
Dottorato di Ricerca in Matematica Pura ed Applicata
Consorzio Università degli Studi di Milano-Bicocca,
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New Results in the Calculus of Variations

The words “Calculus of Variations” were first used by L. Euler in 1760 ([25]) after
he had been astonished by a letter from J. Lagrange, where a new method (based
on what we would call now variations) for the study of isoperimetric problems was
proposed ([30]). But the birth of the Calculus of Variations is attributed to Johann
Bernoulli when many years earlier, in 1696, he challenged mathematicians like Jakob
Bernoulli, I. Newton, E. Tschirnhaus, G. De l’Hôpital and G. Liebniz with the
Brachistochrone problem ([45], [43], [47]):

“... If in a vertical plane two points A and B are given, then it is required
to specify the orbit AMB of the movable point M, along which it, starting
from A, and under the influence of its own weight, arrives at B in the
shortest possible time...”

The basic problem (P) of the Calculus of Variations consist in minimizing the
action functional

I(x) =

∫ b

a

L(t, x(t), x′(t))dt,

where [a, b] ⊂ R is an interval of the real line, on a suitable set X of trajectories
x : [a, b] → RN satisfying the boundary conditions x(a) = A, x(b) = B. The
function L : [a, b]× RN × RN → R it is called the Lagrangian function.

The problem (P) arises three natural questions: does it exist a minimizer? Does a
minimizer gain regularity? Does a minimizer satisfy necessary conditions? Certainly,
the answers are negative in general, without further assumptions.

With respect to the first question, the standard hypotheses on the Lagrangian
under which it is possible to prove an existence result, in the set X = AC[a, b] of
the absolutely continuous trajectories, are: some lower semi-continuity of L in its
domain, the convexity in its last variable x′ and a super-linear growth condition, i.e.
the requirement that there exists a function θ such that θ(s)/s converges to +∞, as
s tends to +∞, and L(t, x, x′) ≥ θ(|x′|).

This method of proof is called the Direct Method of the Calculus of Variations
and it was mainly developed by L. Tonelli (1915, [48]). Roughly speaking, what
one does in this method is the following: starting from a minimizing sequence for
the action I, i.e. a sequence of trajectories {xn}n such that I(xn) converges to the
infimum of I, and, by using the fact that the super-linear growth condition implies
the weak precompactness of {xn}n, one selects a subsequence that converges weakly
to a trajectory x̂ in AC[a, b]. Since the convexity, together with some continuity,
ensures the weak lower semi-continuity of I, one concludes that x̂ is a minimizer.

In section 4.1 we present an original existence theorem ([11]) in the case of
an autonomous Lagrangian, i.e. a Lagrangian which does not depend explicitly
on t, where a variant of the Direct Method can be applied under more general
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growth assumptions that include the classical super-linear growth but also some
cases of Lagrangians with linear growth. For instance, for the Lagrangian defined
byL(x, x′) = |x′| −

√
|x′|, which has not super-linear growth, by this result it can

be proved that there exists a minimizer. We obtain also that this minimizer is
Lipschitz. Results on the existence of Lipschitz minimizer to autonomous problems,
under conditions of super-linear growth, were established in [5], [20] and, under
weaker regularity conditions on L, in [10].

Assuming the existence of a minimizer x̂, another task is to find appropriate
necessary conditions. A basic principle of analysis is that, giving a minimum point
belonging to the interior of the domain of a differential function, one obtains a
necessary condition for this point exploring its neighbourhood; one finds out that it
is a stationary point, i.e. the gradient of the function calculated on the point must
be zero. Is it possible to apply this principle in the Calculus of Variations? The
answer is positive, and it leads to the fundamental Euler-Lagrange equation.

Fix an admissible variation, i.e. a smooth function η : [a, b] → RN , equal to zero
at the boundary, consider the action I evaluated on the trajectory x̂ + εη, where
ε is a real number, and consider the function obtained I(x̂ + εη) as a real valued
function of ε. For this function the point 0 must be a stationary point. Whenever
it is possible to pass to the limit under the integral sign, one obtains the sought
Euler-Lagrange equation (E-L): for any variation η,∫ b

a

[〈∇x′L(t, x̂(t), x̂′(t)), η′(t)〉+ 〈∇xL(t, x̂(t), x̂′(t)), η(t)〉]dt = 0,

or, considering d/dt as a weak derivative,

d

dt
∇x′L(t, x̂(t), x̂′(t)) = ∇xL(t, x̂(t), x̂′(t)).

L. Tonelli was able to prove the validity of the Euler-Lagrange equation with a
Lagrangian L belonging to C3, or belonging to C2 provided that N = 1 and Lx′x′ is
strictly positive. Many efforts have been performed in order to weaken the regularity
assumptions on L ([5], [16], [19], [20], [33], [38], [40], [50]).

In [5], J. M. Ball and V. J. Mizel presented an example of Lagrangian such that
the integrability of ∇xL(·, x̂(·), x̂′(·)) does not hold and, as a consequence, (E-L) is
not true along the minimizer. Hence, some condition on the term ∇xL(·, x̂(·), x̂′(·))
has to be imposed in order to ensure the validity of (E-L). In [16], [19], [38], [50],
under assumptions like the existence of an integrable function S(t) such that, for
any y in a neighbourhood of the minimizer, |∇xL(t, y, x̂′(t))| is bounded by S(t), the
Euler-Lagrange equation is proved to be valid. This condition implies that, locally
along the minimizer, L(t, ·, x̂′(t)) is Lipschitzian.

In section 6.2 we provide a result on the validity of (E-L) ([27]) that is satisfied
by Lagrangians that are Lipschitzian in x, but that applies as well to some non-
Lipschitzian cases. For instance, for the problem (P) with the (non-Lipschitzian)
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Lagrangian L(t, x, x′) = (x′
√
|x| − 2/3)2, on the interval [0, 1] and with boundary

conditions x(0) = 0, x(1) = 1, by this result it can be proved the validity of (E-L).
It would be easier to show the validity of the Euler-Lagrange equation if one

considers the problem (P ) on Lipschitzian trajectories, i.e. X = Lip[a, b], instead
of absolutely continuous. In fact, in this case, it can be proved directly, from the
Lebesgue dominated convergence theorem, the validity of the (E − L) for a Lips-
chitzian minimizer, just requiring the Lagrangian to be C1.

The set X of the trajectories plays an important role in the problem (P), that
it is not only technical. A measure of the importance of the choice of X is given
by the Lavrentiev phenomenon (1926, [34]): a Lagrangian L exhibits the Lavrentiev
phenomenon if the infimum taken over the set of absolutely continuous trajectories
AC[a, b] is strictly lower than the infimum taken over the set of Lipschitzian trajec-
tories Lip[a, b], with fixed boundary conditions. The occurrence of this phenomenon
prevents the possibility of computing the minimum, and the minimizer, by a stan-
dard finite-element scheme (anyway, in [4], [35], alternative numerical methods for
computing minimizer in this situation was presented) and, in case that the action
represents the energy of some physical system, it points out that the set of trajec-
tories is a fundamental part of the physical model. Furthermore, it says something
about the regularity of the minimizer (if this exists).

One of the surprising feature of this phenomenon is that it occurs for simple La-
grangians: L(t, x, x′) = (x3 − t)2x′6, on the interval [0, 1], with boundary conditions
x(0) = 0, x(1) = 1, exhibits the Lavrentiev phenomenon (B. Manià, 1934, [37]).
Moreover, in [29] it was given a physical action of a nonlinear elastic material where
the occurrence of the Lavrentiev phenomenon is the occurrence of a meaningful
physical event.

In the autonomous case, sufficient conditions to prevent the occurrence of this
phenomenon were given by several authors, by imposing enough growth conditions
[2], [10], [20], or assuming some regularity conditions on the Lagrangian [1], [3].

In section 2.1 we prove a general approximation theorem for the action ([12]) that
implies the non non-occurrence of the Lavrentiev Phenomenon for autonomous and
a class of non-autonomous Lagrangians, without assuming any growth condition.

Besides the problem (P), one can consider the problem with a higher-order action
([16], [21]): minimize ∫ b

a

L(t, x(t), x′(t), · · · , x(ν+1)(t))dt,

on a suitable set X of trajectory satisfying the boundary conditions

x(a) = A, x(b) = B,
x′(a) = A(1), x′(b) = B(1),
...
x(ν)(a) = A(ν), x(ν)(b) = B(ν).
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The Lavrentiev phenomenon occurs as well in this case. In [17], it was given an
example of second-order action that presents a restricted Lavrentiev phenomenon in
which the gap occurs for a dense subset of the absolutely continuous non-negative
trajectories, and it was proved that even autonomous Lagrangian can exhibit it.
Some years later, A. V. Sarychev ([43]) provided a class of higher-order Lagrangians,
including autonomous cases, that exhibits the Lavrentiev phenomenon in the clas-
sical sense.

In section 2.2 we prove the non-occurrence of the Lavrentiev phenomenon for
a class of Lagrangians of the Calculus of Variations with higher-order derivatives
([26]).

Moreover, in section 2.3 we infer a necessary condition for the occurrence of the
Lavrentiev phenomenon for our class of actions: if the action I assumes only finite
values in a neighbourhood of a minimizer, then I does not exhibit the Lavrentiev
phenomenon ([26]). This result applies to the actions of Manià and Sarychev, for
instance, and to the examples of actions exhibiting the Lavrentiev phenomenon
proposed in [5], [6], [34], [36], [37], [39], [43]. This necessary condition is also related
to the repulsion property of the action of Manià ([5], [34]), i.e. the action I evaluated
on the trajectories of an absolutely continuous minimizing sequence is divergent
to +∞.

A New Result in Minimum Time Control Theory

Around 1950, L. Pontriagin worked on an innovative minimum problem ([41]), that
of minimize ∫ b

a

L(t, x(t), u(t))dt,

on the state functions x : [a, b] → RN and the control functions u : [a, b] → U ⊂ RN

satisfying the differential equation

x′(t) = f(t, x(t), u(t)),

with boundary conditions x(a) = A, x(b) = B. This is the basic problem (Q) of
the Optimal Control theory.

In the special case when f(t, x, u) = u, the differential equation becomes x′(t) =
u(t) and we recognize the problem of the Calculus of Variations with a variations:
it appears the new conditions that x′(t) belongs to the set U . Hence, two are the
novelties of the problem: the dynamics f and the set of controls U .

The Optimal Control theory contains problems of the Calculus of Variations and,
at the opposite extreme, Minimum Time Control problems, i.e. problems where the
Lagrangian L is identically 1.
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In 1959 A. F. Filippov proved the first general theorem on the existence of
solutions to Minimum Time Control problems of the form x′(t) = f(x(t), u(t)),
with u(t) belonging to U(x(t)), requiring that the set valued map U be upper semi-
continuous (with respect to the inclusion) and that the values F (x) = f(x, U(x)) be
compact and convex ([28]).

In section 4.2, we prove the existence of solutions to Minimum Time problems for
differential inclusions, under assumptions that do not require the convexity of the
images F (x) = f(x, U(x)). Furthermore, we present a model for the Brachistochrone
problem and we show that our model (a non-convex control problem) satisfies the
assumptions required for the existence of solutions to Minimum Time problems.
The case of Brachistochrone as a Minimum Time Control problem has already been
amply treated in [46], [47].
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Chapter 1

Preliminaries

In section 1.1 we present some results in convex analysis involving the polar function
and the sub-gradient of a convex function that we will use in the proof of our new
results ([12]).

In section 1.2 we discuss the example of Manià ([37]) of a Lagrangian that exhibits
the Lavrentiev phenomenon. We show also the persistence of the Lavrentiev phe-
nomenon by perturbation and the repulsion property for the Lagrangian of Manià,
i.e. the action evaluated on the trajectories of an absolutely continuous minimizing
sequence is divergent to +∞.

1.1 Some results in Convex Analysis

The proofs of the new results in this Part II are based on some properties of the
polar function f ∗(p) of a convex function f : RN → R, i.e.

f ∗(p) = sup
ξ∈RN

[〈p, ξ〉 − f(ξ)].

We state these properties in the propositions below ([12]).
In what follows, the sub-gradient evaluated in ξ, of a convex function f , i.e. the

set {y ∈ RN : f(·)− f(ξ) ≥ 〈· − ξ, y〉}, is denoted by ∂f(ξ)

Propositon 1.1. Let f be a convex function and p ∈ ∂f(ξ). Then f ∗ is finite at p
and f ∗(p) = 〈ξ, p〉 − f(ξ).

Proof. See [42], page 218.

Propositon 1.2. i) Let f, fn : RN → R be convex and let fn converge pointwise
to f ; let pn ∈ ∂fn(ξ). Then the sequence {pn} admits a subsequence converging to
some p ∈ ∂f(ξ).

11
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ii) Let L : C × RN → R, where C is a closed subset of RN , be continuous and
such that L(x, ·) is convex; let xn → x ∈ C and set f(ξ) = L(x, ξ), fn(ξ) = L(xn, ξ).
Then the same conclusion as in i) holds for pn ∈ ∂fn(ξn) = ∂ξL(xn, ξn).

Proof. We prove i) and ii) at once setting, in case i), ξn = ξ and noticing that, in
both cases, we have that, for every z, fn(ξn + z) → f(ξ + z).

The sequence {pn} cannot be unbounded; if it were, along a subsequence we
would have |pn| → ∞; choose a further subsequence so that pn/|pn| → p0, where
|p0| = 1. We have

f(ξ + p0) = lim
n→∞

fn(ξn + p0) ≥ lim sup
n→∞

[fn(ξn) + 〈pn, p0〉] = +∞

a contradiction, since f is finite at ξ + p0. Hence the sequence {pn} is bounded and
we can select a subsequence converging to p∗. If it were p∗ /∈ ∂f(ξ) there would exist
ξ′ such that f(ξ′) < f(ξ) + 〈p∗, ξ′ − ξ〉. Since

f(ξ′) = f(ξ + (ξ′ − ξ)) = lim
n→∞

fn(ξn + (ξ′ − ξ))

≥ lim sup
n→∞

[fn(ξn) + 〈pn, ξ
′ − ξ〉] = f(ξ) + 〈p∗, ξ′ − ξ〉

we would have a contradiction.

Propositon 1.3. Let f : RN → R be convex. The map t → {〈ξt, p〉 − f(ξt) : p ∈
∂f(ξt)}, from [0,+∞) to the closed convex subsets of R, is monotonically increasing.

Proof. a) Assume, in addition, that f is smooth; then we have ∇(〈ξ,∇f(ξ)〉 −
f(ξ)) = ξTH, where H is the Hessian matrix of f . Hence

d

dt
(〈ξt,∇f(ξt)〉 − f(ξt)) = tξTHξ ≥ 0,

so that t2 ≥ t1 implies

〈ξt2,∇f(ξt2)〉 − f(ξt2) ≥ 〈ξt1,∇f(ξt1)〉 − f(ξt1).

b) In general, the map φ(t) = f(ξt), being convex, is differentiable for a.e. t.
Let t+1 > t1 and t−2 < t2 be points where φ is differentiable. Approximate f by a
sequence {fn} of convex smooth maps, converging pointwise to f . Set φn(t) = fn(ξt):
in particular, applying the previous Proposition 1.2, we have that φ′n(t) converges
to φ′(t) both at t+1 and at t−2 . Applying point a) to fn we obtain that

t−2 φ
′
n(t−2 )− φn(t−2 ) ≥ t+1 φ

′
n(t+1 )− φn(t+1 )

so that, passing to the limit as n→∞,

t−2 φ
′(t−2 )− φ(t−2 ) ≥ t+1 φ

′(t+1 )− φ(t+1 ).
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By the monotonicity of the sub-differential of φ, for every a1 ∈ ∂φ(t1) and a2 ∈
∂φ(t2), we have

t2a2 − φ(t−2 ) ≥ t−2 φ
′(t−2 )− φ(t−2 ) ≥ t+1 φ

′(t+1 )− φ(t+1 ) ≥ t1a1 − φ(t+1 )

and passing to the limit as t+2 → t2 and t−1 → t1, by the continuity of φ, one has

t2a2 − φ(t2) ≥ t1a1 − φ(t1).

Since ([32], page 257), ∂φ(t) = {〈ξ, p〉 : p ∈ ∂f(ξt)}, the claim is proved.

Propositon 1.4. Let f : RN → R be convex. Then the function f(ξ/(1+ ·))(1+ ·) is
convex in (−1,∞). Moreover, given δ there are θ, 0 ≤ θ ≤ 1 and pθ ∈ ∂f(ξ/(1+θδ)),
such that

f

(
ξ

1 + δ

)
(1 + δ)− f(ξ) = −δf ∗(pθ).

Proof. a) Assume, in addition, that f is C2. Then, computing the derivatives, one
obtains

d

dα

(
f

(
ξ

1 + α

)
(1 + α)

)
= 〈∇f

(
ξ

1 + α

)
,
−ξ

1 + α
〉+f

(
ξ

1 + α

)
= −f ∗

(
∇f

(
ξ

1 + α

))
and

d2

dα2

(
f

(
ξ

1 + α

)
(1 + α)

)
=

1

(1 + α)3
ξTHξ

where H is the Hessian matrix of f computed at ξ/(1 + α), so that the second
derivative is non-negative, and the map f(ξ/(1 + ·))(1 + ·) is convex.

b) In the general case, approximate the convex map f by a sequence of convex
differentiable maps fn converging pointwise to f to obtain the required convexity
and to have:

f

(
ξ

1 + δ

)
(1 + δ)− f(ξ) = lim

n→∞
fn

(
ξ

1 + δ

)
(1 + δ)− fn(ξ)

= lim
n→∞

δ

[
−〈 ξ

1 + θnδ
,∇fn

(
ξ

1 + θnδ

)
〉+ fn

(
ξ

1 + θnδ

)]
.

c) Applying Proposition 2, let pθ ∈ ∂f(ξ/(1 + θδ)) be the limit of a converging
subsequence of {∇fn(ξ/(1 + θnδ))}. We have

f

(
ξ

1 + δ

)
(1 + δ)− f(ξ) = δ

[
−〈 ξ

1 + θδ
, p〉+ f

(
ξ

1 + θδ

)]
= −δf ∗(p).
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1.2 The Manià example

We present in this section the example due to B. Manià (1934, [37]) of a Lagrangian
that exhibits the Lavrentiev phenomenon (1926, [34]). In the next chapter we discuss
further this example in relation with the new results obtained ([12], [26]).

