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Abstract. We show that the compliance functional in elasticity is differentiable with respect

to horizontal variations of the load term, when the latter is given by a possibly concentrated

measure; moreover, we provide an integral representation formula for the derivative as a linear
functional of the deformation vector field. The result holds true as well for the p-compliance

in the scalar case of conductivity. Then we study the limit problem as p → +∞, which

corresponds to differentiate the Wasserstein distance in optimal mass transportation with
respect to horizontal perturbations of the two marginals. Also in this case, we obtain an

existence result for the derivative, and we show that it is found by solving a minimization
problem over the family of all optimal transport plans. When the latter contains only one

element, we prove that the derivative of the p-compliance converges to the derivative of the

Wasserstein distance in the limit as p→ +∞.

1. Introduction

In many problems from applied mathematics, arising in different areas such as mechanics, dislo-
cation theory, optimal control, or shape optimization, it is an important issue to study rigorously
the dependence of solutions not only on the involved shapes but also on the source terms. In case
of distributed load terms, the usual method consists in considering the adjoint of the linearized
state equation (see for instance [16]), which requires in general some regularity of the involved
load. Therefore this approach becomes difficult to handle in case of singular loads. This can
be seen even in simpler situations where the sensitivity analysis does not require computing an
adjoint state, for instance in the case of the optimization of the scalar p-compliance, which is
defined by

Cp(f) := − inf
{∫

Ω

1

p
|∇u|p dx− 〈f, u〉 : u ∈W 1,p(Ω) , u = 0 on Σ

}
, (1.1)

where Ω ⊂ Rn is a bounded open Lipschitz domain, the exponent p belongs to (1,+∞), Σ is a

closed subset of ∂Ω, and f is an element of W−1,p′(Ω \ Σ).
If the load f is perturbed into fε := f + εg, one can easily compute the derivative with respect
to the load as

lim
ε→0

Cp(fε)− Cp(f)

ε
= 〈g, up〉 , (1.2)

being up the unique solution to the minimization problem (1.1).
For convenience of the reader, we have enclosed in the Appendix a short proof of (1.2), which

holds whenever gε := fε−f
ε converges strongly to g in W−1,p′(Ω \Σ) (and satisfies the additional

condition 〈gε, 1〉 = 0 in case Σ = ∅).
In particular, we emphasize that formula (1.2) is valid only when the perturbation g belongs

to W−1,p′(Ω \ Σ). Unfortunately, there are interesting situations in which this is not the case.
Consider for instance the case when p > n and f is a Dirac mass at a point a. If one wants
to study the sensitivity of the compliance with respect to the location of a, one has to take

fε := δaε , with aε := a + εh. In this case, as gε =
δaε−δa

ε converges to the dipole distribution
−div(hδa), one would have to apply (1.2) with g = − div(hδa). Since such a distribution does

not belong to W−1,p′(Ω \Σ), the meaningfullness of the duality product 〈g, up〉 requires the C1

regularity of up itself, and thus the smoothness of the source term f .
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The same kind of difficulty occurs when studying the sensitivity of the Monge distance between
two probabilities f± on Rn, defined by

W1(f+, f−) := inf
{∫

Ω×Ω

|x− y| dγ(x, y) : γ ∈ Π(f+, f−)
}
,

where Π(f+, f−) is the set of transport plans from f+ to f−, i.e. Π(f+, f−) = {γ ∈ P(Ω ×
Ω) , π1]γ = f+ , π2]γ = f−}, being π1,2 the two projections of Ω× Ω onto the first and second
factor.
As proved in the paper [4], this corresponds to consider the limit as p → +∞ of problem (1.1)
when the balanced measure f equals f+ − f−. This asymptotic result is a natural consequence
of the equality W1(f+, f−) = C∞(f), where C∞(f) is given by the dual problem

C∞(f) := max
{
〈f, u〉 : u ∈ Lip1(Ω)

}
,

being Lip1(Ω) the class of 1-Lipschitz functions on Ω. Then, in the smooth case, formula (1.2)
continues to hold for p =∞, with up replaced by a Monge potential for f (that is a solution to
the dual problem C∞(f)), provided the latter is unique. For a proof, we refer for instance to [19,
Proposition 7.17]. As the Monge potential is in general merely Lipschitz, and further in some
cases it is not unique, this formula cannot be applied in absence of regularity (see the related
papers [5, 8]), in particular if the dipole distribution g concentrates on the singular set of the
potential.
The aim of this paper is to fill this regularity gap and study the sensitivity of both the compliance
and the Wasserstein distance under horizontal variations of possibly singular source measures.
More precisely, given an open bounded, connected set Ω ⊂ Rn with Lipschitz boundary, and a
(scalar or vector) measure f on Ω, we consider the horizontal variations fε of f induced by a one
parameter family of diffeomorphisms Ψε with initial velocity V . Namely, fε are defined through
their action on any continuous test function u as

〈fε, u〉 := 〈f, u ◦Ψε〉 , with Ψε(x) = x+ εV (x) . (1.3)

As admissible deformation fields, we consider functions V ∈ C1(Rn;Rn) such that V · ν ≤ 0 on
∂Ω, being ν the unit outer normal to ∂Ω.
This kind of variations is reminiscent of domain derivatives in shape sensitivity analysis (cf. the
monographs [14, 17, 20]). In particular, our approach is intimately connected to our previous
works [9, 10].
Our main goals are:

(i) to perform the first derivative in direction V of the compliance functional C(f), in the
general vector setting of elasticity (for the definition of C(f) and related assumptions on
the bulk energy density, including in particular a growth condition or order p > n, see
the begining of Section 2):

C′(f, V ) := lim
ε→0

C(fε)− C(f)

ε
; (1.4)

(ii) to perform the first derivative in direction V of the Wasserstein distance

C′∞(f, V ) := lim
ε→0

C∞(fε)− C∞(f)

ε
; (1.5)

(iii) to study the limit as p → +∞ of C′p(f, V ), where Cp(f) denotes the scalar compliance
introduced in (1.1), with p > n and in the Neumann case when Σ = ∅ and f is a balanced
load.

In these directions, our achievements can be summarized respectively as follows:

(i) C′(f, V ) exists and is given by

C′(f, V ) = sup
u

inf
σ

∫
Ω

A(u, σ) : DV dx = inf
σ

sup
u

∫
Ω

A(u, σ) : DV dx

where A(u, σ) is a suitable tensor depending on an optimal displacement u and an
optimal field σ for the dual formulation of the compliance (see Theorem 2.2);
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(ii) C ′∞(f, V ) exists and is given by the following expression (in general not linear in V ):

C′∞(f, V ) = inf
{∫

Ω×Ω

(V (y)− V (x)) · y − x
|y − x|

dγ(x, y) : γ ∈ Argmin C∞(f)
}

(see Theorem 3.3);
(iii) the convergence

lim
p→+∞

C′p(f, V ) = C′∞(f, V ) (1.6)

holds true provided there exists a unique optimal transport plan for C∞(f), yielding in
particular the linearity of the map V 7→ C′∞(f, V ) (see Theorem 4.1).

These results are stated and proved respectively in Sections 2, 3, and 4, along with several
comments and examples.
Hereafter we fix some notation used throughout the paper.

Notation. We denote by Rn×n the space of (n×n) matrices with real entries and by Rn×nsym the
subset of symmetric ones. We denote by I the identity matrix and by 0 the zero one. Given A ∈
Rn×n, we set AT its transpose, Asym := (A+AT )/2 its symmetric part, and Askew := (A−AT )/2
its skewsymmetric part. When A is invertible, we denote by A−1 and A−T the inverse and the
transposition of the inverse of A, respectively. Given two vectors a, b in Rn and two matrices A
and B in Rn×n, we use the standard notation a · b and A : B to denote their Euclidean scalar
products, namely, adopting the convention of repeated indices, a · b = aibi and A : B = AijBij ;
moreover, we define a⊗ b as the tensor product of a and b, namely the matrix (a⊗ b)ij := aibj .

