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Abstract. We analyze the lower semicontinuous envelope of the curvature functional of Cartesian surfaces

in codimension one. To this aim, following the approach by Anzellotti-Serapioni-Tamanini, we study the class of

currents that naturally arise as weak limits of Gauss graphs of smooth functions. The curvature measures are

then studied in the non-parametric case. Concerning homogeneous functions, some model examples are studied

in detail. Finally, a new gap phenomenon is observed.

Introduction

Functionals depending on curvatures of curves and surfaces are quite natural objects, both from an
analytical-geometrical and a physical point of view. After the work by J. Bernoulli and Euler on the
problem of Elastica, they appear in the work of S. Germain as a reasonable model expressing the bending
energy for an elastic plate, see the historical paper [26] and the references therein.

More recently, T. Willmore [27] proposed the study of compact immersed surfaces M in R3 which
minimize the (Willmore) functional

W (M) :=

∫
M

|H|2 dH2

which is given by the integral of the square of the mean curvature H. Starting from that seminal paper,
much work has been done by differential geometers concerning Willmore surfaces and critical points of
more general functionals of the principal curvatures.

From the point of view of Direct Methods in the Calculus of Variations, we quote here the approach by
J. Hutchinson [19] in terms of curvature varifolds, a class of generalized surfaces (defined by W. K. Allard
[4]) having a p-summable weakly defined second fundamental form: see also [21], where C. Mantegazza
studied the subclass of curvature varifolds with boundary.

A different approach was considered by G. Anzellotti, R. Serapioni, and I. Tamanini in [7], starting
from the following observation: for a smooth n-dimensional surface M in Rn+1, all the information
about the curvatures are contained in the graph

GM := {(x, ν(x)) | x ∈ M}

of the Gauss map ν : M → Sn ⊂ Rn+1 of the surface. For example, see also [6], since the tangent plane
to GM at a point (x, ν(x)) is determined by the tangential derivatives of ν(x) at x, and hence by the
second fundamental form to M at x, by the area formula when n = 2 it turns out that the area of the
Gauss graph surface GM is linked to the principal curvatures of M by the relation:

H2(GM) =

∫
M

(
1 + (k1

2 + k2
2) + (k1k2)

2
)1/2

dH2 .

In order to study minimization problems in this framework, it is natural to consider the current carried
by the graph of the Gauss map. The idea of considering the graph Gu, instead of the map u, was already
present in the approach to non-parametric minimal surfaces and more generally in the minimization
problem of functionals

∫
f(Du) dx with linear growth in the gradient of a scalar function, see [18, 10]. A

crucial observation, which goes back to H. Federer’s work [14], is that the boundary of the current carried
by the subgraph SGu := {(x, z) ∈ Ω × R | z < u(x)} of a bounded and summable function u : Ω → R
is an integer multiplicity (say i.m.) rectifiable current in Ω×R if and only if u is a function of bounded
variation.
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However, it is in the seminal paper by M. Giaquinta, G. Modica, and J. Soucěk [16] on nonlinear
elasticity, where currents carried by the graph of vector-valued maps were firstly used to study polyconvex
functionals with superlinear growth in the minors of the gradient matrix Du, see also [17]. Based on this
approach, Anzellotti et al. studied in [7] limit points Σ of sequences [[GMh ]] of currents carried by the
Gauss graph of smooth surfaces with equibounded areas and e.g. prescribed boundary conditions. We
recall here that the weak convergence as currents [[GMh ]] ⇀ Σ is defined by duality as the pointwise
convergence 〈[[GMh ]], ω〉 → 〈Σ, ω〉 for any smooth and compactly supported n-form ω in Rn+1 × Sn.
In fact, by Federer-Fleming’s closure theorem [15], it turns out that any such weak limit point Σ is an
n-dimensional i.m. rectifiable current in Rn+1 × Sn, with finite mass.

Most importantly, the weak convergence as currents preserving some geometric structures of Gauss
graphs of smooth surfaces, the authors of [7] were able to equip Σ with a generalized second fundamental
form, which extends the notion obtained by Hutchinson in terms of varifolds. As a consequence, they
recovered in a non-smooth context a weak notion of Euler-Poincaré characteristic, and found a suitable
definition of measures which are naturally associated to the elementary symmetric curvatures (i.e., to the
Gauss curvature K = k1k2 and mean curvature 2H = k1 + k2, in the 2-dimensional case).

Moreover, in order to discuss the existence of minimizers of functional depending on curvatures,
Anzellotti et al. proposed to study the relaxed energy functional, see also the work by S. Delladio [13].
More precisely, they introduced the curvature functional of a smooth n-dimensional surface M ⊂ Rn+1,
that for n = 2 reads as:

‖M‖ := H2(M) +

∫
M

√
k2
1 + k2

2 dH2 +

∫
M

|k1k2| dH2 .

Under prescribed boundary conditions on ∂M and on the value of the Gauss map on ∂M, the relaxation
approach yields to consider for each weak limit current Σ as above the functional

F (Σ) := inf{lim inf
h→∞

‖Mh‖}

where the infimum is taken among all sequences {Mh} of smooth surfaces such that the currents [[GMh ]]
carried by their Gauss graphs weakly converge to Σ. However, even in dimension n = 2, it is an open
problem to characterize the class of i.m. rectifiable currents Σ in R3 × S2 for which the relaxed energy
F (Σ) is finite. On the other hand, it would be desirable to have an explicit formula for the relaxed
energy, another non-trivial open problem.

In this paper, we shall focus on the above mentioned relaxation problem in the non-parametric case.
For this purpose, we restrict to the case n = 2 and try to analyze the class of currents which naturally
arise as weak limits of Gauss graphs of smooth Cartesian surfaces. We refer to [11, 2, 3] for the analysis
of the one-dimensional case of Cartesian curves.

Plan of the paper. In Sec. 1, we collect some notation from [6, 7] concerning Gauss graphs of
codimension one surfaces. We shall then restrict to non-parametric surfaces M = Gu given by the graph

Gu := {(x, u(x)) | x ∈ Ω}

of smooth bounded functions u : Ω → R, where Ω ⊂ R2 is a bounded domain. Therefore, in this case
the Gauss map is naturally identified at each point of the graph by the outward unit normal

νu(x) :=
1

√
gu

(
−∂1u,−∂2u, 1

)
, gu := 1 + |∇u|2 , x ∈ Ω

and hence the mean curvature Hu and Gauss curvature Ku at (x, u(x)) are written in terms of the
first and second order partial derivatives of u, see (1.11) and (1.12). Moreover, the Gauss graph of the
Cartesian surface Gu agrees with the non-parametric surface in R6

GGu = {Φu(x) | x ∈ Ω}

where Φu : Ω → (Ω× R)× S2 is the smooth map

Φu(x) =
(
φu(x), νu(x)

)
, φu(x) := (x, u(x))
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and hence the tangent space at each point in the Gauss graph GGu is oriented by the wedge product

ξu(x) := ∂1Φu(x) ∧ ∂2Φu(x) , x ∈ Ω

so that by the area formula we get H2(GGu) =

∫
Ω

|ξu| dL2.

In Sec. 2, we deal with the currents GGu carried by the Gauss graph of smooth Cartesian surfaces.
They are naturally defined through the formula GGu = Φu#[[ Ω ]], i.e., denoting U := Ω× R, by:

〈GGu, ω〉 =
∫
Ω

Φu
#ω ∀ω ∈ D2(U × S2) .

The action of GGu on qualitatively different 2-forms is explicitly computed in (2.1). We then analyze
the curvature energy functional ‖M‖ when M = Gu, which becomes

E(u) :=
∫
Ω

(
|ξ(0)u |+ |ξ(1)u |+ |ξ(2)u |

)
dL2 .

In term of the stratification of the orienting 2-vector ξu, see (2.6), we in fact have:

|ξ(0)u | = √
gu , |ξ(1)u | = √

gu
√

(4H2
u − 2Ku) , |ξ(2)u | = √

gu |Ku| .

The integration by parts formulas of the Gauss graph currents GGu are then obtained.

In Sec. 3, we shall introduce the relaxed curvature energy, given for any function u ∈ L∞(Ω) by

E(u) := inf{lim inf
h→∞

E(uh) | {uh}h ⊂ C2(Ω) , uh → u strongly in L1(Ω)}

and discuss some general properties of functions u with finite relaxed energy. Since the Gauss map νu is
a function of bounded variation, Theorem 3.1, we shall see that the current carried by the Gauss graph of
u is well-defined as in the smooth case by GGa

u := Φu#[[ Ω ]], but this time the pull-back Φu
#ω of forms

is computed by means of the approximate gradient of the BV -map Φu. Weak limits Σ of sequences of
currents carried by the Gauss graph of smooth functions with equibounded curvature energies are also
analyzed. We shall then introduce a curvature functional Σ 7→ E(Σ) on the currents Σ, that agrees
with the curvature energy E(u) when Σ = GGu for some smooth function u. Its relationship with the
relaxed energy is finally outlined.

In Sec. 4, we shall discuss the notion of generalized first and second symmetric curvatures from [7]
in our framework, by also giving an explicit computation in the case of two surfaces with line or point
singularities: the union of two rectangles meeting at an edge, Example 4.3, and the lateral surface of a
cone, Example 4.4. Referring to these two models, we shall then compare our definitions with the notion
by J. M. Sullivan [24] of mean and Gauss curvature for polyhedral surfaces and 2-rectifiable sets. We shall
then discuss the relation with the Gauss-Bonnet theorem. Finally, we shall introduce the distributional
definition of weak and Gauss curvatures, given by

H̃u :=
1

2
Div

[ ∇u√
1 + |∇u|2

]
, K̃u :=

1

2
Div

(
νu

1∂2νu
2 − νu

2∂2νu
1, νu

2∂1νu
1 − νu

1∂1νu
2
)
.

Even if they are well-defined for any function u with finite relaxed energy, we shall see that they fail to
be the good geometric objects.

From Sec. 5 to the end, we shall restrict to the subclass of 0-homogeneous functions defined in the
open unit ball Ω = B2. In fact, beside the structure theorems 3.1 and 3.4, finding necessary and
sufficient conditions to the membership of a bounded BV -function u : Ω → R to the class of functions
with finite relaxed energy is a non-trivial open problem. We shall then assume that u : B2 → R
satisfies u(x) = u(x/|x|), and with an abuse of notation we shall write u(x) = f(θ) for some function
f : [0, 2π] → R, where x = (ρ cos θ, ρ sin θ). The explicit computation of the curvature energy functional
E(u) in the case of homogeneous functions is postponed to Appendix A.
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The relaxation problem in the annulus Ωr := {x ∈ B2 | r < |x| < 1} is then solved for any small
radius r > 0. In the homogeneous case, in fact, the explicit formula for the relaxed energy in Ωr is
recovered from the one-dimensional results obtained for Cartesian curves in [2].

In Sec. 6, we shall compute the relaxed energy in the case of the homogeneous function

u(x) :=
x1
|x|

, x = (x1, x2) .

The Gauss graph of u has a “hole” at the origin. More precisely, the current GGu has an inner boundary
which can be described by the 1-dimensional current Γ carried by a closed Lipschitz-continuous curve
γ̃0 whose support is concentrated in {0R2} × R× S2, see (6.1) and (6.2). We shall prove that

E(u) = E(u) + E(S1)

where S1 is the minimal energy element among all the i.m. rectifiable currents that bound the integral
1-chain Γ and that satisfy the geometric condition inherited by the orthogonality of νuh

to the tangent
space to Guh

that holds true for the smooth approximating sequences.

In Sec. 7, we shall then consider the non-smooth homogeneous function

u(x) :=

 π/2− arctan(x2/x1) if x1 < 0
π if x1 ≥ 0 and x2 > 0
0 if x1 ≥ 0 and x2 < 0 .

Roughly speaking, the boundary ∂SGu of the subgraph of u is the surface given by two “floors”, at
level z = 0 and z = π, one “wall” of height π at the Jump set Ju = (0, 1)× {0}, and a smooth “spiral
staircase” connecting the two floors. Four horizontal edges appear at the boundary of the two floors, and
a fifth vertical edge lives over the singular point 0R2 , the edges meeting at the corner points (0, 0, 0) or
(0, 0, π). Now, by applying results from [2] to the Gauss graph of the corresponding function f , given by

f(θ) :=

 π if 0 < θ < π/2
3π/2− θ if π/2 < θ < 3π/2
0 if 3π/2 < θ < 2π

it turns out that the (optimal) Gauss graph current Σ̃u is well-defined by the formula

Σ̃u = GGa
u +GGC

u +GGJ
u + SJe

u + Se
u .

We have already seen that the Absolute continuous component GGa
u is defined by GGa

u = Φu#[[B
2 ]],

through the approximate gradient of the BV -map Φu. The Cantor component GGC
u = 0, as the distri-

butional derivative of u has no Cantor part, DCu = 0. The Jump component GGJ
u is the Gauss graph

of the vertical wall at the discontinuity set of u. The Jump-edge component SJe
u deals with the Jump

of νu w.r.t. the outward normal to the wall surface at the upper and lower edges. Finally, the Edge
component Se

u deals with the Jump of νu where u is continuous.

We have thus obtained an i.m. rectifiable current Σ̃u in U × S2. The energy contribution of the
several components in the above decomposition formula is computed in Appendix B. However, as in the
previous example (where Σ̃u reduces to GGa

u ) the null-boundary condition ∂Σ̃u = 0 is violated, as in
general a “hole” appears at the origin 0R2 , see (7.17), so that an extra energy contribution is expected
in the relaxation process, yielding this time to the formula

E(u) = E(u) + E(GGJ
u) + E(SJe

u ) + E(Se
u) + E(S1) ,

where S1 is the minimal energy element among all the i.m. rectifiable currents that “fill the hole” in the
optimal current Σ̃u and satisfy the above mentioned orthogonality condition.

In Sec. 8, we shall then describe a gap phenomenon, firstly discovered by G. Buttazzo and V. J. Mizel
[9] in the relaxation process, that makes the above problem much more complicate. Consider in fact the
piecewise constant and homogeneous BV -function u given by u(x) = f(θ), where

f(θ) :=

{
1 if θ ∈ (0, π/3) ∪ (2π/3, π) ∪ (4π/3, 5π/3)
0 if θ ∈ (π/3, 2π/3) ∪ (π, 4π/3) ∪ (5π/3, 2π) .
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Roughly speaking, this time the boundary of the subgraph of u is given by a “cake” which has been
divided into six equal parts, and where three non-consecutive slices have been removed. As before,
one may define the (optimal) Gauss graph current Σ̃u = GGa

u + GGJ
u + SJe

u , as both the Cantor and

Edge components GGC
u and Se

u are trivial. Now, by the symmetry of u it turns out that Σ̃u has no
homological boundary in (B2 × R)× S2. In fact, looking at the behavior of the outward unit normal (a

“candle” moving on the “cake”) on small circles around the origin, it turns out that the boundary of Σ̃u

is given by δ0R2 × γ#[[ 0, 18 ]], where γ : [0, 18] → R × S2 is the closed rectifiable arc parameterized by
(8.4). It turns out that the closed arc γ is homologically trivial, as its support is parameterized twice and
with opposite orientation. Therefore, in accordance with the previous examples, and by the optimality
of the current Σ̃u, one expects that Ẽ(u) = E(Σ̃u) .

However, we shall see that the loop γ is topologically non-trivial (both in R× S2 and in R4). As a

consequence, we obtain the energy gap Ẽ(u) > E(Σ̃u). In terms of approximation in energy by smooth
functions, a topological obstruction that cannot be treated by means of homological arguments occurs.

Finally, some ideas towards the direction of finding an explicit formula for the relaxed energy (a widely
open problem even in the case of homogeneous functions) are collected in Sec. 9. Namely, in order to prove
that (in accordance with our examples) the relaxed energy satisfies themeasure property, one may consider
the localization of the relaxed functional. Following E. Acerbi and G. Dal Maso [1], where the analogous
feature concerning the relaxed area functional of vector-valued functions was firstly discovered, it is not
clear if one could find a function u with finite relaxed energy such that the set function A 7→ E(u,A)
fails to be subadditive, i.e., for which we can find open sets A1, A2, A3 ⊂ Ω such that A3 ⊂⊂ A1∪A2 but
E(u,A3) > E(u,A1) + E(u,A2). In fact, due to the geometric constraints (the orthogonality condition),
we expect that (at least for homogeneous functions u) the subadditivity property holds, and hence the
set function A 7→ E(u,A) is a measure, as a consequence of the De Giorgi-Letta criterion [12].

In conclusion, we point out that the case of n-dimensional Cartesian surfaces may be analyzed by
generalizing the ideas contained in this paper. On the other hand, a part from the 1-dimensional case
studied in [2, 3], the analysis of the relaxed curvature energy functional of higher codimension Cartesian
surfaces is certainly a much more complicate stuff, as the role played here by the Gauss map has to be
replaced with more general geometric invariants.

Acknowledgments. I would like to thank E. Acerbi and A. Saracco for several useful discussions.
The author is a member of the “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro
Applicazioni” (GNAMPA) of the INdAM.

1 Gauss graphs of smooth Cartesian surfaces

In this section we report from Anzellotti et al. [7] some notation and properties concerning Gauss graphs
of codimension one surfaces, see also [6]. We address to [23, 17, 20] for the main facts and notation on
Geometric Measure Theory. We then focus on the case of Cartesian surfaces.

Gauss graphs. Following [6, 7], given a smooth (say C2 ), bounded, and oriented surface M ⊂ R3,
the Gauss map ν : M → S2 associates to each point x in M the unit normal ν(x) ∈ S2, where

S2 := {y ∈ R3 : |y| = 1}

and the graph of the Gauss map (or Gauss graph) is the 2-dimensional surface in R6 given by

GM := {(x, ν(x)) | x ∈ M} ⊂ M× S2 ⊂ R3
x × R3

y .

The tangent 2-vector field τ : M → Λ2TM ⊂ Λ2R3
x is given in terms of the Hodge operator by

τ(x) = ∗ν(x). Denoting by Φ : M → R3
x × R3

y the graph map Φ(x) := (x, ν(x)), a continuous tangent

2-vector field ξ : GM →
∧2

(R3
x×R3

y) is given by ξ(x, ν(x)) :=
∧2

dΦx(τ(x)). Since |ξ| ≥ 1 on GM, the

normalized 2-vector field
−→
ζ := ξ/|ξ| determines an orientation to GM. Therefore, the corresponding

integer multiplicity (say i.m.) rectifiable 2-current [[GM ]] in R2(R3
x × R3

y) carried by the Gauss graph
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has multiplicity one and support contained in M×S2. Its action on compactly supported smooth 2-forms
ω in R3

x × R3
y is by integration:

〈[[GM ]], ω〉 =
∫
GM

〈ω(x, y),
−→
ζ (x, y)〉 dH2(x, y) , ω ∈ D2(R3

x × R3
y) .

By Stokes’ theorem, the boundary current ∂[[GM ]] acts by integration of 1-forms on the naturally
oriented boundary of GM, so that ∂[[GM ]] = 0 if M is a closed smooth surface.