We recall that a Lagrangian L exhibits the Lavrentiev phenomenon if the infimum
taken over the set of absolutely continuous trajectories AC[a, b] is strictly lower
than the infimum taken over the set of Lipschitzian trajectories Lip[a, b], with fixed
boundary conditions.

Consider the problem of minimize the action

I(x) =

∫ 1

0

[x3(t)− t]2x′
6
(t)dt,

on the trajectories x satisfying the boundary conditions x(0) = 0, x(1) = 1.

Theorem 1.5 (Manià, 1934). The Lagrangian L(t, x, ξ) = (x3 − t)2ξ6 exhibits the
Lavrentiev phenomenon, i.e.

inf
x∈AC∗[0,1]

I(x) < inf
x∈Lip∗[0,1]

I(x),

where AC∗[0, 1] = {x ∈ AC[0, 1] : x(0) = 0, x(1) = 1} and Lip∗[0, 1] = {x ∈
Lip[0, 1] : x(0) = 0, x(1) = 1}.

Proof. By definition, the Lagrangian L and the action I have non-negative values.
By the fact that I evaluated in x̂(t) = 3

√
t is zero, we have that x̂ is a minimizer of

I on AC∗[0, 1].
Let x be any trajectory in Lip∗[0, 1] and consider the function f(t) = 3

√
t/2. By

the regularity of x, there exists a real number a in (0, 1) such that x(t) ≤ f(t), for
any t in [0, a], and x(a) = f(a). Hence,

[x3(t)− t]2ξ6 ≥ [f 3(t)− t]2ξ6 =
72

82
t2ξ6,

for any t in [0, a], any ξ in R. By the Hölder inequality, we have

3
√
a

2
=

∫ a

0

3
√
t

3
√
t
x′(t)dt ≤

(∫ a

0

t−2/5dt

)5/6(∫ a

0

t2x′
6
(t)dt

)1/6

=
55/6

35/6
a1/2

(∫ a

0

t2x′
6
(t)dt

)1/6

.

We conclude that, for any x in Lip∗[0, 1],

I(x) ≥
∫ a

0

[x3(t)− t]2x′
6
(t)dt ≥ 7235

825526a
≥ 7235

825526
> 0.
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Perturbing the Lagrangian of Manià it is possible to construct Lagrangians that
exhibit the Lavrantiev phenomenon. This is true for a generic Lagrangian ([5], [16],
[34]):

Propositon 1.6. Let L be a Lagrangian that exhibits the Lavrentiev phenomenon.
Suppose that I ≥ 0 and that there exists a minimizer x̂ with I(x̂) = 0.

Then, for any action P(x) =
∫ b

a
P (t, x, x′) such that P ≥ 0 and P(x̂) is finite,

there exists ε̂ > 0 such that, for any ε in [0, ε̂], the Lagrangian L + εP exhibits the
Lavrentiev phenomenon.

Proof. Let c be a positive constant such that I(x) ≥ c, for any Lipschitz trajectory
x. Setting ε̂ = c/[2P(x̂)], we have, for any ε in [0, ε̂], I(x̂) + εP(x̂) ≤ c/2 and
I(x) + εP(x) ≥ c, for any Lipschitz trajectory x. Hence, L + εP exhibits the
Lavrentiev phenomenon.

Consider the Lagrangian P (t, x, ξ) = |ξ|5/4. From the previous proposition it
follows that the problem of the Calculus of Variations with action∫ 1

0

{[x3(t)− t]2x′
6
(t) + ε|x′(t)|5/4}dt,

and boundary conditions x(0) = 0, x(1) = 1, presents the Lavrentiev phenomenon.
This is significant because the Lagrangian in this problems is strictly convex in its
last variable and with super-linear growth.

The Lagrangian of Manià presents also another interesting phenomenon: the
repulsion property ([5], [34]).

Theorem 1.7. For any sequence of Lipschitz trajectories {xn}n such that xn tends
to x̂, as n tends to ∞, almost everywhere on [0, 1], we have that I(xn) diverges to
∞.

Proof. For any integer n, let an in (0, 1) be such that xn(t) ≤ 3
√
t/2, for any t in

[0, an], and x(an) = 3
√
an/2. By the convergence of xn(t) to x̂(t), for almost every t

in [0, 1], we have that an tends to 0.
Using the inequality obtained in the proof of Theorem 1.5, we have

I(xn) ≥
∫ an

0

[x3(t)− t]2x′
6
(t)dt ≥ 7235

825526an

.

Hence, I(xn) tends to ∞, as n tends to ∞.
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Chapter 2

New Results

In section 2.1 we prove a general approximation theorem for the action ([12]) that
implies the non non-occurrence of the Lavrentiev Phenomenon for autonomous and
a class of non-autonomous Lagrangians, without assuming any growth condition.

In section 2.2 we prove the non-occurrence of the Lavrentiev phenomenon for
a class of Lagrangians of the Calculus of Variations with higher-order derivatives
([26]).

In section 2.3 we infer a necessary condition for the occurrence of the Lavrentiev
phenomenon for our class of actions: if the action I assumes only finite values in a
neighbourhood of a minimizer, then I does not exhibit the Lavrentiev phenomenon
([26]). This result applies to the actions of Manià and Sarychev, for instance, and
to the examples of actions exhibiting the Lavrentiev phenomenon proposed in [5],
[6], [34], [36], [37], [39], [43]. This necessary condition is also related to the repulsion
property of the action of Manià ([5], [34]), i.e. the action evaluated on the trajectories
of an absolutely continuous minimizing sequence is divergent to +∞.

2.1 Non-occurrence of the Lavrentiev phenomenon

The purpose of this section is to prove a general theorem on reparameterizations
of an interval onto itself which states that, given an absolutely continuous function
x on an interval [a, b] and ε > 0, under appropriate conditions on L and ψ, there
exists a reparameterization s = sε(t) of [a, b] such that the composition xε = x ◦ sε

is at once Lipschitzian and is such that∫ b

a

m∑
i=1

Li(xε(t), x
′
ε(t))ψi(t, xε(t))dt ≤

∫ b

a

m∑
i=1

Li(x(t), x
′(t))ψi(t, x(t))dt+ ε.

An application of our Theorem 2.1 is the non-occurence of the Lavrentiev Phe-
nomenon for a class of functionals of the Calculus of Variations.

17
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We recall that in 1926 M. Lavrentiev [34] published an example of a functional
of the kind ∫ b

a

L(t, x(t), x′(t))dt, x(a) = A, x(b) = B

whose infimum taken over the space of absolutely continuous functions was strictly
lower than the infimum taken over the space of Lipschitzian functions. The occur-
rence of this phenomenon prevents the possibility of computing the minimum, and
the minimizer, by a standard finite-element scheme (anyway, in [4], [35], alternative
numerical methods for computing minimizer in this situation was presented) and, in
case that the action represents the energy of some physical system, it points out that
the set of trajectories is a fundamental part of the physical model. Furthermore, it
says something about the regularity of the minimizer (if this exists).

One of the surprising feature of this phenomenon is that it occurs for simple La-
grangians: L(t, x, x′) = (x3 − t)2x′6, on the interval [0, 1], with boundary conditions
x(0) = 0, x(1) = 1, exhibits the Lavrentiev phenomenon (B. Maniá, 1934, [37]).
Moreover, in [29] it was given a physical action of a nonlinear elastic material where
the occurrence of the Lavrentiev phenomenon is the occurrence of a meaningful
physical event.

In the autonomous case, sufficient conditions to prevent the occurrence of this
phenomenon were given by several authors, by imposing enough growth conditions
[2], [10], [20], or assuming some regularity conditions on the Lagrangian [1], [3].

Our result applies to non-autonomous problems; it applies to multidimensional
rotationally invariant problems, where the measure is rDdr, and, even in the simple
autonomous case, it applies to problems with obstacles or with other constraints.

The following is our main theorem, a reparameterization theorem.

Theorem 2.1. Let x : [a, b] → RN be absolutely continuous and set C = {x(t) :
t ∈ [a, b]}. Let L1, · · · , Lm : C × RN → R be continuous and such that Li(x, ·) are
convex, and let ψ1, · · · , ψm : [a, b]× C → [c,+∞) be continuous, with c > 0. Then:

i) I(x) =

∫ b

a

m∑
i=1

Li(x(t), x
′(t))ψi(t, x(t))dt > −∞;

ii) given any ε > 0, there exists a Lipschitzian function xε, a reparameterization
of x, such that x(a) = xε(a), x(b) = xε(b) and I(xε) ≤ I(x) + ε.

Remark 2.2. The only technical assumption of theorem 2.1 is the hypothesis that
ψi are bounded below by a positive constant. However, in the proof of Theorem
2.1, this assumption is used only to infer that

∫ b

a
Li(x(t), x

′(t))dt are finite, provided
that I is finite (point ii) in the proof). The theorem holds under the following more

general assumption: ψi(t, x) ≥ 0 and
∫ b

a
Li(x(t), x

′(t))dt < +∞, for every i.

To verify how sharp our assumptions are, consider the following example of
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Manià ([37], [16] and [22]). Consider the problem of minimizing the functional∫ 1

0

[t− x(t)3]2[x′(t)]6dt, x(0) = 0, x(1) = 1.

Then the infimum taken over the space of absolutely continuous functions (assumed
in x(t) = 3

√
t) is strictly lower than the infimum taken over the space of Lipschitzian

functions.
As a consequence, the result of Theorem 2.1 cannot hold for the functional of

Manià evaluated along x(t) = 3
√
t.

Setting ψ(t, x) = [t−x3]2 and L(x, ξ) = ξ6, we see that ψ ≥ 0 (but not ψ ≥ c > 0)
and that ∫ 1

0

[x′(t)]6dt =

∫ 1

0

1/(36t4)dt = +∞.

Hence the assumption ψ(t, x) ≥ 0 and
∫ b

a
L(x(s), x′(s))ds < +∞ cannot possibly be

dropped.

Proof. i) For every t ∈ [a, b], Li(x(t), x
′(t)) ≥ Li(x(t), 0) + 〈p0(t), x

′(t)〉, where p0(t)
is any selection from ∂ξLi(x(t), 0). Let Ei = {t ∈ [a, b] : [Li(x(t), x

′(t))]− 6= 0}.
Hence,∫ b

a

[Li(x(t), x
′(t))ψi(t, x(t))]

−dt ≤ −
∫

Ei

[Li(x(t), 0) + 〈p0(t), x
′(t)〉]ψi(t, x(t))dt,

for any i. Since ψi is bounded and, by Proposition 1.2 in section 1.1, p0(t) is bounded,
the claim follows by Hölder’s inequality.

ii) In case ∫ b

a

Li(x(t), x
′(t))ψi(t, x(t))dt = +∞,

for some i, any parameterization t : [a, b] → [a, b] that would make x◦ t Lipschitzian,
is acceptable as xε. Hence from now on we shall assume, for every i,∫ b

a

Li(x(t), x
′(t))ψi(t, x(t))dt < +∞.

We have also

+∞ >

∫ b

a

|Li(x(t), x
′(t))|ψi(t, x(t))dt ≥ c

∫ b

a

|Li(x(t), x
′(t))|dt.

a) C = {x(t) : t ∈ [a, b]} is a compact subset of RN : consider the set

Vi = {(x, p) : x ∈ C, p ∈ ∂ξLi(x, ξ), |ξ| ≤ 1}.
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By Proposition 1.2, arguing by contradiction, we obtain that Vi is compact. Then,
minVi

L∗i (x, p) is attained and is finite. Applying Proposition 1.3, we obtain that
L∗i (x, p) ≥ minVi

L∗i (x, p), any x ∈ C and any p ∈ ∂ξLi(x, ξ), for any ξ ∈ RN . Set
η = min{minV1 L

∗
1, · · · ,minVm L

∗
m}.

Consider L̃i(x, ξ) = Li(x, ξ) + η. Since ∂ξLi(x, ξ) = ∂ξL̃i(x, ξ), we have that
L̃∗i (x, p) ≥ 0, for any i.

b) Set `i =
∫ b

a
|L̃i(x(s), x

′(s))|ds, ` = max{`1, · · · , `m}, and let Ψ be such that
|ψi(s, x)| ≤ Ψ, ∀(s, x) ∈ [a, b]× C, for any i.

From the uniform continuity of ψi(·, x(·)) on [a, b] × [a, b], we infer that we can
fix k ∈ N such that ∀(s1, t1), (s2, t2) ∈ [a, b]× [a, b], with |s2 − s1| ≤ (b− a)/2k and
|t2 − t1| ≤ (b− a)/2k we have

|ψi(s2, x(t2))− ψi(s1, x(t1))| ≤ min

{
ε

4m`
,

ε

2m(|η|+ 1)(b− a)

}
,

for any i.
For j = 0, · · · , 2k − 1 set Ij = [(b− a)j/2k, (b− a)(j + 1)/2k], Hj =

∫
Ij
|x′(s)|ds,

µ = max{2k+1Hj/(b− a) : j = 0, · · · , 2k − 1} and

THj
=

{
s ∈ Ij : |x′(s)| ≤ 2k+1Hj

b− a

}
;

it follows that |THj
| ≥ (b− a)/2k+1. Set also T =

⋃2k−1
j=0 THj

.
Since {(x(s), x′(s)) : s ∈ T} belongs to a compact set and L1, · · · , Lm are con-

tinuous, there exists a constant M , such that∣∣∣∣L̃i(x(s), 2x
′(s))

1

2
− L̃i(x(s), x

′(s))

∣∣∣∣ ≤M,

for all s ∈ T , for any i.

c) For every n ∈ N set Sj
n = {s ∈ Ij : |x′(s)| > n}, εjn =

∫
Sj

n

(
|x′(s)|
n

− 1

)
ds

and εn =
2k−1∑
j=0

εjn. From the integrability of |x′|, we have that limn→∞ εn = 0.

d) Having defined εjn, for all n such that εjn ≤ (b − a)/2k+2, choose Σj
n ⊂ THj

such that |Σj
n| = 2εjn. This is possible from point c).

e) Define the absolutely continuous functions tn by tn(s) = a+
∫ s

a
t′n(τ)dτ , where

t′n(s) =


1 +

(
|x′(s)|

n
− 1
)

, s ∈ Sn =
⋃2k−1

i=0 Sj
n

1− 1
2

, s ∈ Σn =
⋃2k−1

j=0 Σj
n

1 , otherwise
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One verifies that, ∀j = 0, · · · , 2k − 1, the restriction of tn to Ij is an invertible
map from Ij onto itself (in particular, each tn is an invertible map from [a, b] onto
itself). It follows that |tn(s)− s| ≤ (b− a)/2k.

e) We have∫ b

a

L̃i

(
x(s),

x′(s)

t′n(s)

)
t′n(s)ψi(tn(s), x(s))ds−

∫ b

a

L̃i(x(s), x
′(s))ψi(s, x(s))ds =∫ b

a

[
L̃i

(
x(s),

x′(s)

t′n(s)

)
t′n(s)− L̃i(x(s), x

′(s))

]
ψi(tn(s), x(s))ds+∫ b

a

L̃i(x(s), x
′(s))[ψi(tn(s), x(s))− ψi(s, x(s))]ds,

and, from the definition of t′n,∫ b

a

[
L̃i

(
x(s),

x′(s)

t′n(s)

)
t′n(s)− L̃i(x(s), x

′(s))

]
ψi(tn(s), x(s))ds =∫

Sn

[
L̃i

(
x(s), n

x′(s)

|x′(s)|

)
|x′(s)|
n

− L̃i(x(s), x
′(s))

]
ψi(tn(s), x(s))ds+∫

Σn

[
L̃i (x(s), 2x

′(s))
1

2
− L̃i(x(s), x

′(s))

]
ψi(tn(s), x(s))ds.

.

We wish to estimate the above integrals. Since Σn ⊂ T , we obtain∫
Σn

[
L̃i (x(s), 2x

′(s))
1

2
− L̃i(x(s), x

′(s))

]
ψi(tn(s), x(s))ds ≤ 2MΨεn.

Moreover, for every s ∈ Sn

L̃i

(
x(s), n

x′(s)

|x′(s)|

)
|x′(s)|
n

− L̃i(x(s), x
′(s)) ≤

−
(
|x′(s)|
n

− 1

)
L̃∗i

(
x(s), p

(
x(s), n

x′(s)

|x′(s)|

))
≤ 0;

hence ∫
Sn

[
L̃i

(
x(s), n

x′(s)

|x′(s)|

)
|x′(s)|
n

− L̃i(x(s), x
′(s))

]
ψi(tn(s), x(s))ds ≤ 0.

f) The choice of k implies that∫ b

a

L̃i(x(s), x
′(s))[ψi(tn(s), x(s))− ψi(s, x(s))]ds ≤

ε

4m
.

We have obtained∫ b

a

L̃i

(
x(s),

x′(s)

t′n(s)

)
t′n(s)ψi(tn(s), x(s))ds−

∫ b

a

L̃i(x(s), x
′(s))ψi(s, x(s))ds ≤ 2MΨεn+

ε

4m
.
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g) Fix n such that 2MΨεn ≤ ε/(4m).
Then, the conclusion of f) proves the Theorem; in fact, defining xε = x◦sn, where

sn is the inverse of the function tn, we obtain, by the change of variable formula
[44], that∫ b

a

L̃i(xε(t), x
′
ε(t))ψi(t, xε(t))dt =

∫ b

a

L̃i

(
xε(tn(s)),

dxε

dt
(tn(s))

)
t′n(s)ψi(tn(s), xε(tn(s)))ds

=

∫ b

a

L̃i

(
x(s),

x′(s)

t′n(s)

)
t′n(s)ψi(tn(s), x(s))ds

≤
∫ b

a

L̃i(x(s), x
′(s))ψi(s, x(s))ds+

ε

2m
.

so that∫ b

a

Li(xε(t), x
′
ε(t))ψi(t, xε(t))dt−

∫ b

a

Li(x(s), x
′(s))ψi(s, x(s))ds ≤∫ b

a

[Li(xε(t), x
′
ε(t)) + η]ψi(t, xε(t))dt−

∫ b

a

[Li(x(s), x
′(s)) + η]ψi(s, x(s))ds+

ε

2m
=∫ b

a

L̃i(xε(t), x
′
ε(t))ψi(t, xε(t))dt−

∫ b

a

L̃i(x(s), x
′(s))ψi(s, x(s))ds+

ε

2m
≤ ε

m
.

