
Soap film spanning an elastic link

Giulia Bevilacqua1, Luca Lussardi2, and Alfredo Marzocchi3

1MOX - Dipartimento di Matematica, Politecnico di Milano, Italy
2DISMA- Dipartimento di Scienze Matematiche “Giuseppe Luigi Lagrange”,

Politecnico di Torino, Italy
3Dipartimento di Matematica e Fisica “Niccolò Tartaglia”, Università Cattolica del

Sacro Cuore

1 Abstract
We study the equilibrium problem of a system consisting by several Kirchhoff
rods linked in an arbitrary way and tied by a soap film, using techniques of
the Calculus of Variations. We prove the existence of a solution with minimum
energy, which may be quite irregular, and perform experiments confirming the
kind of surface predicted by the model.

2 Introduction
In this article we find the solution of the Kirchhoff-Plateau problem which is
physically motivated by soap-films that span flexible loops. This approach is
a generalization of the so-called Plateau problem, a centuries-old mathematical
problem investigated by the Belgian physicist Joseph Plateau [19]. In contrast
with Plateau problem, in which a soap film spans a fixed frame, the Kirchhoff-
Plateau problem concerns the equilibrium shapes of a system in which a flexible
filament has the form of a closed loop spanned by a liquid film. We model
our filament as a Kirchhoff rod: it has to be thin enough, unshearable and
inextensible and it can sustain bending of its midline and twisting of its cross-
sections (see for instance Antman [3] Ch. 8). In this way the problem becomes
“elasto-variational”.

This kind of problem has been investigated in [13] by Fried et al. where they
consider only a filament, while our aim is to study more complex configurations
of the bounding loop, like a finite number of them linked in an arbitrary way.
For the sake of simplicity we will consider throughout the paper two thin elastic
three-dimensional closed rods, i.e. two loops, linked in a simple but nontrivial
way: we impose that the midline of each rod has to have linking number equal
to one with the other one: this implies that they form what is called a link
(see Fig. 1), but the case of a number of N loops possibly non isotopic to a
torus and arbitrarily linked can be easily treated with the same technique and
minor changes. In this way, the major difference with respect to [13] is the fact
that the second loop doesn’t have a fixed position in space, while the first has
a prescribed frame at a point. To take into account all of these requests we
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Figure 1: Geometry of the problem

have to impose some physically motivated constraints, such as local and global
non-interpenetration of matter (though allowing for points on the surface of the
bounding loop to come into contact), and other already introduced by Schuricht
[23], adding the necessary specifications in considering a link and not a single
loop.

As for the energy functional of the system, we consider three contributions:
the elastic and the potential energy for the link and the surface tension energy of
the film. Precisely, we do not take into account the energy associated with the
liquid/solid interface since it is less then the one between the liquid/air interface.
However, for the future it could be a parameter to add to the problem in order
to give a more physical description also for the spanning surface.

The most delicate point in our elasto-variational problem is a good definition
of spanning surface, since we do not prescribe a priori the region where the soap
film touches the surface of the bounding loop.
To overcome this problem we use the definition of spanning surface introduced
by Harrison [14] based on the concept of linking number, which is a numerical
invariant well-known in topology. Even if this approach describes all soap-
film solutions ([14], [15]), it needs much strong regularity. Therefore, like in
[13], we use a recent and powerful reformulation by DeLellis et al. [9], who
formulate the Plateau problem in a particular notion of “bounding” and make use
of Hausdorff topology for the convergence of surfaces. In this way the minimum
of the problem is defined as the support of a Radon measure, [8], [10], [21].
Hence, this approach has the advantage of considering also non-rectifiable or not
fixed boundaries but it is not easy to apply since the minimization of Hausdorff
measures on classes of compact sets could cause lack of lower semicontinuity
(it depends on the notion of convergence adopted), which is fundamental for
the direct method of the Calculus of Variations. To avoid these difficulties we
combine Preiss rectifiability theorem [20] for Radon measure in combination
with some variational arguments, such as the introduction of cone and cup
competitors.

Finally, we tried to reproduce the physical counterpart problem in the labo-
ratory in order to “see” experimentally the solution. The results are interesting
because, as we expected, there could be a balance between the film energy and
the weight in cases when the loops are very light.
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3 Formulation of the problem
We consider two continuous bodies whose reference, or material, configurations
are two right cylinders of lengths L1, L2. The arc-length parameter s of the axis
of each cylinder identifies a material (cross) section A(s), which consists of all
points on a plane perpendicular to the axis at s belonging to a simply connected
and compact subset of the plane. Like in ([3], Ch. 8) we describe each rod by
three vector-valued functions [0, Li] → R3 given by s ↦ (ri(s),ui(s),vi(s))
(i = 1,2).

