2× 2 minors in K gives a linear combination satisfying (5).
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3.3. Sketch of proof of Theorem 4. The space of k-dimensional subspaces in Mm×n is triv-
ially isomorphic to G(k, p) for p = mn. It is well known that G(k, p) is a real analytic compact
connected manifold of dimension k(p− k). The charts for G(k, p) can be found by fixing a
pair of transversal subspaces W0, W1 of IRp where dim(W0) = k and dim(W1) = p− k, then
viewing the elements of G(k, p) as graphs of linear maps from W0 to W1. So fixing W0, W1

and choosing a basis for each space, each A ∈ IR(p−k)k ' M(p−k)×k defines a linear mapping
TA : W0 → W1. Further define φW0,W1(A) := {v + TA(v) : v ∈W0} ∈ G(k, p) and φW0,W1
forms a chart for G(k, p). As we vary W0, W1 (smoothly varying our choice of basis) we
obtain a complete set of charts.

Now letting M1, M2, . . . , Mq0 denote the set of all 2× 2 minors of Mm×n, we define quadrat-

ics on IRk by QA
j (y) := Mj

(
∑k

l=1 yl(al + TA(al))
)

for j = 1, 2, . . . , q0 where {a1, a2, . . . , ak} is

a basis of W0. Each QA
j can be represented by some XA

j ∈ Mk×k
sym . The key point of the proof

is the following: we are able to define a non-trivial real analytic function Λ : IRk(p−k) → IR
such that

Span
{

XA
1 , XA

2 , . . . , XA
q0

}
= Mk×k

sym for all A ∈ IR(p−k)k\ {A : Λ(A) = 0} . (18)

Thus for all A but the zero set of the analytic function Λ (which is “small”), one can find
a linear combination of

{
XA

1 , XA
2 , . . . , XA

q0

}
that is positive definite, and this gives a linear

combination of the 2× 2 minors that satisfies (5). Then the conclusions follow by very similar
arguments to the proof of the sufficiency part of Theorem 2. The existence of Λ follows by

identifying each symmetric XA
j as a vector in IR

k(k+1)
2 and forming a matrix Π(A) in M

(k+1)k
2 ×q0

with these vectors as columns. Then Λ(A) := det
(
Π(A)Π(A)T) satisfies (18). To show that

Λ is non-trivial, we notice that Λ(A0) 6= 0 where A0 defines the subspace V0 given by (80) of
Lemma 24.

3.4. Sketch of proof of Theorem 5. As sketched briefly in the introduction, the case where
α′(α̃2) < 0 follows easily from a well known result of Šverák [Sv 93]. The case where α′(α̃2) >
0 is the one that requires real work. As in Subsection 3.1, to streamline the sketch, we consider
the special case where α̃ = 0 and a(α̃2) = 0. Given s0, t0 sufficiently small, let

ζ0 :=

0 0
0 0
0 0

 , ζ1 :=

s0 0
0 s0
0 1

2 s2
0

 , ζ2 :=

−s0 0
0 −s0
0 1

2 s2
0


and

ζ3 :=

 0 t0
a(t0) 0

0 F(t0)

 , ζ4 :=

 0 −t0
a(−t0) 0

0 F(−t0)

 .

So ζ0, ζ1, . . . , ζ4 ∈ K1. For 0 < ε < 1 sufficiently small, we construct non-trivial measures
supported at the above five points, with weight 1− ε at ζ0, and total weight ε at the other
four points. Let D1, D2, D3 denote the (1, 2), (2, 3), (1, 3) minors of a 3× 2 matrix, respectively.
We set the matrix

A :=


D1(ζ1) D1(ζ2) D1(ζ3) D1(ζ4)
D2(ζ1) D2(ζ2) D2(ζ3) D2(ζ4)
D3(ζ1) D3(ζ2) D3(ζ3) D3(ζ4)

1 1 1 1

 =


s2

0 s2
0 −t0a(t0) t0a(−t0)

0 0 a(t0)F(t0) a(−t0)F(−t0)
1
2 s3

0 − 1
2 s3

0 0 0
1 1 1 1

 .

As a first step to obtain a non-trivial measure in Mpc(K1), we construct a measure µ with
Sptµ ⊂ {ζ0, ζ1, . . . , ζ4},

∫
Dk(ζ)dµ = 0 for k = 1, 2, 3 and µ(K1\ {ζ0})=ε. This is equivalent to
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finding some γ0 ∈ IR4
+ such that Aγ0 = (0, 0, 0, ε)T . To do this we use the Farkas-Minkowski

Lemma (see Corollary 7.1d, [Sc 86]):

Lemma 9 (Farkas-Minkowski). Let A ∈ Mm×n be a matrix with columns {a1, a2, . . . , an} and
b ∈ IRm. There exists x ∈ IRn

+ such that Ax = b if and only if y · b ≥ 0 for every vector y ∈ IRm with
y · ai ≥ 0 for i = 1, 2, . . . , n.

By a careful analysis using the special structure of the points ζ j, we have that ∑3
i=1 yiDi(ζ)

changes sign on {ζ1, ζ2, ζ3, ζ4} for all non-trivial y ∈ IR3. By arguments analogous to the
last paragraph of Section 3.1 this allows us to apply the Farkas-Minkowski Lemma (indeed
Farkas-Minkowski and the Hyperplane Separation Theorem are closely related results). So
if we define Lε(γ) := Aγ − (0, 0, 0, ε)T , then we have the existence of γ0 ∈ IR4

+ such that
Lε(γ0) = 0. However what we need to solve for a measure inMpc(K1) is Gε(γ) := Lε(γ)−
Q(γ) = 0, where

Q(γ) :=


D1

(
∑4

j=1 γjζ j

)
D2

(
∑4

j=1 γjζ j

)
D3

(
∑4

j=1 γjζ j

)
0

 .

Since Gε is a quadratic perturbation of an invertible function, it should seem reasonable
that for small enough ε, Gε(γ) = 0 will have a solution. But to actually establish that the
solution is non-negative we carry out an iterative argument inspired by the proof of the
inverse function theorem. To this end, we start from the non-negative solution γ0 of the
linear part Lε(γ) = 0, and use an iterative argument to solve for γk in each step k > 0 such
that γk converges to the actual solution of Gε(γ) = 0. The convergence of this scheme is
guaranteed by choosing ε sufficiently small. These are the contents of Lemmas 30 and 31.

What is slightly surprising is that to prove the general case we need to work instead with
the set Kα

1 defined by (89) of Section 8. This set is essentially a stripping away of the quadratic
part of K1 around a point α and similar ideas have been used by DiPerna [DP 85]. In some
sense, the set Kα

1 plays the role of simplifying the problem by allowing the assumptions α̃ = 0
and a(α̃2) = 0.

4. Proof of Theorem 8

The structure of real algebraic sets in IRn has been well studied. In this section, we will
make use of the following descending chain condition for real algebraic sets, whose proof is a
simple application of the classical Hilbert’s Basis Theorem (see [Mi 68], page 9).

Proposition 10. Any sequence V1 % V2 % V3 % . . . of real algebraic sets must terminate after a
finite number of steps.

Given a set of points S ⊂ IRn, we denote by Conv(S) the convex hull of S. It is well known
that, since S is a subset of a finite dimensional space, its convex hull can be represented as

Conv(S) =

{
m

∑
i=1

λiai : m ∈N, ai ∈ S, λi ∈ IR+,
m

∑
i=1

λi = 1

}
.

Given a vector v ∈ IRn we let [v]i be the i-th component of v. Let F be a finite collection of
homogeneous polynomials on IRn and V be a non-empty subset of IRn. We denote by FV a
subset of F such that

{
fbV : f ∈ FV

}
forms a basis of the space Span

{
fbV : f ∈ F

}
.
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Lemma 11. Let F =
{

f1, f2, . . . , fM0 , fM0+1, . . . , fM0+n
}

be a set of homogeneous polynomials on
IRn such that fM0+j(z) = zj for j = 1, . . . , n (not necessarily satisfying property R). Suppose there
exists a set V⊂ IRn such that {0} $ V and

for all y ∈ IRM0+n\ {0} , the linear combination
M0+n

∑
k=1

yk fkbV is either trivial or changes sign,

then there exists non-trivial µ ∈M
pc
F (0).

Proof. Let FV =
{

fk1 , fk2 , . . . , fkN1

}
. Note that FV must be non-empty, as otherwise fM0+j(z) =

zj = 0 on V for all j and hence V = {0} which is a contradiction. Define

a(ζ) :=


fk1(ζ)
fk2(ζ)

. . .
fkN1

(ζ)

 for ζ ∈ IRn and b :=


0
0

. . .
0

 (19)

to be vectors in IRN1 and let
A := {a(ζ) : ζ ∈ V \ {0}} .

Note that b = a(0). We claim that b /∈ A. Suppose not, then there exists some ζ ∈ V \ {0}
such that fkj

(ζ) = 0 for all j = 1, . . . , N1. As FV forms a basis of Span
{

fbV : f ∈ F
}

, it
follows that fk(ζ) = 0 for all k = 1, . . . , M0 + n. However, this implies that ζ j = fM0+j(ζ) = 0
for all j= 1, . . . , n, and hence ζ = 0, which is a contradiction.

We will show that b ∈ Conv(A) by using the Hyperplane Separation Theorem. First note
that

for all y ∈ IRN1 \ {0}, the linear combination
N1

∑
i=1

yi fkibV changes sign (20)

since
{

fk1 , fk2 , . . . , fkN1

}
is linearly independent on V. Let B = {b}. Note that Conv(A) and

B are both convex sets. Let y ∈ IRN1 \ {0} and c ∈ IR be such that

w · y ≥ c for all w ∈ Conv(A). (21)

By (20) there exists ζy ∈ V \ {0} such that

N1

∑
i=1

yi fki
(ζy) < 0. (22)

Now as a(ζy) ∈ A, by (21) and (22) we have that

0 >
N1

∑
i=1

yi fki
(ζy) = a(ζy) · y ≥ c. (23)

Thus y · b = 0
(23)
> c. By the Hyperplane Separation Theorem (see, e.g., [Bo-Va 04] Exercise

2.22) this implies that b ∈ Conv(A).
As b ∈ Conv(A), there exists λ1, λ2, . . . , λp0 ∈ IR+ and ζ1, ζ2, . . . , ζp0∈ V \ {0} such that

∑
p0
i=1 λi = 1 and

b =
p0

∑
i=1

λia(ζi). (24)
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Let µ := ∑
p0
i=1 λiδζi . Note that µ is non-trivial since b /∈ A. We claim that µ = 0. To see this, it

suffices to show that
p0

∑
i=1

λi[ζi]j = 0 for all j = 1, . . . , n. (25)

As FV is a basis of Span
{

fbV : f ∈ F
}

, we have

fM0+j =
N1

∑
r=1

α
j
r fkr on V for some αj ∈ IRN1

and hence
p0

∑
i=1

λi[ζi]j =
p0

∑
i=1

λi fM0+j(ζi) =
p0

∑
i=1

N1

∑
r=1

λiα
j
r fkr (ζi) =

N1

∑
r=1

α
j
r

(
p0

∑
i=1

λi fkr (ζi)

)
(24),(19)

= 0.

This shows (25) for all j ∈ {1, 2, . . . , n} and therefore µ = 0. Now∫
fkr (z)dµ(z) =

p0

∑
i=1

λi fkr (ζi)
(19)
=

p0

∑
i=1

λi [a(ζi)]r
(24)
= [b]r

(19)
= 0 for r = 1, 2, . . . , N1

and thus µ ∈M
pc
FV

(0).

Finally we show that µ ∈ M
pc
F (0). For any f ∈ F there exists β ∈ IRN1 such that fbV =

∑N1
i=1 βi fkibV . It follows that∫

IRn
f (z)dµ(z) =

∫
V

f (z)dµ(z)

=
N1

∑
i=1

βi

∫
V

fki
(z)dµ(z) =

N1

∑
i=1

βi fki
(0) = f (0),

and hence µ ∈M
pc
F (0). �

Theorem 12. Let F =
{

f1, f2, . . . , fM0 , fM0+1, . . . , fM0+n
}

be a set of homogeneous polynomials
on IRn such that fM0+j(z) = zj for j = 1, . . . , n (not necessarily satisfying property R). Then
M

pc
F (0) = {δ0} if and only if (13) of Theorem 8 holds true.

Proof. Suppose (13) of Theorem 8 is false, then clearly Lemma 11 gives a non-trivial µ ∈
M

pc
F (0). So in the following we assume (13), and thus for every non-trivial algebraic cone V

there exists y ∈ IRM0+n\ {0} such that
M0+n

∑
k=1

yk fk ≥ 0 and
M0+n

∑
k=1

yk fk 6≡ 0 on V.

Given any µ ∈M
pc
F (0), we will show that µ = δ0.

Now take V1 = IRn, so there exists y1 ∈ IRM0+n\ {0} such that ∑M0+n
k=1 y1

k fk is non-negative
and non-trivial on V1. Let

m1 := deg

(
M0+n

∑
k=1

y1
k fk

)
(26)

and
M1 := {k ∈ {1, 2, . . . , M0+n} : deg( fk) = m1} .

We claim that
∑

k∈M1

y1
k fk is non-trivial and non-negative on V1. (27)
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First because of the definition of m1, it is clear that ∑k∈M1
y1

k fk is non-trivial. Now suppose
it changes sign, then there exists ζ1 ∈ V1 such that

∑
k∈M1

y1
k fk(ζ1) < 0. (28)

Note that all fk’s with degree higher than m1, if any, cancel out in ∑M0+n
k=1 y1

k fk. Now, letting
dk := deg( fk), we have

M0+n

∑
k=1

y1
k fk(λζ1) = ∑

k∈{1,2,...,M0+n}\M1

y1
k fk(λζ1) + ∑

k∈M1

y1
k fk(λζ1)

= ∑
k∈{1,2,...,M0+n}\M1

y1
kλdk fk(ζ1) + ∑

k∈M1

y1
kλm1 fk(ζ1)

= λm1

 ∑
k∈{1,2,...,M0+n}\M1

y1
kλdk−m1 fk(ζ1) + ∑

k∈M1

y1
k fk(ζ1)


(26)
≤ λm1

2

(
∑

k∈M1

y1
k fk(ζ1)

)
for all large enough λ> 0.