Hence, I(xε)− I(x) ≤ ε.
Moreover, xε is Lipschitzian. In fact, consider the equality x′ε(tn(s)) = x′(s)/t′n(s)

and fix s where t′n(s) exists; we obtain∣∣∣∣dxε

dt
(tn(s))

∣∣∣∣


= n , s ∈ Sn

≤ µ , s ∈ Σn

≤ n , otherwise
;

hence, at almost every s, the norm of the derivative of xε is bounded by n. This
completes the proof.

The theorems below present some applications of Theorem 2.1 to prevent the
occurrence of the Lavrentiev phenomenon to different classes of Minimum Problems.

Denote by Lip[a, b] and by AC[a, b], respectively, the space of all Lipschitzian
and absolutely continuous functions from [a, b] to RN . Let E ⊂ RN and consider
the functional

I(x) =

∫ b

a

L(x(s), x′(s))ψ(s, x(s))ds.

Call inf(P )∞ the infimum of {I(x) : x ∈ Lip[a, b], x(t) ∈ E, x(a) = A, x(b) = B}
and inf(P )1 the infimum of {I(x) : x ∈ AC[a, b], x(t) ∈ E, x(a) = A, x(b) = B}.

Theorem 2.3. Let L : E × RN → R be continuous and such that L(x, ·) is convex
and let ψ : [a, b]×E → [c,+∞) be continuous, with c > 0; then inf(P )∞ = inf(P )1.
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In the previous Theorem E can be any subset of RN such that the set of abso-
lutely continuous functions with values in E and satisfying the boundary conditions
is non-empty. In particular, x ∈ E can describe a problem with an obstacle.

As an application to a problem with a constraint different from an obstacle, let
E = R2\{0} and call inf(P i)∞ the infimum of {I(x) : x ∈ Lip[a, b], x(t) ∈ E, x(a) =
x(b)} and having prescribed rotation number i(x) = k. Call inf(P i)1 the infimum of
the same problem but for x ∈ AC[a, b].

Theorem 2.4. Let L : E × R2 → R be continuous and such that L(x, ·) is convex
and let ψ : [a, b]×E → [c,+∞) be continuous, with c > 0; then inf(P i)∞ = inf(P i)1.

Proof. As it is well known the rotation number i is independent of the parameteri-
zation of x.

Theorem 2.4 applies in particular to the case L(x, ξ) = |ξ|2/2 + 1/|x|, the case
of the Newtonian potential generated by a body fixed at the origin. Gordon in [31]
proved that Keplerian orbits are minima to this problem with k = 1.

As a further application, we consider a vectorial case. Let L : E × RN →
R be a continuous function such that L(u, ·) is convex (we shall assume that the
Lagrangian is independent of the integration variable). Suppose that L(u, ·) has the
symmetry of being rotationally invariant, i.e. assuming that there exists a function
h : E × [0,∞) → R such that L(u, ξ) = h(u, |ξ|).

Consider the functional

I(u) =

∫
S[a,b]

L(u(x),∇u(x))dx

where S[a, b] = {x ∈ RD+1 : a ≤ |x| ≤ b}. Denote by inf(P )∞ the infimum of
{I(u) : u ∈ Lip(S[a, b]), u(x) ∈ E, u radial, u|∂B(0,a) = A, u|∂B(0,b) = B} and inf(P )1

the infimum of {I(u) : u ∈ W1,1(S[a, b]), u(x) ∈ E, u radial, u|∂B(0,a) = A, u|∂B(0,b) =
B}. It is our purpose to prove that inf(P )∞ = inf(P )1.

Observe that if w : [a, b] → E is such that u(x) = w(|x|) then

I(u) = CD

∫ b

a

L(w(r), w′(r))rDdr, w(a) = A,w(b) = B,

where CD =
π(D+1)/2

Γ((D + 3)/2)
(bD+1 − aD+1).

Theorem 2.5. Let L : E × RN → R be continuous and such that L(u, ·) is convex;
then inf(P )∞ = inf(P )1.
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2.2 The case of higher-order action functionals

Besides the first-order case, the Lavrentiev phenomenon occurs as well in the case
with (ν + 1)-order derivatives, I(x) =

∫ b

a
L(t, x, x′, · · · , x(ν+1)). For ν = 1, in 1994

C. W. Cheng and V. J. Mizel [17] described a restricted Lavrentiev phenomenon in
which the gap occurs for a dense subset of the absolutely continuous non-negative
functions, and they proved that even autonomous Lagrangian L(x, x′, x′′) can exhibit
it. Some years later A. V. Sarychev [43] proved that a class of Lagrangians of the
form

L1(x
′′)ψ1(x, x

′) + L2(x
′′)

exhibits the Lavrentiev phenomenon provided that ψ1(x, x
′) = φ(kx−k|x′−1|k−1−

(k−1)|x′−1|k) for appropriate constants k, that L1, L2, φ satisfy certain growth con-
ditions, and that φ(0) = 0. For example, L1(x

′′) = |x′′|7, L2(x
′′) = α|x′′|3/2, φ1(·) =

(·)2, k = 3 and α > 0 sufficiently small yield a Lagrangian whose integral exhibits
the Lavrentiev phenomenon when the boundary values are x(0) = 0,x(1) = 5/3,
x′(0) = 1,x′(1) = 2.

The Lagrangians proposed by Manià and Sarychev have the property that L1

evaluated along the minimizer x is not integrable (this is possible because there
exists at least one point t in [a, b] such that ψ1 evaluated along x in t is 0). A
condition avoiding the occurrence of this fact will turn out, in this section, to be
essential for the non-occurrence of the Lavrentiev phenomenon.

We prove the following general approximation theorem: let x : [a, b] → RN be
a function in Wν+1,1 (independently on whether is a minimizer or not), then the
integrability of Li evaluated along x (or the assumption that ψi > 0), for every
i, implies that, given ε > 0, there exists a function xε in Wν+1,∞ with the same
boundary values of x in a and in b, i.e. xε(a) = x(a), xε(b) = x(b), x′ε(a) = x′(a),

x′ε(b) = x′(b),· · · , x(ν)
ε (a) = x(ν)(a), x

(ν)
ε (b) = x(ν)(b), such that∫ b

a

m∑
i=1

Li(x
(ν)
ε , x(ν+1)

ε )ψi(t, xε, x
′
ε, · · · , x(ν)

ε ) <

∫ b

a

m∑
i=1

Li(x
(ν), x(ν+1))ψi(t, x, x

′, · · · , x(ν))+ε.

We underline that an application of this result is the non-occurrence of the Lavren-
tiev phenomenon for a class of functionals of the Calculus of Variations with (ν+1)-
order derivatives, ν ≥ 1. The case ν = 0, m = 1 is covered in the previous section.
The case ν = 0, m > 1 can be obtained modifying slightly the proof of the main
result of the previous section.

For δ > 0, B[c, δ] denotes the closed ball in RN centred in c with radius δ. For
a function x in Cν [a, b], with values in RN , the closed δ-tube along (x, · · · , x(ν))

Tν
δ [x] = {(t, z0, · · · , zν) ∈ [a, b]×R(ν+1)N : (z0, · · · , zν) ∈ B[x(t), δ]×· · ·×B[x(ν)(t), δ], t ∈ [a, b]}
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and the closed δ-neighbourhood of the image Im(x(ν)) of x(ν)

Iδ[x
(ν)] = {z ∈ RN : dist(z, Im(x(ν))) ≤ δ}

are compact sets.
We recall that the space Wν+1,p(a, b) can be seen as the space of functions x in

Cν [a, b] such that x(ν) is absolutely continuous with derivative in Lp(a, b), p ≥ 1.
The following approximation theorem is our main result:

Theorem 2.6. Let x be a function in Wν+1,1(a, b), ν ≥ 1, and let the real-valued
functions L1, · · · , Lm and ψ1, · · · , ψm be continuous on Iδ[x

(ν)] × RN and on Tν
δ [x]

respectively, for some δ > 0.
Assume that, for every i in {1, · · · ,m},

• Li(ξ, ·) is convex, for every ξ in Iδ[x
(ν)],

• ψi is non-negative, and ψi(t, x(t), x
′(t), · · · , x(ν)(t)) > 0, for every t in [a, b].

Then:

(i) I(x) =

∫ b

a

m∑
i=1

Li(x
(ν)(t), x(ν+1)(t))ψi(t, x(t), x

′(t), · · · , x(ν)(t))dt > −∞;

(ii) given any ε > 0, there exists a function xε in Wν+1,∞(a, b) such that

I(xε) < I(x) + ε,

and
xε(a) = x(a), xε(b) = x(b),
x′ε(a) = x′(a), x′ε(b) = x′(b),
...

x
(ν)
ε (a) = x(ν)(a), x

(ν)
ε (b) = x(ν)(b).

As a corollary we obtain the non-occurrence of the Lavrentiev phenomenon:

Theorem 2.7. Let Ω0, · · · ,Ων be open sets in RN , ν ≥ 1, such that the set E =
{x ∈ Wν+1,1(a, b) : x(t) ∈ Ω0, · · · , x(ν)(t) ∈ Ων ,∀t ∈ [a, b]} is non-empty.

Let L1, · · · , Lm : Ων×RN → R and ψ1, · · · , ψm : [a, b]×Ω0×· · ·×Ων → (0,+∞)
be continuous and such that Li(ξ, ·) is convex, for any ξ in Ων, any i in {1, · · · ,m}.

Then, for every boundary values A,B ∈ Ω0, A
(1), B(1) ∈ Ω1,· · · , A(ν), B(ν) ∈ Ων,

the infimum of

I(x) =

∫ b

a

m∑
i=1

Li(x
(ν)(t), x(ν+1)(t))ψi(t, x(t), x

′(t), · · · , x(ν)(t))dt

over the space Ea,b = {x ∈ E : x(a) = A, x(b) = B, x′(a) = A(1), x′(b) = B(1),
· · · ,x(ν)(a) = A(ν), x(ν)(b) = B(ν)} is equal to the infimum of the same functional I
over the space Ea,b ∩Wν+1,∞(a, b).
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Proof. Let {xn}n ⊂ Ea,b be a minimizing sequence for I: by the fact that ψi > 0, for
every i, the theorem follows from Theorem 2.6 applied to any xn, with ε = 1/n.

Setting m = 1, ψ1 = 1 and L1 = L, we obtain that a Lagrangian depending
only on x(ν) and x(ν+1) satisfies the assumptions of Theorem 2.7. Hence, the integral
functional ∫ b

a

L(x(ν)(t), x(ν+1)(t))dt

does not exhibit the Lavrentiev phenomenon, for any boundary values

x(a) = A, x(b) = B,
x′(a) = A(1), x′(b) = B(1),
...
x(ν)(a) = A(ν), x(ν)(b) = B(ν).

This extends some previous results ([1], [6]), where functionals without boundary
conditions, or with boundary conditions only in a, have been considered.

We point out that the assumption ψi(t, x(t), x
′(t), · · · , x(ν)(t)) 6= 0, ∀t ∈ [a, b],

in Theorem 2.6 will be used only to infer that
∫ b

a
Li(x

(ν), x(ν+1)) is finite, provided
that I(x) is finite (point (a) in the proof). The theorem holds under the weaker

assumption
∫ b

a
|Li(x

(ν), x(ν+1))| < +∞, for every i.
To verify how sharp our assumptions are, consider the following example of A.

V. Sarychev [43]: for ν = 1, m = 1, minimize the functional∫ 1

0

|x′′(t)|7[3x(t)− 3|x′(t)− 1|2 − 2|x′(t)− 1|3]2dt,

with boundary conditions x(0) = 0, x(1) = 5/3, x′(0) = 1, x′(1) = 2. He proved
that the infimum taken over the space W2,1(0, 1), assumed in x̄(t) = (2/3)

2
√
t3 + t,

is strictly lower than the infimum taken over the space W2,∞(0, 1).

The assumption
∫ b

a
|L1(x

′, x′′)| < +∞ along x̄ is not verified. Indeed, setting
ψ1(t, x, ξ) = [3x − 3|ξ − 1|2 − 2|ξ − 1|3]2 and L1(ξ, w) = |w|7, we see that ψ1 ≥ 0
(but, for example, ψ1(0, x(0), x′(0)) = 0) and that∫ 1

0

|x̄′′(t)|7dt =

∫ 1

0

1

(2
√
t)7
dt = +∞.

Proof. of Theorem 2.6. In what follows, x denotes the matrix (x, · · · , x(ν−1)) and
x = x(ν−1), so that x′ = x(ν), x′′ = x(ν+1) (similarly, z = (z, · · · , z(ν−1)) and z =
z(ν−1)). The Lagrangian we consider takes the form

m∑
i=1

Li(x
′(t), x′′(t))ψi(t,x(t), x′(t)).
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(In case ν = 1, x, x′, x′′ coincide with x, x′, x′′ respectively.)

(i) For every t ∈ [a, b], Li(x
′(t), x′′(t)) ≥ Li(x

′(t), 0) + 〈p0(t), x
′′(t)〉, where p0(t) is

any selection from the sub-differential ∂wLi(x
′(t), 0) of Li with respect to its second

variable. Set Ei = {t ∈ [a, b] : [Li(x
′(t), x′′(t))]− 6= 0}, so that∫ b

a

[Li(x
′(t), x′′(t))ψi(t,x(t), x′(t))]−dt ≤ −

∫
Ei

[Li(x
′(t), 0)+〈p0(t), x

′′(t)〉]ψi(t,x(t), x′(t))dt,

for any i. Since ψi is bounded and, by Proposition 1.2 in section 1.1, p0(t) is bounded,
the claim follows by Hölder’s inequality.

(ii) Fix ε > 0; set ε̄ = ε/m. Without loss of generality, we shall assume ε < 1,
and also δ < 1.

In case
∫ b

a
Li(x

′(t), x′′(t))ψi(t,x(t), x′(t))dt = +∞, for some i, any Lipschitz func-
tion xε satisfying the boundary conditions is acceptable. Hence we can assume, for
every i, ∫ b

a

Li(x
′(t), x′′(t))ψi(t,x(t), x′(t))dt < +∞.

The proof is in three steps. In Step (1) of the proof we introduce new functions L̃i

such that L̃i = Li +const and such that their polar functions L̃∗i (with respect to the
second variable) are non-negative. In Step (3) we define a variation zn in W∞,1(a, b),
with the same boundary values of x in a and in b, such that I(zn) < I(x) + ε. In
order to define zn, in Step (2) we define a sequence of reparameterizations sn of
[a, b].

Step (1) We claim that there exists functions L̃i and a constant η such that
L̃i = Li + η and L̃∗i ≥ 0, for any i.

In fact, consider the set

Vi = {(ξ, p) : ξ ∈ Iδ[x
(ν)], p ∈ ∂wLi(ξ, w), |w| ≤ 1}.

By Proposition 1.2, arguing by contradiction, we obtain that Vi is compact. Let
L∗i (ξ, p) = supw∈RN 〈p, w〉 − Li(ξ, w) be the polar function of Li with respect to its
second variable. Then, minVi

L∗i is attained and is finite. Applying Proposition 1.3,
we obtain that L∗i (ξ, p) ≥ minVi

L∗i , for every ξ ∈ Iδ[x
(ν)], for every p ∈ ∂wLi(ξ, w)

and for every w ∈ RN . Set η = min{minV1 L
∗
1, · · · ,minVm L

∗
m}.

Consider L̃i(ξ, w) = Li(ξ, w) + η. Since ∂wLi(ξ, w) = ∂wL̃i(ξ, w), we have that

L̃∗i (ξ, p) ≥ 0, for any i. (We denote Ĩi the functional
∫ b

a
L̃iψi.)

(a) We set some constants, depending on ε̄ fixed, that we shall use in the following
steps.

By the condition on ψi, there exists a c > 0 such that ψi(t,x(t), x′(t)) ≥ c, for
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every t in [a, b], and we obtain

+∞ >

∫ b

a

|Li(x
′(t), x′′(t))ψi(t,x(t), x′(t))|dt+ η

∫ b

a

ψi(t,x(t), x′(t))dt

≥
∫ b

a

|L̃i(x
′(t), x′′(t))ψi(t,x(t), x′(t))|dt ≥ c

∫ b

a

|L̃i(x
′(t), x′′(t))|dt.

Set `i =
∫ b

a
|L̃i(x

′(s), x′′(s))|ds, ` = max{`1, · · · , `m}, and Ψ and L̃ the maximum

value of |ψ1|, · · · , |ψm| over Tν
δ [x] and of |L̃1|, · · · , |L̃m| over Iδ[x

(ν)]×B[0, |x′′(τ)|+δ]
respectively. Denote α = max{1, (b− a)ν}.

From the uniform continuity of ψ1, · · · , ψm on Tν
δ [x], we infer that we can fix

h ∈ N, 1/2h < δ, such that whenever (t1,x1, ξ1), (t2,x2, ξ2) ∈ Tν
δ [x] and

|t1 − t2| ≤
b− a

2h
, |x1,j − x2,j| ≤

1

2h
, ∀j ∈ {0, · · · , ν − 1}, |ξ1 − ξ2| ≤

1

2h
,

we have

|ψi(t1,x1, ξ1)− ψi(t2,x2, ξ2)| < min

{
ε̄

8(`+ L̃ + 1)
,

ε̄

2(|η|+ 1)(b− a)

}
,

for any i.
Let θ : R → [0, 1] be a C∞ increasing function with value 0 on (−∞, 0] and 1 on

[1,+∞). Observe that 1 ≤ ||θ(j)||∞ ≤ ||θ(j+1)||∞, for any j ≥ 0. Set Θ = ||θ(ν+1)||∞.
There exists a point τ in (a, b) which is a Lebesgue point for the functions

L̃1(x
′(·), x′′(·))ψ1(·,x(·), x′(·)), · · · , L̃m(x′(·), x′′(·))ψm(·,x(·), x′(·)) and x′′, x′′(τ) in RN .

