On the curvature energy of Cartesian surfaces
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Abstract. We analyze the lower semicontinuous envelope of the curvature functional of Cartesian surfaces
in codimension one. To this aim, following the approach by Anzellotti-Serapioni-Tamanini, we study the class of
currents that naturally arise as weak limits of Gauss graphs of smooth functions. The curvature measures are
then studied in the non-parametric case. Concerning homogeneous functions, some model examples are studied
in detail. Finally, a new gap phenomenon is observed.

Introduction

Functionals depending on curvatures of curves and surfaces are quite natural objects, both from an
analytical-geometrical and a physical point of view. After the work by J. Bernoulli and Euler on the
problem of Elastica, they appear in the work of S. Germain as a reasonable model expressing the bending
energy for an elastic plate, see the historical paper [26] and the references therein.

More recently, T. Willmore [27] proposed the study of compact immersed surfaces M in R? which
minimize the (Willmore) functional

W(M) := /M [H|? dH?

which is given by the integral of the square of the mean curvature H. Starting from that seminal paper,
much work has been done by differential geometers concerning Willmore surfaces and critical points of
more general functionals of the principal curvatures.

From the point of view of Direct Methods in the Calculus of Variations, we quote here the approach by
J. Hutchinson [19] in terms of curvature varifolds, a class of generalized surfaces (defined by W. K. Allard
[4]) having a p-summable weakly defined second fundamental form: see also [21], where C. Mantegazza
studied the subclass of curvature varifolds with boundary.

A different approach was considered by G. Anzellotti, R. Serapioni, and I. Tamanini in [7], starting
from the following observation: for a smooth n-dimensional surface M in R"*!, all the information
about the curvatures are contained in the graph

GM = {(z,v(z)) | x € M}

of the Gauss map v : M — S™ C R"*! of the surface. For example, see also [6], since the tangent plane
to GM at a point (z,v(z)) is determined by the tangential derivatives of v(x) at x, and hence by the
second fundamental form to M at z, by the area formula when n = 2 it turns out that the area of the
Gauss graph surface GM is linked to the principal curvatures of M by the relation:

1/2

HQ(QM):/ <1+(k12+k22)+(k1k2)2) dH2.

M

In order to study minimization problems in this framework, it is natural to consider the current carried
by the graph of the Gauss map. The idea of considering the graph G, , instead of the map u, was already
present in the approach to non-parametric minimal surfaces and more generally in the minimization
problem of functionals [ f(Du)dz with linear growth in the gradient of a scalar function, see [18, 10]. A
crucial observation, which goes back to H. Federer’s work [14], is that the boundary of the current carried
by the subgraph SG, = {(z,2) € @ x R | z < u(z)} of a bounded and summable function u: @ — R
is an integer multiplicity (say i.m.) rectifiable current in Q x R if and only if u is a function of bounded
variation.



However, it is in the seminal paper by M. Giaquinta, G. Modica, and J. Soucék [16] on nonlinear
elasticity, where currents carried by the graph of vector-valued maps were firstly used to study polyconvex
functionals with superlinear growth in the minors of the gradient matrix Du, see also [17]. Based on this
approach, Anzellotti et al. studied in [7] limit points 3 of sequences [GM,, ] of currents carried by the
Gauss graph of smooth surfaces with equibounded areas and e.g. prescribed boundary conditions. We
recall here that the weak convergence as currents [GMy ] — ¥ is defined by duality as the pointwise
convergence ([GM;, ], w) — (¥,w) for any smooth and compactly supported n-form w in Rt x S™.
In fact, by Federer-Fleming’s closure theorem [15], it turns out that any such weak limit point ¥ is an
n-dimensional i.m. rectifiable current in R"*! x S™, with finite mass.

Most importantly, the weak convergence as currents preserving some geometric structures of Gauss
graphs of smooth surfaces, the authors of [7] were able to equip ¥ with a generalized second fundamental
form, which extends the notion obtained by Hutchinson in terms of varifolds. As a consequence, they
recovered in a non-smooth context a weak notion of Euler-Poincaré characteristic, and found a suitable
definition of measures which are naturally associated to the elementary symmetric curvatures (i.e., to the
Gauss curvature K = kjky and mean curvature 2H = k; + ks, in the 2-dimensional case).

Moreover, in order to discuss the existence of minimizers of functional depending on curvatures,
Anzellotti et al. proposed to study the relazed energy functional, see also the work by S. Delladio [13].
More precisely, they introduced the curvature functional of a smooth n-dimensional surface M C R**1,
that for n = 2 reads as:

M| == H*(M) +/M \/ K2 + k2 dH? +/M [kiko| dH? .

Under prescribed boundary conditions on M and on the value of the Gauss map on dM, the relaxation
approach yields to consider for each weak limit current > as above the functional

F () := inf{liminf | M}]|}
h—o0

where the infimum is taken among all sequences { M} of smooth surfaces such that the currents [ GMy, |
carried by their Gauss graphs weakly converge to ¥. However, even in dimension n = 2, it is an open
problem to characterize the class of i.m. rectifiable currents ¥ in R3 x S? for which the relaxed energy
F(X) is finite. On the other hand, it would be desirable to have an explicit formula for the relaxed
energy, another non-trivial open problem.

In this paper, we shall focus on the above mentioned relaxation problem in the non-parametric case.
For this purpose, we restrict to the case n = 2 and try to analyze the class of currents which naturally
arise as weak limits of Gauss graphs of smooth Cartesian surfaces. We refer to [11, 2, 3] for the analysis
of the one-dimensional case of Cartesian curves.

PLAN OF THE PAPER. In Sec. 1, we collect some notation from [6, 7] concerning Gauss graphs of
codimension one surfaces. We shall then restrict to non-parametric surfaces M = G,, given by the graph

Gy = A{(z,u(z)) |z € Q}

of smooth bounded functions u : Q — R, where Q C R? is a bounded domain. Therefore, in this case
the Gauss map is naturally identified at each point of the graph by the outward unit normal
vu(x) = ! (—=01u, —Dou, 1) Gu =1+ |Vul? zeN
,—gu ) ) ’

and hence the mean curvature H, and Gauss curvature K, at (x,u(x)) are written in terms of the
first and second order partial derivatives of u, see (1.11) and (1.12). Moreover, the Gauss graph of the
Cartesian surface G, agrees with the non-parametric surface in R®

GG, ={Du(z) |z € Q}
where @, : Q — (2 x R) x §? is the smooth map

Oy (2) = (Pu(@),vu(@)),  pulz) = (z,u(@))




and hence the tangent space at each point in the Gauss graph GG, is oriented by the wedge product

§u(x) = 01Py () A 2Py (), x e

so that by the area formula we get H?(GG,) = / €| AL

In Sec. 2, we deal with the currents GG, carried by the Gauss graph of smooth Cartesian surfaces.
They are naturally defined through the formula GG, = ®,[ ], i.e., denoting U := Q x R, by:

(GG, ) = / b Fw  VweDXU xS,
Q

The action of GG, on qualitatively different 2-forms is explicitly computed in (2.1). We then analyze
the curvature energy functional ||M|| when M = G,, which becomes

£ = [ (6l0+160]+ 16) ac?.
In term of the stratification of the orienting 2-vector &,, see (2.6), we in fact have:

€= Vo, 1] = Vau VUL —2K,),  [6P)] = Vou Kl

The integration by parts formulas of the Gauss graph currents GG, are then obtained.

In Sec. 3, we shall introduce the relazed curvature energy, given for any function uw € L*(£2) by
E(u) == inf{lihm inf &(up) | {untn € C*(Q), up, — u strongly in L*(Q)}
— 00

and discuss some general properties of functions u with finite relaxed energy. Since the Gauss map v, is
a function of bounded variation, Theorem 3.1, we shall see that the current carried by the Gauss graph of
u is well-defined as in the smooth case by GG® := ®,4[Q], but this time the pull-back ®,*w of forms
is computed by means of the approximate gradient of the BV-map ®,. Weak limits ¥ of sequences of
currents carried by the Gauss graph of smooth functions with equibounded curvature energies are also
analyzed. We shall then introduce a curvature functional ¥ — E(X) on the currents X, that agrees
with the curvature energy £(u) when ¥ = GG, for some smooth function u. Its relationship with the
relaxed energy is finally outlined.

In Sec. 4, we shall discuss the notion of generalized first and second symmetric curvatures from [7]
in our framework, by also giving an explicit computation in the case of two surfaces with line or point
singularities: the union of two rectangles meeting at an edge, Example 4.3, and the lateral surface of a
cone, Example 4.4. Referring to these two models, we shall then compare our definitions with the notion
by J. M. Sullivan [24] of mean and Gauss curvature for polyhedral surfaces and 2-rectifiable sets. We shall
then discuss the relation with the Gauss-Bonnet theorem. Finally, we shall introduce the distributional
definition of weak and Gauss curvatures, given by

H, = %Div L/lfrivup} K, = %Div(vulﬁgyuz — 1,200, v 20, — Vulalz/u2) .
Even if they are well-defined for any function u with finite relaxed energy, we shall see that they fail to
be the good geometric objects.

From Sec. 5 to the end, we shall restrict to the subclass of 0-homogeneous functions defined in the
open unit ball Q = B2. In fact, beside the structure theorems 3.1 and 3.4, finding necessary and
sufficient conditions to the membership of a bounded BV -function w : 2 — R to the class of functions
with finite relaxed energy is a non-trivial open problem. We shall then assume that « : B? — R
satisfies u(z) = u(z/|z|), and with an abuse of notation we shall write u(z) = f(6) for some function
f:]0,27] —» R, where & = (p cos#, p sinf). The explicit computation of the curvature energy functional
E(u) in the case of homogeneous functions is postponed to Appendix A.



The relaxation problem in the annulus €, := {x € B? | r < |z| < 1} is then solved for any small
radius r > 0. In the homogeneous case, in fact, the explicit formula for the relaxed energy in €, is
recovered from the one-dimensional results obtained for Cartesian curves in [2].

In Sec. 6, we shall compute the relaxed energy in the case of the homogeneous function

u(zx) ==

— x = (x1,22) .
|.%'| I ( 1, 2)
The Gauss graph of u has a “hole” at the origin. More precisely, the current GG,, has an inner boundary
which can be described by the 1-dimensional current I' carried by a closed Lipschitz-continuous curve
Jo whose support is concentrated in {Ogz} x R x S%, see (6.1) and (6.2). We shall prove that

E(u) = E(u) + E(Sy)

where S; is the minimal energy element among all the i.m. rectifiable currents that bound the integral
1-chain I' and that satisfy the geometric condition inherited by the orthogonality of v, to the tangent
space to G, that holds true for the smooth approximating sequences.

In Sec. 7, we shall then consider the non-smooth homogeneous function

/2 — arctan(za/x1) if 21 <0
u(z):=¢ =« if £1>0 and =z >0
0 if 24 >0 and 29 <0.

Roughly speaking, the boundary 9SG, of the subgraph of u is the surface given by two “floors”, at
level z=0 and z =, one “wall” of height 7 at the Jump set J, = (0,1) x {0}, and a smooth “spiral
staircase” connecting the two floors. Four horizontal edges appear at the boundary of the two floors, and
a fifth vertical edge lives over the singular point Oz, the edges meeting at the corner points (0,0,0) or
(0,0, 7). Now, by applying results from [2] to the Gauss graph of the corresponding function f, given by

™ it 0<O<m/2
fO):=< 3n/2—-0 if w/2<6<3m/2
0 if 3m/2<6< 2w

it turns out that the (optimal) Gauss graph current %, is well-defined by the formula
S, = GGY + GGS + GG + 8¢+ 5¢.

We have already seen that the Absolute continuous component GG¢ is defined by GG = &,.[ B?],
through the approximate gradient of the BV-map ®,. The Cantor component GGS = 0, as the distri-
butional derivative of u has no Cantor part, Du = 0. The Jump component GG is the Gauss graph
of the vertical wall at the discontinuity set of u. The Jump-edge component S:/¢ deals with the Jump
of v, w.r.t. the outward normal to the wall surface at the upper and lower edges. Finally, the Edge
component S;, deals with the Jump of v, where u is continuous.

We have thus obtained an i.m. rectifiable current %, in U x S2. The energy contribution of the
several components in the above decomposition formula is computed in Appendix B. However, as in the
previous example (where ¥, reduces to GG2) the null-boundary condition 0%, = 0 is violated, as in
general a “hole” appears at the origin Ogz, see (7.17), so that an extra energy contribution is expected
in the relaxation process, yielding this time to the formula

E(u) = E(u) + E(GG;) + E(S;]°) + E(SS) + E(S1)
where S is the minimal energy element among all the i.m. rectifiable currents that “fill the hole” in the

optimal current ¥, and satisfy the above mentioned orthogonality condition.

In Sec. 8, we shall then describe a gap phenomenon, firstly discovered by G. Buttazzo and V. J. Mizel
[9] in the relaxation process, that makes the above problem much more complicate. Consider in fact the
piecewise constant and homogeneous BV -function u given by wu(z) = f(6), where

g .- J 1 it 0e(0,7/3)U(2n/3,m) U (47/3,5m/3)
4 >'_{ 0 if 6 (n/3,2r/3)U (m, 47/3) U (57/3,2m).



Roughly speaking, this time the boundary of the subgraph of wu is given by a “cake” which has been
divided into six equal parts, and where three non-consecutive slices have been removed. As before,
one may define the (optimal) Gauss graph current ¥, = GG® + GG + S;/¢, as both the Cantor and
Edge components GG and S¢ are trivial. Now, by the symmetry of u it turns out that 3, has no
homological boundary in (B? x R) x S2. In fact, looking at the behavior of the outward unit normal (a
“candle” moving on the “cake”) on small circles around the origin, it turns out that the boundary of f]u
is given by dp_, X v#[0,18], where ~ : [0,18] — R x S? is the closed rectifiable arc parameterized by
(8.4). It turns out that the closed arc  is homologically trivial, as its support is parameterized twice and
with opposite orientation. Therefore, in accordance with the previous examples, and by the optimality
of the current %, one expects that £(u) = E(X,) .

However, we shall see that the loop 7 is topologically non-trivial (both in R x §? and in R*). As a
consequence, we obtain the energy gap &(u) > E(X,). In terms of approximation in energy by smooth
functions, a topological obstruction that cannot be treated by means of homological arguments occurs.

Finally, some ideas towards the direction of finding an explicit formula for the relaxed energy (a widely
open problem even in the case of homogeneous functions) are collected in Sec. 9. Namely, in order to prove
that (in accordance with our examples) the relaxed energy satisfies the measure property, one may consider
the localization of the relaxed functional. Following E. Acerbi and G. Dal Maso [1], where the analogous
feature concerning the relaxed area functional of vector-valued functions was firstly discovered, it is not
clear if one could find a function w with finite relaxed energy such that the set function A — &(u, A)
fails to be subadditive, i.e., for which we can find open sets Ai, As, A3 C 2 such that A3 cC A;UAs but
E(u, A3z) > E(u, Ay) + E(u, A). In fact, due to the geometric constraints (the orthogonality condition),
we expect that (at least for homogeneous functions u) the subadditivity property holds, and hence the
set function A+ E(u, A) is a measure, as a consequence of the De Giorgi-Letta criterion [12].