We endow Rn×n with the Euclidean norm, that is |A| := (A : A)1/2.
Given a tensor field A ∈ C1(Rn;Rn×n), by divA we mean its divergence with respect to lines,
namely (divA)i := ∂jAij .
Given 1 ≤ p ≤ +∞ we denote by p′ its conjugate exponent, defined as usual by the equality
1/p+ 1/p′ = 1.
We denote by D(Ω) the space of C∞ functions having compact support contained into Ω, by
Lip(Ω) the space of Lipschitz functions on Ω, and by LipL(Ω) the subspace of L-Lipschitz ones.
We denote byM(Ω;Rn) the space of vector-valued measures with finite total variation on Ω, by
M+(Ω) the space of positive measures with finite total variation on Ω. Given µ ∈M(Ω;Rn), we
denote by |µ| ∈ M+(Ω) its total variation measure; given ν ∈M(Ω), we denote by ν± ∈M+(Ω)
its positive and negative parts.
In the integrals, unless otherwise indicated, integration is made with respect to the n-dimensional
Lebesgue measure. Furthermore, in all the situations when no confusion may arise, we omit to
indicate the integration variable.
Whenever we consider Lp-spaces over Ω and over ∂Ω, they are intended the former with respect
to the n-dimensional Lebesgue measure over Ω, and the latter with respect to the (n − 1)-
dimensional Hausdorff measure over ∂Ω.
Given a normed vector space X and its topological dual X∗, the duality product between X∗

and X is denoted by 〈·, ·〉(X∗,X); when no ambiguity may arise, we shall omit the subscript. In

particular, if X = {u ∈ W 1,p(Ω) : u = 0 in Σ}, then X∗ coincides with the space W−1,p′(Ω \ Σ)

consisting of distributions in W−1,p′(Rn) with support in Ω \ Σ.

2. Derivative of the compliance

In this section we prove the existence and a representation formula for the first derivative of the
elastical compliance defined by

C(f) := − inf
{∫

Ω

j(e(u)) dx− 〈f, u〉 : u ∈ U
}
, (2.1)

with respect to horizontal variations of the load, defined as in (1.3).
Here e(u) is the symmetric gradient e(u) = (Du+DuT )/2, the space of admissible displacement
U is given by

U :=
{
u ∈W 1,p(Ω;Rn) : u = 0 on Σ

}
,

for some fixed exponent p > n and a given portion Σ of ∂Ω with Hn−1(Σ) > 0, and the potential
j : Rn×n → R satisfies the following assumptions

– j is continuous, convex and such that j(0) = 0;
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– j(A) = j(Asym) for every A ∈ Rn×n;
– there exist two positive constants C1 and C2 such that, for some p > n

C1(|Asym|p − 1) ≤ j(A) ≤ C2(|Asym|p + 1) ∀A ∈ Rn×n . (2.2)

Notice that 〈f, u〉 is meant as
∫

Ω
u df and makes sense thanks to the continuous embedding of

W 1,p(Ω;Rn) into C(Ω;Rn). In the next lemma (whose proof is postponed below), we show
that, under the above assumptions, the infimum problem which defines C(f) admits an optimal
displacement in the space U ; moreover, we give the dual formulation of the compliance, which
is the key tool to state our result. Let us observe first that, by our assumptions on j, one has
j(Q) = j(0) = 0 for every skew symmetric Q, thus the Fenchel conjugate j∗ satisfies

j∗(P ) = +∞ whenever P skew 6= 0 . (2.3)

(indeed j∗(P ) = supQ∈Rn×n{P : Q− j(Q)} ≥ supQ∈Rn×nskew
{P : Q}).

Lemma 2.1. The compliance functional C(f) admits the following dual formulation:

C(f) = C∗(f) := inf
σ∈S

{∫
Ω

j∗(σ) dx : −div σ = f in D′(Ω \ Σ;Rn)
}
, (2.4)

where

S :=
{
σ ∈ Lp

′
(Ω;Rn×n) : div σ ∈M(Ω;Rn)

}
.

Moreover, the infima in (2.1) and (2.4) are attained, and (u, σ) ∈ U ×S are optimal respectively
for C(f) and C∗(f) if and only it holds

σ ∈ ∂j(Du) Ln-a.e. in Ω and − div σ = f in D′(Ω \ Σ;Rn) . (2.5)

Our main result for the derivative of the compliance reads:

Theorem 2.2. For any admissible deformation field V such that V (Σ) ⊆ Σ, the first derivative
of C at f in direction V defined according to (1.4) exists and is given by

C′(f, V ) = sup
u

inf
σ

∫
Ω

A(u, σ) : DV dx = inf
σ

sup
u

∫
Ω

A(u, σ) : DV dx (2.6)

where u varies in the set of optimizers of C(f), σ varies in the set of optimizers of C∗(f), and
A(u, σ) is the tensor field

A(u, σ) := Duσ − j(Du) I . (2.7)

Moreover, there exists a saddle point (u?, σ?) at which the sup-inf and inf-sup above are attained.

Remark 2.3. As already mentioned in the Introduction, the assumption p > n serves the
purpose of allowing the presence of loads inM(Ω;Rn), such as Dirac masses. However, we point
out that, as it can be seen by inspection of the proof, such assumption is not necessary for the
validity of Theorem 2.2 if it is assumed that the load µ belongs to W−1,p′(Ω \Σ). In particular
Lemma 2.1 still holds in this case (see for instance [3]).

Remark 2.4. In general, equality (2.6) does not allow to conclude that V 7→ C′(f, V ) is linear,
since a priori the saddle point (u?, σ?) depends on V . However, the linearity of the derivative
can be asserted if the tensor in (2.7) is uniquely determined, as it occurs, for example, when
both C(f) and C∗(f) have a unique optimizer, or when C(f) admits a unique optimizer u and j
is Gateaux differentiable except at most at the origin. In the latter case the tensor field in (2.7)
only depends on u and reads A(u) = Du∇j(Du)− j(Du) I.

Remark 2.5. As a variant, we can consider the scalar setting (either with Σ 6= ∅, or with
Σ = ∅ and f balanced real measure, namely 〈f, u〉 = 0 whenever u is constant). In such setting,
Theorem 2.2 continues to hold (with the same proof). The unique difference is the algebraic
definition of the tensor A appearing in (2.6), which becomes

A(u, σ) := ∇u⊗ σ − j(∇u)I .

In particular, when j(z) = 1
p |z|

p, denoting the compliance functional by Cp(f), i.e.,

Cp(f) := − inf
{∫

Ω

|∇u|p

p
dx− 〈f, u〉

}
, (2.8)
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formula (2.6) gives

C′p(f, V ) =

∫
Ω

A(up) : DV dx , (2.9)

being up the (unique) optimal displacement for Cp(f), and

A(up) = |∇up|p−2(∇up ⊗∇up)−
|∇up|p

p
I . (2.10)

As a consequence of Theorem 2.2, by taking vector fields V with compact support in Ω, we
obtain the following optimality condition:

Corollary 2.6. Assume that the tensor field in (2.7) is uniquely determined. Then, denoting it
simply by A, we have C′(f, V ) = 0 for all V ∈ D(Ω;Rn) if and only if

divA = 0 in D′(Ω;Rn) .