By definition of Lebesgue point, there exists a positive number ρ less than

min

{
1

2h+4(ν + 2)(ν + 1)νΘα2
,

ε̄

32L̃Ψ

}
such that, for any λ−, λ+ in (0, ρ),∫ τ+λ+

τ−λ−
|L̃i(x

′(t), x′′(t))ψi(t,x(t), x′(t))−L̃i(x
′(τ), x′′(τ))ψi(τ,x(τ), x′(τ))|dt ≤ (λ++λ−)ε̄

for any i, and ∫ τ+λ+

τ−λ−
|x′′(t)− x′′(τ)|dt ≤ (λ+ + λ−)

1

2h+4(ν + 1)νΘα
.

Fix t−0 = (b− a)v−/2γ, t+0 = (b− a)v+/2γ, where γ ∈ N, v−, v+ ∈ {0, 1, · · · , 2γ},
v− < v+, are such that τ ∈ (τ−, τ+) ⊂ (τ − ρ, τ + ρ).
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We define the absolutely continuous function z′ : [a, b] → RN by z′(t) = x(ν)(a)+∫ t

a
z′′, where

z′′(t) =

 x(ν+1)(τ) +
1

τ+ − τ−

∫ τ+

τ−
[x′′ − x′′(τ)] , t ∈ [τ−, τ+]

x(ν+1)(t) , otherwise

.

By definition, z′′(t) = x′′(t), z′(t) = x′(t), for any t in [a, τ−] ∪ [τ+, b]. For any t in
[τ−, τ+], we have that z′′(t) ∈ B[0, |x′′(τ)|+ δ/2] and

|z′(t)− x′(t)| ≤ 2

∫ τ+

τ−
|x′′(τ)− x′′| < (τ+ − τ−)

1

2h+3(ν + 1)νΘα
.

Step (2) Our purpose is to show that there exists a sequence of reparameteriza-
tions sn of [a, b] into itself such that z′ ◦ sn is Lipschitz continuous on [a, b].

From the uniform continuity of x, · · · , x(ν) on [a, τ−]∪[τ+, b], we infer that we can
fix k ∈ N, such that whenever |s1 − s2| ≤ (b− a)/2k, we have |x(j)(s1)− x(j)(s2)| <
(τ+ − τ−)ν+2, for any j in {1, · · · , ν}.

For v = 0, · · · , 2k − 1 set Iv = [(b− a)v/2k, (b− a)(v+ 1)/2k], Hv =
∫

Iv
|z′′(s)|ds,

µ = max{2k+1Hv/(b− a) : v = 0, · · · , 2k − 1} and

THv =

{
s ∈ Iv : |z′′(s)| ≤ 2k+1Hv

b− a

}
;

we have that |THv | ≥ (b− a)/2k+1.

Since {(z′(s), z′′(s)) : s ∈
⋃2k−1

v=0 THv} belongs to a compact set and L1, · · · , Lm

are continuous, there exists a constant M , such that∣∣∣∣L̃i(z
′(s) + ξ, 2z′′(s) + w)

1

2
− L̃i

(
z′(s) + ξ, z′′(s) +

w

2

)∣∣∣∣ ≤M,

for any s ∈
⋃2k−1

v=0 THv , any |ξ| ≤ δ, any |w| ≤ δ, and for any i.
For every n ∈ N, set Sv

n = {s ∈ Iv : |z′′(s)| > n}. From the integrability of z′′ it
follows that

∫
Sv

n
(|z′′(s)|/n− 1)ds converges to 0, as n goes to ∞. Hence, we can fix

a subset Σv
n of THv such that |Σv

n| = 2
∫

Sv
n
(|z′′(s)|/n− 1)ds.

We define the absolutely continuous functions tn by tn(s) = a+
∫ s

a
t′n, where

t′n(s) =


1 + (|z′′(s)|/n− 1) , s ∈ Sn =

⋃2k−1
v=0 Sv

n

1− 1/2 , s ∈ Σn =
⋃2k−1

v=0 Σv
n

1 , otherwise

.

One verifies that tn admits inverse function sn on the interval [a, b]. Furthermore,
for any v in {0, · · · , 2k − 1}, the restriction of tn to Iv maps Iv onto itself. Hence,
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|tn(s) − s| ≤ (b − a)/2k, for any s in [a, b]. If n is greater than |x′′(τ)| + δ/2, the
restriction of tn to [τ−, τ+] is the identity.

The function z′ ◦ sn is Lipschitz continuous on [a, b]. In fact, fix t where s′n(t)
exists: we obtain∣∣∣∣d(z′ ◦ sn)

dt
(t)

∣∣∣∣ = |z′′(sn(t))s′n(t)|


= n , t ∈ Sn

≤ µ , t ∈ Σn

≤ n , otherwise
.

Step (3) We construct a function zn : [a, b] → RN , with the same boundary values
of x in a and in b, such that zn belongs to Wν+1,∞(a, b) and Ĩi(zn) < Ĩi(x) + ε̄/2.

Set f ′(t) = θ((t − τ−)/(τ+ − τ−)), for any t in [a, b] (the function θ as defined
in point (a)): then f ′ is identically 0 on [a, τ−], it is identically 1 on [τ+, b], and
||f (j+1)||∞ = ||θ(j)||∞/(τ+ − τ−)j, for any j ≥ 0.

We define ν absolutely continuous functions zn,ν−1, · · · , zn,0 : [a, b] → RN by

zn,ν−1(t) = x(ν−1)(a) +

∫ t

a

z′ ◦ sn + f ′(t)Dν−1,

zn,ν−2(t) = x(ν−2)(a) +

∫ t

a

zn,ν−1 + f ′(t)Dν−2,

...

zn,0(t) = x(a) +

∫ t

a

zn,1 + f ′(t)D0,

where, for any j in {0, · · · , ν − 2},

Dj = x(j)(b)− x(j)(a)−
∫ b

a

zn,j+1, Dν−1 = x(ν−1)(b)− x(ν−1)(a)−
∫ b

a

z′ ◦ sn.

Set zn = zn,0. The derivatives of zn up to the order ν + 1 are

z′n(t) = zn,1(t) + f ′′(t)D0,
z′′n(t) = zn,2(t) + f ′′′(t)D0 + f ′′(t)D1,
...

z
(ν−1)
n (t) = zn,ν−1(t) +

∑ν−2
j=0 f

(ν−j)(t)Dj,

z
(ν)
n (t) = z′(sn(t)) +

∑ν−1
j=0 f

(ν−j+1)(t)Dj,

z
(ν+1)
n (t) = z′′(sn(t))s′n(t) +

∑ν−1
j=0 f

(ν−j+2)(t)Dj.

We denote H′ the function
∑ν−1

j=0 f
(ν−j+1)Dj. By the properties of f (j) and sn, we

have that zn belongs to Wν+1,∞(a, b), with ||z(ν+1)
n ||∞ ≤ n + ||H′′||∞ (where || · ||∞

is the essential supremum on (a, b)), and it has the same boundary values of x in a
and in b.
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(b) We claim that ||z(j)
n − x(j)||∞ ≤ 1/2h and ||z(j)

n ◦ tn − x(j)||∞ ≤ 1/2h, for any
j in {0, · · · , ν}, eventually in n.

In fact, for any n greater than |x′′(τ)|+ δ/2, we have

|Dν−1| ≤
∫ τ−

a

|x′ − x′ ◦ sn|+
∫ τ+

τ−
|x′ − z′|+

∫ b

τ+

|x′ − x′ ◦ sn|

≤ (τ+ − τ−)2

[
3α(τ+ − τ−)ν +

1

2h+3(ν + 1)νΘα

]
≤ (τ+ − τ−)2 1

2h+2(ν + 1)νΘα
,

|Dν−2| ≤
∫ τ+

a

∣∣∣∣x′(t)− x′(a)−
∫ t

a

z′ ◦ sn − f ′(t)Dn,ν−1

∣∣∣∣ dt
+

∫ b

τ+

∣∣∣∣x′(t)− x′(b) +

∫ b

t

z′ ◦ sn − [1− f ′(t)]Dn,ν−1

∣∣∣∣ dt
≤
∫ τ+

a

∫ t

a

|x′ − z′ ◦ sn|dt+ (τ+ − τ−)|Dn,ν−1|+
∫ b

τ+

∫ b

t

|x′ − z′ ◦ sn|dt

≤ (τ+ − τ−)3

[
4α(τ+ − τ−)ν−1 +

1

2h+3(ν + 1)νΘα

]
+ (τ+ − τ−)|Dν−1|

≤ (τ+ − τ−)3 2

2h+2(ν + 1)νΘα
,

...

|Dj| ≤ (τ+ − τ−)ν−j+1 ν − j

2h+2(ν + 1)νΘα
≤ (τ+ − τ−)ν−j+1 1

2h+2(ν + 1)Θ
, ∀j ∈ {0, · · · , ν − 1},

so that ||H′||∞ ≤
∑ν−1

j=0 ||f (ν−j+1)||∞(τ+−τ−)ν−j+1/[2h+2(ν+1)Θ] ≤ (τ+−τ−)/2h+2,

||H′′||∞ ≤ 1/2h+2, and

|z′(sn(t))− x′(t)| ≤ (τ+ − τ−)

[
3α(τ+ − τ−)ν+1 +

1

2h+3(ν + 1)νΘα

]
≤ 1

2h+2(ν + 1)νΘα
,

|zn,ν−1(t)− x(ν−1)(t)| ≤
∫ b

a

|z′ ◦ sn − x′|+ (b− a)|Dν−1| ≤ (1 + b− a)|Dν−1|

≤ 2α

2h+2(ν + 1)νΘα
,

...

|zn,j(t)− x(j)(t)| ≤ (ν − j + 1)α

2h+2(ν + 1)νΘα
≤ 1

2h+2
, ∀j ∈ {0, · · · , ν − 1}.

Hence, we can fix n such that MΨ|Σn| < ε̄/8, ||z(j)
n − x(j)||∞ ≤ 1/2h+1 and

||z(j)
n ◦ tn − x(j)||∞ ≤ ||z(j)

n ◦ tn − x(j) ◦ tn||∞ + ||x(j) ◦ tn − x(j)||∞ ≤ 1/2h,

for any j in {0, · · · , ν}. The graph of the function (zn, z
′
n) is included in Tν

δ [x], and
z′′n(t) ∈ B[0, |x′′(τ)|+ δ], for any t in [τ−, τ+]. (From what follows, it turns out that
zn is the sought variation xε.)
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(c) We show that Ĩi(zn) < Ĩi(x) + ε̄/2, for any i.
Using the change of variable formula [44], we compute Ĩi(zn)− Ĩi(x) as the sum

of three appropriate terms:∫ b

a

L̃i (z
′
n(tn(s)), z′′n(tn(s))ψi(tn(s), zn(tn(s)), z′n(tn(s)))t′n(s)ds−

∫ b

a

L̃i(x
′(s), x′′(s))ψi(s,x(s), x′(s))ds

=

∫ b

a

[
L̃i (z

′
n(tn(s)), z′′n(tn(s))) t′n(s)− L̃i(z

′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s)))

]
ψi(tn(s), zn(tn(s)), z′n(tn(s)))ds

+

∫ b

a

L̃i(z
′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s)))[ψi(tn(s), zn(tn(s)), z′n(tn(s)))− ψi(s,x(s), x′(s))]ds

+

∫ b

a

[
L̃i (z

′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s)))− L̃i(x

′(s), x′′(s))
]
ψi(s,x(s), x′(s))ds = I1

i + I2
i + I3

i .

To estimate I1
i , it is enough to estimate its integrand over the sets Sn and Σn

(because it is identically 0 elsewhere). Since Σn ⊂ T and ||H′′||∞ ≤ δ, we obtain
that

L̃i (z
′(s) + H′(tn(s)), 2z′′(s) + H′′(tn(s)))

1

2
−L̃i

(
z′(s) + H′(tn(s)), z′′(s) +

H′′(tn(s))

2

)
≤M,

for every s in Σn. By Proposition 3 and 4 in [12], for every s in Sn,

L̃i

(
z′n(tn(s)), n

z′′(s) + t′n(s)H′′(tn(s))

|z′′(s)|

)
|z′′(s)|
n

− L̃i(z
′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s)))

≤ −
(
|z′′(s)|
n

− 1

)
L̃∗i (z

′
n(tn(s)), p) ≤ 0,

where p ∈ ∂wLi(z
′
n(tn(s)), n(z′′(s) + t′n(s)H′′(tn(s)))/|z′′(s)|). Using the fact that ψi

is positive and bounded by Ψ, we have I1
i ≤MΨ|Σn| < ε̄/8.

To estimate I2
i , we observe that

L̃i(z
′
n(tn(s)), z′′(s) + t′n(s)H′′(tn(s))) =

{
L̃i(z

′
n(s), z′′(s) + H′′(s)) , s ∈ [τ−, τ+]

L̃i(x
′(s), x′′(s)) , otherwise

.

By the fact that |ψi(tn(s), zn(tn(s)), z′n(tn(s)))−ψi(s,x(s), x′(s))| ≤ ε̄/[8(`+ L̃+1)],
for any s in [a, b], and that z′′ + H′′ ∈ B[0, |x′′(τ)|+ δ] on [τ−, τ+], we have I2

i ≤ ε̄/8.
To estimate I3

i , it is enough to estimate the integrals over [τ−, τ+] (because it is
identically 0 elsewhere). Recalling that τ is a Lebesgue point for L̃i(x

′(·), x′′(·))ψi(·,x(·), x′(·)),
we have

I3
i ≤

∫ τ+

τ−
L̃i(z

′
n(s), z′′(s) + H′′(s))ψi(s,x(s), x′(s))− L̃i(x

′(τ), x′′(τ))ψi(τ,x(τ), x′(τ))]ds+
ε̄

8

≤ 4ρL̃Ψ +
ε̄

8
<
ε̄

4
.
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Hence, I1
i + I2

i + I3
i < ε̄/2, for any i.

Conclusion. We have obtained∫ b

a

Li(z
′
n(t), y′′n(t))ψi(t, zn(t), z′n(t))dt−

∫ b

a

Li(x
′(t), x′′(t))ψi(t,x(t), x′(t))dt

<

∫ b

a

[Li(z
′
n(t), z′′n(t)) + η]ψi(t, zn(t), z′n(t))dt−

∫ b

a

[Li(x
′(t), x′′(t)) + η]ψi(t,x(t), x′(t))dt+

ε̄

2

=

∫ b

a

L̃i(z
′
n(t), z′′n(t))ψi(t, zn(t), z′n(t))dt−

∫ b

a

L̃i(x
′(s), x′′(s))ψi(s,x(s), x′(s))ds+

ε̄

2
< ε̄.

Hence, I(zn)− I(x) <
∑m

i=1 ε̄ = ε.
So, setting xε = zn, we have proved the theorem.

2.3 A necessary condition for the Lavrentiev phe-

nomenon

The content of this section is to show the following necessary condition: a functional

I(x) =

∫ b

a

m∑
i=1

Li(x
(ν), x(ν+1))ψi(t, x, x

′, · · · , x(ν)),

with ν ≥ 0, exhibiting the Lavrentiev phenomenon takes the value +∞ in any
neighbourhood of a minimizer x̄; or equivalently if I assumes only finite values in a
neighbourhood of x̄, then I does not exhibit the Lavrentiev phenomenon.

The corollary above applies to the functionals of Manià and Sarychev, for in-
stance, and to the examples of functionals exhibiting the Lavrentiev phenomenon
proposed in [5], [6], [34], [36], [37], [39], [43]. This necessary condition is also related
to the repulsion property of the action of Maniá ([5], [34]), i.e. the action I evaluated
on the trajectories of an absolutely continuous minimizing sequence is divergent to
∞.

This is proved in the following corollary to Theorem 2.6 and of the main Theorem
of the previous section:

Corollary 2.8. Let Ω0, · · · ,Ων be open sets in RN , ν ≥ 0, such that the set E =
{x ∈ Wν+1,1(a, b) : x(t) ∈ Ω0, · · · , x(ν)(t) ∈ Ων ,∀t ∈ [a, b]} is non-empty. Let
A,B ∈ Ω0, A

(1), B(1) ∈ Ω1,· · · , A(ν), B(ν) ∈ Ων be given boundary values.
Let L1, · · · , Lm : Ων×RN → R and ψ1, · · · , ψm : [a, b]×Ω0×· · ·×Ων → [0,+∞)

be continuous and such that Li(ξ, ·) is convex, for any ξ in Ων, any i in {1, · · · ,m}.
Let

I(x) =

∫ b

a

m∑
i=1

Li(x
(ν)(t), x(ν+1)(t))ψi(t, x(t), x

′(t), · · · , x(ν)(t))dt
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be a functional exhibiting the Lavrentiev phenomenon, and let x̄ be a minimum of I
over Ea,b = {x ∈ E : x(a) = A, x(b) = B, x′(a) = A(1), x′(b) = B(1), · · · ,x(ν)(a) =
A(ν), x(ν)(b) = B(ν)}

Assume that, for any δ > 0, there exists σδ > 0 such that σδ → 0, for δ → 0, and
that ψi restricted to Tν

δ [x̄] may vanish only on the graph of (x̄, x̄′, · · · , x̄(ν)) or on
a σδ-neighbourhood of (a,A, · · · , A(ν)) or on a σδ-neighbourhood of (b, B, · · · , B(ν)),
for any i in {1, · · · ,m}.

Then, for any ε > 0, there exists xε in Ea,b such that the graph of (xε, x
′
ε, · · · , x

(ν)
ε )

is included in Tν
ε [x̄] and I(xε) = +∞.

Proof. Fix ε > 0. From the theorem 2.6 and 2.1, it follows that
∫ b

a
|Li(x̄

(ν), x̄(ν+1))| =
+∞, for at least one i in {1, · · · ,m}.

Without loss of generality, we suppose that
∫ (a+b)/2

a
|Li(x̄

(ν), x̄(ν+1))| = +∞.

Let g : (−∞,+∞) → [0, 1] be a C∞ increasing function with value 1 on [b,+∞)
and 0 on (−∞, (a+ b)3/4]. We define the integrable function xδ,ν+1 : [a, b] → RN by

xδ,ν+1(t) =

{
0 , t ∈ [a, a+ σδ)
x̄(ν+1)(t− σδ) , otherwise

,

and ν absolutely continuous functions xδ,j(t) = A(j) +
∫ t

a
xδ,j+1 + g(t)Dδ,j, for any t

in [a, b], where Dδ,j = B(j) − A(j) −
∫ b

a
xδ,j+1, for any j in {0, · · · , ν}.

