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Abstract. All previous geometric active contour models that have been formulated
as gradient flows of various energies use the same L2-type inner product to define
the notion of gradient. Recent work has shown that this inner product induces a
pathological Riemannian metric on the space of smooth curves. However, there are
also undesirable features associated with the gradient flows that this inner product
induces. In this paper, we reformulate the generic geometric active contour model
by redefining the notion of gradient in accordance with Sobolev-type inner products.
We call the resulting flows Sobolev active contours. Sobolev metrics induce favorable
regularity properties in their gradient flows. In addition, Sobolev active contours
favor global translations, but are not restricted to such motions; they are also less
susceptible to certain types of local minima in contrast to traditional active contours.
These properties are particularly useful in tracking applications. We demonstrate
the general methodology by reformulating some standard edge-based and region-
based active contour models as Sobolev active contours and show the substantial
improvements gained in segmentation.

Keywords: active contours, gradient flows, Sobolev norm, global flows, shape op-
timization

1. Introduction

Active contours, introduced by Kass et al. (1987), have been widely
used for the segmentation problem. The idea is to minimize an en-
ergy, defined on contours or curves, that contains an image based edge
attraction term and a smoothness term, which becomes large when
the curve is irregular. An evolution is derived to minimize the energy
based on principles from the calculus of variations. There have been
many variations to original model of Kass et al.; for example (Cohen,
1991), and a survey in (Blake and Isard, 1998). An unjustified feature
of the model of (Kass et al., 1987) is that the evolution is dependent
on the way the contour is parameterized. Hence there have been geo-
metric evolutions similar to the idea of Kass et al. in (Caselles et al.,
1993; Malladi et al., 1995), which can be implemented by level set
methods (Osher and Sethian, 1988). Thereafter, (Kichenassamy et al.,
1995; Caselles et al., 1995) considered minimizing a geometric energy,
which is a generalization of Euclidean arclength, defined on curves for

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

journal_complete_revision.tex; 10/10/2006; 12:43; p.1



2

the edge-detection problem. The authors derived the gradient descent
flow in order to minimize the geometric energy. In the works of (Siddiqi
et al., 1998) and (Xu and Prince, 1998), the authors build on the active
contour edge-detection approach to segmentation.

In contrast to the edge-based approaches for active contours (men-
tioned above), region-based energies (Ronfard, 1994; Zhu et al., 1995;
Yezzi et al., 1999; Chan and Vese, 2001) for active contours have pro-
vided many desirable features; for example, they provide less sensitivity
to noise, better ability to capture concavities of objects, more depen-
dence on global features of the image, and less sensitivity to the initial
contour placement. In these approaches, an energy is designed to be
minimized when the curve partitions the image into statistically dis-
tinct regions. In (Mumford and Shah, 1985; Mumford and Shah, 1989),
the authors introduce and rigorously study a region-based energy that
is designed to both extract the boundary of distinct regions while also
smoothing the image within these regions. Subsequently, (Tsai et al.,
2001a; Vese and Chan, 2002) gave a curve evolution implementation of
minimizing the energy functional considered by (Mumford and Shah,
1985; Mumford and Shah, 1989) in a level set framework (Osher and
Sethian, 1988). Another work that makes use of a region-based energy
is (Paragios and Deriche, 2002a; Paragios and Deriche, 2002b), which
also combines edge-based information. Like the edge-based methods,
the gradient descent flows are calculated to minimize these energies.

More recent works that use active contours for segmentation are not
only based on information from the image to be segmented (edge-based
or region-based), but also a-priori information known about the shape
of the desired object to be segmented. The work of Leventon et al.
(2000) showed how to incorporate prior information into the active
contour paradigm. Subsequently, there have been a number of works,
for example (Tsai et al., 2001b; Rousson and Paragios, 2002; Chen
et al., 2002; Cremers and Soatto, 2003; Raviv et al., 2004), which
design energy functionals that incorporate prior shape information of
the desired object. In these works, the main idea is designing a prior
term of the energy that is small when the curve is close, in some sense,
to a pre-specified shape. The need for this type of prior term arose
from several factors including the fact that some images contain limited
information, the energies functions considered previously could not in-
corporate complex information, the energies had too many extraneous
local minima, and the gradient flows to minimize these energies allowed
for arbitrary deformations that gave rise to unlikely shapes.

Works on incorporating prior shape knowledge into active contours
have led to a fundamental question on how to define distance be-
tween two curves or shapes. Many works, for example (Younes, 1998;
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Soatto and Yezzi, 2002; Mio and Srivastava, 2004; Charpiat et al.,
2005a; Michor and Mumford, 2003; Yezzi and Mennucci, 2005a), in
the shape analysis literature have proposed different ways of defining
this distance. However, Michor and Mumford, Yezzi and Mennucci
(2003, 2005b) observed that all previous works on geometric active
contours that derive gradient flows to minimize energies, which were
described earlier, imply a natural notion of distance induced by a
Riemannian structure. Indeed, the notion of gradient of such ener-
gies relies on an inner product defined the set of perturbations of a
curve. All of these previous works on geometric active contours use the
same geometric L2-type inner product, which we refer to as H0, to
define gradient. However, Michor and Mumford, Yezzi and Mennucci
(2003, 2005a) have shown a surprising property: the Riemannian metric
on the space of curves induced by the H0 inner product is pathological,
i.e., the “distance” between any two curves is zero.

In addition to the pathologies of the Riemannian structure induced
byH0, there are also undesirable features ofH0 gradient flows as we will
demonstrate in this paper. Some of these features are listed below.

1. There are no regularity terms in the definition of the H0 inner
product. That is, there is nothing in the definition of H0 that
discourages flows that are not smooth in the space of curves. By
smooth in the spaces of curves, we mean that the surface formed
by plotting the evolving curve as a function of time is smooth.
Thus, when energies are designed to depend on the image that
is to be segmented, the H0 gradient is very sensitive to noise in
the image. As a result, the curve becomes non-smooth instantly.
Therefore, in geometric active contours models, a penalty on the
curve’s length is added to keep the curve smooth in addition to
producing a variational problem that is well-posed. However, this
changes the energy that is being optimized. Moreover, as we shall
demonstrate, the length penalty is sometimes insufficient, and leads
to other problems.

2. H0 gradients, evaluated at a particular point on the curve, de-
pend locally on derivatives of the curve. Therefore, as the curve
becomes non-smooth, as mentioned above, the derivative estimates
become inaccurate, and thus, the curve evolution becomes inaccu-
rate. Moreover, for region-based and edge-based active contours,
the H0 gradient at a particular point on the curve depends lo-
cally on image data at the particular point. Although region-based
energies may depend on global statistics, such as mean values of
regions, the H0 gradient still depends on local image data. These
facts imply that the H0 is sensitive to noise and local features.
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3. The H0 norm gives non-preferential treatment to arbitrary defor-
mations regardless of whether the deformations are global motions
(not changing the shape of the curve) such as translations, rota-
tions and scales or whether they are more local deformations. This
implies, as we shall show, that the H0-gradient of image depen-
dent energies “encourages” points on the evolving curve to move
“independently” to decrease energy rather than encouraging the
points to move more collectively. This restricts the gradient at a
particular point from “seeing” information located at other points
of the curve. Therefore, the curve evolving according to the H0

gradient flow is susceptible to local minima of the energy.

4. Many geometric active contours (such as edge and region-based
active contours) require that the unit normal to the evolving curve
be defined. As such, the evolution does not make sense for polygons.
Moreover, since in general, an H0 active contour does not remain
smooth, one needs special numerical schemes based on viscosity
theory in a level set framework to define the flow.

5. If the energy depends on n derivatives of the curve, then the H0

gradient has 2n derivatives of the curve. Since the corresponding
level set flows with higher than two derivatives are not known to
have a maximum principle, level set methods (Osher and Sethian,
1988) are difficult to use for the numerical implementation (Chopp
and Sethian, 1999). Therefore, one may try to use particle meth-
ods to implement the flow. However, flows with higher than two
derivatives are generally difficult to implement because of numerical
artifacts.

6. Lastly, as a specific example, the H0 gradient ascent for arclength,
i.e., backward heat flow, is ill-posed. This is quite odd in an intuitive
manner because there is nothing in the definition of length itself
that indicates that a flow to increase length should be ill-posed.
We shall see that this ill-posedness is a property of H0 not just the
energy itself.