In conclusion, we point out that the case of n-dimensional Cartesian surfaces may be analyzed by
generalizing the ideas contained in this paper. On the other hand, a part from the 1-dimensional case
studied in [2, 3], the analysis of the relaxed curvature energy functional of higher codimension Cartesian
surfaces is certainly a much more complicate stuff, as the role played here by the Gauss map has to be
replaced with more general geometric invariants.

Acknowledgments. I would like to thank E. Acerbi and A. Saracco for several useful discussions.
The author is a member of the “Gruppo Nazionale per I’Analisi Matematica, la Probabilita e le loro
Applicazioni” (GNAMPA) of the INAAM.

1 Gauss graphs of smooth Cartesian surfaces

In this section we report from Anzellotti et al. [7] some notation and properties concerning Gauss graphs
of codimension one surfaces, see also [6]. We address to [23, 17, 20] for the main facts and notation on
Geometric Measure Theory. We then focus on the case of Cartesian surfaces.

(GAUSS GRAPHS. Following [6, 7], given a smooth (say C?), bounded, and oriented surface M C R3,
the Gauss map v: M — S? associates to each point z in M the unit normal v(z) € S?, where

S?i={yeR?®: |y =1}
and the graph of the Gauss map (or Gauss graph) is the 2-dimensional surface in RS given by
GM :={(z,v(z)) |z € M} CM x S* CR} xR}.

The tangent 2-vector field 7 : M — A2TM C A?R2 is given in terms of the Hodge operator by
7(x) = #v(x). Denoting by ®: M — R x R} the graph map ®(z) := (z,v(x)), a continuous tangent
2-vector field € : GM — A*(R3 xR?) is given by &(z,v(x)) := A d®,(7(z)). Since |¢] > 1 on GM, the

_>
normalized 2-vector field ¢ := &/|¢| determines an orientation to GM. Therefore, the corresponding
integer multiplicity (say i.m.) rectifiable 2-current [GM] in Ro(R3 x RY) carried by the Gauss graph



has multiplicity one and support contained in M x S2. Its action on compactly supported smooth 2-forms
w in R3 x RZ is by integration:

([GM],w) = /QM<w<x,y>,?(x,y>>dH2<x,y>, w e D*RS x RY).

By Stokes’ theorem, the boundary current [GM] acts by integration of 1-forms on the naturally
oriented boundary of GM, so that [GM ] =0 if M is a closed smooth surface.
The tangential Jacobian of the graph map satisfies

1/2
I @) = (14 (ke +1o”) + (ake)?) , zeM

where k; = ki(z) and ko = ka(x) are the principal curvatures at x € M. In fact, we have J3(z) =
|€(x,v(x))|. Moreover, denoting by 71 and 7o the principal directions, and considering the obvious
homomorphism v — 7 from R3 onto RJ, one has

E(zyv(x) =11 ATe + (kgﬁ ATy —kimo A ?1) +kiko I AT (1.1)
Also, denoting by H and K the mean curvature and Gauss curvature,
H:= %(k1-l-k2)7 K = kky
so that k; o =H + VH? — K, we equivalently have
(JEH? =1+ (2H)? - 2K + K? = 4H? + (1 - K)?.

Therefore, by the area formula, the area of the Gauss graph reads as

HQ(QM):/ (1+(k12+k22)+(k1k2)2)1/2d7{2z/ V1+ (4H2 — 2K) + K2 d#? (1.2)
M M

and it agrees with the mass M([GM]) of the current [GM].
The curvature functional of a smooth surface M C R? is defined in [7] by:

(M| == HE(M) +/M \/ k3 + k3 dH? +/M ki k| dH? (1.3)

M| = / (14 VAHZ — 2K + [K|) dH>
M

so that by (1.2) one gets the bounds with the area of the Gauss graph:

i.e., equivalently,

1
3 IMI<HAGM) < M|, HA(GM) = M([gM]).
Also, in [7] two real measures on R x RZ are naturally associated to the mean and Gauss curvatures:
xi= —0uHHLM), 3= 0u(KH L M) (1.4)
so that for any ¢ € Co(R3 x RS) we have

00 == [ @@ a8 = [ e v e) a).
The above curvature measures are re-written in terms of the current [GM] by the formulas
0aw) = (CDUIGM], v ;) Y e CERIXRY),  i=1,2.

The 2-forms ©; = ©;(z,y) in R} x R} are defined in [7], and for 2-dimensional surfaces they become:

O, := (y1 (da® A dy? — da® A dy?) + y? (da® A dy' — dat A dy?) + P (dat A dy? — da® A dyl))

Oy == yldy?® A dy® + y2dy® A dy* + y>dyt A dy? .

N =

(1.5)



Remark 1.1 Since the mean curvature depends on the sign of the principal curvatures, we added a
factor —1 in order that for Cartesian surfaces we recover the standard notation, see (4.2) below.

Finally, the weak limits ¥ of sequences of currents carried by Gauss graphs of smooth surfaces { My}
are studied in [7]. Assuming e.g. that each My, is closed, supported in a given compact set K C R3, and
supy, [[Mp]] < oo, it turns out that X is an i.m. rectifiable current in Ro(R3 x RY), with null boundary,
0% = 0, and with support contained in K x S2. Moreover, ¥ satisfies the following structure properties:

Theorem 1.2 ([7]) With the previous notation, one has:
i) (Z,nAp)=0 for each n € D'(R} x RY);
i) (3,9¢*) >0 for each 1 € C(R3 x R3) such that ¢ >0;

where ¢ and ¢* denote the canonical 1-form and 2-form, respectively:
3
p(z,y) = Z y’da’ ©*(x,y) := y'da® Ada® + y?de® A dot + y3dat A da? . (1.6)
j=1

Remark 1.3 We finally recall from [7] that property i) is equivalent to the orthogonality condition:
ve(y,0ps) =0 VveT,,)R

for H2%-a.e. (x,y) € R, where e denotes the scalar product, R is the 2-rectifiable set of positive
multiplicity of ¥, and T, , R is the approximate tangent space, see Remark 3.5 below.

CARTESIAN SURFACES. We now restrict to smooth Cartesian surfaces, i.e., we assume that M is
the graph of a smooth and bounded function u :  — R, where Q C R? is a given bounded domain.

We shall denote by (e, e2,e3) the canonical basis of Q x R, with « = (z1,22) € Q, 2 =23 € R, and
hence (dx',dx?,dz) is the dual basis. We shall also denote by IT; and I, the orthogonal projections onto
the first three and last three components, respectively, i.e., II1((z, 2),y) := (z, 2), Ia2((z, 2),y) :=y. The
canonical basis in Rg is (e1,¢€2,€3), and its dual basis is (dy', dy?,dy?). Also, for a function v : Q — R,
we shall always denote by Vv the (approximate) gradient and by ;v and 82 ;v the first and second
order (approximate) partial derivatives, so that e.g. d;v(x) := Vuv(z) e e; for i =1,2.

Assuming now M = G,, where G, is the graph of u

Gu = {(z,u(z)) |z € 2}
the Gauss map is naturally identified at each point of the graph by the outward unit normal

1
V14 |Vul?

and hence the Gauss graph of the Cartesian surface G, agrees with

GGy = {Qu(z) |z € Q} (1.8)

vy (z) = (—O1u, —du, 1), z € (1.7)

where @, : Q — Q xR, x R} is the smooth map

Ou(2) = (pu(),vu(@),  pul2) = (z,u(2)), vulz) = ' (@), 1" (2), 15 (). (1.9)

The first fundamental form of G, is identified by the symmetric matrix

I = EF\ _ 01pu|? 01y ®Dapy _ (14 (01u)?  Oudsu
C\F G 010 ® Doy |8250u|2 B O uOru 1+ (82u)2

whose determinant is

9= gu:=EG—F*=(1+(01u)*)(1 + (ou)?) — (O1udou)? = 1 + |Vu|? (1.10)



whence the unit normal is v, = g, 1 2(—[“)1u7 —0au, 1). Therefore, by computing the second derivatives

of the graph map ¢,,, since aﬁj% = (0,0, 82ju) for 7,7 = 1,2, it turns out that the second fundamental

form is identified by the symmetric matrix

II R e m _ 812,1<)Ou ey 812,2@’11 ey _ 1 8127171 812,211,
. m. n a%,l‘aou ® 1y 65,29011 ® Uy \/E 822,11/' 8%,2“

where 05 ;u = 07 yu. As a consequence, the mean curvature at (z,u(z)) becomes

1 1 1
= 3 (En+ Gl —2Fm) = 3 .37 (14 (81u)*)83 yu + (1 + (82u)*) 07 yu — 2011 Oou 87 yu)  (1.11)

H,
and the Gauss curvature at (x,u(x))

In —m? 1
Ki=ga-—m =52 (021003 30— (83 30)%). (1.12)

We also recall the formulas:

H, = ;div[jg%} = —% div[(v.', )], K, = det {V ( v;i” = det[V (v, ', 7)) . (1.13)

The tangent space at each point in the Gauss graph GG, is oriented by the wedge product
&u() := 01Dy () N 2Py (), reN.
We have
1P, = (1,0,01u, 011, , 0112, 012) ,  0a®y = (0,1, Ou, Darr,t, o ®, Do ®) (1.14)
and hence, according to the number of ¢;-entries, we can write as in [7] the stratification
€ =€+ +€
where, denoting by |A| the determinant of a 2 x 2 matrix A, we obtain

5180) =e; ANey+0Osue; Aes —Orues N es
81U 82u

3 3 3
€ = | Qe ey [evmens| Gy Dy evneat| ey B e nea,
Using (1.2), by the area formula we can write the area H?(GG,) of the Gauss graph as
/Q\/E\/l + (4H? — 2K) + K2dz = ; V1+ (4H2 - 2K) + K2 dH? = /Q €| da (1.16)

where g = g,, H=H,, and K = K,,, which yields to the formula for the Jacobian of the map @,
Jo, = |6l = vgu V1+ (4H - 2K,) + K. (1.17)

Finally, by (1.1) we infer that

€01 =g, IR = g, (4HE —2K,), P = g, K (118)

whereas a unit 2-vector field orienting the tangent plane to G, at (z,u(z)) is

(0)
= (61/\62+82u61/\63—81u62/\63).

1€ T+ V2

Ty 1= KUy =




2 Currents carried by Gauss graphs

In this section we deal with the currents carried by the Gauss graph of smooth Cartesian surfaces,
analyzing the curvature energy functional and the integration by parts formulas.

The current [GG, ] in R2(RY) of a smooth bounded function u: @ — R is defined as above, with
M = G,. However, since the graph G, is contained in the cylinder

U:=QxR
and its boundary in AU, we shall restrict to the action of compactly supported forms in U x S2.
CURRENTS CARRIED BY (GAUSS GRAPHS. The i.m. rectifiable current GG, in Ro(U x S?) is

naturally associated to the Gauss graph by integrating compactly supported smooth 2-forms w in U x S?
on the Gauss graph surface GG, w.r.t. the natural orientation

Go((,2),y) = ) (@20 €96

so that GG, = [[ggu,l,g_i]], see Remark 3.3 below, with finite mass, M(GG,) = H?*(GG.) < x
Therefore, by (1.8) we equivalently have GG, = ®,x[ ], i.e.,

(GG, w) = / o, w  YweDXU x $?).
Q

We compute for 1 =1,2 and j=1,2,3
&, 7 det = dxt, ®,7dz = Ouds' + duda?, @u#dyj = 0,7 det + Ot da?
and hence the pull-back of the basis of 2-forms in R3 x R‘; gives the fifteen formulas
#(dz! Ada?) = dat Ada?,  ®,7 (dat Adz) = doudat Adx?, B, (dx? Adz) = —drudat A da?
®, 7 (dz! ANdy’) = dov? dat Nda?,  ©,7(da? Ady!) = -0y dat Adx?, j=1,2,3

6111, 82u

1 2 .
Ot Bovryd dx” Ndx*, 1=12,3

O, (dz N dy!) = ’

81 Vujl 62 Vujl

A . L 2 <j in < 3.
Bz By i de - Ndz®, 1<7j1<j2<3

#(dyjl A dyjz) — ’

Therefore, for each compactly supported smooth function 1 € C°(U x S?) we have

(GGy, v dx A dx?) / P(®,) dL?

(GG, dx A dz) / Y(®,) Ogu dL?

(GG, dz? A dz) /1/) ) O1u dL?

(GG, dxt A dy?) /w )Oovd dL?,  j=1,2,3 (2.1)

(GG, da? Adyl) = /w Yot dL?, j=1,2,3
61u 82u
81Vuj 82Vuj
811/uj1 821/uj1
811/uj2 821/uj2

(GG, b dz A dy?) /zp ac?*, j=1,2,3

(GG, b dyit A dy?) = / P(®,)

dc?, 1<j; <j»<3.




Remark 2.1 Notice that the (z, z)-projection II; GG, agrees with the i.m. rectifiable current G, in
R2(2 x R) carried by the graph G, of u, i.e.,

iy 0 @ux[Q] = (I 0 @)% [Q] = @up[Q] = Gu,  pulz) = (2,u(z)) (2.2)
whereas the y-projection agrees with the image current in Ro(S?) of the unit normal v, :
Hou GGy = (I3 0 @) [Q] = v [Q] .

Since moreover the third component of v, is non-negative, actually the support of Il,4GG,, is contained
into the upper half-sphere
St :={y e8|y 20} (2.3)

and hence the compact support of GG, is contained in U x Si.

THE CURVATURE ENERGY FUNCTIONAL. Recalling (1.3), if M = G, for some smooth and
bounded function u : Q — R, by the area formula we get ||G,|| = £(u), where we have set

u) = / Vau (1+ 4H2 — 2K, + |K,|) dC*. (2.4)
Q

On account of (1.16), (1.17), and (1.18), we get
Eu) = / (68 + 161+ 1621) aL? - H*(GGu) = / €u] aL? (25)
Q Q

where |£,]2 = |§7(f))|2 + |€731)|2 + |€7S2)|2 and more explicitly, by (1.15),

€12 = g, = 1+ |Vul?

3
D2 = g, (4B — 2K,) = (Vo + 3 (91udov? — dpudi?) (2.6)
j=1 .
PP =9.Ki = Y (9 0 — ot Diw2)?.
1<j1<j2<3

BOUNDARY AND INTEGRATION BY PARTS. Stokes’ theorem yields that for every compactly
supported and smooth 1-form n € DY (U x S?)