Set xδ = xδ,0. The derivatives of xδ up to the order ν + 1 are

x′δ(t) = xδ,1(t) + g′(t)Dδ,0,
x′′δ(t) = xδ,2(t) + g′′(t)Dδ,0 + g′(t)Dδ,1,
...

x
(ν+1)
δ (t) = xδ,ν+1(t) +

∑ν
j=0 g

(ν−j+1)(t)Dδ,j.

By definition, xδ belongs to Wν+1,1(a, b), it has the same boundary values of x̄
in a and in b, and, for j in {ν, ν + 1}, for any t in [a + σδ, (a + b)3/4], we have

x
(j)
δ (t) = x̄(j)(t− σδ). Furthermore, there exists constants cj, dj, independent on δ,

such that |Dδ,j| ≤ cj
∫ b

b−σδ
|x̄(ν+1)| and ||xδ,j − x

(j)
δ ||∞ ≤ dj

∫ b

b−σδ
|x̄(ν+1)|. Hence, for

any j in {0, · · · , ν},

||x̄(j) − x
(j)
δ ||∞ ≤

(
cj + ||g(ν+1)||∞

ν∑
j=0

dj

)∫ b

b−σδ

|x̄(ν+1)|.

By hypothesis, we can choose δ̄ > 0 such that (cj+||g(ν+1)||∞
∑ν

j=0 dj)
∫ b

b−σδ̄
|x̄(ν+1)| < ε

and σδ̄ < (b− a)/4.
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Set Ψi = min{ψi(t, xδ̄(t), · · · , x
(ν)

δ̄
(t)) : t ∈ [a + σδ̄, (a + b)3/4]}: by hypothesis,

Ψi is positive. We have obtained that the graph of (xδ̄, x
′
δ̄
, · · · , x(ν)

δ̄
) belongs to Tν

ε [x̄]
and ∫ b

a

|Li(x
(ν)

δ̄
(t), x

(ν+1)

δ̄
(t))ψi(t, xδ̄(t), · · · , x

(ν)

δ̄
(t))|dt

≥
∫ (a+b)3/4

a+σδ̄

|Li(x̄
(ν)(t− σδ̄), x̄

(ν+1)(t− σδ̄))|ψi(t, xδ̄(t), · · · , x
(ν)

δ̄
(t))dt

≥ Ψi

∫ (a+b)/2

a

|Li(x̄
(ν)(t), x̄(ν+1)(t))|dt = +∞.

From (i) in the proof of Theorem 2.6 and Theorem 1 in [12], we infer that I(xδ̄) =
+∞.

So, setting xε = xδ̄, we have proved the corollary.
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Part III

Existence and regularity of
minimizers
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Chapter 3

Preliminaries

3.1 The Direct Method of the Calculus of Varia-

tions

The standard hypotheses on the Lagrangian under which it is possible to prove an
existence result, in the set X = AC[a, b] of the absolutely continuous trajectories,
are: some lower semi-continuity of L in its domain, the convexity in its last variable x′

and a super-linear growth condition, i.e. the requirement that there exists a function
θ such that θ(s)/s converges to +∞, as s tends to +∞, and L(t, x, x′) ≥ θ(|x′|).

This method of proof is called the Direct Method of the Calculus of Variations
and it was mainly developed by L. Tonelli (1915, [48]). Roughly speaking, what
one does in this method is the following: starting from a minimizing sequence for
the action I, i.e. a sequence of trajectories {xn}n such that I(xn) converges to the
infimum of I, and, by using the fact that the super-linear growth condition implies
the weak precompactness of {xn}n, one selects a subsequence that converges weakly
to a trajectory x̂ in AC[a, b]. Since the convexity, together with some continuity,
ensures the weak lower semi-continuity of I, one concludes that x̂ is a minimizer.

This method is based on the two theorems stated below due to Mazur, De la
Vallee-Poussin, Dunford, Pettis, and Tonelli ([16], [22]):

Theorem 3.1. Let {ξn}n be a sequence of RN -valued measurable functions belonging
to L1(a, b).

Then, {ξn}n is sequentially weakly precompact in L1(a, b) if and only if there
exists a constant M and a function θ : [0,∞) → [0,∞) such that θ(s)/s → ∞, as

s→∞, and
∫ b

a
θ(|ξn(t)|)dt ≤M , for any n.

Theorem 3.2 (Mazur lemma). Let {ξn}n be a sequence of RN -valued measurable
functions weakly convergent to ξ in L1(a, b).
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Then, for any integer n there exists a convex combination a1,n, · · · , an,n of ξ1, · · · , ξn
such that ∥∥∥∥∥

n∑
i=1

ai,nξi − ξ

∥∥∥∥∥
1

→ 0,

as n tends to ∞.

In section 4.1 we present an original existence theorem ([11]) in the case of an
autonomous Lagrangian, i.e. a Lagrangian which does not depend explicitly on t,
where a variant of the Direct Method can be applied under more general growth
assumptions that include the classical super-linear growth but also some cases of
Lagrangians with linear growth. We drop the super-linear growth condition and
hence the fact that all the minimizing sequences of absolutely continuous trajecto-
ries admit a subsequence weakly convergent in L1. Instead, from any minimizing
sequence of absolutely continuous trajectories, we construct a minimizing sequence
of equi-Lipschitzian trajectories; therefore we apply theorems 3.2 and the following
(partially due to Ascoli-Arzelà) to the obtained sequence ([16], [22]).

Theorem 3.3. Let {xn}n be a sequence of RN -valued measurable functions belonging
to Lip[a, b]. Suppose that there exists a positive constant M such that ||x′n||∞ ≤M .

Then, {xn}n is sequentially precompact in C[a, b], and {x′n}n is sequentially
weakly precompact in L1(a, b).

If follows also that this minimizer is Lipschitz. Results on the existence of Lip-
schitz minimizer to autonomous problems, under conditions of super-linear growth,
were established in [5], [20] and, under weaker regularity conditions on the La-
grangian, in [10].



Chapter 4

New Results

In section 4.1 we present an original existence theorem ([11]) in the case of an
autonomous Lagrangian, i.e. a Lagrangian which does not depend explicitly on t,
where a variant of the Direct Method can be applied under more general growth
assumptions that include the classical super-linear growth but also some cases of
Lagrangians with linear growth.

In section 4.2, we prove the existence of solutions to Minimum Time problems for
differential inclusions, under assumptions that do not require the convexity of the
images F (x) = f(x, U(x)). Furthermore, we present a model for the Brachistochrone
problem and we show that our model (a non-convex control problem) satisfies the
assumptions required for the existence of solutions to Minimum Time problems.
The case of Brachistochrone as a Minimum Time Control problem has already been
amply treated in [46], [47].

4.1 Existence of Lipschitzian minimizers

The purpose of this section is to show that in the case of autonomous problems,
where the Lagrangian does not depend explicitly on the integration variable t, a
variant of the Direct Method can be applied under more general growth assumptions.
More precisely, we consider Problem (P ), the problem of minimizing the integral∫ b

a

L(x(s), x′(s))ds

for x : [a, b] → RN absolutely continuous and satisfying x(a) = A, x(b) = B. Under
more general growth conditions, that include the classical super-linear growth but
also some cases of Lagrangians with linear growth, we show that, from any sequence
{xn}n∈N, minimizing for the functional, one can derive another sequence {x̄n}n∈N,
each function x̄n obtained from xn by reparameterizing the interval [a, b], that is
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again minimizing, and consists of equi-Lipschitzian functions. As a consequence,
in the case the Lagrangian L(x, ξ) is convex in ξ, one can prove the existence of
a solution to Problem (P ), that, in particular, is a Lipschitzian function. A result
on the regularity (Lipschitzianity) of solutions to autonomous minimum problems,
under conditions of super-linear growth, was established in [20] and, under weaker
growth conditions, in [10].

The growth assumption we consider is expressed in terms of the polar of the
Lagrangian L with respect to ξ (for the properties of the polar see, e.g., [24]). The
same condition was already introduced in [15] to prove existence of solutions for
a rather special class of Lagrangians. The results we present apply to different
classes of Lagrangians, that can possibly be extended valued and either convex or
differentiable in ξ. Two simple examples of a convex everywhere defined Lagrangian
satisfying the assumptions of our main Theorem, in particular the growth condition,
are the maps, having linear growth, L(ξ) = |ξ| −

√
|ξ| and

L(ξ) =

{
|ξ| − ln(|ξ|) , |ξ| ≥ 1
1 , otherwise

.

In what follows L(x, ξ) : RN × RN → R̄ = R ∪ {+∞} is an extended valued
function, continuous and bounded below, not identically +∞. L∗(x, p) is the polar
of L with respect to its second variable [42], i.e.

L∗(x, p) = sup
ξ∈RN

〈p, ξ〉 − L(x, ξ).

We denote by dom = {(x, ξ) ∈ RN × RN : L(x, ξ) ∈ R} its effective domain. Since
the assumptions on L for the case where dom = RN×RN are somewhat simpler than
the assumptions needed in the general case, we shall state separately the results for
the two cases. For each case, L, as a function of ξ, may be either convex or not; in
this second case, we shall need the extra assumption of differentiability of L with
respect to ξ. This assumption is not needed in the convex case, since, in this case,
the existence of a sub-differential is enough for the proof. Hence, we will provide
four different statements of the what is basically the same result; the proof will be
one proof for the four different Theorems. We first present the results for the simpler
case where dom = RN × RN .

Theorem 4.1 (Convex case). Assume that:

(1) dom = RN × RN and L(x, ·) is convex, ∀x ∈ RN ;

(2) for every selection p(x, ·) ∈ ∂ξL(x, ·) we have

L∗(x, p(x, ξ)) → +∞

as |ξ| tends to +∞, uniformly in x.
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Then: given any minimizing sequence {xn}n∈N for the functional in (P ), there exists
a constant Λ and a sequence of reparameterizations sn of the interval [a, b] onto itself,
such that {x̄n}n≥n1 = {xn ◦ sn}n≥n1 is again a minimizing sequence and each x̄n is
Lipschitzian with Lipschitz constant Λ.

The convex Lagrangian L(ξ) described in the Introduction is such that L∗(p(ξ))
= ln(|ξ|)− 1 → +∞.

Theorem 4.2 (Differentiable case). Assume that:

(1) dom = RN × RN and ∀x ∈ RN , L(x, ·) is differentiable;

(2) L∗(x,∇ξL(x, ξ)) → +∞ as |ξ| tends to +∞, uniformly in x.

Then the conclusion of Theorem 4.1 holds.

The following are the analogous result in the more complex case where dom 6=
RN × RN . In this case it is not necessarily true that the functional in (P ) is not
identically +∞.

Theorem 4.3 (Convex case). Assume that:

(1) L(x, ·)is a convex extended valued map and (x, 0) ∈ dom whenever there exists
ξ such that (x, ξ) ∈ dom;

(2) for every selection p(x, ·) ∈ ∂ξL(x, ·) we have

L∗(x, p(x, ξ)) → +∞

as |ξ| tends to +∞, with (x, ξ) ∈ dom, uniformly in x;

(3) for every M > 0, ∃δ > 0 such that L(x, ξ) > M , for every (x, ξ) ∈ dom with
d((x, ξ), ∂dom) < δ;

(4) the functional in (P ) is not identically +∞.

Then the conclusion of Theorem 4.1 holds.

Theorem 4.4 (Differentiable case). Assume that:

(1) L(x, ·)is differentiable and dom ∩ ({x} × RN) is star shaped with respect to
(x, 0) whenever there exists ξ such that (x, ξ) ∈ dom;

(2) L∗(x,∇ξL(x, ξ)) → +∞ as |ξ| tends to +∞, with (x, ξ) ∈ dom, uniformly in
x;

(3) for every M > 0, ∃δ > 0 such that L(x, ξ) > M , for every (x, ξ) ∈ dom with
d((x, ξ), ∂dom) < δ;
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(4) the functional in (P ) is not identically +∞.

Then the conclusion of Theorem 4.1 holds.

Remark 4.5. Consider the case N = 1 and L independent on x. The growth
condition (2) in the statement of the Theorems above means that the Lagrangian
does not admit an oblique asymptote at infinite.

We shall need the following Proposition on the existence of a lower bound for
the Lagrangian L under the conditions stated in any of the theorems above.

Propositon 4.6. Let L satisfy assumptions (1) and (2) of any of the Theorems 4.1,
4.2, 4.3 or 4.4. Then there exist α > 0 and β ∈ R such that L(x, ξ) ≥ α|ξ| + β,
∀(x, ξ) ∈ dom.

Proof. Set ` = inf{L(x, ξ)}; assumption (2) implies that there exists r > 0 such that
−L∗(x, p(x, ξ)) ≤ ` − 1, for every (x, ξ) ∈ dom with |ξ| ≥ r, where p(x, ·) is either
∇ξL(x, ·) or any selection from the sub-differential of L(x, ·). We claim that we can
choose α = 1/(2r) and β = `− 1

Fix (x, ξ) ∈ dom. When |ξ| ≤ r, we have L(x, ξ) ≥ ` > |ξ|/(2r) + `− 1, and the
claim is true in this case.

Consider the case |ξ| > r. Set ψ(s) = s/(2r) + ` − 1; assumption (1) implies
that the convex function L(s) = L(x, sξ/|ξ|) is well defined for s ∈ [r, |ξ|], hence
the selection pL(s) = 〈ξ/|ξ|, p(x, sξ/|ξ|)〉 ∈ ∂L(s) is increasing and we have pL(s) ≥
pL(r); moreover, from the inequality

L

(
x, r

ξ

|ξ|

)
− 〈r ξ

|ξ|
, p

(
x, r

ξ

|ξ|

)
〉 ≤ `− 1,

we obtain pL(r) ≥ 1/r > 1/(2r) = ψ′(s). From L(r) > ψ(r), we obtain L(s) > ψ(s),
for every s ∈ [r, |ξ|]; setting s = |ξ|, the claim is proved.

Now, assume the validity of (1), (2) of the Differentiable cases. Again, let r > 0
be such that for every (x, ξ) ∈ dom with |ξ| ≥ r we have −L∗(x,∇ξL(x, ξ)) ≤ `− 1.
As before, it follows that the Claim is true for (x, ξ) ∈ dom, |ξ| ≤ r. Fix ξ, |ξ| > r.
By assumption (1), L(s) is defined for s ∈ [r, |ξ|], and we infer

L

(
x, s

ξ

|ξ|

)
− 〈s ξ

|ξ|
,∇ξL

(
x, s

ξ

|ξ|

)
〉 ≤ `− 1,

so that

L(s)− ψ(s) = L

(
x, s

ξ

|ξ|

)
−
[ s
2r

+ `− 1
]

≤ 〈s ξ
|ξ|
,∇ξL

(
x, s

ξ

|ξ|

)
〉+

s

2r
= s[L′(s)− ψ′(s)].
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Assume that the set {s ∈ (r, |ξ|] : L(s) − ψ(s) < 0} is non-empty, and let s0

be its infimum. By continuity, L(s0) − ψ(s0) = 0, so that s0 > r. From the Mean
Value Theorem we infer the existence of s1 ∈ (r, s0) such that L′(s1) − ψ′(s1) < 0,
that in turn implies L(s1)−ψ(s1) < 0, a contradiction to the definition of s0. Hence
L(s) ≥ ψ(s), ∀s ∈ (r, |ξ|], in particular for s = |ξ|.

Lemma 4.7. Let f : RN → R̄ be convex, and such that dom contains the origin.
Then, for every ξ in the domain of f , the function f(ξ/(1 + ·))(1 + ·) from [0,+∞)
to R is convex. Moreover, there exists a selection p(·) ∈ ∂f(·) such that

f

(
ξ

1 + s

)
(1 + s)− f(ξ) ≤ −sf ∗

(
p

(
ξ

1 + s

))
, ∀s ∈ [0,+∞).

Proof. For the proof see Proposition 1.4.

Proof. of Theorems 4.1–4.4. Set m be the infimum of the values of∫ b

a

L(x(s), x′(s))ds

for x as in Problem (P ). Proposition 4.6 and the assumptions of Theorems 4.1–4.4
imply that m is finite. Let {xn}n∈N be a minimizing sequence for Problem (P ). By
Proposition 4.6 we obtain that there exists H > 0 such that ‖x′n‖1 ≤ H so that, for
every n, for every s in [a, b], we have xn(s) ∈ B[0, A+H].

Next point a) reaches a conclusion with an argument that differs in the cases
where L is or is not extended valued, so the argument is presented separately in the
two cases.

a) (Case dom = RN × RN) For every n, consider the subset of [a, b] defined by

TH
n = {s ∈ [a, b] : |x′n(s)| ≤ 4H/3(b− a)};

one verifies that the Lebesgue measure of any such set is larger or equal to (b−a)/4.
Fix δ > 0. Since (xn(s), (1 + δ)x′n(s)) ∈ B[0, A+H]×B[0, 4(1 + δ)H/3(b− a)],

and L is continuous, we infer that: there exists µ ∈ R such that, for every n ∈ N
and s ∈ TH

n ,

L(xn(s), (1 + δ)x′n(s))
1

1 + δ
− L(xn(s), x′n(s)) ≤ µ.

a) (Case dom 6= RN × RN) Consider a real positive M . Assumption (3) im-
plies that there exists δ(M) > 0 such that L(x, ξ) > M , ∀(x, ξ) ∈ dom with
d((x, ξ), ∂dom) < 2δ(M).

Consider the subsets of [a, b]

Jδ(M)
n = {s ∈ [a, b] : d((xn(s), x′n(s)), ∂dom) ≥ 2δ(M)};
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we have the inequality∫ b

a

L(xn(s), x′n(s))ds =

∫
J

δ(M)
n

L(xn(s), x′n(s))ds+

∫
[a,b]\Jδ(M)

n

L(xn(s), x′n(s))ds

≥ |Jδ(M)
n |`+ |[a, b] \ Jδ(M)

n |M = (b− a)M + |Jδ(M)
n |(`−M),

so that

lim inf
n→+∞

|Jδ(M)
n | ≥ (b− a)M −m

M − `
.