In this paper, we consider using inner products arising from Sobolev
spaces to define gradients. Unlike the research done in active contours
for the past 20 years, which has focused on finding various new energies
to deal with local minima and other problems, we present a new way of
doing active contours by giving an alternative way of minimizing active
contour energies.

By changing the Riemannian metric associated with the space of
curves, we are able to regularize the minimizing flows associated with
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active contour energies without requiring the addition of regularization
penalties in the aforementioned energies. Indeed, the change of metric
does not affect the global minima of the energy, but it changes the
notion of gradient, and the notion of “neighborhood of a curve”. While
previous local minimizers continue to be local minimizers (or at least
critical points) in the Sobolev metrics, the definition of locality is com-
pletely different. As a result, Sobolev active contours are much more
robust to the local minima which strongly influence previous, standard,
active contours. Moreover, any existing active contour method can get
the added benefits of this new approach with minimal changes to its
existing implementation and with little extra computational time.

We would like to point out that Sobolev gradient methods have
been used in the past; for example the book (Neuberger, 1997) (see
also references within) presents the Sobolev gradient and applies it
to the numerical solution of various physical problems. More recently,
Burger (2003) has examined using various Sobolev gradients (especially
fractional Sobolev gradients) to various inverse problems of boundary
reconstruction, and examined rates of convergence among the various
gradients considered. We (Sundaramoorthi et al., 2005) and (indepen-
dently) Charpiat et al. (2005b) have introduced the Sobolev method to
active contour problems. Charpiat et al. (2005b) also go on to consider
other “coherent” motions resulting from various inner products (see
also the work of (Mansouri et al., 2004) for a related idea).

2. General Theory

In the next sections, we begin by using principles from Riemannian
geometry (do Carmo, 1992; Lang, 1999) and show how they fit into the
framework of geometric active contours, which is essential to construct
the Sobolev active contour.

2.1. Structure on the Space of Curves

Let M denote the set of smooth immersed curves in Rd, where d ≥ 2.
We show how to make M a differentiable manifold. Let us give a precise
definition of M :

M := {c ∈ C∞(S1,Rd) : c′(θ) 6= 0 ∀ θ ∈ S1},
where S1 denotes the circle. Denote by F the Fréchet space C∞(S1,Rd)
of smooth vector fields on S1 whose topology is defined by the following
seminorms:

pn(h) = sup
θ∈S1

|h(n)(θ)|, n = 0, 1, . . .
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where h ∈ F . We now show

Proposition 2.1. M is a differentiable manifold whose model space is
the infinite dimensional space, F .

Proof. 1. We first define charts from M to F . Let c ∈M , then denote
by Φ−1

c : Ũc ⊂ F → Uc ⊂M a chart at c ∈M defined by Φ−1
c (h) =

c+h. We must define the neighborhood Ũc, and show that c+h ∈M
where h ∈ Ũc. Choose

0 < ε < inf
θ∈S1
|c′(θ)|.

Note the choice of ε is possible since |c′(θ)| 6= 0 (c ∈ M), and the
infimum cannot be zero since |c′| is continuous on the compact set
S1. Now define Ũc := {h ∈ F : p1(h) < ε}, which by definition of F
is open. It is now clear that c + h ∈ M for h ∈ Ũc. It is also clear
that Φc is a bijection.

2. We now show that the charts defined above are compatible. Let
c, c̃ ∈M , c 6= c̃ and Uc∩Uc̃ 6= ∅. First note that Φc(Uc∩Uc̃) = {h ∈
F : p1(h) < εc, p1(h − (c̃ − c)) < εc̃}, which is clearly open. Next,
we see that Φc̃ ◦ Φ−1

c : Φc(Uc ∩ Uc̃)→ Φc̃(Uc ∩ Uc̃) is given by

(Φc̃ ◦ Φ−1
c )(h) = (c− c̃) + h,

which is clearly a C∞ diffeomorphism.

Remark 2.1. Note, we may consider M = {c ∈ C1(S1,Rd) : c′(θ) 6=
0∀θ ∈ S1} and F to be the Banach space C1(S1,Rd) with topology
defined by the norm ‖h‖ = supθ∈S1(|h(θ)| + |h′(θ)|). In this case, M
is also a differentiable manifold. However, the tangent to the curve, c′

is no longer in the model space. See (Mennucci et al., 2006) for more
details.

Remark 2.2. Let Diff(S1) be the set of smooth automorphisms of S1.
Note that in our definition of the manifold M , the space of immersed
curves, two different parameterizations of a curve (i.e., c1, c2 ∈M such
that c1 = c2 ◦ φ where φ 6= idS1 is in Diff(S1)) are considered two
distinct elements of M . For computer vision applications one should
consider the quotient space

B := M/Diff(S1);

this quotient models the space of geometrical curves, which are “curves
up to a choice of parametrization”. This space, however, is not a man-
ifold (Michor and Mumford, 2003); but a slightly smaller quotient
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space
Bf := Immf/Diff(S1)

of the freely immersed curves is a manifold. In our work, we will use
M . The results we obtain, however, are geometric in that they do not
depend on a particular parameterization of a curve; so they may be
“projected” to Bf .

For c ∈M , we denote by TcM the tangent space of M at c. Since M
is an open subspace of C∞(S1,Rd), the tangent space may be identified
with C∞(S1,Rd) itself. It is easy to see that this identification satisfies
all standard requirements and/or different choices of definitions for
TcM .

2.2. Inner Products on TcM

We now define inner products on TcM .

Definition 2.1. Let c ∈ M , L be the length of c, and h, k ∈ TcM .
Let λ > 0, and n ∈ N. We assume h and k are parameterized by the
arclength parameter of c.

1. 〈h, k〉H0 :=
1

L

∫

c
h(s) · k(s) ds

2. 〈h, k〉Hn := 〈h, k〉H0 + λL2n
〈
h(n), k(n)

〉
H0

3. 〈h, k〉H̃n := avg(h) · avg(k) + λL2n
〈
h(n), k(n)

〉
H0

where
∫
·ds is the integral w.r.t the arclength parameter, avg(h) :=

1

L

∫

c
h(s) ds, and h(n) denotes the nth derivative of h with respect to

arclength.

It is easy to verify that the above definitions are inner products. Note
that we have introduced length dependent scale factors so that the
above inner products (and the corresponding norms) are independent
of curve rescaling (we do not want a rescaling of the curve to change
the inner product).

Remark 2.3. The most general scale invariant definition of Hn is

〈h, k〉Hn = 〈h, k〉H0 +
n∑

j=1

λjL
2j
〈
h(j), k(j)

〉
H0

(1)

where λj ≥ 0 for j = 1, . . . , n−1, and λn > 0. We will see in Section 2.4
that it is unnecessary for our purposes to use this general definition.
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Remark 2.4. Other definitions of Hn and H̃n are possible (Yezzi and
Mennucci, 2005a). We illustrate the ideas on planar curves (d = 2).
We recall from Remark 2.2 that one main goal of the present theory is
to be geometric; that is, any result may be projected to the space Bf
of geometrical curves. A possible choice for representing the tangent
TcBf is TcM/ ∼ where h ∼ k iff h · N = k · N where N is the inward
normal of c. The other definitions are as follows: Let α, β : S1 → R be
the normal components of two perturbations h, k (i.e., α = h · N and
β = k · N ) then

〈[h], [k]〉H1∗ :=
1

L

∫

c

[
α(s)β(s) + λL2α′(s)β′(s)

]
ds (2)

〈[h], [k]〉H1+ :=
1

L

∫

c

[
α(s)β(s) + λL2(α(s)N (s))′ · (β(s)N (s))′

]
ds.

(3)

The inner product in (3) can be simplified as follows

〈[h], [k]〉H1+ =
1

L

∫

c

[
(1 + λL2κ2(s))α(s)β(s) + λL2α′(s)β′(s)

]
ds.

(4)
Ignoring the α′β′ term and the length factors, (4) becomes the same
inner product considered in (Michor and Mumford, 2003) for shape
analysis.