The tangential Jacobian of the graph map satisfies

JM
Φ (x) =

(
1 + (k1

2 + k2
2) + (k1k2)

2
)1/2

, x ∈ M

where k1 = k1(x) and k2 = k2(x) are the principal curvatures at x ∈ M. In fact, we have JM
Φ (x) =

|ξ(x, ν(x))|. Moreover, denoting by τ1 and τ2 the principal directions, and considering the obvious
homomorphism v 7→ ṽ from R3

x onto R3
y, one has

ξ(x, ν(x)) = τ1 ∧ τ2 +
(
k2τ1 ∧ τ̃2 − k1τ2 ∧ τ̃1

)
+ k1k2 τ̃1 ∧ τ̃2 . (1.1)

Also, denoting by H and K the mean curvature and Gauss curvature,

H :=
1

2
(k1 + k2) , K := k1k2

so that k1,2 = H±
√
H2 −K, we equivalently have

(JM
Φ )2 = 1 + (2H)2 − 2K+K2 = 4H2 + (1−K)2 .

Therefore, by the area formula, the area of the Gauss graph reads as

H2(GM) =

∫
M

(
1 + (k1

2 + k2
2) + (k1k2)

2
)1/2

dH2 =

∫
M

√
1 + (4H2 − 2K) +K2 dH2 (1.2)

and it agrees with the mass M([[GM ]]) of the current [[GM ]].
The curvature functional of a smooth surface M ⊂ R3 is defined in [7] by:

‖M‖ := H2(M) +

∫
M

√
k2
1 + k2

2 dH2 +

∫
M

|k1k2| dH2 (1.3)

i.e., equivalently,

‖M‖ :=

∫
M

(
1 +

√
4H2 − 2K+ |K|

)
dH2

so that by (1.2) one gets the bounds with the area of the Gauss graph:

1

2
‖M‖ ≤ H2(GM) ≤ ‖M‖ , H2(GM) = M([[GM ]]) .

Also, in [7] two real measures on R3
x×R3

y are naturally associated to the mean and Gauss curvatures:

χM
1 := −Φ#(HH2 M) , χM

2 := Φ#(KH2 M) (1.4)

so that for any ψ ∈ C0(R3
x × R3

y) we have

〈χM
1 , ψ〉 = −

∫
M

H(x)ψ(x, ν(x)) dH2(x) , 〈χM
2 , ψ〉 =

∫
M

K(x)ψ(x, ν(x)) dH2(x) .

The above curvature measures are re-written in terms of the current [[GM ]] by the formulas

〈χM
i , ψ〉 = (−1)i〈[[GM ]], ψΘi〉 ∀ψ ∈ C∞

c (R3
x × R3

y) , i = 1, 2 .

The 2-forms Θi = Θi(x, y) in R3
x × R3

y are defined in [7], and for 2-dimensional surfaces they become:

Θ1 :=
1

2

(
y1(dx2 ∧ dy3 − dx3 ∧ dy2) + y2(dx3 ∧ dy1 − dx1 ∧ dy3) + y3(dx1 ∧ dy2 − dx2 ∧ dy1)

)
Θ2 := y1dy2 ∧ dy3 + y2dy3 ∧ dy1 + y3dy1 ∧ dy2 .

(1.5)
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Remark 1.1 Since the mean curvature depends on the sign of the principal curvatures, we added a
factor −1 in order that for Cartesian surfaces we recover the standard notation, see (4.2) below.

Finally, the weak limits Σ of sequences of currents carried by Gauss graphs of smooth surfaces {Mh}
are studied in [7]. Assuming e.g. that each Mh is closed, supported in a given compact set K ⊂ R3, and
suph ‖Mh‖ <∞, it turns out that Σ is an i.m. rectifiable current in R2(R3

x ×R3
y), with null boundary,

∂Σ = 0, and with support contained in K×S2. Moreover, Σ satisfies the following structure properties:

Theorem 1.2 ([7]) With the previous notation, one has:

i) 〈Σ, η ∧ φ〉 = 0 for each η ∈ D1(R3
x × R3

y) ;

ii) 〈Σ, ψ φ∗〉 ≥ 0 for each ψ ∈ C(R3
x × R3

y) such that ψ ≥ 0 ;

where φ and φ∗ denote the canonical 1-form and 2-form, respectively:

φ(x, y) :=

3∑
j=1

yjdxj , φ∗(x, y) := y1dx2 ∧ dx3 + y2dx3 ∧ dx1 + y3dx1 ∧ dx2 . (1.6)

Remark 1.3 We finally recall from [7] that property i) is equivalent to the orthogonality condition:

v • (y, 0R3) = 0 ∀ v ∈ T(x,y)R

for H2-a.e. (x, y) ∈ R, where • denotes the scalar product, R is the 2-rectifiable set of positive
multiplicity of Σ, and T(x,y)R is the approximate tangent space, see Remark 3.5 below.

Cartesian surfaces. We now restrict to smooth Cartesian surfaces, i.e., we assume that M is
the graph of a smooth and bounded function u : Ω → R, where Ω ⊂ R2 is a given bounded domain.

We shall denote by (e1, e2, e3) the canonical basis of Ω×R, with x = (x1, x2) ∈ Ω, z = x3 ∈ R, and
hence (dx1, dx2, dz) is the dual basis. We shall also denote by Π1 and Π2 the orthogonal projections onto
the first three and last three components, respectively, i.e., Π1((x, z), y) := (x, z), Π2((x, z), y) := y. The
canonical basis in R3

y is (ε1, ε2, ε3), and its dual basis is (dy1, dy2, dy3). Also, for a function v : Ω → R,
we shall always denote by ∇v the (approximate) gradient and by ∂iv and ∂2i,jv the first and second
order (approximate) partial derivatives, so that e.g. ∂iv(x) := ∇v(x) • ei for i = 1, 2.

Assuming now M = Gu, where Gu is the graph of u

Gu := {(x, u(x)) | x ∈ Ω}

the Gauss map is naturally identified at each point of the graph by the outward unit normal

νu(x) :=
1√

1 + |∇u|2
(
−∂1u,−∂2u, 1

)
, x ∈ Ω (1.7)

and hence the Gauss graph of the Cartesian surface Gu agrees with

GGu := {Φu(x) | x ∈ Ω} (1.8)

where Φu : Ω → Ω× Rz × R3
y is the smooth map

Φu(x) =
(
φu(x), νu(x)

)
, φu(x) := (x, u(x)) , νu(x) = (νu

1(x), νu
2(x), νu

3(x)) . (1.9)

The first fundamental form of Gu is identified by the symmetric matrix

I :=

(
E F
F G

)
=

(
|∂1φu|2 ∂1φu • ∂2φu

∂1φu • ∂2φu |∂2φu|2
)

=

(
1 + (∂1u)

2 ∂1u ∂2u
∂1u ∂2u 1 + (∂2u)

2

)
whose determinant is

g = gu := EG− F 2 = (1 + (∂1u)
2)(1 + (∂2u)

2)− (∂1u ∂2u)
2 = 1 + |∇u|2 (1.10)
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whence the unit normal is νu = g
−1/2
u (−∂1u,−∂2u, 1). Therefore, by computing the second derivatives

of the graph map φu, since ∂
2
i,jφu = (0, 0, ∂2i,ju) for i, j = 1, 2, it turns out that the second fundamental

form is identified by the symmetric matrix

II :=

(
ℓ m
m n

)
=

(
∂21,1φu • νu ∂21,2φu • νu
∂22,1φu • νu ∂22,2φu • νu

)
=

1
√
gu

(
∂21,1u ∂21,2u
∂22,1u ∂22,2u

)
where ∂22,1u = ∂21,2u. As a consequence, the mean curvature at (x, u(x)) becomes

Hu =
1

2g
(En+Gℓ− 2Fm) =

1

2

1

gu3/2
(
(1 + (∂1u)

2)∂22,2u+ (1 + (∂2u)
2)∂21,1u− 2∂1u ∂2u ∂

2
1,2u

)
(1.11)

and the Gauss curvature at (x, u(x))

Ku =
ℓn−m2

EG− F 2
=

1

gu2

(
∂21,1u ∂

2
2,2u− (∂21,2u)

2
)
. (1.12)

We also recall the formulas:

Hu =
1

2
div

[ ∇u
√
gu

]
= −1

2
div

[
(νu

1, νu
2)
]
, Ku = det

[
∇
( ∇u
√
gu

)]
= det

[
∇(νu

1, νu
2)
]
. (1.13)

The tangent space at each point in the Gauss graph GGu is oriented by the wedge product

ξu(x) := ∂1Φu(x) ∧ ∂2Φu(x) , x ∈ Ω .

We have

∂1Φu = (1, 0, ∂1u, ∂1νu
1, ∂1νu

2, ∂1νu
3) , ∂2Φu = (0, 1, ∂2u, ∂2νu

1, ∂2νu
2, ∂2νu

3) (1.14)

and hence, according to the number of εj-entries, we can write as in [7] the stratification

ξu = ξ(0)u + ξ(1)u + ξ(2)u

where, denoting by |A| the determinant of a 2× 2 matrix A, we obtain

ξ(0)u = e1 ∧ e2 + ∂2u e1 ∧ e3 − ∂1u e2 ∧ e3

ξ(1)u =

3∑
j=1

∂2νu
je1 ∧ εj −

3∑
j=1

∂1νu
je2 ∧ εj +

3∑
j=1

∣∣∣∣ ∂1u ∂2u
∂1νu

j ∂2νu
j

∣∣∣∣ e3 ∧ εj
ξ(2)u =

∣∣∣∣ ∂1νu1 ∂2νu
1

∂1νu
2 ∂2νu

2

∣∣∣∣ ε1 ∧ ε2 + ∣∣∣∣ ∂1νu1 ∂2νu
1

∂1νu
3 ∂2νu

3

∣∣∣∣ ε1 ∧ ε3 + ∣∣∣∣ ∂1νu2 ∂2νu
2

∂1νu
3 ∂2νu

3

∣∣∣∣ ε2 ∧ ε3 .
(1.15)

Using (1.2), by the area formula we can write the area H2(GGu) of the Gauss graph as∫
Ω

√
g
√
1 + (4H2 − 2K) +K2 dx =

∫
Gu

√
1 + (4H2 − 2K) +K2 dH2 =

∫
Ω

|ξu| dx (1.16)

where g = gu, H = Hu, and K = Ku, which yields to the formula for the Jacobian of the map Φu

JΦu
= |ξu| =

√
gu

√
1 + (4H2

u − 2Ku) +K2
u . (1.17)

Finally, by (1.1) we infer that

|ξ(0)u |2 = gu , |ξ(1)u |2 = gu (4H
2
u − 2Ku) , |ξ(2)u |2 = gu K

2
u (1.18)

whereas a unit 2-vector field orienting the tangent plane to Gu at (x, u(x)) is

τu := ∗νu =
ξ
(0)
u

|ξ(0)u |
=

1√
1 + |∇u|2

(
e1 ∧ e2 + ∂2u e1 ∧ e3 − ∂1u e2 ∧ e3

)
.
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2 Currents carried by Gauss graphs

In this section we deal with the currents carried by the Gauss graph of smooth Cartesian surfaces,
analyzing the curvature energy functional and the integration by parts formulas.

The current [[GGu ]] in R2(R6) of a smooth bounded function u : Ω → R is defined as above, with
M = Gu. However, since the graph Gu is contained in the cylinder

U := Ω× R

and its boundary in ∂U , we shall restrict to the action of compactly supported forms in U × S2.

Currents carried by Gauss graphs. The i.m. rectifiable current GGu in R2(U × S2) is
naturally associated to the Gauss graph by integrating compactly supported smooth 2-forms ω in U×S2
on the Gauss graph surface GGu w.r.t. the natural orientation

−→
ζu((x, z), y) :=

ξu
|ξu|

(x, z) , ((x, z), y) ∈ GGu

so that GGu := [[GGu, 1,
−→
ζu ]], see Remark 3.3 below, with finite mass, M(GGu) = H2(GGu) < ∞.

Therefore, by (1.8) we equivalently have GGu = Φu#[[ Ω ]], i.e.,

〈GGu, ω〉 =
∫
Ω

Φu
#ω ∀ω ∈ D2(U × S2) .

We compute for i = 1, 2 and j = 1, 2, 3

Φu
#dxi = dxi , Φu

#dz = ∂1u dx
1 + ∂2u dx

2 , Φu
#dyj = ∂1νu

j dx1 + ∂2νu
j dx2

and hence the pull-back of the basis of 2-forms in R3
x × R3

y gives the fifteen formulas

Φu
#(dx1 ∧ dx2) = dx1 ∧ dx2 , Φu

#(dx1 ∧ dz) = ∂2u dx
1 ∧ dx2 , Φu

#(dx2 ∧ dz) = −∂1u dx1 ∧ dx2

Φu
#(dx1 ∧ dyj) = ∂2νu

j dx1 ∧ dx2 , Φu
#(dx2 ∧ dyj) = −∂1νuj dx1 ∧ dx2 , j = 1, 2, 3

Φu
#(dz ∧ dyj) =

∣∣∣∣ ∂1u ∂2u
∂1νu

j ∂2νu
j

∣∣∣∣ dx1 ∧ dx2 , j = 1, 2, 3

Φu
#(dyj1 ∧ dyj2) =

∣∣∣∣ ∂1νuj1 ∂2νu
j1

∂1νu
j2 ∂2νu

j2

∣∣∣∣ dx1 ∧ dx2 , 1 ≤ j1 < j2 ≤ 3 .

Therefore, for each compactly supported smooth function ψ ∈ C∞
c (U × S2) we have

〈GGu, ψ dx
1 ∧ dx2〉 =

∫
Ω

ψ(Φu) dL2

〈GGu, ψ dx
1 ∧ dz〉 =

∫
Ω

ψ(Φu) ∂2u dL2

〈GGu, ψ dx
2 ∧ dz〉 = −

∫
Ω

ψ(Φu) ∂1u dL2

〈GGu, ψ dx
1 ∧ dyj〉 =

∫
Ω

ψ(Φu) ∂2νu
j dL2 , j = 1, 2, 3

〈GGu, ψ dx
2 ∧ dyj〉 = −

∫
Ω

ψ(Φu) ∂1νu
j dL2 , j = 1, 2, 3

〈GGu, ψ dz ∧ dyj〉 =
∫
Ω

ψ(Φu)

∣∣∣∣ ∂1u ∂2u
∂1νu

j ∂2νu
j

∣∣∣∣ dL2 , j = 1, 2, 3

〈GGu, ψ dy
j1 ∧ dyj2〉 =

∫
Ω

ψ(Φu)

∣∣∣∣ ∂1νuj1 ∂2νu
j1

∂1νu
j2 ∂2νu

j2

∣∣∣∣ dL2 , 1 ≤ j1 < j2 ≤ 3 .

(2.1)
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Remark 2.1 Notice that the (x, z)-projection Π1#GGu agrees with the i.m. rectifiable current Gu in
R2(Ω× R) carried by the graph Gu of u, i.e.,

Π1# ◦ Φu#[[ Ω ]] = (Π1 ◦ Φu)#[[ Ω ]] = φu#[[ Ω ]] =: Gu , φu(x) := (x, u(x)) (2.2)

whereas the y-projection agrees with the image current in R2(S2) of the unit normal νu :

Π2#GGu = (Π2 ◦ Φu)#[[ Ω ]] = νu#[[ Ω ]] .

Since moreover the third component of νu is non-negative, actually the support of Π2#GGu is contained
into the upper half-sphere

S2+ := {y ∈ S2 | y3 ≥ 0} (2.3)

and hence the compact support of GGu is contained in U × S2+.

The curvature energy functional. Recalling (1.3), if M = Gu for some smooth and
bounded function u : Ω → R, by the area formula we get ‖Gu‖ = E(u), where we have set

E(u) :=
∫
Ω

√
gu

(
1 +

√
4H2

u − 2Ku + |Ku|
)
dL2 . (2.4)

On account of (1.16), (1.17), and (1.18), we get

E(u) =
∫
Ω

(
|ξ(0)u |+ |ξ(1)u |+ |ξ(2)u |

)
dL2 , H2(GGu) =

∫
Ω

|ξu| dL2 (2.5)

where |ξu|2 = |ξ(0)u |2 + |ξ(1)u |2 + |ξ(2)u |2 and more explicitly, by (1.15),

|ξ(0)u |2 = gu = 1 + |∇u|2

|ξ(1)u |2 = gu (4H
2
u − 2Ku) = |∇νu|2 +

3∑
j=1

(
∂1u ∂2νu

j − ∂2u ∂1νu
j
)2

|ξ(2)u |2 = gu K
2
u =

∑
1≤j1<j2≤3

(
∂1νu

j1 ∂2νu
j2 − ∂2νu

j1 ∂1νu
j2
)2
.

(2.6)

Boundary and integration by parts. Stokes’ theorem yields that for every compactly
supported and smooth 1-form η ∈ D1(U × S2)

〈∂GGu, η〉 := 〈GGu, dη〉 =
∫
GGu

dη =

∫
∂GGu

η = 0 .

