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Abstract. We discuss a variational model, given by a weighted sum of perimeter, bend-
ing and Riesz interaction energies, that could be considered as a toy model for charged
elastic drops. The different contributions have competing preferences for strongly localized
and maximally dispersed structures. We investigate the energy landscape in dependence
of the size of the ‘charge’, i.e. the weight of the Riesz interaction energy.

In the two-dimensional case we first prove that for simply connected sets of small
elastica energy, the elastica deficit controls the isoperimetric deficit. Building on this
result, we show that for small charge the only minimizers of the full variational model
are either balls or centered annuli. We complement these statements by a non-existence
result for large charge. In three dimensions, we prove area and diameter bounds for
configurations with small Willmore energy and show that balls are the unique minimizers
of our variational model for sufficiently small charge.
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1. Introduction

In recent years there has been a strong interest in variational models involving a com-
petition between a perimeter type energy and a repulsive term of long-range nature (see
for instance the recent review papers [8, 22] and the detailed discussion below). The aim
of this paper is to start investigating the effects for this class of problems of higher order
interfacial energies such as the Euler elastica in dimension two or the Willmore energy in di-
mension three. We will consider the simplest possible setting and study volume constrained
minimization of functionals defined for sets E ⊂ Rd with d = 2, 3 as

λP (E) + µW (E) +QVα(E), λ, µ,Q ≥ 0. (1.1)
The different contributions are given by

• the perimeter P , defined as

P (E) = Hd−1(∂E),

• the elastica or Willmore energy W , defined as

W (E) =



ˆ
∂E
H2 dH1 for d = 2,

1

4

ˆ
∂E
H2 dH2 for d = 3,

where H denotes the mean curvature of ∂E i.e. the curvature in dimension two and
the sum of the principal curvatures in dimension three1,

• the Riesz interaction energy Vα, defined for α ∈ (0, d) as

Vα(E) =

ˆ
E×E

1

|x− y|d−α
dx dy.

For µ = 0 functional (1.1) is arguably the simplest example of an isoperimetric type
problem showing competition between a local attractive term with a non-local repulsive
term. In the case of Coulombic interactions, that is d = 3 and α = 2, this model appears
in a variety of contexts. It is for instance the celebrated Gamow liquid drop model for
atomic nuclei [19] or the sharp interface limit of the so-called Ohta-Kawasaki model for
diblock copolymers [42, 3]. See also [43] for another application of this model. Even
though the picture is not complete, it has been shown that minimizers are balls for small
Q [28, 29, 12, 25, 15] (actually they are the only stable critical sets [26]) and that no
minimizers exist for large Q [28, 29, 37] (see also [16] for a simple proof of non-existence in
the three dimensional case). Many more questions related to pattern formation have been
investigated for very closely related models, see for instance [2, 1, 9, 46, 5, 23, 20, 30] for
a non-exhaustive list. Other examples of functionals presenting this type of competition
can be found for instance in shape memory alloys [31, 27], micromagnetics [44] or epitaxial
growth [4, 35]. However, the closest model is probably the one for charged liquid drops
introduced in [45] where the Riesz interaction energy is replaced by a capacitary term.
Surprisingly, it has been shown in [21] that independently of the charge, no minimizers
exist for this model (see also [40, 41]). It has been suggested in [22] that a regularization
by a Willmore type energy such as the one considered here might restore well-posedness.

1We choose to keep the factor 1
4
in dimension three to stick with the traditional notation.
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This paper can be seen as a first step in this direction.
The energy (1.1) could be seen as a toy model for charged elastic vesicles, where the Willmore
energy represents a prototype of more general bending energies for fluid membranes and
a Coulomb self-interactions refers to the energy of a uniformly charged body. Associated
with this interpretation, we refer to the parameter regimes Q� 1 and Q� 1 by the terms
small and large ‘charge’.

Our goal is to understand how the picture changes for (1.1) in the presence of a bending
energy i.e. for µ > 0. For d = 2 and fixed volume, since an annulus of large radius has
arbitrary small elastica energy and also arbitrary small Riesz interaction energy, one needs
to either restrict the class of competitors to simply connected sets or to include the perimeter
penalization (that is take λ > 0). In contrast, for d = 3, the Willmore functional is scaling
invariant and is globally minimized by balls [49]. It seems then natural to consider (1.1)
for λ = 0 and study the stability of the ball. Let us point out that compared to the planar
case, configurations with catenoid type parts allow for a much larger variety of structures
with low energy. This makes the identification of optimal structures and the distinction
between existence and non-existence of minimizers even more challenging.

Setting and main results. Let us set some notation and give our main results. We will
always assume that the energy (1.1) contains the bending term and we set without loss of
generality µ = 1. For λ,Q ≥ 0, we define

Fλ,Q = λP +W +QVα.

Regarding the volume constraint, as will be better explained later on, up to a rescaling there
is no loss of generality in assuming that |E| = |B1|. For d = 2, 3, we define the following
classes of admissible sets

M = {E ⊂ Rd bounded with W 2,2-regular boundary},
Msc = {E ∈M : E simply connected},

M(|B1|) = {E ∈M : |E| = |B1|},
Msc(|B1|) = {E ∈Msc : |E| = |B1|},

and consider the variational problems

min
Msc(|B1|)

Fλ,Q(E) (1.2)

and
min
M(|B1|)

Fλ,Q(E). (1.3)

We start by considering the planar problem d = 2 and first focus on the uncharged case
Q = 0. For λ = 0 no global minimizer exists in M(|B1|), but it has been recently shown
in [7, 14] that balls minimize the elastica energy under volume constraint in the class of
simply connected sets. Our first result is a quantitative version of this fact in the spirit of
the quantitative isoperimetric inequality [18, 10].

Theorem 1.1. There exists a universal constant c0 > 0 such that for every set E ∈
Msc(|B1|),

W (E)−W (B1) ≥ c0 min
x
|E∆B1(x)|2,

where E∆F denotes the symmetric difference of the sets E and F .
Furthermore, there exist δ0 > 0 and c1 > 0 such that if W (E) ≤W (B1) + δ0, then

W (E)−W (B1) ≥ c1(P (E)− P (B1)).
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Figure 1. The phase diagram.

The proof is based on the idea of [10] for the proof of the quantitative isoperimetric
inequality to reduce by a contradiction argument to the case of nearly spherical sets and
then compute a Taylor expansion along the lines of [17]. As opposed to [10] which is based
on an improved convergence theorem, we obtain the strong convergence to the ball directly
from the energy and a delicate refinement of [7] (see Lemma 2.5).

Still in the case Q = 0, we then remove the constraint on the sets to be simply connected
but consider the minimization problem (1.3) for λ > 0.

Theorem 1.2. Let Q = 0 and d = 2. There exists λ̄ > 0 such that for λ ∈ (0, λ̄),
minimizers of (1.3) are annuli while for λ > λ̄ they are balls.

Next, we turn to the stability estimates analogous to Theorem 1.1.

Theorem 1.3. Let d = 2 and λ̄ be given by Theorem 1.2. Then, there exists a universal
constant c2 > 0, such that for any E ∈M(|B1|) and λ > λ̄

Fλ,0(E)−Fλ,0(B1) ≥ c2(λ− λ̄) min
x
|E∆B1(x)|2,

while for any λ∗ > 0 there exists a constant c(λ∗) > 0 such that for any λ ∈ [λ∗, λ̄]

Fλ,0(E)− min
M(|B1|)

Fλ,0 ≥ c(λ∗) min
Ω
|E∆Ω|2,

where the minimum is taken among all sets Ω minimizing Fλ,0 inM(|B1|) (which are either
balls or annuli depending on λ).

Then, we turn to the study of (1.2) and (1.3) for Q > 0. Regarding (1.2) we prove the
following.

Theorem 1.4. Let d = 2. There exists Q0 > 0 such that for Q < Q0 and all λ ≥ 0, balls
are the only minimizers of (1.2).

The proof is a combination of Theorem 1.1 and [28]. As for (1.3), we obtain a good
understanding of part of the phase diagram (see Figure 1).

Theorem 1.5. Let d = 2.
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• There exists Q1 > 0 such that for every λ > λ̄ and every Q ≤ Q1(λ − λ̄), balls are
the only minimizers of (1.3).
• There exists Q2 > 0 such that for every λ ∈ (0, λ̄] and every Q ≤ Q2λ

3+α
2 , centered

annuli are the only minimizers of (1.3).
• For every α ∈ (1, 2) there exists Q3(α) such that for every λ ≥ 0 and every Q ≥
Q3(α)(λ+ λ

α−1
2 ), no minimizer exists for (1.3).

The first part of the theorem is a direct consequence of the minimality of the ball
for Fλ̄,0 and for P + QVα for Q small enough. The second point regarding the min-
imality of centered annuli is the most delicate part of the theorem. It requires first
to argue that sets of small energy are almost annuli and then to use the stability of
annuli. The last part of the theorem regarding non-existence is obtained by noticing
that if a minimizer exists then we can obtain a lower bound on the energy which is not
compatible for large Q with an upper bound obtained by constructing a suitable competitor.

We conclude the paper by studying the three dimensional case where a characterization
of the energy landscape is even more difficult. As already pointed out, the Willmore energy
is invariant under rescaling and is globally minimized by balls [52, 49]. We can thus focus
on the case λ = 0 where we have competition between the Willmore energy and the Riesz
interaction energy. Stability estimates for the Willmore energy have been obtained by
De Lellis and Müller [13]. Building on these, on the control of the isoperimetric deficit by
the Willmore deficit obtained in [47] and a bound on the perimeter (see Proposition 4.3),
we obtain that balls are minimizers of (1.3) for small Q.

Theorem 1.6. For d = 3 and λ = 0, there exists Q4 > 0 such that for every Q ≤ Q4, the
only minimizers of (1.3) are balls.

Of course, since balls are also minimizers of the isoperimetric problem, a direct conse-
quence of Theorem 1.6 is the minimality of the balls for (1.3) for every λ ≥ 0 and every
Q ≤ Q4. For the case λ = 0 we are not able to prove or disprove a non-existence regime in
the parameter space. Still, we show that if a minimizer exists for every Q then its isoperi-
metric quotient must degenerate as Q → ∞ (see Proposition 4.10). This is somewhat
reminiscent of earlier results obtained by Schygulla [48].

Finally, we obtain a non-existence result in the case λ > 0 and α ∈ (2, 3) in the regime
of sufficiently large charge.

Proposition 1.7. For every α ∈ (2, 3), there exists Q5(α) such that for every λ,Q with
Q ≥ Q5(λ−

3−α
2 + λ

3+α
2 ), no minimizer of Fλ,Q inM(|B1|) exists.

Outline and notation. In Section 2 we first consider the planar case d = 2 in the absence
of charge (Q = 0) before considering the case Q > 0 in Section 3. In the last section
we finally consider the three dimensional case. For the reader’s convenience, the main
theorems given in the introduction are restated in the respective sections and some of
them have been extended by more detailed statements. Theorem 1.1, Theorem 1.2, and
Theorem 1.4 correspond to Theorem 2.3, Theorem 2.7 and Theorem 2.10, respectively. The
statements in Theorem 1.4 are collected from Proposition 3.4, Theorem 3.8, Proposition
3.9 and Proposition 3.14. Theorem 1.6 corresponds to Theorem 4.6, and Proposition 1.7 to
Proposition 4.11.