(29)

Together with (28) this contradicts the fact that ∑M0+n
k=1 y1

k fk is non-negative on V1, and thus
(27) is established.

Since ∑k∈M1
y1

k fk is a homogeneous polynomial of degree m1 the set

V2 :=

{
z ∈ IRn : ∑

k∈M1

y1
k fk(z) = 0

}

forms an algebraic cone. Further, since ∑k∈M1
y1

k fk(z) is non-trivial on V1 = IRn, we have
V1 % V2. Note that since µ ∈M

pc
F (0) we have that∫

∑
k∈M1

y1
k fk(z)dµ(z) = ∑

k∈M1

y1
k fk(µ) = ∑

k∈M1

y1
k fk(0) = 0. (30)

So we must have that
µ (IRn\V2) = 0. (31)

If V2 = {0}, then we are done because of (31). So suppose V2 is non-trivial. By hypothesis
there exists y2 ∈ IRM0+n\ {0} such that

M0+n

∑
k=1

y2
k fk is non-trivial and non-negative on V2. (32)

Now we repeat the arguments as above. Let

m2 := deg

(
M0+n

∑
k=1

y2
k fkbV2

)
andM2 := {k ∈ {1, 2, . . . , M0+n} : deg( fk) = m2} .

Now we claim

∑
k∈M2

y2
k fk is non-trivial and non-negative on V2. (33)

Again by definition of m2 we know that ∑k∈M2
y2

k fk is non-trivial on V2. If it changes sign
on V2, then there exists ζ2 ∈ V2 such that ∑k∈M2

y2
k fk(ζ2) < 0. Since λζ2 ∈ V2 for any λ > 0,
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we can argue in an identical manner to (29) and conclude that for large enough λ,

M0+n

∑
k=1

y2
k fk(λζ2) ≤

λm2

2

(
∑

k∈M2

y2
k fk(ζ2)

)
< 0.

This contradicts (32) and thus (33) is established.
Now in exactly the same way as (30) we have that

∫
∑k∈M2

y2
k fk(z)dµ(z) = 0. Hence letting

V3 :=

{
z ∈ V2 : ∑

k∈M2

y2
k fk(z) = 0

}
we have that µ(V2\V3) = 0. Further V3 is an algebraic cone satisfying V2 % V3. If V3 = {0},
then we are done. Otherwise, we can repeat the above process to obtain a descending chain
of algebraic cones V1 % V2 % V3 % . . . . By Proposition 10, after a finitely many steps, the
chain must stop. Let Vp be the last algebraic cone in the chain. We claim that Vp = {0}.
Assume not, then Vp is a non-trivial algebraic cone. By hypothesis and the arguments as
above, there exists an algebraic cone Vp+1 $ Vp, which is a contradiction. As Sptµ ⊂ Vp, we
conclude that µ = δ0. This completes the proof of the theorem. �

Proof of Theorem 8. For any v ∈ IRn, we define the translation Pv : IRn → IRn by

Pv(z) := z−v. (34)

By Lemma 32, for a collection of polynomials F satisfying property R, we have µ ∈M
pc
F (v)

if and only if (Pv)] µ ∈M
pc
F (0), where (Pv)] µ is the push forward of µ under the mapping

Pv. So it suffices to show that M
pc
F (0) consist of Diracs if and only if (13) of Theorem 8 holds

true. This is exactly the content of Theorem 12. Thus condition (13) holds true if and only if
M

pc
F (v) is trivial for all v ∈ IRn, and hence if and only if M

pc
F consists of Dirac measures. �

5. Proof of Theorem 2

In this section, we give the proof of Theorem 2. The following notation will be used at
multiple places throughout this paper. Given a matrix A ∈ Mm×n, let

Ri(A) ∈ M1×n denote the i-th row of A (35)

and
[A]ij denote the (i, j)-th entry of A. (36)

In the following we will deal with submatrices whose sizes vary. So we introduce the follow-
ing notation. For positive integers m, n let

Mm,n
1 (A), Mm,n

2 (A), . . . , Mm,n
q(m,n)(A) denote all the minors of a matrix A ∈ Mm×n, (37)

where q(m, n) denotes the number of minors in Mm×n.

Proof of Theorem 2. Let M = dim(K). There exists a linear isomorphism σ : IRM → K such
that

σ(z) =


a11 · z a12 · z . . . a1n · z
a21 · z a22 · z . . . a2n · z

. . . . . .
am1 · z am2 · z . . . amn · z

 (38)

for aij ∈ IRM. We claim that
dim

(
Span

{
aij
})

= M. (39)



NULL LAGRANGIAN MEASURES IN SUBSPACES, COMPENSATED COMPACTNESS AND CONSERVATION LAWS 15

Suppose this is false, then there exists z0 ∈ IRM \ {0} such that aij · z0 = 0 for all i ∈
{1, 2, . . . , m}, j ∈ {1, 2, . . . , n}. Thus σ(z0) = 0 which contradicts the fact that σ is an iso-
morphism. Hence by (39) there exist {λij

k } such that

zk = ∑
i,j

λ
ij
k
(
aij · z

)
for all k = 1, 2, . . . , M. (40)

Define

fk(z) := Mk(σ(z)) for k = 1, 2, . . . , q1 and fq1+j(z) := zj for j = 1, 2, . . . , M, (41)

and let F :=
{

f1, f2, . . . , fq1+M
}

.

Step 1. Let ν ∈ P(IRM) and µ := σ]ν, i.e., µ is the push forward of ν under the mapping σ,
then ν ∈M

pc
F if and only if µ ∈ Mpc(K).

Proof of Step 1. By change of variable formula for push forward measures (see [Am-Fu-Pa 00],
P. 32) for k ∈ {1, 2, . . . , q1} we have∫

fk(z)dν(z) =
∫

Mk(σ(z))dν(z) =
∫

Mk(X)dµ(X)

and

Mk

(∫
Xdµ(X)

)
= Mk

(∫
σ(z)dν(z)

)
= Mk

(
σ

(∫
zdν(z)

))
= fk (ν) .

This establishes Step 1.

Step 2. We will show that the set of functions F has property R.
Proof of Step 2. For each k ∈ {1, 2, . . . , q1}, Mk is a minor and as such is the determinant

of a pk × pk submatrix for some pk ∈ {2, . . . , min {m, n}}. So for each k there exists a linear
mapping Pk : Mm×n → Mpk×pk defined by pairwise distinct sets I :=

{
i1, i2, . . . , ipk

}
and

J :=
{

j1, j2, . . . , jpk

}
such that Pk(A) =

{(
[A]ij

)
: i ∈ I, j ∈ J

}
for all A ∈ Mm×n. Now using

Lemma 34 for the third equality (recalling definition (37)) we have for any z0 ∈ IRM

fk(z + z0) = Mk (σ(z) + σ(z0))

= det (Pk(σ(z)) + Pk(σ(z0)))

(136)
= det (Pk(σ(z))) + det (Pk(σ(z0))) +

q(pk ,pk)

∑
l=1

Pl (Pk(σ(z0))) Mpk ,pk
l (Pk(σ(z)))

= fk(z) + fk(z0) +
q(pk ,pk)

∑
l=1

Pl (Pk(σ(z0))) Mpk ,pk
l (Pk(σ(z))),

(42)

where Pl (Pk(σ(z0))) are polynomial functions of the entries of Pk(σ(z0)). For each l ∈
{1, . . . , q(pk, pk)} we have

Mpk ,pk
l ◦ Pk = Mkl

for some kl ∈ {1, 2, . . . , q1 + mn}.

If 1 ≤ kl ≤ q1, then Mkl
(σ(z)) = fkl

(z). If q1 + 1 ≤ kl ≤ q1 + mn, then Mkl
(σ(z)) is a pro-

jection mapping of the form aij · z by (38), and thus by (41) is a linear combination of { fq1+j}
for j = 1, . . . , M. Hence, we see from (42) that fk(z + z0) ∈ L(F ) (defined in (12)). As this is
true for each k ∈ {1, 2, . . . , q1} and is trivially true for fq1+j for j = 1, . . . , M, we have shown
that F has property R. This completes the proof of Step 2.

Step 3. We will show that for F consisting of the polynomials defined by (41), condition
(5) of Theorem 2 is equivalent to condition (13) of Theorem 8.
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Proof of Step 3. First note that V ⊂ IRn is a non-trivial algebraic cone if and only if Ṽ := σ(V)
is a non-trivial algebraic cone in K. Indeed, first assume that V ⊂ IRn is a non-trivial algebraic
cone. To see that Ṽ is a cone, take v ∈ Ṽ, λ>0, then σ−1(λv) = λσ−1(v) ∈ V, so λv ∈ Ṽ.
To see that Ṽ is an algebraic set, let g be any polynomial function that vanishes on V and
define g̃(ζ) := g(σ−1(ζ)). As g is a polynomial function of σ−1(ζ) and each coordinate of
σ−1(ζ) can be represented as a linear combination of the entries of ζ by (40), it follows that g̃
is a polynomial function of the entries of ζ. It is also clear that g̃ vanishes on Ṽ. This shows
that Ṽ is an algebraic set in K. Conversely, assume that Ṽ is an algebraic cone in K. Almost
identical arguments as above show that V is an algebraic cone in IRM.

Now suppose we have condition (5) of Theorem 2. Then for any non-trivial algebraic cone
Ṽ ⊂ K, there exists β ∈ IRq1+mn\ {0} such that

q1

∑
k=1

βk Mk (σ(z)) +
q1+mn

∑
k=q1+1

βk (σ(z))k ≥ 0 and
q1

∑
k=1

βk Mk (σ(z)) +
q1+mn

∑
k=q1+1

βk (σ(z))k 6≡ 0 on V

for V = σ−1(Ṽ). By (41) we have that for F , condition (13) of Theorem 8 holds true. Next

suppose condition (13) of Theorem 8 holds true for F . Note that ∑
q1+M
k=q1+1 yk fk(z)

(41),(40)
=

∑
q1+M
k=q1+1 yk ∑i,j λ

ij
k (aij · z), so this together with (41) gives that the non-trivial and non-negative

linear combination we have in F is actually one that we can express as a linear combination
in {Mk} for k = 1, . . . , q1 + mn. Hence we have condition (5) of Theorem 2. This completes
the proof of Step 3.

Proof of Theorem 2 completed. Let µ ∈ Mpc(K). By Step 1, we have ν :=
(
σ−1)

]µ ∈
M

pc
F . So σ establishes a one-to-one correspondence betweenMpc(K) and M

pc
F . Since σ is an

isomorphism, it is clear that Mpc(K) is trivial if and only if M
pc
F is trivial. By Step 2, F is

a set of homogeneous polynomials with property R and from (41) it is clear that F satisfies
the assumptions of Theorem 8. By Theorem 8, M

pc
F is trivial if and only if condition (13)

is satisfied, which is equivalent to condition (5) holding true by Step 3. The conclusion of
Theorem 2 hence follows from the above equivalence relations. �

6. Proof of Theorem 3

In this section we give the proof of Theorem 3. Our main tool is the following

Theorem 13. Let d ∈ {1, 2, 3} and K ⊂ Mm×n be a d-dimensional subspace without Rank-1 con-
nections. Denote by M1, . . . , Mq0 : Mm×n → IR the set of all 2× 2 minors in Mm×n. Then there
exists some β ∈ IRq0 \ {0} such that

q0

∑
k=1

βk Mk(X) ≥ 0 for all X ∈ K and
q0

∑
k=1

βk Mk 6≡ 0 on K. (43)

The proof of the above theorem requires some preparation. We begin by introducing some
notation. Given A ∈ Mm×n, we denote

Mn1,n2
m1,m2(A) := det

(
[A]m1n1

[A]m1n2
[A]m2n1 [A]m2n2

)
(44)
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for m1 6= m2 ∈ {1, 2, . . . , m}, n1 6= n2 ∈ {1, 2, . . . , n}. Let K ⊂ Mm×n be a d-dimensional
subspace, then there exist aij ∈ IRd for i = 1, . . . , m and j = 1, . . . , n such that

PK(z) :=


a11 · z a12 · z . . . a1n · z
a21 · z a22 · z . . . a2n · z

. . .

. . .
am1 · z am2 · z . . . amn · z

 (45)

is a linear isomorphism of IRd onto K and hence is a parametrization. Thus we have

K =
{

PK(z) : z ∈ IRd
}

.

Note that every linear isomorphism P : IRd → Mm×n corresponds uniquely to some P(z)
in the form (45), which can be identified as an m× n matrix with entries in the polynomial
ring IR[z1, . . . , zd]. For the rest of this section, we do not distinguish between such linear
isomorphisms and the associated matrices in the form (45) with entries in IR[z1, . . . , zd]. We
define an equivalence relation between linear isomorphisms from IRd into Mm×n as follows.

Definition 14. Let P1, P2 : IRd → Mm×n be two linear isomorphisms. We say that P1 is equivalent
to P2, written as

P1 ∼ P2, (46)

if P2(z) can be obtained from P1(z), both viewed as m × n matrices with entries in the polynomial
ring IR[z1, . . . , zd], by finitely many elementary row and column operations.

The following result will be used repeatedly in the proof of Theorem 13.

Lemma 15. Let d, m, n be positive integers such that min{m, n} ≥ 2 and d ≤ mn. Denote by
M1, M2, . . . , Mq0 all 2 × 2 minors of Mm×n. Further let P1, P2 : IRd → Mm×n be two linear
isomorphisms such that P1 ∼ P2 in the sense of Definition 14. Then, denoting Kj := Pj(IRd) for
j = 1, 2, we have that K1 has no Rank-1 connections if and only if K2 has no Rank-1 connections.
Further, we have

Span
{

M1(P1(z)), . . . , Mq0(P1(z))
}
= Span

{
M1(P2(z)), . . . , Mq0(P2(z))

}
(47)

as subsets of the polynomial ring IR[z1, . . . , zd].

Proof. By induction, it suffices to consider the case where P2(z) is obtained from P1(z), both
viewed as m × n matrices with entries in IR[z1, . . . , zd], by an elementary row or column
operation. We only show the case where P2(z) is obtained from P1(z) by an elementary row
operation, as the proof for column operation is identical.