Now we fix a point O in the euclidean space E3 and describe the position
in space of each point of the ith rod. Setting Gi(s) −O = ri(s) (the so-called
midline), where Gi(s) is the center of mass of the cross-sections and considering
ui and vi as applied vectors in Gi(s), a generic point Pi of the rod in space is
given by the knowledge of the vector

pi(s, ζ1, ζ2) = Pi −O = ri(s) + ζ1ui(s) + ζ1vi(s), (1)

where (s, ζ1, ζ2) ∈ Ωi ∶= {(s, ζ1, ζ2)∣ s ∈ [0, Li], (ζ1, ζ2) ∈ Ai(s)}. Hence, Ωi is
the closure of an open set in R3. Moreover, ζ1 and ζ2 are not completely free:
we require that our body is “longer than broad”, so there exists an R > 0, the
maximum thickness, which has to be small compared to the length Li, such that
∣ζ1∣ < R and ∣ζ2∣ < R for any (s, ζ1, ζ2).
Moreover, we also assume that the rod is unshearable, i.e. the cross section at
any point of the midline remains in the plane orthogonal to the midline at that
point, so that u and v are orthogonal to the midline, and that this line is in-
extensible. Hence, by these assumptions, we can choose the Kirchhoff rod as a
model for the first rod, which is a special case of a Cosserat rod.

Given the function Ai(s), the position of the midline of each rod is then
completely determined by three scalar parameters with a physical meaning: k′i
and k′′i are the flexural densities and ω the twist density. The vectors ri,ui,vi
satisfy the system of Ordinary Differential Equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ṙi(s) =wi(s),
u̇i(s) = −ω(s)wi(s) − k′i(s)vi,
v̇i(s) = k′i(s)ui(s) + k′′i (s)wi(s);

(2)

where i = 1,2 and w = u × v is tangent to the midline.
Up to now, the two rods are defined in the same way. We now suppose that

the first one is “clamped” by assigning an initial value to its system, i.e.

(r1(0),u1(0),v1(0)) = (r̂1, û1, v̂1). (3)

Since clearly
ẇ1(s) = −ω1(s)u1(s) − k′′1 (s)v1(s)

the triple (u1,v1,w1) satisfies a non-autonomous linear system and therefore,
then by classical results [16], if the densites k′1, k

′′

1 and ω belong to Lp([0, L1];R)
for some p ∈ (1,∞), then the initial-value problem has a unique solution, with
r1 ∈W 2,p([0, L1];R3) and u1,v1 ∈W 1,p([0, L1];R3).
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It is easy to verify that if (û1, v̂1, ŵ1) is orthonormal, so is (u1(s),v1(s),w1(s))
for every s ∈ [0, L1]. For every (û1, v̂1, ŵ1) ∈ (R3)3 we then set

z1 = (k′1, k′′1 , ω1) ∈ V1 ∶= Lp([0, L1];R3).

As for the second rod, since we do not know a priori its position in space, we
need some information also on the orientation of one of its orthonormal frames.
Therefore we seek a solution of the form

z2 = (k′2, k′′2 , ω2, r̂2, û2, v̂2, ŵ2) ∈ V2 ∶= Lp([0, L2];R3) ×R3 ×R3 ×R3 ×R3

where û2, v̂2, ŵ2 are orthonormal and r̂2 gives their application point.
Now the system (2)2,3 and (3), together with the knowledge of r̂2, fully fixes

the position in space of the second midline.
Since we want to deal with closed loops, we have to restrict to a suitable sub-

class of descriptors by imposing topological constraints. Obviously we impose
the closure of the midlines, i.e.

ri(0) = ri(Li) (i = 1,2) (4)

and, since we do not want interpenetration, we need to have also continuity of
the tangent vectors, so that for i = 1,2

wi(0) =wi(Li). (5)

The simple determination of the midline, however, does not completely fix
the shape of the loops if they are three-dimensional. Indeed, the same midline
may correspond to different bodies if the cross-sections Ai(s) are rotated around
the midline before being glued, and the final rotation angle depends on the
shape of the cross-section. On the other hand, since they are undeformable, the
information to be encoded reduces to fixing a point in every section. First of all
we recall the notion of isotopy, which will be useful also later on.

Definition 1. Let ηi ∶ [a, b] → R3, with i = 1,2, be two continuous curves
with ηi(a) = ηi(b). η1 and η2 are said to be isotopic, η1 ≃ η2, if there are
open neighborhoods N1 of η1([a, b]), N2 of η2([a, b]) and a continuous mapping
Φ ∶ N1 × [0,1] ↦ R3 such that Φ(N1, τ) is homeomorphic to N1 for all τ ∈ [0,1],
Φ(⋅,0) is the identity, Φ(N1,1) = N2 and Φ(η1([a, b]),1) = η2([a, b]).

The isotopy class is then stable with respect to diffeomorphism and define
also the knot type. Another very useful notion is the linking number.