Below we give some explicit examples of computation of C′p(f, V ).

Example 2.7. In dimension n = 1, let Ω = (−1, 1), and f = δa − L1 (−1, 0), with a ∈ (0, 1).
Let us compute C′2(f, V ) for a deformation field V ∈ C1

c (0, 1). The optimal function u for C2(f)
is easily found by using the Euler-Lagrange equation −u′′ = f in D′(−1, 1), and u′(±1) = 0. We
get

u =


x2

2 + x if x ∈ (−1, 0)

x if x ∈ (0, a)

a if x ∈ (a, 1) ,

A(u) =


(x+1)2

2 if x ∈ (−1, 0)
1
2 if x ∈ (0, a)

0 if x ∈ (a, 1) .

Then, according to our formula (2.6), we have

C′2(f, V ) =

∫ 1

−1

A(u)V ′ dx = −
∫ 1

−1

(A(u))′V dx = 〈1
2
δa, V 〉 =

1

2
V (a) .

In this elementary example (in which the compliance can be computed explicitly as C2(f) =
a
2 + 1

6 ), we already see that u is not differentiable at the point x = a where f is concentrated, so
that formula (1.2) cannot be used (taking g = −(δa)′).

Example 2.8. In dimension n = 2, let Ω be the unit ball B1(0), and f = δ0 − 1
2πH

1 ∂B. For
any p > 2, the optimal displacement u for Cp(f) is characterized by the Euler-Lagrange equation

−∆pu = δ0 in D′(B1(0)), and −|∇u|p−2 ∂u
∂ν = 1

2π on ∂B1(0) (with ν the unit outer normal to
∂B1(0)). Thus we get

up(x) = c|x|2−p
′
, A(up) =

c(1− p′)
|x|p′

( x
|x|
⊗ x

|x|
− 1

p
I
)
,

where p′ := p/(p− 1) is the conjugate exponent of p and c := − 1
2−p′ (2π)−

1
p−1 .

We claim that C′p(f, V ) = 0 for every V ∈ D(B1(0);R2). By Corollary 2.6, this amounts to show

that div(A(up)) = 0 in D′(B1(0);R2). Using the expression of A(up), by direct computation it
is easy to check that divA(up) = 0 in R2 \ {0}. On the other hand, let ϕ ∈ D(K;R2), where K
is a compact neighbourhood of the origin. Denoting by ν the unit outer normal to K \ Bε(0),
we get

〈− divA(up), ϕ〉 =

∫
Ω

A(up) : Dϕdx = lim
ε→0

∫
K\Bε(0)

A(up) : Dϕdx

= lim
ε→0

∫
∂Bε(0)

ϕ · (A(up)ν) dH1 = lim
ε→0
−c(1− p

′)

p′|ε|p′
∫
∂Bε(0)

ϕ(x) · x
|x|

dH1 = 0

where the last equality follows from the fact that
∫
∂Bε(0)

ϕ(x) · x|x| dH
1 = O(ε2), and p′ < 2. As

in the previous example, we notice that the solution up is not differentiable on the support of f ,
namely at the point x = 0.

The remaining of this section is devoted to the proof of Theorem 2.2.

We start with some preliminary results: first we recall some classical arguments, then we prove
Lemma 2.1 stated above.
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Lemma 2.9. Let Y,Z be Banach spaces. Let A : Y → Z be a linear operator with dense
domain D(A). Let Φ : Y → R ∪ {+∞} be convex, and Ψ : Z → R ∪ {+∞} be convex lower
semicontinuous. Assume there exists u0 ∈ D(A) such that Φ(u0) < +∞ and Ψ is continuous at
Au0. Let Z∗ denote the dual space of Z, A∗ the adjoint operator of A, and Φ∗, Ψ∗ the Fenchel
conjugates of Φ, Ψ. Then

− inf
u∈Y

{
Ψ(Au) + Φ(u)

}
= inf
σ∈Z∗

{
Ψ∗(σ) + Φ∗(−A∗ σ)

}
, (2.11)

and the infimum at the right hand side is achieved.
Furthermore, u and σ are optimal for the l.h.s. and the r.h.s. of (2.11) respectively, if and only
if there holds σ ∈ ∂Ψ(Au) and −A∗σ ∈ ∂Φ(u).

Proof. See [3, Proposition 14]. �

Lemma 2.10. Let q ∈ (1,+∞), let h : Rd → R be a continuous convex integrand satisfying a
q-growth condition from both above and below:

C1(|z|q − 1) ≤ h(z) ≤ C2(|z|q + 1) .

Then the functional z 7→
∫

Ω
h(z) dx is convex, finite, weakly lower semicontinuous and strongly

continuous in Lq(Ω;Rd).

Proof. See for instance [15, Corollary 6.51 and Theorem 6.54]. �

Lemma 2.11. Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. Let p ∈ (1,+∞).
Then there exists a positive constant Cp such that

‖Du‖Lp(Ω;Rn×n) ≤ Cp
(
‖u‖Lp(Ω;Rn) + ‖e(u)‖Lp(Ω;Rn×n)

)
∀u ∈W 1,p(Ω;Rn) .

Moreover, if Σ is a subset of ∂Ω with Hn−1(Σ) > 0, there exists a positive constant C̃p such that

‖Dv‖Lp(Ω;Rn×n) ≤ C̃p‖e(v)‖Lp(Ω;Rn×n) ∀v ∈W 1,p(Ω;Rn) s.t. v = 0 on Σ .

Proof. See, e.g., [18, Chapter 5]. �

Proof of Lemma 2.1. The existence of at least one optimizer for C(f) follows from Lemmas
2.10 and 2.11 above: the former ensures the lower semicontinuity of the functional

U 3 u 7→
∫

Ω

j(e(u)) dx− 〈f, u〉 ,

and the latter, together with the compact embedding of W 1,p(Ω;Rn) into C(Ω;Rn), gives its
coercivity.
The rest of the statement follows by Lemma 2.9 above, applied with Y = U , Z = Lp(Ω;Rn×nsym ),

A the symmetric gradient operator, Ψ(z) :=
∫

Ω
j(z) dx, and Φ(t) := −〈f, t〉. The convexity

and lower semicontinuity of Ψ are ensured by Lemma 2.10, and the convexity of Φ follows
from its linearity. Notice that, for u ∈ Y = U , we have Φ(u) = −

∫
Ω
u df . Therefore, for

σ ∈ Z∗ = Lp
′
(Ω;Rn×nsym ), the Fenchel conjugate Φ∗(−A∗σ) is finite (and equal to zero) if and

only if −〈div σ, u〉(Y ∗,Y ) = 〈f, u〉(Y ∗,Y ). In turn, since any u ∈ U is continuous in Ω and vanishes

on Σ, this amounts to require that −div σ = f in D′(Ω \ Σ;Rn). �

Next we write alternative equivalent formulations for the compliance functionals C(fε). To this
aim, for every ε ≥ 0, we define Eε : U → R and Hε : S → R as

Eε(u) :=

∫
Ω

j((DΨ−Tε Du)sym)|detDΨε| dx− 〈f, u〉 , (2.12)

Hε(σ) :=


∫

Ω

j∗(|detDΨε|−1DΨεσ)|detDΨε| dx if − div σ = f in D′(Ω \ Σ;Rn) ,

+∞ otherwise ,

(2.13)

where Ψε are the diffeomorphisms introduced in (1.3). Notice that, according to this definition,
we have that C(f) = − inf E0 and C∗(f) = inf H0. In particular, in view of Lemma 2.1, we have
− inf E0 = inf H0. The same equality is valid also for ε > 0, as we prove in the following lemma.
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Lemma 2.12. For every ε > 0, there holds

C(fε) = − inf Eε = inf Hε . (2.14)

Proof. Recalling that fε = (Ψε)]f , for every u ∈ U , setting v := u ◦Ψε, we may write∫
Ω

j(e(u)) dx− 〈fε, u〉 =

∫
Ω

j(e(u)) dx− 〈f, u ◦Ψε〉 (2.15)

=

∫
Ω

j(e(v ◦Ψ−1
ε )) dx− 〈f, v〉 =

∫
Ω

j((DΨ−Tε Dv)sym)|detDΨε| dx− 〈f, v〉 . (2.16)

By the arbitrariness of u, since Ψε is a smooth diffeomorphism of Ω into itself, mapping Σ into
itself, we infer that the infimum over u ∈ U of the left-hand side of (2.15) agrees with the infimum
over v ∈ U of the right-hand side of (2.16), namely the first equality in (2.14) is satisfied.