Due to the previous computation, this yields to the following list of integration by parts formulas, where
we shall use that for u smooth dΦu

#η = Φu
#dη. Let ψ ∈ C∞

c (U×S2), where ψ = ψ(x1, x2, z, y1, y2, y3).

i) If η = ψ dx1, then −dη =
∂ψ

∂x2
dx1 ∧ dx2 + ∂ψ

∂z
dx1 ∧ dz +

3∑
j=1

∂ψ

∂yj
dx1 ∧ dyj , whence

dΦu
#(ψ dx1) = −

( ∂ψ
∂x2

(Φu) +
∂ψ

∂z
(Φu) ∂2u+

3∑
j=1

∂ψ

∂yj
(Φu) ∂2νu

j
)
dx1 ∧ dx2

= −∂2[ψ(Φu)] dx
1 ∧ dx2

which yields to

〈∂GGu, ψ dx
1〉 = −

∫
Ω

∂2[ψ(Φu)] dL2 = 0 . (2.7)

ii) If η = ψ dx2, then dη =
∂ψ

∂x1
dx1 ∧ dx2− ∂ψ

∂z
dx2 ∧ dz−

3∑
j=1

∂ψ

∂yj
dx2 ∧ dyj and we similarly obtain:

〈∂GGu, ψ dx
2〉 =

∫
Ω

∂1[ψ(Φu)] dL2 = 0 . (2.8)
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iii) If η = ψ dz, then dη =
∂ψ

∂x1
dx1 ∧ dz + ∂ψ

∂x2
dx2 ∧ dz −

3∑
j=1

∂ψ

∂yj
dz ∧ dyj , whence

dΦu
#(ψ dz) =

( ∂ψ
∂x1

(Φu) ∂2u− ∂ψ

∂x2
(Φu) ∂1u−

3∑
j=1

∂ψ

∂yj
(Φu)

∣∣∣∣ ∂1u ∂2u
∂1νu

j ∂2νu
j

∣∣∣∣) dx1 ∧ dx2
= −∂1u

( ∂ψ
∂x2

(Φu) +

3∑
j=1

∂ψ

∂yj
(Φu) ∂2νu

j
)
dx1 ∧ dx2

+ ∂2u
( ∂ψ
∂x1

(Φu) +

3∑
j=1

∂ψ

∂yj
(Φu) ∂1νu

j
)
dx1 ∧ dx2

= −∂1u
(
∂2[ψ(Φu)]−

∂ψ

∂z
(Φu) ∂2u

)
dx1 ∧ dx2

+ ∂2u
(
∂1[ψ(Φu)]−

∂ψ

∂z
(Φu) ∂1u

)
dx1 ∧ dx2

=
(
−∂1u ∂2[ψ(Φu)] + ∂2u ∂1[ψ(Φu)]

)
dx1 ∧ dx2

which yields to

〈∂GGu, ψ dz〉 =
∫
Ω

(
−∂1u ∂2[ψ(Φu)] + ∂2u ∂1[ψ(Φu)]

)
dL2 = 0 . (2.9)

iv) If η = ψ dy1, then dη =

2∑
i=1

∂ψ

∂xi
dxi ∧ dy1 + ∂ψ

∂z
dz ∧ dy1 −

3∑
j=2

∂ψ

∂yj
dy1 ∧ dyj , whence

dΦu
#(ψ dy1) =

( ∂ψ
∂x1

(Φu) ∂2νu
1 − ∂ψ

∂x2
(Φu) ∂1νu

1

+
∂ψ

∂z
(Φu)

∣∣∣∣ ∂1u ∂2u
∂1νu

1 ∂2νu
1

∣∣∣∣− 3∑
j=2

∂ψ

∂yj
(Φu)

∣∣∣∣ ∂1νu1 ∂2νu
1

∂1νu
j ∂2νu

j

∣∣∣∣) dx1 ∧ dx2
= −∂1νu1

( ∂ψ
∂x2

(Φu) +
∂ψ

∂z
(Φu) ∂2u+

3∑
j=2

∂ψ

∂yj
(Φu) ∂2νu

j
)
dx1 ∧ dx2

+ ∂2νu
1
( ∂ψ
∂x1

(Φu) +
∂ψ

∂z
(Φu) ∂1u+

3∑
j=2

∂ψ

∂yj
(Φu) ∂1νu

j
)
dx1 ∧ dx2

= −∂1νu1
(
∂2[ψ(Φu)]−

∂ψ

∂y1
(Φu) ∂2νu

1
)
dx1 ∧ dx2

+ ∂2νu
1
(
∂1[ψ(Φu)]−

∂ψ

∂y1
(Φu) ∂1νu

1
)
dx1 ∧ dx2

=
(
−∂1νu1 ∂2[ψ(Φu)] + ∂2νu

1 ∂1[ψ(Φu)]
)
dx1 ∧ dx2 .

Arguing in a similar way for j = 1, 2, 3, we get

〈∂GGu, ψ dy
j〉 =

∫
Ω

(
−∂1νuj ∂2[ψ(Φu)] + ∂2νu

j ∂1[ψ(Φu)]
)
dL2 = 0 . (2.10)

3 Relaxed energy and weak limit currents

In this section we introduce the relaxed curvature energy functional and discuss some general properties
of functions u with finite relaxed energy. It turns out that the current carried by the Gauss graph of u
is well-defined. We then analyze the weak limits Σ of sequences of currents carried by the Gauss graph
of smooth functions with equibounded curvature energies. We shall see that the corresponding weak
limit currents Σ retain some information from the L1-limit function u. We then introduce a curvature
functional on the currents Σ that agrees with the curvature energy E(u) when Σ = GGu for some
smooth function u. Its relationship with the relaxed energy is finally discussed.
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The relaxed energy. We define for any u ∈ L∞(Ω)

E(u) := inf{lim inf
h→∞

E(uh) | {uh}h ⊂ C2(Ω) , uh → u strongly in L1(Ω)} (3.1)

and we correspondingly denote by

E(Ω) := {u ∈ L∞(Ω) | E(u) <∞}

the class of L∞-functions with finite relaxed energy. In the above definition, by a standard density
argument one can restrict to consider uniformly bounded approximating sequences in C2

b (Ω). Moreover,
by lower-semicontinuity we clearly have:

E(u) = E(u) ∀u ∈ C2
b (Ω) .

Notice that since for smooth functions E(uh) ≥
∫
Ω

√
1 + |∇uh|2 dL2, then it turns out that any

function with finite relaxed energy has bounded variation, whence

E(Ω) ⊂ BV (Ω) .

Therefore, the unit normal νu is well-defined a.e. by (1.7), but in terms of the approximate gradient ∇u,
whose components will be denoted by ∂iu. We refer to [5, 17] for the main properties of BV -functions.

By means of a slicing argument, and using results from [2], we also obtain the following.

Theorem 3.1 Let u ∈ E(Ω) and let {uh}h ⊂ C2
b (Ω) be such that uh → u strongly in L1(Ω) and

suph(E(uh)+‖uh‖∞) <∞. Then Φuh
(x) converges to Φu(x) weakly in the BV -sense, and hence strongly

in L1. Therefore, the approximate unit normal νu is a function of bounded variation, νu ∈ BV (Ω,S2).

Proof: We already know that uh ⇀ u weakly in the BV -sense. We now claim that the gradient ∇uh
converges L2 Ω -a.e. to the approximate gradient ∇u. By the claim we deduce the L2-a.e. convergence
of νuh

to νu. Since moreover suph
∫
Ω
|∇νuh

| dx < ∞, by compactness we infer that νuh
converges to

νu weakly in the BV -sense, whence νu ∈ BV (Ω,S2).
In order to prove the claim, we denote by pi : R2

x → R the orthogonal projection pi(x) = xi. For any
x1 ∈ p1(Ω), consider the slices t 7→ uh(x1, t) and the corresponding Cartesian curves

ch(t) := (t, uh(x1, t)) , t ∈ Ix1
:= {x2 ∈ R | (x1, x2) ∈ Ω} .

Since the principal curvatures k1(h), k2(h) of the graph surfaces Guh
bound the curvature kch of the

Cartesian curve ch(t), along the curve ch we have(
1 + (k1(h)

2
+ k2(h)

2
) + (k1(h)k2(h))

2
)1/2

≥
√
1 + |kch |2 .

Therefore, by a slicing argument we deduce that

sup
h

∫
ch

(1 + |kch |) dH1 <∞ for L1-a.e. x1 ∈ p1(Ω) .

As a consequence, for L1-a.e. such x1 the Cartesian curve t 7→ c(t) := (t, u(x1, t)) has finite relaxed
energy in the sense of [2]. In particular, we infer that the derivatives ċh(t) converge a.e. in Ix1 to the
approximative derivative ċ(t). This yields the convergence L2-a.e. in Ω of the partial derivative ∂1uh
to the first component ∂1u of the approximate gradient ∇u of the BV -function u. The same property
holds true for the second derivative ∂2u, as required. �

The absolutely continuous component. For u ∈ E(Ω), we have just seen that the function
Φu(x) := (x, u(x), νu(x)) has bounded variation. Therefore, similarly to the smooth case, we may define
the current GGa

u ∈ D2(U × S2) as
GGa

u := Φu#[[ Ω ]] (3.2)
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where this time the pull-back of 2-forms is computed by means of the approximate gradient of Φu, given
similarly to the smooth case by ∇Φu = (∂1Φu, ∂2Φu), see (1.9), so that (1.14) holds for a.e. x ∈ Ω.
Whence the formulas (2.1) continue to hold, with GGa

u instead of GGu, but this time in terms of
the approximate gradient of Φu. In particular, as in Remark 2.1 we deduce that (2.2) holds, where
Gu := φu#[[ Ω ]] is the current carried by the rectifiable graph of u in the sense of Giaquinta-Modica-
Souček [17]. We also recall that due to the codimension one, there is a unique Cartesian current Tu in
cart(Ω × R) that “fills the holes” of the rectifiable graph. It is given by the boundary of the (naturally
oriented) subgraph of u, i.e.,

Tu := ∂[[SGu ]] on D2(Ω× R) , SGu := {(x, z) ∈ Ω× R | z < u(x)} . (3.3)

It is well-known from Federer’s work [14] that the current ∂[[SGu ]] is i.m. rectifiable in R2(Ω×R) if and
only if u ∈ BV (Ω). Moreover, compare [17], the graph current Gu satisfies the null-boundary condition
(∂Gu) Ω×R = 0 if and only if u ∈W 1,1(Ω). Therefore, for Sobolev functions we have Gu = ∂[[SGu ]],
whereas for general BV -functions we may decompose Tu = Gu + T s

u , where the second component is
determined by u and by the singular component Dsu of its distributional derivative.

Weak limit currents. Let {uh}h ⊂ C2
b (Ω) be a sequence satisfying suph E(uh) < ∞ and

suph ‖uh‖∞ <∞. Then {GGuh
}h is a sequence of i.m. rectifiable currents in R2(U ×S2) with no inner

boundary, ∂GGuh
= 0 on D1(U × S2) for each h, and equibounded masses, suph M(GGuh

) <∞, as

1

2
E(uh) ≤ H2(GGuh

) = M(GGuh
) ≤ E(uh) ∀h .

Therefore, by Federer-Fleming’s closure theorem [15], possibly passing to a subsequence the currents
GGuh

weakly converge in D2(U ×S2) to some i.m. rectifiable current Σ ∈ R2(U ×S2) with finite mass,
M(Σ) < ∞, and no inner boundary, ∂Σ = 0 on D1(U × S2). By Remark 2.1, we also deduce that the
support of Σ is a compact set contained in U × S2+, where S2+ the upper half-sphere given by (2.3).

Since moreover Π1#GGuh
= Guh

, and suph M(Guh
) < ∞, we deduce that {uh}h weakly converges

in the BV -sense to a function u with finite relaxed energy, u ∈ E(Ω), and {Guh
}h weakly converges in

D2(Ω× R) to the corresponding Cartesian current Tu, see (3.3). Therefore, we have:

Π1#Σ = Tu := ∂[[SGu ]] ∈ cart(Ω× R) .

This yields that we may and do decompose

Σ = GGa
u +Σs (3.4)

where u ∈ E(Ω) and Σs is an i.m. rectifiable current in R2(U × S2) satisfying:

Π1#GG
a
u = Gu , Π1#Σ

s = T s
u := Tu −Gu .

Since (∂Σ) U × S2 = 0, the following null-boundary condition holds:

〈∂GGa
u, η〉+ 〈∂Σs, η〉 = 0 ∀ η ∈ D1(U × S2) . (3.5)

Furthermore, the singular component Σs is “vertical” in the sense that

Σs(ψ dx1 ∧ dx2) = 0 ∀ψ ∈ C∞
c (U × S2) . (3.6)

In fact, by the weak BV -convergence of Φuh
to Φu as h→ ∞, for any test function ψ we get:

〈GGuh
, ψ dx1 ∧ dx2〉 =

∫
Ω

ψ(Φuh
) dL2 →

∫
Ω

ψ(Φu) dL2 = 〈GGa
u, ψ dx

1 ∧ dx2〉 .

In a similar way, by (2.1) we recover for each ψ ∈ C∞
c (U × S2) the formulas

〈Σs, ψ dx1 ∧ dz〉 = 〈Ds
2u, ψ(Φu)〉 , 〈Σs, ψ dx2 ∧ dz〉 = −〈Ds

1u, ψ(Φu)〉 ,
〈Σs, ψ dx1 ∧ dyj〉 = 〈Ds

2νu
j , ψ(Φu)〉 , 〈Σs, ψ dx2 ∧ dyj〉 = −〈Ds

1νu
j , ψ(Φu)〉 , j = 1, 2, 3

(3.7)

which are to be intended by decomposing the singular part Dsv of the weak derivative of a BV -function
v ∈ BV (Ω) into the Jump and Cantor components: Dsv = DJv +DCv, and Ds

i v = Dsv • ei.
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Remark 3.2 Due to the higher codimension, in general the action of the singular component Σs on
forms of the type ψ dz∧dyj and ψ dyj1 ∧dyj2 is not identified by the function Φu or by the weak limits
(in the sense of the measures) of the determinants appearing in the last formulas from (2.1).

We now recover the geometric properties from Theorem 1.2. They are inherited through the weak
convergence as currents by the analogous ones for smooth functions. More precisely, if u ∈ C2

b (Ω) we
readily check:

i) 〈GGu, η ∧ φ〉 = 0 for each η ∈ D1(U × S2) ;

ii) 〈GGu, ψ φ
∗〉 ≥ 0 for each ψ ∈ C(U × S2) such that ψ ≥ 0 .

In fact, recalling the definition (1.6) of the canonical forms, we compute:

Φu
#φ = Φu

#(y1dx1 + y2dx2 + y3dz) = (νu
1dx1 + νu

2dx2 + νu
3(∂1u dx

1 + ∂2u dx
2)) = 0

so that i) holds. As to condition ii), we compute

Φu
#φ∗ = Φu

#(y1dx2 ∧ dz + y2dz ∧ dx1 + y3dx1 ∧ dx2)
= νu

1dx2 ∧ (∂1u dx
1 + ∂2u dx

2) + νu
2 (∂1u dx

1 + ∂2u dx
2) ∧ dx1 + νu

3dx1 ∧ dx2

= g
1/2
u dx1 ∧ dx2

so that we get

〈GGu, ψ φ
∗〉 =

∫
Ω

√
gu · ψ(Φu) dL2 ∀ψ ∈ C(U × S2) . (3.8)

Remark 3.3 Since Σ ∈ R2(U × S2), there exist a 2-rectifiable set R ⊂ U × S2, an H2 R-summable

multiplicity function θ : R→ N+, and an H2 R-measurable unit 2-vector field
−→
ζ : R→

∧2
(R3

(x,z)×R3
y)

orienting the approximate tangent 2-space T((x,z),y)R at H2-a.e. point ((x, z), y) ∈ R, such that

〈Σ, ω〉 =
∫
R

θ 〈ω,
−→
ζ 〉 dH2 ∀ω ∈ D2(U × S2) .

In this case, we shall write Σ = [[R, θ,
−→
ζ ]] . Moreover, similarly to (1.15), for future use we stratify the

orienting unit 2-vector field as
−→
ζ = ζ(0) + ζ(1) + ζ(2), whence

ζ(0) =
∑

1≤i<j≤3

ζi,j ei ∧ ej , ζ(1) =

3∑
i,j=1

ζji ei ∧ εj , ζ(2) =
∑

1≤i<j≤3

ζi,j εi ∧ εj . (3.9)

If e.g. Σ = GGu for some u ∈ C2
b (Ω), we have

−→
ζ = ξu/|ξu|, so that we get ζ1,1 = |ξu|−1 > 0 for

each P = ((x, z), y) ∈ R, as R = GGu. We thus denote

R+ := {P ∈ R | ζ1,1(P ) > 0}

and observe that if Σ is a weak limit current as above, so that (3.4) holds, then H2-a.e. point in the
rectifiable set corresponding to the component GGa

u clearly belongs to the set R+. Furthermore, arguing
in a way very similar to [17, Thm. 2, Sec. 4.2.3], it can be checked that Σ R+ = GGa

u .

In conclusion, we may and do introduce the class

Gcart(U × S2) := {Σ ∈ D2(U × S2) | there exists {uh} ⊂ C2
b (Ω) such that

GGuh
⇀ Σ in D2(U × S2) , suph(M(GGuh

) + ‖uh‖∞) <∞} (3.10)

for which the following structure properties have just been proved:

Theorem 3.4 Let Σ ∈ Gcart(U × S2), where U := Ω× R. Then:

i) Σ is an i.m. rectifiable 2-current in R2(U × S2) , so that Σ = [[R, θ,
−→
ζ ]] , see Remark 3.3 ;

14



ii) the current Σ has finite mass, M(Σ) =
∫
R
θ dH2 < ∞, compact support spt ⊂ U × S2+, see (2.3),

and no inner boundary, (∂Σ) U × S2 = 0 ;

iii) Σ = GGa
u + Σs for some u ∈ E(Ω), where the absolute component is GGa

u := Φu#[[ Ω ]], so that
(2.1) holds (in the approximate sense, with GGa

u for GGu ) ;

iv) on account of (3.9), we have:

Σ R+ = GGa
u , where R+ := {P ∈ R | ζ1,1(P ) > 0} ; (3.11)

v) the singular component Σs satisfies the “verticality” condition (3.6) and formulas (3.7) ;

vi) 〈Σ, η ∧ φ〉 = 0 for each η ∈ D1(U × S2), see (1.6) ;

vii) 〈Σ, ψ φ∗〉 ≥ 0 for each ψ ∈ C(U × S2) such that ψ ≥ 0 .

Remark 3.5 Arguing as in the smooth case, it turns out that both properties vi) and vii) hold true for
the absolutely continuous component GGa

u. Whence they are satisfied by the singular component Σs,
too. Property vi), which is equivalent to the orthogonality condition described in Remark 1.3, makes
sense only if the approximate tangent space T((x,z),y)R is not “completely vertical”. More precisely, at
points ((x, z), y) in the 2-rectifiable set R where T((x,z),y)R is orthogonal to the “horizontal” directions
e1, e2, e3 , the orthogonality condition

v • (y, 0R3) = 0 ∀ v ∈ T((x,z),y)R

is trivially satisfied and hence it gives no information on the geometry of the possible “completely vertical”
components of Σ. Moreover, as to the positivity condition vii), by (3.8), and taking a good representative
for the BV -map Φu, we get for every ψ ∈ C(U × S2)

〈GGa
u, ψ φ

∗〉 =
∫
Ω

ψ(Φu)
√
1 + |∇u|2 dL2 , 〈Σs, ψ φ∗〉 =

∫
Ω

ψ(Φu) d|Dsu| .

Boundary of Gauss graphs. Let Σ ∈ Gcart(U × S2), so that (3.4) holds for some u ∈ E(Ω).
Concerning the boundary of the absolutely continuous component GGa

u, according to (2.7), (2.8), (2.9),
and (2.10), by the definition (3.2) it turns out that for every test function ψ ∈ C∞

c (U ×S2) the following
six formulas hold:

〈∂GGa
u, ψ dx

1〉 = −
∫
Ω

∂2[ψ(Φu)] dL2

〈∂GGa
u, ψ dx

2〉 =
∫
Ω

∂1[ψ(Φu)] dL2

〈∂GGa
u, ψ dz〉 =

∫
Ω

(
−∂1u ∂2[ψ(Φu)] + ∂2u ∂1[ψ(Φu)]

)
dL2

〈∂GGa
u, ψ dy

j〉 =
∫
Ω

(
−∂1νuj ∂2[ψ(Φu)] + ∂2νu

j ∂1[ψ(Φu)]
)
dL2 , j = 1, 2, 3 .

(3.12)

As we shall see in Sec. 6 below, in general the boundary current ∂GGa
u is non-trivial, even if u is a

Sobolev function in W 1,1(Ω). Therefore, by (3.5) we deduce that in general the singular component Σs

is non-trivial, even if for Sobolev functions we have seen that Tu = Gu and hence Π1#Σ
s = T s

u = 0.