Definition 2. Let η1, η2 be two absolutely continuous disjoint closed curves in
E3. The number

L(η1, η2) =
1

4π
∫

b

a
∫

b

a

η1(s) − η2(t)
∣η1(s) − η2(t)∣3

⋅ (η′1(s) × η′2(t))dsdt

is called the linking number between η1 and η2.

It is well-known [18] that L is always an integer and that is invariant in the
isotopy class of the two curves.

To encode a possible rotation of the cross-sections, we then proceed as follows
for each of the two rods. Since the thickness is nonzero, we can consider a curve
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“near” the midline ri, which could be not a closed one since the endpoints may
be different. Joining them without interesecting the midline, we obtain a closed
curve which has a certain linking number with the midline. Of course, every
possible midline has to preserve this number, so we will impose this constraint
on the midline. At this point, once we know the midline, the position of the
nearby curve is fixed and so is its every cross-section, thus completely defining1

the shape of the loops, which we will indicate by Λ[z], see Fig 2.
Finally, we want to impose that the two loops form a link. We then come

back to the two midlines, and we suppose that they are linked with a given link-
ing number L12 ∈ Z. As they are closed sets, they admit disjoint neigbourhoods,
which we can suppose tubular without loss of generality ([17] pp 199-223). By
a further shrinking to the diameter of A(s) we have that both rods are disjoint
and linked one each other with the given linking number.

At this point, the shape of the two solids is assigned once we know z1,z2,
but we still have to avoid local and global interpenetration, which is clearly
unphysical. To this end, we first introduce the elastic and potential energy
stored in the loops.

The elastic energy is supposed to be of the classical form (see for instance
[7], Ch. 2)

Eeli[zi] ∶= ∫
Li

0
fi(zi(s), s)ds (6)

where fi(⋅, s) are continuous and convex for any s ∈ [0, Li] and fi(a, ⋅) is mea-
surable for any a ∈ R3. Since we are going to apply the Direct Method of the
Calculus of Variations, we suppose that there exist positive constants Ci,Di

such that
fi(a, s) ≥ Ci∣a∣p +Di ∀(a, s) ∈ R3 × [0, Li]. (7)

In view of this, the total elastic energy

Eel[z] = Eel1[z1] +Eel2[z2] ∶= ∫
I
f(z(ξ), ξ)dξ,

where I = [0, L1] × [0, L2], z = (z1,z2) and ξ is a vector variable, is easily seen
to be coercive on V ∶= V1 × V2.

As for the potential energy of the weight, it is given for each loop by

Egi[zi] = −∫
Li

0
ρi(s)g ⋅ (Gi(s) −O)ds

where ρi > 0 stand for the mass of each section of the rod and g denotes the
acceleration of gravity.

It is worth insisting on the fact that the weight plays a different role in the
two rods: in the first it acts essentially deforming only the midline, while in
the second it influences the global positioning of the rod, and could draw it
away without appropriate conditions of non intersection, that we will introduce
below.

We also set

Eloop[z] = Eel1[z1] +Eg1[z1] +Eel2[z2] +Eg2[z2].
1Up to a set of L1-zero measure which is irrelevant.
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We now need to set sufficient conditions for the local and global non-interpen-
etration of our configuration.

As for the first, it is well-known ([3], Theorem 6.2, p.276) that for Kirchhoff
rods the condition is equivalent to the existence of two convex, homogeneous
functions gi(ξ1, ξ2, s) such that g(0,0, s) = 0 and

gi(k′i(s), k′′i (s), s) < 1 for a.e. s ∈ [0, Li], (i = 1,2). (8)

However, this will not define a weakly closed set in the space of solutions,
due to the strict inequality. Therefore, we will require the weaker condition

gi(k′i(s), k′′i (s), s) ≤ 1 for a.e. s ∈ [0, Li], (i = 1,2). (9)

even if this could let some point to infinite compression, and to prevent this we
impose the natural growth condition on the elastic energy as

fi(zi(s), s) → +∞ as gi(k′i(s), k′′i (s), s) → 1, (i = 1,2) (10)

i.e. the elastic energy approaches infinity under complete compression (remem-
ber thay fi may depend on gi). By this assumption we have that the equality in
(8) can occur only on a set of measure zero for configurations with finite energy.

At this point it is not difficult to prove the

Theorem 1. Let z = (z1,z2) ∈ V = V1 × V2 satifies (9), fi with i = 1,2 satisfies
(10) and Eel(z) < +∞.
Then the mapping (s, ζ1, ζ2) ↦ p[z](s, ζ1, ζ2) = (p1,p2)[z1,z2](s, ζ1, ζ2) is lo-
cally injective on int Ω. Moreover, this mapping is open on int Ω.

Proof. The proof can be made easily by following the proof presented in [13]
taking into account the fact that we can study the two rods separately since
it is sufficient to reduce the proof in an open neighbourhood well-cointained in
each rod.