Note that, for any fixed z0 ∈ IRd, P1(z0) and P2(z0) are m× n matrices with entries in IR.
As P2(z0) is obtained from P1(z0) by an elementary row operation, it is clear that

Rank(P1(z0)) = Rank(P2(z0)). (48)

Since z0 ∈ IRd is arbitrary, it follows that

K1 has no Rank-1 connections

⇐⇒ Rank(P1(z)) ≥ 2 for any z 6= 0
(48)⇐⇒ Rank(P2(z)) ≥ 2 for any z 6= 0

⇐⇒ K2 has no Rank-1 connections.
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Next, as P2(z) is obtained from P1(z), both viewed as m × n matrices with entries in
IR[z1, . . . , zd], by an elementary tow operation, we have that

Ri(P2(z)) =
m

∑
i′=1

ci,i′Ri′(P1(z)), (49)

where recall that Ri(A) denotes the i-th row of a matrix A. It follows that

Mj0,j1
i0,i1

(P2(z)) = det

(
[P2(z)]i0,j0 [P2(z)]i0,j1
[P2(z)]i1,j0 [P2(z)]i1,j1

)
=
(
[P2(z)]i0,j0 , [P2(z)]i0,j1

)
∧
(
[P2(z)]i1,j0 , [P2(z)]i1,j1

)
=

(
m

∑
i′=1

ci0,i′
(
[P1(z)]i′ ,j0 , [P1(z)]i′ ,j1

))
∧
(

m

∑
i′′=1

ci1,i′′
(
[P1(z)]i′′ ,j0 , [P1(z)]i′′ ,j1

))

=
m

∑
i′ ,i′′=1

ci0,i′ci1,i′′M
j0,j1
i′ ,i′′ (P1(z)).

This shows that all 2× 2 minors of P2(z) are inside the span of the 2× 2 minors of P1(z), both
as subsets of IR[z1, . . . , zd]. Conversely, by (49) the rows of P1(z) can be represented as linear
combinations of the rows of P2(z). Therefore, exactly the same argument shows the opposite
inclusion in (47). �

To simplify notation, given a, b ∈ IRd, we define a� b ∈ IR[z1, . . . , zd] by

a� b := (a · z) (b · z) . (50)

If a ∈ IRd and W is a subspace of IRd we define

a�W := {a� w : w ∈W} . (51)

Further given two subspaces W, R ⊂ IRd we define

W � R := {w� r : w ∈W, r ∈ R} . (52)

Lemma 16. Let d ∈ {1, 2, 3} and K ⊂ Mm×n be a d-dimensional subspace without Rank-1 connec-
tions. Assume that K = PK(IRd) with PK represented by (45). If

dim
(
Span

{
ai0l : l = 1, 2, . . . , n

})
= 1 for some i0 ∈ {1, 2, . . . , m} (53)

or
dim

(
Span

{
al j0 : l = 1, 2, . . . , m

})
= 1 for some j0 ∈ {1, 2, . . . , n} , (54)

then there exists some β ∈ IRq0 \ {0} such that (43) is satisfied.

Proof. It is enough to establish (43) assuming (53). Under the assumption (54), the conclusion
follows in exactly the same way. Recall the definition (46). By performing row and column
operations to PK(z) we have

PK(z) ∼ P̃(z) :=


ã11 · z 0 . . . 0
ã21 · z ã22 · z . . . ã2n · z

. . . . . .
ãm1 · z ãm2 · z . . . ãmn · z

 . (55)

It is clear that Span{Mk(P̃(z)) : k = 1, . . . , q0} contains (recalling the notation (50)){
ã11 � ãij : i ∈ {2, 3, . . . , m} , j ∈ {2, 3 . . . , n}

}
.

Let
U0 := Span

{
ãij : i ∈ {2, 3, . . . , m} , j ∈ {2, 3, . . . , n}

}
.
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It follows that (recalling the notation (51))

ã11 �U0 ⊂ Span{Mk(P̃(z)) : k = 1, . . . , q0}. (56)

Suppose dim(U0) ≤ d− 1 (when d = 1, U0 simply contains all scalar zeros), then there ex-
ists some z0 ∈ IRd such that ãij · z0 = 0 for all i ∈ {2, 3, . . . , m} , j ∈ {2, 3, . . . , n} and thus from
(55) we have Rank(P̃(z0)) = 1. By Lemma 15, since K does not contain Rank-1 connections,
we know that the subspace parametrized by P̃ also does not contain Rank-1 connections. This
contradicts the fact that Rank(P̃(z0)) = 1. Hence we have dim(U0) = d, and thus ã11 ∈ U0. It
is then clear from (56) that ã11 � ã11 ∈ Span{Mk(P̃(z)) : k = 1, . . . , q0}. As ã11 is non-trivial,
ã11 � ã11 = (ã11 · z)2 provides an element in Span{Mk(P̃(z)) : k = 1, . . . , q0} that is non-
negative and non-trivial. By (47), we know that ã11 � ã11 ∈ Span{Mk(PK(z)) : k = 1, . . . , q0}
and this establishes (43). �

Lemma 17. Assume that min{m, n} = 2. Let d ∈ {2, 3} and K ⊂ Mm×n be a d-dimensional
subspace without Rank-1 connections, then there exists some β ∈ IRq0 \ {0} such that (43) is satisfied.

Proof. Without loss of generality, we assume that n = 2, and the case m = 2 can be dealt with
in an identical manner. Let K = PK(IRd) with PK represented by (45). We claim that

dim
(
Span

{
aij : i = 1, . . . , m

})
= d for j = 1, 2.

If not, suppose without loss of generality that dim (Span{ai1 : i = 1, . . . , m}) ≤ d− 1. Then
there exists some z0 6= 0 such that ai1 · z0 = 0 for all i = 1, . . . , m, and hence PK(z0) forms a
Rank-1 direction in K, which is a contradiction.

By row operations on PK(z), we may without loss of generality assume that

dim (Span {ai1 : i = 1, . . . , d}) = d.

By further row operations we eliminate the remaining terms in the first column in PK(z)
(viewed as a matrix with entries in IR[z1, . . . , zd]) and get

PK(z) ∼ P̃(z) :=


ã11 · z ã12 · z

. . . . . .
ãd1 · z ãd2 · z

0 ã(d+1)2 · z
. . . . . .

 ,

that is, ãi1 = 0 for all i ≥ d + 1. We may assume that

ãi2 = 0 for all i ≥ d + 1, (57)

as otherwise there would be a row, say the i0-th row with i0 ≥ d + 1, in P̃(z) such that
(53) is satisfied for this row. Then we are done in this case by Lemmas 16 and 15. So
assuming (57), P̃(z) is isomorphic to a d-dimensional subspace in Md×2. When d = 3, by
Proposition 4.4 in [Bh-Fi-Ja-Ko 94], all three-dimensional subspaces in M3×2 must contain

Rank-1 connections and thus this is a contradiction. When d = 2, P̃(z) =
(

ã11 · z ã12 · z
ã21 · z ã22 · z

)
(up to an isomorphism). By Lemma 15, P̃(z) does not contain Rank-1 connections and hence
det P̃(z) 6= 0 for all z 6= 0. Then (possibly after multiplying by −1) det P̃(z) is a non-negative
and non-trivial minor in Span{Mk(P̃(z)) : k = 1, . . . , q0}, and we are done by (47). �

Lemma 18. Let d ∈ {2, 3} and K ⊂ Mm×n be a d-dimensional subspace without Rank-1 connections.
Assume that K = PK(IRd) with PK represented by (45). If

dim
(
Span

{
ai0l : l = 1, 2, . . . , n

})
= 2 for some i0 ∈ {1, 2, . . . , m} (58)
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or
dim

(
Span

{
al j0 : l = 1, 2, . . . , m

})
= 2 for some j0 ∈ {1, 2, . . . , n} ,

then there exists some β ∈ IRq0 \ {0} such that (43) is satisfied.

Proof. By Lemma 17, we may assume that min{m, n} ≥ 3. Without loss of generality, we
assume (58) with i0 = 1 and dim (Span {a11, a12}) = 2. We perform column operations to
PK(z) (as a matrix with entries in IR[z1, . . . , zd]) to eliminate the remaining terms in the first
row to get

PK(z) ∼ P̃(z) :=


ã11 · z ã12 · z 0 . . . 0
ã21 · z ã22 · z ã23 · z . . . ã2n · z

. . . . . .
ãm1 · z ãm2 · z ãm3 · z . . . ãmn · z

 , (59)

where
dim (Span {ã11, ã12}) = 2.

If ãij = 0 for all i ≥ 2 and j ≥ 3, then P̃(z) is isomorphic to a d-dimensional subspace in
Mm×2, and thus we are done by Lemmas 17 and 15. So in the following we assume that there
exists some j0 ∈ {3, . . . , n} such that the j0-th column in P̃(z) is non-trivial. By Lemma 16 we
may assume that dim

(
Span

{
ã2j0 , . . . , ãmj0

})
≥ 2 since otherwise there would be a column of

Pk(z) for which (54) holds true. We define

W1 := Span{ã11, ã12} and U1 := Span
{

ã2j0 , . . . , ãmj0
}

.

Note that dim(W1) + dim(U1) = 4 > d and hence there exists some non-trivial ψ ∈ IRd such
that ψ ∈W1 ∩U1. In particular, recalling the notation (50) and (52), we have ψ�ψ ∈W1�U1.
It is clear from (59) that W1 � U1 ⊂ Span{Mk(P̃(z)) : k = 1, . . . , q0} and hence ψ � ψ ∈
Span{Mk(P̃(z)) : k = 1, . . . , q0} is non-negative and non-trivial. Finally the conclusion of the
lemma follows from (47). �

Lemma 19. Let K ⊂ Mm×n be a three-dimensional subspace without Rank-1 connections. Assume
that K = PK(IRd) with PK represented by (45). If

dim
(
Span

{
ai0l : l = 1, 2, . . . , n

})
= 3 for some i0 ∈ {1, 2, . . . , m} (60)

or
dim

(
Span

{
al j0 : l = 1, 2, . . . , m

})
= 3 for some j0 ∈ {1, 2, . . . , n} ,

then there exists some β ∈ IRq0 \ {0} such that (43) is satisfied.

Proof. As at the beginning of the proof of Lemma 18, we assume without loss of generality
(60) with i0 = 1 and find PK(z) ∼ P̃(z) where

[
P̃(z)

]
ij
= ãij · z and {ãij} ⊂ IR3 satisfies

dim (Span {ã11, ã12, ã13}) = 3 and ã1j = 0 for all j = 4, . . . , n, (61)

provided n ≥ 4. If there exists i0 ∈ {2, 3, . . . , m} , j0 ∈ {4, 5 . . . , n} with ãi0 j0 6= 0, then
since ãi0 j0 � Span {ã11, ã12, ã13} ⊂ Span{Mk(P̃(z)) : k = 1, . . . , q0}, it follows from (61) that
ãi0 j0 � ãi0 j0 ∈ Span{Mk(P̃(z)) : k = 1, . . . , q0} and we are done. So in the following we assume
that

ãij = 0 for all i ∈ {2, 3, . . . , m} , j ∈ {4, 5 . . . , n} ,

and hence P̃(z) is isomorphic to a three-dimensional subspace in Mm×3. Note that this also
includes the case n = 3.

By Lemmas 16 and 18, we only have to deal with the case when

dim (Span{ãi1, ãi2, ãi3}) = 3 for all i
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and
dim

(
Span{ãij : i = 1, 2, . . . , m}

)
= 3 for all j.

By Lemma 17, we may assume that there are at least three non-zero rows in P̃(z). If P̃(z)
has more than three non-zero rows, we can perform row operations to eliminate all but
three entries in the first column in P̃(z) and obtain P̃(z) ∼ P̂(z) :=

(
âij · z

)
, where P̂(z)

(up to an isomorphism) is an m × 3 matrix with entries in IR[z1, . . . , z3] and âi1 = 0 for all
i ≥ 4. If there exists i0 ≥ 4 such that the i0-th row of P̂(z) is non-trivial, then (noting that
P̂(z) has only three non-zero columns) Lemma 18 can be applied to give a non-negative and
non-trivial element in Span{Mk(P̂(z)) : k = 1, . . . , q0}, which by Lemma 15 also belongs to
Span{Mk(PK(z)) : k = 1, . . . , q0}. Hence the only remaining case is where P̃(z) is isomorphic
to a three-dimensional subspace in M3×3. We prove this case in Lemma 20. This concludes
the proof of Lemma 19. �

Lemma 20. Let K ⊂ M3×3 be a three-dimensional subspace without Rank-1 connections, then there
exists some β ∈ IRq0 \ {0} such that (43) holds true.

Proof. We assume that K = PK(IR3) for PK(z) given in (45). By Lemmas 16 and 18, we may
assume that

dim
(
Span{a1j, a2j, a3j}

)
= 3 for all j.

Thus we can perform row operations to clean up the first column of PK(z) to get

PK(z) ∼ P̃(z) :=

 e1 · z ã12 · z ã13 · z
e2 · z ã22 · z ã23 · z
e3 · z ã32 · z ã33 · z

 .

Again by Lemmas 16 and 18 we may assume that {e1, ã12, ã13} is linearly independent. So we
can perform column operations to P̃(z), using the first column to eliminate the e1 component
in ã12 and ã13, and then performing column operations to the second and third columns to
find

P̃(z) ∼ P̂(z) :=

 e1 · z e2 · z e3 · z
e2 · z â22 · z â23 · z
e3 · z â32 · z â33 · z

 . (62)

Next we will show that if â32 6= â23 then (43) holds true. To this end, we examine the
minors of P̂(z). Note that (recalling (44))

M1,3
1,2(P̂(z)) = z1(â23 · z)− z3z2, M1,2

1,3(P̂(z)) = z1(â32 · z)− z2z3,

M2,3
1,2(P̂(z)) = z2(â23 · z)− z3(â22 · z), M2,3

1,3(P̂(z)) = z2(â33 · z)− z3(â32 · z),

M1,3
2,3(P̂(z)) = z2(â33 · z)− z3(â23 · z), M1,2

2,3(P̂(z)) = z2(â32 · z)− z3(â22 · z).
So letting b = (b1, b2, b3) = â23 − â32 we have

M1,3
1,2(P̂(z))−M1,2

1,3(P̂(z)) = z1 ((â23 − â32) · z) = z1 (b · z) ,

M2,3
1,2(P̂(z))−M1,2

2,3(P̂(z)) = z2 ((â23 − â32) · z) = z2 (b · z)
and

M2,3
1,3(P̂(z))−M1,3

2,3(P̂(z)) = z3 ((â23 − â32) · z) = z3 (b · z) .