In order to prove the second equality in (2.14) we apply Lemma 2.9, with Y = U , Z =
Lp(Ω;Rn×n), A the gradient operator, Φ(t) := −〈f, t〉, and

Ψ(P ) :=

∫
Ω

j((MP )sym)β dx ,

where, for brevity, we have set M := DΨ−Tε and β := |detDΨε|. In view of (2.11), we may
write

− inf Eε = − inf
u∈Y
{Ψ(Au) + Φ(u)} = inf

σ∈Z∗
{Ψ∗(σ) + Φ∗(−A∗σ)} . (2.17)

It is easy to see that −A∗ acts on Z∗ as the divergence operator, while Φ∗(τ) equals 0 if τ = −f
in Y ∗ and +∞ otherwise. Let us compute the Fenchel conjugate of Ψ: given Q ∈ Lp′(Ω;Rn×n),
exploiting the fact that M is a smooth invertible matrix, we have

Ψ∗(Q) = sup
P∈Lp(Ω;Rn×n)

{∫
Ω

P : Qdx−
∫

Ω

j((MP )sym)β dx
}

= sup
P∈Lp(Ω;Rn×n)

{∫
Ω

MP : M−TQdx−
∫

Ω

j((MP )sym)β dx
}

= sup
P∈Lp(Ω;Rn×n)

{∫
Ω

P : M−TQdx−
∫

Ω

j(P sym)β dx
}

=
(∫

Ω

j(·)β dx
)∗

(M−TQ) =

∫
Ω

j∗(β−1M−TQ)β dx .

By combining these results with (2.17), we get

− inf Eε = inf
σ∈S

{∫
Ω

j∗(β−1M−Tσ)β dx : −div σ = f in D′(Ω \ Σ;Rn)
}
. (2.18)

Recalling that M and β are DΨ−Tε and |detDΨε|, respectively, we infer that the right-hand
side of (2.18) agrees with the infimum of the functional Hε defined in (2.13), and the proof is
concluded. �

In the following we use C∗(fε) to denote the equivalent dual formulation of C(fε), that is,
C∗(fε) := inf Hε. This notation is consistent with the one given for ε = 0 (see Lemma 2.1).
We now study the asymptotic behaviour of the sequences {Eε} and {Hε} in the limit as ε→ 0.
To that aim we need in particular to endow S with a notion of weak convergence, which is the
following one:

σh ⇀ σ ⇐⇒

lim
h
σh = σ weakly in Lp

′
(Ω;Rn×n)

lim
h

div σh = div σ weakly * in M(Ω;Rn) .
(2.19)

Lemma 2.13. (i) On the space U endowed with the weak W 1,p convergence, the sequence of
functionals Eε in (2.12) is equicoercive and, as ε → 0, it Γ-converges to the functional E0. In
particular, every sequence uε ∈ Argmin(Eε) admits a subsequence which converges weakly in
W 1,p(Ω;Rn) to some function u0 ∈ Argmin(E0).

(ii) On the space S endowed with weak convergence defined in (2.19), the sequence of functionals
Hε in (2.13) is equicoercive and, as ε → 0, it Γ-converges to the functional H0. In particular,
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every sequence σε ∈ Argmin(Hε) admits a subsequence which converges weakly in S to some field
σ0 ∈ Argmin(H0).

Proof. (i) Thanks to the growth assumptions on j made in (2.2), the equicoercivity of the func-
tionals Eε follows from Korn inequality (see Lemma 2.11 above) and the continuous embedding
of W 1,p(Ω;Rn) into C(Ω;Rn). Notice that, in the scalar case when Eε are defined on W 1,p(Ω),
one has just to use, in place of the Korn inequality, either the Poincaré or the Poincaré-Wirtinger
inequality, respectively, when either Σ 6= ∅ or Σ = ∅ and f is balanced.
To prove the Γ-liminf inequality, let uε ⇀ u in W 1,p(Ω;Rn). Possibly passing to a subsequenge,
by the compact embedding of W 1,p(Ω;Rn) into C(Ω;Rn), we may assume that uε → u uniformly
on Ω. Thus limε〈f, uε〉 = 〈f, u〉.
Moreover, we observe that DΨ−1

ε and detDΨε admit the following asymptotic expansions in
terms of ε:

DΨ−1
ε = I − εDV + ε2Nε , detDΨε = 1 + εdiv V + ε2mε , (2.20)

for some Nε and mε which are uniformly bounded in L∞-norm.
Then the inequality lim infεEε(uε) ≥ E(u) follows from the Lp-weak lower semicontinuity of the
functional z 7→

∫
Ω
j(z) dx (cf. Lemma 2.10) and the expansions (2.20).

Finally, the Γ-limsup inequality is satisfied by choosing the sequence uε ≡ u, thanks to the
Lp-strong continuity of the functional z 7→

∫
Ω
j(z) dx (see again Lemma 2.10).

(ii) Thanks to the growth assumptions of order p from both above and below made on j in (2.2),
the Fenchel conjugate satisfies analogous conditions with p replaced by its conjugate exponent
p′. Then the coercivity and the Γ-convergence in the Lp

′
-weak topology are straightforward by

arguing similarly as done above for Eε, and taking into account that the constraint −div σ = f
is closed in the weak Lp

′
-topology. �

As last ingredient, we recall the classical min-max result:

Lemma 2.14. Let A and B be nonempty convex subsets of two locally convex topological vector
spaces, and let B be compact. Assume that L : A×B → R is such that for every b ∈ B, L(·, b) is
convex, and for every a ∈ A, L(a, ·) is upper semicontinuous and concave. Then, if the quantity

γ := inf
a∈A

sup
b∈B

L(a, b)

is finite, we have γ = supb∈B infa∈A L(a, b), and there exists b? ∈ B such that infa∈A L(a, b?) =
γ. If in addition A is compact and, for every b ∈ B, L(·, b) is lower semicontinuous, there exists
a? ∈ A such that L(a?, b?) = γ.

Proof. See [11, p. 263] and [13]. �

We are now in a position to give the

Proof of Theorem 2.2. We prove separately a lower and an upper bound for the differential
quotient

rε(V ) :=
C(fε)− C(f)

ε
.

Upper bound: Let uε and σ be optimal for Eε and H0, respectively. In particular, we have∫
Ω
j∗(σ) dx < +∞, which implies that σ ∈ Lp′(Ω;Rn×nsym ) (cf. (2.3)).