The generalized curvature functional. Let now Σ ∈ R2(U × S2), so that we can write

Σ = [[R, θ,
−→
ζ ]], see Remark 3.3. On account of the stratification (3.9) of the orienting unit 2-vector field

−→
ζ = ζ(0) + ζ(1) + ζ(2), we define:

E(Σ) := E1(Σ) + E2(Σ) + E3(Σ) , Ei(Σ) :=

∫
R

θ |ζ(i)| dH2 , i = 0, 1, 2 . (3.13)

Since the mass of Σ is M(Σ) =
∫
R
θ dH2, we clearly have

1

2
E(Σ) ≤ M(Σ) ≤ E(Σ) <∞ ∀Σ ∈ R2(U × S2) .
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When considering currents in the subclass Gcart(U × S2), the functional Σ 7→ E(Σ) may be called
the generalized curvature functional, as we actually have:

E(GGu) = E(u) ∀u ∈ C2
b (Ω) . (3.14)

In this case, in fact, with the above notation we can write R = GGu, θ ≡ 1, and
−→
ζ =

−→
ζu where, we

recall,
−→
ζu = ξu/|ξu|, with |ξu| = JΦu = |∂x1Φu ∧ ∂x2Φu|. Therefore, by the area formula we get

Ei(GGu) :=

∫
GGu

|η(i)u | dH2 =

∫
Ω

|ξ(i)u | dL2 , i = 0, 1, 2 (3.15)

and hence formula (3.14) follows from (2.5).
By the definition, it is readily checked that the above functional is lower semi-continuous along

sequences of i.m. rectifiable currents in R2(U × S2) weakly converging to some current in R2(U × S2).
In particular, if Σ ∈ Gcart(U × S2) and {uh} ⊂ C2

b (Ω) satisfies GGuh
⇀ Σ in D2(U × S2), with

suph(M(GGuh
) + ‖uh‖∞) <∞, we deduce that

E(Σ) ≤ lim inf
h→∞

E(uh) <∞ .

Remark 3.6 Finally, since Σ = GGa
u +Σs for some u ∈ E(Ω), and (3.11) holds, we can decompose

M(Σ) = M(GGa
u) +M(Σs) , E(Σ) = E(GGa

u) + E(Σs)

where E(GGa
u) = E(u), the functional E(u) being defined as in (2.4), but in terms of the approximate

derivatives of u. The energy contribution of the singular component Σs will be computed in Appendix B,
referring to Example 7.1 below.

Further properties. On account of definition (3.10) and of the decomposition formula (3.4), we
shall denote for any u ∈ E(Ω)

Gcartu := {Σ ∈ Gcart(U × S2) | Σ = GGa
u +Σs} (3.16)

the subclass of currents in Gcart with “underlying function” equal to u.
By the previous arguments, it turns out that Gcartu is a non-empty class for each u ∈ E(Ω).

Moreover, by lower-semicontinuity we actually have:

E(u) ≥ inf{E(Σ) | Σ ∈ Gcartu} ∀u ∈ E(Ω) . (3.17)

However, we shall see that in general the equality is violated in (3.17) and hence a gap phenomenon
holds. More precisely, in Example 8.2 below we shall find a piecewise constant BV -function u ∈ E(Ω)
such that

E(u) > inf{E(Σ) | Σ ∈ Gcartu} . (3.18)

Remark 3.7 The relaxed energy is linked to a related relaxed energy on currents. More precisely, for
each current Σ ∈ Gcart(U ×S2) we introduce the relaxed energy w.r.t. the weak convergence as currents

E(Σ) := inf{lim inf
h→∞

E(uh) | {uh}h ⊂ C2
b (Ω) , GGuh

⇀ Σ weakly in D2(U × S2)}

so that by lower semicontinuity E(Σ) ≥ E(Σ) for each Σ, and we readily check the following property:

Proposition 3.8 For every u ∈ E(Ω) we have

E(u) = inf{E(Σ) | Σ ∈ Gcartu} .

Proof: For any sequence {uh}h ⊂ C2(Ω) converging to u in L1(Ω) and satisfying suph(E(uh) +
‖uh‖∞) <∞, by closure-compactness, possibly passing to a subsequence the Gauss graphs GGuh

weakly
converge to some current Σ ∈ Gcart(U ×S2), whence E(Σ) ≤ lim infh E(uh). Since actually Σ ∈ Gcartu,
the inequality ≥ readily follows. On the other hand, if GGuh

⇀ Σ and Σ ∈ Gcartu, then uh → u
strongly in L1, whence the opposite equality ≤ holds, too. �
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4 Generalized curvature measures

In this section we discuss the notion of generalized first and second symmetric curvatures from [7] in
the framework of weak limits of Gauss graphs of smooth Cartesian surfaces. We shall give an explicit
computation in the case of two surfaces with line or point singularities: the union of two rectangles meeting
at an edge, Example 4.3, and the lateral surface of a cone, Example 4.4. Referring to these two models,
we shall then compare our definitions with the notion by Sullivan [24] of mean and Gauss curvature for
polyhedral surfaces and 2-rectifiable sets. We then discuss the relation with the Gauss-Bonnet theorem.
Finally, we introduce the distributional definition of weak and Gauss curvatures, showing that they fail
to be good geometric objects.

Generalized curvature measures. Following (1.4), if M = Gu for some smooth function
u ∈ C2

b (Ω), we shall denote

χGu
1 := −Φu#(Hu H2 Gu) , χGu

2 := Φu#(Ku H2 Gu) . (4.1)

In terms of the Gauss graph current GGu, on account of (1.5) we thus get

〈χGu
i , ψ〉 = (−1)i〈GGu, ψΘi) ∀ψ ∈ C∞

c (U × S2) , i = 1, 2 .

In fact, recalling that GGu = Φu#[[ Ω ]] we have:

Proposition 4.1 If u ∈ C2
b (Ω), then

−Φu
#Θ1 =

√
gu Hu dx

1 ∧ dx2 , Φu
#Θ2 =

√
gu Ku dx

1 ∧ dx2

where Hu and Ku are given by (1.11) and (1.12). Therefore, for every ψ ∈ C∞
c (U × S2) we have

χGu
1 (ψ) =

∫
Ω

ψ(Φu)
√
gu Hu dL2 , χGu

2 (ψ) =

∫
Ω

ψ(Φu)
√
gu Ku dL2 . (4.2)

Proof: As to the first symmetric curvature, we compute:

2Φu
#Θ1 = νu

1(dx2 ∧ dνu3 − du ∧ dνu2)
+νu

2(du ∧ dνu1 − dx1 ∧ dνu3) + νu
3(dx1 ∧ dνu2 − dx2 ∧ dνu1)

=
(
νu

1(−∂1νu3 − (∂1u ∂2νu
2 − ∂2u ∂1νu

2))
+νu

2((∂1u ∂2νu
1 − ∂2u ∂1νu

1)− ∂2νu
3) + νu

3(∂2νu
2 + ∂1νu

1)
)
dx1 ∧ dx2 .

Recalling (1.7) and (1.10), and using that for i, j = 1, 2

∂iνu
j =

1

2 g3/2
(
−2 ∂2j,iu g + ∂ju ∂ig

)
, ∂iνu

3 = − 1

2 g3/2
∂ig

where g = gu, we get

4 g2 Φu
#Θ1 =

(
−∂1u ∂1g + (∂1u)

2(−2 ∂22,2u g + ∂2u ∂2g)− ∂1u ∂2u (−2 ∂22,1u g + ∂2u ∂1g)
−∂1u ∂2u (−2 ∂21,2u g + ∂1u ∂2g) + (∂2u)

2(−2 ∂21,1u g + ∂1u ∂1g)− ∂2u ∂2g
−2 ∂22,2u g + ∂2u ∂2g − 2 ∂21,1u g + ∂1u ∂1g

)
dx1 ∧ dx2

= −2 g
(
(1 + (∂1u)

2)∂22,2u+ (1 + (∂2u)
2)∂21,1u− 2∂1u ∂2u ∂

2
1,2u

)
dx1 ∧ dx2

and hence the first formula follows from (1.11). As to the second symmetric curvature, we similarly have:

Φu
#Θ2 =

(
νu

1

∣∣∣∣ ∂1νu2 ∂2νu
2

∂1νu
3 ∂2νu

3

∣∣∣∣+ νu
2

∣∣∣∣ ∂1νu3 ∂2νu
3

∂1νu
1 ∂2νu

1

∣∣∣∣+ νu
3

∣∣∣∣ ∂1νu1 ∂2νu
1

∂1νu
2 ∂2νu

2

∣∣∣∣ ) dx1 ∧ dx2

which yields

4 g7/2 Φu
#Θ2 =

(
∂1u

[
(−2 ∂22,1u g + ∂2u ∂1g) (−∂2g)− (−2 ∂22,2u g + ∂2u ∂2g) ∂1g

]
+ ∂2u

[
∂1g (−2 ∂21,2u g + ∂1u ∂2g)− ∂2g (−2 ∂21,1u g + ∂1u ∂1g)

]
+(−2 ∂21,1u g + ∂1u ∂1g) (−2 ∂22,2u g + ∂2u ∂2g)
−(−2 ∂21,2u g + ∂1u ∂2g) (−2 ∂22,1u g + ∂2u ∂1g)

)
dx1 ∧ dx2

= 4 g2
(
∂21,1u ∂

2
2,2u− (∂21,2u)

2
)
dx1 ∧ dx2
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and hence the second formula follows from (1.12). Equations (4.2) readily follow. �

Remark 4.2 Since u is smooth and bounded, by a density argument and by the dominated convergence
theorem it turns out that formulas (4.2) extend to test functions ψ ∈ C(U × S2).

Following [7], the generalized principal curvatures of a current Σ ∈ Gcart(U × S2) are the Radon
measures defined by the formulas

〈cΣi , ψ〉 := (−1)i〈Σ, ψΘi〉 ∀ψ ∈ C(U × S2) , i = 1, 2

so that cGGu
i = χGu

i if Σ = GGu for some u ∈ C2
b (Ω). Moreover, if {uh} ⊂ C2

b (Ω) satisfies GGuh
⇀ Σ

in D2(U × S2), we deduce that

lim
h→∞

〈χGuh
i , ψ〉 = 〈cΣi , ψ〉 ∀ψ ∈ C(U × S2) , i = 1, 2 .

Denoting by π : R6 → R2 the orthogonal projection onto the first two components, π((x, z), y) := x,
we may also consider the projected measures:

〈π#cΣi , ψ〉 := 〈cΣi , ψ ◦ π〉 , ψ ∈ C(Ω) , i = 1, 2

which are signed Borel measures in Ω with finite total variation. Since Σ R+ = GGa
u, see Remark 3.3,

it turns out that the Radon-Nykodym derivative of π#c
Σ
i w.r.t. the Lebesgue measure is the density of

the measure corresponding to GGa
u, and we thus can write for every ψ ∈ C(Ω)

〈(π#cΣ1 )a, ψ〉 =
∫
Ω

ψ(x)
√
gu Hu dL2 〈(π#cΣ2 )a, ψ〉 =

∫
Ω

ψ(x)
√
gu Ku dL2

〈(π#cΣ1 )s, ψ〉 = −〈Σs, ψ ◦ π ·Θ1〉 〈(π#cΣ2 )s, ψ〉 = 〈Σs, ψ ◦ π ·Θ2〉

where Hu and Ku are defined L2-a.e. in Ω as in (1.11) and (1.12), but in terms of the approximate
derivatives of the underlying function u ∈ E(Ω).

Example 4.3 Let Ω = Q2 :=]− 1, 1[2 and um(x1, x2) := m |x1|, where m > 0, so that Gum is made of
two rectangles meeting with an the exterior dihedral angle

θem = π − 2 arccos
m√

1 +m2
(4.3)

along the edge em = I × {0}, where I := {0}×] − 1, 1[. It is readily checked that um ∈ E(Q2), and
νum

(x) = (1 +m2)−1/2(− sgn(x1)m, 0, 1) if x /∈ I. We thus have Hum
≡ 0 and Kum

≡ 0 for x /∈ I,
whence we obtain E(um) = |Q2|

√
1 +m2. Moreover, we have

(∂GGa
um

) U × S2 = [[ I × {0} ]]× (δP+
m
− δP−

m
) , U = Q2 × R

where P±
m := (1 +m2)−1/2(±m, 0, 1) are points in S2 with geodesic distance equal to θem . Now, there

is an (optimal) i.m. rectifiable current Σm ∈ Gcart(U × S2) that “fills the fracture” in the Gauss graph
GGu at the edge I × {0}, given by

Σm = GGa
um

+Σs
m , Σs

m := −[[ I × {0} ]]× [[ γm ]]

γm being the oriented curve in the half-sphere S2+ parameterized by γm(θ) := (cos θ, 0, sin θ), where

θ ∈ [αm, π − αm] with αm := arccos(m/
√
1 +m2). In fact, we have ∂[[ γm ]] = δP−

m
− δP+

m
and hence

(∂Σs
m) U × S2 = [[ I × {0} ]]× ∂[[ γm ]] = −(∂GGa

um
) U × S2

which yields (∂Σm) U × S2 = 0. The mass of the singular component Σs
m agrees with the area of the

surface I × {0} × γm, whence, see (4.3),

M(Σs
m) = H1(I) · H1(γm) , H1(γm) = θem .
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Since moreover the unit tangent 2-vector
−→
ζ at points of the surface I ×{0}× γm satisfies ζ(0) = 0 and

ζ(2) = 0, whence
−→
ζ = ζ(1), see (3.9), we find that E0(Σ

s
m) = 0, E2(Σ

s
m) = 0, and hence

E(Σs
m) = E1(Σ

s
m) = M(Σs

m) = H1(I) · H1(γm) .

As a consequence, we compute:

〈cΣm
1 , ψ〉 = 〈cΣ

s
m

1 , ψ〉 = 〈Σs
m, ψΘ1〉 =

∫
I×{0}×γm

ψ((x, 0), y) 〈Θ1, ζ
(1)〉 dH2

for every ψ ∈ C(U × S2), and the total variation of cΣm
1 is

|cΣm
1 |(U × S2) =

∫
I×γm

〈Θ1, ζ
(1)〉 dH2 =

1

2
H1(I) · H1(γm) (4.4)

whereas cΣm
2 = 0. Finally, the projected measure π#c

Σm
1 on Q2 is singular w.r.t. the Lebesgue measure

L2 Q, and its singular component is concentrated at I,

(π#c
Σm
1 )s = π#c

Σs
m

2 =
1

2
H1(γm) · H1 I , H1(γm) = θem .

Example 4.4 Let Ω = B2, the unit disk of radius one, and um(x) := m (1− |x|), where m > 0, so that
Gum

is the lateral surface of the cone with basis ∂B2 × {0} and vertex Pm = (0, 0,m). We again have
um ∈ E(B2), where νum

(x) = (1 +m2)−1/2(m cos θ,m sin θ, 1) if x = ρ (cos θ, sin θ). We check

Hum
(x) = − m

2
√
1 +m2

1

|x|
, Kum

(x) = 0 ∀x ∈ B2 \ {0R2}

as the graph cone Gum
is a developable surface. Whence we obtain:

E(um) =

∫
B2

√
1 +m2 (1 + |2Hu|) dL2 = π

√
1 +m2 + 2πm .

Now, arguing as in [17, Sec. 3.2.2], it turns out that

(∂GGa
um

) U × S2 = −δPm
× [[ Γm ]] , U = B2 × R

Γm being the oriented circle in S2 parameterized by Γm(θ) := (1 +m2)−1/2(m cos θ,m sin θ, 1) , where
θ ∈ [0, 2π]. Furthermore, there is an optimal i.m. rectifiable current Σm ∈ Gcart(U × S2) that “fills the
hole” in the Gauss graph at the vertex Pm of the cone, given by

Σm = GGa
um

+Σs
m , Σs

m := δPm
× [[Sm ]] (4.5)

Sm being the oriented surface parameterized by Sm(θ, φ) := (cos θ sinφ, sin θ sinφ, cosφ), where θ ∈
[0, 2π] and φ ∈ [0, arccos(1/

√
1 +m2)]. In fact, we check ∂[[Sm ]] = [[ Γm ]] and hence (∂Σm) U×S2 = 0.

The mass of the singular component Σs
m agrees with the area of the surface Sm, whence

M(Σs
m) = H2(Sm) = 2π

(
1− 1√

1 +m2

)
.

Also, this time the unit tangent 2-vector
−→
ζ at points of the surface {Pm} × Sm satisfies ζ(0) = 0 and

ζ(1) = 0, whence
−→
ζ = ζ(2). We thus get E0(Σ

s
m) = 0, E1(Σ

s
m) = 0, and hence

E(Σs
m) = E2(Σ

s
m) = M(Σs

m) = 2π
(
1− 1√

1 +m2

)
.

As a consequence, we compute:

〈cΣm
1 , ψ〉 = 〈cGGa

um
1 , ψ〉 =

∫
B2

ψ(Φum)
√
gum Hum dL2 = −1

2

∫
B2

ψ(Φum)
m

|x|
dL2

〈cΣm
2 , ψ〉 = 〈cΣ

s
m

2 , ψ〉 = 〈Σs
m, ψΘ2〉 =

∫
Sm

ψ(Pm, y) 〈Θ2, η
(2)〉 dH2
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for every ψ ∈ C(U × S2), whence we get the total variation of the generalized curvature measures:

|cΣm
1 |(U × S2) =

∫
B2

√
gum

|Hum
| dL2 = πm

|cΣm
2 |(U × S2) =

∫
Sm

〈Θ2, η
(2)〉 dH2 = H2(Sm) = 2π

(
1− 1√

1 +m2

)
.

(4.6)

Finally, as to the projected measures in B2, we infer that π#c
Σm
1 = − m

2 |x|
· L2 B2, whereas π#c

Σm
2 is

singular w.r.t. the Lebesgue measure, and its singular part is concentrated at the origin,

π#c
Σm
2 = (π#c

Σm
2 )s = H2(Sm) · δ0R2 .

Mean curvature of polyhedral surfaces. It was defined by Sullivan [24] in such a way
that it is supported on the edges of a polyhedral surface M in R3. If e is an edge, then

|He| = H1(e) · 2 sin(θe/2)

where θe is the exterior dihedral angle along the edge. Assuming e.g. M = Gum , where um is given by
Example 4.3, and taking em = I ×{0}, then H1(em) = 2 and θem is given by (4.3). Therefore, (adding
the factor 1/2 as in our notation) on account of (4.4) it turns out that the definition of mean curvature
measure by Sullivan [24] differs from the one of [7], that we adopted here for weak limit of Gauss graphs
of Cartesian surfaces, as 2 sin(θem/2) = 2m/

√
1 +m2 < θem when m > 0.

We recall that the same feature holds in the case of the curvature of polyhedral curves. In fact,
following Sullivan [25], the curvature force measure of a piecewise smooth curve has a Dirac mass at
each corner point with mass 2 sin(θ/2), where θ is the turning angle, whereas the total curvature of a
polyhedral curve is the sum of the turning angles, compare [2].

Gauss curvature of polyhedral surfaces. It was defined by Sullivan [24] in such a way
that the Gauss-Bonnet theorem continues to hold. It is concentrated at the vertices, and in the case of
a triangulated polyhedral surface M, the Gauss curvature at a vertex P agrees with the angle defect,
whence KM(P ) := 2π −

∑
i θi, where θi is the angle of the ith-triangle of M meeting at P .