Thus

b1

(
M1,3

1,2(P̂(z))−M1,2
1,3(P̂(z))

)
+ b2

(
M2,3

1,2(P̂(z))−M1,2
2,3(P̂(z))

)
+b3

(
M2,3

1,3(P̂(z))−M1,3
2,3(P̂(z))

)
= (b · z)2
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and we have a non-negative and non-trivial element in Span
{

Mk(P̂(z)) : k = 1, . . . , q0
}

as
b 6= 0. So we are done by (47).

Finally, if â32 = â23, then from (62), P̂(z) would define a three-dimensional subspace
in M3×3

sym without Rank-1 connections. By Lemma 35 (from Appendix 10.2), any three-
dimensional subspace in M3×3

sym must contain a Rank-1 connection, which is a contradiction
by Lemma 15. This completes the proof of Lemma 20. �

Proof of Theorem 13. If K is a three-dimensional subspace, then one of the assumptions in
Lemmas 16, 18 and 19 is trivially satisfied and hence the conclusion follows from these
lemmas. Similarly, for two-dimensional subspaces, the conclusion follows from Lemmas 16
and 18 and for one-dimensional subspaces the conclusion follows from Lemma 16. �

We conclude this section with the proof of Theorem 3. The necessity part is trivial. The
sufficiency part makes use of Theorem 13 and the ideas are very similar to those in the proof
of the sufficiency part in Theorem 2.

Proof of Theorem 3. Suppose that K has Rank-1 connections, then there exists a non-trivial
A ∈ K such that Rank(A) = 1. Let µ := 1

2 δA + 1
2 δ−A. Note that for any minor Mk of Mm×n,

Mk(A) = Mk(−A) = Mk(
A−A

2 ) = 0. It follows that∫
K

Mk(X)dµ(X) =
1
2

Mk(A) +
1
2

Mk(−A) = 0 = Mk

(
A− A

2

)
= Mk

(∫
K

Xdµ(X)

)
.

Hence µ ∈ Mpc(K) andMpc(K) contains non-trivial measures.
Next suppose that K has no Rank-1 connections, and we show that Mpc(K) consists of

Dirac measures. We assume that K is a three-dimensional subspace and provide the detailed
proof, part of which can be used to prove the cases for lower dimensional subspaces.

We first show thatMpc
K (0) is trivial, where

Mpc
K (0) := {µ ∈ Mpc(K) : µ = 0} .

To this end, we apply Theorem 13 to the subspace K to find β ∈ IRq0 \ {0} such that
q0

∑
k=1

βk Mk(X) ≥ 0 for all X ∈ K and
q0

∑
k=1

βk Mk 6≡ 0 on K. (63)

Let µ ∈ Mpc
K (0). It follows from the definition ofMpc

K (0) that
∫

K Mk(X)dµ(X) = Mk (µ) = 0
and hence

∫
K ∑

q0
k=1 βk Mk(X)dµ(X) = 0. By (63), it is clear that Spt(µ) ⊂ K1 where

K1 :=

{
X ∈ K :

q0

∑
k=1

βk Mk(X) = 0

}
.

We claim that K1 is a subspace of K. Since dim(K) = 3, there exists a linear isomorphism
σ : IR3 → K. Define f (z) := ∑

q0
k=1 βk Mk(σ(z)) which is a homogeneous quadratic function

as all Mk’s are 2× 2 minors. Because of (63), f is convex on IR3. It follows that its zero set
σ−1(K1) is a convex cone, which is a subspace in IR3, and hence K1 is also a subspace of K
as σ is a linear isomorphism. Further since ∑

q0
k=1 βk Mk(X) is non-trivial, we know that K1

is a proper subspace of K. Now Spt(µ) ⊂ K1 and dim (K1) ≤ 2. Since K has no Rank-1
connections, the same holds for K1. Repeating the above arguments using Theorem 13 at
most three times, we conclude that µ = δ0 and henceMpc

K (0) is trivial.
Now let µ ∈ Mpc(K) and X :=

∫
K X dµ(X). Define the translation PX : Mm×n → Mm×n

by PX(X) := X − X. Letting ν :=
(
PX
)
]

µ, i.e., the push forward of the measure µ under
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the mapping PX , we claim that ν ∈ Mpc
K (0). First we have∫

K
X dν(X) =

∫
K

(
X− X

)
dµ(X) = 0. (64)

Next recall that, given 2× 2 matrices A and B, we have that

det(A− B) = det(A)− A : Cof(B) + det(B). (65)

It follows that ∫
K

Mk(X) dν(X) =
∫

K
Mk
(
X− X

)
dµ(X)

(65)
=
∫

K
Mk(X) dµ(X)−

∫
K

X : Cof(X) dµ(X) + Mk(X)

µ∈Mpc(K)
= Mk(X)− X : Cof(X) + Mk(X)

(65)
= Mk(X− X) = 0

(64)
= Mk

(∫
K

X dν(X)

)
for all k = 1, . . . , q0. Hence we have established that ν ∈ Mpc

K (0), and thus ν = δ0. It follows
immediately that µ = δX and thereforeMpc(K) consists of Dirac measures. �

7. Proof of Theorem 4

We first recall the notion of Grassmannian which is needed in the discussions of this
section. Let p, k be fixed integers with p ≥ 0 and 0 ≤ k ≤ p. We denote by G(k, p) the
set of all k-dimensional subspaces of IRp, and it is called the Grassmannian of k-dimensional
subspaces of IRp. We have the following property regarding G(k, p), whose proof can be
found, for example, in [Pi-Ta 08]:

Lemma 21. The Grassmannian G(k, p) is a real analytic, compact and connected manifold of dimen-
sion k(p− k).

One can view G(k, p) as a differentiable manifold in the following way. We fix a pair
of transversal subspaces (W0, W1) of IRp, i.e., W0 ∩W1 = {0}, where dim(W0) = k and
dim(W1) = p− k. Then one can view elements in G0(k, p, W1) as the graphs of linear maps
from W0 to W1, where

G0(k, p, W1) := {V ∈ G(k, p) : V ∩W1 = {0}} .

Specifically, we pick a basis {a1, a2, . . . , ak} for W0 and a basis
{

b1, b2, . . . , bp−k

}
for W1. We

identify IRk(p−k) with M(p−k)×k in the obvious way, i.e., identify x ∈ IRk(p−k) with Ax ∈
M(p−k)×k where [Ax]ij = [x](i−1)k+j. For each A ∈ IRk(p−k) ' M(p−k)×k, let TA : W0 → W1 be

the linear map defined by A and the choices of bases {a1, a2, . . . , ak},
{

b1, b2, . . . , bp−k

}
. We

define
φW0,W1(A) := {v + TA(v) : v ∈W0} . (66)

Note that the mapping φW0,W1 is one to one from IRk(p−k) onto G0(k, p, W1). Hence it defines
a chart on G(k, p) that covers G0(k, p, W1). As noted in Remark 2.2.4 in [Pi-Ta 08], the charts
defined by (66) actually form a real analytic atlas for G(k, p). Further, it is shown in Corollary
2.4.3 in [Pi-Ta 08] that G(k, p) is compact and connected.

Definition 22. We say that a property holds generically for k-dimensional subspaces of IRp if there
exist finitely many smooth manifolds Γ1, Γ2, . . . , Γr in IRk(p−k) of dimension less than k(p− k) and
Lipschitz mappings Pj : Γj → G(k, p) for j = 1, 2, . . . , r such that the property holds true for every

V ∈ G(k, p)\
(⋃r

j=1 Pj(Γj)
)

.
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Remark 2. We let G(k, Mm×n) denote the space of k-dimensional subspaces in Mm×n. In an
obvious way we can uniquely identify any V ∈ G(k, Mm×n) with some W ∈ G(k, mn). For
this reason we will not distinguish between G(k, Mm×n) and G(k, mn).

Let k, m, n be positive integers with k ≤ mn, and (W0, W1) be a pair of transversal subspaces
of IRmn with dim(W0) = k and dim(W1) = mn − k. Further let T : W0 → W1 be a linear
mapping. We fix a basis B0 = {a1, a2, . . . , ak} for W0. Recall that M1, M2, . . . , Mq0 denote all
2× 2 minors in Mm×n. With the linear mapping T and the basis B0 we can define the set of
quadratics Q1, Q2, . . . , Qq0 on IRk by

Qj(y) := Mj

(
k

∑
l=1

yl (al + T(al))

)
for j = 1, 2, . . . , q0. (67)

Then for each Qj, there exists a unique Xj ∈ Mk×k
sym that represents Qj. We need the following

auxiliary lemma.

Lemma 23. Let k, m, n be positive integers with k ≤ mn. Suppose that for v = 1, 2, (Wv
0 , Wv

1 ) is
a pair of transversal subspaces of IRmn with dim(Wv

0 ) = k, dim(Wv
1 ) = nm− k, and Tv : Wv

0 →
Wv

1 is a linear mapping. Suppose also that for some V ∈ G(k, mn) we have that

{
v + T1(v) : v ∈W1

0

}
= V =

{
v + T2(v) : v ∈W2

0

}
. (68)

Let Bv
0 =

{
av

1 , av
2 , . . . , av

k
}

be a basis of Wv
0 for v = 1, 2. We denote by Xv

j ∈ Mk×k
sym the symmetric

matrix that represents the quadratic Qv
j given by (67) with respect to the linear mapping Tv and the

basis Bv
0 . Then we have

Span
{

X1
1 , X1

2 , . . . , X1
q0

}
= Mk×k

sym ⇐⇒ Span
{

X2
1 , X2

2 , . . . , X2
q0

}
= Mk×k

sym . (69)

Proof. We begin by showing that for v = 1, 2,

Bv :=
{

av
l + Tv(av

l ) : l = 1, 2, . . . , k
}

forms a basis of V. (70)

From (68) and the fact that Bv
0 is a basis of Wv

0 , it is immediate that Bv spans V. Assume
∑k

l=1 λl
(
av

l + Tv(av
l )
)
= 0. As ∑k

l=1 λlav
l ∈ Wv

0 , ∑k
l=1 λlTv(av

l ) ∈ Wv
1 , and Wv

0 and Wv
1

are transversal, it follows that ∑k
l=1 λlav

l = 0 and ∑k
l=1 λlTv(av

l ) = 0. Hence λl = 0 for all
l = 1, 2, . . . , k and thus (70) is established.

Let A ∈ Mk×k denote the change of basis matrix between the two bases B1 and B2 of V,
i.e., letting αij ∈ IR denote the (i, j) entry of A, we have that

a1
i + T1(a1

i ) =
k

∑
l=1

αil(a2
l + T2(a2

l )) for i = 1, 2, . . . , k.
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So for any j ∈ {1, 2, . . . , q0}, we have

yTX1
j y = Mj

(
k

∑
i=1

yi

(
a1

i + T1(a1
i )
))

= Mj

(
k

∑
i=1

yi

(
k

∑
l=1

αil

(
a2

l + T2(a2
l )
)))

= Mj

(
k

∑
l=1

(
k

∑
i=1

yiαil

)(
a2

l + T2(a2
l )
))

= Mj

(
k

∑
l=1

[
ATy

]
l

(
a2

l + T2(a2
l )
))

=
[

ATy
]T

X2
j

[
ATy

]
= yT AX2

j ATy,

and thus

X1
j = AX2

j AT for j = 1, 2, . . . , q0. (71)

Suppose Span
{

X1
1 , X1

2 , . . . , X1
q0

}
= Mk×k

sym . For any S ∈ Mk×k
sym , note that ASAT ∈ Mk×k

sym .

Therefore we have ∑k
j=1 λjX1

j = ASAT for some λ1, λ2, . . . , λk ∈ IR. It follows from (71) that

∑k
j=1 λjX2

j = ∑k
j=1 λj A−1X1

j (AT)−1 = S, and thus Mk×k
sym = Span

{
X2

1 , X2
2 , . . . , X2

q0

}
. Exactly

the same argument shows the other implication in (69). �

Lemma 24. Let k, m, n be positive integers with m, n ≥ 2 and k ≤ 1
2 min {m, n}, and M1, M2, . . . , Mq0

denote all the 2× 2 minors of Mm×n. Generically for V ∈ G(k, Mm×n) (in the sense of Definition
22) there exists β ∈ Sq0−1 such that

q0

∑
j=1

β j Mj(X) > 0 for all X ∈ V\ {0} . (72)

Proof. By Lemma 21, G(k, Mm×n) is a k(mn− k)-dimensional compact manifold. Therefore
we can find finitely many charts of the form (66) whose images cover G(k, Mm×n). Formally
we can find finitely many pairs of transversal subspaces{

(W1
0 , W1

1 ), (W
2
0 , W2

1 ), . . . , (Wp0
0 , Wp0

1 )
}

with dim(Wi
0) = k and dim(Wi

1) = mn− k such that

G(k, Mm×n) ⊂
p0⋃

i=1

φWi
0,Wi

1
(IRk(mn−k)). (73)

For each i ∈ {1, 2, . . . , p0}, we fix a basis Bi
0 = {ai

1, . . . , ai
k} for Wi

0 and a basis Bi
1 =

{bi
1, . . . , bi

mn−k} for Wi
1. Given x ∈ IRk(mn−k), define Ax ∈ M(mn−k)×k to be the matrix with

[Ax]ij = [x](i−1)k+j, and let Ti
x : Wi

0 → Wi
1 be the linear mapping defined from Ax given the

bases Bi
0 and Bi

1. For each x ∈ IRk(mn−k), exactly the same arguments used to establish (70)
show that the set

Bi
x :=

{
ai

l + Ti
x(ai

l) : l = 1, 2, . . . , k
}

(74)
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forms a basis of the subspace φWi
0,Wi

1
(x) =

{
(v, Ti

x(v)) : v ∈Wi
0
}

. For any j ∈ {1, 2, . . . , q0},
as in (67), the mapping

Qi
j,x(y) := Mj

(
k

∑
l=1

yl

(
ai

l + Ti
x(ai

l)
))

(75)

defines a quadratic mapping on IRk and hence can be represented by a matrix Xi
j,x ∈ Mk×k

sym .