As for the global injectivity, we must distinguish each loop and their union.
First of all, Ciarlet and Nečas [6] proved that if this condition holds (11)

∫
Ωi

det
∂pi(s, ζ1, ζ2)
∂(s, ζ1, ζ2)

d(s, ζ1, ζ2) ≤ L 3(pi[zi](Ωi)), (11)

the global injectivity is true. Moreover, in our case it can be rewritten as

∫
Ωi

(1 − ζ1k′i(s) − ζ2k′′i (s))d(s, ζ1, ζ2) ≤ L 3(pi[zi](Ωi)). (12)

Hence, assuming (12) true, one has the global injectivity of the functions pi
on each rod. Roughly speaking, this condition guarantees that parts of the
rod which are far away from each other in the reference configuration, cannot
penetrate each other after large deformations.
We will then suppose (12) for the non-interpenetration of each rod. At this
point, for the union of the two, we notice that the midlines (which are closed
sets) have to be disjoint and therefore there exist R > 0 such that the maximum
diameter of the sections is less than R it holds

∀z ∈ V p1[z1](Ω1) ∩ p2[z2](Ω2) = ∅. (13)

We will then suppose the sections so small that (13) is verified.
Now we can prove the
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Theorem 2. Let z be an element of V = V1 × V2 such that Eloop[w] < +∞ and
fi with i = 1,2 satisify (10). Suppose that p1[z](Ω1) ∩ p2[z](Ω2) = ∅ and zi
satisfies (9) and (12).
Then the mapping (s, ζ1, ζ2) ↦ p[z](s, ζ1, ζ2) is globally injective on int Ω.

Proof. By (13) it suffices to show the global injectivity of p1 and repeat the
arguments for p2. Let us fix a configuration z1 ∈ V1, by Theorem 1 there is a
set I0 of measure zero such that

lim sup
(s̃,ζ̃1,ζ̃2)→(s,ζ1,ζ2)

∥p1(s̃, ζ̃1, ζ̃2) − p1(s, ζ1, ζ2)∥
∥(s̃, ζ̃1, ζ̃2) − (s, ζ1, ζ2)∥

< ∞ ∀(s, ζ1, ζ2) ∈ Ω′

1,

where Ω′

1 is defined as Ω1 ∖Ω1(I0) and

Ω1(I0) = {(s, ζ1, ζ2) ∈ Ω1 ∶ s ∈ I0}.

Obviously2 L 3(p1[z1](Ω1(I0))) is equal to zero. By the coarea formula3 ([12],
pp 243-244), we have

∫
Ω′

1

(1 − ζ1k′1 − ζ2k′′1 )d(s, ζ1, ζ2) = ∫
p1(Ω′

1)

card{p−1
1 (q)}dq, (14)

where p−1
1 is the inverse of the mapping p1. Therefore, using (12) and (14), it

yields

L 3(p1[z1](Ω1)) = ∫
p1[z1]Ω1)

dq = ∫
p1[z1](Ω1(I0))

dq ≤

∫
p1[z1](Ω1(I0))

card{p−1
1 (q)}dq = ∫

Ω′

1

(1 − ζ1k′1 − ζ2k′′1 )d(s, ζ1, ζ2) =

∫
Ω1

(1 − ζ1k′1 − ζ2k′′1 )d(s, ζ1, ζ2) ≤ L 3(p1[z1](Ω1)).

Hence,
card{p−1

1 (q)} = 1 for almost all q ∈ p1[z1](Ω1), (15)

which combined with Theorem 1 ensure the injectivity of p1 on int Ω1 and then
the global injectivity of p on int Ω.

Finally, the energy stored in a film that will deform the link is defined as

Efilm(S) = 2σH 2(S), (16)

where H d represents the d-dimensional Hausdorff measure. When a soap film
is in stable equilibrium, as in eq. (16), any small change in its area, S, will

2The complete proof of this statement is in [23]. However, we can give a simple and
empirical idea of the proof: since I0 has measure zero, the cross-sections such that their arc-
length parameter s belongs to I0 are the elements of the set Ω1(I0). Hence, L 3(Ω1(I0)) = 0.
But now, since p1 is a regular function, we can think that sets of measure zero are mapped
into sets of measure zero.

3Let consider two locally Lipschitz continuous functions f ∶ Rn → R and g ∶ Rn → Rm with
m ≤ n. Then

∫
Rn

f(x)
√

det [dg(x)(dg(x))T ]dL n(x) = ∫
Rm

(∫
g−1(y)

f(x)dH n−m(x))dL m(y).

If m = n, the quantity H 0 = card, i.e. the function which counts the elements of a set [12].
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produce a corresponding change in its energy E, providing σ remains constant.
As Efilm is minimized when the film is in stable equilibrium, S will be minimized.
Precisely, in (16), we do not consider what happens between the film and the
bounding loop, i.e. the energy associated with the liquid/solid interface.