For two real numbers A,B the notation A & B means that A ≥ cB for some c > 0 that is
universal (unless dependencies are explicitly stated). Correspondingly we use the notation
. and write A ∼ B if A . B and A & B.
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2. The planar case: uncharged drops

We start by investigating the planar case d = 2 in the absence of charges i.e. Q = 0.
Our aim is both to characterize the minimizers and to show that the energy controls the
distance to these minimizers.

2.1. Simply connected sets: controlling the asymmetry index by the elastica
deficit. We first restrict ourselves to simply connected sets. By [7, 14] balls are the unique
minimizers of the elastica energy among simply connected sets with prescribed volume.
Since they also minimize the perimeter, balls are the unique minimizers of Fλ = Fλ,0 in
this class. Using the quantitative isoperimetric inequality [18], one could directly obtain a
quantitative inequality for Fλ which would however degenerate as λ→ 0. Our aim here is
to show that actually the elastica energy W (E) itself controls the distance to balls. This is
a quantitative version of [7, 14] which could be of independent interest.

Inspired by a strategy first used in [1, 10] (see for instance also [6, 11, 21] for a few other
applications) which was building on ideas from [17], we first restrict ourselves to nearly
spherical sets. More precisely, we consider sets E such that ∂E is a graph over ∂BR for
some R > 0, i.e.

∂E = {R(1 + φ(θ))eiθ : θ ∈ [0, 2π)}, (2.1)
with ‖φ‖W 2,2 � 1. We will need the following estimate on the elastica energy of nearly
spherical sets.

Lemma 2.1. Let R > 0 and E be a nearly spherical set. Then,

W (E)−W (BR) = R−1

ˆ 2π

0

(
φ̈2 + φ2 +

3

2
φ̇2 − φ+ 4φφ̈

)
+ o(‖φ‖2W 2,2). (2.2)

Moreover, if |E| = |BR| and the barycenter of E is equal to zero, then

W (E)−W (BR) & R−1

ˆ 2π

0

(
φ̈2 + φ̇2 + φ2

)
. (2.3)

Proof. By scaling, it is enough to prove (2.2), (2.3) for R = 1. The elastica energy of E is
given by ˆ

∂E
H2 =

ˆ 2π

0

(2φ̇2 + (1 + φ)2 − (1 + φ)φ̈)2

(φ̇2 + (1 + φ)2)5/2
.

Let us now compute the Taylor expansion of the integrand. Keeping only up to quadratic
terms, we get that on the one hand,

(2φ̇2 +(1+φ)2−(1+φ)φ̈)2 = 1+4φ−2φ̈+6φ2 + φ̈2 +4φ̇2−6φφ̈+(φ2 + φ̇2 + φ̈2)O(|φ|+ |φ̇|),
and on the other hand,

(φ̇2 + (1 + φ)2)−5/2 = 1− 5φ− 5

2
φ̇2 + 15φ2 + o(φ2 + φ̇2),

so that
(2φ̇2 + (1 + φ)2 − (1 + φ)φ̈)2

(φ̇2 + (1 + φ)2)5/2
= 1−φ−2φ̈+ φ̈2 +φ2 +

3

2
φ̇2 +4φφ̈+(φ2 + φ̇2 + φ̈2)O(|φ|+ |φ̇|).

Using that
´ 2π

0 φ̈ = 0, we obtain (2.2).
If now |E| = |B1|, using that 2|E| =

´
∂E x · ν(x) dH1(x), we haveˆ 2π

0

(
φ+

φ2

2

)
= 0, (2.4)
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while if the barycenter x̄ is zero, using that 3|E|x̄ =
´
∂E x · ν(x)x dH1(x),

ˆ 2π

0
[(1 + φ)3 − 1]eiθ = 0. (2.5)

Using (2.4) in (2.2), we get

W (E)−W (B1) =

ˆ 2π

0

(
φ̈2 +

3

2
φ2 +

3

2
φ̇2 + 4φφ̈

)
+ o(‖φ‖2W 2,2). (2.6)

If φ =
∑

k∈Z ake
ikθ is the Fourier representation of φ, then (2.4) and (2.5) imply that

|a0|+ |a±1| .
∑
|k|≥2

|ak|2

and thus for every j ∈ N, ∥∥∥∥djφdθj
∥∥∥∥2

L2

≤ C
∑
|k|≥2

|k|2j |ak|2.

Since by Parseval’s identity,ˆ 2π

0

(
φ̈2 +

3

2
φ2 +

3

2
φ̇2 + 4φφ̈

)
= 2π

∑
k∈Z

(
|k|4 − 5

2
|k|2 +

3

2

)
|ak|2,

and since for k ∈ Z, the polynomial k4 − 5
2k

2 + 3
2 is always non-negative and vanishes only

for |k| = 1, we have for all φ with ‖φ‖W 2,2 sufficiently small

W (E)−W (B1) &
∑
|k|≥2

(
|k|4 − 5

2
|k|2 +

3

2

)
|ak|2

&
ˆ 2π

0

(
|φ̈|2 + |φ̇|2 + |φ|2

)
,

concluding the proof of (2.3). �

We also recall the following Taylor expansion of the perimeter for nearly spherical sets
(see [17]).

Lemma 2.2. Let R > 0 and let E be a nearly spherical set with ∂E represented as in (2.1),
then

P (E)− P (BR) = R

ˆ 2π

0

(
φ+

φ̇2

2

)
+ o(‖φ‖2W 1,2). (2.7)

We now combine estimate (2.3) and the work of Bucur-Henrot [7], to obtain a quantitative
estimate on the elastica deficit.

Theorem 2.3. There exists a universal constant c0 > 0 such that for every R > 0 and
every set E ∈Msc(|BR|),

R
(
W (E)−W (BR)

)
≥ c0

(
min
x∈R2

|E∆BR(x)|
|BR|

)2

. (2.8)

Furthermore, there exist δ0 > 0 and c1 > 0 such that if W (E) ≤ R−1(W (B1) + δ0), then

R
(
W (E)−W (BR)

)
≥ c1

P (E)− P (BR)

P (BR)
. (2.9)
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In order to prove this theorem we will need some auxiliary results. Even for simply
connected sets, uniform bounds on the volume and the elastica energy are in general not
sufficient to obtain a perimeter or a diameter control (see for example [7, Figure 1]). How-
ever, this is the case for sets with elastica energy sufficiently small.

Lemma 2.4. There exist δ0 > 0 and C0 > 0 such that for every E ∈ Msc(|B1|) with
W (E) ≤W (B1) + δ0, there holds

P (E) ≤ C0. (2.10)

Proof. We first prove, by contradiction, a corresponding bound for the diameter, and then
deduce the perimeter bound.

Step 1. Assume that there exists a sequence (En)n∈N inMsc(|B1|) with

W (En) → W (B1) and dn = diam(En)→∞.

In the following steps, the implicit constants in . and & estimates may depend on the fixed
sequence (En)n but are independent of n ∈ N.

First, up to a rotation, we may assume that for every ξ ∈ (0, dn) the vertical section
Enξ = En ∩ ({ξ} × R) 6= ∅ is not empty. By Fubini’s Theorem, there exists ξn ∈ (dn3 ,

2dn
3 )

such that |Enξn | . d−1
n . Then, there also exist xn ∈ ∂En ∩ Enξn and yn ∈ ∂En ∩ Enξn such

that (xn, yn) ⊂ En and |xn − yn| . d−1
n .

Step 2. Choose an oriented tangent field τ on ∂En. We claim that, for some C1 > 0
independent of n, we have ∣∣τ(xn)⊥ · τ(yn)

∣∣ ≤ C1d
−1/3
n . (2.11)

Indeed, assume that (2.11) does not hold so that there exists Λn →∞ with∣∣τ(xn)⊥ · τ(yn)
∣∣ ≥ Λnd

−1/3
n . (2.12)

Without loss of generality, using another translation and rotation, we can assume that
xn = 0 and τ(xn) = e1 (see Figure 2).

xn

γn2 (ηd
−2/3
n )

f

γn2 (−ηd−2/3
n )

yn

Figure 2. Geometry of ∂En around xn under assumption (2.12).

By the bound on the elastica energy we can locally write the part of ∂En containing 0 as
a graph of the form {(ξ, f(ξ)) : |ξ| ≤ d−2/3

n } with f(0) = f ′(0) = 0 and uniformly bounded
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slope (see [7, Lemma 2.1]). Moreover, sup|ξ|≤d−2/3
n
|f(ξ)| ≤ Cd−1

n , since for 0 ≤ ξ ≤ d−2/3
n

|f(ξ)| ≤
ˆ ξ

0
(ξ − s)|f ′′(s)| ds

≤
(ˆ ξ

0

(f ′′)2

(1 + (f ′)2)
5
2

)1/2(ˆ ξ

0
(ξ − s)2(1 + (f ′)2)

5
2

)1/2

≤ C
√
W (En)

1 + sup
|ξ|≤d−2/3

n

|f ′|
5
2

 ξ
3
2 ,

and similarly for −d−2/3
n ≤ ξ ≤ 0. Let γn = (γn1 , γ

n
2 ) be an arclength parametrization

of ∂En. We may assume that yn = γn(0) with |γn(0)| . d−1
n . By (2.12), |γ̇n2 (0)| =∣∣τ(xn)⊥ ·τ(yn)

∣∣ ≥ Λnd
−1/3
n . Let us assume for definiteness that γ̇n2 < 0 (the other case being

analogous). We then have by the bound on the elastica energy that for every |t| ≤ d−2/3
n ,

γ̇n2 (t) = γ̇n2 (0) +

ˆ t

0
γ̈n2 ds ≤ −Λnd

−1/3
n + t1/2

(ˆ t

0
(γ̈n2 )2

)1/2

ds ≤ −Λn
2
d−1/3
n .

Let η be a small constant chosen so that for t ∈ [−ηd−2/3
n , ηd

−2/3
n ],

|γn1 (t)| =
∣∣∣∣(yn)1 +

ˆ t

0
γ̇n1 (s)ds

∣∣∣∣ . d−1
n + ηd−2/3

n ≤ d−2/3
n .

This implies that for t ∈ [−ηd−2/3
n , ηd

−2/3
n ], γn(t) stays inside the cylinder [−d−2/3

n , d
−2/3
n ]×

R. Furthermore,

γn2 (−ηd−2/3
n ) = (yn)2 −

ˆ 0

−ηd−2/3
n

γ̇n2 (s)ds & −d−1
n + Λnd

−1
n > sup

|ξ|≤d−2/3
n

|f(ξ)|,

and

γn2 (ηd−2/3
n ) = (yn)2 +

ˆ ηd
−2/3
n

0
γ̇n2 (s)ds . d−1

n − Λnd
−1
n < − sup

|ξ|≤d−2/3
n

|f(ξ)|.

Therefore, the graph {(ξ, f(ξ)) : |ξ| ≤ d
−2/3
n } splits the cylinder [−d−2/3

n , d
−2/3
n ] × R into

two connected components with γn2 (−ηd−2/3
n ) in one of the components and γn2 (ηd

−2/3
n ) in

the other (see Figure 2). Hence, γn intersects the graph of f which contradicts the fact that

f
f + tφ

g

Figure 3. Construction of the deformed set.