By using Lemmas 2.1 and 2.12, the Fenchel inequality, and the expansions in (2.20), and taking
into account that σ is symmetric, we have

rε(V ) =
C(fε)− C∗(f)

ε
=
−Eε(uε)−H0(σ)

ε

=
1

ε

(∫
Ω

[−j(DΨ−Tε Duε) detDΨε − j∗(σ)] dx+ 〈f, uε〉
)

≤ 1

ε

(∫
Ω

[−(DΨ−Tε Duε) : σ detDΨε + j∗(σ)(detDΨε − 1)] dx+ 〈f, uε〉
)

=
1

ε

(
−
∫

Ω

Duε : σ dx+ 〈f, uε〉
)

+

∫
Ω

[Duε : DV σ + (j∗(σ)−Duε : σ) div V ] dx+Rε .
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Here Rε denotes the following remainder:

Rε := ε

∫
Ω

[(
j∗(σ)−Duε : σ

)
mε +DV TDuε : σ(div V + εmε)−NT

ε Duε : σ detDΨε

]
dx ,

being mε and Nε as in (2.20). Then the uniform bounds on mε and Nε yield that Rε → 0 as
ε→ 0. Since H0(σ) is finite, we have −div σ = f in D′(Ω \ Σ;Rn). In particular, this implies

−
∫

Ω

Duε : σ dx+ 〈f, uε〉 = 0 ∀ε .

Finally, by Lemma 2.13 (i), up to subsequences {uε} converges weakly in W 1,p(Ω;Rn) to a
function u0 ∈ Argmin(E0), which satisfies the optimality condition (2.5). We conclude that

lim sup
ε

rε(V ) ≤
∫

Ω

[Du : DV σ − j(Du) div V ] dx =

∫
Ω

A(u0, σ) : DV dx ,

where last equality follows from the symmetry of σ and the definition (2.7) of A(u).

Lower bound: Let σε and u be optimal for Hε and E0, respectively. We observe that DΨε admits
the following asymptotic expansions in terms of ε:

DΨε = I + εDV + ε2Mε , (2.21)

for some Mε which is uniformly bounded in L∞-norm.
By using Lemmas 2.1 and 2.12, the Fenchel inequality, the second expansion in (2.20), and
(2.21), we obtain

rε(V ) =
C∗(fε)− C(f)

ε
=
Hε(σε) + E0(u)

ε

=
1

ε

(∫
Ω

[j∗(detDΨ−1
ε DΨεσε) detDΨε + j(e(u))] dx− 〈f, u〉

)
≥ 1

ε

(∫
Ω

[Du : DΨεσε + j(Du)(1− detDΨε)] dx− 〈f, u〉
)

=
1

ε

(∫
Ω

Du : σε dx− 〈f, u〉
)

+

∫
Ω

[Du : DV σε − j(Du) div V ] dx+ R̃ε .

Here R̃ε denotes the following remainder:

R̃ε = ε

∫
Ω

[
Du : Mεσε − j(Du)mε

]
dx ,

being mε as in (2.20) and Mε as in (2.21). Similarly as above, it is easily checked that R̃ε
is infinitesimal as ε → 0. Since Hε(σε) is finite, we have −div σε = f in M(Ω \ Σ;Rn). In
particular, this implies

−
∫

Ω

Du : σε dx+ 〈f, u〉 = 0 ∀ε .

Finally, by Lemma 2.13 (ii), up to subsequences {σε} converges weakly in Lp
′
(Ω;Rn×n) to a

field σ0 ∈ Argmin(H0). Hence we conclude that

lim inf
ε

rε(V ) ≥
∫

Ω

[Du : DV σ − j(Du) div V ] dx =

∫
Ω

A(u, σ0) : DV dx .

Conclusion: by the arbitrariness of the elements taken in Argmin(E0) and Argmin(H0), the
previous bounds imply that

inf
σ

sup
u

∫
Ω

A(u, σ0) : DV dx ≤ lim inf
ε

rε(V ) ≤ lim sup
ε

rε(V ) ≤ sup
u

inf
σ

∫
Ω

A(u, σ0) : DV dx ,

(2.22)
where u and σ vary in Argmin(E0) and Argmin(H0), respectively. Since the sup-inf at the
right-hand side of (2.22) is lower than or equal to the inf-sup at the left-hand side, we infer that
all the inequalities in (2.22) are in fact equalities, giving (2.6). The existence of a saddle point
(u?, σ?) ∈ Argmin(E0) × Argmin(H0) such that C′(f, V ) =

∫
Ω
A(u?, σ?) : DV dx follows from

Lemma 2.14, with A = Argmin(H0), B = Argmin(E0), and L(a, b) =
∫

Ω
A(b, a) : DV dx. The

compactness of A and B has already been pointed out in the proof of Lemma 2.13. �
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3. Derivative of the Wasserstein distance

In this section we prove the existence and a representation formula for the first derivative of
the Wasserstein distance with respect to horizontal variations of the load, defined as in (1.5).
Throughout the section, we add the assumption that the open bounded set Ω ⊂ Rn is convex,
and f will be a signed measure with zero average such that f+ and f− are probability measures
on Ω. For every x, y ∈ Ω, we denote by [x, y] the oriented segment from x to y.
Before stating our result, we collect in the next lemma some well-known facts we need from
transport theory (for a proof, we refer for instance to [1] and [7]).

Lemma 3.1. (i) The Wasserstein distance admits the following dual formulation:

C∞(f) = W1(f+, f−) = max{〈f, u〉 : u ∈ Lip1(Ω)} , (3.1)

and a function u which solves (3.1) is called a Kantorovich potential.

(ii) Let u be a Kantorovich potential solving (3.1), and let γ be an optimal plan for W1(f+, f−),
to which we associate the vector measure λ ∈M(Ω;Rn) defined by

〈λ,Φ〉 :=

∫
Ω×Ω

[ ∫
[x,y]

Φ · y − x
|y − x|

dH1
]
dγ(x, y) ∀Φ ∈ C(Ω;Rn) ,

whose total variation measure is given by

〈µ, ϕ〉 :=

∫
Ω×Ω

[ ∫
[x,y]

ϕdH1
]
dγ(x, y) ∀ϕ ∈ C(Ω) . (3.2)

Then λ = (∇µu)µ and (u, µ) solves the Monge-Kantorovich equations

−div((∇µu)µ) = f , |∇µu| = 1 µ− a.e. , (3.3)

where ∇µu is the tangential gradient of u with respect to µ.

In addition, for γ-a.e. (x, y) ∈ Ω × Ω, the function u is affine on [x, y] with unit slope, and it
holds

∇µu(z) ≡ y − x
|y − x|

for H1-a.e. z ∈ [x, y].

(iii) If (u, µ) ∈ Lip1(Ω)×M+(Ω) is a solution to (3.3), the measure λ = (∇µu)µ solves

inf
{∫

|λ| : λ ∈M(Ω;Rn) : −div λ = f in Rn \ Σ
}
. (3.4)

Remark 3.2. If we take a function ϕ which is merely in L1
µ(Ω), then for γ-a.e. (x, y) ∈ Ω× Ω

it turns out that ϕ is defined H1-a.e. on [x, y], and by an approximation argument the equality
(3.2) continues to hold.

We are now ready to state:

Theorem 3.3. The derivative of C∞ at f in direction V defined according to (1.5) exists and
is given by

C′∞(f, V ) = inf{L(γ, V ) : γ ∈ Argmin C∞(f)} , (3.5)

with

L(γ, V ) :=

∫
Ω×Ω

(V (y)− V (x)) · y − x
|y − x|

dγ(x, y) .