Anyway, we still cannot provide the final expression for the energy since we
have not yet specified how the film is attached to each loop. Since in our case
we have a boundary with non vanishing thickness, to formulate the idea of a
solution we have to give a good definition of the terms surface, area and contact,
which we will call span. We need also a precise mathematical formulation of the
conditions which explain how the liquid film spans the bounding loop without
detaching from it, after which we will end up with the final expression of the
functional to be minimized. We begin with some recalls of topology.

Definition 3. Let H = ⋃j∈J Hj be a closed compact 3-dimensional submanifold
of E3 consisting of connected components Hj . We say that a circle γ embedded
in E3∖H is a simple link of H if there exists i ∈ J such that the linking numbers
L(γ,Hj) verify

∣L(γ,Hi)∣ = 1, L(γ,Hj) = 0 j ≠ i.

Clearly, a simple link “winds around” only one component of H (see figure
2). Precisely, the definition of the linking number between a closed subset
and a curve is exactly the one given before (Definition 2) by considering the
compactification of the E3 (for more details see [22], pp.132-136).

Definition 4. We say that a compact subset K ⊆ E3 spans H if every simple
link of H intersects K.

This idea is crucial: we need spanning sets (in simple cases, surfaces) crossing
every simple link: in this way it is impossibile for K to be “detached” from H,
or having “holes” which are not occupied by other components of H (see figure
2). However, in our case we need a still more general definition, because in our
problem H is not given a priori since H = Λ[z], i.e. it depends on the considered
configuration.

Now let H be an arbitrary closed subset of E3 and consider the family

CH = {γ ∶ S1 → E3 ∖H ∶ γ is a smooth embedding of S1 into E3}.

A set C ⊆ CH is said to be closed by homotopy (with respect to H) if it contains
all elements belonging to the same homotopy class.

Definition 5. Given C ⊆ CH closed by homotopy, we say that a relatively
closed subset K ⊂ E3 ∖H is a C-spanning set of H if

K ∩ γ ≠ ∅ ∀γ ∈ C.

We denote by F (H,C) the family of all C-spanning sets of H.

Notice that the set spanned by the surface, can be any closed set in E3, so
we can consider H = Λ[z] with finite cross-section, as in our case and not only
a line as in the Plateau’s problem. Nevertheless, the spanning surface depends
only on the choice of the homotopy class and not to the configuration z. Hence,
we can define
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Definition 6. We call a set DΛ[z] ⊆ CΛ[z] a DΛ[z]-spanning set of Λ[z] if it
contains all the smooth embeddings γ which are not homotopic to a constant
and which have linking number one with both rods. For the sake of brevity, we
will write D in place of DΛ[z].

Finally, we denote F (Λ[z],D) the family of D-spanning sets of Λ[z] with
linking number one with both components (see Fig 2).

H
K

H

1

1

3

2

2

°

°

°

¤[ ]z

Figure 2: γi (i = 1,2) are simple links for Hi while γ3 ∈ F (Λ[w]).
Even ifK is notD-spanning for the whole system, notice how γ1∩K ≠

∅.

We are now in position to set the energy functional for our problem. We set

EKP[z] ∶= Eloop[z] + inf{Efilm(S) ∶ S is a D-spanning set of Λ[z]}, (17)

where z ∈ V and verifies all the above-mentioned constraints. Precisely, the inf
in the equation (17) is necessary since we want to eliminate the dependence on
the spanning surface S and writing everything in the terms of the configuration
z only.

At this point a first important result holds

Theorem 3. Let two circumferences ηi ∶ [0, Li] → E3 and M ∈ R and n1, n2 ∈ Z
three constants be given. Then, the set

UM,ni,ηi ∶= {z = (z1,z2, r̂2, û2, v̂2) ∈ V = V1 × V2 ∶ Eloop[z] <M ;

(4), (5), (12) and (13) hold L(zi) = ni;
L12 = 1 and (r1[z1],r2[z2]) ≃ (η1, η2)}

(18)

is weakly closed in V .

Proof. If UM,ni,ηi = ∅ the thesis is obviously true.
If UM,ni,ηi ≠ ∅, it is an extension to Schuricht’s theorems 3.9, 4.5 and 4.6 [23],
by remembering that

p = (p1,p2) z = (z1,z2).
Moreover, since pi are two open maps and Ωi are the closure of two open sets in
E3, condition (13) yields the intersection of two closed sets, which is obviously
a closed set and concludes the proof.
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4 Main results
Now we want to prove the existence of a solution to the Kirchhoff-Plateau
problem, i.e. the existence of a minimizer of EKP given by (17) in the class
UM,ni,ηi . As a first step we find a minimizer of each its two terms. Obviously,
we cannot say that the solution of our problem will be the sum of them, but
this will be useful to prove the main result.

4.1 Energy minimizer for the bounding loop
For the first term, the functional Eloop, we use a quite straightforward applica-
tion of the direct method of the Calculus of variations. Recall that its expression
is

Eloop[z] ∶ V → R ∪ {+∞}

z↦ Eloop[z] = Eel[z] +Eg[z] = ∫
I
f(z(ξ), ξ)dξ +Eg[z],

In order to verify if we can apply this method to Eloop, we follow the following
steps.