Since limM→+∞[(b− a)M −m]/(M − `) = b− a, we can choose M̄ > 0 such that

[(b− a)M̄ −m]/(M̄ − `) > (b− a)3/4.

Set δ = δ(M̄). We have obtained that there exists n1 ∈ N such that n ≥ n1 implies

|Jδ
n| ≥ (b− a)3/4.

We have also obtained that the sets {(xn(s), (1+δ)x′n(s)) : s ∈ Jδ
n} are contained

in dom. Finally, consider the sets

IH
n = {s ∈ [a, b] : |x′n(s)| ≤ 4H/(b− a)};

the measure of each IH
n is at least (b − a)3/4 so that, defining TH

n = IH
n ∩ Jδ

n, we
obtain |TH

n | = |IH
n ∩ Jδ

n| ≥ (b− a)/4, ∀n ≥ n1.
Since (xn(s), (1 + δ)x′n(s)) belongs to B[0, A + H] × B[0, 4(1 + δ)H/(b − a)] ∩

{(x, ξ) ∈ dom : d((x, ξ), ∂dom) ≥ δ}, a compact subset of dom and L is continuous
on dom, we infer that: there exists µ ∈ R such that, for every n ∈ N and s ∈ TH

n ,

L(xn(s), (1 + δ)x′n(s))
1

1 + δ
− L(xn(s), x′n(s)) ≤ µ.

b) Consider a real positive ν and set Sν
n = {s ∈ [a, b] : |x′n(s)| > ν}. From

‖x′n‖1 ≤ H, we easily obtain that both the measure of Sν
n and

ενn =

∫
Sν

n

[
|x′n(s)|
ν

− 1

]
ds

converge to 0 as ν → +∞, uniformly with respect to n ∈ N.
Consider first the Convex case; let p(x, ·) ∈ ∂ξL(x, ·) be the selection provided

by Lemma 4.7. By Assumption (2) of this case, there exists a map M : N → R,
limν→+∞M(ν) = +∞, such that

L∗(x, p(x, ξ)) ≥M(ν)
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for every (x, ξ) ∈ dom ∩ [RN × (B[0, ν])c]; in particular

L∗(xn(x), p(xn(s), x′n(s))) ≥M(ν)

for every n ∈ N and s ∈ Sν
n. Analogously, under assumption (2) of the Differentiable

case, there exists a map M : N → R, limν→+∞M(ν) = +∞, such that

L∗(x,∇L(x, ξ)) ≥M(ν)

for every (x, ξ) ∈ dom ∩ [RN × (B[0, ν])c]; in particular

L∗(xn(x),∇L(xn(s), x′n(s))) ≥M(ν)

for every n ∈ N and s ∈ Sν
n.

Hence, both in the Convex and in the Differentiable case, we have obtained that
there exists an integer ν̄ such that at once we have: ν̄ ≥ 4H/(b−a), M(ν̄) ≥ (1+δ)µ
and εν̄n ≤ (b− a)/[4(1 + δ)], ∀n ∈ N.

c) For every n ≥ n1, there exists ΣH
n , a subset of TH

n , having measure (1 + δ)εν̄n.
Define the absolutely continuous functions tn(s) = a+

∫ s

a
t′n(τ)dτ by setting

t′n(s) =


1 +

[
|x′n(s)|

ν̄
− 1
]

, s ∈ S ν̄
n

1− 1
1+δ

, s ∈ ΣH
n

1 , otherwise

;

each tn is an invertible map from [a, b] onto itself.

d) From the definition of t′n we have that∫ b

a

L

(
xn(s),

x′n(s)

t′n(s)

)
t′n(s)ds−

∫ b

a

L(xn(s), x′n(s))ds =∫
Sν̄

n

L

(
xn(s), ν̄

x′n(s)

|x′n(s)|

)
|x′n(s)|
ν̄

ds−
∫

Sν̄
n

L(xn(s), x′n(s))ds+∫
ΣH

n

L(xn(s), (1 + δ)x′n(s))
1

1 + δ
ds−

∫
ΣH

n

L(xn(s), x′n(s))ds.

We wish to estimate the above integrals. Since ΣH
n ⊂ TH

n , we easily obtain∫
ΣH

n

[
L(xn(s), (1 + δ)x′n(s))

1

1 + δ
− L(xn(s), x′n(s))

]
ds ≤ (1 + δ)εν̄nµ.

To conclude the estimate we have to consider separately the Convex and the Differ-
entiable case.
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e) (Convex case) The choice of p implies that

L

(
xn(s), ν̄

x′n(s)

|x′n(s)|

)
|x′n(s)|
ν̄

− L(xn(s), x′n(s)) ≤

−
[
|x′n(s)|
ν̄

− 1

]
L∗
(
xn(s), p

(
xn(s), ν̄

x′n(s)

|x′n(s)|

))
for every s ∈ S ν̄

n.
e) (Differentiable case) The mean value Theorem implies that there exists αn(s) ∈

[0, |x′n(s)|/ν̄ − 1] such that

L

(
xn(s), ν̄

x′n(s)

|x′n(s)|

)
|x′n(s)|
ν̄

− L(xn(s), x′n(s)) =

−
[
|x′n(s)|
ν̄

− 1

] [
〈∇ξL

(
xn(s),

x′n(s)

1 + αn(s)

)
,

x′n(s)

1 + αn(s)
〉 − L

(
xn(s),

x′n(s)

1 + αn(s)

)]
=

−
[
|x′n(s)|
ν̄

− 1

]
L∗
(
xn(s),∇ξL

(
xn(s),

x′n(s)

1 + αn(s)

))
for every s ∈ S ν̄

n.
f) Since both |ν̄x′n(s)/|x′n(s)|| ≥ ν̄ and |x′n(s)|/(1 +αn(s)) ≥ ν̄, by the definition

of M(ν̄) we obtain∫
Sν̄

n

L

(
xn(s), ν̄

x′n(s)

|x′n(s)|

)
|x′n(s)|
ν̄

ds−
∫

Sν̄
n

L(xn(s), x′n(s))ds ≤ −εν̄nM(ν̄),

hence our estimate becomes: n ≥ n1 implies that∫ b

a

L

(
xn(s),

x′n(s)

t′n(s)

)
t′n(s)ds−

∫ b

a

L(xn(s), x′n(s))ds ≤ εν̄n[−M(ν̄) + (1 + δ)µ] ≤ 0.

g) The conclusion of f) proves the Theorem; in fact, defining x̄n = xn ◦ sn, where
sn is the inverse of the function tn, we obtain, by the change of variable formula
[44], that {x̄n}n≥n1 = {xn ◦ sn}n≥n1 is a minimizing sequence, since∫ b

a

L(x̄n(t), x̄′n(t))dt =

∫ b

a

L

(
x̄n(tn(s)),

dx̄n

dt
(tn(s))

)
t′n(s)ds

=

∫ b

a

L

(
xn(s),

x′n(s)

t′n(s)

)
t′n(s)ds ≤

∫ b

a

L(xn(s), x′n(s))ds.

Moreover, we claim that x̄n are Lipschitzian functions, with the same Lipschitz
constant Λ = (1 + 1/δ)ν̄. In fact, consider the equality x̄′n(tn(s)) = x′n(s)/t′n(s) and
fix s where t′n(s) exists; we obtain∣∣∣∣dx̄n

dt
(tn(s))

∣∣∣∣


= ν̄ , s ∈ S ν̄
n

≤ (1 + 1/δ)ν̄ , s ∈ ΣH
n

≤ ν̄ , otherwise
;

hence, at almost every point tn(s), the norm of the derivative of x̄n is bounded by
Λ. This completes the proof.
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4.2 An existence result for a class of Minimum

Time problems

Around 1696 Jakob Bernoulli raised the following question: find the path from an
initial point x0 to a target point xf such that a body, subject to gravity only, starting
from x0 with initial velocity zero, would reach xf in minimum time.

In 1959 [26] A. F. Filippov proved the first general theorem on the existence of
solutions to minimum time control problems of the form

x′(t) = f(x(t), u(t)); u(t) ∈ U(x(t))

requiring that the set valued map x→ U(x) be upper semi-continuous (with respect
to the inclusion) and that the values F (x) = f(x, U(x)) be compact and convex.

In Theorem 4.9 of this section, we prove the existence of solutions to minimum
time problems for differential inclusions, under assumptions that do not require the
convexity of the images F (x) = f(x, U(x)). Furthermore, we present a model for
the problem raised by Bernoulli and we show that our model (a non-convex control
problem) satisfies the assumptions required by our Theorem 4.9 for the existence of
solutions to minimum time problems. The case of Brachistochrone as a minimum
time control problem has already been amply treated in [43, 47].

For a compact subset A ⊂ RN , set coA be its convex hull. For basic results
relating to solutions to differential inclusions, measurable selections and properties
of set-valued maps we refer to any standard text on the subject.

Lemma 4.8. Let x : [0, t∗] → RN be absolutely continuous; let X = {x(t) : t ∈
[0, t∗]} and let F be defined on X. Assume that, for almost every t ∈ [0, t∗],

x′(t) ∈ F (x(t))

and that there exists E ⊂ [0, t∗] of positive measure such that x′(t) = 0 on E. Then
there exist τ ∗ < t∗ and an absolutely continuous function x̃ : [0, τ ∗] → X, such that
x̃(0) = x(0) = x0, x̃(τ ∗) = x(t∗) and

x̃′(t) ∈ F (x̃(t))

for almost every τ ∈ [0, τ ∗].

Proof. a) It follows from the assumptions that there exists a closed subset K of E of
positive measure. The complement of K consists of at most countably many open
non-overlapping intervals (ai, bi), i ∈ I. Since the intervals (ai, bi) are disjoint, we
must have that τ ∗ =

∑
i∈I(bi − ai) < t∗. For each i ∈ I, set

τ(bi) =
∑

j∈I:bj<bi

(bj − aj).
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If bl > bm, we have that τ(bl) ≥ τ(bm) + (bm − am).
Consider the intervals (τ(bi), τ(bi) + bi − ai); they are disjoint, since in case we

had (τ(bl), τ(bl) + bl − al) ∩ (τ(bm), τ(bm) + bm − am) 6= ∅ with bl > bm, we would
obtain τ(bm)+(bm−am) > τ(bl), a contradiction. Set T = ∪i∈I(τ(bi), τ(bi)+bi−ai);
since τ ≤

∑
i∈I(bj − aj) = τ ∗, ∀τ ∈ T , we have that T ⊂ [0, τ ∗]. Moreover, the

measure of T equals τ ∗, in fact

m(T ) =
∑
i∈I

(bi − ai) = τ ∗.

b) Define the absolutely continuous function x̃ : [0, τ ∗] → RN by x̃(τ) = x0 +∫ τ

0
x̃′(s)ds, where

x̃′(s) =

{
x′(s+ ai − τ(bi)) , s ∈ (τ(bi), τ(bi) + bi − ai), i ∈ I
0 , s ∈ [0, τ ∗] \ T ;

we have x̃(0) = x0.
Fix τ ∈ T , there exists i ∈ I such that τ ∈ (τ(bi), τ(bi) + bi − ai). Notice that

τ ∈ (τ(bi), τ(bi) + bi − ai) if and only if τ + ai − τ(bi) ∈ (ai, bi). We have

x̃(τ)− x0 =

∫ τ(bi)

0

x̃′(s)ds+

∫ τ

τ(bi)

x̃′(s)ds

=
∑

j:τ(bj)+bj−aj≤τ(bi)

∫ τ(bj)+bj−aj

τ(bj)

x̃′(s)ds+

∫ τ

τ(bi)

x̃′(s)ds

=
∑

j:τ(bj)+bj−aj≤τ(bi)

∫ τ(bj)+bj−aj

τ(bj)

x′(s+ aj − τ(bj))ds+

∫ τ

τ(bi)

x′(s+ ai − τ(bi))ds

=
∑

j:τ(bj)+bj−aj≤τ(bi)

∫ bj

aj

x′(s)ds+

∫ τ+ai−τ(bi)

ai

x′(s)ds.

Notice that ∑
j:τ(bj)+bj−aj≤τ(bi)

∫ bj

aj

x′(s)ds =
∑

j:bj<bi

∫ bj

aj

x′(s)ds;

in fact, by the definition, τ(bj) + bj − aj ≤ τ(bi) if and only if τ(bj) < τ(bi). Hence

x̃(τ)− x0 =
∑

j:bj<bi

∫ bj

aj

x′(s)ds+

∫ τ+ai−τ(bi)

ai

x′(s)ds

=

∫ ai

0

x′(s)χ{[0,t∗]\K}(s)ds+

∫ τ+ai−τ(bi)

ai

x′(s)ds

= x(τ + ai − τ(bi))− x0.



4.2 An existence result for a class of Minimum Time problems 51

The previous equality implies that x̃ is a solution to the differential inclusion. In
fact we have that, almost everywhere in [0, τ ∗],

x̃′(τ) = x′(τ + ai − τ(bi)) ∈ F (x(τ + ai − τ(bi)) = F (x̃(τ)).

c) Set B = sup{bi}. Then either the supremum is attained or it is not. In the
first case, for some jk̃, B = bjk̃

and τ(bjk̃
) + (bjk̃

− ajk̃
) = τ ∗. From b) we have that

x(t) = x̃(t− ajk̃
+ τ(bjk̃

)), ∀t ∈ [ajk̃
, bjk̃

]. Since x′(t) = 0 on [B, t∗], by continuity we
have that x(t∗) = x(B) = x(bjk̃

) = x̃(bjk̃
− ajk̃

+ τ(bjk̃
)) = x̃(τ ∗).

In the second case, let {bjk
} be an increasing sequence, converging to B. From

|x(t∗)− x(ajk
)| =

∣∣∣∣∣
∫ B

ajk

x′(s)ds

∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
{j∈I:bj>bjk−1

}

∫
(aj ,bj)

x′(s)ds

∣∣∣∣∣∣
it follows that x(ajk

) → x(t∗), while from∑
{j∈I:bj>bjk

}

bj − aj < B − bjk
and τ ∗ =

∑
j∈I

bj − aj = τ(bjk
) +

∑
j∈I:bj≥bjk

bj − aj

we obtain that τ(bjk
) → τ ∗. By the previous point b) we have that x̃(τ(bjk

)) = x(ajk
)

and by continuity we infer that x(t∗) = x̃(τ ∗).

In what follows we shall consider the following minimum time problem for solu-
tions to a differential inclusion: X and S are closed subset of RN , S ⊂ X, x0 ∈ X
and F a set valued map. Consider the problem of reaching the target set S from x0,
satisfying the constraint x(t) ∈ X, and x(.) is a solution to the differential inclusion

x′(t) ∈ F (x(t)).

Theorem 4.9. Let X ⊂ RN be closed and let F be an upper semi-continuous set-
valued map defined on X with compact non empty images, with the additional prop-
erty that, for every x ∈ X, for every ξ ∈ coF (x), with ξ 6= 0, there exists λ ≥ 1 such
that λξ ∈ F (x). Assume that there exists t̃ > 0 and a solution x to

x′(t) ∈ coF (x(t)) x(0) = x0

such that x(t) ∈ X for every t ∈ [0, t̃] and that x(t̃) ∈ S. Then the minimum time
problem for

x′(t) ∈ F (x(t))

has a solution.
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Proof. a) Let t∗ = inf{t : Aco
0 (t)∩S 6= ∅}. Let (tn) be decreasing to t∗ and let xn be

solutions to the differential inclusion

x′(t) ∈ coF (x(t))

such that xn(0) = 0 and x(tn) ∈ S, x(t) ∈ X for t ∈ [0, tn]. A subsequence of this
sequence converges uniformly to x∗. Clearly, x∗(0) = 0, x∗(t

∗) ∈ S and x∗(t) ∈ X
for t ∈ [0, t∗]. It is known that, under the assumptions of the Theorem, x∗ is again
a solution to

x′(t) ∈ coF (x(t)).

Hence, x∗ is a solution to the convexified problem that reaches S in minimum time,
and t∗ is the value of the minimum time for the convexified problem.

b) Applying Lemma 4.8, we infer that x′∗(t) 6= 0 for a.e. t ∈ [0, t∗]. In fact,
otherwise, we could define a different solution to the convexified differential inclusion,
defined on an interval [0, τ ∗] with τ ∗ < t∗, having the same initial and final point:
hence t∗ would not be the value of the minimum time for the convexified problem.

c) By the previous point and the assumption on F (x), for almost every t there
exists a non empty set Λ(t) such that λ ∈ Λ(t) implies λx′∗(t) ∈ F (x∗(t)) and
λ ≥ 1. Reasoning as in [14], we obtain that Λ(.) is measurable on [0, t∗], hence, by
standard arguments, that there exists a measurable selection λ(.) from Λ(.). Define
the absolutely continuous map s by s(0) = 0 and s′(t) = 1/λ(t): s is an increasing
map and maps [0, t∗] onto [0, s∗], where s∗ ≤ t∗. Let t = t(s) be its inverse and
consider the map x̃(s) = x∗(t(s)). We obtain in particular that x̃(0) = x∗(0) and
that x̃(s∗) = x∗(t(s

∗)) = x∗(t
∗). We also have

d

ds
x̃(s) = x′∗(t(s))t

′(s) = x′∗(t(s))
1

s′(t(s))

= x′∗(t(s))λ1(t(s)) ∈ F (x∗(t(s))) = F (x̃(s)).

Hence we have obtained that x̃ is a solution to the original differential inclusion but
also a solution to the minimum time problem for Ico. Since every solution to the
original problem is also a solution to the convexified problem, the infimum of the
times needed to reach S along the solutions to the original problem cannot be lesser
than the minimum time for the convexified problem. Hence x̃ is a solution to the
minimum time problem for the original differential inclusion.

The following result is on the existence of solutions to initial value problems for
differential inclusions with non-convex right hand side.

Theorem 4.10. Let Ω be open, x0 ∈ Ω and let F be as in Theorem 4.9. Assume
that there exists t∗ > 0 such that, on [0, t∗], the Cauchy Problem

x′(t) ∈ coF (x(t)) x(0) = x0
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admits a solution x 6≡ x0. Then the Cauchy Problem

x′(t) ∈ F (x(t)) x(0) = x0

admits a solution on some interval [0, τ ∗]

Proof. Since x 6≡ x0, there exists t1 ∈ [0, t∗] such that x(t1) 6= x0. Consider the
minimum time problem for the convexified inclusion, with target set S = {x(t1)}.
This problem has a solution with minimum time τ ∗, where 0 < τ ∗ ≤ t1. By Theorem
4.9, the original non-convexified problem has a solution on [0, τ ∗].