Assume e.g. that Mm(n) is the lateral surface of the pyramid with vertex Pm = (0, 0,m) and basis
given by a regular polygon with n edges and inscribed at the boundary ∂B2 of the unit disk. Each one
of the n triangles of Mm(n) has angle θi at Pm equal to 2 arcsin

(
sin(π/n)/

√
1 +m2

)
. Whence, the

Gauss curvature of Mm(n) at Pm (in the sense of Sullivan [24]) is

KΣm(n)(Pm) = 2π − 2n arcsin
( sin(π/n)√

1 +m2

)
∀n ∈ N+ , m > 0 .

Now, choosing the right orientation, the currents [[Mm(n) ]] weakly converge to the graph current
Gum

as n→ ∞, where um is the function of Example 4.4. On the other hand, we find:

lim
n→∞

KΣm(n)(Pm) = 2π
(
1− 1√

1 +m2

)
.

Gauss-Bonnet theorem. On account of the second line from (4.6), the above example seems
to imply (differently to what happens for the mean curvature) that the notion of Gauss curvature by
Sullivan [24] agrees with the one of [7] for generalized surfaces in R3, and here re-adapted. This feature
is coherent with the possible formulation of the Gauss-Bonnet theorem in this framework, compare [6, 7].

For this purpose, consider the 1-form

ω =
y3
|y|

( y2
y21 + y22

dy1 − y1
y21 + y22

dy2
)
.

One has dω = Θ̃2 on the open set A := {y ∈ R3 | y21 + y22 > 0}, where

Θ̃2 :=
1

|y|3
(
y1dy2 ∧ dy3 + y2dy3 ∧ dy1 + y3dy1 ∧ dy2

)
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so that the 2-form Θ̃2 is equal to Θ2 on the holed 2-sphere S2 \ {(0, 0,±1)}, see (1.5).
Therefore, if e.g. u : Ω → R is smooth, with Ω a smooth bounded domain in R2, and ∇u 6= 0R2 on

Ω, using that νu
#dω = dνu

#ω, by Stokes’ theorem we get

〈GGu,Θ2〉 = 〈Φu#[[ Ω ]],Θ2〉 =
∫
Ω

Φu
#Θ2 =

∫
Ω

νu
#Θ̃2 =

∫
Ω

dνu
#ω =

∫
∂Ω

νu
#ω

and hence the integral 〈GGu,Θ2〉 only depends on the value of νu at the boundary ∂Ω of the domain
through the pull-back

νu
#ω =

1

|∇u|2
(
∂1u dνu

1 − ∂2u dνu
2
)

=
1

gu1/2|∇u|2
[
(∂2u ∂

2
1,1u− ∂1u ∂

2
1,2u) dx

1 − (∂1u ∂
2
2,2u− ∂2u ∂

2
1,2u) dx

2
]
.

On the other hand, recalling that by Proposition 4.1 and by the area formula

〈GGu,Θ2〉 =
∫
Ω

Φu
#Θ2 =

∫
Ω

√
gu Ku dL2 =

∫
Gu

Ku dH2

after integrating by parts, the Gauss-Bonnet theorem yields to the equation∫
Gu

Ku dH2 = −
∫
∂Gu

kg dH1 + 2π · χ(Gu)

where kg is the geodesic curvature of the (naturally oriented) boundary curve ∂Gu and the Euler-
Poincaré characteristic χ(Gu) = 1, as the graph surface Gu is topologically equivalent to a disk.

The distributional mean curvature. If u ∈ E(Ω), the mean curvature is well-defined in
the distributional sense by the formula

H̃u :=
1

2
Div

[ ∇u√
1 + |∇u|2

]
= −1

2
Div(νu

1, νu
2) .

In fact, if {uh}h ⊂ C2
b (Ω) is such that uh → u strongly in L1(Ω) and suph(E(uh) + ‖uh‖∞) < ∞,

by Theorem 3.1, and using (1.13), for any test function φ ∈ C∞
c (Ω) we get as h→ ∞∫

Ω

div
[ ∇uh√

1 + |∇uh|2
]
φdL2 = −

∫
Ω

∇uh√
1 + |∇uh|2

•DφdL2 → −
∫
Ω

∇u√
1 + |∇u|2

•DφdL2 .

However, by slightly modifying the function from Example 4.3, letting Ω = Q2 :=] − 1, 1[2 and
u(x1, x2) := m |x1|+ a x2, where m, a > 0, we readily obtain

H̃u =
m√

1 +m2 + a2
· H1 I , I := {0}×]− 1, 1[

and hence the total variation of such a measure does not return the definition of mean curvature measure
by Sullivan [24], as it does not contain the information on the length of the edge in the graph Gu.

The distributional Gauss curvature. Following the definition by J. M. Ball [8] of distri-
butional determinant, for each u ∈ E(Ω) one may similarly consider:

K̃u :=
1

2
Div

(
νu

1∂2νu
2 − νu

2∂2νu
1, νu

2∂1νu
1 − νu

1∂1νu
2
)
.

Choosing the 1-form ω1 :=
1

2
(y1dy2 − y2dy1), for any test function φ ∈ C∞

c (Ω) we have:

Φu
#ω1 ∧ dφ = −1

2

(
νu

1∂2νu
2 − νu

2∂2νu
1, νu

2∂1νu
1 − νu

1∂1νu
2
)
• ∇φdx1 ∧ dx2
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and hence we get

〈K̃u, φ〉 =
∫
Ω

Φu
#ω1 ∧ dφ = 〈GGa

u, ω1 ∧ dφ〉 .

Now, if u is smooth, by (1.13) we clearly have

Φu
#(dy1 ∧ dy2) = Ku dx

1 ∧ dx2

whereas by Stokes’ theorem we know that the current GGa
u = GGu has no inner boundary in U ×S2, so

that in particular 〈GGu, d(φ∧ω1)〉 = 0. Using that d(φ∧ω1) = −ω1 ∧ dφ+φdy1 ∧ dy2, we thus obtain:

〈K̃u, φ〉 = 〈GGu, φ dy
1 ∧ dy1〉 =

∫
Ω

φΦu
#(dy1 ∧ dy2) =

∫
Ω

φKu dx .

In general, if u ∈ E(Ω) we similarly obtain for every φ ∈ C∞
c (Ω)

〈K̃u, φ〉 = 〈GGa
u, φ dy

1 ∧ dy1〉 − 〈∂GGa
u, φ ∧ ω1〉 , 〈GGa

u, φ dy
1 ∧ dy1〉 =

∫
Ω

φKu dx

where Ku is defined as in (1.13), but in terms of the approximate first and second derivatives of u.
If e.g. u = um is given by Example 4.4, since Kum = 0 on B2 \ {0R2}, we compute

〈GGa
um
, φ dy1 ∧ dy1〉 =

∫
B2

φKum dx = 0 .

Moreover, if Σ = Σm is the corresponding Gauss graph current in (4.5), using this time that Σm has no
inner boundary in U × S2, the singular component of the distributional Gauss curvature gives:

−〈∂GGa
u, φ dω1〉 = 〈∂Σs

m, φ dω1〉 = 〈δPm × [[Sm ]], φ dω1〉 = φ(0R2) · 〈[[Sm ]], dω1〉 .

Recalling that ∂[[Sm ]] = [[ Γm ]], we thus compute

〈[[Sm ]], dω1〉 = 〈[[ Γm ]], ω1〉 =
∫ 2π

0

Γm
#ω1 =

m2

1 +m2
· 2π .

In conclusion, in accordance with the well-known counterexample by S. Müller [22] on the distributional
determinant, we have obtained the formula:

K̃um
= Kum

L2 B2 + cm δ0R2 , Kum
≡ 0 , cm :=

m2

1 +m2
· 2π .

However, since the weight cm of the Dirac measure is different from the value 2π
(
1− 1√

1+m2

)
of the

Gauss curvature (in the sense of Sullivan [24]) at the vertex of the cone, we conclude that (similarly as

to H̃u ) the distributional definition K̃u of Gauss curvature fails to be the right geometric object, too.

5 A first relaxation formula

Beside the structure theorems 3.1 and 3.4, and the previously described consequences, finding necessary
and sufficient conditions to the membership of a bounded BV -function u : Ω → R to the class E(Ω) of
functions with finite relaxed energy is a non-trivial open problem. For this reason, in the sequel we shall
restrict to the subclass of 0-homogeneous functions defined in the open unit ball Ω = B2.

More precisely, we shall assume that u : B2 → R satisfies u(x) = u(x/|x|) for each x ∈ B2 \ {0R2}.
Whence (with an abuse of notation) we shall identify u(x) = f(θ) for some function f : [0, 2π] → R,
where x = (ρ cos θ, ρ sin θ). Denoting for simplicity s := sin θ and c := cos θ, we formally compute

∇u =
(
− ḟs
ρ
,
ḟc

ρ

)
, νu =

1

(ρ2 + ḟ2)1/2
(ḟs,−ḟ c, ρ) on B2 \ {0R2} .
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Remark 5.1 We shall report in Appendix A the explicit computation of the curvature energy functional
in the case of homogeneous functions. For future use, we only notice here that if ḟ(θ) 6= 0 for some given
θ, the corresponding radial limit at 0R2 of the outward unit normal exists:

lim
ρ→0+

νu(ρ cos θ, ρ sin θ) =
ḟ(θ)

|ḟ(θ)|
(
cos(θ − π/2), sin(θ − π/2), 0

)
.

In this section we consider the relaxation problem in the annulus Ωr := {x ∈ B2 | r < ρ < 1} for any
small radius r > 0, where ρ := |x|. More precisely, we denote

E(u,Ωr) := inf{lim inf
h→∞

E(uh,Ωr) | {uh}h ⊂ C2
b (Ωr) , uh → u strongly in L1(Ωr)} .

In the case of homogeneous functions u(x) = f(θ), the explicit formula for the relaxed energy in Ωr is
recovered from the one-dimensional result obtained for Cartesian curves in [2], that we briefly recall here.

Cartesian curves. Consider a smooth function f : I → R, where for our purposes we let I :=
[0, 2π], and the corresponding graph function cf (t) := (t, f(t)). The one-dimensional analogous of the
energy E(u) is

E(f) := L(cf ) +
∫
cf

kf dH1 ,

where L(cf ) is the length of cf and kf is the curvature kf (t) :=
|f̈(t)|

(1 + ḟ(t)2)3/2
, t ∈ I , whence

E(f) =
∫ 2π

0

(√
1 + ḟ2 +

|f̈ |
1 + ḟ2

)
dt .

The corresponding relaxed energy of functions f ∈ L1(I) is:

E(f) := inf{lim inf
h→∞

E(fh) | {fh}h ⊂ C2(I) , fh → f strongly in L1(I)}

On account of Remark A.1 below, for each radius 0 < r < 1 we can find a positive real constant
cr > 0 such that for any homogeneous functions u(x) = f(θ) we have

1

cr
E(f) ≤ E(u,Ωr) ≤ cr E(f) .

Therefore, it turns out that in the homogeneous case, a function u ∈ L1(B2) has finite relaxed energy
E(u,Ωr), for each 0 < r < 1, if and only if the corresponding L1-function f has finite relaxed energy
E(f). In particular, the structure properties of f obtained in [11] in codimension one are verified.

Now, any function f ∈ L1(I) satisfying E(f) < ∞ clearly belongs to BV (I). Following [2], where
the explicit formula for the relaxed energy is extended to high codimension, we recall that a continuous
function f has finite relaxed energy if and only if the Cartesian curve cf has finite length and finite
total curvature TC(cf ), and in this case the total curvature agrees with the total variation |Dτf |(I) of

the Gauss map τf =
ċf
|ċf | that is defined a.e. in I by means of the approximate gradient ḟ . Notice that

in codimension one we have |Dτf |(I) = |D arctan(ḟ)|(I). Furthermore, the explicit formula

E(f) = L(cf ) + TC(cf )

holds. More generally, when f is a BV -function with finite relaxed energy and a non-trivial Jump set
Jf we have, see [2] :

E(f) =
∫
I

|ċf |(1 + kf ) dt+ |DCf |(I) + |DCτf |(I) +M(GGJ
f ) +M(Sc

f ) +M(SJc
f ) . (5.1)
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In order to explain the above formula, we first point out that a current GGf in D1((I̊ × R) × S1)
carried by the “Gauss graph” of f is well-defined, when E(f) < ∞. More precisely, the current GGf

decomposes as

GGf = GGa
f +GGC

f +GGJ
f

into the so called Absolutely continuous, Cantor, and Jump component, respectively. The first component
GGa

f depends on the approximate first and second derivatives ḟ and f̈ . Moreover, it turns out that

GGJ
f = 0 if f has a continuous representative, and that also GGC

f = 0 if f ∈W 1,1(I). Since in general
the current GGf has a non-trivial boundary, an optimal “vertical” current Sf is defined in [2] in such a
way that if Σf := GGf + Sf , then Σf is a i.m. rectifiable in R1((I ×R)× S1) with no inner boundary.

The current Sf lives upon the Jump set Jf ∪ Jḟ . It is given by two terms:

Sf = SJc
f + Sc

f

a Jump-corner component SJc
f that is concentrated upon the discontinuity set Jf , and a Corner com-

ponent Sc
f that is concentrated upon the discontinuity points of the approximate gradient ḟ where f

is continuous, the so called “corner” points in Jḟ \ Jf . Roughly speaking, the first component takes into
account of the turning angles that appear when the “graph” of f meets a jump point, possibly giving
rise to two corners at the points (t, f±(t)), where one side of each corner is “vertical”, since it follows the
jump. The second component deals with the turning angles where f is continuous but ḟ has a jump.

A density result. Let us now turn back to the class of homogeneous functions u(x) = f(θ),
x ∈ B2. Denoting Ur := Ωr × R, the optimal current Σu,r ∈ R2(Ur × S2) that “fills the holes” in the
Gauss graph GGa

u in Ur ×S2 is given by the radial extension of the current corresponding to Σf . More
precisely, we let

Σu,r := Ψ#([[ r, 1 ]]× Σf ) , 0 < r < 1 (5.2)

where Ψ : (0, 1)× (I × Rz × S1w) → (B2 \ {0R2})× Rz × S2y is given by

Ψ(ρ, (θ, z, w1, w2)) :=
(
ρ cos θ, ρ sin θ, z,

1√
w2

1 + ρ2w2
2

(−w1 sin θ, w1 cos θ, ρ |w2|)
)
. (5.3)

The optimality of the current Σu,r follows due to a symmetry argument, and on account of the results
from [2], and by lower-semicontinuity, we get:

E(u,Ωr) = E(Σu,r) , 0 < r < 1 . (5.4)

In particular, if u(x) = f(θ), where f ∈ L1([0, 2π]) has finite relaxed energy, we have obtained:

Theorem 5.2 Let {f̃h}h ⊂ C2(R) be a smooth 2π-periodic sequence. Let fh := f̃h|I , where I := [0, 2π].

Assume that: 1) fh → f in L1(I); 2) E(fh) → E(f); 3) GGfh ⇀ Σf weakly as currents. Let uh(x) :=
fh(θ). Then for each radius 0 < r < 1 the smooth sequence {uh} ⊂ C2

b (Ωr) converges in L1 to u|Ωr
,

the currents GGuh
weakly converge to Σu,r in D2(Ur × S2) , and E(uh,Ωr) → E(u,Ωr) as h→ ∞.

6 An explicit formula

In this section we compute the explicit formula of the relaxed energy (3.1) in the case of a homogeneous
function that we now introduce.

Example 6.1 Let u : B2 → R given by u(x) :=
x1
|x|

, x = (x1, x2) .

Then u is a Sobolev function in W 1,p(B2) for each p < 2. We also have

∂1u(x) =
x22
ρ3
, ∂2u(x) = −x1x2

ρ3
, νu(x) =

ρ√
ρ4 + x22

(
−x

2
2

ρ2
,
x1x2
ρ2

, ρ
)
, x 6= 0 .

24



Therefore, the upper unit normal νu belongs to W 1,1(B2,S2). In this case we have f(θ) = cos θ. With
s := sin θ and c := cos θ, according to Appendix A we thus obtain:

gu =
ρ2 + s2

ρ2
, |νu|2 =

ρ4(1 + s2) + ρ2s2(1 + 2s2) + s6

ρ2(ρ2 + s2)3

|ξu| =
[
(ρ2 + 2s2)2 + ρ2(ρ2 + s2) c2

]1/2
ρ (ρ2 + s2)3/2

, Ku = − s2

(ρ2 + s2)2
, Hu = −1

2

ρ c

(ρ2 + s2)3/2
.

Boundary. On account of Proposition 3.8, we first compute the boundary of the Gauss graph GGa
u.

It turns out that

(∂GGa
u) U × S2 = −γ̃0#[[ 0, 2π ]] (6.1)

where γ̃0 : [0, 2π] → U × S2 is the closed curve supported in {0R2} ×R× S2+ and with parameterization

γ̃0(θ) :=


(
0, 0, 1, 0,− cos 2θ, sin 2θ

)
if 0 ≤ θ ≤ π/2(

0, 0,− cos 2θ, sin 2θ,− cos 2θ, 0
)

if π/2 ≤ θ ≤ π(
0, 0,−1, 0,− cos 2θ, sin 2θ

)
if π ≤ θ ≤ 3π/2(

0, 0, cos 2θ, sin 2θ,− cos 2θ, 0
)

if 3π/2 ≤ θ ≤ 2π .

(6.2)

In fact, for each ε > 0 small we have Φu#[[ ∂Bε(0R2) ]] = γ̃ε#[[ 0, 2π ]], where

γ̃ε(θ) :=
(
ε cos θ, ε sin θ, cos θ,

1√
ε2 + sin2 θ

(
− sin2 θ, sin θ cos θ, ε

))
, θ ∈ [0, 2π] .

Now, for each K > 0 and for ε > 0 small so that kε < 1, letting P k
ε := γ̃ε(arcsin(kε)), it turns out that

lim
ε→0

P k
ε =

(
0, 0, 1,

1√
1 + k2

(0, k, 1)
)
.

Therefore, by Remark 5.1 one checks that the currents Φu#[[ ∂Bε(0R2) ]] weakly converge as ε → 0 to
the 1-current S0 := γ̃0#[[ 0, 2π ]], so that the above formula for the boundary of GGa

u holds true.

Filling the hole at the origin. In principle, there are two qualitatively different ways to
“fill the hole” at the origin. A first possibility is given by choosing S1 as an energy minimizing current
among all i.m. rectifiable currents S in R2(U×S2), with support sptS ⊂ {0R2}×R×S2+, and satisfying
the boundary condition ∂S = γ̃0#[[ 0, 2π ]] . Alternatively, we may choose S2 given by

S2 := −F#([[ 0, 1 ]]× γ̃0#[[ 0, 2π ]]) (6.3)

where F : [0, 1]× ({0R2}×Rz ×R3
y) → R2

x ×Rz ×R3
y is the homotopy map F (λ, (0R2 , z, y)) := (λv, z, y)

for some fixed direction v ∈ S1. In fact, by the homotopy formula [23, 26.22] we have

∂S2 = F#((δ0 − δ1)× γ̃0#[[ 0, 2π ]]) .