∂En can be locally written as a graph. We have thus shown that (2.11) holds.
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Step 3. We recall that we assume (without loss of generality) that xn = 0 and τ(xn) = e1.
By the bound on the elastica energy and (2.11), for η small enough (but not depending on n),
xn and yn belong to two different connected components of ∂En∩Qη, where Qη = (−η, η)2.
Let Γ1, respectively Γ2 be the connected component containing xn, respectively yn. By [7,
Lemma 2.1] and (2.11), we have Γ1∩Qη = {(ξ, f(ξ)), |ξ| ≤ η} and Γ2∩Qη = {(ξ, g(ξ)), |ξ| ≤
η} where without loss of generality, we can assume that f(ξ) < g(ξ) for |ξ| ≤ η (see Figure
3). Let now φ ∈ C∞(−η, η) be a non-negative bump function with φ(0) = 1 and let
d−1
n & t > 0 be such that

max
[−η,η]

(
(f + tφ)− g

)
= 0.

If we replace in Qη the component Γ1 by Γ̃1 = {(ξ, f(ξ) + tφ(ξ)) : |ξ| ≤ η}, we obtain a
new set Ẽn with |Ẽn| ≤ |En| (since by construction Ẽn ⊂ En) and

|W (Ẽn)−W (En)| ≤
∣∣∣∣ˆ η

−η

(f ′′ + tφ′′)2

(1 + (f ′ + tφ′)2)5/2
− f ′′2

(1 + f ′2)5/2

∣∣∣∣ . t . d−1
n ,

where we have used that thanks to the energy estimate, f ′ is uniformly small in (−η, η)

to make the Taylor expansion. The set Ẽn is made of two drops E1
n and E2

n with mass
mn

1 = |E1
n| and mn

2 = |E2
n| satisfying mn

1 + mn
2 ≤ |En|. From [7, Theorem 3.5], for every

couple of drops E and F , with |E|+ |F | = |B2−1/3 |,
W (F ) +W (E) ≥ (1 + δ∗)W (B2−1/3),

for some δ∗ > 0. By scaling, we deduce that if we choose a ball B such that |B| =
|mn

1 |+ |mn
2 | ≤ |E| = |B1|, then

W (Ẽn) = W (E1
n) +W (E2

n) ≥ (1 + δ∗)W (B) ≥ (1 + δ∗)W (B1),

from which we obtain that

W (En) ≥W (Ẽn)− Cd−1
n ≥

(
1 +

δ∗
2

)
W (B1),

contradicting the fact that W (En)→W (B1).
Step 4. By the previous steps we know that there exists R > 0 such that diam(E) ≤ 2R
for all E ∈Msc(|B1|) with W (E) ≤W (B1) + δ0. Therefore, after translation E ⊂ BR. We
now choose an arclength parametrization γ : [0, L] → R2, L = P (E) and obtain as in [7,
Lemma 2.5]

L =

ˆ L

0
|γ̇|2 ds = −

ˆ L

0
γ · γ̈ ds ≤

( ˆ L

0
|γ|2 ds

) 1
2
√
W (E) ≤ L

1
2R(2π + δ0)

1
2 ,

from which the perimeter bound follows.
�

Lemma 2.5. Let (En)n be a sequence in Msc(|B1|) with W (En) → W (B1) as n → ∞.
For every n ∈ N let γn : [0, 2π) → R2 be a constant speed parametrization of ∂En. Then,
after translation γn converges strongly in W 2,2 to a (unit speed) arclength parametrization
of ∂B1.

Proof. Consider the sets Ẽn = 2−
1
3En. It follows from [7] and our assumptions that (Ẽn)n

is a minimizing sequence of the functional E 7→ |E| + 1
2W (E) onM. Moreover, (Ẽn) has

uniformly bounded perimeter by Lemma 2.4. For such sequences it is proved in [7, Section
4] that, after translation, Ẽn must converge to B

2−
1
3
. Hence En converges to B1. This gives
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first weak convergence in W 2,2 which combined with the convergence of the energy gives
the strong convergence. �

Proof of Theorem 2.3. Without loss of generality, we may assume that R = 1 and |E| = π.
Step 1. Assume for the sake of contradiction that (2.8) does not hold. Then, there exists a
sequence (En)n such that

W (En)−W (B1)

minx |En∆B1(x)|2
→ 0. (2.13)

Since minx |En∆B1(x)| is bounded, this implies thatW (En)→W (B1) as n→∞. We then
obtain from Lemma 2.4 that the diameter dn of En remains bounded. Hence, by Lemma 2.5
En must converge up to translation to B1 strongly inW 2,2 and thus by Sobolev embedding,
also in C1,α for every α ≤ 1/2. Thus, for n large enough, ∂En is a graph over B1 and ∂En
is nearly spherical. Since the barycenter of En is converging to zero, En is also a graph over
the ball centered in its barycenter. Up to a translation, this means that we can apply (2.3)
and obtain that

W (En)−W (B1) &
ˆ 2π

0
φ2
n & |En∆B1|2, (2.14)

which contradicts (2.13).
Step 2. We now turn to (2.9). The additional assumption implies in the rescaled setting
that W (E) ≤ 2π + δ0. If (2.9) does not hold there exists a sequence (En)n such that

W (En)−W (B1)

P (En)− P (B1)
→ 0. (2.15)

In particular, since by Lemma 2.4, P (En) is uniformly bounded, we have as above that
W (En)→W (B1) as n→∞. Using (2.4) and (2.7) we deduce as in (2.14) that

W (En)−W (B1) &
ˆ 2π

0

(
φ̇2
n + φ2

n

)
& P (En)− P (B1)

which is in contradiction with (2.15).
�

2.2. Minimizers of Fλ. We move on and remove the constraint that sets are simply con-
nected. Since annuli of very large diameter have vanishing elastica energy, in order to have
a well-posed problem, we need to consider λ > 0. Let us recall that the energy is given by

Fλ(E) = λP (E) +W (E) =

ˆ
∂E

(
λ+H2

)
dH1.

Up to a rescaling, we may restrict ourselves to the problem

min
M(|B1|)

Fλ(E). (2.16)

We will show below that depending on the value of λ, minimizers are either balls or annuli.
Before stating the precise result we compute the energy of an annulus.

Lemma 2.6. For every r > 0, the energy Fλ of an annulus with inner radius r > 0 and
area equal to π is given by

fλ(r) = 2π

[
λ(r + (1 + r2)1/2) +

1

r
+

1

(1 + r2)1/2

]
. (2.17)
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The function fλ : (0,∞) → R is strictly convex and f (3)
λ < 0. Its unique minimizer rλ is

the unique solution of

λ

(
1 +

r

(1 + r2)1/2

)
− 1

r2
− r

(1 + r2)3/2
= 0. (2.18)

Proof. The strict convexity of fλ follows from[
r−1 + (1 + r2)−1/2

]′′
= 2r−3 + (1 + r2)−5/2(2r2 − 1) ≥ 2r−3 − (1 + r2)−5/2 > 0,

which can be checked by considering separately the case r ≤ 1 and the case r ≥ 1. Since
fλ(r) → ∞ as r → 0 and r → ∞ it has a unique minimizer rλ > 0 which then satisfies
(2.18). We further compute that

f
(3)
λ (r) = − 3λr

(r2 + 1)
5
2

− 15r3

(r2 + 1)
7
2

+
9r

(r2 + 1)
5
2

− 6

r4
≤ 3
−2r3 + 3r − 10

(r2 + 1)
7
2

< 0.

�

We may now solve the minimization problem (2.16).

Theorem 2.7. There exists λ̄ > 0 such that for λ ∈ (0, λ̄), minimizers of (2.16) are annuli
of inner radius rλ (as defined in Lemma 2.6) while for λ > λ̄ they are balls of radius one.
Moreover, for λ = λ̄ minimizers can be either a ball of radius one or an annulus of inner
radius rλ̄.

Proof. For an arbitrary set E ∈ M(|B1|), by translation invariance, we can in addition
assume that the connected components of E are far apart from each other so that in
particular their convex envelopes do not intersect. In the first two steps we prove that
minimizers must be either balls or annuli. In the final step we compare the minimal energy
of the optimal annuli with the energy of the ball to conclude the proof.
Step 1. Let E be an admissible set. We first show that the energy of each connected
component F of E can be strictly decreased by transforming it into a ball or an annulus.
If F is simply connected, by [7, 14] and the isoperimetric inequality

Fλ(F ) ≥ Fλ(BR),

for R > 0 with |BR| = |F |. Equality holds if and only if F is a translate of BR, proving the
claim in this case.

If F is not simply connected, then F c is made of an unbounded connected component
and a finite union G1, . . . , Gn of bounded simply connected sets. For i = 1, . . . n, let
mi = |Gi|. By the discussion above, among all simply connected sets of mass mi, Fλ is
uniquely minimized by balls Bi of area mi. For two balls Bi and Bj , if r > 0 is such that
|Br| = |Bi|+ |Bj |, then

Fλ(Bi) + Fλ(Bj) > Fλ(Br)

since the inequality is separately true for the perimeter and the elastica parts of the energy.
Letting thus r > 0 be such that |Br| =

∑n
i=1mi, we have

Fλ(∪iGi) =
∑
i

Fλ(Gi) ≥
∑
i

Fλ(Bi) ≥ Fλ(Br)

with equality if and only if n = 1 and G1 is a translate of Br. The set F ∪
(
∪ni=1 Gi

)
given by filling the holes of F is simply connected and letting R > r be such that |BR| =
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|F |+ |Br| = |F
⋃
∪ni=1Gi|, we have as above that

Fλ(F
⋃
∪ni=1Gi) ≥ Fλ(BR)

with equality if and only if F
⋃
∪ni=1Gi is a translate of BR. Putting all this together, we

find that

Fλ(F ) = Fλ(F
⋃
∪ni=1Gi) + Fλ(∪iGi) ≥ Fλ(BR) + Fλ(Br) = Fλ(BR\Br)

with equality if and only if F is a (not necessarily concentric) annulus of outer radius R
and inner radius r, which again proves our claim.
Step 2. We are thus reduced to the class of competitors made of a finite union of balls and
annuli. Since the elastica energy (respectively the perimeter) blows up when one of the
radii goes to zero (respectively to infinity), existence of a minimizer in this class is easily
obtained. Let us prove that a minimizer must be either a single ball or a single annulus. If
one of the connected components of E is a ball then E must be the ball. Indeed, by the
first part of the proof, it cannot contain two balls. Moreover, the union of a ball and an
annulus has energy higher than that of a ball of area the sum of the areas. Indeed, by the
isoperimetric inequality the perimeter is better for the ball and since the elastica energy of
a ball is a decreasing function of its area, the elastica energy of a single ball is also better
than the elastica energy of a ball and an annulus.

We are left to prove that one annulus is better than two. For i = 1, 2, let ri be the
internal radii and Ri be the external radii so that mi = π(R2

i − r2
i ) are the area of the two

annuli. We consider as a competitor the annulus BR\Br1 with

R2 = R2
1 + (R2

2 − r2
2).

Since the elastica part of the energy is smaller, we are left to prove that the perimeter part
is smaller, too. That is indeed the case since

R = (R2
1 +R2

2 − r2
2)1/2 ≤ R1 +R2 + r2.