(0GG . n) == (GGy,dn) :/ dn:/ n=0.
GGu GGy

Due to the previous computation, this yields to the following list of integration by parts formulas, where
we shall use that for u smooth d®,#n = &,%dn. Let ¢ € C*(U xS?), where 9 = 9 (x1, 2, 2, Y1, Y2, Y3)-

3
i) If n =1 da!, then —dn = i det A da® + == i dat A dz + Z a—wdzl A dy?, whence
0o T2 0z = y;
Fpdat) = (g;i( uw) + u) O2u + Z u) O21? ) dzt A dx?
= —Ootp(P,)] dzt A da?
which yields to
(0GGy, 2 da*t) / Do[th(®,)]dL* = 0. (2.7)
ii) If 7 = ¢ dx?, then dn = 6—11) dzt Ada?® — 81’/} de* Ndz — Z i dz* Ady’ and we similarly obtain:
0z 0y;
(0GGy, v dz?) / 0L [1h(®,)]dL:=0. (2.8)
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iii) If n =1 dz, then dn = 3

d®, 7 (1 dz)

which yields to

iv) If n=dy',

d®,* (pdy') =

Arguing in a similar way for j =1,

3

a—wdgcl/\dz—&—a—wd962/\dz—za—walz/\dyj, whence
Xr1 8,12 =1 E)yj
% _w N g | B |y
o (axl (®u) Opu Oxo (®u) Dru ]; y; (®u) Oyt Oout )dm Nde
— 9 : aw J 1 2
= —Ou (a—u(@u) —l—;a—yj(@u)@gyu dz* Adx
2 = 9y 3\ gl A
+ O <671(q)“) +; (@00 )dx A dz
= —Oiu (82 32 ( w) 82u) dz' A da?
+ Ot (81 o ( w) 31u) dzt A dz?
- (—aluag[w( u)]+azual[¢(q>u)]) dz' A dz?
(OGG, b dz) = / (~0vu0a00b(®.)] + B 01 [(®,)]) AL = 0.
Q
2 o o LA
_ 9y 1, oY 1 oY g j
then dn Zzzl o, dx* Ndy + 52 dz N\ dy ; 2y; dy- N dy’, whence
o 1_ 9 !
— (83:1 (@u) Do’ = 5 (@u)alz/:
ou Oxu 8¢ 61Vu1 621/11.1 1 2
’ Oyl Oywy! ’ Z@y] (‘%)‘ v Oy )da: Adx
N 81/)
_ 1 1 2
= 01y, (8332( w) + w) O2u +Z w) O21y” )dw A dx
+ 0o, (%(‘I’u) + 371/) u+ Z w) O1vy? ) dzt A dz?
= ot (32[¢(q>u)] a¢( ®,) vy )dm A da?

)31uu1) da' A da®
- (falyul Bl (®.)] + agyul al[w@u)]) dz' A da? .

2,3, we get

(OGG, v dy) = /Q (~0ud Dol ()] + Dovi O1[0(®,)]) A% = 0.

3 Relaxed energy and weak limit currents

(2.9)

(2.10)

In this section we introduce the relaxed curvature energy functional and discuss some general properties
of functions w with finite relaxed energy. It turns out that the current carried by the Gauss graph of u
is well-defined. We then analyze the weak limits 3 of sequences of currents carried by the Gauss graph

of smooth functions

with equibounded curvature energies.

We shall see that the corresponding weak

limit currents ¥ retain some information from the L!-limit function u. We then introduce a curvature
functional on the currents ¥ that agrees with the curvature energy £(u) when ¥ = GG, for some
smooth function w. Its relationship with the relaxed energy is finally discussed.
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THE RELAXED ENERGY. We define for any u € L>(Q)

E(u) == inf{lihm inf &(up) | {untn € C*(Q), up — u strongly in L*(Q)} (3.1)
—00

and we correspondingly denote by
EQ) :={ue L) | E(u) < oo}

the class of L°°-functions with finite relaxed energy. In the above definition, by a standard density
argument one can restrict to consider uniformly bounded approximating sequences in Cg(Q). Moreover,
by lower-semicontinuity we clearly have:

E(u) = E(u) Vuec CEQ).

Notice that since for smooth functions &(us) > [, /14 [Vus|?dL?, then it turns out that any
function with finite relaxed energy has bounded variation, whence

E(Y) c BV(Q).

Therefore, the unit normal v, is well-defined a.e. by (1.7), but in terms of the approximate gradient Vu,
whose components will be denoted by 9;u. We refer to [5, 17] for the main properties of BV -functions.
By means of a slicing argument, and using results from [2], we also obtain the following.

Theorem 3.1 Let u € £(Q) and let {up}y, C CZ(Q) be such that up — w strongly in L'(QY) and
supy, (E(up)+||unllo) < 00. Then @, (x) converges to P, (x) weakly in the BV -sense, and hence strongly
in L'. Therefore, the approzimate unit normal v, is a function of bounded variation, v, € BV (Q,S?).

ProOOF: We already know that u; — u weakly in the BV -sense. We now claim that the gradient Vuy,
converges L2 Q-a.e. to the approximate gradient Vu. By the claim we deduce the £?-a.e. convergence
of vy, to v,. Since moreover supy [q, |Vry,|dz < oo, by compactness we infer that 1,, converges to
v, weakly in the BV -sense, whence v, € BV (£2,S?).

In order to prove the claim, we denote by p; : R2 — R the orthogonal projection p;(x) = z;. For any
x1 € p1(R2), consider the slices ¢t — up(x1,t) and the corresponding Cartesian curves

cn(t) == (t,un(z1,1)), tel,, ={x2eR| (21,22) € Q}.

Since the principal curvatures ki(h), ka(h) of the graph surfaces G,, bound the curvature k., of the
Cartesian curve cp(t), along the curve ¢, we have

1/2

(1+ et (h)? + keah)?) + s (W ea(h)2) > VT T P

Therefore, by a slicing argument we deduce that

sup/ (1+ |k, |) dH' < o0 for L'-a.e. z1 € p1(Q).
h

Ch

As a consequence, for Ll-a.e. such x; the Cartesian curve t ~ c(t) := (¢t,u(x1,t)) has finite relaxed
energy in the sense of [2]. In particular, we infer that the derivatives ¢,(t) converge a.e. in I, to the
approximative derivative ¢(¢). This yields the convergence L£2-a.e. in Q of the partial derivative 0yuy,
to the first component 0ju of the approximate gradient Vu of the BV -function u. The same property
holds true for the second derivative O;u, as required. O

THE ABSOLUTELY CONTINUOUS COMPONENT. For u € (), we have just seen that the function
b, (z) := (z,u(zx), vy(x)) has bounded variation. Therefore, similarly to the smooth case, we may define
the current GG? € Dy(U x §?) as

GG = 0,4[ ] (3.2)
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where this time the pull-back of 2-forms is computed by means of the approximate gradient of ®,,, given
similarly to the smooth case by V®, = (0;P,,02P,), see (1.9), so that (1.14) holds for a.e. z € Q.
Whence the formulas (2.1) continue to hold, with GG? instead of GG,, but this time in terms of
the approximate gradient of ®,. In particular, as in Remark 2.1 we deduce that (2.2) holds, where
Gu = pux[Q] is the current carried by the rectifiable graph of w in the sense of Giaquinta-Modica-
Soucek [17]. We also recall that due to the codimension one, there is a unique Cartesian current T, in
cart(Q x R) that “fills the holes” of the rectifiable graph. It is given by the boundary of the (naturally
oriented) subgraph of wu, i.e.,

T, :=0[SG.] on D*(Q xR), SG, i ={(z,2) e QxR |z <u(z)}. (3.3)

It is well-known from Federer’s work [14] that the current 9] SG, ] is i.m. rectifiable in Ro(Q x R) if and
only if u € BV (). Moreover, compare [17], the graph current G, satisfies the null-boundary condition
(0G,) L QxR =0 if and only if u € WH1(Q). Therefore, for Sobolev functions we have G, = 9[SG., ],
whereas for general BV -functions we may decompose T, = G, + 1., where the second component is
determined by w and by the singular component D®u of its distributional derivative.

WEAK LIMIT CURRENTS. Let {up}, C C?(2) be a sequence satisfying sup, E(up) < oo and
supy, [[unlloo < 00. Then {GGy, }n is a sequence of i.m. rectifiable currents in Ro(U x S?) with no inner
boundary, GG, =0 on DI (U x §?) for each h, and equibounded masses, sup, M(GG,, ) < oo, as

S Elun) < H2(GG,) = M(GG,) < E(m) V.

Therefore, by Federer-Fleming’s closure theorem [15], possibly passing to a subsequence the currents
GG, weakly converge in Do(U x S?) to some i.m. rectifiable current ¥ € Ry (U x S?) with finite mass,
M(Y) < oo, and no inner boundary, 9% = 0 on DY(U x S?). By Remark 2.1, we also deduce that the
support of ¥ is a compact set contained in U x S%, where S2 the upper half-sphere given by (2.3).

Since moreover I114GG,, = Gy,, and sup, M(G,, ) < 0o, we deduce that {up}, weakly converges
in the BV-sense to a function u with finite relaxed energy, u € £(Q), and {G,, }; weakly converges in
D2 (0 x R) to the corresponding Cartesian current Ty, see (3.3). Therefore, we have:

Mu¥ =T, :=0[5G,] € cart(2 x R).
This yields that we may and do decompose
Y =GG, +%¥° (3.4)
where u € £(2) and X is an i.m. rectifiable current in R2(U x S?) satisfying:
ILixGGY =Gy, WX =T, :=T,—G,.
Since (9X) LU x S? = 0, the following null-boundary condition holds:
(0GG% n) + (0%, n) =0  ¥neDYU x$?). (3.5)
Furthermore, the singular component ¥° is “vertical” in the sense that
Yo (pdrt ANdx?) =0 Vi€ OX(U x §?). (3.6)

In fact, by the weak BV-convergence of ®,, to ®, as h — oo, for any test function i we get:
(GG, b dat A dx?) = / P(Py, ) dL? — / Y(®,)dL? = (GG, 4p dat A da?).
Q Q

In a similar way, by (2.1) we recover for each 1 € C>°(U x S?) the formulas

(35,9 dat A dz) = (Diu, P(Pu)) (X5, da® N dz) = —(Dju, Y(Pu))

(35, dat Ady?)y = (Div,? ,0(®,,)), (3%, da?® ANdy’) = — (D, (®.,)), j=1,2,3 (3.7)

which are to be intended by decomposing the singular part D*v of the weak derivative of a BV -function
v € BV () into the Jump and Cantor components: D*v = D’v + D%, and Dfv = Dv ee;.
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Remark 3.2 Due to the higher codimension, in general the action of the singular component >° on
forms of the type ¥ dzAdy? and v dy’* Ady’? is not identified by the function ®, or by the weak limits
(in the sense of the measures) of the determinants appearing in the last formulas from (2.1).

We now recover the geometric properties from Theorem 1.2. They are inherited through the weak
convergence as currents by the analogous ones for smooth functions. More precisely, if u € CZ(Q2) we
readily check:

i) (GGy,n A @) =0 for each n € D}(U x S?);
ii) (GG, *) >0 for each ¥ € C(U x S?) such that ¢ > 0.
In fact, recalling the definition (1.6) of the canonical forms, we compute:
o, o= @u#(yldxl +y2da® +y3dz) = (v, dat + v, 2de? + v, (O1udat 4+ doudr?)) = 0
so that i) holds. As to condition ii), we compute

o, = @,7(y'da? Adz + yPdz Adzt + yPdat A da?)

v tdz? A (Oyudat + ouda?) + 1,2 (Grudat + Oouda?) A dat + v, 2dzt A da?
1/2 5 1 2

g “dx N dx

so that we get
(CGwve) = [ V(@) V0O xS, (3.8)
Q

Remark 3.3 Since ¥ € Ro(U x S?), there exist a 2-rectifiable set R C U x Si, an H? L R-summable
multiplicity function 6 : R — N, and an H? L R-measurable unit 2-vector field ¢ : R — /\Q(R‘Z’w . %XR})
orienting the approximate tangent 2-space T{(y .),)R at H2-a.e. point ((x,2),y) € R, such that

(E,w) = /Rﬁ<w, ?) dH? Ywe D*(U x §%).

%
In this case, we shall write 2 :_l[ R,0, ¢ ]. Moreover, similarly to (1.15), for future use we stratify the
orienting unit 2-vector field as ¢ = ¢(@ 4+ ¢M + ¢®), whence

3
(O = 3" Giene, (W= dene, (D= > (Vene. (3.9)
1<i<j<3 1,7=1 1<i<j<3

%
If e.g. ¥ = GG, for some u € CZ(Q), we have ¢ = &,/|€ul, so that we get (11 = [€,]7F > 0 for
each P = ((z,2),y) € R, as R = GG,. We thus denote

R+ = {P€R|C171(P) >0}

and observe that if ¥ is a weak limit current as above, so that (3.4) holds, then H?-a.e. point in the
rectifiable set corresponding to the component GG¢ clearly belongs to the set R.. Furthermore, arguing
in a way very similar to [17, Thm. 2, Sec. 4.2.3], it can be checked that XL Ry = GGZ.

In conclusion, we may and do introduce the class

Geart(U x §?) := {¥ € Dy(U x S?) | there exists {up} C CZ() such that

GGuh — Y in DQ(U X SQ), Suph(M(GGuh) + HuhHoo) < OO} (310)

for which the following structure properties have just been proved:

Theorem 3.4 Let ¥ € Geart(U x S?), where U := Q x R. Then:

%
i) ¥ is an i.m. rectifiable 2-current in Ra(U x S?), so that £ =[R,0, ¢ |, see Remark 3.3 ;
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ii) the current ¥ has finite mass, M(Z fR 6 dH? < oo, compact support spt C U x S2, see (2.3),
and no inner boundary, (0X)LU x 82 =0;

ili) ¥ = GG% + X° for some u € E(Q), where the absolute component is GG := ®,x[Q], so that
(2.1) holds (in the approzimate sense, with GG% for GG, );

iv) on account of (3.9), we have:

YLRy =GGY, where Ry :={Pe€R|(1(P)>0}; 3.11
+ u + »

v) the singular component ¥° satisfies the “verticality” condition (3.6) and formulas (3.7) ;
vi) (X, Ap) =0 for each n € DY(U x S?), see (1.6);
vil) (3,9 *) >0 for each ¢ € C(U x S?) such that 1 > 0.

Remark 3.5 Arguing as in the smooth case, it turns out that both properties vi) and vii) hold true for
the absolutely continuous component G'G¢. Whence they are satisfied by the singular component X7,
too. Property vi), which is equivalent to the orthogonality condition described in Remark 1.3, makes
sense only if the approximate tangent space T((,,.),)R is not “completely vertical”. More precisely, at
points ((x,z),y) in the 2-rectifiable set R where T{(, .y, R is orthogonal to the “horizontal” directions
e1, e, e3, the orthogonality condition

ve(y,0ps) =0 Vv ET((zz) )R

is trivially satisfied and hence it gives no information on the geometry of the possible “completely vertical”
components of ¥. Moreover, as to the positivity condition vii), by (3.8), and taking a good representative
for the BV-map ®,,, we get for every ¢ € C(U x S?)

(GG2, 1) = / P@)VITIVaRAL?, (59,4 7) / $(®y) d|D*ul

BOUNDARY OF (GAUSS GRAPHS. Let X € Geart(U x S?), so that (3.4) holds for some u € £(9).
Concerning the boundary of the absolutely continuous component GG, according to (2.7), (2.8), (2.9),
and (2.10), by the definition (3.2) it turns out that for every test function ¢ € C°(U x S?) the following
six formulas hold:

(0GG® ) dzt) / o[t (®,)] dL?
(0GG®, ) da®) / O [ (®y)] dL?
(OGGS, v dz) = /Q (—aluazw W]+ Oy 01 [(®,)]) dL?

<aGaz,¢dyf>:/Q(—alyuiag[w(%n+a2uufal[¢(q>u>])d52, =123,

(3.12)

As we shall see in Sec. 6 below, in general the boundary current 0GG¢ is non-trivial, even if u is a
Sobolev function in W11(Q). Therefore, by (3.5) we deduce that in general the singular component %*
is non-trivial, even if for Sobolev functions we have seen that 7, = G, and hence II,43° =T, = 0.