First, we need to show that Eloop is bounded from below and proper, i.e.
Eloop ≠ +∞. The second condition is by definition. For the first one, we can
focus only on Eel, because Eg is always bounded from below, since the midline
is bounded. Therefore, by (7) we immediately obtained

Eeli[z] ≥ Ci ∫
Li

0
∣zi∣p ds +DiLi ≥DiLi > −∞. (19)

Hence, Eloop is bounded from below and moreover Eloop[z] = +∞ only under
complete compression.

Next, consider a sequence {zk}k∈N such that

lim
k

Eloop[zk] = inf
z∈V

Eloop[z] =m.

Obviously, it exists k̄ such that ∀k ≥ k̄

Eloop[zk] ≤m + 1.

Now, we notice that this sequence is bounded: this follows easily from the
boudedness of the clamping parameters and by coercitivity, since

∫
Li

0
∣zik ∣p dx ≤

1

Ci
∫

Li

0
fi(zik(s), s)ds −

DiLi
Ci

≤ 1

Ci
(m + 1) − DiLi

Ci
≤ A,

where A > 0 is a constant. Since V is a reflexive space ([?] Ch. 4), zk admits a
weakly convergent subsequence, i.e. up to subsequences one has

∃z ∈ V ∶ zk ⇀ z.

Now we show that Eloop[z] is weakly-lower semicontinuous (WLSC) in V .
Remember that Eloop = Eel + Eg and all linear functionals are LSC, so we can
focus on the total stored energy Eel. By assumptions made on Eeli , i.e. the
hypotheses made on fi, we obtain first that Eel is WLSC and then the total

10



energy associated to the bounding loop.

To introduce and to prove the following theorem, we have to remember that
we are looking for the solution of our problem not in a generic Banach space
but in UM,n,ηi , i.e. it has to satisfy the physical and the topological constraints
imposed to the problem. Therefore

Theorem 4. If there is at least one admissible

z = (z1,z2) ∈ UM,ni,ηi

with M ∈ R, ni ∈ N and ηi ∶ [0, Li] → E3, then the variational problem described
above has a minimizer, i.e. there exists a minimizer z ∈ UM,ni,ηi for the loop
energy functional.

Proof. Since z ∈ UM,ni,ηi , i.e. it is a competitor, UM,ni,ηi ≠ ∅. So, let {zk}k∈N ∈
UM,ni,ηi a minimizing sequence such that Eloop[zk] < M for some M ∈ R be
given.
By the coercitivity of fi with i = 1,2, we obtain that UM,ni,ηi is a bounded
subset in V . So, we can extract a weakly converging subsequence zkh ⇀ z.
Moreover, as UM,ni,ηi is weakly closed in V (Theorem 3), so z ∈ UM,ni,ηi .
Finally, the weak lower semicontinuity of Eloop[z] yields

Eloop[z] ≤ lim inf
h

Eloop[zkh] = lim
k

Eloop[zk] = inf
z∈U

Eloop[z],

where zkh is a subsequence of the chosen minimizing sequence zk. Therefore,
the weak limit z is a global minimizer.

4.2 Area-minimizing spanning surface
Up to now, we only proved the existence of an energy-minimizing configuration
for the bounding loop in the absence of the liquid film. Now we want to show
the existence of an area-minimizing spanning surface for the link.

If Λ[z] is rigid, De Lellis et al. [9] proved an important result:

Theorem 5. Fix z ∈ V . If

m0 ∶= inf{Efilm(S) ∶ S ∈ F (Λ[z],D)} < +∞,

then

1. F (Λ[z],D) is a good class;

2. there exists K[z] a relatively closed subset of R3 ∖ Λ[z] such that K[z] ∈
F (Λ[z],D) and K[z] is a minimizer, i.e. Efilm(K[z]) =m0;

3. K[z] is a countably H 2-rectifiable set and it is an (M ,0,∞)-minimal set
in R3 ∖Λ[z] in the sense of Almgren.

For a precise definition of good class and (M ,0,∞)-minimal set in the sense
of Almgren, see respectively [9] and [2]. In our case the first one is just a family
of subsets in which we can control their measures. Namely, it exists a selected
and well-defined competitors L with finite 2-dimensional Hausdorff measure
which control the measure of each element of the good class. The second one,
instead, is a property of regularity on the subset K[z]. The theorem is just a
combination of Theorem 2 and 3 in [9].

11



4.3 Main result
Now we come to our main result. Since we are dealing with approximating
surfaces, we need to specify the notion of convergence of surfaces. We do this
following Fried et al. [13].

Definition 7. Let A,B be two non empty subsets of a metric space (M,dM).
The Hausdorff distance between A and B is defined by

dH(A,B) ∶= max{sup
a∈A

inf
b∈B

dM(a, b), sup
b∈B

inf
a∈A

dM(a, b)}.