Setting then Σi := GGa
u+Si, where i = 1, 2, in both cases the null-boundary condition (∂Σi) U×S2 = 0

is satisfied, since U = B2 × R. However, see Proposition 3.8, the energy of the currents Σi is involved
in the computation of the relaxed energy E(u) only if Σi ∈ Gcart(U × S2). Therefore, the geometric
necessary condition given by property vi) in the structure theorem 3.4 has to be satisfied.

Example 6.2 Such an orthogonality condition (see Remark 3.5) can be imposed in the minimization
problem, since it is preserved by the weak convergence as currents. If u is given by Example 6.1, it turns
out that the optimal current S1 is given by integration of 2-forms on the (suitably oriented) surface
{0R2} ×M, where M is the surface supported in [−1, 1]× S2 and given by the union of four pieces:

i) the two quarters of the unit spheres {±1} × S2h, where S2h := {y ∈ S2 | y1 ≤ 0 , y3 ≥ 0} ;
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ii) the surface Σ1 given by the union of the two pieces of the cylinder [−1, 1] × S1 × {0} which are
enclosed by the union of the two arcs γ̃0([π/2, π]), γ̃0([3π/2, 2π]), where γ̃0 : [0, 2π] → U×S2 is the
curve given by (6.2), and of the two half-circles {±1}×S1h, where S1h := {y ∈ S2 | y1 ≤ 0 , y3 = 0} .

We now observe that if the current S2 is given by (6.3), for any choice of the direction v the above
mentioned orthogonality condition is violated. More precisely, on account of definition (3.16) we have:

Proposition 6.3 Any current Σ in Gcartu is of the type Σ = GGa
u+Σs, where the singular component

Σs is supported in {0R2} × R× S2+.

Proof: We shall make use of a slicing argument. Following [23, Sec. 28], and letting d(x, z, y) = |x|,
for (x, z, y) ∈ R2 × Rz × R3

y, the sliced current 〈Σ, d, r〉 is i.m. rectifiable in R1(∂B
2
r × R × S2), for

L1-a.e. r ∈ (0, 1). Since moreover Σ has no boundary in B2 × R × S2, the sliced current 〈Σ, d, r〉 has
no boundary, and we actually have

〈Σ, d, r〉 = 〈GGa
u, d, r〉+ 〈Σs, d, r〉 .

Moreover, by the verticality condition of Σs, and by the smoothness of u outside the origin, we deduce
that the sliced current 〈Σs, d, r〉 is an integral 1-cycle that does not read 1-forms of the type φdxi, where
i = 1, 2. Define now Ψr : (I × Rz × S1w) → ∂B2

r × Rz × S2y by Ψr(θ, z, w1, w2) := Ψ(r, (θ, z, w1, w2)),
where I = [0, 2π] and Ψ is given by (5.3). For a.e. r ∈ (0, 1) we thus have

Ψ−1
r#〈Σ, d, r〉 = GGf + Sr , Sr := Ψ−1

r#〈Σ
s, d, r〉

where f(θ) = cos θ. Let now Rr denote the set of points with positive multiplicity of the integral cycle
Sr. The geometric condition inherited from the current Σ, joined with the verticality condition, yields
that at H1-a.e. point P = (θ, z, w1, w2) in Rr the approximate tangent 1-space is oriented by a vector
v = (v1, v2, v3, v4) in R4 satisfying (v1, v2) • (w1, w2) = 0, with v1 = 0, whence w2 = 0 if v2 6= 0. Since
(w1, w2) ∈ S1, this yields that P = (θ, z,±1, 0), if v2 6= 0. We now observe that by (5.3)

Ψr(θ, z,±1, 0) = (r cos θ, r sin θ, z,±(sin θ,− cos θ, 0)) .

Now, by (6.1) we have (∂Σs) U × S2 = γ̃0#[[ 0, 2π ]], where γ̃0 : [0, 2π] → U × S2 is the closed curve
parameterized by (6.2). Therefore, the above considerations imply that Sr = 0 for a.e. r ∈ (0, 1), and
hence that the singular current Σs is supported in {0R2} × R× S2+, as required. �

A density result. We shall now construct a smooth approximating sequence {uh} ⊂ C2
b (B

2) such
that GGuh

weakly converges to GGa
u+S1, where S1 is the minimizer defined in Example 6.2, and with

energies E(uh) converging to the energy E(u) + E(S1), as h → ∞. As a consequence, on account of
Proposition 6.3 and of the minimality of S1, by Proposition 3.8 we conclude that

E(u) = E(u) + E(S1) . (6.4)

Theorem 6.4 There exists a sequence {uh} ⊂ C2
b (B

2) such that GGuh
weakly converges to GGa

u + S1

and such that E(uh) → E(u) + E(S1), as h→ ∞.

Proof: We first observe that it suffices to find a bounded approximating sequence in W 2,∞(B2). In
fact, if u ∈ W 2,∞(B2) is bounded, by a standard argument (based e.g. on the convolution with a
smooth kernel and on the dominated convergence theorem) we can find a strongly approximating smooth
sequence. Since the weak convergence of currents with no boundary and with support contained in a
compact set is metrizable, compare e.g. [23, Sec. 31], a diagonal argument will conclude the proof.

Let now ϕ : [0,+∞) → [0, 1] be given by

ϕ(ρ) :=


4

3
ρ if ρ ≤ 1/2

1− 4

3
(1− ρ)2 if 1/2 ≤ ρ ≤ 1

1 if ρ ≥ 1 .
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We shall work with the function v : R2 → R given by v(x) := ϕ(|x|)x1/|x|, if x 6= 0R2 , and v(0R2) = 0,
so that in polar coordinates one has v(x) = ϕ(ρ) f(θ), with f(θ) := cos θ. For 0 < ε < 1, let vε : B

2 → R
be given by vε(x) := v(x/ε), so that in polar coordinates vε(x) := ϕ(ρ/ε) f(θ). Choosing uh := vεh for
a sequence εh ↘ 0, it turns out that {uh} ⊂ W 2,∞(B2) and that the currents GGuh

weakly converge
to GGa

u + S1 as h→ ∞.
In fact, according to (1.9) one computes

Φvε(x) =
(
x, vε(x),

1√
ε2 + |∇v(x/ε)|2

(−∂1v(x/ε),−∂2v(x/ε), ε)
)
.

We have vε(x) = 3x1/(4ε) for |x| ≤ ε/2 and vε(x) = x1/|x| for ε ≤ |x| < 1, whereas in polar coordinates
x = ρ(c, s), with c = cos θ and s = sin θ, and denoting σ := ρ/ε, for ε/2 < |x| < ε we get

Φvε(x) =
(
ε σ c, ε σ s, ϕ(σ) c,

(−ϕ̇(σ) c2 − (ϕ(σ)/σ) s2, (ϕ(σ)/σ − ϕ̇(σ)) sc, ε)√
ε2 + ϕ̇2(σ) c2 + (ϕ(σ)/σ)2 s2

)
.

Letting ε→ 0, if s 6= 0 and 1/2 < σ < 1, we get Φvε(x) → (0, 0,Ψ(σ, θ), 0), where we have set

Ψ(σ, θ) :=
(
ϕ(σ) c,

(−ϕ̇(σ) c2 − (ϕ(σ)/σ) s2, (ϕ(σ)/σ − ϕ̇(σ)) sc)√
ϕ̇2(σ) c2 + (ϕ(σ)/σ)2 s2

)
∈ R× S1 . (6.5)

One may then check the weak convergence of the sequence of Gauss graphs GGuh
to the current GGa

u+S1.
In order to prove the energy convergence E(uh) → E(u) + E(S1), it suffices to show that

lim
ε→0

E(vε, B2
ε \B2

ε/2) = E(S1) .

In fact, one readily obtains:

lim
ε→0

E(vε, B2
ε/2) = 0 , lim

ε→0
E(vε, B2 \B2

ε ) = E(u) .

For this purpose, referring to Example 6.2, we have E(S1) = E0(S1) + E1(S1) + E2(S1), where
E0(S1) = 0, as the current S1 is concentrated on {0R2} × R4. Moreover, the energy term E2(S1) is
equal to the sum of the areas of the two quarters of the unit spheres {±1} × S2h, i.e., E2(S1) = 2π.
Finally, the energy term E1(S1) is equal to the area H2(Σ1) of the surface Σ1 previously described in
ii), so that E1(S1) = 4π − 8. Therefore, we have to show that

lim
ε→0

E0(vε, B2
ε \B2

ε/2) = 0 , lim
ε→0

E2(vε, B2
ε \B2

ε/2) = 2π , lim
ε→0

E1(vε, B2
ε \B2

ε/2) = H2(Σ1) . (6.6)

The first limit is trivially checked. As to the second one, by (1.12) and (1.18), and by changing
variable x̂ := x/ε, we first compute:

E2(vε, B2
ε \B2

ε/2) = ε

∫
B2\B2

1/2

|∂21,1v ∂22,2v − (∂21,2v)
2|

(ε2 + |∇v|2)3/2
dL2

where in polar coordinates we have:

∂21,1v ∂
2
2,2v − (∂21,2v)

2 = ϕ̈(ρ)
( ϕ̇(ρ)

ρ
− ϕ(ρ)

ρ2

)
c2 −

( ϕ̇(ρ)
ρ

− ϕ2(ρ)

ρ2

)2

s2 =: ∆(ρ, θ)

and

ε2 + |∇v|2 = ε2 + ϕ̇2(ρ) c2 +
ϕ2(ρ)

ρ2
s2 .

Now, using that ϕ̇(ρ) = 8(1− ρ)/3 and ϕ̈(ρ) = −8/3, by changing variable R = 2(1− ρ) we obtain:

E2(vε, B2
ε \B2

ε/2) = 4ε

∫ 1

0

∫ π/2

0

2(1−R)(3−R)
3(2−R)

∣∣∣ 83 cos2 θ − 4(1−R)(3−R)
3(2−R)2 sin2 θ

∣∣∣(
ε2 + 16

9 R
2 cos2 θ + 4

9

(
3−R2

2−R

)2

sin2 θ
)3/2

1

2
dRdθ
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so that by changing again variables z = R/ε and y = θ/ε we get

E2(vε, B2
ε \B2

ε/2) = 4

∫ 1/ε

0

∫ π/(2ε)

0

(1−ε z)(3−ε z)
3(2−ε z)

∣∣∣ 83 cos2(ε y)− 4(1−ε z)(3−ε z)
3(2−ε z)2 sin2(ε y)

∣∣∣(
1 + 16

9 z
2 cos2(ε y) + 4

9

(
3−ε2z2

2−ε z

)2
sin2(ε y)
ε2y2 y2

)3/2
dz dy .

Therefore, by dominated convergence, and with x = 4z/3, we conclude that:

lim
ε→0

E2(vε, B2
ε \B2

ε/2) =

∫
R2

1

(1 + x2 + y2)3/2
dL2 = 2π .

In order to prove the third limit in (6.6), denoting for simplicity νε := νvε we first observe that by
dominated convergence

lim
ε→0

∫
B2

ε\B2
ε/2

|∂iνεj | dL2 = 0

for i = 1, 2 and j = 1, 2, 3, whereas in a similar way one also checks:

lim
ε→0

∫
B2

ε\B2
ε/2

|∂1vε ∂2νε3 − ∂2vε ∂1νε
3| dL2 = 0 .

Therefore, on account of the second line in (1.15), we infer that

lim
ε→0

E1(vε, B2
ε \B2

ε/2) = lim
ε→0

∫
B2

ε\B2
ε/2

( 2∑
j=1

(∂1vε ∂2νε
j − ∂2vε ∂1νε

j)2
)1/2

dL2 .

For each x ∈ B2 \B2
1/2 such that |∇v(x)| 6= 0, i.e., H2-a.e. on x ∈ B2 \B2

1/2, we have:

lim
ε→0

ε−2(∂1vε ∂2νε
1 − ∂2vε ∂1νε

1)(x/ε) = ∂2v(x)
(∆̃v)(x)

|∇v(x)|3

and

lim
ε→0

ε−2(∂1vε ∂2νε
2 − ∂2vε ∂1νε

2)(x/ε) = −∂1v(x)
(∆̃v)(x)

|∇v(x)|3

where we have set
∆̃v := (∂1v)

2∂22,2v + (∂2v)
2∂21,1v − 2 ∂1v ∂2v ∂

2
1,2v .

By dominated convergence we thus infer that

lim
ε→0

E1(vε, B2
ε \B2

ε/2) =

∫
B2\B2

1/2

|(∆̃v)(x)|
|∇v(x)|2

dL2 . (6.7)

We now recall that when |∇v(x)| 6= 0 in B2\B2
1/2, in polar coordinates one has Φvε(x) → (0, 0,Ψ(σ, θ), 0)

as ε→ 0, whereas by (6.5) in Euclidean coordinates we have

Ψ(σ, θ) =
(
v(x),

−∂1v(x)
|∇v(x)|

,
−∂1v(x)
|∇v(x)|

)
.

By computing the 2-dimensional Jacobian in Euclidean coordinates, it turns out that

J2Ψ(σ, θ) =
|(∆̃v)(x)|
|∇v(x)|2

.

The function Ψ(σ, θ) being H2-a.e. injective on (1/2, 1)× (0, 2π), and with image equal to the surface
Σ1, by the area formula we get:∫

B2\B2
1/2

|(∆̃v)(x)|
|∇v(x)|2

dL2 =

∫
B2\B2

1/2

J2Ψ dL2 = H2(Σ1)

and hence by (6.7) we have proved the third limit in (6.6), as required. �
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7 Closing the Gauss graph

In Sec. 5, we have seen how the relaxation problem for homogeneous functions u(x) = f(θ) is solved
outside the origin. In particular, we obtained formula (5.4). Now, choosing r = 0 in (5.2), or taking the

limit as r → 0+, we find an optimal i.m. rectifiable current Σ̃u := Σu,0 in R2(U × S2).
Recalling that Σf := GGf + Sf , where GGf = GGa

f +GGC
f +GGJ

f and Sf = SJc
f + Sc

f , using the
map Ψ given by (5.3) we clearly have GGa

u = Ψ#([[ 0, 1 ]]×GGa
f ). We thus may decompose

Σ̃u = GGa
u +GGC

u +GGJ
u + SJe

u + Se
u (7.1)

where we have correspondingly set

GGC
u := Ψ#([[ 0, 1 ]]×GGC

f ) , GGJ
u := Ψ#([[ 0, 1 ]]×GGJ

f ) ,

SJe
u := Ψ#([[ 0, 1 ]]× SJc

f ) , Se
u := Ψ#([[ 0, 1 ]]× Sc

f )
(7.2)

which will be called the Cantor, Jump, Jump-edge, and Edge components, respectively.
We have obtained an i.m. rectifiable current Σ̃u in R2(U × S2) supported in U × S2+. However,

the null-boundary condition (∂Σ̃u) U × S2 = 0 is violated, as in general a “hole” may appear at the
origin 0R2 , the point singularity of a homogeneous functions u(x) = f(θ) with finite relaxed energy. An
example is given by (6.1), (6.2). In this section we analyze in detail a non-smooth model example.

Example 7.1 Let u : B2 → R given by

u(x) :=

 π/2− arctan(x2/x1) if x1 < 0
π if x1 ≥ 0 and x2 > 0
0 if x1 ≥ 0 and x2 < 0 .

The boundary ∂SGu of the subgraph of u is the surface given by two “floors”, at level z = 0 and z = π,
one “wall” of height π at the Jump set Ju = (0, 1) × {0}, and a smooth “spiral staircase” connecting
the two floors. Four horizontal edges appear at the boundary of the two floors, and a fifth vertical edge
lives over the singular point 0R2 , the edges meeting at the corner points (0, 0, 0) or (0, 0, π).

We have u ∈ BV (B2), with no Cantor part, DCu = 0. Orienting the Jump set by t = (1, 0), the
unit normal is n = (0, 1) and the one-sided limits are u+ ≡ π and u− ≡ 0 on Ju. We also have

∇u(x) =
{ (

x2/ρ
2,−x1/ρ2

)
if x1 < 0

(0, 0) if x1 > 0 and x2 6= 0

which yields

νu(x) =

{
ρ(ρ2 + 1)−1/2

(
−x2/ρ2, x1/ρ2, 1

)
if x1 < 0

(0, 0, 1) if x1 > 0 and x2 6= 0 .

Therefore, the outward unit normal νu belongs to BV (B2,S2), it has no Cantor part, DCνu = 0, and
its jump set is Jνu = {x ∈ B2 | x1 = 0}. Furthermore, letting n = (−1, 0) and t = (0, 1) on Jνu , it
turns out that the one-sided limits of νu are smooth on Jνu

\ {0R2} and we actually have

νu
+(x) =

{
(1 + x22)

−1/2
(
−1, 0, x2

)
if x1 = 0 and x2 > 0

(1 + x22)
−1/2

(
1, 0,−x2

)
if x1 = 0 and x2 < 0

(7.3)

whereas νu
− ≡ (0, 0, 1) on Jνu \ {0R2}. Finally, we have u(x) = f(θ) with

f(θ) :=

 π if 0 < θ < π/2
3π/2− θ if π/2 < θ < 3π/2
0 if 3π/2 < θ < 2π .

(7.4)

For θ ∈ (π/2, 3π/2), according to Appendix A we thus obtain

gu =
ρ2 + 1

ρ2
, |νu|2 =

2ρ4 + 3ρ2 + 1

ρ2(ρ2 + 1)3
, |ξu| =

ρ2 + 2

ρ (ρ2 + 1)3/2
, Ku = − 1

(ρ2 + 1)2
, Hu = 0 .
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We now compute the various components (7.2) and the boundary of Σ̃u. To this aim, in the sequel of
this section we shall denote I := (0, 1). The corresponding energy terms are computed in Appendix B.

Firstly, we see that the boundary of the Absolutely continuous component GGa
u satisfies

(∂GGa
u) U × S2 =

2∑
k=0

(
Γk
+#

[[ I ]]− Γk
−#

[[ I ]]
)
− S0 (7.5)

where for s ∈ I we have set:

Γ0
+(s) :=

(
s, 0, π, 0, 0, 1

)
Γ0
−(s) :=

(
s, 0, 0, 0, 0, 1

)
Γ1
+(s) :=

(
0, s, π, (1 + s2)−1/2(−1, 0, s)

)
Γ1
−(s) :=

(
0, s, π, 0, 0, 1

)
Γ2
+(s) :=

(
0, s− 1, 0, (1 + (1− s)2)−1/2(1, 0, 1− s)

)
Γ2
−(s) :=

(
0, s− 1, 0, 0, 0, 1

)
.

Therefore, the terms Γ0
±#

[[ I ]] are the upper and lower components of the boundary of the Gauss graph

GGu in correspondence to the discontinuity set of u, whereas for k = 1, 2, the terms Γk
±#

[[ I ]] are the

upper and lower component of the boundary in correspondence to the edges in the graph Gu.
Moreover, the 1-current S0 ∈ R1(U × S2) is supported in {0R2} × R× S2 and is given by the weak

limit as ε→ 0 of the image currents Φu#[[ ∂Bε(0R2) ]]. We have Φu#[[ ∂Bε(0R2) ]] = γ̃ε#[[ 0, 2π ]], where

γ̃ε(θ) :=


(
ε cos θ, ε sin θ, π, 0, 0, 1

)
if 0 < θ < π/2(

ε cos θ, ε sin θ, 3π/2− θ, (ε2 + 1)−1/2(− sin θ, cos θ, ε)
)

if π/2 < θ < 3π/2(
ε cos θ, ε sin θ, 0, 0, 0, 1

)
if 3π/2 < θ < 2π .