One of the important consequences of defining an inner product on
TcM is that, with some other smoothness and compatibility conditions,
it produces a Riemannian structure on M . This means that specifying
an inner product on TcM induces a distance between points on M . The
authors in (Michor and Mumford, 2003; Yezzi and Mennucci, 2005a)
consider the Riemannian structure induced from the H0 inner product
and show that it is pathological; they also propose alternative inner
products to achieve a non-trivial Riemannian distance. We explore this
idea in (Mennucci et al., 2006) (see also (Younes, 1998)).

2.3. Gradient of Functionals on M

We now define the notion of gradient of a functional E : M → R.

Definition 2.2. Let E : M → R.

1. If c ∈ M and h ∈ TcM , then the variation of E in the direction h
is

dE(c) · h =
d

dt
E(c+ th)

∣∣∣∣
t=0

,

where (c + th)(θ) := c(θ) + th(θ) and θ ∈ S1. Note dE(c) ∈ T ∗cM
is a linear operator on TcM , dE(c) is called the differential at c.
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2. Assume 〈, 〉c is an inner product on TcM . The gradient of E is a
vector field ∇E(c) ∈ TcM that satisfies

dE(c) · h = 〈h,∇E(c)〉c
for all h ∈ TcM .

We now give an intuitive interpretation of the gradient, which tells
us the significance of this perturbation. We show that the gradient is
the most efficient perturbation; that is, the gradient maximizes the
change in energy per “cost” of perturbing the curve.

Proposition 2.2. Let ‖·‖c be the norm induced from the inner product
〈·, ·〉c on TcM . Suppose dE(c) 6= 0, and the gradient with respect to
〈·, ·〉c exists; then the problem

sup
{h∈TcM,‖h‖c=1}

dE(c) · h = sup
{k∈TcM,k 6=0}

dE(c) · k
‖k‖c

(5)

has a unique solution, k = ∇E(c) ∈ TcM,h = k/‖k‖.

Proof. Note dE(c) · h = 〈∇E(c), h〉c ≤ ‖∇E(c)‖c‖h‖c by the Cauchy-
Schwartz inequality; moreover, dE(c) · (∇E(c)) = ‖∇E(c)‖2

c .

If the gradient of E exists, then by the proposition above, we have that
k = ∇E(c) attains the supremum on the right hand side of (5). Note
for λ → +∞, translations have negligible norm with respect to other
directions in the tangent space, that is, if h is a translation (i.e. it is
constant w.r.t. s) and k is not a translation, then limλ→+∞ ‖h‖/‖k‖ =
0 , both when ‖ · ‖ is the norm induced by Hn and when it comes from
H̃n. In light of the interpretation of the gradient as the perturbation
that attains the supremum in (5), it follows that translations are favored
for gradients in Hn and H̃n when λ is large (if they reduce energy).

Remark 2.5 (Comment on Hn for n ≥ 2). Translations are favored for
Hn and H̃n gradients when λ → +∞. This can be quite important
for tracking applications where the object to be tracked is usually
translating. One may wonder whether using higher order Sobolev inner
products, Hn and H̃n for n ≥ 2, will favor higher order polynomial
motions of degree n. Note however, that any polynomial perturbation
defined on S1, the circle, must be constant to conform to periodic
boundary conditions. Thus, higher than order n = 1 Sobolev gradients
also favor just translations. In this sense, there is not an advantage,
with respect to gaining higher dimensional preferred motions, in using
higher order Sobolev gradients. However, one gains added regularity of
the gradient flow in using higher order Sobolev gradients.
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Remark 2.6. For the inner product on TcM/ ∼ defined in (2), it follows
that dilations (i.e., perturbations of the form h = ±N ) are favored for
gradients when λ is large.

2.4. Relation Between Hn and H̃n

We show that the norms associated with the inner products Hn and
H̃n, i.e.,

‖h‖Hn =

√∫ L

0

1

L
|h(s)|2 + λL2n−1|h(n)(s)|2 ds (6)

‖h‖H̃n =

√
|avg(h)|2 + λL2n−1

∫ L

0
|h(n)(s)|2 ds (7)

are equivalent.

Proposition 2.3 (Equivalence of Hn and H̃n). The norms defined
by (6) and (7) on TcM are topologically equivalent; that is,

α‖h‖H̃n ≤ ‖h‖Hn ≤ β‖h‖H̃n

for all h ∈ TcM , and α, β > 0 are not a function of c ∈ M and
h ∈ TcM .

Proof. We first derive a simple Poincaré inequality. For convenience,
we will replace h : S1 → Rd with its periodic extension h : R → Rd.
We have

h(u)− h(0) =

∫ u

0
h′(s) ds = −

∫ L

u
h′(s) ds,

since h is periodic. Now,

h(u)− h(0) =
1

2

(∫ u

0
h′(s) ds−

∫ L

u
h′(s) ds

)
⇒

avg(h)− h(0) =
1

2L

∫ L

0

(∫ u

0
h′(s) ds−

∫ L

u
h′(s) ds

)
du⇒

|avg(h)− h(0)| ≤ 1

2L

∫ L

0

(∫ u

0
|h′(s)|ds+

∫ L

u
|h′(s)|ds

)
du

=
1

2L

∫ L

0

(∫ L

0
|h′(s)|ds

)
du =

1

2

∫ L

0
|h′(s)|ds

so that by replacing 0 with an arbitrary point, we have

sup
u
|h(u)− avg(h)| ≤ 1

2

∫ L

0
|h′(s)|ds. (8)
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Now, using (8) and Hölder’s inequality, we see
√∫ L

0
|h(s)− avg(h)|2 ds ≤

√
L sup

u
|h(u)− avg(h)|

≤
√
L

∫ L

0
|h′(s)|ds

≤ L

√∫ L

0
|h′(s)|2 ds,

which is the Poincaré inequality.
We now prove the equivalence of the two norms. By Hölder’s in-

equality, we have that

|avg(h)|2 ≤ 1

L

∫ L

0
|h(s)|2 ds

so that ‖h‖H̃1 ≤ ‖h‖H1 . On the other hand, note that

1

L

∫ L

0
|h(s)− avg(h)|2 ds =

1

L

∫ L

0
|h(s)|2 ds− |avg(h)|2,

so that

‖h‖2H1 =

∫ L

0

1

L
|h(s)|2 + λL|h′(s)|2 ds

=
1

L

∫ L

0
|h(s)− avg(h)|2 ds+

∫ L

0
λL|h′(s)|2 ds+ |avg(h)|2

≤ |avg(h)|2 + L(1 + λ)

∫ L

0
|h′(s)|2 ds ≤ ((1 + λ)/λ)‖h‖2

H̃1

One can iterate Poincaré’s inequality to demonstrate the equivalence
of Hn and H̃n.

The use of the Poincaré inequality can also be used to show the
equivalence between the generic Hn norm (1) and the Hn norm we
consider (6).

Note that we have not established any relation between the geom-
etry of the inner products Hn and H̃n; however, in the next sections,
we show that the gradients with respect to Hn and H̃n have similar
properties.
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3. H1 and H̃1 Gradients

In this section, we describe how to compute first order Sobolev gradients
from the H0 gradient. Denote by f = ∇

H
0E(c) the gradient of E with

respect to the H0 inner product at c. We would like to compute first
the H1 gradient at c. Assuming g = ∇

H
1E(c) exists, we have for all

h ∈ TcM ,

dE(c) · h = 〈h, g〉H0 + λL2
〈
h′, g′

〉
H0 =

〈
h, g − λL2g′′

〉
H0

where we have integrated by parts and noted that we have periodic
boundary conditions. Since gradients are unique (if they exist), we must
have that

f(s) = g(s)− λL2g′′(s) where s ∈ [0, L]. (9)

Note that this is an ODE defined on [0, L] with periodic boundary
conditions, that is, all derivatives match on the boundary of [0, L].

Now we take a similar approach to compute the H̃1 gradient. As-
suming g = ∇H̃1E(c) exists, we have

dE(c) · h = avg(h) · avg(g) + λL2
〈
h′, g′

〉
H0 =

〈
h, avg(g)− λL2g′′

〉
H0 .

Again by uniqueness, we have that f = avg(g)−λL2g′′. Noting periodic
boundary conditions, we have that avg(g) = avg(f), and so

f(s) = avg(f)− λL2g′′(s) where s ∈ [0, L] (10)

and we have periodic boundary conditions.