If we consider all non-empty subsets ofM , then dH is a pseudo-metric, i.e. we
can always find two subsets A,B with A ≠ B such that dH(A,B) = 0. However,
the set K(M) of non empty compact subsets of M is a metric space. Moreover,
the topology induced by dH on all closed non empty subsets of M does not
depend on dM and it is said Hausdorff topology.

The problem we have to solve is connected to the fact that Λ[zk], the closed
subset in R3 occupied by the whole link, changes along the minimizing sequence.
So we have to consider sequences of nonempty closed sets, possibly converging
to a closed set, which might be our minimal link. Moreover, since (K(M), dH)
is not only a metric space, but it is also compact with the distance dH , then if
we take a bounded sequence in (K(M), dH), we can always extract a convergent
sequence, using Blaschke’s theorem [4]. So, it is reasonable to consider as an
assumption of next theorem the existence of a sequence of subsets Λk which
converge to something in the Hausdorff topology, denoted by Λk

HÐ→ Λ.

Theorem 6. Let Λk a sequence of closed non empty subsets of E3 converging
in the Hausdorff topology to a closed set Λ ≠ ∅. Assume that

i) ∀k ∈ N, Sk ∈ F (Λk[z],D), where F (Λk[z],D) is a good class;

ii) Sk is a countably H 2-rectifiable set;

iii) H 2(Sk) = inf{H 2(S) ∶ S ∈ F (Λk[z],D)} < +∞.

Then the sequence of measures µk ∶= H 2 ⌞ Sk is a bounded sequence, µk
∗Ð⇀ µ,

up to subsequences, and

µ ≥ H 2 ⌞ S∞, where S∞ = (suptµ) ∖Λ and it is a H 2-rectifiable set.

Proof. Let µk = H 2 ⌞ Sk and Sk ∈ F (Λk[z],D). Since F (Λk[z],D) is a good
class, for all J ∈ F (Λk[z],D) one has

µk(J) = H 2 ⌞ Sk(J) = H 2(Sk ∩ J) ≤ H 2(J) ≤ H 2(L) < +∞,

where L is the generic competitor in the good class. Hence, µk is a bounded
Radon measure, therefore ([11], pp. 54-59), up to a subsequence (not relabeled),
µk

∗Ð⇀ µ.
Now let f ∈ C∞

c (Rn) with 0 ≤ f ≤ χB(x,r); by the weak* convergence of µk
we have

∫
B(x,r

fdµ = lim
k
∫
B(x,r)

fdµk ≤ lim inf
k

µk(B(x, r))
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so that µ(B(x, r)) ≤ lim infk µk(B(x, r)).
Since Λk

HÐ→ Λ, for any x ∈ S∞ = (suptµ) ∖ Λ we can find a radius r such
that

0 < r < d(x,Λ) ⇐⇒ d(x,Λk) >
1

2
d(x,Λ).

Moreover, if we assume that µ(Rn) = limk µk(Rn), combining De Lellis’
result with this additional specification, we have that

µ = θH 2 ⌞ S∞ with S∞ = (suptµ) ∖Λ.

Indeed

µ(Rn) = lim
k
µk(Rn) ≥ lim inf

k
µk(Rn) =

lim inf
k

µk(B(x, r)) + lim inf
k

µk(Rn ∖B(x, r))

≥ µ(B(x, r)) + µ(Rn ∖B(x, r)) = µ(Rn), (20)

where the last equivalence is true because if a set {r > 0 ∶ µ(∂B(x, r)) ≠ 0}
is countable, then its Lebesgue measure is zero. Finally, µ(Rn) = limk µk(Rn)
is obviously true because of the definition of µk and the convergence in the
Hausdorff topology.

Let’s see that S∞ is a H 2-rectifiable set. If we fix x ∈ S∞, i.e. d(x,Λ) > 0,
the function r ↦ µ(B(x, r))/rn is increasing on (0, d(x,Λk)). By using Preiss’
results [20], we can find immediately that

µ = θH 2 ⌞ K̃

where K̃ is a H 2-rectifiable set. By the definition of the support of a measure
K̃ = S∞.

However, this is still not enough. Up to now, we proved in a separate way
that the two functionals, the one associated with the elastic link and the other
with the film, admit global minimizers.

Now, first we have to rewrite the second result in terms of the configurations
of our system since we only prove the existence of the minimal surface in the
presence of a changing boundary, and then we have to write the solution to our
problem, i.e. making a balance of the two contributions.

Theorem 7. Let us suppose that

i) {zk}k∈N ⊆ UM,ni,ηi a sequence such that zk ⇀ z with z ∈ UM,ni,ηi ;

ii) Sk ∈ F (Λ[zk],D);

iii) γ is a smooth embedding like the one defined in Def 6.