Step 3. Let us now prove the existence of the threshold λ̄. Let us start by noticing that if
the ball is a minimizer of (2.16) for some λ then it is also a minimizer of (2.16) for every
λ′ > λ. Indeed, by the isoperimetric inequality, for every set E ∈M(|B1|),

Fλ′(E) = Fλ(E) + (λ′ − λ)P (E) ≥ Fλ(B1) + (λ′ − λ)P (B1) = Fλ′(B1)

with equality if and only if E is a ball.
The energy of an annulus of internal radius r and area equal to |B1| is larger than the

energy of the ball B1 if and only if

2π (λ+ 1) < min
r>0

fλ(r), (2.19)

for fλ as defined in (2.17). By taking as competitor r = λ−1/2, we get that

min
r
fλ(r) ≤ 2πλ1/2

(
2 + (1 + λ)1/2 + (1 + λ)−1/2

)
,

so that for all λ > 0 sufficiently small (2.19) does not hold and minimizers are annuli.
Using that λr + r−1 ≥ 2λ1/2 and (1 + r2)1/2 ≥ 1, we obtain the lower bound

min
r
fλ(r) ≥ 2π(2λ1/2 + λ),

proving that (2.19) holds for λ ≥
√

2
2 and concluding the proof.

�
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Remark 2.8. Finding the explicit value of λ̄ is not straightforward. Indeed, this entails
first minimizing fλ(r) and then finding the range of λ such that (2.19) holds. The unique
minimizer rλ of fλ is determined by (2.18).

By (2.19) we deduce that the ball is the minimizer if and only if

g(λ) = 2π(λ+ 1)− fλ(rλ) < 0.

By minimality of fλ in rλ we find

g′(λ) = 2π − 2π
(
rλ + (1 + r2

λ)
1
2
)
< 0.

Therefore, the threshold λ̄ is characterized by the condition

g(λ̄) = 0.

Letting U = (1+r−2)1/2, we observe that finding rλ is equivalent to find the unique solution
U ≥ 1 of

λU2(1 + U) = (U2 − 1)(1 + U3).

Dividing by 1 + U , we are left with finding a root larger than one of the fourth order
polynomial

U4 − U3 − λU2 + U − 1.

Nevertheless, a simple explicit formula for λ̄ seems not to be available.

2.3. Stability estimates. We now turn to stability estimates for the functional Fλ. As
for the proof of Theorem 2.3, we will first need to know that sets with small energy are
close (in a non-quantitative way) to minimizers.

Lemma 2.9. Consider a sequence of positive numbers (λn)n with λn → λ ∈ (0,∞] and a
sequence (En)n inM(|B1|) such that

Fλn(En)− min
M(|B1|)

Fλn → 0 as n→∞. (2.20)

Then, up to translations and passing to a subsequence, En converges strongly in W 2,2 to a
minimizer of Fλ inM(|B1|).

In particular, for all n ∈ N sufficiently large En is connected and has topological genus
one if λ < λ̄, zero if λ > λ̄ and zero or one if λ = λ̄.

Proof. We may assume without loss of generality that 2λ ≥ λn ≥ λ/2 for all n ∈ N.
Let us first prove that for n large enough, En must be connected. For the sake of

contradiction, assume it is not. Arguing as in the proof of Theorem 2.7, we see that we can
replace En by a set Ẽn made of two connected components each of which is either a ball or
an annulus with Fλn(Ẽn) ≤ Fλn(En) so that (2.20) still holds for Ẽn. Inspecting the proof
of Theorem 2.7 we see that we reach a contradiction since the minimum of Fλn in this class
is larger than minM(|B1|)Fλn by a constant not depending on n. If λ < λ̄ we further obtain
that for n large enough, En cannot be simply connected since otherwise we would have by
Theorem 2.7 for some δ(λ)

Fλn(En) ≥ Fλn(B1) ≥ min
M(|B1|)

Fλn + δ,

contradicting again (2.20). Let us prove that for any λ, En is of genus at most one. Other-
wise, we can write En = Fn\∪Nni=1Gi with Fn and Gi simply connected and Nn ≥ 2. Letting
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Vn = |Fn| and mn
i = |Gi|, we have Vn −

∑
im

n
i = |B1| and by [7, 14] and the isoperimetric

inequality, that

Fλn(En) ≥ 2π3/2

(
V −1/2
n +

∑
i

(mn
i )−1/2

)
+ 2
√
πλn

(
V 1/2
n +

∑
i

(mn
i )1/2

)
.

Since gn(x) = π3/2x−1/2 +
√
πλnx

1/2 is subadditive, and Nn ≥ 2,

Fλn(En) ≥ 2 min
V−(m1+m2)=|B1|

gn(V ) + gn(m1) + gn(m2).

Notice that gn → ∞ as x tends to zero or infinity so that the minimum on the right-hand
side is attained form1 andm2 uniformly bounded above and below by a constant depending
only on λ. Since for such values of mi

gn(m1) + gn(m2) ≥ gn(m1 +m2) + δ(λ),

for some δ(λ) > 0, we have by the last two inequalities and Theorem 2.7

Fλn(En) ≥ 2 min
V−m=|B1|

gn(V ) + gn(m) + δ(λ) ≥ min
M(|B1|)

Fλn + δ(λ),

contradicting (2.20). Thus, for n large enough, En = Fn\Gn with Fn and Gn simply
connected (where Gn = ∅ is possible if and only if λ ≥ λ̄).

Consider first the case Gn 6= ∅ for all n sufficiently large (possibly up to a subsequence).
This implies in particular that λ ≤ λ̄. Let An = BRn1 \ BRn2 be the centered annulus

minimizing Fλn in M(|B1|), hence Rn2 = rλn , Rn1 =
√

1 + r2
λn
, where rλn is the unique

minimum of fλn given in Lemma 2.6. Choosing R̃n1 , R̃n2 with |B
R̃n1
| = |Fn|, |BR̃n2 | = |Gn|

we deduce

Fλn(En)−Fλn(An) =
(
λnP (Fn) +W (Fn) + λnP (Gn) +W (Gn)

)
−
[
λnP (BRn1 ) +W (BRn1 ) + λnP (BRn2 ) +W (BRn2 )

]
=
(
. . .
)
−
[
λnP (B

R̃n1
) +W (B

R̃n1
) + λnP (B

R̃n2
) +W (B

R̃n2
)
]

+ fλn(R̃n2 )− fλn(Rn2 )

≥ λn

(
P (Fn)− P (B

R̃n1
) + P (Gn)− P (B

R̃n2
)
)

+
(
W (Fn)−W (B

R̃n1
) +W (Gn)−W (B

R̃n2
)
)

+
(
fλn(R̃n2 )− fλn(Rn2 )

)
= Tn1 + Tn2 + Tn3 .

By (2.20) the left-hand side of the inequality vanishes as n → ∞. Since Fn and Gn are
simply connected, all three terms on the right-hand side are non-negative and must therefore
converge to zero. Since 2λ ≥ λn ≥ λ/2 we have that Rn2 is uniformly bounded from above
and below. Since Tn3 → 0 and Rn2 minimizes fλn we deduce by strict convexity of fλn and
a Taylor expansion that

0 = lim
n→∞

Tn3 ≥ c(λ) lim sup
n→∞

(R̃n2 −Rn2 )2,

and by the mass constraint, also R̃n1 − Rn1 → 0. Since Tn2 → 0 we deduce that W (Fn) −
W (BRn1 ) → 0 and W (Gn) −W (BRn2 ) → 0. After rescaling we can apply Lemma 2.5 and
the conclusion follows.
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Let us finally consider the case that λ ≥ λ̄ with En simply connected. Then,

Fλn(En)− min
M(|B1|)

Fλn = λn
(
P (En)−P (B1)

)
+W (En)−W (B1)+

(
Fλn(B1)− min

M(|B1|)
Fλn

)
,

and we obtain as in the previous case that W (En) → W (B1) concluding again by
Lemma 2.5. �

We can now prove our stability estimate for Fλ.
Theorem 2.10. Let λ̄ be given by Theorem 2.7 and consider an arbitrary set E ∈M(|B1|).
Then, there exists a universal constant c2 > 0, such that for λ > λ̄

Fλ(E)−Fλ(B1) ≥ c2(λ− λ̄) min
x
|E∆B1(x)|2, (2.21)

while for any λ∗ > 0 there exists a constant c(λ∗) > 0 such that for any λ ∈ [λ∗, λ̄]

Fλ(E)− min
M(|B1|)

Fλ ≥ c(λ∗) min
Ω
|E∆Ω|2, (2.22)

where the minimum is taken among all sets Ω minimizing Fλ inM(|B1|).
Proof. Let us start by proving (2.21). Since λ − λ̄ > 0, using the minimality of B for Fλ̄
and the quantitative isoperimetric inequality [18], we can write that

Fλ(E)−Fλ(B1) = Fλ̄(E)−Fλ̄(B1) + (λ− λ̄)
(
P (E)− P (B1)

)
≥ (λ− λ̄)

(
P (E)− P (B1)

)
≥ c2(λ− λ̄) min

x
|E∆B1(x)|2,

which proves (2.21).

We now turn to the proof of (2.22). As for the proof of (2.8), we assume by contradiction
that the inequality does not hold. We thus have sequences (λn)n in [λ∗, λ̄] and (En)n in
M(|B1|) with

lim
n→∞

Fλn(En)−minM(|B1|)Fλn
minΩ |En∆Ω|2

= 0. (2.23)

Again, implicit constants in . and & estimates may depend on the fixed sequence (En)n
but are independent of n ∈ N.
Since the denominator in (2.23) is uniformly bounded we have limn→∞Fλn(En) −
minM(|B1|)Fλn = 0. Without loss of generality we can also assume λn → λ ∈ [λ∗, λ̄]
as n→∞.

By Lemma 2.9 En converges strongly in W 2,2 to a minimizer of Fλ. For n large enough,
it is connected, and has either genus one or zero (the latter being possible only if λ = λ̄).

Let us first consider the case where up to a translation and up to passing to a subsequence,
En converges to BR1\BR2(x2) so that for n large enough En = Fn \ Gn for some simply
connected sets Gn ⊂ Fn. Up to a translation, we may assume that −́Fn x = 0 so that by
Lemma 2.9, we can write Fn as a graph over the ball of radius R̃n1 with |B

R̃n1
| = |Fn|, and

such that R̃n1 → R1. At the same time Gn can be written as a graph over B
R̃n2

(xn) with

|B
R̃n2
| = |Gn|, −́Gn x = xn, R̃n2 → R2 and xn → x2 as n→∞. Hence,

∂Fn = {R̃n1 (1 + φn)eiθ, θ ∈ [0, 2π)}, ∂Gn = {xn + R̃n2 (1 + ψn)eiθ, θ ∈ [0, 2π)}
for some functions φn, ψn with smallW 2,2 norm that satisfy (2.4) and (2.5). Let us point out
that B

R̃n1
\B

R̃n2
is in general not an optimal annulus and is thus in particular not admissible
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for the denominator of (2.23).
By (2.3) and the Sobolev inequality, we obtain that

Fλn(En)−Fλn(B
R̃n1
\B

R̃n2
) ≥W (Fn)−W (B

R̃n1
) +W (Gn)−W (B

R̃n2
)

& sup |φn|2 + sup |ψn|2 + |Fn∆B
R̃n1
|2 + |Gn∆B

R̃n2
(xn)|2.