3.1. Solving the ODEs

We want to first solve the ODE (9) for g. It suffices to solve (9) with
the boundary conditions g(0) = g(L) and g′(0) = g′(L). One can show

that g(s) =
∫ L

0 kλ(s, ŝ)f(ŝ) dŝ, where kλ : [0, L] × [0, L] → R satisfies
the following conditions for all s, ŝ ∈ (0, L)

kλ(s, ŝ)− λL2∂
2kλ
∂s2

(s, ŝ) = δ(s− ŝ) (11a)

kλ(0, ŝ) = kλ(L, ŝ); ∂skλ(0, ŝ) = ∂skλ(L, ŝ) (11b)

and δ denotes the Dirac distribution. It can be shown that the solution
to the previous system is kλ(s, ŝ) = Kλ(|s− ŝ|), where Kλ : R → R is
given by

Kλ(s) =

cosh

(
s−L

2√
λL

)

2L
√
λ sinh

(
1

2
√
λ

) , for s ∈ [0, L], (12)
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and Kλ is periodically extended to all of R. We may write

∇H1E(s) =

∫

c
Kλ(ŝ− s)∇H0E(ŝ) dŝ = (Kλ ∗ ∇H0E)(s) (13)

where the integral over c denotes any range of ŝ that corresponds to
one full period around the curve c (e.g. [0,L], [–L,0], [–L/2,L/2], etc.).

We now solve the second ODE (10). It suffices to solve (10) with
the boundary conditions g(0) = g(L), g′(0) = g′(L), and the relation
avg(f) = avg(g). Integrating (10) twice yields

g(s) = g(0) + sg′(0)− 1

λL2

∫ s

0
(s− ŝ)(f(ŝ)− avg(f)) dŝ. (14)

Using (14), applying the boundary conditions, and noting that avg(g) =
avg(f), after some manipulation, yields

g′(0) = − 1

λL3

∫ L

0
s(f(s)− avg(f)) ds and g(0) =

∫ L

0
f(s)K̃λ(s) ds

(15)
where the formula for K̃λ is in equation (16).

Remark 3.1. We want to remark that the above yields a solution to
the ODE (10) without resorting to a convolution; the same is true for
the similar equation for the H̃n gradients. So, H̃n gradients may be
computed from H0 gradients in O(N) time, where N is the number of
vertices of the polygon approximation.

The equation (10) may be nonetheless solved using a convolution,
where the kernel function K̃λ is given by

K̃λ(s) =
1

L

(
1 +

(s/L)2 − (s/L) + 1/6

2λ

)
, s ∈ [0, L]. (16)

and it is (unsurprisingly) the same kernel that is used in equation (15).
Note that K̃λ(0) = K̃λ(L) and thus we may periodically extend K̃λ

as before. In this case, we may rewrite, g(0) =
∫
c f(ŝ)K̃λ(ŝ) dŝ, where,

again, the integral over c denotes any range of ŝ that corresponds to
one full period over c. Therefore,

∇H̃1E(s) =

∫

c
K̃λ(ŝ− s)∇H0E(ŝ) dŝ = (K̃λ ∗ ∇H0E)(s). (17)
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Figure 1. Plots of Kλ (left) and K̃λ (right) for various λ with L = 1. The plots show
the kernels over one period.

3.2. Properties of the Kernels

Note the following formal properties of Kλ and K̃λ:

K ′′λ(s) =
1

λL2
(Kλ − δ(s)) and K̃ ′′λ(s) =

1

λL2

(
1

L
− δ(s)

)
, s ∈ [0, L).

(18)
The first property is just the relation in (11a), and the second is ob-
tained through differentiation of K̃λ. Using these relations, it is easy
to see that Kλ ∗ f and K̃λ ∗ f formally solve (9) and (10), respectively.
Next, note that

∫

c
Kλ(ŝ) dŝ = 1 and

∫

c
K̃λ(ŝ) dŝ = 1 (19)

for all λ > 0. Also observe that Kλ ≥ 0 for all λ > 0, and that K̃λ ≥ 0
only when λ ≥ 1/24. Finally, it is easy to verify that as λ → +∞,
Kλ → 1/L and K̃λ → 1/L. See Figure 1 for plots of Kλ and K̃λ.

3.3. Properties of Sobolev Gradients

First note, from formulas (13) and (17), that the H1 and H̃1 gradients
are geometric, i.e., they do not depend on a particular parameterization
chosen for the curve. This is also evident from the definition of these
inner products. The formulas (13) and (17) show that there may be a
tangential component of the gradients; but these tangential components
may be ignored when considering gradient flows. This is different from
H0 where if the energy is geometric, then the gradient will have only
a normal component.

Because H1 and H̃1 gradients are given by integrals of the H0

gradient, given in formulas (13) and (17), integration by parts and the
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relations in (18) imply that two derivatives of the curve can be moved to
derivatives on the kernels. This means thatH1 and H̃1 gradients involve
two fewer derivatives of the curve than H0 gradients involve. Note that
H0 gradients have twice the number of derivatives of the curve as is
defined in the energy E to be optimized. Thus, fourth order evolution
equations of curves in H0 may reduce to second order equations in H1

and H̃1. A similar remark can be made for Hn and H̃n gradients; these
gradients require 2n less derivatives of the curve than the H0 gradient
requires.

The property that the integral of both the kernels is unity (19)
implies that the H1 gradient can be interpreted as a weighted average of
the H0 gradient; the same interpretation holds for H̃1 when λ > 1/24.
In light of this weighted average interpretation, we see that Sobolev
gradients are less sensitive to noise and local features than H0 gradients
are. Moreover, the property that the kernels approach 1/L as λ →
+∞ shows that, in this case, the H1 and H̃1 gradients approach pure
translations equal to the average value of the H0 gradient, as expected
from the interpretation of gradient noted in Section 2.1.

While local minimizers in the H0 metric continue to be local mini-
mizers in the H1 metric (but not vice-versa), the definition of locality
is completely different. As a result, Sobolev active contours are much
more robust to the local minima which strongly influence H0 active
contours. This property arises due to the fact that Sobolev active
contours are able to exploit much more relevant information contained
in the initial contour about the shape of the desired contour. This is
because the Sobolev active contour is more resistant to changing the
local structure of the initial curve since local perturbations induce high
derivatives in the flow field compared to more global motions which
are smoother. Thus, if one starts with a contour that is smooth on
a local scale, the cost to perturb the initially smooth contour into a
“noisy” version of the same contour is enormous. This renders a very
large distance between a smooth and non-smooth contour even though
the two contours may be very close in other senses, such as in the
Hausdorff distance. As such, local minimizers due to noise are no longer
“local” to the initial contour if the initial contour is smooth and the
local minimizer is not. Switching to the Sobolev metric has the effect
of pushing many undesirable minimizers so far away from the initial
contour that they are no longer able to influence the gradient flow
towards a more desirable minimizer which is now much closer to the
initial contour.

Remark 3.2. One may wonder whether any smoothing kernel can used
to smooth out the H0-gradient to form a smoother perturbation, which
is robust to noise. The answer may be yes, but it is not guaranteed to

journal_complete_revision.tex; 10/10/2006; 12:43; p.15



16

reduce the energy in question. The fact that the kernels we’ve derived
come directly from a gradient means that the energy is guaranteed to
be reduced.

The previous comment also relates to various numerical methods
for energy descent algorithms where the H0 gradient is modified by an
operator known as a pre-conditioner to yield a better descent direction
for faster convergence to a solution. For example, the Newton method
uses the inverse Hessian of the energy as the pre-conditioner (see for
example (Hintermüller and Ring, 2004; Burger and Osher, 2005) for
applications to active contours). The disadvantage of this approach is
that one has to be careful to make sure the resulting algorithm reduces
the energy; even for the Newton algorithm, the inverse Hessian pre-
conditioner is not guaranteed to reduce the energy, in general.