Then there exist two constants ε > 0 and M = M(ε) > 0 such that U2ε(γ) ⊆
E3 ∖Λ[z] and ∀k ≥ k0

H 2(Sk ∩Uε(γ)) ≥M.
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Moreover, Theorem 7 says that the intersection between the sequence of the
surface {Sk}, for large k, and a neighborhood of the smooth embedding γ is not
a point but a set with positive measure. Since a tubular neighborhood Uε(γ)
exists every time [1] and that it depends only on the embedding γ, we can state
that the surface S∞ which realizes the area minimal set (Theorem 6) belongs
to F (Λ[z],D). This theorem is fundamental in order to rewrite everything in
terms of the configuration z only, i.g. we solve the first gap mentioned before.
Indeed, suppose true Theorem 6 and 7; if we assume by contradiction that
S∞ ∉ F (Λ[z],D), this would mean that

∃γ ∈DΛ[z] ∶
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ ∩ S∞ = ∅
L(γ,r1) ≠ 1

L(γ,r2) ≠ 1.

If γ ∩ S∞ = ∅, we have µ(Uε(γ)) = 0, with ε defined in Theorem 7. Hence

0 = µ(Uε(γ)) ≥ H 2 ⌞ S∞(Uε(γ)) = H 2(S∞ ∩Uε(γ)) = lim
k

H 2(Sk ∩Uε(γ))

which implies
lim
k

H 2(Sk ∩Uε(γ)) = 0,

which contradicts the thesis of Theorem 7. Precisely, both L(γ,r1) ≠ 1 and
Ln(γ,r2) ≠ 1 cannot be achieved because the sequence of Λk converges in the
Hausdorff topology, i.e. it implies a uniform convergence. Hence, we can state
that F (Λ[z],D) is a weakly closed subset with respect to the weak* convergence.

Now, for the proof of Theorem 7, we can say that it is similar to the one
presented by Fried et al. [13] with some modifications. Remember that we are
considering a link so, for example, the constant ε is the same for the whole
system and we have to consider the embedding which has the linking number
equal to one with both the filaments. We are now ready to prove our final and
main result.

Theorem 8. Let M ∈ R, ni ∈ N and ηi ∶ [0, Li] → E3 two circumferences
be given. If there exists z̃ = (z1,z2) ∈ UM,ni,ηi , then there exists a solution
z ∈ UM,ni,ηi to the Kirchhoff-Plateau problem, i.e. there exists a minimizer z
for the energy functional EKP .

Proof. Let {zk} be a minimizing sequence for EKP . First of all, by coercivity,
we have

Eloop[zk] ≤ C1 H 2(Sk) ≤ C2,

where C1,C2 > 0 and Sk ∈ F (Λ[z],D). Precisely, if zk ∈ UM,ni,ηi , by weak
closure we can extract a subsequence zki such that

zki ⇀ z,

where z ∈ UM,ni,ηi . Now EKP is WLSC on V . Indeed, by Theorem 4, Eloop is
WLSC, so we only need to show that the functional

z↦ inf{H 2(S) ∶ S ∈ F (Λ[z],D)} is WLSC. (21)
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(a) (b)

Figure 3: Results obtained by our configuration with two fixed linked
rigid metallic wires.

To this end, consider Sk ∈ F (Λ[zk],D) such that

H 2(Sk) = inf{H 2(S) ∶ S ∈ F (Λ[zk],D)} < ∞

By Theorem 6, we find immediately that

µ ≥ H 2 ⌞ S∞,

where S∞ = suptµ∖Λ[z] and it belongs to F (Λ[z],D), by the previous remarks.
Hence, we obtain the chain of inequalities

lim inf
k

inf{H 2(S) ∶ S ∈ F (Λ[zk],D)}

≥ lim inf
k

(H 2(Sk)) = lim inf
k

µk(R3) = µ(R3)

≥ H 2(S∞) ≥ inf{H 2(S) ∶ S ∈ F (Λ[z],D)}, (22)

which establishes the lower semicontinuity of the functional (21) and so the
existence of the solution.

5 Some simple experiments
Finally, we tried to get some hint and confirmation reproducing our problem
in the laboratory. The film was a solution of 81% water, 16% glycerine, 3% of
common dish soap and we added a spoon of baking powder to make it more
resistant.

In the first example we took two fixed linked rigid metallic wires in the
configuration of fig. 1, and we observed first a locally minimal configuration
consisting of a plane surface and a D-spanning set in the sense of our definition.
Once the extra surface was removed, the remaining surface seemed to be the
minimum surface (fig. 3).

In the second experiment, for practical reasons, we took a fixed rigid metallic
wire as first rod, while the second was a 0.5 mm thick slender fishing line, twisted
of 4 turns and then glued together. The pictures (fig. 4) show the existence of a
configuration balancing the weight of the line with the energy coming from the
film.
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(a) (b)

Figure 4: Results obtained by our configuration with the mobile com-
ponent.
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