(2.24)

If B
R̃n2

(xn) 6⊂ B
R̃n1

, we need to move xn inwards to obtain an annulus. To this aim, let

δn = max(|xn|+ R̃n2 − R̃n1 , 0) (2.25)

and define x̃n = xn−δn xn
|xn| (notice that if δn > 0 then xn 6= 0 so that taking as a convention

that x̃n = 0 if xn = 0, this quantity is well defined). We then have B
R̃n2

(x̃n) ⊂ B
R̃n1

by
(2.25). Since

B
R̃n2 (1−sup |ψn|)(xn) ⊂ Gn ⊂ Fn ⊂ BR̃n1 (1+sup |φn|),

we must have |xn|+ R̃n2 (1− sup |ψn|) ≤ R̃n1 (1 + sup |φn|) that is

δ2
n ≤

(
R̃n1 sup |φn|+ R̃n2 sup |ψn|

)2 (2.24)
. Fλn(En)−Fλn(B

R̃n1
\B

R̃n2
). (2.26)

From this we deduce that

|Gn∆B
R̃n2

(x̃n)|2 . |Gn∆B
R̃n2

(xn)|2 + δ2
n

(2.24),(2.26)
. Fλn(En)−Fλn(B

R̃n1
\B

R̃n2
). (2.27)

We can now estimate

Fλn(En)−Fλn(An) = Fλn(En)−Fλn(B
R̃n1
\B

R̃n2
) + Fλn(B

R̃n1
\B

R̃n2
)−Fλn(An)

(2.24),(2.27)
& |Fn∆B

R̃n1
|2 + |Gn∆B

R̃n2 (x̃n)
|2 + Fλn(B

R̃n1
\B

R̃n2
)−Fλn(An)

& |En∆(B
R̃n1
\B

R̃n2
(x̃n))|2 + Fλn(B

R̃n1
\B

R̃n2
)−Fλn(An).

By the minimality of fλn at r = Rn2 and by strict convexity of fλn (see Lemma 2.6),
f ′′λn(Rn2 ) > 0 and thus

Fλn(B
R̃n1
\B

R̃n2
)−Fλn(An) & c(λ)(R̃n2 −Rn2 )2.

We therefore conclude that

Fλn(En)−Fλn(An) & |En∆(B
R̃n1
\B

R̃n2
(x̃n))|2 + |R̃n2 −Rn2 |2. (2.28)

As pointed out above, this is not sufficient to obtain a contradiction with (2.23) since
B
R̃n1
\B

R̃n2
(x̃n) is not an optimal annulus for Fλn . We thus need to prove that there exists

x̂n close to x̃n such that (2.28) holds with BRn1 \BRn2 (x̂n) instead of B
R̃n1
\B

R̃n2
(x̃n).

For εn ≥ 0, we let x̂n = (1 − εn)x̃n. We want to choose εn so that BRn2 (x̂n) ⊂ BRn1 . If
|x̃n| � 1, we set εn = 0 while for |x̃n| & 1, we claim that we can take

εn = C|R̃n2 −Rn2 | (2.29)

for some constant C . 1. Indeed, if εn satisfies (2.29), then using first that by (2.25)
|x̃n| + R̃n2 ≤ R̃n1 and then that |R̃n1 − Rn1 | ∼ |R̃n2 − Rn2 | (since BR̃n1 \ BR̃n2 and BRn1 \ BRn2



18 MICHAEL GOLDMAN, MATTEO NOVAGA, AND MATTHIAS RÖGER

have equal mass) we obtain

|x̂n|+Rn2 = (1− εn)|x̃n|+ R̃n2 + (Rn2 − R̃n2 )

≤ R̃n1 − (C|x̃n| − 1)|R̃n2 −Rn2 |

= Rn1 + (R̃n1 −Rn1 )− (C|x̃n| − 1)|R̃n2 −Rn2 |

≤ Rn1 − (C|x̃n| − c)|R̃n2 −Rn2 |
|x̃n|&1

≤ Rn1 ,

and therefore BRn2 (x̂n) ⊂ BRn1 . From (2.29) we conclude that

|(B
R̃n1

∆B
R̃n2

(x̃n))∆(BRn1 \BRn2 (x̂n))|2 . |R̃n1 −Rn1 |2 + |R̃n2 −Rn2 |2 + |x̃n − x̂n|2 . |R̃n2 −Rn2 |2

so that (2.28) and the fact that BRn1 \BRn2 (x̂n) is an optimal annulus for Fλn , finally yields

Fλn(En)−Fλn(An)

& |En∆(B
R̃n1
\B

R̃n2
(x̃n))|2 + |(B

R̃n1
\B

R̃n2
(x̃n))∆(BRn1 \BRn2 (x̂n))|2

& |En∆(BRn1 \BRn2 (x̂n))|2 ≥ min
Ω
|En∆Ω|2,

which contradicts (2.23).
Let us finally consider the case λ = λ̄ with En simply connected. We then have

Fλn(En) → infM(|B1|)Fλ̄ = Fλ̄(B1) and W (En) ≥ W (B1) by [7, 14] so that the quan-
titative isoperimetric inequality [18] gives a contradiction to (2.23) (one could also use
(2.8)). �

3. The planar case: charged drops

Still considering the planar case d = 2, we now turn our attention to the variational
problem (1.3) for arbitrary positive parameters m, λ and Q. Our aim is to understand as
much as possible the phase diagram of Fλ,Q i.e. identify regions of existence/non-existence
of minimizers and characterize minimizers when they exist.

By a simple rescaling we have

min
M(m)

Fλ,Q(E) =

√
π√
m

min
M(|B1|)

Fλ(m),Q(m)(E), (3.1)

with λ(m) = λmπ , Q(m) = Q
(
m
π

) 3+α
2 so that we may assume thatm = |B1|. Notice however

that, for λ and Q fixed, λ(m) and Q(m) tend to zero as m goes to zero. Therefore, if we
want to understand the shape of minimizers at small volume, we need to carefully study
the phase diagram of Fλ,Q close to (λ,Q) = (0, 0).

3.1. Minimization in the class of simply connected sets. Let us start by investigating
(1.2), i.e. restricting ourselves to simply connected sets.

Proposition 3.1. There exists Q0 > 0 such that for Q < Q0 and all λ ≥ 0, balls are the
only solutions of the minimization problem

min
Msc(|B1|)

Fλ,Q(E).
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Proof. Consider δ0, c1 > 0 from Theorem 2.3. By [28, Proposition 7.1] (see also [15, Theorem
1.3]) there exists Q1 such that

P (E)− P (B1) ≥ Q1

(
Vα(B1)− Vα(E)

)
for all E ∈M(|B1|). (3.2)

Consider now any E ∈Msc(|B1|) with Fλ,Q(E) ≤ Fλ,Q(B1) Hence

W (E)−W (B1) ≤ Q
(
Vα(B1)− Vα(E)

)
− λ

(
P (E)− P (B1)

)
(3.3)

≤ QVα(B1) < δ0

for all Q < δ0Vα(B1)−1.Therefore, if Q < δ0Vα(B1)−1, (2.9) applies and

c1
P (E)− P (B1)

P (B1)
≤W (E)−W (B1).

Together with (3.3) we get that for all Q < δ0Vα(B1)−1

P (E)− P (B1) ≤ Q
( c1

P (B1)
+ λ
)−1(

Vα(E)− Vα(B1)
)
,

which combined with (3.2) gives P (E) = P (B1) for Q < Q1( c1
P (B1) + λ). This implies

that E = B1. Choosing Q0 := min{δ0Vα(B1)−1, Q1
c1

P (B1)} concludes the proof of the
proposition. �

Remark 3.2. Since for d = 2 a bound on the perimeter gives a bound on the diameter for
simply connected sets, existence of a minimizer for (1.2) holds for every λ > 0 and Q > 0.
For λ = 0, the existence of minimizers for large Q is less clear.

As a direct consequence of (3.1) and Proposition 3.1 we get

Corollary 3.3. Let Q0 be given by Proposition 3.1. For any Q > 0, λ ≥ 0 and m ≤

π
(
Q0

Q

) 2
3+α balls are the only minimizers of

min
Msc(m)

Fλ,Q(E).

3.2. Minimization in the class M(|B1|). We now drop the constraint that E is simply
connected and study (1.3). We start by focusing on the simplest part of the phase diagram,
that is where minimizers are balls. As above, let Q1 > 0 be given by [28, 15] such that balls
are the only minimizers of

min
M(|B1|)

P (E) +QVα(E).

Proposition 3.4 (Global minimality of the ball for λ > λ̄). For every λ > λ̄ and Q ≤
Q1(λ− λ̄) balls are the unique minimizers of Fλ,Q inM(|B1|).

Proof. For λ > λ̄ and Q ≤ Q1(λ− λ̄), we have

Fλ,Q(E) = (λ− λ̄)P (E) +QVα(E) + Fλ̄(E) = (λ− λ̄)

(
P (E) +

Q

λ− λ̄
Vα(E)

)
+ Fλ̄(E).

By definition ofQ1, balls are the only minimizers of P (E)+ Q
λ−λ̄Vα(E). Since by Theorem 2.7

they also minimize Fλ̄, balls are the only minimizers of Fλ,Q. �

Remark 3.5. Notice that if balls are minimizers of Fλ,Q then by the isoperimetric inequality
they are also minimizers of Fλ′,Q for every λ′ ≥ λ.



20 MICHAEL GOLDMAN, MATTEO NOVAGA, AND MATTHIAS RÖGER

We now focus on the most interesting case and show that for λ ≤ λ̄ and Q sufficiently
small centered annuli are optimal. Our first observation is that among annuli of the form
BR1\BR2(x2), the Riesz interaction energy is minimized for the centered annulus i.e. for
x2 = 0.

Lemma 3.6. For every x2 ∈ R2 such that BR2(x2) ⊂ BR1, it holds

Vα(BR1\BR2(x2)) ≥ Vα(BR1\BR2),

with equality if and only if x2 = 0. Moreover Vα(BR1\BR2(x2)) ≤ Vα(B1).

Proof. Let X1 = XBR1
, X2 = XBR2

. By the Riesz rearrangement inequality we deduce

Vα(BR1\BR2(x2)) =

ˆ
R2×R2

X1(x)X1(y)

|x− y|2−α
+

ˆ
R2×R2

X2(x− x2)X2(y − x2)

|x− y|2−α

− 2

ˆ
R2×R2

X1(x)X2(y − x2)

|x− y|2−α

≥
ˆ
R2×R2

X1(x)X1(y)

|x− y|2−α
+

ˆ
R2×R2

X2(x)X2(y)

|x− y|2−α

− 2

ˆ
R2×R2

X1(x)X2(y)

|x− y|2−α

= Vα(BR1\BR2).

By [36, Theorem 3.9] equality holds if and only if X1,X2 coincide with their symmetric
rearrangement, hence if and only if x2 = 0. The last statement is a direct consequence of
the Riesz rearrangement inequality. �

We will also need the following stability lemma.

Lemma 3.7. For any λ∗ ∈ (0, λ̄] there exists C(λ∗) > 0 such that for all λ ∈ [λ∗, λ̄] and
all Q > 0 the following property holds: Let E ∈M(|B1|) satisfy

Fλ,Q(E) ≤ Fλ,Q(Aλ), (3.4)

where Aλ is the centered annulus that minimizes Fλ inM(|B1|). Then, there exists Ω that
minimizes Fλ inM(|B1|), such that

|E∆Ω|+
(
Vα(Ω)− Vα(Aλ)

)
≤ C(λ∗)Q. (3.5)

holds. In particular, for Q small enough Ω must be an annulus.

Proof. Let Ω ∈ argminM(|B1|)Fλ satisfy

|E∆Ω| ≤ |E∆Ω′| for all Ω′ ∈ argminM(|B1|)Fλ.

Thanks to (3.4), (2.22), and the Lipschitz-continuity of the Riesz interaction energy

c(λ∗)|E∆Ω|2 ≤ Fλ(E)−Fλ(Aλ)

≤ Q
(
Vα(Aλ)− Vα(Ω)

)
+Q

(
Vα(Ω)− Vα(E)

)
≤ Q

(
Vα(Aλ)− Vα(Ω)

)
+ CQ|E∆Ω|.