Therefore, this time the currents Φu#[[ ∂Bε(0R2) ]] weakly converge to S0 := γ̃0#[[ 0, 2π ]], where

γ̃0(θ) :=


(
0, 0, π, 0, 0, 1

)
if 0 < θ < π/2(

0, 0, 3π/2− θ, cos(θ + π/2), sin(θ + π/2), 0
)

if π/2 < θ < 3π/2(
0, 0, 0, 0, 0, 1

)
if 3π/2 < θ < 2π .

(7.6)

Remark 7.2 Here and below, the parameter s ∈ I refers to the horizontal directions e1, e2, whereas
the parameter λ ∈ I to the vertical directions e3, εj , j = 1, 2, 3.

The Cantor component of Σ̃u is trivial, GGC
u = 0. Moreover, the Jump component is given by

GGJ
u = ΦJ

#[[ I × I ]] , ΦJ(s, λ) :=
(
s, 0, λ π, 0,−1, 0

)
, (s, λ) ∈ I × I . (7.7)

Denoting by Q and P the end points of the Jump set, so that Q = 0R2 and P = (0, 1) ∈ ∂B2, and
computing the boundary through the formula

∂GGJ
u = ΦJ

#∂[[ I × I ]] = ΦJ
#

(
(δ1 − δ0)× [[ I ]]− [[ I ]]× (δ1 − δ0)

)
we obtain

(∂GGJ
u) U × S2 = −ΓQ#[[ I ]]−

(
ΓJ
+#

[[ I ]]− ΓJ
−#

[[ I ]]
)

(7.8)

where we have set

ΓQ(λ) :=
(
0, 0, λ π, 0,−1, 0

)
, λ ∈ I

ΓJ
+(s) :=

(
s, 0, π, 0,−1, 0

)
, ΓJ

−(s) :=
(
s, 0, 0, 0,−1, 0

)
, s ∈ I .

(7.9)

The Jump-edge component deals with the Jump of νu w.r.t. the outward normal to the “wall” surface
given by ΦJ(I × I) at the upper and lower edges. We have:

SJe
u = ΦJe

+#[[ I × I ]]− ΦJe
−#[[ I × I ]] (7.10)

where for (s, λ) ∈ I × I we have set

ΦJe
+ (s, λ) :=

(
s, 0, π, ϕJe+ (s, λ)

)
,

ΦJe
− (s, λ) :=

(
s, 0, 0, ϕJe− (s, λ)

)
,

ϕJe± (s, λ) :=
(
0, cos(π(2− λ)/2), sin(π(2− λ)/2)

)
.

30



We thus compute as above

(∂SJe
u ) U × S2 = −

(
ΓQ
+#

[[ I ]]− ΓQ
−#

[[ I ]]
)
−
(
Γ0
+#

[[ I ]]− ΓJ
+#

[[ I ]]
)
+

(
Γ0
−#

[[ I ]]− ΓJ
−#

[[ I ]]
)

(7.11)

where for λ ∈ I we have set

ΓQ
+(λ) :=

(
0, 0, π, 0, cos(π(2− λ)/2), sin(π(2− λ)/2)

)
ΓQ
−(λ) :=

(
0, 0, 0, 0, cos(π(2− λ)/2), sin(π(2− λ)/2)

)
.

(7.12)

Finally, the Edge component deals with the Jump of νu where u is continuous, see (7.3). We have:

Se
u =

2∑
k=1

Φe
k#[[ I × I ]] (7.13)

where the mappings Φe
k : I × I → U × S2 are defined by

Φe
k(s, λ) :=

(
γ1k(s), γ

2
k(s), u(γk(s)), ϕ

e
k(s, λ)

)
, (s, λ) ∈ I × I .

In the above formula, we have set γ1(s) := (0, s) and γ2(s) := (0, s − 1), so that u(γ1(s)) ≡ π and
u(γ2(s)) ≡ 0. Now, on account of (7.3), the one-sided limits of νu at the two edges of the graph Gu are:

νu
+(γ1(s)) = (1 + s2)−1/2(−1, 0, s) νu

−(γ1(s)) = (0, 0, 1)
νu

+(γ2(s)) = (1 + (1− s)2)−1/2(1, 0, 1− s) νu
−(γ2(s)) = (0, 0, 1) .

Therefore, for k = 1, 2, the functions λ 7→ ϕek(s, λ) parameterize with λ ∈ I the oriented geodesic arc
in S2+ connecting νu

−(γk(s)) to νu
+(γk(s)), whence for (s, λ) ∈ I × I we have:

ϕe1(s, λ) :=
(
cos θ1(s, λ), 0, sin θ1(s, λ)

)
, θ1(s, λ) := (π/2− arctan s)λ+ π/2 ,

ϕe2(s, λ) :=
(
cos θ2(s, λ), 0, sin θ2(s, λ)

)
, θ2(s, λ) := (arctan(1− s)− π/2)λ+ π/2 .

(7.14)

Denoting by Qk and Pk the end points of the two segments γk, so that P1 = (0, 1) ∈ ∂B2,
Q1 = P2 = 0R2 , and Q2 = (0,−1) ∈ ∂B2, we thus compute:

(∂Se
u) U × S2 =

(
ΓP2#[[ I ]]− ΓQ1#[[ I ]]

)
−

2∑
k=1

(
Γk
+#

[[Jk ]]− Γk
−#

[[Jk ]]
)

(7.15)

where we have set
ΓQ1(λ) :=

(
0, 0, π, cos(π(λ+ 1)/2), 0, sin(π(λ+ 1)/2)

)
,

ΓP2(λ) :=
(
0, 0, 0, cos(π(1− λ)/2), 0, sin(π(1− λ)/2)

)
.

(7.16)

Boundary. We now compute the boundary

Γ0R2
:= (∂Σ̃u) U × S2 .

Putting the boundary terms (7.5), (7.8), (7.11), and (7.15) together, after some simplification we get

Γ0R2
= −Γ̃Q − γ̃0# [[ (0, 2π) ]] + ΓP2#[[ I ]]− ΓQ1#[[ I ]]

where the first addendum
Γ̃Q := ΓQ#[[ I ]] + ΓQ

+#
[[ I ]]− ΓQ

−#
[[ I ]]

is the sum of the lateral boundary of the Jump and Jump-edge components at the singular point 0R2 , see
(7.9) and (7.12). The other terms, see (7.6) and (7.16), are produced by the boundary of the Absolutely
continuous and Edge components. Therefore, writing in order

Γ0R2
= −ΓQ#[[ I ]] + ΓQ

−#
[[ I ]] + ΓP2#[[ I ]]− γ̃0# [[ 0, 2π ]]− ΓQ1#[[ I ]]− ΓQ

+#
[[ I ]]

we infer that
(∂Σ̃u) U × S2 = δ0R2 × γ0R2#[[ 0, 6 ]] (7.17)
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where γ0R2 : [0, 6] → Rz × S2 is the closed Lipschitz curve

γ0R2 (t) :=



(
π(1− t), 0,−1, 0

)
if 0 ≤ t ≤ 1(

0, 0, cos(π(3− t)/2), sin(π(3− t)/2)
)

if 1 ≤ t ≤ 2(
0, cos(π(3− t)/2), 0, sin(π(3− t)/2)

)
if 2 ≤ t ≤ 3(

π(t− 3), cos(π(3− t)), sin(π(3− t)), 0
)

if 3 ≤ t ≤ 4(
π, cos(π(6− t)/2), 0, sin(π(6− t)/2)

)
if 4 ≤ t ≤ 5(

π, 0, cos(π(t− 4)/2), sin(π(t− 4)/2)
)

if 5 ≤ t ≤ 6 .

Notice in fact that

γ0R2 (0) = γ0R2 (6) = (π, 0,−1, 0) , γ0R2 (1) = (0, 0,−1, 0) , γ0R2 (2) = (0, 0, 0, 1) ,
γ0R2 (3) = (0, 1, 0, 0) , γ0R2 (4) = (π,−1, 0, 0) , γ0R2 (5) = (π, 0, 0, 1) .

Moreover, letting Γi := γ0R2 #[[ i− 1, i ]], where i = 1, . . . , 6, we have

Γ1 = −ΓQ#[[ I ]] , Γ2 = ΓQ
−#

[[ I ]] , Γ3 = ΓP2#[[ I ]] ,

Γ4 = −γ̃0# [[ 0, 2π ]] , Γ5 = −ΓQ1#[[ I ]] , Γ6 = −ΓQ
+#

[[ I ]] .

Remark 7.3 We finally point out that the Lipschitz-continuous curve γ0R2 of Rz × R3
y is closed, sym-

metric w.r.t. to the plane Π := {z = 1/2, y1 = 0}, and with a self-intersection at Π, as

γ0R2 (1/2) = γ0R2 (7/2) = O :=
(
π/2, 0,−1, 0

)
.

8 Gap phenomenon

In the previous section we have seen how (for homogeneous functions, u(x) = f(θ) ) the current Σ̃u

depends on the relaxed energy of the function f through the formula (5.2), where r = 0. However, in

general the current Σ̃u has a non-trivial boundary in U × S2, as a cavity may occur at the origin 0R2 .
Following the example studied in detail in Sec. 6, one is then induced to look for an optimal current

Ss
u that “fills the hole” at the origin, i.e., a singular component Ss

u supported in {0R2} × Rz × S2 and

satisfying ∂Ss
u = −∂Σ̃u in U × S2, in such a way that the current Σu := Σ̃u + Ss

u belongs to the class
Gcart(U ×S2). In fact, in the relaxation process an energy contribution given by a measure concentrated
at the origin is expected. However, we now see that a gap phenomenon occurs:

Theorem 8.1 There exists a piecewise constant and homogeneous BV -function u ∈ E(Ω) such that the

optimal current Σ̃u has no boundary at the origin, and Σ̃u ∈ Gcartu, but Ẽ(u) > E(Σ̃u) .

Therefore, the strict inequality in (3.18) holds, and hence the equality in (3.17) is violated.

Example 8.2 Let u : B2 → R be the piecewise constant BV -function such that u(x) = f(θ), where

f(θ) :=

{
1 if θ ∈ (0, π/3) ∪ (2π/3, π) ∪ (4π/3, 5π/3)
0 if θ ∈ (π/3, 2π/3) ∪ (π, 4π/3) ∪ (5π/3, 2π) .

(8.1)

The jump set of u is given by the union of the six radial segments from the origin which are perpendicular
to the unit vectors vi in the (x1, x2)-plane with coordinates

v1 :=
(
−
√
3/2, 1/2

)
, v2 :=

(
−
√
3/2,−1/2

)
, v3 :=

(
0,−1

)
. (8.2)

Moreover, we have ∇u = 0 a.e. in Bn, and DCu = 0.

Remark 8.3 Notice that according to the definition of the transformation Ψ from (5.3), for i = 1, 2, 3
we have vi = (cos(θi + π/2), sin(θi + π/2)) = (− sin θi, cos θi), where θ1 = π/3, θ2 = 2π/3, θ3 = π are
the angles that correspond to the first three discontinuity points of the function f in (8.1).
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Referring to the notation from Sec. 5, since the BV -function f has a derivative with no absolutely
continuous and Cantor parts, we have GGa

f := Φf#[[ 0, 2π ]], where Φf (θ) := (θ, f(θ), 0, 1), and GGC
f = 0.

The Jump component is the Gauss graph of the vertical segments in the boundary of the subgraph of f ,
at the jump set, and actually in [0, 2π[×R× S1 we have:

GGJ
f = (δ0 + δ2π/3 + δ4π/3)× [[ 0, 1 ]]× δ(−1,0) − (δπ/3 + δπ + δ5π/3)× [[ 0, 1 ]]× δ(1,0) .

Since moreover ḟ = 0, no corner points occur, whence the Corner component Sc
f = 0. Also, two corners

appear in the boundary of the subgraph of f at each discontinuity point, with turning angles equal to
π/2. Therefore, the Jump-corner component SJc

f is given by:

SJc
f := (δ0 + δ2π/3 + δ4π/3)× (δ0 − δ1)× [[ γ− ]] + (δπ/3 + δπ + δ5π/3)× (δ1 − δ0)× [[ γ+ ]]

where γ± is the oriented geodesic arc in S1 with initial point (0, 1) and final point (±1, 0).

As in (5.2), we let Σ̃u := Ψ#([[ 0, 1 ]]×Σf ), where Ψ is the transformation in (5.3), so that this time

Σ̃u = GGa
u +GGJ

u + SJe
u ,

according to (7.2). We now see that

∂Σ̃u = 0 on D1(U × S2) (8.3)

so that the singular component is trivial, Ss
u = 0. In fact, on account of Remark 5.1 we deduce that

(∂Σ̃u) U × S2 = δ0R2 × γ#[[ 0, 18 ]]

where γ : [0, 18] → Rz × S2+ is the closed rectifiable arc

γ(t) :=



(
1, sin(πt/2)v1, cos(πt/2)) if t ∈ [0, 1](
2− t,v1, 0

)
if t ∈ [1, 2](

0, cos(π(t− 2)/2)v1, sin(π(t− 2)/2)) if t ∈ [2, 3](
0, sin(π(t− 3)/2)v2, cos(π(t− 3)/2)) if t ∈ [3, 4](
t− 4,v2, 0

)
if t ∈ [4, 5](

1, cos(π(t− 5)/2)v2, sin(π(t− 5)/2)) if t ∈ [5, 6](
1, sin(π(t− 6)/2)v3, cos(π(t− 6)/2)) if t ∈ [6, 7](
8− t,v3, 0

)
if t ∈ [7, 8](

0, cos(π(t− 8)/2)v3, sin(π(t− 8)/2)) if t ∈ [8, 9](
0, sin(π(t− 9)/2)v1, cos(π(t− 9)/2)) if t ∈ [9, 10](
t− 10,v1, 0

)
if t ∈ [10, 11](

1, cos(π(t− 11)/2)v1, sin(π(t− 11)/2)) if t ∈ [11, 12](
1, sin(π(t− 12)/2)v2, cos(π(t− 12)/2)) if t ∈ [12, 13](
14− t,v2, 0

)
if t ∈ [13, 14](

0, cos(π(t− 14)/2)v2, sin(π(t− 14)/2)) if t ∈ [14, 15](
0, sin(π(t− 15)/2)v3, cos(π(t− 15)/2)) if t ∈ [15, 16](
t− 16,v3, 0

)
if t ∈ [16, 17](

1, cos(π(t− 17)/2)v3, sin(π(t− 17)/2)) if t ∈ [17, 18]

(8.4)

where we have denoted by vi the unit vectors in the (y1, y2)-plane given by formulas (8.2).
Now, it turns out that the closed arc γ in Rz × S2+ is homologically trivial, as its support is pa-

rameterized twice and with opposite orientation. More precisely, denoting with the letters A,B,C the
oriented arcs γ([0, 3]), γ([3, 6]), and γ([6, 9]), respectively, we have:

[[A ]] = γ#[[ 0, 3 ]] = −γ#[[ 9, 12 ]] ,
[[B ]] = γ#[[ 3, 6 ]] = −γ#[[ 12, 15 ]] ,
[[C ]] = γ#[[ 6, 9 ]] = −γ#[[ 15, 18 ]] .

Therefore, we get γ#[[ 0, 18 ]] = 0 and hence the null-boundary condition (8.3) holds.
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However, the closed arc γ is topologically non-trivial (both in Rz × S2+ and in R4). In fact, it turns
out that the loop γ describes the sequence of letters ABC A−1B−1C−1, hence it is not contractible: any
homotopy map which deforms γ to a point has a nontrivial mapping area. More precisely, denoting by D
the oriented line segment from (0, 0, 0, 1) to (1, 0, 0, 1), an area minimizing contraction has firstly to cover
twice (with opposite orientation) the surface solution to the Plateau’s problem with boundary given by
the closed arc C D, reducing to the loop given by the sequence ABD−1A−1B−1D, and, secondly, twice
(with opposite orientation) the surface solution to the Plateau’s problem with boundary given by the
closed arc BD−1, whence reducing to the contractible loop given by the sequence ADD−1A−1D−1D.

Proof of Theorem 8.1: Let u be given by the previous example, so that (8.3) holds. It is not

difficult to find a smooth sequence {uh} ⊂ C2
b (B

2) such that GGuh
⇀ Σ̃u weakly in D2(U × S2) and

suph E(uh) <∞, whence Σ̃u ∈ Gcart(U × S2), where U := B2 × R, and actually Σ̃u ∈ Gcartu. For any

r ∈ (0, 1), let f
(r)
h (θ) := uh(r cos θ, r sin θ), θ ∈ I := [0, 2π]. By a slicing argument, it turns out that for

a.e. r the sequence GG
f
(r)
h

weakly converges in D1(I̊×R×S1) to the current Σf := GGa
f +GG

J
f +S

Jc
f ,

where f is given by (8.1). Arguing as in Prop. 4.5 and Rmk. 4.6 from [2], we can find a smooth

sequence Ψ
(r)
h : IL → I × R × S1, where IL := [0, L] for a suitable L > 0, and a Lipschitz function

Ψ(r) : IL → I × R× S1 such that the following properties hold:

i) the smooth curve Ψ
(r)
h is one-to-one, has constant velocity, and Ψ

(r)
h #

[[ IL ]] = GG
f
(r)
h

;

ii) the Lipschitz curve Ψ(r) is one-to-one, has constant velocity, and Ψ(r)
#[[ IL ]] = Σf ;

iii) the sequence {Ψ(r)
h } converges to Ψ(r) uniformly in IL, and Ψ

(r)
h #

[[ IL ]] ⇀ Ψ(r)
#[[ IL ]] weakly in

D1(I × R× S1) .

Moreover, denoting Σ̃u = [[R, θ,
−→
ζ ]], see Remark 3.3, we observe that for each ε > 0 we can find a

small radius rε > 0 such that if Drε denotes the cylinder Drε := B2
rε × R× S2, then∫

R∩Drε

|ζ(i)| θ dH2 < ε/4 ∀ i = 0, 1, 2

and hence the curvature energy of Σ̃u is small on Drε .

Assume now by contradiction that E(uh) → E(Σ̃u). Then, by lower semicontinuity, we can find hε
such that for every h ≥ hε∫

B2
rε

√
guh

(
1 +

√
4H2

uh
− 2Kuh

+ |Kuh
|
)
dL2 < ε .