3.4. Advantages of H̃1 over H1

There is a computational advantage of using the H̃1 gradient as opposed
to the H1 gradient since the formulas (14), (15) give the H̃1 gradient
as a single integral without convolution, as opposed to the convolution
for H1. Another advantage of H̃1 over H1 is that we can eliminate the
dependence on the parameter λ when implementing H̃1 gradient flows.
Observe from the kernel definition (16) that K̃λ is a sum of two terms:
one that depends on λ and another that does not. Thus, the H̃1 gradient
is a sum of two components: one that depends on λ by a simple scale
factor, and another that is independent of λ. The component that does
not depend on λ is avg(∇H0E), which is a just a translation. The other
component is a complex deformation. An algorithm to implement an
approximate version of the H̃1 gradient flow is to first evolve the curve
by the translation component until this component becomes zero, then
to evolve the curve by the deformation component, and the process is
repeated until convergence. Note that λ does not need to be chosen for
evolving the deformation component because λ only changes the speed
of the curve, not the geometry. Therefore, this algorithm also gives a
way of separating the (rigid) motion of the curve from the deformation.
Separating the motion from deformation has particular importance in
tracking applications (Soatto and Yezzi, 2002). Note that this algorithm
is equivalent to optimizing the energy first according to the H̃1 inner
product as λ → +∞, and then according to H̃1 with any λ (as there
is no dependence on λ after the first step).
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4. Some Sobolev Gradient Flows

In this section, we simplify the formulas (13) and (17) for some common
geometric energies, note some interesting properties, and compare these
with the usual H0 gradients. A question that arises when considering
these gradient flows is whether an initial curve c ∈ M , the manifold
of curves, stays in the manifold of curves (this also relates to existence
of a solution for the PDE). The manifold of curves consists of curves
being immersed and regular. Since the flows we consider are geometric
and we represent the curve by arclength parameterization, the curves
always remain immersed by representation if their derivative is defined.
The question of regularity is a difficult one in general, and we do not
address it in this paper.

In what follows, we use K to denote either the kernel (12) or (16),
and ∇1 will denote either the H1 or H̃1 gradient; when the distinction
is needed, we will use the subscript λ on the kernels, and write H1 or
H̃1.

4.1. Length and Weighted Length

We consider the geodesic active contour model (Caselles et al., 1995;
Kichenassamy et al., 1995). The energy is

E(c) =

∫

c
φ(c(s)) ds

where φ : R2 → R+. Then the gradient with respect to H0 is

∇H0E = L(∇φ(c) · N )N − Lφ(c)κN

where N is the unit inward normal, and κ is the curvature. We omit
the argument in φ(c), for simplicity, and write c′ for arc parameter
derivation. Let us first note that ∇H0E = L∇φ − L(φc′)′. Integrating
by parts we find that

1

L
∇1E = ∇φ ∗K − (φc′)′ ∗K = ∇φ ∗K − (φsc) ∗K ′ − (φc) ∗K ′′,

where φs := (φ ◦ c)′. Using the relations in (18), we find that

∇H̃1E =
φc− avg(φc)

λL
− L(φsc) ∗ K̃ ′λ + L∇φ ∗ K̃λ. (20)

The above does not require that the curve be twice differentiable, and
thus we may prove that
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Proposition 4.1. Suppose that φ ∈ C1, φ > 0; then the gradient flow

dc

dt
= −∇H̃1E(c)

exists for small (positive) times; if lim infx→∞ φ(x)|x| > 0, then it exists
for all (positive) times.

Proof. The proof is based on the inequality

|∇H̃1E(s)| ≤Mr(1 + r)
1

λ
+ LMrr

1

2λ
+ LMr ∀s

where the ball of radius r centered at 0 contains c, and

1

Mr
E(c) ≤ L ≤ 1

mr
E(c)

where

Mr := sup
|x|<r

(max{φ(x), |∇φ(x)|}) and mr := inf
|x|<r

φ(x) ;

the above (by using the Euler method) implies existence, in the class
of curve evolutions c(θ, t) that are Lipschitz in both variables.

Details will be available in a forthcoming paper.

Of particular interest is when φ = 1, that is E = L, the length of
the curve. We see that

∇H̃1L =
c− avg(c)

λL
.

It is interesting to notice that the H1 and H̃1 gradient flows are stable
for both ascent and descent while the H0 gradient flow is only stable for
descent. Note that the H̃1 gradient flow constitutes a simple rescaling
of the curve about its centroid. While the H0 gradient descent smooths
the curve, the H̃1 gradient descent (or ascent) has neither a beneficial
nor a detrimental effect on the regularity of the curve.

4.2. Area and Weighted Area

We consider region-based active contour models; for example, (Yezzi
et al., 1999; Chan and Vese, 2001). The energy is

E(c) =

∫

cin

φdA,
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where cin denotes the region enclosed by the closed curve c, φ : R2 → R
and dA is the area form; this energy is defined only for embedded
curves. The gradient with respect to H0 is

∇H0E = −LφN = −LφJc′

and J is a rotation by 90o matrix. Integrating by parts we find that

1

L
∇1E = −(φJc′) ∗K = (φsJc) ∗K + (φJc) ∗K ′. (21)

For the H̃1 gradient, this simplifies to

∇
H̃1E =

J

λL2

∫ L

0

(
φc(·+ ŝ)− avg(φc)

)
ŝ dŝ+ (φsJc) ∗ K̃λ. (22)

Of particular interest is when φ = 1, that is E = A, the area enclosed
by the curve. We see that ∇1A = (Jc) ∗ K ′. This simplifies to the
gradient ascent/descent

Ct(s) = ± J

λL2

∫ L

0

(
C(s+ ŝ)− avg(C)

)
ŝ dŝ (23)

in the H̃1 gradient case.

4.3. Elastic Energy

Consider the elastic energy defined by

E(c) =

∫

c
κ2(s) ds,

where L is the length of c, and κ is the signed curvature. This may serve
as a regularizer that does not favor smaller length curves, unlike the
standard curve shortening term. It is also the term that is commonly
omitted in the original snakes model of Kass et al. since it leads to a
fourth order gradient flow.

We now derive the H̃1 flow by first calculating the H0- gradient. Let
us write a family of curves as C : R+ × S1 → R2, then we may write

E(t) =

∫

C
Css · Css ds.

Let us first compute some intermediate formulas. Let f : R+×S1 →
R, then

∂

∂t

∂

∂s
f =

∂

∂t

1

‖Cp‖
∂

∂p
f = −Ctp · Cp‖Cp‖3

∂

∂p
f +

1

‖Cp‖
∂

∂p

∂

∂t
f

= −Cts · Cs
∂

∂s
f +

∂

∂s

∂

∂t
f,
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or more conveniently,

fst = fts − (Cts · Cs)fs. (24)

We now compute

∂

∂t
(Css · Css) = 2Csst · Css,

but using (24) twice, we see

Csst = Csts − (Cts · Cs)Css
=

∂

∂s
(Cts − (Cts · Cs)Cs)− (Cts · Cs)Css

= Ctss − (Ctss · Cs + Cts ·Css)Cs − (Cts · Cs)Css − (Cts · Cs)Css
= Ctss − (Ctss · Cs + Cts ·Css)Cs − 2(Cts · Cs)Css,

and since Cs · Css = 0, we have

∂

∂t
(Css · Css) = 2(Ctss · Css)− 4(Cts · Cs)(Css · Css). (25)

Now,

E′(t) =
d

dt

∫ 1

0
Css · Css‖Cp‖dp

=

∫ 1

0

∂

∂t
(‖Cp‖)Css · Css dp+

∫

C

∂

∂t
(Css · Css) ds.

By substituting (25), we have

E′(t) =

∫

C
(Cts · Cs)(Css · Css) ds

+ 2

∫

C
(Ctss · Css)− 2(Cts · Cs)(Css · Css) ds

= −
∫

C
3(Cts · Cs)(Css · Css) ds+ 2

∫

C
(Ctss · Css) ds

=

∫

C
(2(Ctss · Css)− 3(Cts · Cs)(Css · Css)) ds.

Integrating by parts, we find

E′(t) =
1

L

∫

C
Ct · (2L∂ss(css) + 3L∂s((css · css)cs)) ds.

Hence,
∇
H0E(c) = 2Lcssss + 3L∂s((css · css)cs). (26)
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Computing the Sobolev gradient from (26), we have

∇H̃1E = K ∗ ∇
H

0E

= 2LK ′′ ∗ (css)− 3LK ′ ∗ ((css · css)cs)

Hence, for the K̃λ kernel we have

∇H̃1E = − 2

λL
κN − 3LK ′ ∗ (κ2T ) (27)

since avg(κN ) = 0. Notice that the corresponding H̃1 gradient flow is
second order, although it is an integral-PDE.