By Lemma 3.6 the first term on the right-hand side is non-positive and we deduce (3.5).
Since Vα(B1) − Vα(Aλ) ≥ c(λ∗), we also conclude from (3.5) that for Q small enough, Ω
cannot be a ball. �

We can now prove the minimality of the centered annulus in this regime.



ESTIMATES FOR BENDING ENERGIES AND NON-LOCAL VARIATIONAL PROBLEMS 21

Theorem 3.8 (Global minimality of the annulus for λ ≤ λ̄). For every 0 < λ∗ < λ̄ there
exists Q(λ∗) such that for all Q < Q(λ∗) and all λ ∈ [λ∗, λ̄], the minimizers of Fλ,Q in
M(|B1|) are centered annuli Aλ,Q. Moreover, there exist positive constants c(λ∗), C(λ∗)
depending only on λ∗ such that the inner radius rλ,Q of Aλ,Q satisfies

c(λ∗)Q ≤ |rλ,Q − rλ| ≤ C(λ∗)Q, (3.6)

where rλ is the minimizer of fλ (see Lemma 2.6).

Proof. Step 1. We minimize first Fλ,Q in the class of annuli. By (3.6), this minimum is
attained by centered annuli i.e. annuli of the form Ar = BR\Br with R = R(r) =

√
1 + r2.

We recall that fλ(r) = Fλ(Ar) and let g(r) = Vα(Ar). Hence, we are left with minimizing

hλ,Q(r) = fλ(r) +Qg(r).

Since fλ is coercive and g is positive (and since both are continuous), there exists at least
one minimum rλ,Q of hλ,Q.
Step 2. We claim that g′(r) < 0 for all r > 0. To prove this, let v(x) =

´
BR\Br |x−y|

−2+α dy

be the potential created by the annulus BR\Br then

g′(r) =
d

dr

ˆ
BR(r)\Br

ˆ
BR(r)\Br

|x− y|−2+α dy dx

= 2
(
R′(r)

ˆ
∂BR(r)

v(x) dH1(x)−
ˆ
∂Br

v(x) dH1(x)
)

= 2

ˆ
∂Br

v

(
R

r
x

)
− v(x) dH1(x).

For x ∈ ∂Br, let Sx = BR((1 + R
r )x) ∩ Ar (see Figure 4). By the symmetry of Sx with

(1 + R
r )x

x

∂Br

∂BR

Sx

Figure 4. The set Sx.

respect to the line
{
x
r · y = r+R

2

}
,ˆ

Sx

1

|x− y|2−α
=

ˆ
Sx

1

|Rr x− y|2−α
.

Moreover, since for y ∈ Ar ∩ S̄cx, |x− y| < |Rr x− y|, we have for x ∈ ∂Br

v

(
R

r
x

)
− v(x) =

ˆ
Ar

1

|Rr x− y|2−α
−
ˆ
Ar

1

|x− y|2−α
< 0
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so that for every r > 0, g′(r) < 0.
Step 3. We therefore have rλ,Q > rλ and that rλ,Q is increasing in Q and decreasing in λ.
Since hλ,Q(rλ) ≥ hλ,Q(rλ,Q) and since fλ is strictly convex with f ′λ(rλ) = 0 and f ′′′λ < 0 we
next deduce

Q(g(rλ)− g(rλ,Q)) ≥ fλ(rλ,Q)− fλ(rλ) ≥ 1

2
f ′′λ (rλ,Q)(rλ,Q − rλ)2.

On the one hand g(rλ) ≤ Vα(B1) and on the other hand rλ,Q ≤ C(λ∗) and f ′′λ (rλ,Q) ≥
c(λ∗) > 0 for all λ ≥ λ∗, Q < 1. We infer that

(rλ,Q − rλ)2 ≤ C(λ∗)Q.

Hence rλ,Q → rλ as Q→ 0 uniformly for all λ ∈ [λ∗, λ̄].
Step 4. By the minimizing property of rλ,Q, we deduce

0 = f ′(rλ,Q) +Qg′(rλ,Q) = f ′′(r̃λ,Q)(rλ,Q − rλ) +Qg′(rλ,Q)

for some rλ ≤ r̃λ,Q ≤ rλ,Q. We have c(λ∗) ≤ f ′′(r̃λ,Q) ≤ C(λ∗) and since c(λ∗) ≤ rλ,Q ≤
C(λ∗) also g′(rλ,Q) is uniformly bounded from above and below from which (3.6) follows.
Step 5. Assume for the sake of contradiction that we can find a sequence λn ∈ [λ∗, λ̄]

converging to λ ∈ [λ∗, λ̄] and sequences Qn → 0, (En)n in M(|B1|) which are not annuli
and such that

Fλn,Qn(En) ≤ Fλn,Qn(An), (3.7)
where An = Arλn,Qn is the optimal annulus (which is centered).

By (3.7) and the fact that rλn,Qn → rλ, we see that En satisfies (2.20) so that Lemma 2.9
together with Lemma 3.7 imply that for n sufficiently large, up to a translation En = Fn\Gn
with Fn converging strongly in W 2,2 to BRλ (where Rλ =

√
1 + r2

λ) and Gn converging
strongly in W 2,2 to Brλ . Let Rn → Rλ and rn → rλ be such that

|BRn | = |Fn| and |Brn | = |Gn|.
Since An is optimal for Fλn,Qn among annuli, we have Fλn,Qn(An) ≤ Fλn,Qn(BRn\Brn) so
that (3.7) becomes

λnP (Fn) +W (Fn) + λnP (Gn) +W (Gn) +QnVα(Fn\Gn)

≤ λnP (BRn) +W (BRn) + λnP (Brn) +W (Brn) +QnVα(BRn\Brn).

Using that by [7, 14], W (Fn) ≥W (BRn) and W (Gn) ≥W (Brn), this simplifies to

λnP (Fn) + λnP (Gn) +QnVα(Fn\Gn) ≤ λnP (BRn) + λnP (Brn) +QnVα(BRn\Brn). (3.8)

We now estimate (for simplicity we do not write the kernel in the integrals)

Vα(BRn\Brn)− Vα(Fn\Gn)

=

ˆ
BRn

ˆ
BRn

+

ˆ
Brn

ˆ
Brn

−2

ˆ
BRn

ˆ
Brn

−
ˆ
Gn

ˆ
Gn

−
ˆ
Fn

ˆ
Fn

+2

ˆ
Fn

ˆ
Gn

= Vα(BRn)− Vα(Fn) + Vα(Brn)− Vα(Gn) + 2

[ˆ
Fn

ˆ
Gn

−
ˆ
BRn

ˆ
Brn

]
By the Riesz rearrangement inequality,ˆ

Fn

ˆ
Gn

−
ˆ
BRn

ˆ
Brn

≤ 0
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from which we obtain

Vα(BRn\Brn) ≤ Vα(Fn\Gn) + Vα(BRn)− Vα(Fn) + Vα(Brn)− Vα(Gn).

Inserting this into (3.8) and dividing by λn, we obtain

P (Fn)+
Qn
λn

Vα(Fn)+P (Gn)+
Qn
λn

Vα(Gn) ≤ P (BRn)+
Qn
λn

Vα(BRn)+P (Brn)+
Qn
λn

Vα(Brn),

which implies by [28, Proposition 7.1] that if Qn/λn is small enough then Fn = BRn and
Gn = Brn(xn) for some xn ∈ R2. This contradicts our assumption that En was not an
annulus and concludes the proof.

�

Having in mind the study of (3.1) for λ and Q fixed but m tending to zero, we now focus
on the behavior of Q(λ∗) for λ∗ going to zero.

Proposition 3.9. There exist Q2 > 0 and λ0 > 0 such that if λ ∈ (0, λ0] and Q ≤ Q2λ
3+α
2

then every minimizer Eλ,Q of (3.1) is a centered annulus. If Eλ,Q = BRλ,Q\Brλ,Q then
λ1/2rλ,Q → 1 and λ1/2Rλ,Q → 1, as λ→ 0.

Proof. Consider sequences (λn)n, (Qn)n with

λn → 0, Qn → 0, lim sup
n→∞

Qnλ
− 3+α

2
n ≤ Q2.

We start by making the rescaling E = λ
−1/2
n Ê so that

Fλn,Qn(E) = λ1/2
n

(
P (Ê) +W (Ê) +Qnλ

− 3+α
2

n Vα(Ê)

)
= λ1/2

n F1,Q̃n
(Ê),

with Q̃n = Qnλ
− 3+α

2
n . We are thus left to study the minimization problem

min
M(λnπ)

F
1,Q̃n

(E).

Let us prove that if (En)n is a sequence with F
1,Q̃n

(En) ≤ F
1,Q̃n

(An), where An is the
optimal (centered) annulus, then for n large enough En = Fn\Gn with Fn and Gn simply
connected and both converging to the unit ball strongly in W 2,2. Indeed, if we choose
Rn > 0 with R2

n − 1 = λn and write ∂En as a union of simple closed curves Γn1 , . . . ,Γ
n
Nn

,
we deduce that

Nn∑
i=1

(P +W )(Γni ) ≤ F
1,Q̃n

(En) ≤ F
1,Q̃n

(BRn \B1) ≤ 8π + C(1 + Q̃n)λn,

where in the last inequality we have used that for every set Ω, Vα(Ω) . |Ω|. Since ∂B1

minimizes P +W among all simple closed curves (by [7, 14] and the isoperimetric inequality
it is minimized by circles and then a simple optimization on the radius gives the minimality
of ∂B1), and since (1 + Q̃n)λn → 0 as n→∞ we deduce that for all n sufficiently large we
have Nn ≤ 2. By [7, Theorem 1.1] we also have Nn > 1 since otherwise W (En) would blow
up. Hence Nn = 2 for all n sufficiently large and limn→∞W (Γni ) = 2π for i = 1, 2 so that
the claim follows from Lemma 2.5.

Arguing then exactly as in the proof of Theorem 3.8 and using that Q̃n ≤ Q2 we obtain
that for n sufficiently large En is an annulus if Q2 is sufficiently small. �
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Remark 3.10. We do not expect that the condition Q ≤ c0λ
3+α
2 is sharp. Indeed, looking

at the proofs of Proposition 3.9 and Theorem 3.8 we see that we have argued separately
that Fn and Gn should be balls without exploiting the fact that the volume of En =
Fn\Gn is small. One could hope to improve the result by obtaining a better control on
Vα(BRn\Brn)− Vα(En).

As a corollary, we obtain by (3.1) the minimality of annuli for small volumes.

Corollary 3.11. There exist λ1 and c1 such that for m ≤ λ1
λ and Q

2
3+α ≤ c1λ, minimizers

of Fλ,Q inM(m) are centered annuli.

3.3. Non-existence of minimizers for large charge. We now prove a non-existence
result for α ∈ (1, 2) and Q large enough (depending on λ). The restriction α ∈ (1, 2)
comes from the fact that contrarily to what happens for the generalized Ohta-Kawasaki
model ((1.1) with µ = 0), we cannot easily use a cutting argument. That procedure has
roughly the effect of replacing α by α + 1 (see [28, 29, 16]) and thus allows to extend the
non-existence result from α ∈ (1, 2) to α ∈ (0, 2).
For any Q > 0 we first observe that if a minimizer exists then it must be connected. The
following lower bound will thus by useful to prove non-existence results.