Remark 3.4. If we disintegrate γ with respect to its marginals f± (namely we write γ =
γ+
y ⊗ f+ = γ−x ⊗ f− for suitable families (γ+

y )y∈Ω, (γ−x )x∈Ω of probabilities on Ω, see e.g. [2]),
and we set

c+(x) :=

∫
Ω

y − x
|y − x|

dγ+
x (y) , c−(y) :=

∫
Ω

y − x
|y − x|

dγ−y (x) ,

the integral which defines L(γ, V ) can be recast as

L(γ, V ) = 〈c−f− − c+f+, V 〉 =

∫
Ω

V (y) · c−(y) df−(y)−
∫

Ω

V (x) · c+(x) df+(x) .
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Proof of Theorem 3.3. Let γ be an optimal plan for C∞(f). For every ε > 0, we denote by
γε the measure (Ψε × Ψε)]γ on Ω × Ω. It is easy to check that γε is still a probability on the

product space Ω×Ω and has marginals (π1,2)]γε = (Ψε)]f
± = f±ε , in particular γε ∈ Π(f+

ε , f
−
ε ).

Therefore,

lim sup
ε

C∞(fε)− C∞(f)

ε
≤ lim sup

ε

1

ε

∫
Ω×Ω

(
|x+ εV (x)− y − εV (y)| − |x− y|

)
dγ(x, y)

=

∫
Ω×Ω

(V (y)− V (x)) · y − x
|y − x|

dγ(x, y) = L(γ, V ) . (3.6)

Here in order to pass to the limit as ε → 0+, we have applied the dominated convergence
theorem, since the family

hε(x, y) :=
|x+ εV (x)− y − εV (y)| − |x− y|

ε
(3.7)

is uniformly bounded by the constant 2 maxΩ |V | and, as ε→ 0, it converges pointwise to

h(x, y) := (V (y)− V (x)) · y − x
|y − x|

∀(x, y) ∈ Ω× Ω ,

(intended to be zero on the diagonal x = y). Notice that, since hε are equi-Lipschitz, the point-
wise convergence yields in fact the uniform convergence on compact sets. By the arbitrariness
of γ in Argmin C∞(f) in (3.6), we conclude that

lim sup
ε

C∞(fε)− C∞(f)

ε
≤ inf{L(γ, V ) : γ ∈ Argmin C∞(f)} . (3.8)

As already pointed out at the beginning of the proof, the sets Π(f+, f−) and Π(f+
ε , f

−
ε ) have a

one-to-one correspondence, so that we may rewrite C∞(fε) and C(f) as

C∞(fε) = inf
γ∈P(Ω×Ω)

Fε(γ) , C∞(f) = inf
γ∈P(Ω×Ω)

F(γ) ,

with

Fε(γ) =

∫
Ω×Ω

|x+ εV (x)− y − εV (y)| dγ(x, y) + χ(γ) ,

F(γ) =

∫
Ω×Ω

|x− y| dγ(x, y) + χ(γ) ,

being χ the indicatrix function of Π(f+, f−) (which equals 0 if γ ∈ Π(f+, f−) and +∞ other-
wise). It is easy to check that Fε Γ-converges to F in the metric space of probability measures
P(Ω × Ω) endowed with the weak topology. In particular, a minimizing sequence γε of C∞(fε)
converges, up to subsequences, to an optimal plan γ of C∞. In view of the optimality of γε, we
may write

lim inf
ε

C∞(fε)− C∞(f)

ε
≥ lim inf

ε

∫
Ω×Ω

hε(x, y) dγε(x, y) , (3.9)

where the integrand hε is defined in (3.7). Eventually, since hε→h uniformly on compact sets,
and γε ⇀ γ, we obtain

lim inf
ε

∫
Ω×Ω

hε(x, y) dγε(x, y) = lim inf
ε

∫
Ω×Ω

h(x, y) dγε(x, y) ≥
∫

Ω×Ω

h(x, y) dγ(x, y) . (3.10)

By combining (3.9) and (3.10), recalling that γ is an optimal plan for C∞(f), we infer that

lim inf
ε

C∞(fε)− C∞(f)

ε
≥ inf{L(γ, V ) : γ ∈ Argmin C∞(f)} .

This inequality, together with (3.8), gives (3.5). �

Proposition 3.5. For any γ ∈ Argmin C∞(f), if u is a Kantorovich potential and µ = µ(γ) is
the measure defined in (3.2), we can rewrite L(γ, V ) as

L(γ, V ) =

∫
Ω

(∇µu⊗∇µu) : DV dµ . (3.11)
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In particular, if Argmin C∞(f) contains a unique transport plan γ, we have the following distri-
butional equality

C′∞(f, V ) = −〈div((∇µu⊗∇µu)µ), V 〉 ∀V ∈ D(Ω;Rn) , (3.12)

with u a Kantorovich potential and µ = µ(γ).

Proof. By taking ϕ = (∇µu⊗∇µu) : DV in (3.2) (cf. Remark 3.2), we get∫
Ω

(∇µu⊗∇µu) : DV dµ =

∫
Ω×Ω

[ ∫
[x,y]

(τxy ⊗ τxy) : DV dH1
]
dγ(x, y) . (3.13)

Exploiting the parametrization [0, 1] 3 t 7→ (1 − t)x + ty of the segment [x, y], whose velocity
has modulus |y − x|, we obtain∫

[x,y]

(τxy ⊗ τxy) : DV dH1 =

∫ 1

0

[( (y − x)

|y − x|
⊗ (y − x)

|y − x|

)
: DV ((1− t)x+ ty)

]
|y − x| dt

=

∫ 1

0

(y − x)

|y − x|
·
(
DV ((1− t)x+ ty)(y − x)

)
dt =

∫ 1

0

(y − x)

|y − x|
· d
dt

(
V ((1− t)x+ ty)

)
dt

=
(y − x)

|y − x|
·
(
V (y)− V (x)

)
. (3.14)

By combining (3.13) and (3.14), we conclude that∫
Ω

(∇µu⊗∇µu) : DV dµ =

∫
Ω×Ω

(V (y)− V (x)) · y − x
|y − x|

dγ(x, y) ,

namely the assertion (3.11).
Finally, in case there exists a unique transport plan, (3.12) readily follows by combining (3.5)
and (3.11). �

Example 3.6. Let f+ = δA and f− = δB . Then the unique transport plan is γ = δA⊗ δB , and
we have

C′∞(f, V ) =

∫
Ω×Ω

(V (y)−V (x))· y − x
|y − x|

d(δA⊗δB) =

∫
Ω

V (y)·c−(y) dδB(y)−
∫

Ω

V (x)·c+(x) dδA(x) ,

with

c−(y) =
y −A
|y −A|

, c+(x) =
B − x
|B − x|

.

Example 3.7. Let Ω be a convex planar domain with perimeter 1, let P ∈ Ω, and let f =
H1 ∂Ω−δP . The unique transport plan is γ := δP⊗H1b∂Ω; moreover, by taking dP (y) := |y−P |
as a test function in (3.1) of C∞(f), we see that C∞(f) =

∫
∂Ω
|y − P | dH1(y), so that dP is a

Kantorovich potential. Hence

C′∞(f, V ) =
(∫

∂Ω

P − x
|P − x|

dH1(x)
)
V (P )−

∫
∂Ω

V (x) · P − x
|P − x|

dH1(x)

=

∫
Ω

V (y) · c−(y) dδP (y)−
∫

Ω

V (x) · c+(x) d(H1 ∂Ω)(x) ,

with

c−(y) =

∫
∂Ω

y − x
|y − x|

H1(x) , c+(x) =
P − x
|P − x|

.

In particular, we have

C′∞(f, V ) = 〈
(∫

∂Ω

P − x
|P − x|

dH1(x)
)
δP , V 〉 ∀V ∈ D(Ω;R2) .