4.4. Comparison of H0 and H1, H̃1

We notice several advantages of the gradients flows for H1 and H̃1

gradients as compared with H0 gradients. First note that both the
expressions for edge-based and region-based active contour gradients
with respect to H1 and H̃1 (20), (21) do not involve any derivatives
of the curve. This is in contrast to H0, which requires two derivatives
for geodesic active contours and one derivative for region-based active
contours. Hence, these Sobolev flows are defined for non-smooth curves,
e.g., polygons, without the need to resort to numerical techniques based
on viscosity solutions of the corresponding level set equations. More-
over, Proposition 4.1 shows that we do not need viscosity theory to
define the H̃1 flow at least for the weighted length energy. Note that
the expression in (20) does not require any more derivatives of φ than
the expression forH0 does. This is not the case for (21), which requires a
derivative of φ. However, since φs is contained within a convolution, the
possible noise generated by φs is mitigated. Alternatively, the original
expressions (13) and (17) may be used if a derivative of φ is not desired
to be computed.

Notice the expressions of Sobolev gradients for the elastic energy
(27) only require two derivatives of the curve; this is in contrast to
the H0 gradient, which requires four derivatives of the curve. Since
there is no maximum principle for fourth order equations, the H0

gradient descent of the elastic energy is difficult to implement using
level set methods (Chopp and Sethian, 1999; Droske and Rumpf, 2004).
A particle method can be used; however, this is prone to numerical
problems. Note that the integral-PDE (27) may not have a maximum
principle, but in our numerical implementation with level set methods
(see Section 5.2), we bypass this issue for the following reason. The
local term certainly has a maximum principle, and for the global term,
we perform extensions of this quantity from the zero level set, which
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is done, for example, in image-based evolutions. Therefore, we expect
that level sets do not collide, that the level set function gradient doesn’t
become ill-defined, and that the level set evolution is modeling the
curve evolution. These are issues that need to be dealt with for the H0

gradient flow using a level set method.

5. Numerical Implementation

In this section, we describe the numerical scheme used to simulate
Sobolev active contours. Sobolev active contours are naturally suited
for a parametric or a marker particle based implementation. This is
because computing Sobolev gradients requires computing an integral
around the curve, which is straightforward to compute if one has an
ordered set of sample points of the curve.

5.1. Multiple Curves Evolution

In this section, we consider evolving multiple curves according to gradi-
ent flows for the metrics defined in Section 2.2. We consider defining the
flows for curves that undergo topological changes. Consider a family of
embedded curves c = (ci) in the plane and of displacements h = (hi),
where ci, hi : S1 → Rd and i = 1 . . . N = N(c). We may define a metric
on multiple curves 〈, 〉c using a choice of some metric 〈, 〉ci that was
defined for a single curve in Section 2.2. We define the inner product
on multiple curves to be

〈h, k〉c :=
∑

i

〈h, k〉ci .

Consider an energy, E, on multiple curves defined by

E(c) :=

N(c)∑

i=0

E(ci),

then, the variation of E for several embedded curves is

dE(c) · h =

N(c)∑

i=0

〈∇E(ci), hi〉ci ,

for some given inner product. Thus, we consider evolving the curves
according to the curve evolution

∂tci = −∇E(ci) i = 1, . . . , N(c). (28)
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Figure 2. Some illustrations of topological changes.

Clearly, if the curves are moved according to the above equation, and
the curves do not undergo topological changes then the evolution re-
duces the energy, E.

We now consider the possibility of topological changes of c, that is
merging and splitting of curves in c. Two ways of topological changes
are pictorially shown in Figure 2. On the left, the curves develop kinks;
on the right, they develop cusps. Note that other topological changes
may be possible. We consider whether the evolution of (28) reduces the
energy, E of the curve c, even when topology changes occur. First, we
note a problem for actually defining the evolution in (28) for Sobolev
metrics. Note that during the instant in which the curve undergoes
a topology change an ambiguity arises in how to parameterize the
curve at the point of self-intersection. Since the Sobolev inner product
depends upon the arclength parameterization of the curve this leads to
an ambiguity in defining the gradient and the resulting curve evolution.
For example, on the right side of Figure 2, at the instant of topology
change, there is an ambiguity over whether to treat c as a single curve
or as two separate curves. In the case of the H0 gradient, this ambiguity
is unimportant since in both cases the H0 gradient is the same at all
points of the curve except the point of self-intersection as the H0 does
not depend upon the curve globally as does the Sobolev gradient. Since
gradient descent flows are designed to minimize their corresponding
energy functional as quickly as possible, there is a very natural solution
to the ambiguity that arises in the case of the Sobolev gradient at the
moment a topological change occurs. In theory, one may simply com-
pute the derivative of the energy corresponding to either interpretation
of the curve (each of which results in a different gradient under the
Sobolev metric) and choose the one which the larger derivative as it
will lead to a faster instantaneous descent of the energy. In practice,
though, an even simpler numerical procedure may be employed based
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on the same essential idea. We will outline the procedure below for the
case of level set methods.

When employing level set methods for Sobolev active contours (as
described in Section 5.2), the contour extracted at any discrete moment
in time from the discrete spatial grid always exhibits the simple topol-
ogy of an embedded curve(s), which bypasses the ambiguity discussed
above. Thus a topological change occurs more abruptly after one dis-
crete evolution step in which the curve passes from one topology to
another, never passing through the ambiguous intermediate configu-
ration in which the curve no longer remains embedded. Thus, there
is never a need to resolve the Sobolev gradient of the curve in such
configurations. Instead, noting that there is typically a discontinuity
in the Sobolev gradient flow before and after topology change, we may
simply verify that the energy has decreased after the topological change.
If E is continuous, there is no reason to expect repeated oscillations in
the topology of the curve even though the Sobolev gradient flow may
exhibit a discontinuity across the topology change. The weighted length
and area energies defined in Section 4 satisfy this continuity condi-
tion (since these functionals remain unambiguous through a topology
change even though their Sobolev gradients do not). Indeed on the
right-hand side of Figure 2, these energies remain constant for the
curve just before and just after the topology change. On the other
hand, energies that depend on local derivatives of the curve such as
the elastic energy defined in Section 4 may not be continuous through
the topology change. As such there is no guarantee that the energy E
decreases after an evolution step that creates a topological change. If
the energy decreases, it makes sense to continue evolving. If instead
an increase is detected, then one should stop evolving the curve and
restore its prior configuration. Otherwise, oscillations may occur.

While the elastic energy pose a potential problem for Sobolev met-
rics (and indeed even the H0 metric) in the event of certain types of
topological changes (those for which the elastic energy increases), they
pose an even greater problem for the standard H0 metric which yields
gradient flows of fourth order that are much more difficult to implement
numerically even in the absence of topological changes.

5.2. Level Set Method

We first describe a straightforward numerical method to extend curve
evolutions that depend on integrals around the curve to level set evo-
lutions, introduced in (Osher and Sethian, 1988). The algorithm for
updating the level set function, Ψ : R2 × R → R, for most Sobolev
active contours is
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1. Compute polygon(s) estimate of zero level set of Ψ from the nar-
rowband, Un.

2. Calculate and interpolate H0-gradient to polygon(s) estimate

3. Compute Sobolev gradient on polygon(s) estimate by using one of
the formulas for the H1 or H̃1-gradients in terms of the H0-gradient
shown in Section 3.1.

4. Extend polygon(s) forces to narrowband band of level set function
domain.

5. Evolve Ψ by the transport equation Ψt = −∇Ψ · ~F , where ~F :
Un ⊂ R2 → R is the extended Sobolev gradient to the narrowband
region, Un.

The computational complexity of the entire algorithm for extracting
the polygon(s), and computing the extensions is linear in the size of
the narrowband, Un.