Lemma 3.12. There exists cα > 0 such that, for every λ,Q > 0 and every connected set
E ∈M(|B1|), there holds

Fλ,Q(E) ≥ cαλ
2−α
3−αQ

1
3−α . (3.9)

Proof. Let E be a connected set and let d = diam(E) ≥ 2 be its diameter. If we write
E = F\ ∪ni=1 Gi with F and Gi simply connected then diam(E) = diam(F ) and W (E) ≥
W (F ). By [7] we have diam(F )W (F ) ≥ 4π so that dW (E) ≥ 4π. Moreover, P (E) ≥ 2d
and Vα(E) ≥ d−2+α|E|2 and therefore

Fλ,Q(E) ≥ 2λd+
4π

d
+Qd−2+απ2.

Since
min
d≥2

λd+Qd−2+α ≥ cαλ
2−α
3−αQ

1
3−α ,

we get (3.9). �

We will also need an estimate for the interaction energy of annuli. Since we will also use
it in Section 4 in dimension 3, we state it in arbitrary dimension.

Lemma 3.13. Consider 0 < ε ≤ 1
2 and α ∈ (0, d). There exists Cα > 0 (depending

implicitly also on the dimension d) such that

Vα(B1 \B1−ε) ≤ Cα


ε2 if 1 < α < d,

ε2| ln ε| if α = 1,

ε1+α if 0 < α < 1.

(3.10)

Proof. Let E = B1 \B1−ε and consider for an arbitrary x ∈ E the potential

vα(x) =

ˆ
E

1

|x− y|d−α
dy =

ˆ ∞
0
Hd−1(∂B%(x) ∩ E)%−d+α d%.

For any 0 < % ≤ ε we have Hd−1(∂B%(x) ∩ E) . %d−1, henceˆ ε

0
Hd−1(∂B%(x) ∩ E)%−d+α d% .

ˆ ε

0
%α−1 = Cαε

α.
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For ε ≤ % ≤ 1/2 we have Hd−1(∂B%(x) ∩ E) ≤ Cερd−2, hence
ˆ 1/2

ε
Hd−1(∂B%(x) ∩ E)%−d+α d%

≤ Cε
ˆ 1/2

ε
%−2+α d% ≤ Cα


ε for 1 < α < d,

ε| ln ε| for α = 1,

εα for 0 < α < 1.

Finally, for 1
2 < % <∞ we obtainˆ ∞

1/2
Hd−1(∂B%(x) ∩ E)%−d+αd% ≤ 2d−α

ˆ ∞
1/2
Hd−1(∂B%(x) ∩ E) d% ≤ Cα|E| ≤ Cαε.

From these inequalities and Vα(B1 \B1−ε) =
´
E vα(x) dx the claim follows. �

We next state our main non-existence result.

Proposition 3.14. For any α ∈ (1, 2), there exists Q3(α) > 0 such that, for all λ,Q > 0

with Q ≥ Q3(α)(λ+ λ
α−1
2 ), the functional Fλ,Q does not admit minimizers inM(|B1|).

Proof. Let us start by the case λ ≥ 1. If a minimizer exists then by (3.9),

min
M(|B1|)

Fλ,Q(E) ≥ cαλ
2−α
3−αQ

1
3−α . (3.11)

Consider as a competitor N ≥ 2 identical annuli of outer diameter 2. We may assume that
they are so far apart that the interaction energy between different annuli becomes negligible.
The inner radius is given by rN =

(
1− 1

N

)1/2, and the elastica energy of the competitor
is not larger than 10πN . 4πλN so that the perimeter is dominant. By Lemma 3.13 the
interaction energy of a single annulus is estimated by a constant times N−2. Using this
competitor in (3.11), we obtain

Cα

(
λN +

Q

N

)
≥ min
M(|B1|)

Fλ,Q(E) ≥ cαλ
2−α
3−αQ

1
3−α .

Optimizing in N we find N ∼ Q1/2λ−1/2 and

λ1/2Q1/2 ≥ cαλ
2−α
3−αQ

1
3−α ,

which leads to a contradiction if Q ≥ Q3(α)λ with Q3(α) chosen large enough.
We now consider the case λ ≤ 1. As above, if a minimizer exists then (3.11) holds. We

now consider a competitor EN,R given by N ≥ 2 identical annuli of outer radius R ≥ 2, to
be optimized. We prescribe

R ≥ λ−1/2, (3.12)

so that we are still in the regime where W (EN,R) . λP (EN,R). If R− ε is the inner radius
of the annulus, then ε . 1

RN and using Lemma 3.13 we deduce that

Vα(BR \BR−ε) = R−2+αVα(B1 \B1−ε/R) ≤ CαR−2+αN−2.

Using EN,R in (3.11) we get

Cα

(
NλR+

Q

N
R−2+α

)
≥ cαλ

2−α
3−αQ

1
3−α .
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Optimizing the left-hand side in R yields R = Cα

(
Q
N2λ

) 1
3−α and then

Q
1

3−αN
1−α
3−αλ

2−α
3−α ≥ cαλ

2−α
3−αQ

1
3−α ,

which gives a contradiction for N ≥ N∗(α) sufficiently large. It only remains to check that
such a choice is compatible with hypothesis (3.12). The latter is equivalent to

Qλ−
α−1
2 ≥ N2

∗ (α),

which is satisfied if Q ≥ Q3(α)λ
α−1
2 for Q3(α) chosen sufficiently large. �

As a consequence, we obtain the following non-existence result for large masses from
(3.1).

Proposition 3.15. For every α ∈ (1, 2), there exists Cα > 0 such that if m ≥ Cαλ
−1 and

Qm
1+α
2 ≥ Cαλ, there are no minimizers of Fλ,Q inM(m).

4. The three-dimensional case

In the three dimensional case, the Willmore energy is invariant under dilations. Using
Gauss-Bonnet formula it is easy to see that it is minimized by balls [52]. Moreover, sharp
quantitative bounds have been obtained in [13], see also [34]. Since the Willmore energy
in dimension three does not have the same degeneracy as in dimension two and already
exhibits a preference for balls, we mainly study the minimization problem (1.3) without a
perimeter penalization. We thus restrict ourselves to the case λ = 0, i.e. to the functional

FQ(E) = W (E) +QVα(E),

and consider the constrained minimization problem infM(m)FQ(E). By a rescaling, the
above minimization problem can be reduced to

inf
M(|B1|)

FQ(E). (4.1)

4.1. Upper bound on the energy. We start by proving a universal upper bound on the
energy.

Proposition 4.1. For any Q > 0 we have

inf
M(|B1|)

FQ(E) ≤ 8π.

Proof. We show that an annulus with very big radius and volume |B1| has an energy arbi-
trarily close to 8π. Since the Willmore energy of any annulus is 8π we need to show that
the Riesz interaction energy of the annulus vanishes as the radius goes to infinity.

For an arbitrary R > 0 consider δ = δ(R) such that the annulus AR,R+δ = BR+δ(0) \
BR(0) has volume |B1|, that is δ = 1

3R2 +O(R−5). Applying (3.10) to ε = δ
R+δ we deduce

that for 0 < α < 1

Vα(AR,R+δ) = (R+ δ)3+αVα(B1 \B1−ε)

≤ CαR
3+αε1+α ≤ CαR

2δ1+α ≤ CαR
−2α R→∞→ 0.

We conclude similarly in the case 1 ≤ α < 3. �

Let us prove that the same upper bound can be reached in the class of topological spheres.
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Proposition 4.2. For any Q > 0 we have

inf
{
FQ(E) : E ∈M(|B1|), genus(∂E) = 0

}
≤ 8π.

Proof. The construction in [39] provides a sequence of sets En ∈M with ∂En of genus zero
and real numbers rn with rn ↗ 1 as n→∞, with the following properties:

En ⊂ Arn,1, |En| >
1

2
|Arn,1| and W (En)→ 8π.

Considering the rescaled sets Ẽn = ηnEn, η3
n = |B1|

|En| we observe that |Ẽn| = |B1| and
ηn → ∞, W (Ẽn) → 8π. Moreover, Ẽn ⊂ Aηnrn,ηn with ηnrn → ∞ as n → ∞ and
|Aηnrn,ηn | ≤ 2|B1|. Following the proof of Proposition 4.1 we therefore deduce that

Vα(Ẽn) ≤ Vα(Aηnrn,ηn)
n→∞→ 0.

�

4.2. Area and diameter bounds. In this section we prove uniform area and diameter
bounds in the class of sets with Willmore energy strictly below 8π.

Proposition 4.3. Let E ∈M(|B1|) be such that for some δ > 0, we have

W (E) ≤ 8π − δ.
Then, ∂E is connected and there exists a constant Cδ such that

H2(∂E) + diam(E)2 ≤ Cδ. (4.2)

If one restricts to boundaries of genus zero the proposition follows from [48]. We will
prove Proposition 4.3 below and first prepare the compactness argument that we will employ.
Therefore, we need to characterize limits of boundaries of sets with vanishing volume and
uniformly bounded perimeter andWillmore energy. One natural approach to obtain suitable
compactness properties uses the concept of varifolds, which we now quickly introduce. We
refer to [49] for a detailed exposition. Since in the following lemma the dimension plays no
role, we decided to give the statement in arbitrary dimension d. We let G(d, d− 1) be the
Grassmannian manifold of unoriented (d − 1) planes in Rd and say that a Radon measure
µ on Rd ×G(d, d − 1) is an integer rectifiable varifold2 if there exist a countably (d − 1)−
rectifiable set Σ, and a function θ : Σ → N such that µ = θHd−1 Σ ⊗ δTΣ, i.e., for every
ψ ∈ C0

c (Rd ×G(d, d− 1)) there holdsˆ
Rd×G(d,d−1)

ψdµ =

ˆ
Σ
ψ(x, TxΣ)θ(x)dHd−1.

By a slight abuse of notation, we will consider such a µ as a measure on Rd i.e. we identify
it with θHd−1 Σ. We say that µ has a weak mean curvature vector H ∈ L1

loc(µ, Rd) if for
all η ∈ C1

c (Rd, Rd) the classical first variation formula for smooth surfaces generalizes toˆ
Rd

divΣ η dµ = −
ˆ
Rd
H · η dµ.

We extend the Willmore functional to the set of integer rectifiable varifolds with weak mean
curvature H, by setting

W (µ) =
1

4

ˆ
Rd
|H|2 dµ.

2more precisely a (d − 1)-integer rectifiable varifold, but here we restrict ourselves to the co-dimension
one case, and simplify the notation.
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We also recall the notion of oriented integral varifolds, introduced by Hutchinson [24]. An
oriented integral varifold V o is a Radon measure on the product Rd × Sd−1 which satisfies
for every ψ ∈ C0

c (Rd × Sd−1)

V o(ψ) =

ˆ
Σ

(
θ+(x)ψ(x, ν(x)) + θ−(x)ψ(x,−ν(x)) dHd−1(x),

where Σ is a countably (d − 1)-rectifiable set and θ± : Σ → N are such that θ+ + θ− > 0
almost everywhere on Σ, and where ν is a unit normal field on Σ. We can naturally associate
to V o the integral varifold µ = θHd−1 Σ with θ = (θ+ + θ−).

We may now prove the following compactness result (notice that the novel part is the
fact that in the limit, the density θ is even).