The scheme commonly used to attack the minimum time problem raised by
Bernoulli is to transform it into the problem of minimizing∫ √

1 + (ξ′2)
2

√
−ξ2

dt

then to apply necessary conditions to find candidates for the solution; finally to
show that the family of such candidates covers the plane, hence that there is one
that passes through the final point. This approach, besides being very indirect, is
somewhat unsatisfactory, mainly because the integrand is not defined at the initial
condition (0, 0) and the necessary conditions are applied without a previous proof of
existence of solutions. Instead, Bernoulli’s problem can be stated as follows: in the
plane, an initial condition (ξ0

1 , ξ
0
2) is given; consider all the possible oriented rectifi-

able curves passing through it. Each such curve is defined by assigning (u1(.), u2(.)),
a unit vector describing the direction of its (oriented) tangent. In this way, the
parameter t is the arc-length parameterization of the curve.

The system of equations 
ξ′1 = u1ξ3
ξ′2 = u2ξ3
ξ′3 = −gu2

(B)

where the maps u1(.) and u2(.) are measurable and u2
1(t) + u2

2(t) = 1 a.e., describes
the motion of a body in the plane, defined by the coordinates (ξ1(t), ξ2(t)), with
(scalar) velocity ξ3(t) =

√
(ξ′1(t))

2 + (ξ′2(t))
2, along a curve identified assigning the

direction of its tangent vector (u1(.), u2(.)), subject to the gravity g.
Hence, the problem raised by Bernoulli can be stated as the following minimum

time control problem:
The Brachistochrone Minimum Time Problem: find a solution to the control

system 
ξ′1 = u1ξ3
ξ′2 = u2ξ3
ξ′3 = −gu2
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(ξ1(0), ξ2(0), ξ3(0)) = (ξ0
1 , ξ

0
2 , 0), subject to the constraint ξ3 ≥ 0, with control set

U = {(u1, u2) : u2
1 + u2

2 = 1)},

that would reach the target set S = (ξf
1 , ξ

f
2 ,R+), where ξf

2 ≤ ξ0
2 , in minimum time.

Theorem 4.11. The Brachistochrone Minimum Time Problem admits a solution.

Proof. Let x = (ξ1, ξ2, ξ3), X = {ξ3 ≥ 0}, S = (ξf
1 , ξ

f
2 ,R+); let f(x, u) be the right

hand side of (B) and set F (x) = f(x, U). Then, as one can check, F (x) satisfies the
assumptions of Theorem 4.9. Hence it is enough to show that there are solutions
x(t) issuing from x0 = (0, 0, 0) with ξ3(t) ≥ 0 and such that, at some finite time t∗,
ξ1(t

∗) = ξf
1 , ξ2(t

∗) = ξf
2 .

This is so in the case where ξf
2 < 0. In fact, in this case we have that, by choosing

the constant control 
u1 =

ξf
1√

(ξf
1 )2+(ξf

2 )2

u2 =
ξf
2√

(ξf
1 )2+(ξf

2 )2

we obtain that {
ξ1(t) = u1(−gu2

t2

2
)

ξ2(t) = u2(−gu2
t2

2
)

so that ξ1(t
f ) = ξf

1 and ξ2(t
f ) = ξf

2 for tf =
√

2
g

√
(ξf

1 )2+(ξf
2 )2

−ξf
2

. We also obtain that

ξ3(t) > 0 on (0, tf ) and that ξ3(t
f ) =

√
−2gξf

2 .

Consider the case ξf
2 = 0. We can assume ξf

1 6= 0, otherwise t∗ = 0 is the solution
to the minimum time problem. In the case ξf

1 > 0, consider the solution with the

constant control u1 = 1√
2
,u2 = − 1√

2
on [0,

√
2ξf

1 /g]. At time t =
√

2ξf
1 /g, we have

that ξ1(
√

2ξf
1 /g) =

ξf
1

2
, ξ2(

√
2ξf

1 /g) = − ξf
1

2
and ξ3(

√
2ξf

1 ) =
√
gξf

1 . The solution

with constant control u1 = 1√
2
, u2 = 1√

2
on the interval (

√
2ξf

1 /g, 2
√

2ξf
1 /g), with

initial conditions ξ1(
√

2ξf
1 /g) =

ξf
1

2
, ξ2(

√
2ξf

1 /g) = − ξf
1

2
and ξ3(

√
2ξf

1 /g) =
√
gξf

1

is such that at t = 2
√

2ξf
1 /g, ξ1(2

√
2ξf

1 /g) = ξf
1 and ξ2(2

√
2ξf

1 /g) = 0. Hence

tf = 2
√

2ξf
1 /g and ξ3(t) > 0 on (0, tf ).
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Chapter 5

Preliminaries

5.1 From the stationary points to the Euler-Lagrange

equation

A basic principle of analysis is that, giving a minimum point belonging to the interior
of the domain of a differential function, one obtains a necessary condition for this
point exploring its neighbourhood; one finds out that it is a stationary point, i.e.
the gradient of the function calculated on the point must be zero. It is possible to
apply this principle in the Calculus of Variations.

Let x̂ be a minimizer to the basic problem of the Calculus of Variations consisting
in minimizing the action

I(x) =

∫
I

L(t, x(t), x′(t))dt,

where I = [a, b] ⊂ R, on the set of those absolutely continuous functions x : I → RN

satisfying the boundary conditions x(a) = A, x(b) = B.
Fix an admissible variation, i.e. a smooth function η : [a, b] → RN , equal to zero

at the boundary, consider the action I evaluated on the trajectory x̂+ εη, where ε is
a real number, and consider the function obtained I(x̂+εη) as a real valued function
of ε. For this function the point 0 must be a stationary point. Whenever it is possible
to pass to the limit under the integral sign, one obtains the Euler-Lagrange equation
(E-L): for any variation η,∫ b

a

[〈∇x′L(t, x̂(t), x̂′(t)), η′(t)〉+ 〈∇xL(t, x̂(t), x̂′(t)), η(t)〉]dt = 0,

or, considering d/dt as a weak derivative,

d

dt
∇x′L(t, x̂(t), x̂′(t)) = ∇xL(t, x̂(t), x̂′(t)).

57
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L. Tonelli was able to prove the validity of the Euler-Lagrange equation with a
Lagrangian L belonging to C3, or belonging to C2 provided that N = 1 and Lx′x′ is
strictly positive. Many efforts have been performed in order to weaken the regularity
assumptions on L ([5], [16], [19], [20], [33], [38], [40], [50]).

In [5], J. M. Ball and V. J. Mizel presented an example of Lagrangian such that
the integrability of ∇xL(·, x̂(·), x̂′(·)) does not hold and, as a consequence, (E-L) is
not true along the minimizer. Hence, some condition on the term ∇xL(·, x̂(·), x̂′(·))
has to be imposed in order to ensure the validity of (E-L).

In [16], [19], [38], [50], under assumptions like the existence of an integrable func-
tion S(t) such that, for any y in a neighbourhood of the minimizer, |∇xL(t, y, x̂′(t))|
is bounded by S(t), the Euler-Lagrange equation is proved to be valid. This condi-
tion implies that, locally along the minimizer, L(t, ·, x̂′(t)) is Lipschitzian. However,
there are simple and meaningful examples of variational problems where this Lip-
schitzianity condition is not verified. In section 6.1, we present an example of this
kind.

In section 6.2 we provide a result on the validity of (E-L) ([27]) that is satisfied
by Lagrangians that are Lipschitzian in x, but that applies as well to some non-
Lipschitzian cases as the example in section 6.1.
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New Results

In section 6.2 we provide a result on the validity of (E-L) ([27]) that is satisfied
by Lagrangians that are Lipschitzian in x, but that applies as well to some non-
Lipschitzian cases. For instance, for the problem (P) with the (non-Lipschitzian)
Lagrangian L(t, x, x′) = (x′

√
|x| − 2/3)2, on the interval [0, 1] and with boundary

conditions x(0) = 0, x(1) = 1, by this result it can be proved the validity of (E-L).
This example is presented in section 6.1.

6.1 An example involving a non-Lipschitz Lagrangian

A result of F. H. Clarke ([19]) implies that the assumption of the existence of
an integrable function S(t) such that, for y in a neighbourhood of the minimizer,
|∇xL(t, y, x̂′(t))| ≤ S(t), is sufficient to establish the validity of the Euler-Lagrange
equation. This condition implies that, locally along the minimizer, L(t, ·, x̂′(t)) is
Lipschitzian of Lipschitz constant S(t). However, there are simple and meaningful
examples of variational problems where this Lipschitzianity condition is not verified.

Consider the Lagrangian defined by L(x, ξ) = (ξ
√
|x| − 2/3)2, and the problem

(P ) of minimizing ∫ 1

0

[
x′(t)

√
|x(t)| − 2

3

]2

dt

over the absolutely continuous functions x with x(0) = 0, x(1) = 1.

One can easily verify that x̂(t) = t2/3 is a minimizer for (P ). Indeed, L(x̂(t), x̂′(t)) =
0 on [0, 1], and L is non negative everywhere. The Lagrangian L is non-Lipschitzian
locally along x̂. In this case, although L is not differentiable everywhere, Lx(x̂(t), x̂

′(t))
exists a.e. (it is a.e. zero) and it is integrable.

59
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6.2 The Euler-Lagrange equation for non-Lipschitz

Lagrangians

In this section we provide (under Caratheodory’s conditions) a result on the validity
of the Euler-Lagrange equation that is satisfied by Lagrangians that are Lipschitzian
in x, but that applies as well to the non-Lipschitzian cases as the example in the
previous section.

In the proof we first show that the fact that x̂ is a minimizer implies the inte-
grability of ∇ξL(·, x̂(·), x̂′(·)). Then, using this result, we establish the validity of
(E-L) under Caratheodory’s condition.

Note that we do not assume any convexity hypothesis on the Lagrangian. More-
over, no growth condition whatsoever is assumed so that, as far as we know, relax-
ation theorems cannot be applied.

Consider the problem of minimizing the action

I(x) =

∫
I

L(t, x(t), x′(t))dt,

where I is the interval [a, b], on the set of those absolutely continuous functions
x : I → RN satisfying the boundary conditions x(a) = A, x(b) = B. Let x̂ be a (weak
local) minimizer yielding a finite value for the action I, and set µ = supt∈[a,b] |x̂(t)|.

Our results will depend on the following assumption:
assumption A. i) L is differentiable in x along x̂, for a.e. t, and the map

∇xL(·, x̂(·), x̂′(·)) is integrable on I;
ii) there exists a function S(t) integrable on I such that, for any y ∈ B(0, µ+1),

L(t, y, x̂′(t)) ≤ L(t, x̂(t), x̂′(t)) + S(t)|y − x̂(t)|.

Consider problem (P ) as presented in the previous section. The Lagrangian L
and x̂ satisfy the assumption A: Lx(x̂(t), x̂

′(t)) exists a.e. (identically zero, hence
integrable), S(t) = t−2/3 verifies the inequality

L(y, x̂′(t)) ≤ S(t)|y − x̂(t)|,

since (
2

3
t−1/3

√
|y| − 2

3

)2

=
4(
√
|y| − t1/3)

9t2/3(
√
|y|+ t1/3)

(|y| − t2/3) ≤ 4

9t2/3
|y − t2/3|.

In what follows, R denotes R ∪ {+∞}.
This is our first result on the term ∇ξL(·, x̂(·), x̂′(·)):
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Theorem 6.1. Suppose that L : I ×RN ×RN → R is an extended valued function,
finite on its effective domain of the form domL = I ×RN ×G, where G ⊂ RN is an
open set, and that it satisfies Carathéodory’s conditions, i.e., L(·, x, ξ) is measurable
for fixed (x, ξ) and L(t, ·, ·) is continuous for almost every t. Moreover assume that
L is differentiable in ξ on domL and that ∇ξL satisfies Carathéodory’s conditions
on domL.

Suppose that assumption A holds. Then,∫
I

|∇ξL(t, x̂(t), x̂′(t))|dt < +∞.

Proof. 1) By assumption, L(·, x̂(·), x̂′(·)) ∈ L1(I), hence setting S0 = {t ∈ I : x̂′(t) /∈
G}, we have m(S0) = 0. Given ε > 0, we can cover S0 by an open set O1 of measure
m(O1) < ε/2. We have also that ∇ξL is a Carathéodory’s function and that x̂′ is
measurable in I. Hence, by the theorems of Scorza Dragoni and of Lusin, for the
given ε > 0 there exists an open set O2 such that m(O2) < ε/2 and at once x̂′

is continuous in I \ O2, and ∇ξL is continuous in (I \ O2) × RN × G. By taking
Kε = I \ (O1 ∪O2), we have that Kε is a closed set such that on it x̂′ is continuous
with values in G, ∇ξL is continuous on Kε ×RN ×G and m(I \Kε) < ε. For n ≥ 1
set εn = (b − a)/2n+1 and Kn = Kεn ; set also Cn = ∪n

j=1Kj. Then Cn are closed
sets, Cn ⊂ Cn+1, x̂

′ is continuous on Cn with values in G, ∇ξL is continuous in
Cn × RN ×G and limn→+∞m(I \ Cn) = 0.

From these properties it follows that there exists kn > 0 such that, for all t ∈ Cn,

|∇ξL(t, x̂(t), x̂′(t))| < kn.

There is no loss of generality in assuming kn ≥ kn−1. Moreover, we have that
m(C1) ≥ (b− a)/2 and

∑∞
n=2m(Cn \ Cn−1) ≤ (b− a)/2.

For all n > 1, we set An = Cn \ Cn−1. Hence we obtain that Cm = C1 ∪m
n=2 An

and that I = E ∪ C1 ∪n>1 An, where m(E) = 0.

2) Consider the function

θ(t) =

{
0 if ∇ξL(t, x̂(t), x̂′(t)) = 0,
∇ξL(t,x̂(t),x̂′(t))

|∇ξL(t,x̂(t),x̂′(t))| otherwise,

and

vn =

∫
An

θ(t)dt,

so that |vn| ≤ m(An). There exists a closed set Bn ⊆ C1 such that m(Bn) = |vn|.
Set

θn
′(t) = −θ(t)χAn(t) +

vn

|vn|
χBn(t).
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We have that ∫
I

θn
′(t)dt = −

∫
An

θ(t)dt+ vn = 0.

Hence, setting θn(t) =
∫ t

a
θn
′(τ)dτ , we see that the functions θn(t) are admissible

variations. Moreover we obtain

||θn||∞ ≤ sup
t∈I

∫ t

a

|θn
′(τ)|dτ ≤

∫
I

|θn
′(τ)|dτ ≤ 2m(An).

3) For t inAn, we have |∇ξL(t, x̂(t), x̂′(t))| < kn; for t inBn, |∇ξL(t, x̂(t), x̂′(t))| <
k1 ≤ kn. Recalling that An ⊂ Cn, we infer that, for all t ∈ An ∪Bn,

|∇ξL(t, x̂(t), x̂′(t))| ≤ kn.

We wish to obtain an uniform bound for |∇ξL| computed in a suitable neighbourhood
of the minimizer (x̂(·), x̂′(·)). Consider the set (An∪Bn)×RN ×G as a metric space
Mn with distance d((t, x, ξ), (t′, x′, ξ′)) = sup(|t− t′|, |x− x′|, |ξ − ξ′|). On Mn, ∇ξL
is continuous. Moreover, its subset

Gn = {(t, x̂(t), x̂′(t)) : t ∈ An ∪Bn}

is compact and, on Gn, |∇ξL| is bounded by kn. Hence there exists δn > 0 such that,
for (t, x, ξ) ∈Mn with d ((t, x, ξ), (t, x̂(t), x̂′(t))) < δn, we have |∇ξL(t, x, ξ)| < kn+1.

4) For |λ| < min{1/2m(An), δn/2m(An), δn}, consider the integrals∫
I

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t) + λθ′n(t))− L(t, x̂(t), x̂′(t))]dt =∫

An∪Bn

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t) + λθ′n(t))− L(t, x̂(t) + λθn(t), x̂′(t))]dt+∫

I

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]dt.

For every t ∈ An ∪Bn there exists ζλ(t) ∈ (0, λ) such that

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t) + λθ′n(t))− L(t, x̂(t) + λθn(t), x̂′(t))] =

〈∇ξL(t, x̂(t) + λθn(t), x̂′(t) + ζλ(t)θ
′
n(t)), θ′n(t)〉 ≤

|∇ξL(t, x̂(t) + λθn(t), x̂′(t) + ζλ(t)θ
′
n(t))|

and from the choice of λ, |∇ξL(t, x̂(t) + λθn(t), x̂′(t) + ζλ(t)θ
′
n(t))| < kn + 1. Hence,

we can apply the Dominated Convergence Theorem to obtain that

lim
λ→0

∫
An∪Bn

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t) + λθ′n(t))− L(t, x̂(t) + λθn(t), x̂′(t))]dt =
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An∪Bn

〈∇ξL(t, x̂(t), x̂′(t)), θ′n(t)〉dt.

5) Set f+(s) = max{0, f(s)}, f−(s) = max{0,−f(s)}. Since

0 ≤ 1

λ
[L(t, x̂(t) + λθn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]+ ≤ S(t)|θn(t)|,

by the Dominated Convergence Theorem,

lim
λ→0

∫
I

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]+dt =

∫
I

lim
λ→0

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]+dt.

By the Fatou’s Lemma,

lim inf
λ→0

∫
I

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]−dt ≥

∫
I

lim inf
λ→0

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]−dt.

We have obtained that

lim sup
λ→0

∫
I

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]dt ≤

lim
λ→0

∫
I

(
1

λ
[L(t, x̂(t) + λθn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]+−

lim inf
λ→0

∫
I

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]−dt ≤∫

I

lim sup
λ→0

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]dt =∫

I

〈∇xL(t, x̂(t), x̂′(t)), θn(t)〉]dt.