In most of the cases of various energy functionals, the H0 gradient
of the energy must be computed on the narrowband Un in the usual
fashion; or in our case, we directly compute the H0-gradient to the
polygon estimate of {Ψ = 0}. In other cases (such as for the elastic en-
ergy), the H0 gradient does not need to be computed, but only certain
expressions that do not involve the convolutions. For example, in the
elastic energy, the term κ2T should be computed at every point of the
polygon estimate. Note that in computing quantities such as the normal
vector, and curvature of {Ψ = 0}, we compute them directly from Ψ
using standard formulas and interpolate them to the polygon estimate.
The Sobolev gradient is then computed using a convolution or simple
integral with the formulas in Section 3.1. Note that we must compute
separate convolutions or integrals on each polygon extracted from Ψ
(or connected component of Ψ) in the fashion described in Section 5.1.
We use a standard Riemann sum to compute the curve integrals, and
the polygon estimate is used to determine the arclength measure, ds.
After the Sobolev gradient is computed on the polygon estimate, it can
be extended to Un. We call the extended Sobolev gradient ~F . Note that
we are extending the gradient along the curve so that ∇Ψ · ∇Fi = 0
where i = 1, 2 and ~F = (F1, F2). That is, we assume that all the level
sets of Ψ are moving by the same speed function, which means that
the level sets of Ψ do not collide. Now the level set evolution can be
computed by

Ψt(x) = −∇Ψ(x) · ~F (x).
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5.3. Level Set Method Without Polygon Extraction

In this section, we describe an approach where we can directly compute
(without polygon extraction) an approximation to the Sobolev gradient
from the H0 gradient that is defined on the narrowband, Un, of the level
set function. This may be of use since the polygon extraction step is
cumbersome.

Our approach is to approximate the convolution integrals (13) and
(17) with region integrals evaluated within the narrowband Un. The
arc-distance between points on the curve (i.e., s − ŝ) that is required
by the formulas (13) and (17) can be approximated by the use of
the eikonal equation (Rouy and Tourin, 1992). Consider an embedded
curve, c ∈ C2(S1,R2), and the function F : R2 → R+ defined as

F (x) =

{
+∞ for x /∈ {c}
1 for x ∈ {c}

where {c} = {c(θ) : θ ∈ S1}. Define u : R2 → R+ by

u(c(s)) := inf
γ∈Γ

∫ 1

0
F (γ(θ))‖γ′(θ)‖dθ,

where Γ := {γ : [0, 1] → R2, γ(0) = c(ŝ), γ(1) = c(s)}; then clearly,
we see that u(c(s)) equals the minimum distance between the points
c(s) and c(ŝ) along the curve c. Because of the symmetry of the kernels
in (12) and (16), it suffices to use the quantity u(c(s)) as a substitute
for s− ŝ in the convolutions formulas (13) and (17). As in (Rouy and
Tourin, 1992), we may solve for the viscosity solution of the eikonal
equation

‖∇u(x)‖ = F (x), u(c(ŝ)) = 0 (29)

to obtain the desired solution of u at all points along the curve, c. As we
will solve this equation numerically on a grid, we consider the following
approximation to (29),

‖∇u(x)‖ = 1 + |Ψ(x)|/ε, u(c(ŝ)) = 0 (30)

where ε > 0 is chosen small enough, and Ψ is the level set function with
Ψ(c(s)) = 0 for all s.

Next, note the co-area formula for a Borel measurable function f :
R2 → R, a Borel set A ⊂ R2 such that ∇Ψ(x) 6= 0 for x ∈ A,

∫

A
f(x)‖∇Ψ(x)‖dx =

∫

Ψ(A)

∫

Ψ−1(t)
f(x) dH 1(x) dt
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where dH 1 is the one-dimensional Hausdorff measure, that is, arc-
length measure. We use this formula to convert the contours integrals
of interest to integrals over the domain of the level set (or the narrow-
band region). Thus, we find by the co-area formula and the Lebesgue
differentiation theorem,

∫

c
H(c(s))K(ŝ− s) ds ≈

∫

A
H(x)K(u(x))δa(Ψ(x))‖∇Ψ(x)‖dx

where δa : R→ R is a smooth approximation to the Dirac distribution,
H : R2 → R is some function, u is the solution to (30), and A ⊂ R2, such
that {c} ⊂ Ao, the interior of A. According to the previous comments,
we propose the following theorem:

Theorem 5.1. Suppose that c : S1 → R2 is a C2 curve embedded in
the plane, Ψ is zero only on the image of c, and ∇Ψ(c(θ)) 6= 0 for
θ ∈ S1; then,

lim
ε→0

1

2ε

∫

A
|∇Ψ(x)|Z(|Ψ(x)|/ε) dx = length of the curve (31)

where Z : R+ → R+ is a positive continuous decreasing functions
s.t. Z(0) =

∫∞
0 Z = 1 and limx→∞ xZ(x) = 0 (for example Z(x) =

exp(−x)); the integral on the left hand side is on a compact set A such
that the curve is contained in Ao, the interior of A.

Fix a continuous H : R2 → R, a kernel K : R+ → R, and suppose
that limx→∞K(x)/x = 1. Let ε > 0, and c(s̄) be a point in the curve
and let u : R2 → R be the viscosity solution of

|∇u(x)| − (1 + |Ψ(x)|/ε) = 0 , u(c(ŝ)) = 0 (32)

then

lim
ε→0

1

2ε2

∫

A
|∇Ψ(x)|H(x)K(u(x))Z(|Ψ(x)|/ε2) dx =

∫

c
H(c(s))K(|s−ŝ|) ds

(33)
where |s − ŝ| is the shortest arclength distance between c(s) and c(ŝ)
along c.

To solve the eikonal equation (32) numerically, we use the fast
marching method (Adalsteinsson and Sethian, 1995). We discretize on
a N ×N grid, then the integrals above are numerically substituted by
a sum; if ε → 0 while N is kept constant, then clearly the numerical
versions of (31) and (33) would converge to zero rather than to the
desired result; so we propose the following numerical schemes for the
approximation of (31) and (31):

1

2εN2

N∑

i,j

|∇Ψ(xi,j)|Z(|Ψ(xi,j)|/ε) ≈ length of the curve (34)
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where xi,j are points of the discretization of the domain of Ψ to an
N × N grid, and ε → 0, N → +∞ and Nε → +∞. Similarly, we
use the method by (Adalsteinsson and Sethian, 1995) to solve for a
numerical approximation uNi,j to (32); then (33) becomes

1

2ε2N2

N∑

i,j

|∇Ψ(xi,j)|H(xi,j)K(uNi,j)Z(|Ψ(xi,j)|/ε2) dx ≈
∫

c
H(c(s))K(|s− s̄|) ds.

(35)

6. Experiments

In this section, we show some simulations of Sobolev active contours
used for segmentation of static images and some simple image se-
quences.

We tried both the method of Section 5.2 and 5.3; the latter is simpler
to implement, but is difficult to tune w.r.t. the choice of ε and N . The
following numerical experiments use the polygon(s) estimate of the zero
level set, as in Section 5.2.

In all the simulations done below, the results for the Sobolev active
contours are done with the H̃1 inner product (λ = 10 unless stated
otherwise, although a wide range of λ give similar results). Using the
H1 inner product gives visually similar results as to what are shown.
We consider two energies to illustrate the advantages of Sobolev active
contours over H0 active contours. The edge-based energy we consider
is

Ee(c) =

∫

c
φ(c(s)) ds, where φ =

1

1 + ‖∇I‖2 , (36)

which was proposed by Caselles et al., Kichenassamy et al. (1995, 1995).
The region-based energy we consider is

Er(c) =

∫

cin

(I − u)2 dA+

∫

cout

(I − v)2 dA+ αL(c), (37)

where

u =

∫
cin
I dA∫

cin
dA

, and v =

∫
cout

I dA∫
cout

dA
,

and α ≥ 0 specifies a penalty on the length, L(·), of the curve. This
is the piecewise-constant model of Mumford and Shah (1989) (see also
(Chan and Vese, 2001)). The use of the length penalty is partly to keep

journal_complete_revision.tex; 10/10/2006; 12:43; p.28



29

Figure 3. Segmentation of various shapes using a Sobolev active contour for a re-
gion-based energy (37). This illustrates the ability of Sobolev active contours to cope
with topological changes: merging and splitting.

the evolving H0 contour smooth, and avoid undesirable local minimum
of the first terms caused by noise. This term has a smoothing effect
since the H0 gradient flow of L is curvature flow, which has smoothing
properties; as we saw in Section 4.1 this length penalty for the Sobolev
flow is futile in terms of giving smoothness to the contour.