Given i ∈ {1, 2, . . . , p0}, recall that we have fixed the bases Bi
0 and Bi

1. Thus, each entry of
the m× n matrix ai

l + Ti
x(ai

l) is either linear in x or constant. As Mj is a 2× 2 minor, it follows
that the coefficients in the quadratic Qi

j,x(y) are polynomials (of degree less than or equal to

two) of x, and so are all the entries of the matrix Xi
j,x.

Step 1. For each i ∈ {1, 2, . . . , p0}, we show that there exists a polynomial function Λi :
IRk(mn−k) → IR such that

Span
{

Xi
1,x, Xi

2,x, . . . , Xi
q0,x

}
= Mk×k

sym for any x ∈ IRk(mn−k)\
{

x : Λi(x) = 0
}

. (76)

Proof of Step 1. First note that, since Xi
j,x is a symmetric k × k matrix, it can be uniquely

identified with a vector vi
j,x ∈ IR

k(k+1)
2 . Then it is clear that

Span
{

Xi
1,x, Xi

2,x, . . . , Xi
q0,x

}
= Mk×k

sym ⇐⇒ Span
{

vi
1,x, vi

2,x, . . . , vi
q0,x

}
= IR

k(k+1)
2 . (77)

Recall that q0 is the number of 2 × 2 minors in Mm×n, and therefore q0 = m(m−1)
2

n(n−1)
2 .

Without loss of generality, we may assume m ≤ n, and by assumption, we have k ≤ m
2 . In

particular, m ≥ 2k ≥ k + 1. In order to apply Lemma 37 later in the proof we observe the
following inequality

q0 =
m(m− 1)

2
n(n− 1)

2
≥ m2(m− 1)2

4
≥ (2k)(k + 1)

4
(m− 1)2 ≥ k(k + 1)

2
. (78)

Now, viewing vi
j,x as column vectors for all j, we define

Πi(x) :=
(

vi
1,x, vi

2,x, . . . , vi
q0,x

)
∈ M

k(k+1)
2 ×q0 ,

and

Λi(x) := det
(

Πi(x)
(

Πi(x)
)T
)

for any x ∈ IRk(mn−k).

Note that each entry of Πi(x) is an entry of Xi
j,x for some j ∈ {1, . . . , q0}. By previous

discussions, we know that each entry of Πi(x) is a polynomial of x, and hence Λi(x) is also
a polynomial of x. Further, by Lemma 37 (note the relation (78)), we have that

dim
(

Span
{

vi
1,x, vi

2,x, . . . , vi
q0,x

})
=

k(k + 1)
2

⇐⇒ Λi(x) 6= 0. (79)

This together with (77) gives (76).

Step 2. There exists i0 ∈ {1, 2, . . . , p0} such that Λi0 is non-trivial.
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Proof of Step 2. We define a subspace V0 ∈ G(k, Mm×n) to be

V0 :=





y1 0 0 0 . . . 0 0 0 . . . 0
0 y1 0 0 . . . 0 0 0 . . . 0
0 0 y2 0 . . . 0 0 0 . . . 0
0 0 0 y2 . . . 0 0 0 . . . 0

. . .
0 0 0 0 . . . yk 0 0 . . . 0
0 0 0 0 . . . 0 yk 0 . . . 0
0 0 0 0 . . . 0 0 0 . . . 0

. . .
0 0 0 0 . . . 0 0 0 . . . 0


: (y1, . . . , yk) ∈ IRk



. (80)

Note that the assumption k ≤ 1
2 min{m, n} allows to construct the subspace V0 in Mm×n.

Now for some i0 ∈ {1, 2, . . . , p0} and x0 ∈ IRk(mn−k) we have φ
W

i0
0 ,W

i0
1
(x0) = V0. Thus by (66)

we have V0 =
{
(v, Ti0

x0(v)) : v ∈Wi0
0

}
. Since Bi0

x0 (recall (74)) is a basis of V0, the mapping

H : IRk → V0 defined by

H(y) :=
k

∑
l=1

yl

(
ai0

l + Ti0
x0(ai0

l )
)

(81)

is a linear isomorphism onto V0. Thus there exist hs,t ∈ IRk for s = 1, 2, . . . , m, t = 1, 2, . . . , n
such that

H(y) =


h1,1 · y h1,2 · y . . . h1,n · y
h2,1 · y h2,2 · y . . . h2,n · y

. . .
hm,1 · y hm,2 · y . . . hm,n · y

 .

By definition of V0 (recall (80)) we have that

hs,t = 0 for s 6= t, h2s−1,2s−1 = h2s,2s for s = 1, 2, . . . , k, and hs,s = 0 for s > 2k. (82)

Now we claim that
{

h1,1, h3,3, . . . , h2k−1,2k−1
}

are linearly independent. Suppose this is
false, then pick y1 ∈

⋂k
s=1 (h2s−1,2s−1)

⊥ \ {0}. Thus H(y1) = 0 ∈ Mm×n, contradicting the
fact that H is an isomorphism. Thus the claim is established.

Note that Qi0
j,x0

(y)
(75),(81)

= Mj(H(y)) for j = 1, 2, . . . , q0. Using (82), the set OM (as subset
of the polynomial ring IR[y1, . . . , yk]) of all the 2× 2 minors on V0 is simply

OM :=
{

Qi0
j,x0

(y) : j = 1, 2, . . . , q0

}
=
{
(h2s1−1,2s1−1 · y)(h2s2−1,2s2−1 · y) : s1 < s2 ∈ {1, 2, . . . , k}

}
⋃{

(h2t−1,2t−1 · y)2 : t ∈ {1, 2, . . . , k}
}

.

Now we claim that OM (as subset of the polynomial ring IR[y1, . . . , yk]) is linearly indepen-
dent. So see this, let λs1,s2 ∈ IR and λt ∈ IR be such that

0 = ∑
s1<s2∈{1,2,...,k}

λs1,s2(h2s1−1,2s1−1 · y)(h2s2−1,2s2−1 · y) + ∑
t∈{1,2,...,k}

λt(h2t−1,2t−1 · y)2. (83)

For every t ∈ {1, 2, . . . , k}, pick y ∈ ⋂s∈{1,2,...,k}\{t}(h2s−1,2s−1)
⊥ such that h2t−1,2t−1 · y 6= 0.

Note that such y exists because
{

h1,1, h3,3, . . . , h2k−1,2k−1
}

are linearly independent. Putting
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this into (83) we get that λt(h2t−1,2t−1 · y)2 = 0 and so λt = 0. Thus λt = 0 for all t ∈
{1, 2, . . . , k}. Next, let s1 < s2 ∈ {1, 2, . . . , k}. Pick

y ∈
⋂

s∈{1,2,...,k}\{s1,s2}
(h2s−1,2s−1)

⊥

such that y · h2s1−1,2s1−1 6= 0 and y · h2s2−1,2s2−1 6= 0. Such y exists for the same reason as
above. Putting this into (83) we have that λs1,s2(h2s1−1,2s1−1 · y)(h2s2−1,2s2−1 · y) = 0 and so
λs1,s2 = 0. Thus linear independence of OM is established.

It is easy to see that

Card (OM) =
k!

2(k− 2)!
+ k =

k(k + 1)
2

.

Thus

dim
(

Span
{

Xi0
j,x0

: j = 1, 2, . . . , q0

})
= dim

(
Span

{
Qi0

j,x0
: j = 1, 2, . . . , q0

})
=

k(k + 1)
2

,

and so by (77) and (79) we have that Λi0(x0) 6= 0. This completes the proof Step 2.

Step 3. We show that Λi(x) is non-trivial on Rk(mn−k) for all i ∈ {1, 2, . . . , p0}.
Proof of Step 3. We first denote the zero set of Λi(x) by

Zi :=
{

x ∈ IRk(mn−k) : Λi(x) = 0
}

.

Note that, as Λi(x) is a polynomial function, the set Zi is a real algebraic variety. A classical
result of Whitney [Wh 57] states that Zi can be decomposed as a disjoint union of finitely
many connected analytic submanifolds of dimension less than k(mn− k), provided that Λi is
non-trivial on IRk(mn−k).

As the collection of charts
{

φW1
0 ,W1

1
, φW2

0 ,W2
1
, . . . , φW

p0
0 ,W

p0
1

}
satisfy (73) and G(k, Mm×n) is

connected, it is clear that we can find i1 ∈ {1, 2, . . . , p0} such that

Ui0,i1 := φ
W

i0
0 ,W

i0
1

(
IRk(mn−k)

)⋂
φ

W
i1
0 ,W

i1
1

(
IRk(mn−k)

)
6= ∅. (84)

We begin by showing that Λi1 is non-trivial. Since Ui0,i1 is a nonempty open subset of
G(k, Mm×n) and φ

W
i0
0 ,W

i0
1

is a Lipschitz mapping, we know that (φ
W

i0
0 ,W

i0
1
)−1(Ui0,i1) is a

nonempty open subset of IRk(mn−k). As Λi0 is non-trivial, we know from Whitney’s result
[Wh 57] that Zi0 is the disjoint union of finitely many submanifolds of dimension less than
k(mn− k). It follows that

(φ
W

i0
0 ,W

i0
1
)−1(Ui0,i1) 6⊂ Zi0 .

Thus we must be able to find x̃0 ∈ IRk(mn−k) such that φ
W

i0
0 ,W

i0
1
(x̃0) ∈ Ui0,i1 and Λi0(x̃0) 6=

0. From (84), as Ui0,i1 ⊂ φ
W

i1
0 ,W

i1
1

(
IRk(mn−k)

)
, we can find some x1 ∈ IRk(mn−k) such that

φ
W

i0
0 ,W

i0
1
(x̃0) = φ

W
i1
0 ,W

i1
1
(x1) =: V1. Thus{

v + Ti0
x̃0
(v) : v ∈Wi0

0

}
= V1 =

{
v + Ti1

x1(v) : v ∈Wi1
0

}
.

Since Λi0(x̃0) 6= 0, we know from Step 1 that Span
{

Xi0
1,x̃0

, Xi0
2,x̃0

, . . . , Xi0
q0,x̃0

}
= Mk×k

sym . By

Lemma 23, we have that Span
{

Xi1
1,x1

, Xi1
2,x1

, . . . , Xi1
q0,x1

}
= Mk×k

sym . From Step 1 again, we have

Λi1(x1) 6= 0 and hence Λi1 is non-trivial. From Lemma 21, G(k, Mm×n) is connected. There-
fore, because of (73) the above arguments can be repeated to all charts to conclude that Λi(x)
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is non-trivial for all i ∈ {1, 2, . . . , p0}.

Proof of Lemma 24 completed. Let Mk×k
sym,+ denote the cone of positive definite matrices in

Mk×k
sym , i.e., A ∈ Mk×k

sym,+ if and only if yT Ay > 0 for all y ∈ IRk\{0}. If V ∈ φWi
0,Wi

1
(IRk(mn−k)\Zi),

then there exists x ∈ IRk(mn−k) such that φWi
0,Wi

1
(x) = V and Λi(x) 6= 0. Now by (76) we must

be able to find some β ∈ Sq0−1 such that ∑
q0
j=1 β jXi

j,x ∈ Mk×k
sym,+. By (75) this implies that

∑
q0
j=1 β j Mj(X) > 0 for all X ∈ V\ {0}. Since Λi is non-trivial by Step 3, we know from Whit-

ney’s result [Wh 57] that Zi is the disjoint union of finitely many submanifolds of dimension
less than k(mn− k). Thus (72) holds generically (recall Definition 22) for V ∈ φWi

0,Wi
1
(IRk(mn−k))

for all i ∈ {1, 2, . . . , p0}. We conclude the proof of the lemma by noting (73). �

Proof of Theorem 4. Recall that M1, M2, . . . , Mq0 denote all 2× 2 minors in Mm×n. By Lemma
24, we have that for generic subspace V ∈ G(k, Mm×n) there exists β ∈ Sq0−1 such that (72)
holds true. Now for any µ ∈ Mpc(V), using the expansion (65) we know∫ q0

∑
j=1

β j Mj(X− X)dµ =
q0

∑
j=1

β j Mj(0) = 0. (85)

However by (72), unless µ = δX the left hand side of (85) is strictly positive, which is a
contradiction. �

8. Preliminaries for Theorems 5

In this section, we gather some preliminary lemmas that will be useful in dealing with
Mpc(K1) in the following section. First, we introduce some notation that will be used re-
peatedly. Given a matrix A ∈ Mm×n, recall the notation (35) and (36). Let A ∈ Mm×2 with
m ≥ 2 and 1 ≤ i < j ≤ m, we define

Xij(A) :=
(

[A]i1 [A]i2
[A]j1 [A]j2

)
(86)

and
Mij(A) := Ri(A) ∧ Rj(A) =det

(
Xij(A)

)
. (87)

Recall the definitions of K1 and P1 in (10) and (11), respectively. Further, given α ∈ IR2,
define

Pα
1 (u, v) :=

 u− α1 v− α2
a(v)− a(α2) u− α1

(u− α1) (a(v)− a(α2))
(u−α1)

2

2 + F(v)− F(α2)− a(α2)(v− α2)

 (88)

and
Kα

1 := {Pα
1 (u, v) : u, v ∈ IR} . (89)

Finally, given a measure µ and a function f which is integrable with respect to the measure
µ, define

f :=
∫

f (z)dµ(z).

We prove a couple of lemmas that will be essential in the following section.

Lemma 25. For all α ∈ IR2 the push forward mapping (Pα
1 )] : P(IR2) → P(Kα

1) defined by
ν 7→ µ := (Pα

1 )]ν forms a bijection. Moreover, µ ∈ Mpc(Kα
1) if and only if∫

IR2
Mij(Pα

1 (u, v))dν = Mij

(∫
IR2

Pα
1 (u, v)dν

)
for i < j ∈ {1, 2, 3}. (90)
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Further, given δ > 0, if Sptµ ⊂ Kα
1 ∩ Bδ(0) then Sptν ⊂ Bδ(α), and conversely, if Sptν ⊂ Bδ(α)

then Sptµ ⊂ Kα
1 ∩ BCδ(0) for some constant C depending on the function a, α2 and δ.