THE GENERALIZED CURVATURE FUNCTIONAL. Let now X € Ro(U x S?), so that we can write
=[R,0, ( ], see Remark 3.3. On account of the stratification (3.9) of the orienting unit 2-vector field
< =¢O 4 ¢M 4 ¢@ we define:

E(X) =B () +E(D) +E3(Z),  Ei(%) ::/Re|<<i>|d7i2, i=0,1,2. (3.13)

Since the mass of ¥ is M

—~

%) = [p 0dH?, we clearly have

EX)<M(E)<EXE)<oo VIeRy(UxS?.

DN | =
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When considering currents in the subclass Geart(U x §?), the functional ¥ +— E(X) may be called
the generalized curvature functional, as we actually have:

E(GG,) =E) YueCiQ). (3.14)

- =
In this case, in fact, with the above notation we can write R = GG,, 6 = 1, and ( = (, where, we
recall, ¢, = &./|&ul, with €] = Jo, = [0z, Py A Oz, Py|. Therefore, by the area formula we get

Ei(GG.,) ::/ |77§f)|d7{2:/ €@D1de?, i=0,1,2 (3.15)
N Q
and hence formula (3.14) follows from (2.5).

By the definition, it is readily checked that the above functional is lower semi-continuous along
sequences of i.m. rectifiable currents in Ra(U x S?) weakly converging to some current in Ro(U x S?).
In particular, if ¥ € Geart(U x S?) and {up} C CZ(Q) satisfies GG, — ¥ in Dy(U x $?), with
sup, ( M(GG,,,) + ||un|leo) < 00, we deduce that

E(X) <liminf &(up) < 00.
h— o0

Remark 3.6 Finally, since ¥ = GG% + X* for some u € £(f2), and (3.11) holds, we can decompose
M(X) = M(GG2) + M(2°), E(X) = E(GGy) + E(2°)

where E(GG%) = £(u), the functional £(u) being defined as in (2.4), but in terms of the approximate
derivatives of u. The energy contribution of the singular component ¥* will be computed in Appendix B,
referring to Example 7.1 below.

FURTHER PROPERTIES. On account of definition (3.10) and of the decomposition formula (3.4), we
shall denote for any u € £(Q)

Geart, := {¥ € Geart(U x §?) | ¥ = GG + ¥} (3.16)

the subclass of currents in Gceart with “underlying function” equal to w.
By the previous arguments, it turns out that Geart, is a non-empty class for each u € £(9).
Moreover, by lower-semicontinuity we actually have:

E(u) > inf{E(Z) | & € Geart,, } Yue&R). (3.17)

However, we shall see that in general the equality is violated in (3.17) and hence a gap phenomenon

holds. More precisely, in Example 8.2 below we shall find a piecewise constant BV -function u € £()
such that B

E(u) > inf{E(Y) | ¥ € Geart,}. (3.18)

Remark 3.7 The relaxed energy is linked to a related relaxed energy on currents. More precisely, for

each current ¥ € Geart(U x S?) we introduce the relaxed energy w.r.t. the weak convergence as currents

E(X) = inf{lim inf £(un) | {un}n C C(Q), GGy, — X weakly in Do(U x S?)}
—00

so that by lower semicontinuity E(X) > E(X) for each X, and we readily check the following property:
Proposition 3.8 For every u € £(Q) we have
E(u) = inf{E(X) | X € Geart, } .

PROOF: For any sequence {up}, C C?(Q) converging to w in L'(Q) and satisfying supj,(€(un) +
lunlloo) < 00, by closure-compactness, possibly passing to a subsequence the Gauss graphs GG, weakly
converge to some current Y € Geart(U x S?), whence E(X) < liminfy, £(up). Since actually 3 € Geart,,,
the inequality > readily follows. On the other hand, if GG,, — ¥ and ¥ € Gceart,, then up — u
strongly in L', whence the opposite equality < holds, too. O
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4 Generalized curvature measures

In this section we discuss the notion of generalized first and second symmetric curvatures from [7] in
the framework of weak limits of Gauss graphs of smooth Cartesian surfaces. We shall give an explicit
computation in the case of two surfaces with line or point singularities: the union of two rectangles meeting
at an edge, Example 4.3, and the lateral surface of a cone, Example 4.4. Referring to these two models,
we shall then compare our definitions with the notion by Sullivan [24] of mean and Gauss curvature for
polyhedral surfaces and 2-rectifiable sets. We then discuss the relation with the Gauss-Bonnet theorem.
Finally, we introduce the distributional definition of weak and Gauss curvatures, showing that they fail
to be good geometric objects.

GENERALIZED CURVATURE MEASURES. Following (1.4), if M = G, for some smooth function
u € CZ(£2), we shall denote

W im (M HELG),  A§ = bup(KuHPLG). (4.1)
In terms of the Gauss graph current GG, on account of (1.5) we thus get
(X9 0) = (~1){GG,, ¥ ©;)  YyeCPUxS?H, i=12.
In fact, recalling that GG, = ®,x[Q] we have:
Proposition 4.1 If u € CZ(S), then
~0,%0, = Vg Hydz' Nd2?, 0,70, = /g, K, dz' A da?
where H, and K, are given by (1.11) and (1.12). Therefore, for every 1 € C°(U x S?) we have

G () = / $(@) ITHL AL, G () = / $(®0) v/Gu Ko dL2. (4.2)
Q Q

PROOF: As to the first symmetric curvature, we compute:
26,70, = v (dz? A dv,® — du A dv,?)
+v,2(du A dvyt — dat A dvy®) + v B (dat A dv,? — dz? A dvyt)
= (yul(—(‘)luu3 — (81U82Vu2 — 82u 811/u2))
+1/u2((81u aQVul - aQu alyul) - 821/11,3) + Vu3(82yu2 + 61Vu1)) dxl A\ de'Q .
Recalling (1.7) and (1.10), and using that for 4,5 = 1,2

_ 1
- 293/2

1

Oy’ (_2 8?7iug + J;ju 3,9) . O = —W 0i9

where g = g, we get

429,70, = (—01udi1g + (O1u)? (=203 qu g + OauDag) — Drudyu (=203 ;ug + daudrg)
—01udou (=207 qu g + O1u Dag) + (O2u)? (=207 yug + 1udig) — Daudog
—2083 5u g+ Oudag — 207 jug + Orudrg) da' A da?
= 2g((14 (81u)*)05 yu + (1 + (92u)?)07 yu — 201u Dou 87 yu) da' A da?

and hence the first formula follows from (1.11). As to the second symmetric curvature, we similarly have:

a11/u2 a21/u2 a1I/u3 aZVu?)
8IVu3 82Vug all/ul aQVul

811/u1 aQVul
811/u2 821/u2

2

Vy 3

u

(I)u#GQ = <I/u1

> dzt A dz?

which yields

4972 9,70, = (01u[(—205 ug + Ooudig) (—02g) — (—203 yug + Orudag) O1g]
+ dou [019 (2 Bfgug + O1u02g) — Oag (—2 ailug + 01udrg)]
+(—207 jug + 01ud1g) (205 yu g + drudag)

—(—20f yug + Orudag) (—205 ju g + rudrg)) da' A da?
= 4% (87 ,ud3 qu — (87 qu)?) da' A da?
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and hence the second formula follows from (1.12). Equations (4.2) readily follow. O

Remark 4.2 Since u is smooth and bounded, by a density argument and by the dominated convergence
theorem it turns out that formulas (4.2) extend to test functions 1 € C(U x S?).

Following [7], the generalized principal curvatures of a current ¥ € Geart(U x S?) are the Radon
measures defined by the formulas

(¢F) = (-1){(Z,40;) VyeClUxS?, i=1,2
so that ¢f¢" = 9" if ¥ = GG, for some u € CZ(Q). Moreover, if {u,} C CZ(Q) satisfies GG, — ¥
in Dy(U x §?), we deduce that

lim (", 0) = (F.0)  VoeCU xS, =12
h—o00
Denoting by 7 : R® — R? the orthogonal projection onto the first two components, 7((z,z),y) = =,
we may also consider the projected measures:

<7T#CiE,’(/)> = (ciz,z/)ow), e (), 1=1,2

which are signed Borel measures in 2 with finite total variation. Since XL Rt = GG?, see Remark 3.3,
it turns out that the Radon-Nykodym derivative of m4c? w.r.t. the Lebesgue measure is the density of
the measure corresponding to GG, and we thus can write for every ¢ € C'()

(macd) ) = /Q B(o) VI HL AL ((mpcd)®, o) = /Q (@) VG K, dC?
(gD 9) = (2 pom-01)  ((rpcd)', o) = (B wom- )

where H, and K, are defined £2-a.e. in Q as in (1.11) and (1.12), but in terms of the approximate
derivatives of the underlying function u € £(Q).

Example 4.3 Let Q = Q?:=] - 1,1[?> and u,,(z1,72) := m|z1|, where m > 0, so that G, is made of
two rectangles meeting with an the exterior dihedral angle
f.,, = m™ — 2arccos S (4.3)
14+ m?

along the edge e,, = I x {0}, where I := {0}x] — 1,1[. It is readily checked that u,, € £(Q?), and
Va,, () = (1 + m?)~Y2(—sgn(z1)m,0,1) if 2 ¢ I. We thus have H,, =0 and K,,, =0 for = ¢ I,
whence we obtain &(u,,) = |Q?|v/1+ m2. Moreover, we have

(0GGy )LU xS* =[I x{0}] x (6ps —6p-), U=0Q>xR

where PE := (14 m?)~Y/2(£m,0,1) are points in S? with geodesic distance equal to ., . Now, there
is an (optimal) i.m. rectifiable current ¥, € Geart(U x S?) that “fills the fracture” in the Gauss graph
GG, at the edge I x {0}, given by

Ym =GGy, +35,, Y= —[I x{0}] x [vm]

Ym being the oriented curve in the half-sphere S2 parameterized by 7,,(6) := (cos9,0,sin6), where
0 € [am, ™ — auy] with a, := arccos(m/v/1 4+ m?). In fact, we have [y ] = 0p- — dp+ and hence

(0%5,)LU xS* =[I x {0}] x O] vm ] = —(0GGE )L U x S

which yields (0%,,) U x S? = 0. The mass of the singular component ¥¥ agrees with the area of the
surface I x {0} X 7,,, whence, see (4.3),

M(Efn) = Hl(l) : Hl('}/m) » /Hl(%n) = eem .
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_>
Since moreover the_> unit tangent 2-vector ¢ at points of the surface I x {0} x 7, satisfies ¢(®) =0 and
¢® =0, whence ¢ = ¢, see (3.9), we find that Eg(X2,) = 0, Eo(2?,) = 0, and hence

E(S5,) = Eu(S5,) = M(33,) = H' (1) - H' (ym) -

As a consequence, we compute:

(0 = (7 0) = (S50 en) = | b((.0), ) (61, ¢V di?
Ix{0}Xvm
for every v € C(U x S$?), and the total variation of ¢ is
1
|eFm | (U x §%) = / (O, (MY dn? = 5Hl(f) CH (V) (4.4)
IxXym

whereas CQE’" = 0. Finally, the projected measure ﬂ#clz"‘ on @Q? is singular w.r.t. the Lebesgue measure
L2 Q, and its singular component is concentrated at I,

s 1
(rpcim) = mpey™ = S H () - H L, M () = O -

Example 4.4 Let = B?, the unit disk of radius one, and u,,(x) := m (1 — |z|), where m > 0, so that
Gu,, is the lateral surface of the cone with basis 9B? x {0} and vertex P, = (0,0,m). We again have
U € E(B?), where v, () = (14+m?)~/2(m cos,msind,1) if x = p(cosf,sinf). We check

m 1
2vV1+m? |z|’

as the graph cone G, is a developable surface. Whence we obtain:
E(um) z/ VI+m2(1+2H,|)dL2 =71 +m24+27m.
B2

Now, arguing as in [17, Sec. 3.2.2], it turns out that

H,, (v)= K., (2)=0 Vac B*\{0p:}

(0GGL LU xS* = —6p, x [I'y],  U=B*xR

I',, being the oriented circle in S? parameterized by T',,,(0) := (1 +m?)~'/2(m cos@, msinf, 1), where
6 € [0,2n]. Furthermore, there is an optimal i.m. rectifiable current %,, € Geart(U x S?) that “fills the
hole” in the Gauss graph at the vertex P,, of the cone, given by

Ym =GGy, + X5, ¥ =0dp, X [Sm] (4.5)

Sm being the oriented surface parameterized by S, (6,¢) := (cos8sin,sinfsin ¢, cos @), where 6 €
[0,27] and ¢ € [0, arccos(1/+v/1 + m2)]. In fact, we check 9] S, ] = [T'm] and hence (9%,,) U xS? = 0.
The mass of the singular component X7 agrees with the area of the surface S,,, whence

M(35,) = H2(Sm) = 27r(1 - ﬁ) .

_)
Also, this time the_> unit tangent 2-vector ¢ at points of the surface {P,,} x S,, satisfies ¢(?) =0 and
¢ =0, whence ¢ = ¢®. We thus get Eo(X?,) =0, E;(X2,) = 0, and hence

S — S — S _ 1
B(35,) = Eo(2,) = M(5,) = 277(1 - ﬁ) .

As a consequence, we compute:

1 m

<512ma¢> = (CfGZ"ﬂw = / V(Pu,) VGun Hu,, ac? = - (P, ) — AL
. B2 2 Jp2 |z|
() = (0] = (550002 = [ 6(Pn) (02,0 dr

m

19



for every ¢ € C(U x S?), whence we get the total variation of the generalized curvature measures:

‘°1Zm|(U x §%) = /B2 V9ur Hu,,| dL? =7mm

1 (4.6)
Zm 2\ _ (2) 2 _q42 _
S |(U xS _/ 02,1) dH? = H2(S,) = 2m (1 - ).
[e5™[( ) Sm(zn) (Sm) T
Finally, as to the projected measures in B2, we infer that ﬂ'#clzm = —% - L?_ B?, whereas W#CQE’" is
x

singular w.r.t. the Lebesgue measure, and its singular part is concentrated at the origin,
W#Cgm = (W#C%:m)s = HQ(Sm) : 5011132 .

MEAN CURVATURE OF POLYHEDRAL SURFACES. It was defined by Sullivan [24] in such a way
that it is supported on the edges of a polyhedral surface M in R3. If e is an edge, then

[H.| = H'(e) - 2 sin(6,./2)

where 6. is the exterior dihedral angle along the edge. Assuming e.g. M =G, , where u,, is given by
Example 4.3, and taking e,, = I x {0}, then H!(e,;,) =2 and 6., is given by (4.3). Therefore, (adding
the factor 1/2 as in our notation) on account of (4.4) it turns out that the definition of mean curvature
measure by Sullivan [24] differs from the one of [7], that we adopted here for weak limit of Gauss graphs
of Cartesian surfaces, as 2sin(f., /2) =2m/v1+m? < 0., when m > 0.

We recall that the same feature holds in the case of the curvature of polyhedral curves. In fact,
following Sullivan [25], the curvature force measure of a piecewise smooth curve has a Dirac mass at
each corner point with mass 2sin(6/2), where 0 is the turning angle, whereas the total curvature of a
polyhedral curve is the sum of the turning angles, compare [2].