6.1. Merging and Splitting

In Figure 3, we demonstrate the experimental evidence for the ideas
presented in Section 5.1. In this experiment, we segment an image using
the region-based energy (37), and a Sobolev active contour. We see that
the active contour can change topology to achieve the global minimum.

6.2. Noisy Square Segmentation

In Figure 4, we show the results of an experiment in which we segment
a noisy square image with the region-based energy (37). We added salt
and pepper noise with densities of ρ = 0.5, 0.6, 0.7 to the binary image.
In this experiment, we compare the results obtained from using the
usual H0 active contour with the result obtained from using a Sobolev
active contour.

First, we explore the effects of various weights, α, on the length
penalty in (37) for the H0 active contour. In Figure 4, we see that
with using a small α, the contour becomes stuck in the noise, at an
intermediate local minimum of Er (37). The image second from the
right in each row is the result of the H0-active contour with a minimum
α just high enough so that the contour is not stuck in noise at a local
minimum. In Figure 4(a), we see that with relatively low noise, the
result of the H0-active contour with just high enough α to overcome
the local minimum captures the desired square accurately. As the noise
increases, a higher α is needed to overcome local minima; however,
because of such a high length penalty and therefore higher smoothness,
the active contour is unable to capture the fine-scale structure of the
desired object. In Figure 4(c), we see that using the minimal α to
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overcome the noise results in the contour failing to capture the corners
of the desired square object.

Notice that for each of the noise levels, the Sobolev active contour
without any length penalty (α = 0) or additional regularization terms
in the energy moves in such a way as to avoid any local minimum of the
energy, Er, as it moves in a global fashion first before resorting to finer
scale deformations (the final segmentation of the square images are the
last image in each row of Figure 4). The end result captures the square
accurately and looks to be the global minimum of the region-based
energy. The result is independent of λ, the weighting on the derivative
component of the H̃1 inner product since translations do not optimize
the energy. Notice that the converged Sobolev contour becomes more
rugged as the noise increases. This is because the image is corrupted
by the noise, and the original square is no longer the global minimum
of energy. We should point out that the Sobolev active contour gives
smoothness in the contour flow ; it does not guarantee smoothness in
the final contour, which is determined by the energy that is being
minimized.

Besides obtaining a more accurate segmentation, the Sobolev active
contour converges much faster than the H0 active contour with just
high enough length penalty, α, to get passed local minima. The reason
for this is because of the small step size needed for stability of the
curvature term arising from the length penalty in the level set imple-
mentation. A crude estimate for the Sobolev active contour shows that
the step size is less than 0.5/2552 = 130 050−1, whereas for the H0-
active contour with α = 300 000, as in Figure 4(c), a step size of less
than min{0.5/300 000 = 600 000−1, 0.5/2552 = 130 050−1} = 600 000−1

is needed. This is a factor of about 5 for this crude estimate.

6.3. Segmentation of Real Images

We illustrate the advantages of using Sobolev active contours over H0

with the same energy on real medical images in Figures 5, 6, and 7.
In Figure 5, we use the edge-based energy, Ee (36) to segment a

cardiac image. We show the results with two different initializations
using both H0 and Sobolev active contours. Because of the compli-
cated texture of the image, the edge-based energy is riddled with local
minima. Because the Sobolev active contour moves more globally, it is
less likely than the H0 active contour to become stuck in local minima,
as shown in Figure 5.

In Figure 6, we segment an ultrasound image using the region-based
energy (37). In Figure 6(a), the results are shown using an H0 active
contour with two different weightings, α, on the length penalty. In both

journal_complete_revision.tex; 10/10/2006; 12:43; p.30



31

(a) ρ = 0.5. Left to right: Initialization, H0 : α = 20 000, 50 000, 90 000, Sobolev.

(b) ρ = 0.6. Left to right: Initialization, H0 : α = 50 000, 120 000, 160 000, Sobolev.

(c) ρ = 0.7. Left to right: Initialization, H0 : α = 50 000, 100 000, 300 000, Sobolev.

Figure 4. Segmentation of square binary image with salt and pepper noise of var-
ious densities. The experiment shows the results with H0 (of various degrees of
regularization, α) and the Sobolev active contour.
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(a) H0 active contour.

(b) Sobolev active contour.

Figure 5. Segmentation of a cardiac image using the edge-based energy in (36) (two
different initializations).

cases, extraneous features of the image are detected. In Figure 6(b), we
see that the Sobolev contour moves initially according to global motions
(translation and dilation), and finally detects the more fine features of
the image when more global motions cannot optimize the energy. Thus,
the contour is able to avoid irrelevant local features that disturbs the
H0 active contour.

In Figure 7, we segment a vessel image using a the region-based
energy (37). As we see, the Sobolev active contour is less affected
by local features, which causes the H0 active contour to leak into an
irrelevant region of the image.
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(a) H0 active contour with low (α = 10, top) and with high (α = 5000) regularization.

(b) Sobolev active contour (no regularization).

Figure 6. Segmentation of an ultrasound image using the region-based energy (37).

6.4. Segmentation of Simple Image Sequences

We now illustrate the robustness of the Sobolev active contour for
segmenting simple synthetic image sequences (Figures 6.4 and 6.4).
The image sequences are simply formed by translating a square object.
We successively segment frames of the image by an active contour
whose initialization in the current frame is the final segmentation in
the previous frame. In the experiment shown in Figure 6.4, we employ
the edge-based energy (36). In the experiment in Figure 6.4, we use the
region-based energy (37). The segmentation evolutions are run until
convergence of both contours (H0 in white and Sobolev in black).
Notice the H0 active contours becomes stuck in a undesirable local
minima after the initial movement of the object and soon lose track of
the object. The Sobolev active contour does not have this problem and
it successfully tracks the object by mostly translating and deforming
only slightly.
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(a) H0 active contour with length penalty.

(b) Sobolev active contour (no length penalty).

Figure 7. Segmentation of a vessel image using the region-based energy (37) with
both the H0 active contour and the Sobolev active contour. The Sobolev active
contour is able to avoid distracting fine features of the image and therefore does not
leak into an irrelevant region of the image.

Figure 8. Left to right, top to bottom: Tracking a moving square in a noisy envi-
ronment (Gaussian noise, µ = 0, σ2 = 0.01) using H0 active contour (white) and
Sobolev active contour (black). The edge-based energy (36) is used.
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Figure 9. Left to right, top to bottom: Tracking a moving square in a noisy envi-
ronment (Gaussian noise, µ = 0, σ2 = 0.3) using the region-based energy (37) and
the H0 active contour (white) with α = 10000 and Sobolev active contour (black)
using no regularization (α = 0).

7. Conclusion

In summary, we have observed that much of the literature on active
contours uses the concept of gradient flow to minimize energies, but it
has always been assumed (knowingly or unknowingly) that the inner
product on curve perturbations, on which the gradient depends, is the
H0 inner product. We have introduced using Sobolev inner products
on the set of perturbations of a curve. We have demonstrated the
general methodology for computing Sobolev gradients, which requires
integrating the H0 gradient. The procedure requires very little extra
computational time and little change of existing computer code when
compared with the H0 gradient flow, in particular for the H̃n family
of norms, as remarked in 3.1. It was demonstrated by theory and
experiments that Sobolev gradient flows are global flows, in which a
single point on the curve depends on all other points of the curve,
and the flows deform locally after global motions (e.g., translations)
can no longer optimize the energy. This particular property shows that
the Sobolev method gives a smooth flow (not necessarily a smooth
contour), which in many cases helps avoid certain undesirable local
minimum of active contour energies that disturb the (local) H0 flows.
Explicit formulas for Sobolev gradient flows of typical energies found in
the active contour literature, which were derived, showed many interest-
ing properties of Sobolev active contours. One of the notable properties
that these explicit formulas shows is that the Sobolev method regular-
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izes the corresponding H0 gradient flow by reducing the order of the
PDE. In particular, derivatives of the curve need not be defined for
region-based and edge-based energies, and the elastic energy, which is
results in a fourth order H0 flow is reduced to a second order flow using
a first order Sobolev flow.
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