In view of Proposition 3.5, we deduce that(∫
∂Ω

P − x
|P − x|

dH1(x)
)
δP = −div((∇µu⊗∇µu)µ) in D′(Ω;R2) . (3.15)

Actually, the above equality can be checked by direct computations, by using the explicit ex-
pressions of µ and ∇µu.
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Denoting by ρ and θ the polar coordinates centered at P , we have

µ =
α(θ)

ρ
L2 Ω , ∇µu = eθ := (cos θ, sin θ) (3.16)

where

α(θ) :=
√

(ρ(θ))2 + (ρ′(θ))2 , ρ(θ) := max{ρ ∈ R+ : ρeθ ∈ Ω} .

(To obtain (3.16) one has to apply the equality (3.2) in the proof of Theorem 3.3).
Using the expressions in (3.16), some easy computations show that div((∇µu ⊗∇µu)µ) = 0 in
R2 \ {P}. On the other hand, let ϕ ∈ D(K;R2), where K is a compact neighbourhood of P .

Setting for brevity M := (eθ ⊗ eθ)α(θ)
ρ , and denoting by ν the unit outer normal to K \Br(P ),

we get

− 〈div((∇µu⊗∇µu)µ), ϕ〉 = lim
r→0

∫
K\Br(P )

M : Dϕdx

= lim
r→0

[
−
∫
K\Br(P )

divM · ϕdx+

∫
∂K

〈Mν,ϕ〉 dH1 +

∫
∂Br(P )

〈Mν,ϕ〉 dH1
]

= lim
r→0

∫
∂Br(P )

〈Mν,ϕ〉 dH1 = − lim
r→0

∫ 2π

0

α(θ)eθ · ϕ(reθ) dθ

= −ϕ(P ) ·
∫ 2π

0

α(θ)eθ dθ = 〈
(∫

∂Ω

P − x
|P − x|

dH1(x)
)
δP , ϕ〉 ,

concluding the proof of (3.15).

Example 3.8. When the transport plan is not unique, the derivative C′∞(f, V ) may be not linear
with respect to V . For instance, let Ω be the square (0, 1) × (0, 1), let A = (0, 0), B = (1, 0),
C = (1, 1), and D = (0, 1) be the corners of the square, and take f+ := (δA + δC)/2 and
f− := (δB + δD)/2. It is easy to see that C∞(f) = 1, and that the optimal transport plans are
of the form

γs(x, y) :=
1

2
δA(x)⊗ (sδB(y) + (1− s)δD(y)) +

1

2
δC(x)⊗ ((1− s)δB(y) + sδD(y)) , (3.17)

with s ∈ [0, 1]. Rearranging the terms above, we infer that every optimal transport plan is a
convex combination of γ0 and γ1, that is γs = sγ0 + (1− s)γ1. In view of formula (3.5), we have

C′∞(f, V ) = inf
s∈[0,1]

L(γs, V ) = inf
s∈[0,1]

L(sγ0 + (1− s)γ1, V ) = min{L(γ0, V ), L(γ1, V )}

=
1

2
min

{(
V (D)− V (A)

)
· D −A
|D −A|

+
(
V (B)− V (C)

)
· B − C
|B − C|

,

(
V (B)− V (A)

)
· B −A
|B −A|

+
(
V (D)− V (C)

)
· D − C
|D − C|

}
,

which is clearly not linear with respect to V .

4. Approximation result

We now turn to the approximation formula (1.6). As in the previous section, we still assume
that Ω is a convex domain, and that f a signed measure with zero average such that f+ and f−

are probability measures on Ω.
From now on, we use the notation Cp(f) for the scalar compliance defined according to (2.8),
where we assuming without further mention that the Dirichlet region Σ is empty and the space
of admissible displacements is W 1,p(Ω).

Theorem 4.1. If C∞(f) admits a unique optimal transport plan γ, for every admissible V we
have

lim
p→+∞

C′p(f, V ) = C′∞(f, V ) = L(γ, V ) .
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Remark 4.2. Without the uniqueness assumption, the equality limp→+∞ C′p(f, V ) = C′∞(f, V )
can be false. Indeed, in view of formula (2.9), the map V 7→ C′p(f, V ) is linear. Thus, the
validity of the previous equality entails the linearity of the map V 7→ C′∞(f, V ). When there
exist multiple transport plans, such linearity be violated, as shown by Example 3.8. It is an
open problem to establish whether or not the limit of C′p(f, V ) as p → +∞ exists also in case
of multiple transport plans; a positive answer would imply the existence of a peculiar transport
plan γ̂ such that limp→+∞ C′p(f, V ) = L(γ̂, V ). This is the case for instance in Example 3.8,
where by symmetry it is readily seen that γ̂ = γ1/2 (the latter plan being defined according to
(3.17)). If such a plan γ̂ do exist in general, then a further interesting question would be to
discover some selection principle (of “entropy type”), allowing to detect it among the family of
all optimal transport plans.

In order to prove Theorem 4.1, we need to recall some notions of convergence with respect to
measures (see [6, §3] and references therein).

Definition 4.3. Let µk , µ ∈ M+(Ω), with µk ⇀ µ, and let gk , g : Ω → Rd be µk and µ-
integrable, respectively. We say that gk weakly converges to g with respect to the pair (µk, µ),

and we write gk
w(µk,µ)−→ g, if gkµk ⇀ gµ in M(Ω;Rd) .

We say that gk strongly converges to g with respect to the pair (µk, µ), and we write gk
s(µk,µ)−→ g,

if for every ϕ ∈ C0(Rn × Rd) we have

lim
k→+∞

∫
Ω

ϕ(x, gk(x)) dµk =

∫
Ω

ϕ(x, g(x)) dµ .

If hk , h : Ω→ Rm are µk and µ-integrable, respectively, we say that the pair (gk, hk) strongly-

weakly converges to (g, h) with respect to (µk, µ), and we write (gk, hk)
sw(µk,µ)−→ (g, h), if gk

s(µk,µ)−→
g and hk

w(µk,µ)−→ h .

Lemma 4.4. If (gk, hk) ∈ Lαµk(Ω;Rn) × Lβµk(Ω;Rn) strongly-weakly converge to (g, h) with
respect to (µk, µ), then the product sequence {gk · hk} converges to g · h weakly with respect to
(µk, µ), provided that 1

α + 1
β < 1, and ‖gk‖Lαµk (Ω) ≤ C, ‖hk‖Lβµk (Ω) ≤ C for some constant C > 0.

Proof. See [6, Remark 3.8]. �

Lemma 4.5. As p→ +∞, up to (not relabeled) subsequences, we have

up → u uniformly ;

|∇up|p is uniformly bounded in L1(Ω) ; (4.1)

µp := |∇up|p−2Ln ⇀ µ in M+(Ω) ; (4.2)

µp∇up ⇀ µ∇µu in M(Ω;Rn) ; (4.3)

∇up
s(µp,µ)−→ ∇µu , (4.4)

for some (u, µ) solution to (3.3).

Proof. See [4, Theorem 4.1 and Remark 4.1]. �

Now we establish a preliminary result needed for the proof of Theorem 4.1.