(GAUSS CURVATURE OF POLYHEDRAL SURFACES. It was defined by Sullivan [24] in such a way
that the Gauss-Bonnet theorem continues to hold. It is concentrated at the vertices, and in the case of
a triangulated polyhedral surface M, the Gauss curvature at a vertex P agrees with the angle defect,
whence K(P) :=2m — >, 0;, where 6; is the angle of the i""-triangle of M meeting at P.

Assume e.g. that M,,(n) is the lateral surface of the pyramid with vertex P, = (0,0,m) and basis
given by a regular polygon with n edges and inscribed at the boundary dB? of the unit disk. Each one
of the n triangles of M,,(n) has angle 0; at P,, equal to 2 arcsin(sin(/n)/v/1+m?). Whence, the
Gauss curvature of M,,(n) at P, (in the sense of Sullivan [24]) is

sin(7/n) )

T2 YneNT, m>0.
m

KZm(n) (Pm) = 27T - 2n aI‘Csin(

Now, choosing the right orientation, the currents [M,,(n)] weakly converge to the graph current
Gy, as n — oo, where u,, is the function of Example 4.4. On the other hand, we find:

. 1
Jim K, (n)(Prn) = 2”(1 - \/ﬁ) :

GAUSS-BONNET THEOREM. On account of the second line from (4.6), the above example seems

to imply (differently to what happens for the mean curvature) that the notion of Gauss curvature by

Sullivan [24] agrees with the one of [7] for generalized surfaces in R3, and here re-adapted. This feature

is coherent with the possible formulation of the Gauss-Bonnet theorem in this framework, compare [6, 7].
For this purpose, consider the 1-form

Y3 ( Y2 1 Y1 2
w== dy — dy ) .
lyl \y7 +v3 Y +v3

One has dw = O, on the open set A := {y € R3 | 2 + y2 > 0}, where

1 ,
Oy = WF (y'dy® N dy® + P dy® A dy' + yPdyt A dy?)
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so that the 2-form O, is equal to ©y on the holed 2-sphere S\ {(0,0,=£1)}, see (1.5).
_ Therefore, if e.g. u: € — R is smooth, with 2 a smooth bounded domain in R?, and Vu # Og2 on
Q, using that v,#dw = dv,#w, by Stokes’ theorem we get

<GGu,@2>=<q>u#[[Q]],@2>:/@u#@2:/uu#é2=/duu#w:/ v #w
Q Q Q o0

and hence the integral (GG, 02) only depends on the value of v, at the boundary 9 of the domain
through the pull-back

v, Fw = %(6‘111 dv,* — ﬁgudz/qf)

RN [(82u 8127171 — 01u 8%2u) dax' — (O1u 8227271 — Ot 8f’2u) dz?] .

On the other hand, recalling that by Proposition 4.1 and by the area formula

(GG, 09) = /

@u#ezz/ VoK, dl? = | K, dH?
Q Q

gu

after integrating by parts, the Gauss-Bonnet theorem yields to the equation
K, dH* = 7/ k, dH' + 27 - x(Gu)
Gu 0Gu

where k, is the geodesic curvature of the (naturally oriented) boundary curve 0G, and the Euler-
Poincaré characteristic x(G,) = 1, as the graph surface G, is topologically equivalent to a disk.

THE DISTRIBUTIONAL MEAN CURVATURE. If u € £(Q), the mean curvature is well-defined in
the distributional sense by the formula

=S I Vu __in 1,2
Hu = 2D1V|:\/m:| = 2 DlV(I/u s Vi )

In fact, if {up}n C CZ() is such that uj, — u strongly in L'(Q2) and sup,,(E(up) + ||unlleo) < 00,
by Theorem 3.1, and using (1.13), for any test function ¢ € C°(Q2) we get as h — oo

e DpdL? — e DpdL?.

/div[%]tpdEQ——/% _/L
Q V1+ |Vup|? 1+ |Vuy|? o 1+ |Vul?
However, by slightly modifying the function from Example 4.3, letting Q = Q2 :=] — 1,1[?> and

u(xy,xe) := m|x1| + axe, where m,a > 0, we readily obtain
~ m

H,=— .
V14+m?2 +a?

and hence the total variation of such a measure does not return the definition of mean curvature measure
by Sullivan [24], as it does not contain the information on the length of the edge in the graph G,.

HLT,  T:={0}x]—-1,1]

THE DISTRIBUTIONAL (GAUSS CURVATURE. Following the definition by J. M. Ball [8] of distri-
butional determinant, for each u € £(£2) one may similarly consider:

~ 1
K, = 3 Div(yulaguu2 — Vu2821/u1,1/u2811/u1 — uulaluf) .
1
Choosing the 1-form wq := 3 (y'dy? — y?dy"), for any test function p € C°(Q) we have:

1
O, 7w A dy = ) (uulazuf — 1,200, Y 1 20, — Vu181Vu2) o Vopdz! Ada?
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and hence we get

<Ku7 <P> = / q)u#wl A dSO = <GGZ,W1 AN d(p> .
Q

Now, if w is smooth, by (1.13) we clearly have

O, 7 (dy* A dy?) = K, dz! A da?

whereas by Stokes’ theorem we know that the current GG2 = GG, has no inner boundary in U x S?, so
that in particular (GG, d(p Aw1)) = 0. Using that d(¢p Aw1) = —wi Adp + ¢ dy* Ady?, we thus obtain:

o) = (GG pdy ndy') = [ ooy nd?) = [ oK, do.
Q Q
In general, if u € £(Q2) we similarly obtain for every ¢ € C°(Q)
(Ku,p) = (GGo,pdy Ady') = (0G5, o Awi),  (GGy,pdy' Ady') = / ¢ K, dr
Q

where K,, is defined as in (1.13), but in terms of the approximate first and second derivatives of w.
If e.g. u = u, is given by Example 4.4, since K,,, =0 on B2\ {02}, we compute

@%WwwAwwzf

vK,, dr=0.
B2

Moreover, if ¥ =%, is the corresponding Gauss graph current in (4.5), using this time that X,, has no
inner boundary in U x S?, the singular component of the distributional Gauss curvature gives:

_<8GGZ7Sde1> = <8221790dwl> = <6Pm X [[Sm]]v(pdw1> = QD(OR2) : <[[Sm]]7dw1> .

Recalling that 9] Sy, ] = [T ], we thus compute

m2

14+ m?2

27
<[[S'rnﬂadwl> = <[[Fm]],LU1> :/ Fm#wl = - 2.
0
In conclusion, in accordance with the well-known counterexample by S. Miiller [22] on the distributional
determinant, we have obtained the formula:

m2

K — 2 2 = —
Ky, =Ku,, L7LB" 4 ¢ do,, Ky, =0, cni= 1rm2

<21

However, since the weight ¢, of the Dirac measure is different from the value 27r(1 — ﬁ) of the
Gauss curvature (in the sense of Sullivan [24]) at the vertex of the cone, we conclude that (similarly as
to H, ) the distributional definition K, of Gauss curvature fails to be the right geometric object, too.

5 A first relaxation formula

Beside the structure theorems 3.1 and 3.4, and the previously described consequences, finding necessary
and sufficient conditions to the membership of a bounded BV -function u :  — R to the class £(€2) of
functions with finite relaxed energy is a non-trivial open problem. For this reason, in the sequel we shall
restrict to the subclass of 0-homogeneous functions defined in the open unit ball = B2.

More precisely, we shall assume that u: B? — R satisfies u(z) = u(z/|z|) for each z € B%\ {Og2}.
Whence (with an abuse of notation) we shall identify w(z) = f(0) for some function f : [0,27] — R,
where x = (p cos 6, p sinf). Denoting for simplicity s:=sinf and ¢ := cos, we formally compute

Vs () s G U ten o B0
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Remark 5.1 We shall report in Appendix A the explicit computation of the curvature energy functional
in the case of homogeneous functions. For future use, we only notice here that if f(6) # 0 for some given
0, the corresponding radial limit at Ogz of the outward unit normal exists:

pllr(r)lJr vy (p cosB, p sinf) = |;EZ;|

(cos(§ — m/2),sin(0 — 7/2),0) .

In this section we consider the relazation problem in the annulus Q, := {z € B?> |r < p < 1} for any
small radius r > 0, where p := |z|. More precisely, we denote

E(u, ) = inf{lihm inf &(un, Q) | {untn € CE(Q,), up — u strongly in L' (Q,)} .
— 00

In the case of homogeneous functions u(z) = f(6), the explicit formula for the relaxed energy in Q, is
recovered from the one-dimensional result obtained for Cartesian curves in [2], that we briefly recall here.

CARTESIAN CURVES. Consider a smooth function f : I — R, where for our purposes we let I :=
[0,27], and the corresponding graph function cy(t) := (¢, f(¢)). The one-dimensional analogous of the
energy &£(u) is

E(f) = L(cf)+/ kydH',

cf

/()]
(1+f(1)2)3/?

£(f) :/OQW(\/1+f2+lf|ﬂ) dt .

The corresponding relaxed energy of functions f € L1(I) is:

E(f) = inf{lihrgi(gfg(fh) | {fn}n C C*(I), fn — f strongly in L*(I)}

where L(cy) is the length of ¢; and kj is the curvature ky(t) := , t € I, whence

On account of Remark A.1 below, for each radius 0 < r < 1 we can find a positive real constant
¢r > 0 such that for any homogeneous functions u(x) = f(6) we have

Lo <cwa) <ecf).

Cr

Therefore, it turns out that in the homogeneous case, a function u € L*(B?) has finite relazed energy
E(u,Q,), for each 0 < r < 1, if and only if the corresponding L'-function f has finite relazed energy
E(f). In particular, the structure properties of f obtained in [11] in codimension one are verified.

Now, any function f € L(I) satisfying £(f) < oo clearly belongs to BV (I). Following [2], where
the explicit formula for the relaxed energy is extended to high codimension, we recall that a continuous
function f has finite relaxed energy if and only if the Cartesian curve c; has finite length and finite
total curvature TC(cs), and in this case the total curvature agrees with the total variation |D7s|(I) of

the Gauss map 74 = % that is defined a.e. in I by means of the approximate gradient f Notice that

in codimension one we have |D7y|(I) = |D arctan(f)|(I). Furthermore, the explicit formula
E(f) = L(ey) +TC(ey)

holds. More generally, when f is a BV-function with finite relaxed energy and a non-trivial Jump set
J¢ we have, see [2]:

E(f) = /1 el (1 +ky) dt + [DCf|(I) + |D74|(I) + M(GGY) + M(S5) + M(S{°). (5.1)
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In order to explain the above formula, we first point out that a current GGy in Dy ((I x R) x S1)
carried by the “Gauss graph” of f is well-defined, when £(f) < oo. More precisely, the current GGy
decomposes as

e, J

GGy = GG} + GGY + GGy
into the so called Absolutely continuous, Cantor, and Jump component, respectively. The first component
GG depends on the approximate first and second derivatives f and f. Moreover, it turns out that

GGf =0 if f has a continuous representative, and that also GG(JZ =0 if f € WHI(I). Since in general

the current GGy has a non-trivial boundary, an optimal “vertical” current Sy is defined in [2] in such a

way that if ¥y := GG + S¢, then ¥y is a i.m. rectifiable in R ((I x R) x S') with no inner boundary.
The current Sy lives upon the Jump set Jy U J;. It is given by two terms:

Sy =57+ 5§

a Jump-corner component S f] ¢ that is concentrated upon the discontinuity set Jy, and a Corner com-

ponent S% that is concentrated upon the discontinuity points of the approximate gradient f where f
is continuous, the so called “corner” points in J f \ J;. Roughly speaking, the first component takes into
account of the turning angles that appear when the “graph” of f meets a jump point, possibly giving
rise to two corners at the points (¢, f4(t)), where one side of each corner is “vertical”, since it follows the
jump. The second component deals with the turning angles where f is continuous but f has a jump.

A DENSITY RESULT. Let us now turn back to the class of homogeneous functions u(z) = f(6),
x € B2. Denoting U, := (), x R, the optimal current ¥, € Ra(U, x S?) that “fills the holes” in the
Gauss graph GG2 in U, x S? is given by the radial extension of the current corresponding to ;. More
precisely, we let

Sur =Uu([r,1] x Xy), 0<r<l1 (5.2)
where W :(0,1) x (I xR, x S},) = (B?\ {0z2}) X R, x S is given by
1
2

\Ij(pa (aaszlva)) = (pCOSH7pSin0azv
w? + p?w3

(—w1 sin 0, wy cos&,p|w2|)> . (5.3)

The optimality of the current ¥, . follows due to a symmetry argument, and on account of the results
from [2], and by lower-semicontinuity, we get:

Eu, ) =E(Zur), 0<r<l. (5.4)
In particular, if u(x) = f(0), where f € L'([0,27]) has finite relaxed energy, we have obtained:

Theorem 5.2 Let {fh}h C C?(R) be a smooth 2w-periodic sequence. Let fy, := fhu, where T := [0, 27].
Assume that: 1) fr, — f in LY(I1); 2) E(fn) — E(f); 3) GGy, — X weakly as currents. Let up(x) :=
fu(0). Then for each radius 0 < r < 1 the smooth sequence {un} C CZ(Qy) converges in L' to uq,
the currents GG, weakly converge to ¥, in Da(U, x S?), and E(up, Q) = E(u, Q) as h — oco.

6 An explicit formula

In this section we compute the explicit formula of the relaxed energy (3.1) in the case of a homogeneous
function that we now introduce.

Example 6.1 Let u: B2 — R given by u(z) := |x—1|7 x = (z1,22).
x

Then u is a Sobolev function in W?(B?) for each p < 2. We also have

x2 T1T2 P 3 172
Bu:z::—Q, Oou(x) = — , Vuxzi(fi,—,), xz#0.
1 ( ) pS 2 ( ) p3 ( ) /p4+fl}'% p2 p2 p %
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Therefore, the upper unit normal v, belongs to W11(B2 S?). In this case we have f(6) = cos. With
s:=sinf and c:= cosf, according to Appendix A we thus obtain:

_ p2+82 p4(1+82)+p252(1+252)+56

w ) |Vu|2 =
p2 p2(p2+52)3
| = [(p2+282)2+p2(p2+82)82]1/2 K _ $2 _ 1 pe
wli p(p2—|—32)3/2 ) w (p2+32)27 o9 (p2+52)3/2'

BOUNDARY. On account of Proposition 3.8, we first compute the boundary of the Gauss graph GG2.
It turns out that

(0GG2) LU x S* = —Fx[0,27] (6.1)

where g : [0,27] — U x S? is the closed curve supported in {Ogz} x R x S2 and with parameterization

Eo,o, 1,0, — cos 26, sin 26) if 0<0<m/2
~ o 0,0, — cos 26, sin 26, — cos 20, O) if 7/2<60<~
0(0) = (0707 —1,0, — cos 26, sin 29) if #<6<3n/2 (6:2)

(0,0,cos 20, sin 260, — cos 29,0) if 3r/2<60<2m.
In fact, for each € > 0 small we have ®,4[0B.(Og2)] = Ye#[0, 27 ], where

1
Ve2 +sin?6

Now, for each K > 0 and for ¢ > 0 small so that ke < 1, letting P¥ := 7, (arcsin(ke)), it turns out that

Y (0) := (5 cosf,esinf, cosb, (- sin? 0, sin 0 cos 9,5)) , 0 € [0,2x].