As a consequence, we deduce that for a.e. r ∈ (0, rε) and for every h ≥ hε the curve Ψ
(r)
h can be

deformed to a constant by means of a smooth homotopy H
(r)
h with mapping area smaller than c ε, for

some absolute constant c > 0. We now observe that the Lipschitz curves Ψ(r) uniformly converge to a
suitable reparameterization of the closed arc γ : [0, 18] → Rz × S2+, as r → 0. The uniform convergence

of Ψ
(r)
h to the Lipschitz curve Ψ(r), and the non-triviality of the closed arc γ previously described,

yield to a contradiction with the existence of the smooth homotopy map H
(r)
h with small mapping area

previously described. �

9 Final remarks and open questions

In this final section we collect some ideas towards the direction of finding an explicit formula for the
relaxed energy (3.1), a widely open problem even in the case of homogeneous functions.
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Energy on Gauss graphs. We can write more explicitly the curvature energy on the Gauss
graphs Σ̃u of homogeneous functions u ∈ E(B2). Since Σ̃u has finite mass, on account of (7.2) it turns
out that the related mass decomposition holds:

M(Σ̃u) = M(GGa
u) +M(GGC

u ) +M(GGJ
u) +M(SJe

u ) +M(Se
u) .

Therefore, by the definition of energy on currents (3.13), the corresponding decomposition formula holds:

E(Σ̃u) = E(GGa
u) + E(GGC

u ) + E(GGJ
u) + E(SJe

u ) + E(Se
u) .

We shall provide in Appendix B the explicit computation when u is given by Example 7.1.

Eventual non-locality. Consider the localization of the relaxed functional, defined for any
bounded function u ∈ E(Ω) and any open (or Borel) set A ⊂ Ω by:

E(u,A) := inf{lim inf
h→∞

E(uh, A) | {uh}h ⊂ C2
b (A) , uh → u strongly in L1(A)}

where for smooth functions we have set

E(uh, A) :=
∫
A

(
|ξ(0)uh

|+ |ξ(1)uh
|+ |ξ(2)uh

|
)
dL2 .

It is not clear if one could find a function u ∈ E(Ω) such that the set function A 7→ E(u,A) fails
to be subadditive, i.e., for which we can find open sets A1, A2, A3 ⊂ Ω such that A3 ⊂⊂ A1 ∪ A2 but
E(u,A3) > E(u,A1) + E(u,A2). For this purpose, one could try to reproduce the argument used by
Acerbi-Dal Maso [1] in order to show the non-locality of the relaxed area functional. Consider in fact the
homogeneous map u(x) := x/|x|, where x ∈ B2, so that (cf. [17, Sec. 3.2.2]) one has

(∂Gu) B2 × R2 = −δ0R2 × [[S1 ]] .

Roughly speaking, there are two qualitatively different ways to fill the hole in the graph of u: inserting
a disk δ0R2 × [[B2 ]] or a cylinder [[ I ]] × [[S1 ]], where I is any oriented line segment connecting a point
in the boundary ∂B2 of the domain to the origin 0R2 . This property implies the non-locality, see [1].

In our context, assume e.g. Ω = B2 and u : B2 → R homogeneous, u(x) = f(θ), so that in general
with the notation (7.1) and (7.2) one has:

(∂Σ̃u) U × S2 = −δ0R2 × Γ

for some integral 1-cycle Γ ∈ D1(Rz × S2), compare e.g. (7.17). As we already discussed in Sec. 6, where

Σ̃u = GGu, in principle there are two qualitatively different ways to “fill the hole” at the origin, namely:

i) choosing the energy minimizing current S1 with support in {0R2} × Rz × S2+ and satisfying the
geometric constraint and the boundary condition ∂S = δ0R2 × Γ ;

ii) choosing e.g. S2 := −F#([[ 0, 1 ]] × (δ0R2 × Γ)), where F is the homotopy map F (λ, (0R2 , z, y)) :=
(λv, z, y) for some direction v ∈ S1.

Measure property. However, Proposition 6.3 suggests that in general if we impose the above
mentioned geometric condition, the only way to fill the hole of the current Σ̃u is by means of 2-dimensional
i.m. rectifiable currents with support in {0R2} × Rz × S2+, so that the second alternative is excluded.

Therefore, at least for homogeneous functions u we expect the set function A 7→ µu(A) := E(u,A) to be
subadditive, and hence a measure, as a consequence of the De Giorgi-Letta criterion [12]. This conjecture
is motivated by the following examples.

Example 9.1 If u is given by Example 6.1, in Sec. 6 we have actually proved that set function µu is a
finite Radon measure, with absolutely continuous component given by the integral E(u, ·), and singular
part a Dirac measure at the origin and with weight equal to the energy of the optimal current S1:

µu = E(u, ·) + c · δ0R2 , c := E(S1)

where, we recall, E(S1) = E0(S1)+E1(S1)+E2(S2), with E0(S1) = 0, E1(S1) = 4π−8, E2(S1) = 2π. The
energy term E(u) = E1(u) + E1(u) + E2(u) can be computed according to the formulas from Remark A.1
below, where the energy density is obtained by taking with f = cos θ.
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Example 9.2 In a similar way, if u is given by Example 7.1, on account of the density theorem 5.2, we
expect the set function µu to be again a finite Radon measure with absolutely continuous component
given by the integral E(u, ·). Since the distributional derivative of u has no Cantor component, DCu = 0,
there is no Cantor component GGC

u and hence the measure µu has no other diffuse terms. This time,
the singular component is given by two qualitatively different terms.

The first term is concentrated on a 1-dimensional set and depends on the energy of the other compo-
nents of Σ̃u in the formula (7.1). It is given by two components: the first one, say µ1, lives on the jump
set of u, i.e., on the interval Ju = (0, 1) × {0}, and it depends on the energies of the Jump component
GGJ

u and of Jump-edge component SJe
u . More precisely, on account of the definitions (7.7) and (7.10),

and choosing IA ⊂ (0, 1) through the formula IA × {0} = A ∩ Ju, for any Borel set A ⊂ B2 we get

µ1(A) = c1 · H1 Ju(A) + E(ΦJe
+ #

[[ IA × (0, 1) ]]) + E(ΦJe
− #

[[ IA × (0, 1) ]])

where the weight c1 is given by the energy E(GGJ
u) of the Jump component.

The second component, say µ2, lives on the jump set of the approximate gradient ∇u, i.e., on the
interval J∇u = {0} × (−1, 1), and it depends on the energy of the Edge component Se

u, compare (7.13).
Choosing this time I1A ⊂ (0, 1) and I2A ⊂ (−1, 0) through the formulas {0} × I1A = A1 ∩ J∇u and
{0} × I2A = A2 ∩ J∇u , respectively, where A1 := {x ∈ A | x2 > 0} and A2 := {x ∈ A | x2 < 0}, for any
Borel set A ⊂ B2 we get

µ2(A) = E(Φe
1#[[ I

1
A × (0, 1) ]]) + E(Φe

2#[[ (1 + I2A)× (0, 1) ]] .

Finally, a second term appears: as in the previous example, it is given by a Dirac measure centered
at the origin and with weight equal to the energy of the optimal current S1 that fills the hole in the
current Σ̃u, according to formula (7.17), see also Remark 7.3. In conclusion, this time we get

µu = E(u, ·) + µ1 + µ2 + c · δ0R2 , c := E(S1)

where E0(S1) = 0, E1(S1) = 2π − 4, E2(S1) = π. The energy term E(u) = E1(u) + E1(u) + E2(u) can
be computed according to the formulas from Remark A.1 below, where the energy density is obtained by
taking with f as in (7.4). The energy contribution of the different components GGJ

u , Su
J , SJe

u , and
Se
u are computed in Appendix B. We omit any further detail.

A Homogeneous functions

Assume u : B2 → R satisfies u(x) = u(x/|x|) for each x ∈ B2 \{0R2}, whence we can write u(x) = f(θ)
for some function f : [0, 2π] → R, where x = (ρ cos θ, ρ sin θ). Denoting for simplicity s := sin θ and
c := cos θ, we formally compute on B2 \ {0R2}

∇u =
(
− ḟs
ρ
,
ḟc

ρ

)
, νu =

1

(ρ2 + ḟ2)1/2
(ḟs,−ḟ c, ρ)

and hence, setting F := ρ2 + ḟ2, we get

∂1νu
1 =

−1

ρF 3/2

[
ρ2(2ḟs c+ f̈s2) + ḟ3s c

]
, ∂2νu

1 =
1

ρF 3/2

[
ρ2(ḟ(c2 − s2) + f̈s c) + ḟ3c2

]
,

∂1νu
2 =

1

ρF 3/2

[
ρ2(ḟ(c2 − s2) + f̈s c)− ḟ3s2

]
, ∂2νu

2 =
1

ρF 3/2

[
ρ2(2ḟs c− f̈ c2) + ḟ3s c

]
,

∂1νu
3 =

1

F 3/2
ḟ(ḟ c+ f̈s) , ∂2νu

3 =
1

F 3/2
ḟ(ḟs− f̈ c) .

This yields to:

|∇νu1|2 =
1

ρ2F 3

[
ρ4(ḟ2 + f̈2s2 + 2s c ḟ f̈) + 2ρ2ḟ3(ḟ c2 + f̈s c) + ḟ6c2

]
|∇νu2|2 =

1

ρ2F 3

[
ρ4(ḟ2 + f̈2c2 − 2s c ḟ f̈) + 2ρ2ḟ3(ḟs2 − f̈s c) + ḟ6s2

]
|∇νu3|2 =

1

F 3
ḟ2(ḟ2 + f̈2)
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and hence

|∇νu|2 =
1

ρ2(ρ2 + ḟ2)3

[
ρ4(f̈2 + 2ḟ2) + ρ2(3ḟ4 + ḟ2f̈2) + ḟ6

]
.

Setting moreover for simplicity Aj :=

∣∣∣∣ ∂1u ∂2u
∂1νu

j ∂2νu
j

∣∣∣∣, we also compute:

A1 =
ḟ2s

F 3/2
, A2 = − ḟ2c

F 3/2
, A3 = − ḟ3

ρF 3/2

so that

A2
1 +A2

2 +A2
3 =

ḟ4

ρ2 (ρ2 + ḟ2)2
.

Also, setting Bjk :=

∣∣∣∣ ∂1νuj ∂2νu
j

∂1νu
k ∂2νu

k

∣∣∣∣, we compute

B12 = − ḟ2

F 2
, B13 = − ḟ3 c

ρF 2
, B23 = − ḟ3 s

ρF 2
,

so that

B2
12 +B2

13 +B2
23 =

ḟ4

ρ2 (ρ2 + ḟ2)3
.

On account of (1.15) and (1.18), we thus obtain:

|ξ(0)u |2 = gu = 1 + |∇u|2 =
ρ2 + ḟ2

ρ2

|ξ(1)u |2 = |∇νu|2 +A2
1 +A2

2 +A2
3 =

1

ρ2(ρ2 + ḟ2)2

[
ρ2f̈2 + 2 (ρ2 + ḟ2)ḟ2

]
|ξ(2)u |2 = B2

12 +B2
13 +B2

23 =
ḟ4

ρ2 (ρ2 + ḟ2)3
.

Now, by the formulas (1.11) and (1.12) we infer the explicit expressions of the Gauss and mean curvatures:

Ku = − ḟ2

(ρ2 + ḟ2)2
, Hu =

1

2

ρ f̈

(ρ2 + ḟ2)3/2

and hence we readily recover the expressions of the three terms |ξ(i)u | given by the formulas (1.18). In
particular, we get

√
gu Ku = − ḟ2

ρ (ρ2 + ḟ2)3/2
,

√
gu Hu =

1

2

f̈

ρ2 + ḟ2
.

We also compute:

|ξu|2 = |ξ(0)u |2 + |ξ(1)u |2 + |ξ(2)u |2 =
g

(ρ2 + ḟ2)4

[
(ρ2 + 2ḟ2)2 + ρ2(ρ2 + ḟ2) f̈2

]
=

1

ρ2(ρ2 + ḟ2)3

[
(ρ2 + 2ḟ2)2 + ρ2(ρ2 + ḟ2) f̈2

]
.

Therefore, for f smooth, on account of (1.8) by the area formula we obtain

H2(GGu) =

∫
B2

|ξu| dL2 =

∫ 1

0

∫ 2π

0

[(ρ2 + 2ḟ2)2 + ρ2(ρ2 + ḟ2) f̈2]1/2

(ρ2 + ḟ2)3/2
dθ dρ .
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Remark A.1 Notice that |ξu| ∈ L1(B2) if and only if |ξ(i)u | ∈ L1(B2) for i = 0, 1, 2, and we get:∫
B2

|ξ(0)u | dL2 =

∫ 1

0

∫ 2π

0

√
ρ2 + ḟ2 dθ dρ∫

B2

|ξ(1)u | dL2 =

∫ 1

0

∫ 2π

0

[
ρ2f̈2 + 2 (ρ2 + ḟ2)ḟ2

]1/2
ρ2 + ḟ2

dθ dρ∫
B2

|ξ(2)u | dL2 =

∫ 1

0

∫ 2π

0

ḟ2

(ρ2 + ḟ2)3/2
dθ dρ .

Moreover, since |ξu| =
√
gu

√
(1−Ku)2 + (2Hu)2 we have

1√
2

(√
gu |1−Ku|+

√
gu |2Hu|

)
≤ |ξu| ≤

√
gu |1−Ku|+

√
gu |2Hu|

where, we recall,

√
gu =

√
ρ2 + ḟ2

ρ
, |1−Ku| = 1 +

ḟ2

(ρ2 + ḟ2)2
, |2Hu| =

ρ |f̈ |
(ρ2 + ḟ2)3/2

and hence we deduce that |ξu| ∈ L1(B2) if and only if∫
B2

(ρ2 + ḟ2)1/2

ρ
dL2 <∞ ,

∫
B2

1

ρ

ḟ2

(ρ2 + ḟ2)3/2
dL2 <∞ , and

∫
B2

|f̈ |
ρ2 + ḟ2

dL2 <∞ .

B An energy computation

We compute the energy of the various components of the current Σ̃u in (7.1), referring to Example 7.1.

The Absolutely continuous term has energy E(GGa
u) = E(u), and it is given by the sum of the three

integrals in Remark A.1, with f given by (7.4). The Cantor component GGC
u is equal to zero.

The Jump component is GGJ
u = ΦJ

#[[ I × I ]], see (7.7). Consider the 2-vector
−→
ξ := ∂sΦ

J∧∂λΦJ . The

mass of GGJ
u agrees with the area of the Gauss graph surface ΦJ(I × I). Moreover, the stratification

−→
ξ = ξ(0) + ξ(1) + ξ(2) gives ξ(2) = 0 and

ξ(0) = [u(γ0)]
±(t1 e1 ∧ e3 + t2 e2 ∧ e3) , ξ(1) = −[u(γ0)]

± σu k
(
t1 e3 ∧ ε1 + t2 e3 ∧ ε2

)
where γ0(s) := (s, 0), t(s) = (t1, t2) is the unit tangent vector to the jump set, σu(s) := sgn[u(γ0(s))]

±

is the sign of the Jump, and k(s) the signed curvature, whence t(s) ≡ (1, 0)), σu(s) ≡ 1, k(s) ≡ 0. We
thus have E2(GG

J
u) = 0, whereas by the area formula we get:

E0(GG
J
u) =

∫
I×I

|[u(γ0(s))]±| ds dλ = |DuJ |(B2) = 1 , E1(GG
J
u) =

∫
I

|[u(γ0(s))]±|k(s) ds = 0 .

The Jump-edge component is SJe
u = ΦJe

+#[[ I × I ]]− ΦJe
−#[[ I × I ]], whence the mass decomposition

M(SJe
u ) = M(ΦJe

+#[[ I × I ]]) +M(ΦJe
−#[[ I × I ]])

and a similar energy splitting hold. Furthermore, using the formulas after equation (7.10), we get

∂sΦ
Je
± = γ̇10 e1 + γ̇20 e2 +∇u±(γ0) • γ̇0 e3 +

3∑
j=1

∂s(ϕ
Je
± )

j
εj , ∂λΦ

Je
± =

3∑
j=1

∂λ(ϕ
Je
± )

j
εj

and hence we may decompose
−→
ξ := ∂sΦ

Je
± ∧ ∂λΦJe

± = ξ(0) + ξ(1) + ξ(2), where this time the first stratum

ξ(0) = 0 and

ξ(1) =

3∑
j=1

∂λ(ϕ
Je
± )

j
( 2∑
i=1

γ̇i0 ei ∧ εj +∇u±(γ0) • γ̇0 e3 ∧ εj
)
,

38



ξ(2) =
∑

1≤j1<j2≤3

(
∂s(ϕ

Je
± )

j1
∂λ(ϕ

Je
± )

j2 − ∂λ(ϕ
Je
± )

j1
∂s(ϕ

Je
± )

j2)
εj1 ∧ εj2 .

We thus get
|ξ(1)| =

√
1 + (∂tu±(γ0))2 |∂λϕJe± | , |ξ(2)| = |J2ϕJe± |

and hence
E(SJe

u ) = E(ΦJe
+#[[ I × I ]]) + E(ΦJe

−#[[ I × I ]])

where E0(Φ
Je
±#[[ I × I ]]) = 0 and, again by the area formula,

E1(Φ
Je
±#[[ I × I ]]) =

∫
I

√
1 + (∂tu±(γ0(s)))2

{∫
I

|∂λϕJe± (s, λ))| dλ
}
ds =

π

2

where we used that ∂tu
±(γ0(s)) ≡ 0, whereas

E2(Φ
Je
±#[[ I × I ]]) = H2(ϕJe± (I × I)) =

π

2

and correspondingly

M(ΦJe
±#[[ I × I ]]) =

∫
I×I

(
(1 + (∂tu

±(γ0))
2) (∂λϕ

Je
± )2 + (J2ϕ

Je
± )2

)1/2

ds dλ =

√
2

2
π .

Finally, the Edge component is Se
u =

∑2
k=1 Φ

e
k#[[ I × I ]], see (7.13). We similarly compute:

M(Se
u) =

2∑
k=1

M(Φe
k#[[ I × I ]]) , E(Se

u) =

2∑
k=1

E(Φe
k#[[ I × I ]])

where for k = 1, 2 we have E0(Φ
e
k#[[ I × I ]]) = 0,

E1(Φ
e
k#[[ I × I ]]) =

∫
I

√
1 + (∂tu(γk(s)))2

{∫
I

|∂λϕek(s, λ))| dλ
}
ds

with γ1(s) := (0, s) and γ2(s) := (0, s− 1), and

E2(Φ
e
k#[[ I × I ]]) = H2(ϕek(I × I))

whereas concerning the mass we get:

M(Φe
k#[[ I × I ]]) =

∫
I×I

(
(1 + (∂tu(γk))

2) (∂λϕ
e
k)

2 + (J2ϕ
e
k)

2
)1/2

ds dλ .

By (7.14), we check |∂λϕe1(s, λ))| = (π/2− arctan s), |∂λϕe2(s, λ))| = π/2− arctan(1− s), and J2ϕ
e
k ≡ 0,

whereas ∂tu(γk(s)) ≡ 0. We thus conclude that for k = 1, 2 :

E1(Φ
e
k#[[ I × I ]]) =

∫
I

(π
2
− arctan s

)
ds =

π

4
+

1

2
log 2

E2(Φ
e
k#[[ I × I ]]) = 0 , M(Φe

k#[[ I × I ]]) = E1(Φ
e
k#[[ I × I ]]) .
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