Lemma 4.6. In the limit as p→ +∞, up to a (not relabeled) subsequence, we have

∇up
|∇up|

w(µp,µ)−→ ∇µu . (4.5)

Moreover, for every Ψ ∈ C(Rn;Rn×n), we have

lim
p→+∞

∫
Ω

〈Ψ∇up,∇up〉 dµp = lim
p→+∞

∫
Ω

〈
Ψ∇up,

∇up
|∇up|

〉
dµp . (4.6)

Proof. For brevity, let us denote by αp the modulus |∇up|. In view of the weak convergence
of ∇up with respect to (µp, µ) (see (4.3)), in order to prove (4.5) it is enough to show that
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(∇up − ∇up/αp) weakly converges to zero with respect to (µp, µ): for every test function ϕ ∈
C0(Rn;Rn), we have∣∣∣∣∫

Ω

ϕ · (∇up −∇up/αp) dµp
∣∣∣∣ =

∣∣∣∣∫
Ω

ϕ · ∇up
αp

(αp − 1)αp−2
p dx

∣∣∣∣
≤ C

∫
Ω

|αp−1
p − αp−2

p | dx . (4.7)

In order to conclude, we need to remove the modulus in the integral. To this aim, we exploit
the inequality tq

′
/q′ ≥ t− 1/q, for every t > 0 and 1/q + 1/q′ = 1 (cf. pag. 20 in [4], just after

formula (35)): taking t = αp−2
p and q = p− 1, we get

q′ =
p− 1

p− 2
,

q′

q
=

1

p− 2
,

tq
′

= αp−1
p ,

αp−1
p − q′αp−2

p +
q′

q
≥ 0 , (4.8)

so that, by the triangle inequality,

|αp−1
p − αp−2

p | ≤ αp−1
p − αp−2

p + 2
q′

q
.

Inserting this inequality in (4.7), we get∫
Ω

|αp−1
p − αp−2

p | dx ≤
∫

Ω

αp−1
p dx−

∫
Ω

αp−2
p dx+

2|Ω|
p− 2

. (4.9)

Again by (4.8), exploiting the fact that q′ → 1 and q′/q → 0 as p→ +∞, we infer that

lim sup
p

∫
Ω

αp−2
p dx ≤ lim sup

p

∫
Ω

αp−1
p dx = µ(Ω) , (4.10)

where the last equality can be found in [4, Lemma 3.2 and proof of Theorem 4.1]. On the other
hand, by the weak convergence µp ⇀ µ and the lower semicontinuity of the mass, we have

µ(Ω) ≤ lim inf
p

µp(Ω) = lim inf
p

∫
Ω

αp−2
p dx . (4.11)

By combining (4.10) and (4.11), we infer that

lim
p

∫
Ω

αp−2
p = lim

p

∫
Ω

αp−1
p = µ(Ω) . (4.12)

Eventually, by combining (4.7) with (4.9) and (4.12), we conclude that∣∣∣∣∫
Ω

ϕ ·
(
∇up −

∇up
αp

)
dµp

∣∣∣∣→ 0 as p→ +∞ ,

which, by the arbitrariness of ϕ, gives (4.5). With an analogous argument it is easy to prove
(4.6). �

Proof of Theorem 4.1. In view of (2.9) we have

C′p(f, V ) =

∫
Ω

A(up) : DV dx .

By the uniform L1 boundedness of |∇up|p (see (4.1)), up to passing to a (not relabeled) subse-
quence, we may assume that the limit as p→ +∞ of C′p(f, V ) exists.
We claim that, up to subsequences,

C′p(f, V )→
∫

Ω

(∇µu⊗∇µu) : DV dµ , (4.13)

for some (u, µ) solution to (3.3).
Recalling the expression (2.10) of A(up) and the definition (4.2) of µp, we may write

A(up) = |∇up|p−2(∇up ⊗∇up)−
|∇up|p

p
I .
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Again by (4.1) and by (4.6) in Lemma 4.6 with Ψ = DV , we get

lim
p
C′p(f, V ) = lim

p

∫
Ω

〈DV∇up,∇up〉 dµp = lim
p

∫
Ω

〈
DV∇up,

∇up
|∇up|

〉
dµp .

According to Definition 4.3, by (4.4) in Lemma 4.5 and (4.5) in Lemma 4.6, we infer that
(DV∇up,∇up/|∇up|) strongly-weakly converges to (DV∇µu,∇µu) with respect to (µp, µ).
Moreover, DV∇up and ∇up/|∇up| are uniformly bounded in L2

µp(Ω;Rn) and Lqµp(Ω;Rn), for

every q ∈ (2,+∞), respectively. Therefore, by applying Lemma 4.4 with gk = DV∇up,
hk = ∇up/|∇up|, g = DV∇µu, h = ∇µu, α = 2, β = q, we get

lim
p

∫
Ω

〈
DV∇up,

∇up
|∇up|

〉
dµp =

∫
Ω

〈DV∇µu,∇µu〉 dµ ,

concluding the proof of (4.13).
We observe that our uniqueness assumption for the optimal transport plan γ, combined with
Theorem 4.13 in [19], implies that problem (3.4) admits a unique solution λ. Then, by Lemma
3.1 (iii), we can rewrite the r.h.s. of (4.13) as∫

Ω

(∇µu⊗∇µu) : DV dµ =

∫
Ω

( dλ
d|λ|

⊗ dλ

d|λ|

)
: DV d|λ| = L(γ, V ) .

Since this limit is independent of the choice of the subsequence, we have proved that the whole
sequence C′p(f, V ) converges to L(γ, V ), which by Theorem 3.3 agrees with C′∞(f, V ).

�

5. Appendix

Proof of (1.2). We proceed in the case where Σ has positive HN−1 measure, and we set for

brevity j(z) = 1
p |z|

p. Let fε, f ∈W−1,p′(Ω \Σ) be such that gε = fε−f
ε converges strongly to g.

Let up be the optimal displacement for Cp(f). By definition of Cp(fε), it holds

Cp(fε) ≥ 〈fε, up〉 −
∫

Ω

j(∇up) dx ,

and hence, by definition of up, we have

lim inf
ε→0

Cp(fε)− Cp(f)

ε
≥ lim inf

ε→0
〈gε, up〉 = 〈g, up〉 .

To obtain the converse inequality, we exploit the dual formulation (2.4) of the compliance.
Let σp := ∇j(∇up), which is optimal for C∗p(f), and let τ be any vector field in S such that

−div τ = g in D′(Ω \ Σ;Rn). By the strong convergence gε → g in W−1,p′(Ω \ Σ), we can pick

up a sequence τε such that τε → τ in Lp
′
(Ω;Rn) and −div τε = gε in D′(Ω \ Σ;Rn). Then by

definition of C∗p(fε) and of σp, it holds

C∗p(fε)−C∗p(f) ≤
∫

Ω

j∗(σp + ετε)− j∗(σp) dx ≤
∫

Ω

j∗(σp + ετ)− j∗(σp) dx+Cε‖τε−τ‖Lp′ (Ω;Rn) ,

for some positive constant C independent of ε. For the last inequality, we have used the estimate∣∣|z1|p
′
− |z2|p

′∣∣ ≤ C(1 + |z1|p
′−1 + |z2|p

′−1)|z1 − z2| ,

valid in Rn (see, e.g., [15, Proposition 4.64]). Moreover, σ 7→
∫
j∗(σ) is continuous in Lp

′
(Ω;Rn)

and its subdifferential at σ is the singleton ∇j∗(σ); in particular, the integral functional is

Gateaux-differentiable (cf. [12]). Hence, recalling that τε → τ in Lp
′
(Ω;Rn) and∇j∗(σp) = ∇up,

we get

lim sup
ε→0

C∗p(f + εg)− C∗p(f)

ε
≤ lim sup

ε→0

∫
Ω

j∗(σp + ετ)− j∗(σp)
ε

dx+ lim sup
ε→0

‖τε − τ‖Lp′ (Ω;Rn)

=

∫
Ω

∇j∗(σp) · τ dx =

∫
Ω

∇up · τ dx = −〈div τ, up〉 = 〈g, up〉 .

�
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