1
itk

Therefore, by Remark 5.1 one checks that the currents @, ,[0B.(0g2)] weakly converge as ¢ — 0 to
the 1-current Sy := [0, 27 ], so that the above formula for the boundary of GG holds true.

lim P* = (o,o, 1,

e—0

0, k, 1)) .

FILLING THE HOLE AT THE ORIGIN. In principle, there are two qualitatively different ways to
“fill the hole” at the origin. A first possibility is given by choosing S; as an energy minimizing current
among all i.m. rectifiable currents S in Ro(U x S?), with support spt S C {Ogz} xR x S2, and satisfying
the boundary condition 95 = Fp«[0,27]. Alternatively, we may choose Sy given by

Sy == —F4([0,1] x Fo4[0,27]) (6.3)

where F:[0,1] x ({Op2} x R, x R}) — R2 x R, x R} is the homotopy map F(X, (02, 2,¥)) := (Av, 2,y)
for some fixed direction v € St. In fact, by the homotopy formula [23, 26.22] we have

352 = F#((50 — (51) X ﬁo#[[07271'ﬂ) .

Setting then X% := GG2+S;, where i = 1,2, in both cases the null-boundary condition (9%%) L U xS? =0
is satisfied, since U = B? x R. However, see Proposition 3.8, the energy of the currents ¥; is involved
in the computation of the relaxed energy &(u) only if X% € Geart(U x S?). Therefore, the geometric
necessary condition given by property vi) in the structure theorem 3.4 has to be satisfied.

Example 6.2 Such an orthogonality condition (see Remark 3.5) can be imposed in the minimization
problem, since it is preserved by the weak convergence as currents. If u is given by Example 6.1, it turns
out that the optimal current S; is given by integration of 2-forms on the (suitably oriented) surface
{0g2} x M, where M is the surface supported in [—1,1] x S? and given by the union of four pieces:

i) the two quarters of the unit spheres {1} x S?, where S? :={y € S* | y1 <0, y3 > 0} ;
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ii) the surface ¥; given by the union of the two pieces of the cylinder [—1,1] x S* x {0} which are
enclosed by the union of the two arcs Jo([7/2,7]), Fo([37/2,27]), where g : [0,27] — U xS? is the
curve given by (6.2), and of the two half-circles {+1} xS}, where S} := {y € §? | y1 <0, y3 = 0}.

We now observe that if the current Sy is given by (6.3), for any choice of the direction v the above
mentioned orthogonality condition is violated. More precisely, on account of definition (3.16) we have:

Proposition 6.3 Any current ¥ in Gceart,, is of the type ¥ = GG +X°, where the singular component
¢ is supported in {Og2} x R x S2.

PROOF: We shall make use of a slicing argument. Following [23, Sec. 28|, and letting d(z,z,y) = |z|,
for (z,z,y) € R* x R, x R}, the sliced current (X,d,r) is i.m. rectifiable in R1(9B} x R x §?), for
L'-a.e. r € (0,1). Since moreover ¥ has no boundary in B2 x R x S2, the sliced current (¥,d,r) has
no boundary, and we actually have

(2,d,ry = (GG, d,r) +(X°,d,r).

Moreover, by the verticality condition of X¢, and by the smoothness of u outside the origin, we deduce
that the sliced current (3% d,r) is an integral 1-cycle that does not read 1-forms of the type ¢ da*, where
i = 1,2. Define now ¥, : (I xR, xS})) = 0B} x R, xS by ¥,.(0,z,wy,ws) := ¥(r, (0, z, w1, ws)),

where I = [0,27] and ¥ is given by (5.3). For a.e. r € (0,1) we thus have
UL (8,d,r)=GGy+S,, S =V, (3% d,r)

where f(0) = cosf. Let now R, denote the set of points with positive multiplicity of the integral cycle
S;. The geometric condition inherited from the current 3, joined with the verticality condition, yields
that at H!'-a.e. point P = (0,2, w;,ws) in R, the approximate tangent 1-space is oriented by a vector
v = (v1,v2,v3,v4) in R* satisfying (v, vs) e (w1, ws) = 0, with v; = 0, whence wy = 0 if vy # 0. Since
(w1, wg) € St, this yields that P = (6, z,41,0), if vy # 0. We now observe that by (5.3)

U,.(0,2,£1,0) = (rcosf,rsinb, z, £(sinf, — cos 4, 0)) .

Now, by (6.1) we have (9L°)LU x S* = p4[0,27], where o : [0,27] — U x S? is the closed curve
parameterized by (6.2). Therefore, the above considerations imply that S, = 0 for a.e. r € (0,1), and
hence that the singular current ¥° is supported in {Ogz} x R x Si, as required. O

A DENSITY RESULT. We shall now construct a smooth approximating sequence {uj,} C CZ(B?) such
that GG, weakly converges to GGS + S1, where S; is the minimizer defined in Example 6.2, and with
energies &(uyp) converging to the energy &(u) + E(S7), as h — oco. As a consequence, on account of
Proposition 6.3 and of the minimality of S7, by Proposition 3.8 we conclude that

S(u) = E(u) + B(Sy). (6.4)

Theorem 6.4 There exists a sequence {uy} C CZ(B?) such that GG, weakly converges to GG2 + S,
and such that €(up) — E(u) +E(S1), as h — oo.

PROOF: We first observe that it suffices to find a bounded approximating sequence in W?2°°(B?). In
fact, if w € W2°°(B?) is bounded, by a standard argument (based e.g. on the convolution with a
smooth kernel and on the dominated convergence theorem) we can find a strongly approximating smooth
sequence. Since the weak convergence of currents with no boundary and with support contained in a
compact set is metrizable, compare e.g. [23, Sec. 31], a diagonal argument will conclude the proof.

Let now ¢ : [0,+00) — [0,1] be given by

4
—p it p<1/2
5y

¢(p) = L-g(l=p)? if 1/2<p<1
1 if p>1.
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We shall work with the function v :R? — R given by v(x) := ¢(|z|) x1/|2|, if 2 # Og2, and v(0g2) = 0,
so that in polar coordinates one has v(z) = ¢(p) f(0), with f(6) := cos@. For 0 < e < 1,let v.: B> = R
be given by v.(z) := v(z/¢e), so that in polar coordinates v.(x) := ¢(p/e) f(0). Choosing up, := v, for
a sequence e, N\, 0, it turns out that {u,} C W2°°(B?) and that the currents GG,, weakly converge
to GG + 51 as h — oo.

In fact, according to (1.9) one computes

@ () = (1, ve(a), 1

€2 + |Vu(z/e)

|2(Afalv(z/ex—fébv(x/e),s)).

We have v.(x) = 3z1/(4e) for |x| < e/2 and v.(z) = z1/|z| for € < |z| < 1, whereas in polar coordinates
z = p(c,s), with ¢ =cosf and s =sinf, and denoting o := p/e, for ¢/2 < |z| <& we get

(=9(0) & — (8(0)/0) 5>, ($(0) /o — () 5676)) .
Vet 82(0)¢ + (6(0)/0)? 5
Letting ¢ = 0, if s 20 and 1/2 <o <1, we get ®,_(z) — (0,0, ¥(0,0),0), where we have set
(d(0) &~ (9lo )/o) : < Vo= 4Ny o g, 65)
V#(0) ¢ + (9(0)/0)? s

One may then check the weak convergence of the sequence of Gauss graphs GG, to the current GG$+S;.
In order to prove the energy convergence &(up) — £(u) + E(S1), it suffices to show that

D, (x) = (5 oc,e0s,¢(0)c,

U(0,0) := ((;5(0) c,

hm &(ve, B? \BE/Q) E(S1).
In fact, one readily obtains:

th(vs,Bg/Q):O, lirr(l)g(ve,Bz\Bf):S(u).
E—

e—0

For this purpose, referring to Example 6.2, we have E(S;) = E¢(S1) + E1(S1) + E2(S1), where
Eo(S1) = 0, as the current S; is concentrated on {0Og=} x R*. Moreover, the energy term Eo(S;) is
equal to the sum of the areas of the two quarters of the unit spheres {1} x S?, i.e., Eo(S;) = 2m.
Finally, the energy term E;(S;) is equal to the area H?(3;) of the surface ¥; previously described in
ii), so that E;(S1) = 47 — 8. Therefore, we have to show that

hmfo(ve,B \B2),) =0, thQ(vE,B \ BZ),) =2, hmé‘l(vs,B \BZ2,) =H*(Z1).  (6.6)

The first limit is trivially checked. As to the second one, by (1.12) and (1.18), and by changing
variable ¥ := x/e, we first compute:
|6f 1V 8% 2U — (3% 2”)2| 2
Ey(ve, B2\ B : : : ac
(Usy \ 5/2) /Bz\Bf/z (€2+|v1}‘2)3/2

where in polar coordinates we have:

0% 1008 30 — (0700 = (o) (P2 - X2 (UL TN e i n )

and )
9°(p) 2
5 5.
p
Now, using that ¢(p) = 8(1 — p)/3 and é(p) = —8/3, by changing variable R = 2(1 — p) we obtain:

e2 4+ Vo> =2 4+ ¢%(p) 2 +

4(1-R)(3—R)

2(1-R)(3—R) ’s
3(2—R)?

8 cos? ) —
E(ve, B2 \35/2 _45/ / e ’

3/2
16 R2cos?6 + 5 (32__1};) sin? 9) 2

sin 0’ 1
dR dO
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so that by changing again variables z = R/e and y = 0/¢ we get

)(3—¢ 2) 4(1—e2)(3—€2)

(1—c2)(3—c2)
1/e /(2¢) 3(2 EZ) ‘3 cos?(ey) — Eaear sin (sy)’
Ex(ve, B2\ BZ5) —4/ / 22\ % gin2 57z dzdy.
1 + 222 cos?(ey) + § (3 £ ) sin(ey) y2)

2—¢ez ey

Therefore, by dominated convergence, and with & = 42/3, we conclude that:

1
hm gQ(UE,B \Be/z) /
R (

2 _
Arargpr =

In order to prove the third limit in (6.6), denoting for simplicity v. := v, we first observe that by

dominated convergence

lim |0;v? | dL? =0
e—0 BQ\BE/2

for i =1,2 and j = 1,2, 3, whereas in a similar way one also checks:
lim |010: Oave® — Do, D13 dL? = 0.
e—0 B2\ B2
€ e/2
Therefore, on account of the second line in (1.15), we infer that

2

) . 1/
lim & (v, B2\ BY,) = lim (Z(@lvs Oav? — Dy O1v.7)?)

e—=0 BQ\B

2

e/2 j=1

For each z € B?\ B? 12 such that [Vu(z)| #0, ie., H%-a.e. on x € B?\ Bf/27 we have:

lim ™2 (D1v: o’ — Ove Orvet) (/) = Dav(x) |(vAvU()(>|2”

and

2%6*2(811)5 82y€2 _ 821)5 31V52)(.’£/6) —_ *81’0( ) |(VA:()()?)’

where we have set
= (010)202 v + (05v)%20% v — 2010 Hyv B2 v
2,2 1,1 1,2
By dominated convergence we thus infer that

(Av)(@)|
hmé‘ ve, B2\ B2 —/ ————5 dL”.
1( \ /2) B2, [Vo(z)?

We now recall that when |[Vu(z)| # 0 in BQ\Bl/Q, in polar coordinates one has ®,,_(z)
as € — 0, whereas by (6.5) in Euclidean coordinates we have

A o(x —01v(z) —01v(z)
¥0:0) = (0 ol o)l

By computing the 2-dimensional Jacobian in Euclidean coordinates, it turns out that

JoU(0,0) = |(VA:()X|)2 .

ac?.

(6.7)

— (0,0,%(0,6),0)

The function ¥(o,6) being H2-a.e. injective on (1/2,1) x (0,27), and with image equal to the surface

31, by the area formula we get:

|(£U)( )| - L
/Bz\B‘f’ |Vou(z )|2 ac _/32\3 JoWUdL? =HA(%)

1/2

and hence by (6.7) we have proved the third limit in (6.6), as required.
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7 Closing the Gauss graph

In Sec. 5, we have seen how the relaxation problem for homogeneous functions u(z) = f(6) is solved
outside the origin. In particular, we obtained formula (5.4). Now, choosing r =0 in (5.2), or taking the
limit as r — 0T, we find an optimal i.m. rectifiable current ¥, = Yuo in Ro(U x S?).

Recalling that j := GGy + Sy, where GGy = GG + GGS + GG and Sy = S7¢ 4 5%, using the
map ¥ given by (5.3) we clearly have GGY = W ([0,1] x GG$). We thus may decompose

Y. = GG+ GGS + GG + §7¢ + 5¢ (7.1)
where we have correspondingly set

GGS = Wy ([0,1] x GGS), GG :=W,([0,1] x GGY),

S w1011 87 St m wy([0.1] % 55) 2

which will be called the Cantor, Jump, Jump-edge, and Edge components, respectively.
We have obtained an i.m. rectifiable current X, in Ro(U x S?) supported in U x S2. However,

the null-boundary condition (3§]u) LU x S? = 0 is violated, as in general a “hole” may appear at the
origin Oz, the point singularity of a homogeneous functions u(z) = f(0) with finite relaxed energy. An
example is given by (6.1), (6.2). In this section we analyze in detail a non-smooth model example.

Example 7.1 Let u: B> —+ R given by

w/2 — arctan(zg/xy) if x1 <0
u(z) =4 7 it 21>0 and 292 >0
0 if 2y >0 and 29 <0.

The boundary 905G, of the subgraph of u is the surface given by two “floors”, at level z =0 and z = 7,
one “wall” of height 7 at the Jump set J, = (0,1) x {0}, and a smooth “spiral staircase” connecting
the two floors. Four horizontal edges appear at the boundary of the two floors, and a fifth vertical edge
lives over the singular point Ogz, the edges meeting at the corner points (0,0,0) or (0,0, ).

We have u € BV (B?), with no Cantor part, Du = 0. Orienting the Jump set by t = (1,0), the
unit normal is n = (0,1) and the one-sided limits are u* =7 and «~ =0 on J,. We also have

B (xg/pz,f:cl/pQ) i z1<0
Vu(z) = { (0,0) if 21>0 and 2 #0

which yields

vala) = { PP+ DTV (=aafp?anfp% 1) i a1 <0
b (0,0,1) if ;>0 and x5 #0.

Therefore, the outward unit normal v, belongs to BV (B?,S?), it has no Cantor part, D¢v, = 0, and
its jump set is J,, = {# € B? | z; = 0}. Furthermore, letting n = (—1,0) and t = (0,1) on J,, it
turns out that the one-sided limits of v, are smooth on J,, \ {Ogz} and we actually have

oy (42372 (~1,0,25) if 21 =0 and x5 >0
vt (@) = { (1423)712(1,0,—22) if ;=0 and z2<0 (73)
whereas v,~ = (0,0,1) on J,, \ {Ogz}. Finally, we have u(x) = f(0) with
v if 0<0<m/2
f@):=< 3n/2—-60 if w/2<6<3m/2 (7.4)
0 if 3r/2<6<27.

For 6 € (n/2,3m/2), according to Appendix A we thus obtain

2p* +3p" +1 p* 42 _ 1 H —0

ptl Sul = —5——373
PAp2+1)3 T P p(p )32 T (p2 1))

pe

Gu = |Vu‘2 =

)
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We now compute the various components (7.2) and the boundary of iu To this aim, in the sequel of
this section we shall denote I := (0,1). The corresponding energy terms are computed in Appendix B.