Lemma 4.4. Consider a sequence (En)n of open, bounded subsets of Rd with W 2,2-regular
boundaries and inner unit normal field νn : ∂En → Sd−1. Assume that |En| → 0,
supnHd−1(∂En) <∞ and supnW (∂En) <∞.
Then, there exists a subsequence and an integer rectifiable varifold µ on Rd with even density
θ such that Hd−1 ∂En ⇀ µ as Radon measures. Moreover, µ has weak mean curvature
H ∈ L2(µ) and satisfies

W (µ) ≤ lim inf
n→∞

W (∂En). (4.3)

Proof. Consider the associated integer rectifiable varifolds µn = Hd−1 ∂En, and the ori-
ented varifolds V o

n , defined for ψ ∈ C0
c (Rd × Sd−1) as

V o
n (ψ) =

ˆ
∂En

ψ(x, νn(x)) dHd−1(x).

By the bounds on Hd−1(∂En) andW (En) we know from Allard’s compactness theorem [49]
and [24, Theorem 3.1] that up to a subsequence, µn and V o

n converge respectively to an
integer rectifiable varifold µ with weak mean curvature in L2(µ) and to an oriented integral
varifold V 0. Moreover, (4.3) is satisfied. If V o is represented by (Σ, θ±, ν), then for any
ψ ∈ C0

c (Rd)

µ(ψ) = lim
n→∞

µn(ψ) = lim
n→∞

V o
n (ψ)

=

ˆ

Rd×Sd−1

ψ(x) dV o(x, p) =

ˆ
Σ

(θ+ + θ−)(x)ψ(x) dHd−1(x).

We therefore conclude that µ = (θ+ + θ−)Hd−1 Σ.
Now, by definition we have for any η ∈ C1

c (Rd,Rd)ˆ

Rd×Sd−1

p · η(x) dV o
n (x, p) =

ˆ
∂En

νn · η dHd−1 = −
ˆ
En

∇ · η dx.

Since |En| → 0, passing to the limit in the previous equality yields for η ∈ C1
c (Rd,Rd)ˆ

Rd×Sd−1

p · η(x) dV o(x, p) = 0,

from which we conclude that θ+ = θ− and therefore that θ = θ+ + θ−is even. �
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Proof of Proposition 4.3. Since the Willmore energy of any compact surface without bound-
ary is at least 4π we deduce that ∂E is connected. It remains to prove the required bounds
on the perimeter and diameter. We first prove the uniform area bound. Arguing by con-
tradiction we assume that there exists a sequence (En)n inM(|B1|) such that

lim
n→∞

H2(∂En) =∞, and W (En) ≤ 8π − δ for all n ∈ N.

Set Ẽn = H2(∂Ẽn)−
1
2En, to obtain a sequence (Ẽn)n such that

H2(∂Ẽn) = 1, W (Ẽn) ≤ 8π − δ for every n ∈ N, and lim
n→∞

|Ẽn| = 0.

Applying Lemma 4.4 we deduce that there is a non trivial (since µ(R3) = 1) limit integer
rectifiable varifold µ with even density θ and such thatW (µ) < 8π. This contradicts Li-Yau
inequality (see [32, (A.17)]) and proves the uniform area bound. Finally, by [50, Lemma
1.1] (see [51] for the optimal constant) we obtain the diameter estimates

H2(∂E)
1
2W (E)−

1
2 ≤ diam(E) ≤ 2

π
H2(∂E)

1
2W (E)

1
2 , (4.4)

and (4.2) follows. �

Remark 4.5. Let (En)n be a minimizing sequence inM(|B1|) with FQ(En) ≤ 8π− δ. By
Proposition 4.3 we obtain that (En)n has uniformly bounded surface area, volume, Willmore
energy, and diameter. After possibly shifting En we obtain a subsequence and a bounded
set E ∈ R3 of finite perimeter such that |E| = |B1|, with |∇XE |(R3) ≤ Cδ and such that
XEn → XE in L1(R3), which in particular implies Vα(En)→ Vα(E). Moreover, building on
ideas of [50], one can show as in [48, p.905,p.907] (in particular exploiting the monotonicity
formula [48, Theorem 3], see also [33, Section 2.1]) that µ = |∇XE | is an integer rectifiable
varifold with mean curvature in L2 and generalized Willmore energy

W (µ) ≤ lim inf
k→∞

W (En).

In order to obtain existence of a minimizer inM(|B1|) it remains to prove further regularity
properties of ∂E (for example by adapting the arguments in [48]). This goes however beyond
the scope of this work.

4.3. Minimality of the ball for small charge. We now prove that for α ∈ (1, 3), mini-
mizers of (4.1) are balls for small Q.

Theorem 4.6. For any α ∈ (1, 3) there exists Q4 > 0 such that for every 0 < Q < Q4 the
only minimizers of FQ inM(|B1|) are balls.

Proof. For the energy of the unit ball we compute

FQ(B1) = 4π + CαQ ≤ 6π for Q ≤ Q4 =
2π

Cα
.

Let E ∈M(|B1|) be such that

FQ(E) ≤ FQ(B1).

This implies in particular that

W (E)−W (B1) ≤ Q
(
Vα(B1)− Vα(E)

)
. (4.5)

Since W (E) ≤ FQ(B1) ≤ 6π < 2π2 by [38, Theorem A], ∂E is of sphere type. By Propo-
sition 4.3 the diameter of E and the surface area of ∂E are bounded independently of Q.
Furthermore, by [13], up to a translation there exists aW 2,2-parametrization Ψ : ∂Br → R3
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of ∂E over ∂Br, where r ≥ 1 is chosen such thatH2(∂Br) = H2(∂E). Thanks to the uniform
bound on H2(∂E), [13] yields

‖Ψ− Id ‖W 2,2 .
(
W (E)− 4π

) 1
2

(4.5)
.
√
Q
(
Vα(B1)− Vα(E)

) 1
2 .

By Sobolev embedding we also have that

ω = ‖Ψ− Id ‖C0 .
√
Q
(
Vα(B1)− Vα(E)

) 1
2 (4.6)

becomes arbitrarily small as Q tends to zero. Furthermore, by [47] and |E| = |B1|,

H2(∂E)− 4π .
(
W (E)− 4π

)
,

which implies

r − 1 .
(
W (E)− 4π

)
. Q

(
Vα(B1)− Vα(E)

)
. (4.7)

Let vα(x) =

ˆ
B1

dy

|x− y|3−α
denotes the potential of the unit ball. Applying [29, Lemma

4.5] we get that for every c ∈ R,

Vα(B1)− Vα(E) ≤ 2

ˆ
B1\E

(vα − c)− 2

ˆ
E\B1

(vα − c) = 2

ˆ
R3

(XB1 −XE)(x)(vα − c) .

Using that vα is radially symmetric, we can choose c = vα

(
x
|x|

)
, which by Lipschitz conti-

nuity of vα (see [29, Lemma 4.4]) gives

Vα(B1)− Vα(E) ≤ Cα
ˆ
E∆B1

||x| − 1| ≤ Cα

ˆ
Br+ω\B1−ω

∣∣|x| − 1
∣∣ ,

where we have used that since r ≥ 1, B1−ω ⊂ E ⊂ Br+ω. Using (4.6) and (4.7), this yields
for Q small

Vα(B1)− Vα(E) ≤ Cα(r − 1 + ω)2 ≤ CαQ
(
Vα(B1)− Vα(E)

)
,

which implies that if Q is small enough then Vα(E) = Vα(B1) and therefore E = B1. �

Remark 4.7. In light of [15, Theorem 1.3], we expect this result to hold also for α ∈ (0, 1].
However, since our proof relies on the rigidity estimate [13, Theorem 1.1] we must work with
sets which are parameterized by a smallW 2,2 function on the sphere rather than with nearly
spherical sets. For such sets it is unclear how to obtain a Taylor expansion of Vα analogous
to [15, Lemma 5.3]. To overcome this issue, we used that for α ∈ (1, 3) the potential vα is
Lipschitz continuous. This is not the case for α ∈ (0, 1] (see [29]). Of course, this problem
would be solved if one could prove an improved convergence theorem for minimizers (or
almost minimizers) of (4.1).

Remark 4.8. As a consequence of Theorem 4.6 and the isoperimetric inequality, balls are
the only minimizers of Fλ,Q inM(|B1|) for any 0 < Q < Q4 and any λ > 0.

Remark 4.9. By rescaling it follows from Theorem 4.6 that for Qm
3+α
3 < Q4, the only

minimizers of FQ inM(m) are balls.
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4.4. Properties of minimizers for large charge. For large charge, we are not able to
prove or disprove that minimizers of FQ exist. In the following proposition we just point out
that if minimizers exist, they must have more and more degenerate isoperimetric quotient
as the charge increases. This is somewhat reminiscent of [48, Theorem 1].

Proposition 4.10. Assume that there exists a sequence Qn →∞ such that for every n ∈ N
there exists a set En ∈M(|B1|) with FQn(En) < 8π. Then,

lim
n→∞

H2(∂En) =∞ and lim
n→∞

W (En) = 8π.

Proof. We have by the minimality of En

8π −W (En) > QnVα(En)

≥ Qn|B1|2 diam(En)−3+α

(4.4)
& Qn

(
H2(∂En)

1
2W (En)

1
2

)−3+α
& QnH2(∂En)

−3+α
2 W (En)

−3+α
2

This yields,

8π > W (En) + CQnH2(∂En)
−3+α

2 W (En)
−3+α

2 ≥ CαQ
2

5−α
n H2(∂En)

−3+α
5−α ,

where we have optimized inW (En) in the second line. This givesH2(∂En) > CαQ
2

3−α
n →∞.

We then conclude by (4.2) that W (En)→ 8π. �

4.5. A non-existence result. For the full functional Fλ,Q, λ > 0 we can prove non-
existence for α ∈ (2, 3) and Q large enough.

Proposition 4.11. For every α ∈ (2, 3), there exists Q5(α) such that for every λ,Q with
Q ≥ Q5(λ−

3−α
2 + λ

3+α
2 ), there is no minimizer of Fλ,Q inM(|B1|).

Proof. Assume that Q � λ−
3−α
2 + λ

3+α
2 . If a minimizer E of (1.3) exists then it must be

connected. Therefore, there exists one connected component Σ of ∂E such that diam(Σ) =
diam(E). By (4.4), we have

diam(E) = diam(Σ) .
√
H2(Σ)W (Σ) .

√
P (E)W (E).

Therefore,

Fλ,Q(E) = λP (E) +W (E) +QVα(E) &
√
λ
√
P (E)W (E) +

Q

diam(E)3−α

&
√
λ diam(E) +

Q

diam(E)3−α & λ
3−α

2(4−α)Q
1

4−α . (4.8)

For N � 1 and R to be chosen below, consider a competitor FN,R made of N identical
annuli of inner radius R and outer radius R + h with h such that each volume is equal to
N−1. As long as N−1 � R3, we have h ' R−2N−1 and h� R. By (3.10), we have

Fλ,Q(FN,R) ' NλR2 +N +
Q

NR3−α .

We now choose
R = λ−

1
2 , N = λ

3−α
4 Q

1
2
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and observe that N � 1 since by hypothesis Q � λ−
3−α
2 and that N−1 � R3 since

Q� λ
3+α
2 . We then obtain

Fλ,Q(FN,R) '
(
λ3−αQ2

Nα−1

) 1
5−α

+N ' λ
3−α
4 Q

1
2

which gives a contradiction to (4.8) and the fact that Fλ,Q(FQ,R) ≥ Fλ,Q(E) since by
hypothesis Q� λ−

3−α
2 and α > 2. �
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