Proof. First note that, since the first row of Pα
1 (u, v) is (u − α1, v − α2), it is clear that Pα

1 :
IR2 → Kα

1 is a bijection. Therefore it is straightforward to check that
(
(Pα

1 )
−1)

] is the inverse
mapping of (Pα

1 )] and hence (Pα
1 )] is a bijection.

Let ν ∈ P(IR2) and µ ∈ P(Kα
1) be related by µ = (Pα

1 )]ν. By change of variable formula
for push forward measures, we have∫

IR2
Mij(Pα

1 (u, v))dν =
∫
Kα

1

Mij(ζ)dµ(ζ)

and

Mij

(∫
IR2

Pα
1 (u, v))dν

)
= Mij

(∫
Kα

1

ζdµ(ζ)

)
.

It follows that µ ∈ Mpc(Kα
1) if and only if (90) holds.

Next, assume Sptµ ⊂ Kα
1 ∩ Bδ(0). Since the first row of Pα

1 (u, v) is (u − α1, v − α2), it is
clear that ‖(u, v) − α‖ ≤ ‖Pα

1 (u, v)‖. Therefore (Pα
1 )
−1(Kα

1 ∩ Bδ(0)) ⊂ Bδ(α). As Sptν =(
Pα

1
)−1 Sptµ, it follows that Sptν ⊂ Bδ(α). Conversely, assume Sptν ⊂ Bδ(α). From the

expression of Pα
1 (u, v) in (88) it is clear that the absolute value of each component of Pα

1 (u, v)
is bounded above by C‖(u, v) − α‖ for some constant C depending on the function a, α2
and δ, provided δ is sufficiently small. Therefore ‖Pα

1 (u, v)‖ ≤ C̃‖(u, v) − α‖ and hence
Pα

1 (Bδ(α)) ⊂ Kα
1 ∩ BC̃δ(0). It follows that Sptµ ⊂ Kα

1 ∩ BC̃δ(0). This completes the proof of
the lemma. �

The following lemma is implicitly stated in [Ki-Mü-Sv 03]. We thank S. Müller [Mü 18] for
providing us with the elegant proof presented in this section.

Lemma 26 (Kirchheim-Müller-Šverák [Ki-Mü-Sv 03]). Given ν ∈ P(IR2), for all α ∈ IR2 we have

(P1)]ν ∈ Mpc(K1)⇐⇒ (Pα
1 )]ν ∈ Mpc(Kα

1).

We break the proof into several steps. The first lemma is standard.

Lemma 27. Given ν ∈ P(IR2), for all α ∈ IR2, we have

(Pα
1 )]ν ∈ Mpc(Kα

1)⇐⇒ (P̃α
1 )]ν ∈ M

pc(K̃α
1), (91)

where

P̃α
1 (u, v) :=

 u v
a(v) u

ua(v)− α1a(v)− ua(α2)
u2

2 − uα1 + F(v)− va(α2)

 (92)

and
K̃α

1 :=
{

P̃α
1 (u, v) : u, v ∈ IR

}
.

Proof. Recall the definition of Pα
1 given in (88). Direct calculations show that

Pα
1 (u, v) = P̃α

1 (u, v)− Ẽα (93)

for

Ẽα :=

 α1 α2
a(α2) α1

−α1a(α2) −
α2

1
2 + F(α2)− α2a(α2)

 .

Note that Ẽα is the constant part of Pα
1 (u, v).
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Given ν ∈ P(IR2), by arguing exactly as in Lemma 25, we have that

(P̃α
1 )]ν ∈ Mpc(K̃α

1)⇐⇒
∫

IR2
Mij(P̃α

1 (u, v))dν = Mij

(∫
IR2

P̃α
1 (u, v)dν

)
for i < j ∈ {1, 2, 3}.

(94)
Using the formula (65), the fact that Ẽα is a constant matrix and the notation Mij(·) =

det
(
Xij(·)

)
(recalling (86)), we have∫

Mij (Pα
1 (u, v)) dν

(93)
=
∫

Mij
(

P̃α
1 (u, v)− Ẽα

)
dν

=
∫ [

Mij
(

P̃α
1 (u, v)

)
− Xij

(
P̃α

1 (u, v)
)

: Cof
(
Xij
(
Ẽα
))

+ Mij
(
Ẽα
)]

dν

=
∫

Mij
(

P̃α
1 (u, v)

)
dν−

∫
Xij
(

P̃α
1 (u, v)

)
dν : Cof

(
Xij
(
Ẽα
))

+ Mij
(
Ẽα
)

.

(95)

In a similar way using (65) we have that

det
(∫

Xij (Pα
1 (u, v)) dν

)
= det

(∫
Xij
(

P̃α
1 (u, v)− Ẽα

)
dν

)
= det

(∫
Xij
(

P̃α
1 (u, v)

)
dν

)
−
∫

Xij
(

P̃α
1 (u, v)

)
dν : Cof

(
Xij
(
Ẽα
))

+ Mij
(
Ẽα
)

.

(96)

Putting (95) and (96) together and using Lemma 25 we have that

(Pα
1 )]ν ∈ Mpc(Kα

1)

(90)⇐⇒
∫

Mij (Pα
1 (u, v)) dν = det

(∫
Xij (Pα

1 (u, v)) dν

)
for all i < j ∈ {1, 2, 3}

(95),(96)⇐⇒
∫

Mij
(

P̃α
1 (u, v)

)
dν = det

(∫
Xij
(

P̃α
1 (u, v)

)
dν

)
for all i < j ∈ {1, 2, 3}

(94)⇐⇒ (P̃α
1 )]ν ∈ Mpc(K̃α

1).

This establishes (91). �

Lemma 28 (Müller [Mü 18]). Every row Ri
(

P̃α
1 (u, v)

)
of the matrix P̃α

1 (u, v) can be expressed as
a linear combination of the rows of P1(u, v), and conversely every row Ri (P1(u, v)) of the matrix
P1(u, v) can be expressed as a linear combination of the rows of P̃α

1 (u, v), and the coefficients depend
only on α, but not on (u, v), i.e.,

Ri
(

P̃α
1 (u, v)

)
=

3

∑
i′=1

cii′(α) Ri′ (P1(u, v)) for all (u, v) ∈ IR2 (97)

and

Ri (P1(u, v)) =
3

∑
i′=1

c̃ii′(α) Ri′
(

P̃α
1 (u, v)

)
for all (u, v) ∈ IR2. (98)

Proof. From the definitions of P1 and P̃α
1 in (11) and (92), we see that

R1
(

P̃α
1 (u, v)

)
= R1 (P1(u, v)) , R2

(
P̃α

1 (u, v)
)
= R2 (P1(u, v)) . (99)

Now we calculate

R3
(

P̃α
1 (u, v)

)
=

(
ua(v)− α1a(v)− ua(α2),

u2

2
− uα1 + F(v)− va(α2)

)
= R3 (P1(u, v))− α1R2 (P1(u, v))− a(α2)R1 (P1(u, v)) .

(100)
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This proves (97). Conversely, we have

R3 (P1(u, v))
(100),(99)

= R3
(

P̃α
1 (u, v)

)
+ α1R2

(
P̃α

1 (u, v)
)
+ a(α2)R1

(
P̃α

1 (u, v)
)

and therefore we have (98). �

Proof of Lemma 26. By Lemma 27, it suffices to show that

(P1)]ν ∈ Mpc(K1)⇐⇒ (P̃α
1 )]ν ∈ Mpc(K̃α

1). (101)

We first show the implication “=⇒”. We denote µ := (P1)]ν and µα := (P̃α
1 )]ν, and assume

µ ∈ Mpc(K1). Recall the notation Mij given by (87), and denote ζ :=
∫
K1

ζ dµ(ζ). Then by
the change of variable formula for push forward measures, Lemma 28 and bilinearity of the
minor we have ∫

K̃α
1

Mij(ζ) dµα =
∫

IR2
Mij

(
P̃α

1 (u, v)
)

dν

=
∫

IR2

3

∑
i′ ,j′=1

cii′cjj′ Mi′ j′ (P1(u, v)) dν

=
3

∑
i′ ,j′=1

cii′cjj′

∫
K1

Mi′ j′ (ζ) dµ

µ∈Mpc(K1)
=

3

∑
i′ ,j′=1

cii′cjj′Mi′ j′(ζ).

(102)

On the other hand bilinearity of the minor implies that

Mij

(∫
K̃α

1

ζ dµα

)
= Mij

(∫
IR2

P̃α
1 (u, v) dν

)
(87)
=
∫

IR2
Ri
(

P̃α
1 (u, v)

)
dν ∧

∫
IR2

Rj
(

P̃α
1 (u, v)

)
dν

=
3

∑
i′ ,j′=1

cii′cjj′

∫
IR2

Ri′ (P1(u, v)) dν ∧
∫

IR2
Rj′ (P1(u, v)) dν

=
3

∑
i′ ,j′=1

cii′cjj′Mi′ j′

(∫
IR2

P1(u, v) dν

)
=

3

∑
i′ ,j′=1

cii′cjj′Mi′ j′

(∫
K1

ζ dµ

)

=
3

∑
i′ ,j′=1

cii′cjj′Mi′ j′(ζ)
(102)
=

∫
K̃α

1

Mij(ζ) dµα

as desired. The proof of the converse implication is analogous using (98). This completes the
proof of (101), and hence Lemma 26. �

9. Existence of non-trivial measure inMpc(K1)

In this section, we first construct non-trivial measures in Mpc(Kα̃
1) in the case a′(α̃2) > 0.

Then it follows from Lemma 26 that we also have non-trivial elements in Mpc(K1). More
precisely, we construct non-trivial measures supported at five points that belong to the space
Mpc(Kα̃

1). To begin with, given s0, t0 > 0, recalling (88), we set

ζ0 : = Pα̃
1 (α̃1, α̃2) =

0 0
0 0
0 0

 , ζ1 : = Pα̃
1 (α̃1 + s0, α̃2) =

s0 0
0 s0
0 1

2 s2
0

 ,



NULL LAGRANGIAN MEASURES IN SUBSPACES, COMPENSATED COMPACTNESS AND CONSERVATION LAWS 33

ζ2 := Pα̃
1 (α̃1 − s0, α̃2) =

−s0 0
0 −s0
0 1

2 s2
0

 ,

ζ3 := Pα̃
1 (α̃1, α̃2 + t0) =

 0 t0
a(α̃2 + t0)− a(α̃2) 0

0 F(α̃2 + t0)− F(α̃2)− a(α̃2)t0

 ,

and

ζ4 := Pα̃
1 (α̃1, α̃2 − t0) =

 0 −t0
a(α̃2 − t0)− a(α̃2) 0

0 F(α̃2 − t0)− F(α̃2) + a(α̃2)t0

 .

We first prove

Theorem 29. Suppose a ∈ C2(IR). Let α̃ ∈ IR2 be such that a′(α̃2) > 0. Given s0, t0 > 0 sufficiently
small depending on the function a and α̃2, there exists 0 < ε0 < 1 depending on the function a,
α̃2, s0 and t0 such that, for all ε ≤ ε0, there exists a collection of weights {[γε]j}4

j=0 ⊂ IR+ with

∑4
j=1 [γ

ε]j = ε and [γε]0 = 1− ε such that

µε :=
4

∑
j=0

[γε]jδζ j ∈ M
pc(Kα̃

1).

The proof of Theorem 29 will rely on a couple of crucial lemmas. Let us first introduce
some notations. We denote by D1, D2, D3 the (1, 2), (2, 3), (1, 3) minors of a 3 × 2 matrix,
respectively. We set the matrix

A :=


D1(ζ1) D1(ζ2) D1(ζ3) D1(ζ4)
D2(ζ1) D2(ζ2) D2(ζ3) D2(ζ4)
D3(ζ1) D3(ζ2) D3(ζ3) D3(ζ4)

1 1 1 1

 . (103)

For any ε > 0 and γ ∈ IR4, define

Lε(γ) := Aγ−


0
0
0
ε

 , Q(γ) :=


D1

(
∑4

j=1 [γ]jζ j

)
D2

(
∑4

j=1 [γ]jζ j

)
D3

(
∑4

j=1 [γ]jζ j

)
0

 , (104)

and

Gε(γ) := Lε(γ)−Q(γ). (105)

Lemma 30. Suppose a ∈ C2(IR). Let α̃ ∈ IR2 be such that a′(α̃2) > 0. Given s0, t0 > 0 sufficiently
small depending on the function a and α̃2, the matrix A defined in (103) is invertible. Moreover, for
any 0 < ε < 1, the unique solution γε

0 of the system

Lε(γ) = 0 (106)

is non-negative componentwise. Further, there exist constants 0 < λ < Λ < ∞ depending on the
function a, α̃2, s0 and t0 such that

λε ≤ [γε
0]i ≤ Λε for i = 1, 2, 3, 4. (107)
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Proof. To simplify notation define aα̃2(t) := a(α̃2 + t) − a(α̃2) and Fα̃2(t) := F(α̃2 + t) −
F(α̃2)− a(α̃2)t. First, explicit calculations using the formulas for ζ j, j = 1, 2, 3, 4, give

A =


s2

0 s2
0 −t0aα̃2(t0) t0aα̃2(−t0)

0 0 aα̃2(t0)Fα̃2(t0) aα̃2(−t0)Fα̃2(−t0)
1
2 s3

0 − 1
2 s3

0 0 0
1 1 1 1

 . (108)

We claim that for any (y1, y2, y3) 6= 0 ∈ IR3, we have

min
j

{
3

∑
i=1

yiDi(ζ j)

}
< 0 (109)

and

max
j

{
3

∑
i=1

yiDi(ζ j)

}
> 0. (110)

We check (109) by an enumerative argument. Note that since a′(α̃2) > 0, assuming t0 > 0 is
small enough, we have that

aα̃2(t0) > 0 and aα̃2(−t0) < 0. (111)

Recall that F′ = a. We also know that F is strictly convex in small neighborhood of α̃2 and so

Fα̃2(t0) =F(α̃2 + t0)− F(α̃2)− a(α̃2)t0 > 0 and Fα̃2(−t0) =F(α̃2 − t0)− F(α̃2) + a(α̃2)t0 > 0.
(112)

By carefully checking out the columns of A and using (111), (112) we see that

(1) If y1 > 0, y2 ≥ 0, y3 ∈ IR, we have ∑3
i=1 yiDi(ζ4) < 0.