Firstly, we see that the boundary of the Absolutely continuous component GG satisfies

(0GGL) LU x 8 =Y (T, [1]-T% ,[1]) - So (7.5)
k=0

where for s € I we have set:

9 (s) := (S,O,W,0,0, 1) Y (s) := (570,0,0,0, 1)
Il (s):= (0,8, m (1 +s*)71/2(~1,0,s)) I'l(s) == (0,s,m,0,0,1)
I'2(s):=(0,s—1,0,(1+ (1 —s)%)"%(1,0,1 —s)) TI'Z(s):=(0,5s—1,0,0,0,1).

Therefore, the terms 'Y, #[[I ] are the upper and lower components of the boundary of the Gauss graph
GG, in correspondence to the discontinuity set of u, whereas for k = 1,2, the terms T’} #[I ] are the
upper and lower component of the boundary in correspondence to the edges in the graph G,,.

Moreover, the 1-current Sp € R1(U x S?) is supported in {Og2} x R x §? and is given by the weak
limit as € — 0 of the image currents ®,4[0B:(0r2)]. We have ®,4[0B.(0r2)] = Vex[0,27 ], where

(Ecosﬂ,esinﬂ,w,(),o,l) if 0<6<m/2
Ye(0) := ¢ (ecosf,esind,3m/2 — 6, (2 +1)"1/?(—sinb,cos0,¢)) if m/2 <6< 3r/2
(Ecosﬂ,esinf),0,0,0,l) if 3r/2<0<2r.

Therefore, this time the currents ®,4[0B:(0g2)] weakly converge to Sp := Yo [ 0,27 ], where

(0,0,7,0,0,1) if 0<6<n/2
Yo(0) ;=1 (0,0,37/2 — 0,cos(f + 7/2),sin(0 + 7/2),0) if /2 <6< 3mw/2 (7.6)
(0,0,0,0,0,1) if 37/2<6<2r.

Remark 7.2 Here and below, the parameter s € I refers to the horizontal directions e, es, whereas
the parameter A € I to the vertical directions es, €5, j =1,2,3.

The Cantor component of ¥, is trivial, GGS = 0. Moreover, the Jump component is given by
GGy =4I xI], ®'(s,A):=(s,0,Am,0,-1,0), (s,\)€lxI. (7.7)

Denoting by @ and P the end points of the Jump set, so that Q = Oz and P = (0,1) € B2, and
computing the boundary through the formula

GGy = ®LO[I x I] =& ((01 — o) x [I]—[1] x (61 — b))

we obtain
(0GG) LU x 8% = T [ 1] - (1], [1] -T2 [1]) (7.8)
where we have set

To(A) == (0,0,Am,0,-1,0), el

FJ

1(s) = (5,0,7,0,—1,0), T7(s):=(s,0,0,0,-1,0), sel. (7.9)

The Jump-edge component deals with the Jump of v, w.r.t. the outward normal to the “wall” surface
given by ®7/(I x I) at the upper and lower edges. We have:
Se =0 [T xI]—®7[Ix1I] (7.10)
where for (s,\) € I x I we have set

DIe(s,N) = (5,0,m,67(s5,\))

e(s,0) = (5,0,0,7(s,0)), 0% (V)= (Oreon(nl2=2)/2) sin(n(z2 = 0)/2)
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We thus compute as above
@S]V U x 8 = =(P¢ [ 1] =T [1]) = (09, [ 1] - DL, [1]) + (T 1] -T2 [1]) (7.11)
where for A € I we have set

e\ = (0,0,7,0,cos(m(2 — A)/2),sin(m(2 — \)/2))
r?(A) = (0,0,0,0,cos(m(2 — A)/2),sin(m(2 — A)/2)) . (7.12)

Finally, the Edge component deals with the Jump of v, where w is continuous, see (7.3). We have:

2
Se =Y @5 ,[IxTI] (7.13)
k=1

where the mappings ®¢ : I x [ — U x S? are defined by

5 (s, A) == (%(8), 9 (), ulm(9)), $i (s, ) . (s,A) €I x 1.

In the above formula, we have set v1(s) := (0,s) and 72(s) := (0,s — 1), so that u(y1(s)) = 7 and
u(y2(s)) = 0. Now, on account of (7.3), the one-sided limits of v,, at the two edges of the graph G, are:

vat(n(s)) = (1+5%)712(=1,0,5) vu~ (1(s)) = (0,0,1)
vt (h2(s)) = L+ (1 - 5)%)72(1,0,1 = 5) 1™~ (72(s)) = (0,0,1).

Therefore, for k = 1,2, the functions A — ¢ (s,\) parameterize with X\ € I the oriented geodesic arc
in S2 connecting v, (vk(s)) to v, T (yk(s)), whence for (s,\) € I x I we have:

$5(s,A) := (cosb1(s,A),0,sin6(s,\)), 01(s,\) := (7/2 — arctans) A + 7/2,

05(5,A) = (cos (s, A), 0,5in02(5, A)) . Oa(s,\) = (arctan(1 — s) — 7/2) A+ /2. (7.14)

Denoting by @ and P the end points of the two segments ~;, so that P, = (0,1) € 9B2,
Q1 = P, = Oz, and Qo = (0, —1) € 9B2, we thus compute:

2
(0S5) LU x 8 = (T [ 1] = Tou,[11) = > (5[] - T, [k ]) (7.15)
k=1

where we have set
Lo, (A) == (0,0,7,cos(m(A+1)/2)
Lp,(A):= (0,0,0,cos(m(1 —A)/2),0,sin(m(1 — X)/2)).

BOUNDARY. We now compute the boundary

(7.16)

Lo, = (05,) LU x S.
Putting the boundary terms (7.5), (7.8), (7.11), and (7.15) together, after some simplification we get

Lo, = 1o =0, [ (0.2m)] +Tp, [ 1]~ T, 4 [1]

where the first addendum
To:=To,[I]+T9,[1]-T2,[I]

is the sum of the lateral boundary of the Jump and Jump-edge components at the singular point Ogz, see
(7.9) and (7.12). The other terms, see (7.6) and (7.16), are produced by the boundary of the Absolutely
continuous and Edge components. Therefore, writing in order

F0R2 = *FQ#[[I]] +F9#[[I]] +]-—‘Pz#[[jﬂ 7§0#[[0’27T]] 7FQ1#[[I]] 7F$#[[I]]

we infer that _
(0%,) LU x §* = 8o,, X 70,,#[0,6] (7.17)
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where 7o, : [0,6] = R, x S? is the closed Lipschitz curve

(m(1 -1,0) if 0<t<1

(0,0, cos(m(3 — t)/2),sin(w(3 — t)/2)) if 1<t<2

£ e 0, cos(m(3 —t)/2) 0,sin(m(3 — t)/2)) if 2<¢t<3
Voga (£) = m(t — 3),cos(m(3 —t)),sin(m(3 —1)),0) if 3<t<4

in(7(3 — 1)),
,cos(m(6 — t)/2),0,sin(m(6 — t)/2)) if 4<t<5
m,0, cos( (t — 4)/2), sin(n(t — 4)/2))

/\/\

if 5<t<6.
Notice in fact that

YOg2 (O) = VOg2 (6) = (W,O,*].,O), V0g2 (]-) = (07077130) (V% (2) = (0305071) )
Y0g2 (3) = (07 L0, 0) » VOpa (4) = (7Ta —-1,0, 0) s VOge (5) = (7T, 0,0, 1) .

Moreover, letting T'; := o, #[4 — 1,7], where i =1,...,6, we have

FIZ_FQ#[[I]]7 FQZFQ#[[I]L F3:FP2#[[I]]7
F4=—%#[[0,27T]]7 F5:_FQ1#[[I]]’ F6:_F$#[[I]]

Remark 7.3 We finally point out that the Lipschitz-continuous curve 7o, of R, X Rz is closed, sym-
metric w.r.t. to the plane II := {z = 1/2, y; = 0}, and with a self-intersection at II, as

Y0g2 (1/2) = Y0y (7/2) =0:= (71—/27 0,—-1, O) :

8 Gap phenomenon

In the previous section we have seen how (for homogencous functions, u(z) = f(6)) the current %,
depends on the relaxed energy of the function f through the formula (5.2), where r = 0. However, in
general the current iu has a non-trivial boundary in U x S?, as a cavity may occur at the origin Oge.

Following the example studied in detail in Sec. 6, one is then induced to look for an optimal current
S5 that “fills the hole” at the origin, i.e., a singular component S supported in {Og=} x R, x S? and
satisfying 0S; = —0%, in U x S?, in such a way that the current X, := =%, + S5 belongs to the class
Geart(U x Sz). In fact, in the relaxation process an energy contrlbutlon given by a measure concentrated
at the origin is expected. However, we now see that a gap phenomenon occurs:

Theorem 8.1 There exists a piecewise constant and homogeneous BV functwn s 5(9) such that the
optimal current 3, has no boundary at the origin, and %, € Gearty, but E(u) > E(Z,).

Therefore, the strict inequality in (3.18) holds, and hence the equality in (3.17) is violated.

Example 8.2 Let u: B? — R be the piecewise constant BV -function such that u(x) = f(6), where

1 if 6e€(0,7/3)U(2n/3,m)U (47/3,57/3)

f(9) ;:{ 0 if @€ (n/3,2n/3)U (m,4m/3) U (57/3,2m). (8:1)

The jump set of u is given by the union of the six radial segments from the origin which are perpendicular
to the unit vectors v; in the (z1,x2)-plane with coordinates

= (=V3/2,1/2), va:=(-V3/2,-1/2), vs:=(0,-1). (8.2)
Moreover, we have Vu =0 a.e. in B", and D = 0.
Remark 8.3 Notice that according to the definition of the transformation ¥ from (5.3), for ¢ =1,2,3

we have v; = (cos(6; + 7/2),sin(6; + 7/2)) = (—sinb;, cosb;), where 6, = 7/3, 02 = 27/3, 03 = 7w are
the angles that correspond to the first three discontinuity points of the function f in (8.1).
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Referring to the notation from Sec. 5, since the BV -function f has a derivative with no absolutely
continuous and Cantor parts, we have GG$ := ®4.[0,27 [, where ®£(0) := (0, f(6),0,1), and GG? =0.
The Jump component is the Gauss graph of the vertical segments in the boundary of the subgraph of f,
at the jump set, and actually in [0, 27[xR x S! we have:

GG = (80 + 023 + Oary3) X [0,1] X 8(_1,0) = (6ry3 + 6 + O57y3) X [0,1] X 8(1,0) -

Since moreover f = 0, no corner points occur, whence the Corner component S]% = 0. Also, two corners
appear in the boundary of the subgraph of f at each discontinuity point, with turning angles equal to
7 /2. Therefore, the Jump-corner component S }c] ¢ is given by:

ST = (60 + ans3 + ans3) X (8o — 61) X [y= ]+ (6x3 + O + G5r3) X (61 — 80) X [7+]

where 1 is the oriented geodesic arc in S! with initial point (0,1) and final point (£1,0).
Asin (5.2), we let X, := W4([0,1] x X¢), where ¥ is the transformation in (5.3), so that this time

S, = GGY + GG + §7¢,
according to (7.2). We now see that
0%, =0 on DYU xS?) (8.3)
so that the singular component is trivial, S; = 0. In fact, on account of Remark 5.1 we deduce that
(0%,)LU x S? = &, x 7£[0,18]

where 7 :[0,18] — R, x S is the closed rectifiable arc

(1,sin(mt/2) vy, cos(mt/2)) if tel0,1]
(2 —t,v1,0) if tell,2]
(0,cos(m(t —2)/2) vy,sin(m(t —2)/2)) if t€[2,3]
(0, sin(m(t — 3)/2) va,cos(m(t — 3)/2)) if tel3,4]
(t —4,v2,0) if te[4,5]
(1,cos(n(t — 5)/2) va,sin(n(t — 5)/2))  if te[5,6]
1,sin(w(t — 6)/2) va, cos(w(t — 6)/2)) it tel6,7]
8 —t,v3,0) if tel7,8]
~J (0, cos(w(t — 8)/2) vg,sin(m(t — 8)/2)) if tel8,9]
YO=3 (0rsin(n(t — 9)/2) va. cos(x(t — 9)/2))  if te[9,10] (8-4)
(t —10,v1,0) if te[10,11]
(1,cos(m(t — 11)/2) vq,sin(w(t — 11)/2)) if ¢ € [11,12]
(1,sin(m(t — 12)/2) v, cos(m(t — 12)/2)) if ¢ € [12,13]
(14 — t,v2,0) if ¢e[13,14]
(0, cos(m(t — 14)/2) va,sin(m(t — 14)/2)) if ¢ € [14,15]
(0,sin(7(t — 15)/2) vg, cos(m(t — 15)/2)) if ¢ € [15,16]
(t —16,v3,0) if te[16,17)
(1,cos(m(t — 17)/2) v, sin(m(t — 17)/2)) if ¢ € [17,18]

where we have denoted by v; the unit vectors in the (yi,y2)-plane given by formulas (8.2).

Now, it turns out that the closed arc v in R, x Si is homologically trivial, as its support is pa-
rameterized twice and with opposite orientation. More precisely, denoting with the letters A, B,C the
oriented arcs ([0, 3]), ([3,6]), and ~([6,9]), respectively, we have:

[[Aﬂ = 7#[[0’3]] = _7#[[9712]]7
[[B]] :V#[[376]] = —7#[[12, 15]]a
[C]=#[6,9] = —x[15,18].

Therefore, we get v4[0,18] = 0 and hence the null-boundary condition (8.3) holds.

33



However, the closed arc -y is topologically non-trivial (both in R?* x Si and in R*). In fact, it turns
out that the loop 7 describes the sequence of letters A BC A~'B~1C~!, hence it is not contractible: any
homotopy map which deforms v to a point has a nontrivial mapping area. More precisely, denoting by D
the oriented line segment from (0,0,0,1) to (1,0,0,1), an area minimizing contraction has firstly to cover
twice (with opposite orientation) the surface solution to the Plateau’s problem with boundary given by
the closed arc C D, reducing to the loop given by the sequence A B D~'A~'B~1D, and, secondly, twice
(with opposite orientation) the surface solution to the Plateau’s problem with boundary given by the
closed arc B D~!, whence reducing to the contractible loop given by the sequence A D D~' A=1D~1D.

PROOF OF THEOREM 8.1: Let u be given by the previous example, so that (8.3) holds. It is not
difficult to find a smooth sequence {uy} C CZ(B?) such that GG, — 5, weakly in Dy(U x S?) and
supy, E(up) < 0o, whence %, € Geart(U x S?), where U := B2 x R, and actually %, € Geart,,. For any
r e (0,1), let f}(f) (0) :== up(rcos@,rsind), 0 € I :=[0,27]. By a slicing argument, it turns out that for
a.e. r the sequence GGfP(LT) weakly converges in Dy (I xR x S!) to the current Ypi=GG+ GG'} + S}’C,
where f is given by (8.1). Arguing as in Prop. 4.5 and Rmk. 4.6 from [2], we can find a smooth

sequence \Ilgf) : I — I xR x S, where Iy := [0,L] for a suitable L > 0, and a Lipschitz function
T I, — T xR x S' such that the following properties hold:

i) the smooth curve \IJELT) is one-to-one, has constant velocity, and \I/ELT)#[IL]] =GG . ;
h

ii) the Lipschitz curve (") is one-to-one, has constant velocity, and \I/(T)#[[I L]l=%r;

iii) the sequence {\I!S")} converges to ¥ uniformly in Iy, and \Ilglr)#[[IL]] — 0,1 ] weakly in
Di(I xR xS).