6) Since x̂ is a minimizer, we have

0 ≤
∫

An∪Bn

〈∇ξL(t, x̂(t), x̂′(t)), θ′n(t)〉dt

+ lim sup
λ→0

∫
I

1

λ
[L(t, x̂(t) + λθn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]dt

≤
∫

An∪Bn

〈∇ξL(t, x̂(t), x̂′(t)), θ′n(t)〉dt+

∫
I

〈∇xL(t, x̂(t), x̂′(t)), θn(t)〉dt.

(6.2.1)
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Since θ′n(t) = −∇ξL(t, x̂(t), x̂′(t))/|∇ξL(t, x̂(t), x̂′(t))|, for any t in An, it fol-
lows that −〈∇ξL(t, x̂(t), x̂′(t)), θ′n(t)〉χAn(t) = |∇ξL(t, x̂(t), x̂′(t))|χAn(t). Hence, we
obtain that (6.2.1) can be written as∫

An

|∇ξL(t, x̂(t), x̂′(t))|dt ≤

∫
Bn

〈∇ξL(t, x̂(t), x̂′(t)), θ′n(t)〉dt+

∫
I

〈∇xL(t, x̂(t), x̂′(t)), θn(t)〉dt.

On Bn, |∇ξL(t, x̂(t), x̂′(t))| is bounded by k1; from Hölder’s inequality and the esti-
mate on ||θn||∞ obtained in 2) we have that there exists a constant C (independent
of n) such that ∫

An

|∇ξL(t, x̂(t), x̂′(t))|dt ≤ Cm(An).

7) As m → +∞, the sequence of functions
(
|∇ξL(t, x̂(t), x̂′(t))|χ{∪m

n=2An}(t)
)

m
converges monotonically to the function |∇ξL(t, x̂(t), x̂′(t))|χ{∪n>1An}(t). From the
estimate above and monotone convergence, we obtain∫

I\C1

|∇ξL(t, x̂(t), x̂′(t))|dt =

∫
I

|∇ξL(t, x̂(t), x̂′(t))|χ{∪n>1An}dt ≤ Cm(∪n>1An).

On C1, |∇ξL(t, x̂(t), x̂′(t))| < k1. Hence∫
I

|∇ξL(t, x̂(t), x̂′(t))|dt < +∞.

Corollary 6.2. Under the same assumptions as in Theorem 6.1, for every variation
η, η(a) = 0, η(b) = 0 and η′ ∈ L∞(I), we have∫

I

[〈∇ξL(t, x̂(t), x̂′(t)), η′(t)〉+ 〈∇xL(t, x̂(t), x̂′(t)), η(t)〉]dt = 0.

Proof. We shall prove that, for every η in AC(I) with bounded derivative, such that
η(a) = η(b) = 0, we have∫

I

[〈∇ξL(t, x̂(t), x̂′(t)), η′(t)〉+ 〈∇xL(t, x̂(t), x̂′(t)), η(t)〉]dt ≥ 0.

Fix η, let |η′(t)| ≤ K for almost every t in I.
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1) Define Cn and kn as in point 1) of the proof of Theorem 6.1. Set

vn =

∫
I\Cn

η′(t)dt.

We have that limn→+∞ |vn| = 0. In particular, for n ≥ ν, there exists Bn ⊆ C1 such
that m(Bn) = |vn|. Set

(ηn)′(t) =


0 for t ∈ I \ Cn,
η′(t) for t ∈ Cn \Bn,
vn

|vn| + η′(t) for t ∈ Bn

We obtain∫
I

η′n(t)dt =

∫
Cn\Bn

η′(t)dt+

∫
Bn

[
vn

|vn|
+ η′(t)

]
dt =

∫
Cn

η′(t)dt+vn =

∫
I

η′(t)dt = 0.

Hence, setting ηn(t) =
∫ t

a
η′n(τ)dτ , we have that the functions ηn(t) are variations

and that, for almost every t in I, |η′n(t)| ≤ (1+K), so that ||ηn||∞ ≤ (1+K)(b−a).

2) As in point 3) of the proof of Theorem 6.1, there exists δn > 0 such that for
(t, x, ξ) ∈ Cn×RN×G, with d ((t, x, ξ), (t, x̂(t), x̂′(t))) < δn, we have |∇ξL(t, x, ξ)| <
kn + 1.

3) For |λ| < min{1/(1 +K)(b− a), δn/(1 +K)(b− a), δn/(1 +K)}, consider the
integrals ∫

I

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t) + λη′n(t))− L(t, x̂(t), x̂′(t))]dt =

∫
Cn

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t) + λη′n(t))− L(t, x̂(t) + ληn(t), x̂′(t))]dt+∫

I

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]dt.

For almost every t ∈ Cn, there exists ζλ(t) ∈ (0, λ) such that

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t) + λη′n(t))− L(t, x̂(t) + ληn(t), x̂′(t))] =

〈∇ξL(t, x̂(t) + ληn(t), x̂′(t) + ζλ(t)η
′
n(t)), η′n(t)〉 ≤

|∇ξL(t, x̂(t) + ληn(t), x̂′(t) + ζλ(t)η
′
n(t))|(1 +K) < (kn + 1)(1 +K).
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Hence, we can apply the Dominated Convergence Theorem to obtain that

lim
λ→0

∫
I

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t) + λη′n(t))− L(t, x̂(t) + ληn(t), x̂′(t))]dt =

∫
Cn

〈∇ξL(t, x̂(t), x̂′(t)), η′n(t)〉dt =

∫
I

〈∇ξL(t, x̂(t), x̂′(t)), η′n(t)〉dt.

4) Following the point 5) of Theorem 6.1, we obtain that

lim sup
λ→0

∫
I

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]dt ≤

∫
I

〈∇xL(t, x̂(t), x̂′(t)), ηn(t)〉]dt.

5) Since x̂ is a minimizer, we have

0 ≤
∫

I

〈∇ξL(t, x̂(t), x̂′(t)), η′n(t)〉dt+lim sup
λ→0

∫
I

1

λ
[L(t, x̂(t)+ληn(t), x̂′(t))−L(t, x̂(t), x̂′(t))]dt ≤

∫
I

[〈∇ξL(t, x̂(t), x̂′(t)), η′n(t)〉+ 〈∇xL(t, x̂(t), x̂′(t)), ηn(t)〉]dt.

6) Since

lim
n→+∞

η′n(t) = η′(t) and |∇ξL(t, x̂(t), x̂′(t))||η′n(t)| ≤ |∇ξL(t, x̂(t), x̂′(t))|(1 +K),

lim
n→+∞

ηn(t) = η(t) and |∇xL(t, x̂(t), x̂′(t))||ηn(t)| ≤ |∇xL(t, x̂(t), x̂′(t))|(1+K)(b−a),

by the dominated convergence we obtain

lim
n→+∞

∫
I

〈∇ξL(t, x̂(t), x̂′(t)), η′n(t)〉dt =

∫
I

〈∇ξL(t, x̂(t), x̂′(t)), η′(t)〉dt.

and

lim
n→+∞

∫
I

〈∇xL(t, x̂(t), x̂′(t)), ηn(t)〉dt =

∫
I

〈∇xL(t, x̂(t), x̂′(t)), η(t)〉dt.

It follows that∫
I

[〈∇ξL(t, x̂(t), x̂′(t)), η′(t)〉+ 〈∇xL(t, x̂(t), x̂′(t)), η(t)〉]dt ≥ 0.



6.2 The Euler-Lagrange equation for non-Lipschitz Lagrangians 67

Even if the validity of the Euler-Lagrange equations already follows by the pre-
vious Corollary 6.2 and the DuBois-Reymond’s lemma ([8]), we give an alternative
proof in Corollary 6.4.

In the following theorem we prove an additional regularity result for the La-
grangian evaluated along the minimizer.

Theorem 6.3. Under the same assumptions as in Theorem 6.1, the map ∇ξL(·, x̂(·), x̂′(·))
is in L∞(I).

Proof. Using an iteration process, we shall prove that for every p in N, ∇ξL(·, x̂(·), x̂′(·))
is in Lp(I). Since the Lp are nested, this proves that ∇ξL(·, x̂(·), x̂′(·)) ∈ ∩p≥1L

p(I).
At the same time, we shall prove that there exists a constant K > 0 such that, for
every 1 ≤ p < +∞, ||∇ξL||p ≤ K, thus proving that ∇ξL(·, x̂(·), x̂′(·)) is in L∞(I).

Suppose that
1) From Theorem 6.1, we know that ∇ξL(·, x̂(·), x̂′(·)) is in L1(I). Starting the

iteration process, fix p ∈ N and suppose that ∇ξL(·, x̂(·), x̂′(·)) ∈ Lp(I), to prove
that ∇ξL(·, x̂(·), x̂′(·)) ∈ Lp+1(I).

2) We can assume ||∇ξL||p 6= 0. Define Cn, An, kn as in point 1) of the proof of
Theorem 6.1. For all n > 1, set

vp
n =

(b− a)

2||∇ξL||pp

∫
An

∇ξL(t, x̂(t), x̂′(t))|∇ξL(t, x̂(t), x̂′(t))|p−1dt.

Since

m(C1) ≥ (b− a)/2 and |vp
n| ≤

(b− a)

2||∇ξL||pp

∫
An

|∇ξL(t, x̂(t), x̂′(t))|p ≤ (b− a)/2,

there exists a set Bp
n ⊂ C1 such that m(Bp

n) = |vp
n|, so that

2||∇ξL||pp
(b− a)

∫
Bp

n

vp
n

|vp
n|
dt =

∫
An

∇ξL(t, x̂(t), x̂′(t))|∇ξL(t, x̂(t), x̂′(t))|p−1.

Set

(θp
n)′(t) = −∇ξL(t, x̂(t), x̂′(t))|∇ξL(t, x̂(t), x̂′(t))|p−1χAn(t) +

2||∇ξL||pp
(b− a)

vp
n

|vp
n|
χBp

n
(t)

and θp
n(t) =

∫ t

a
(θp

n)′(τ)dτ . We obtain that ||θp
n||∞ ≤ 2

∫
An
|∇ξL(t, x̂(t), x̂′(t))|pdt.

The variations θp
n have bounded derivatives so we can apply Corollary 6.2 to obtain

that ∫
I

[〈∇ξL(t, x̂(t), x̂′(t)), (θp
n)′(t)〉+ 〈∇xL(t, x̂(t), x̂′(t)), θp

n(t)〉]dt = 0.
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It follows that ∫
An

|∇ξL(t, x̂(t), x̂′(t))|p+1dt =

2||∇ξL||pp
(b− a)

∫
Bp

n

〈∇ξL(t, x̂(t), x̂′(t)), vp
n/|vp

n|〉dt+

∫
I

〈∇xL(t, x̂(t), x̂′(t)), θp
n(t)〉dt ≤

k1

∫
An

|∇ξL(t, x̂(t), x̂′(t))|pdt+2

∫
An

|∇ξL(t, x̂(t), x̂′(t))|pdt
∫

I

|∇xL(t, x̂(t), x̂′(t))|dt ≤

C̃

∫
An

|∇ξL(t, x̂(t), x̂′(t))|pdt

where C̃ is independent of n and p (suppose C̃ ≥ 1). The sequence of maps(
|∇ξL(t, x̂(t), x̂′(t))|p+1χ∪m

n=2An(t)
)

m

converges monotonically to |∇ξL(t, x̂(t), x̂′(t))|p+1χ{∪n>1An}(t), and each integral∫
I
|∇ξL(t, x̂(t), x̂′(t))|p+1χ{∪m

n=2An}(t)dt is bounded by the same constant

C̃
∞∑

n=2

∫
An

|∇ξL(t, x̂(t), x̂′(t))|pdt = C̃

∫
I\C1

|∇ξL(t, x̂(t), x̂′(t))|pdt.

Hence, by the Monotone Convergence Theorem,∫
I\C1

|∇ξL(t, x̂(t), x̂′(t))|p+1dt ≤ C̃

∫
I\C1

|∇ξL(t, x̂(t), x̂′(t))|pdt < +∞.

On C1, |∇ξL(t, x̂(t), x̂′(t))| < k1, proving that ∇ξL(·, x̂(·), x̂′(·)) ∈ Lp+1(I). More-
over, we have also obtained that∫

I\C1

|∇ξL(t, x̂(t), x̂′(t))|p+1dt ≤ C̃p

∫
I\C1

|∇ξL(t, x̂(t), x̂′(t))|dt,

so that (∫
I\C1

|∇ξL(t, x̂(t), x̂′(t))|p+1dt

)1/(p+1)

≤ C̃S,

where S = max{1,
∫

I\C1
|∇ξL(t, x̂(t), x̂′(t))|dt}. Setting T = max{1,m(C1)} we have

that, for all p ∈ N,

||∇ξL||(p+1) ≤
(
k

(p+1)
1 m(C1) +

∫
I\C1

|∇ξL(t, x̂(t), x̂′(t))|p+1dt

)1/(p+1)

≤

k1m(C1)
1/(p+1) +

(∫
I\C1

|∇ξL(t, x̂(t), x̂′(t))|p+1dt

)1/(p+1)

≤ k1T + C̃S = K.
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Corollary 6.4. Under the same conditions as in Theorem 6.1, for every variation
η, η(a) = 0, η(b) = 0 and η′ ∈ L1(I), we have∫

I

[〈∇ξL(t, x̂(t), x̂′(t)), η′(t)〉+ 〈∇xL(t, x̂(t), x̂′(t)), η(t)〉]dt = 0.

As a consequence, t→ ∇ξL(t, x̂(t), x̂′(t)) is absolutely continuous.

Proof. We shall prove that, for every η in AC(I), such that η(a) = η(b) = 0, we
have ∫

I

[〈∇ξL(t, x̂(t), x̂′(t)), η′(t)〉+ 〈∇xL(t, x̂(t), x̂′(t)), η(t)〉]dt ≥ 0.

1) Fix η. Through the same steps as in point 1) of the proof of Theorem 6.1,
for every n ∈ N we can define a closed set Cn such that on it η′ is continuous, x̂′ is
continuous with values in G, ∇ξL is continuous in Cn×RN ×G and limn→+∞m(I \
Cn) = 0. In particular, it follows that there are constants kn and cn > 0 such that,
for all t ∈ Cn,

|∇ξL(t, x̂(t), x̂′(t))| < kn and |η′(t)| < cn.

Define vn, Bn, η′n and ηn as in the proof of Corollary 6.2. Since, for all t ∈ I,
|η′n(t)| ≤ 1 + |η′(t)|, it follows that ||η′n||1 ≤ (b − a) + ||η′||1. Moreover, ||ηn||∞ ≤
||η′n||1 ≤ (b− a) + ||η′||1.

2) As in point 3) of the proof of Theorem 6.1, there exists δn > 0 such that for
(t, x, ξ) ∈ Cn×RN×G, with d ((t, x, ξ), (t, x̂(t), x̂′(t))) < δn, we have |∇ξL(t, x, ξ)| <
kn + 1.

3) For |λ| < min{1/((b− a) + ||η′||1), δn/((b− a) + ||η′||1), δn/(cn + 1)}, consider
the integrals∫

I

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t) + λη′n(t))− L(t, x̂(t), x̂′(t))]dt =

∫
I

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t) + λη′n(t))− L(t, x̂(t) + ληn(t), x̂′(t))]dt+∫

I

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]dt =∫

Cn

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t) + λη′n(t))− L(t, x̂(t) + ληn(t), x̂′(t))]dt+∫

I

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]dt.
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For every t ∈ Cn, there exists ζλ(t) ∈ (0, λ) such that

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t) + λη′n(t))− L(t, x̂(t) + ληn(t), x̂′(t))] =

〈∇ξL(t, x̂(t) + ληn(t), x̂′(t) + ζλ(t)η
′
n(t)), η′n(t)〉 ≤

|∇ξL(t, x̂(t) + ληn(t), x̂′(t) + ζλ(t)η
′
n(t))|cn < (kn + 1)cn.

Hence, we can apply the Dominated Convergence Theorem to obtain that

lim
λ→0

∫
I

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t) + λη′n(t))− L(t, x̂(t) + ληn(t), x̂′(t))]dt =∫

Cn

〈∇ξL(t, x̂(t), x̂′(t)), η′n(t)〉dt =

∫
I

〈∇ξL(t, x̂(t), x̂′(t)), η′n(t)〉dt.

4) Following the point 5) of Theorem 6.1, we obtain that

lim sup
λ→0

∫
I

1

λ
[L(t, x̂(t) + ληn(t), x̂′(t))− L(t, x̂(t), x̂′(t))]dt ≤∫

I

〈∇xL(t, x̂(t), x̂′(t)), ηn(t)〉dt

and, since x̂ is a minimizer, we have

0 ≤
∫

I

〈∇ξL(t, x̂(t), x̂′(t)), η′n(t)〉+lim sup
λ→0

∫
I

1

λ
[L(t, x̂(t)+ληn(t), x̂′(t))−L(t, x̂(t), x̂′(t))]dt ≤∫

I

[〈∇ξL(t, x̂(t), x̂′(t)), η′n(t)〉+ 〈∇xL(t, x̂(t), x̂′(t)), ηn(t)〉]dt.

5) Finally we have:

lim
n→+∞

η′n(t) = η′(t) and |∇ξL(t, x̂(t), x̂′(t))||η′n(t)| ≤ ||∇ξL(·, x̂(·), x̂′(·))||∞(1+|η′(t)|),

and

lim
n→+∞

ηn(t) = η(t) and |∇xL(t, x̂(t), x̂′(t))||ηn(t)| ≤ |∇xL(t, x̂(t), x̂′(t))|((b−a)+||η′||1),

so that, by dominated convergence, we obtain

lim
n→+∞

∫
I

〈∇ξL(t, x̂(t), x̂′(t)), η′n(t)〉dt =

∫
I

〈∇ξL(t, x̂(t), x̂′(t)), η′(t)〉dt.

and

lim
n→+∞

∫
I

〈∇xL(t, x̂(t), x̂′(t)), ηn(t)〉dt =

∫
I

〈∇xL(t, x̂(t), x̂′(t)), η(t)〉dt.

Hence, it follows that∫
I

[〈∇ξL(t, x̂(t), x̂′(t)), η′(t)〉+ 〈∇xL(t, x̂(t), x̂′(t)), η(t)〉]dt ≥ 0.

The absolute continuity of t→ ∇ξL(t, x̂(t), x̂′(t)) is classical (e.g. [7]).
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