(2) If y1 > 0, y2 ≤ 0, y3 ∈ IR, we have ∑3
i=1 yiDi(ζ3) < 0.

(3) If y1 < 0, y3 ≥ 0, y2 ∈ IR, we have ∑3
i=1 yiDi(ζ2) < 0.

(4) If y1 < 0, y3 ≤ 0, y2 ∈ IR, we have ∑3
i=1 yiDi(ζ1) < 0.

(5) If y1 = 0, and
(a) y2 > 0, y3 ∈ IR, we have ∑3

i=1 yiDi(ζ4) = y2D2(ζ4) < 0;
(b) y2 < 0, y3 ∈ IR, we have ∑3

i=1 yiDi(ζ3) = y2D2(ζ3) < 0;
(c) y2 = 0, y3 > 0, we have ∑3

i=1 yiDi(ζ2) = y3D3(ζ2) < 0;
(d) y2 = 0, y3 < 0, we have ∑3

i=1 yiDi(ζ1) = y3D3(ζ1) < 0.
The above (1), (2) cover all cases when y1 > 0, and (3), (4) cover all cases when y1 < 0. For
the case y1 = 0, we have either y2 6= 0 or y2 = 0. The former is covered by (5a), (5b), and
the latter is covered by (5c), (5d). Therefore the above enumerative argument shows (109),
and (110) is equivalent to (109). Let a1, . . . , a4 denote the columns of the matrix A. Hence
given any y ∈ IR4\{0} such that y · ai ≥ 0 for all i = 1, 2, 3, 4, we must have y4 > 0 and thus
y · (0, 0, 0, ε)T > 0. We deduce from the Farkas-Minkowski Lemma (Lemma 9) that (106) has
a non-negative solution.

To see the matrix A is invertible, consider the following system

ATy = 0. (113)

We claim that the system (113) has only the trivial solution. Indeed, let y = (y1, y2, y3, y4) ∈
IR4 be a solution of (113), i.e.,

3

∑
i=1

yiDi(ζ j) + y4 = 0 for j = 1, 2, 3, 4.

It follows from (109) and (110) that y4 = 0, and therefore by (109) and (110) again, we have
yi = 0 for i = 1, 2, 3. It follows that AT , and hence A, are invertible.
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Finally, we show (107). Let γε
0 be the unique solution of (106). We already know that γε

0
is non-negative componentwise. We will show that all components of γε

0 are strictly positive.
We argue by contradiction. Suppose [γε

0]1 = 0 or [γε
0]2 = 0. Then using the third row of (106),

we have s3
0
2 ([γ

ε
0]1 − [γε

0]2)
(108)
= 0 and therefore we have [γε

0]1 = [γε
0]2 = 0. Now using the first

two rows of (106) (see (108)), we have(
−t0aα̃2(t0) t0aα̃2(−t0)

aα̃2(t0)Fα̃2(t0) aα̃2(−t0)Fα̃2(−t0)

)(
[γε

0]3
[γε

0]4

)
=

(
0
0

)
.

It is clear from (111), (112) that the matrix
(
−t0aα̃2(t0) t0aα̃2(−t0)

aα̃2(t0)Fα̃2(t0) aα̃2(−t0)Fα̃2(−t0)

)
is invertible,

and hence [γε
0]3 = [γε

0]4 = 0. But now we have γε
0 = 0, which contradicts the fourth row of

(106). This contradiction implies [γε
0]1 > 0 and [γε

0]2 > 0. A similar argument yields [γε
0]3 > 0

and [γε
0]4 > 0. Since [γε

0]i = ε[A−1]i4, i = 1, 2, 3, 4, it follows that [A−1]i4 > 0 for all i. Now
we define

λ := min
i
{[A−1]i4} and Λ := max

i
{[A−1]i4}.

It is clear that 0 < λ ≤ Λ < ∞ and (107) is satisfied. Note that A−1 is a fixed matrix
independent of ε, and so are λ and Λ independent of ε. �

Lemma 31. Suppose a ∈ C2(IR). Let α̃ ∈ IR2 be such that a′(α̃2) > 0. Given s0, t0 > 0 sufficiently
small depending on the function a and α̃2, there exists 0 < ε0 < 1 sufficiently small such that for all
0 < ε ≤ ε0, the system

Gε(γ) = 0 (114)

has a non-negative solution.

Proof. Given a sufficiently small 0 < ε < 1 whose size will be specified later, by Lemma 30,
the linear system Lε(γ) = 0 has a unique non-negative solution γε

0 that satisfies the estimate
(107). We will find a solution to (114) by iteration. For all k ∈N+, define

∆ε
k := A−1 (−Gε(γε

k−1)
)

and γε
k := γε

k−1 + ∆ε
k . (115)

Then we have

Gε(γε
k)

(105)
= Lε(γε

k)−Q(γε
k)

(104),(115)
= A

(
γε

k−1 + ∆ε
k
)
− (0, 0, 0, ε)T −Q(γε

k)

(104)
= Lε(γε

k−1) + A(∆ε
k)−Q(γε

k)

(105)
= Gε

(
γε

k−1
)
+ A (∆ε

k) + Q(γε
k−1)−Q(γε

k)

(115)
= Gε

(
γε

k−1
)
− Gε

(
γε

k−1
)
+ Q(γε

k−1)−Q(γε
k)

= Q(γε
k−1)−Q(γε

k).

(116)

Now let us estimate the sizes of ∆ε
k and γε

k . First note that Di

(
∑4

j=1 [γ]jζ j

)
, i = 1, 2, 3, is a

fixed quadratic function of γ whose coefficients depend only on the function a, α̃2, s0 and t0.
Therefore, for all r > 0 and γ, γ̃ ∈ Br(0) ⊂ IR4, we have

‖Q(γ)‖ ≤ C1‖γ‖2 (117)

and
‖Q(γ)−Q(γ̃)‖ ≤ sup

z∈Br(0)
‖DQ(z)‖ · ‖γ− γ̃‖ ≤ C1r‖γ− γ̃‖, (118)
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where the above constant C1 depends only on the coefficients of Q and therefore does not
depend on ε or γ, γ̃, r. Let θ > 0 be sufficiently small such that

∞

∑
p=1

2p−1θp ≤ λ

4Λ
< 1. (119)

Clearly such θ exists. We denote

C2 :=
∥∥∥A−1

∥∥∥C1. (120)

Let ε0 := θ
2C2Λ > 0. Now for all 0 < ε ≤ ε0, it follows from (107) that

C2‖γε
0‖ ≤ C2 · 2Λε0 = θ. (121)

We claim that
‖∆ε

k‖ ≤ 2k−1θk ‖γε
0‖ (122)

and

‖γε
k‖ ≤

(
1 +

k

∑
p=1

2p−1θp

)
‖γε

0‖ < 2 ‖γε
0‖ . (123)

We show this by induction. Recall that Lε(γε
0) = 0. We deduce from (117) that

‖−Gε(γε
0)‖

(105)
= ‖Q(γε

0)‖
(117)
≤ C1 ‖γε

0‖
2 . (124)

It follows from this, (115) and (120), (121) that

‖∆ε
1‖

(115),(124)
≤

∥∥∥A−1
∥∥∥ · C1 ‖γε

0‖
2 (120)

= C2 ‖γε
0‖

2
(121)
≤ θ ‖γε

0‖ (125)

and therefore

‖γε
1‖

(115)
≤ (1 + θ) ‖γε

0‖ . (126)
So by (125), (126) we have that (122), (123) hold for k = 1. Now suppose (122), (123) hold for
k ≥ 1. Using (116), (118) and the induction assumption, we have

‖Gε(γε
k)‖

(116)
= ‖Q(γε

k−1)−Q(γε
k)‖

(118),(123)
≤ C1 · 2‖γε

0‖‖γε
k−1 − γε

k‖
(115)
≤ C1 · 2‖γε

0‖ · ‖∆ε
k‖

(122)
≤ C12kθk‖γε

0‖2.

(127)

It follows from (115) and (121) that∥∥∆ε
k+1
∥∥ (115)
≤

∥∥∥A−1
∥∥∥ · ‖Gε(γε

k)‖
(127),(120)
≤ C22kθk ‖γε

0‖
2
(121)
≤ 2kθk+1 ‖γε

0‖ (128)

and ∥∥γε
k+1
∥∥ (115)
≤ ‖γε

0‖+
k+1

∑
p=1

∥∥∥∆ε
p

∥∥∥ (122),(128)
≤

(
1 +

k+1

∑
p=1

2p−1θp

)
‖γε

0‖
(119)
≤ 2 ‖γε

0‖ .

Thus we have established (122), (123) for general k.
Since {γε

k}k forms a bounded sequence, it has a convergent subsequence such that (without
relabeling)

lim
k→∞

γε
k = γ̄ε

for some γ̄ε. We claim that γ̄ε is a non-negative solution to (114). From the estimates (127)
and (119), we have

‖Gε(γε
k)‖

(127)
≤ C12kθk ‖γε

0‖
2 → 0 as k→ ∞.
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Since Gε is continuous, we have

‖Gε(γ̄ε)‖ = lim
k→∞
‖Gε(γε

k)‖ = 0.

It only remains to show that γ̄ε is non-negative componentwise. We deduce from (122), (107)
and (119) that

‖γε
k − γε

0‖
(115)
≤

k

∑
p=1

∥∥∥∆ε
p

∥∥∥ (122)
≤

k

∑
p=1

2p−1θp ‖γε
0‖

(119),(107)
≤ λ

4Λ
· 2Λε =

λ

2
ε. (129)

We know from (107) that each component of γε
0 is bounded below by λε. This together with

(129) shows that all components of γε
k are bounded below by λ

2 ε for all k. Therefore, the same
holds for γ̄ε. In particular, γ̄ε is non-negative. �

Proof of Theorem 29. Given 0 < ε ≤ ε0 < 1, let γ̄ε = ([γ̄ε]1, [γ̄ε]2, [γ̄ε]3, [γ̄ε]4) be the non-
negative solution of (114) found in Lemma 31. Then we have ∑4

j=1 [γ̄
ε]j = ε. Define [γ̄ε]0 :=

1− ε. Then we have [γ̄ε]j ≥ 0 for all j = 0, 1, 2, 3, 4 and ∑4
j=0 [γ̄

ε]j = 1. Now we define

µε :=
4

∑
j=0

[γ̄ε]jδζ j .

It is clear that µε is a probability measure. Since 0 < ε < 1, µε is non-trivial. Since ζ0 is the
trivial matrix and γ̄ε solves the system (114), we have

4

∑
j=0

[γ̄ε]jDi(ζ j) =
4

∑
j=1

[γ̄ε]jDi(ζ j)
(114),(105)

= Di

(
4

∑
j=1

[γ̄ε]jζ j

)
= Di

(
4

∑
j=0

[γ̄ε]jζ j

)

for all i = 1, 2, 3. This shows that µε ∈ Mpc(Kα̃
1). �

Proof of Theorem 5 completed. We first consider the case a′(α̃2) > 0. Given 0 < ε ≤ ε0 < 1,
let µε ∈ Mpc(Kα̃

1) be the measure constructed in Theorem 29. Let νε :=
(
(Pα̃

1 )
−1)

] µε. Note
that since Pα̃

1 is a bijection, we have µε = (Pα̃
1 )]ν

ε. Define µ̃ε := (P1)]ν
ε. Since (Pα̃

1 )]ν
ε =

µε ∈ Mpc(Kα̃
1), it follows from Lemma 26 that µ̃ε = (P1)]ν

ε ∈ Mpc(K1). Since P1 and Pα̃
1

are both bijections, it is clear that µ̃ε is also supported at five points, and hence is non-trivial.
Further, by choosing s0, t0 sufficiently small in Theorem 29, one can make the support of µε

sufficiently small. It follows from Lemma 25 that the support of µ̃ε can be made sufficiently
small. This establishes the case where a′(α̃2) > 0.

Now suppose a′(α̃2) < 0, then for some δ > 0 sufficiently small we have that

(v2 − v1)(a(v2)− a(v1)) < 0 for any v1, v2 ∈ (a(α̃2)− δ, a(α̃2) + δ) . (130)

Let K0 :=
{( u v

a(v) u
)

: u, v ∈ IR
}

. Note that if det
(

u2−u1 v2−v1
a(v2)−a(v1) u2−u1

)
= 0 for some (u1, v1) and

(u2, v2) in Bδ(α̃), then

(u2 − u1)
2 − (v2 − v1)(a(v2)− a(v1)) = 0,

which by (130) implies u1 = u2 and v1 = v2. Thus, for sufficiently small neighborhood Ũ
of
(

α̃1 α̃2
a(α̃2) α̃1

)
, K0 ∩ Ũ does not contain Rank-1 connections and therefore det(X − Y) does

not change sign on (K0 ∩ Ũ) × (K0 ∩ Ũ) by Lemma 1 in [Sv 93]. By [Sv 93] Lemma 3 we
have thatMpc(K0 ∩ Ũ) consists of Dirac measures only. AsMpc(K1 ∩U) can be embedded
in Mpc(K0 ∩ Ũ), this completes the proof of the case a′(α̃2) < 0, and hence the proof of
Theorem 5. �



38 A. LORENT, G. PENG

10. Appendix

In this appendix, we put together various auxiliary results used in the main body of the
paper.

10.1. Auxiliary lemmas for Theorems 8 and 2.

Lemma 32. Let F =
{

f1, f2, . . . , fM1

}
be a collection of polynomials satisfying property R (see

Definition 6). For any v ∈ IRn, let the translation Pv be defined by (34). Then we have

µ ∈M
pc
F (v)⇐⇒

(
Pv
)
] µ ∈M

pc
F (0).