= —
Moreover, denoting ¥, = [R, 0, ¢ ], see Remark 3.3, we observe that for each € > 0 we can find a
small radius r. > 0 such that if D,_ denotes the cylinder D, := B x R x §?, then

/ ICD10dH? <e/4  Vi=0,1,2
RND,._

and hence the curvature energy of iu is small on D,_.

Assume now by contradiction that £(up) — E(X,). Then, by lower semicontinuity, we can find h.
such that for every h > h,

/ Vo (14412, = 2K, + |K,, |) d£? <.
B2,

As a consequence, we deduce that for a.e. r € (0,r.) and for every h > h. the curve \IIET) can be
deformed to a constant by means of a smooth homotopy H }(Lr) with mapping area smaller than ce, for
some absolute constant ¢ > 0. We now observe that the Lipschitz curves (") uniformly converge to a
suitable reparameterization of the closed arc v : [0,18] — R, X S?H as r — 0. The uniform convergence

of \I/Y ) to the Lipschitz curve ¥("), and the non-triviality of the closed arc ~ previously described,

yield to a contradiction with the existence of the smooth homotopy map H }(LT) with small mapping area

previously described. O

9 Final remarks and open questions

In this final section we collect some ideas towards the direction of finding an explicit formula for the
relaxed energy (3.1), a widely open problem even in the case of homogeneous functions.
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ENERG~Y ON (GAUSS GRAPHS. We can write more_explicitly the curvature energy on the Gauss
graphs ¥, of homogeneous functions u € £(B?). Since ¥, has finite mass, on account of (7.2) it turns
out that the related mass decomposition holds:

M(3,) = M(GGS) + M(GGS) + M(GG;)) + M(S;) + M(S5) .
Therefore, by the definition of energy on currents (3.13), the corresponding decomposition formula holds:
E(iu) = E(GG%) + E(GGY) + E(GGY) + E(SJ¢) + E(S¢).
We shall provide in Appendix B the explicit computation when w is given by Example 7.1.

EVENTUAL NON-LOCALITY. Consider the localization of the relaxed functional, defined for any
bounded function u € £(2) and any open (or Borel) set A C  by:

E(u, A) == inf{lihm inf &(up, A) | {un}n € CE(A), up — u strongly in L'(A)}
— 00
where for smooth functions we have set

€ un, A) = /A (IE0] + D] + [€2))) a2

It is not clear if one could find a function u € £(2) such that the set function A ~ E(u, A) fails
to be subadditive, i.e., for which we can find open sets A, Az, A3 C Q such that A3 CC A; U Ay but
E(u, A3) > E(u, Ay) + E(u, Ay). For this purpose, one could try to reproduce the argument used by
Acerbi-Dal Maso [1] in order to show the non-locality of the relaxed area functional. Consider in fact the
homogeneous map u(z) := x/|z|, where = € B2, so that (cf. [17, Sec. 3.2.2]) one has

(0G.)LB* xR? = —4y,, x [S'].

Roughly speaking, there are two qualitatively different ways to fill the hole in the graph of u: inserting
a disk 8o, x [B?] or a cylinder [I] x [S'], where I is any oriented line segment connecting a point
in the boundary dB? of the domain to the origin Og=. This property implies the non-locality, see [1].

In our context, assume e.g. = B2 and u : B2 — R homogeneous, u(z) = f(f), so that in general
with the notation (7.1) and (7.2) one has:

(08,)LU xS? = —g_, xT
for some integral 1-cycle I' € Dy (R, x S?), compare e.g. (7.17). As we already discussed in Sec. 6, where
3w = GG, in principle there are two qualitatively different ways to “fill the hole” at the origin, namely:

i) choosing the energy minimizing current S; with support in {Ogz} x R, X Si and satisfying the
geometric constraint and the boundary condition 95 = dg, x I';

ii) choosing e.g. Sy := —F4([0,1] x (do,, x T')), where F' is the homotopy map F(X, (Orz, 2,y)) :=
(Av,z,y) for some direction v € St.
MEASURE PROPERTY. However, Proposition 6.3 suggests that in general if we impose the above

mentioned geometric condition, the only way to fill the hole of the current ¥, is by means of 2-dimensional
im. rectifiable currents with support in {Og2} x R, x S, so that the second alternative is excluded.
Therefore, at least for homogeneous functions u we expect the set function A — p,(A) := E(u, A) to be
subadditive, and hence a measure, as a consequence of the De Giorgi-Letta criterion [12]. This conjecture
is motivated by the following examples.

Example 9.1 If u is given by Example 6.1, in Sec. 6 we have actually proved that set function p, is a
finite Radon measure, with absolutely continuous component given by the integral &£(u,-), and singular
part a Dirac measure at the origin and with weight equal to the energy of the optimal current Si:

pw = E(u,+) + ¢+ o, c:=E(Sy)

where, we recall, E(S7) = E¢(S1)+E1(S1)+E2(S2), with Eg(S1) =0, E1(S1) = 47—8, E2(S1) = 27. The
energy term E(u) = & (u) + &1 (u) + E2(u) can be computed according to the formulas from Remark A.1
below, where the energy density is obtained by taking with f = cos#.
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Example 9.2 In a similar way, if v is given by Example 7.1, on account of the density theorem 5.2, we
expect the set function u, to be again a finite Radon measure with absolutely continuous component
given by the integral &(u, -). Since the distributional derivative of u has no Cantor component, D%u = 0,
there is no Cantor component GGS and hence the measure pu, has no other diffuse terms. This time,
the singular component is given by two qualitatively different terms.

The first term is concentrated on a 1-dimensional set and depends on the energy of the other compo-
nents of ¥, in the formula (7.1). It is given by two components: the first one, say 1, lives on the jump
set of w, i.e., on the interval .J, = (0,1) x {0}, and it depends on the energies of the Jump component
GG and of Jump-edge component S;/¢. More precisely, on account of the definitions (7.7) and (7.10),
and choosing I4 C (0,1) through the formula I4 x {0} = AN J,, for any Borel set A C B? we get

p1(A) = ¢y -H L T, (A) + E(cbf#[[lA x (0,1)]) + E(cb{e#[[IA x (0,1)])

where the weight ¢; is given by the energy E(GG;) of the Jump component.

The second component, say s, lives on the jump set of the approximate gradient Vu, i.e., on the
interval Jy, = {0} x (=1,1), and it depends on the energy of the Edge component S¢, compare (7.13).
Choosing this time I} C (0,1) and I3 C (—1,0) through the formulas {0} x I} = A; N Jy, and
{0} x I% = A3 N Jyy , respectively, where A; := {z € A |22 > 0} and Ay :={x € A | zy < 0}, for any
Borel set A C B? we get

pa(A) = B(®] 4 [ T3 x (0,1)]) + B(®5,[ (1 +13) x (0,1)].

Finally, a second term appears: as in the previous example, it is given by a Dirac measure centered
at the origin and with weight equal to the energy of the optimal current S; that fills the hole in the
current ¥, according to formula (7.17), see also Remark 7.3. In conclusion, this time we get

pw = E(U,+) +p1 + p2 +c- 0o, , c:=E(S1)

where Eo(S1) =0, E1(S1) = 27 — 4, E3(S1) = m. The energy term E(u) = & (u) + &1 (u) + E2(u) can
be computed according to the formulas from Remark A.1 below, where the energy density is obtained by
taking with f as in (7.4). The energy contribution of the different components GG., Su’, S’¢ and
S¢ are computed in Appendix B. We omit any further detail.

A Homogeneous functions
Assume u : B% — R satisfies u(z) = u(x/|z|) for each x € B%\ {Og2}, whence we can write u(z) = f(6)

for some function f : [0,27] — R, where z = (p cos@, p sinf). Denoting for simplicity s := sinf and
¢ := cos 6, we formally compute on B2\ {Og:}

_ fs fc _ 1 . .
Vu = (_?7?>7 Vy = (p2+f2)1/2 (fS,—fC,p)
and hence, setting F := p? + fZ, we get
-1 . .. . 1 . .. ..
Oyt = SF [P°2fsc+ fs*) + fPsc], Bovyt = SF (PP (f(? = *) + fse)+ f2c]
1 . . . 1 . . )
Ovn? = W['DQU( P8+ fse) = [757], Bt = W[PQ(QJCSC— f) + fPsc],
1 . . . 1 . . .
aqu?’:mf(fC-ﬁ-fS), 62Vu3=mf(f3—fc)-
This yields to:
Vit = 273 [P (f2+ 25+ 2sc [ ) + 202 f2(fe® + fse) + O]
V22 = S [P (f2+ 2 =25 [ )+ 20°f2(f5° = fsc) + f05°]
1 . N
VvlP = 5 A2+ )
3
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and hence

Vi |* = W (P (P +212) +0* B + 21 + ).
Setting moreover for simplicity A; := ‘ 861Vuj aazyuj , we also compute:
1Py 20
B fzs f'zc f'3

Al—m, A2——m7 A3——W

so that

A2 A2 A2 f4
+ + =

Y Ak

aquj 621/uj

we compute
all/uk (3'21/uk ) p

Also, setting Bjj, = ’

]éz

B R

Big = —
p

so that
Bi, + BY; + Byy =
On account of (1.15) and (1.18), we thus obtain:

p?+ f?
2

€02 = gu=1+|Vuf =
. 1 B} o
eV |2 = \VVu|2+A%+A§+A§:W[P2f2+2(02+f2)f2]
i
(2)12 _ 2 2 2 _ f
& [* = Bia+ Biz+ By = IOt

Now, by the formulas (1.11) and (1.12) we infer the explicit expressions of the Gauss and mean curvatures:

7 f? 1 pf
K== M Ty

and hence we readily recover the expressions of the three terms |§1(f)| given by the formulas (1.18). In
particular, we get

f? 1 f
T R O
We also compute:
€ul? = 672 + €0 + 1672 = ﬁ [(0 + 2/ +p*(0" + ) ]
= M [(0*+ 272+ 02 (0* + %) 7] .-

Therefore, for f smooth, on account of (1.8) by the area formula we obtain

1,2 2 £2\2 2( .2 F2\ £211/2
B B (02 +2/2)2 + p2(0* + /2) 2/
Hz(ggu)—/Bz |§u\d£2—/0 /0 (,02+f2)3/2 df dp-
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Remark A.1 Notice that |, € L*(B?) if and only if |§1(f)| € LY(B?) for i =0,1,2, and we get:

1 27
[ 1eonac = [ [\ f2avap
B2 0 0

1 op2m [252 4 9,2 iy f271/2
B2 01 027r f2 P * f
/ €@ dL? = / / — _dgdp.
B2 o Jo (p?+ f2)3/2

Moreover, since |, = /G /(1 — Ku)2 + (2H,)? we have

1
7 (Va1 = Ku| + v/Gu [2Hy|) < €l € Va1 — Ku| + /0u [2Hy |

where, we recall,

o VO ES f plf
u = ) _Ku: ; ’ L2 ¢
o R e PR G R

and hence we deduce that |¢,| € L*(B?) if and only if

2 f2\1/2 2 f
/ Mdﬁz<oo, / lfi.dﬁ2<oo7 and / |f| dL? < oo.
B2 p B2 P (p? + f2)%/2 B2 p? + f?

B An energy computation

We compute the energy of the various components of the current 3, in (7.1), referring to Example 7.1.
The Absolutely continuous term has energy E(GG%) = £(u), and it is given by the sum of the three
integrals in Remark A.1, with f given by (7.4). The Cantor component GG¢ is equal to zero.
The Jump component is GG, = @i[[[ x I], see (7.7). Consider the 2-vector ? = 0,®7 N0\®'. The
r_n>ass of GG agrees with the area of the Gauss graph surface ®/(I x I). Moreover, the stratification
€ =¢0 1) 4 @) gives £€32) =0 and

5(0) = [U(’YO)}i(tl e1 Nes+taea Aes), 5(1) = *[U(’YO)F ouk (tl ez Nert+taez A 52)
where 7o(s) := (s,0), t(s) = (t1,t2) is the unit tangent vector to the jump set, o,(s) := sgnfu(yo(s))]*
is the sign of the Jump, and k(s) the signed curvature, whence t(s) = (1,0)), ou(s) =1, k(s) =0. We
thus have Eo(GG.) = 0, whereas by the area formula we get:

E(GGY) = [

I[u(0(s))F|ds dA = [Du’|(B?) =1, El(GGZ):/\[U(’Vo(S))}ilk(S)dSZU'
IxI I

The Jump-edge component is S;/¢ = q)f#[[f xI]— CIJZE#[[I x 1], whence the mass decomposition
M(S;€) = M(®][1 x I]) +M(®7,[I x I)

and a similar energy splitting hold. Furthermore, using the formulas after equation (7.10), we get

3 ) 3 )
051 =4 e1 + 43 e2 + VuL(10) e Joes + Y 0u(01) €, A2L =) 0a(61) ¢,
j=1 =1

%
and hence we may decompose ¢ := 0,0]¢ A 9\ P = £ 4 ¢V ¢ €@ where this time the first stratum

€0 =0 and
2

3 : .
£ =37 onod) (Do dbei A+ VuE(io) e does A )
Jj=1

=1
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€0 = 3 (201" N6L) - 0r(81) " 0 (61)") 5, Ay

1<51<j2<3

£V = V14 @eut (70))2 [oae1e],  [€P] = |20l

E(S]¢) = E(®{°,[I x I]) + E(®7,[I x IT)

We thus get

and hence

where Eo(®{%[1 x I]) =0 and, again by the area formula,

E (19, [1 x IT) /\/1—1— (Opu®(vo(s /\8>\¢ (s,\)) |d)\} %
where we used that dyu®(y(s)) = 0, whereas
Je _ 2 Je _

Eg (@55 [1 x I]) = H (o3 (I x 1)) =

and correspondingly
1/2 V2
M@ ) = [ (1 @t (0)) 0n02)? + (R9d)?)  dsdr =

xT

Finally, the Edge component is S{ = Zizl @5 ,[1 x I], see (7.13). We similarly compute:
2 2
M(Sg) = > M(®f [0 xI]),  E(S;) =Y E(®f,[1x1])
k=1 k=1

where for £k =1,2 we have Eo(fbi#[[l xI])=0,

Eq (@5, [ x I]) /\/1+ (Beu(7e (5 /|ak¢,€ s A))|d)\}

with y1(s) := (0,s) and ~a(s) := (0,s — 1), and
En(fu[1 x I]) = H(¢1(I x 1))

whereas concerning the mass we get:
e 2 e\2 e\2 1/2
M@, 7% D = [ (4 @) 0260 + (o)) dsin.
X

By (7.14), we check [0x¢$(s,\))| = (7/2 — arctans), [Ox¢5(s,A))| = 7/2 — arctan(l — s), and J2¢5 = 0,
whereas dgu(vk(s)) = 0. We thus conclude that for k=1,2:

Eq( Z#[[le]]) :/I(g —arctans) ds = 1_1_ 5 log2

Eqof i#[[lxl]]):(), M( z#[[lxl]]):El(@k#[[IxI]]).
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