Proof. Note that since F satisfies property R, for any k ∈ {1, 2, . . . , M1} and any z0 ∈ IRn

there exist αk,z0
0 , αk,z0

1 , . . . , αk,z0
M1

such that

fk(z− z0) =
M1

∑
i=1

αk,z0
i fi(z) + αk,z0

0 . (131)

Let µ ∈ M
pc
F (v). To simplify notation let µ̃ := (Pv)] µ. We have

∫
IRn zdµ̃(z) =

∫
IRn(z −

v) dµ(z) = 0. Further for any k = 1, 2, . . . , M1 we have∫
fk(z)dµ̃(z) =

∫
fk(z−v)dµ(z)

(131)
=

∫ (M1

∑
i=1

αk,v
i fi(z) + αk,v

0

)
dµ(z)

=
M1

∑
i=1

αk,v
i

∫
fi(z)dµ(z) + αk,v

0

µ∈M
pc
F (v)
=

M1

∑
i=1

αk,v
i fi (v) + αk,v

0
(131)
= fk(0).

(132)

Thus µ̃ ∈M
pc
F (0). If (Pv)] µ ∈M

pc
F (0), in exactly the same way, an argument like (132) gives

that µ ∈M
pc
F (v). �

Notation. For i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n} and A ∈ Mm×n let

[A]sb
i,j ∈ Mm−1,n−1

denote the matrix obtained from deleting the i-th row and the j-th column of A. Further let

[A]sb
0,j ∈ Mm,n−1 and [A]sb

i,0 ∈ Mm−1,n

respectively denote the matrices obtained by deleting the j-th column and deleting the i-th
row of A.

Lemma 33. Suppose A, X ∈ Mn×n and r0 ∈ {1, 2, . . . , n− 1}. Let I := {i1, i2, . . . , ir0} and
J := {j1, j2, . . . , jn−r0} be such that I ∪ J = {1, 2, . . . , n}. Let MI,J

A,X ∈ Mn×n denote the ma-
trix whose first r0 rows are given by Ri1(A), . . . , Rir0

(A) and the remaining n − r0 rows given
by Rj1(X), . . . , Rjn−r0

(X). Further let XJ ∈ Mn−r0,n denote the matrix whose rows are given by
Rj1(X), . . . , Rjn−r0

(X). Then there exists I = I(J) ⊂ {1, 2, . . . , q(n− r0, n)} such that

det
(

MI,J
A,X

)
= ∑

l∈I

Pl(A)Mn−r0,n
l (XJ) (133)

where {Pl(A)} are polynomial functions of the entries of the matrix A.
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Proof. We prove this by induction on n. The lemma is immediate for n = 2. Assume it
is true for n − 1. Let A, X ∈ Mn×n, r0 ∈ {1, 2, . . . , n− 1} and I := {i1, i2, . . . , ir0}, J :=
{j1, j2, . . . , jn−r0} be such that I ∪ J = {1, 2, . . . , n}.

To simplify notation let B = MI,J
A,X . We expand det(B) along its first row. If r0 = 1 this

immediately gives the results because

det (B) =
n

∑
k=1

(−1)k+1[A]i1k det
(
[B]sb

1,k

)
(134)

which is of the form (133).
Now assume r0 > 1. We apply the inductive hypothesis to the matrix [B]sb

1,k ∈ Mn−1,n−1 for
each k = 1, 2, . . . , n. So there exist Ik ⊂ {1, 2, . . . , q(n− r0, n− 1)} and polynomials P k

1 ,P k
2 , . . .

such that

det
(
[B]sb

1,k

)
= ∑

l∈Ik

P k
l (A)Mn−r0,n−1

l

([
XJ
]sb

0,k

)
. (135)

But there exists injective function

vk : {1, 2, . . . , q(n− r0, n− 1)} → {1, 2, . . . , q(n− r0, n)}
such that

Mn−r0,n−1
l ([A]sb

0,k) = Mn−r0,n
vk(l)

(A) for all A ∈ Mn−r0,n.

So we can rewrite (135) as

det
(
[B]sb

1,k

)
= ∑

l∈Ik

P k
l (A)Mn−r0,n

vk(l)

(
XJ
)

.

Putting this into (134) we have that

det(B) =
n

∑
k=1

(−1)k+1[A]i1k

(
∑

l∈Ik

P k
l (A)Mn−r0,n

vk(l)

(
XJ
))

=
n

∑
k=1

∑
l∈Ik

(−1)k+1[A]i1kP k
l (A)Mn−r0,n

vk(l)

(
XJ
)

which is of the form (133). �

Lemma 34. Given A, X ∈ Mn×n, we have

det(A + X) = det(A) + det(X) +
q(n,n)

∑
k=1
Pk(A)Mn,n

k (X) (136)

where P1,P2, . . . ,Pq(n,n) are polynomials functions of the entries of A.

Proof. Note that (recalling the notation (35))

det(A + X) = R1(A + X) ∧ R2(A + X) ∧ · · · ∧ Rn(A + X)

= (R1(A) + R1(X)) ∧ (R2(A) + R2(X)) ∧ · · · ∧ (Rn(A) + Rn(X)) .
(137)

Expanding this sum produces a number of terms, all but two of which are of the form

cRi1(A) ∧ · · · ∧ Rik (A) ∧ Rj1(X) ∧ · · · ∧ Rjn−k (X) (138)

for some constant c, where k ∈ {1, 2, . . . , n− 1}, I := {i1, i2, . . . , ik} and J := {j1, j2, . . . , jn−k}
are such that I ∪ J = {1, 2, . . . , n}. The only two terms in the expansion (137) that are not of
the form (138) are det(X) and det(A). Now

Ri1(A) ∧ · · · ∧ Rik (A) ∧ Rj1(X) ∧ · · · ∧ Rjn−k (X) = det(MI,J
A,X)

and so by applying Lemma 33 establishes (136). �
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10.2. An improved Šverák estimate for subspaces in M3×3
sym . Following equation (4.9) in

[Bh-Fi-Ja-Ko 94], we denote by l(m, n) the maximum possible dimension of a linear sub-
space in Mm×n which contains no Rank-1 elements. As could be expected, the estimates on
l(m, n) can be improved in the case where the subspace is in M3×3

sym (symmetric 3× 3 matri-
ces). Note that the authors of [Bh-Fi-Ja-Ko 94] state that Proposition 4.4 in the paper is due to
Šverák. So following essentially exactly the arguments of Proposition 4.4 in [Bh-Fi-Ja-Ko 94]
it is straightforward to obtain the the following estimate.

Lemma 35 (Šverák). Let K ⊂ M3×3
sym be a three-dimensional subspace, then K must contain a Rank-1

element.

Proof. We argue by contradiction. Suppose K ⊂ M3×3
sym is a three-dimensional subspace with-

out Rank-1 connections. Note that dim
(

M3×3
sym

)
= 6, and thus dim

(
K⊥ ∩M3×3

sym

)
= 3. Let

{E1, E2, E3} be a basis of K⊥ ∩M3×3
sym . For a, b ∈ IR3 define

[Φ(a, b)]i := a · (Eib) = Ei : (a⊗ b).

So if Φ(a, b) =

 0
0
0

 then a⊗ b ∈ K. As we are assuming that K has no Rank-1 connections,

this implies that Φ forms a non-singular bilinear mapping in the sense that if Φ(a, b) = 0 then
either a = 0 or b = 0. As noted in [Bh-Fi-Ja-Ko 94] such mappings have been studied in the
topological literature. The estimate we prove may indeed be known in some form in those
literature, however for the convenience of the reader we give a proof.

Note that for each a ∈ IR3\ {0} the mapping x 7→ Φ(x, a) is linear and as such can be
represented by a matrix Ma ∈ M3×3. Further as Φ is non-singular we have that

det(Ma) 6= 0 for all a ∈ IR3\ {0} . (139)

Further note that by bilinearity we have that

x 7→ Φ(x, λ1a1 + λ2a2) = Mλ1a1+λ2a2 x = (λ1Ma1 + λ2Ma2) x for all x ∈ IR3.

Thus the mapping P : IR3 → M3×3 defined by P(a) := Ma is a linear mapping and so is of
the form

P(a) =

 v11 · a v12 · a v13 · a
v21 · a v22 · a v23 · a
v31 · a v32 · a v33 · a

 .

Thus det(P(a)) is a 3-homogeneous polynomial on IR3. Let a = (α, β, β), then

det(P(a)) = c0β3 + c1β2α + c2βα2 + c3α3 for some c0, c1, c2, c3 ∈ IR.

If c0 = 0 then det (P(0, 1, 1)) = 0 which contradicts (139). Thus c0 6= 0. Similarly c3 6= 0 as
otherwise det (P(1, 0, 0)) = 0. Then

β 7→ det (P(1, β, β)) = c0β3 + c1β2 + c2β + c3

is of degree 3 and so has a non-zero real root β0. Thus det (P(1, β0, β0)) = 0 which contradicts
(139). This completes the proof of Lemma 35. �

10.3. A counter example from [Bh-Fi-Ja-Ko 94]. It was known already in [Bh-Fi-Ja-Ko 94]
that having no Rank-1 connections is in general not a sufficient condition for triviality of
Null Lagrangian measures in subspaces in Mm×n. In Proposition 4.2 in [Bh-Fi-Ja-Ko 94], a
counter example of a four-dimensional subspace in M3×3 is given. The subspace does not
contain Rank-1 connections, yet it supports non-trivial Null Lagrangian measures. Fairly
minor adaptions of their example allow to construct counter examples for d-dimensional
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subspaces for all d ≥ 4. Here for the convenience of the readers, we provide the more general
counter example focusing on the adaptions needed. First we introduce some notation. Given
A ∈ Mn×n for n ≥ 3, let S(A) ∈ M3×3 denote the matrix defined by

[S(A)]ij = [A]ij for i, j ∈ {1, 2, 3} .

We denote by

B(α, β, γ, δ) :=

 β + δ α− γ γ
α + γ 0 δ

α β 0

 .

Given any non-negative integer r, let Pr(α, β, γ, δ, σ1, . . . , σr) : IR4+r → M(3+2r)×(3+2r) be
defined by

S(Pr) = B(α, β, γ, δ), [Pr]2+2k,2+2k = [Pr]3+2k,3+2k = σk for k = 1, . . . , r

and all other entries of Pr vanish. Further define

Kr := {Pr(α, β, γ, δ, σ1, . . . , σr) : α, β, γ, δ, σk ∈ IR} . (140)

Note that K0 = {B(α, β, γ, δ) : α, β, γ, δ ∈ IR} is exactly the subspace given in Proposition 4.2
in [Bh-Fi-Ja-Ko 94]. Then we have

Proposition 36 (Bhattacharya-Firoozye-James-Kohn [Bh-Fi-Ja-Ko 94]). Given any non-negative
interger r, the subspace Kr ⊂ M(3+2r)×(3+2r) defined in (140) is a (4+ r)-dimensional subspace, does
not contain Rank-1 connections andMpc(Kr) is non-trivial.

Proof. We first show thatMpc(Kr) is non-trivial. As in [Bh-Fi-Ja-Ko 94], let (αi, βi, γi, δi) ∈ IR4

for i = 1, 2, 3, 4 to be chosen later, and define Hi ∈ M(3+2r)×(3+2r) to be such that

S(Hi) := B(αi, βi, γi, δi)

and all other entries of Hi vanish. Next we define

Fi =

{
H i+1

2
if i is odd,

−H i
2

if i is even.
(141)

We define the probability measure µ to be

µ :=
8

∑
i=1

1
8

δFi . (142)

By (141), it is clear that µ = 0. So we need to show that
∫

Kr Mk(ζ)dµ = 0 for all minors Mk

to conclude that µ ∈ Mpc(Kr). From (142) we have
∫

Kr Mk(ζ)dµ = ∑8
i=1

1
8 Mk(Fi). Note that

all the Fi ∈ {Pr(α, β, γ, δ, 0, . . . , 0) : α, β, γ, δ ∈ IR}. If Mk is a minor for which Mk(ζ) involves
elements [ζ]l j of the matrix ζ for some l ≥ 4 or j ≥ 4, then Mk(Fi) is the determinant of a
submatrix of Fi that contains at least one zero row or column, and thus Mk(Fi) = 0 for all
i. Hence we only have to check all minors in K0. This is done in the proof of Proposition
4.2 in [Bh-Fi-Ja-Ko 94] by choosing (αi, βi, γi, δi) appropriately. In particular, thinking of α =

(α1, α2, α3, α4) et al. as vectors in IR4, one can choose α, β, γ, δ to be unit vectors that are
mutually perpendicular. Then it is straightforward to check that the measure µ defined in
(142) commutes with all minors in K0 and thus µ ∈ Mpc(Kr).

Finally we show that Kr has no Rank-1 connections. Suppose not, then Kr would have a
Rank-1 matrix P(α0, β0, γ0, δ0, σ0

1 , . . . , σ0
r ). We must have σ0

k = 0 for all k, as otherwise the
(2 + 2k)-th and (3 + 2k)-th rows (and columns) would be linearly independent. Thus the
Rank-1 matrix is isomorphic to B(α0, β0, γ0, δ0). However, in the proof of Proposition 4.2 in
[Bh-Fi-Ja-Ko 94], it is shown that K0 has no Rank-1 connections, which is a contradiction.
Hence Kr has no Rank-1 connections. �
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10.4. An auxiliary lemma on linear algebra.

Lemma 37. Suppose A ∈ Mm×n and m ≤ n. Then Rank(A) = m if and only if det
(

AAT) 6= 0.

Proof. By singular value decomposition A = PBQ where P ∈ O(m), Q ∈ O(n) and B is a
diagonal matrix in Mm×n. Let Rank(B) = p.

First assume Rank(A) = m. As Q is invertible, we have Rank(AQ−1) = m and it follows
that p = Rank(PB) = m. Now

det(AAT) = det
(

PBQQT BT PT
)
= det

(
PBBT PT

)
= det

(
BBT

)
6= 0. (143)

Conversely if det(AAT) 6= 0, by calculations in (143) we have that det(BBT) 6= 0 and thus
p = m. Therefore we have

m = Rank(PB) = Rank(AQ−1) = Rank(A).

This completes the proof of the lemma. �
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