ON THE CODIMENSION OF THE ABNORMAL SET IN STEP TWO CARNOT GROUPS

ALESSANDRO OTTAZZI AND DAVIDE VITTONE

Abstract

In this article we prove that the codimension of the abnormal set of the endpoint map for certain classes of Carnot groups of step 2 is at least three. Our result applies to all step 2 Carnot groups of dimension up to 7 and is a generalisation of a previous analogous result for step 2 free nilpotent groups.

1. Introduction

Let G be a Carnot group, i.e., a connected and simply connected Lie group with stratified nilpotent Lie algebra $\mathfrak{g}=V_{1} \oplus \cdots \oplus V_{s}$. Let End be the endpoint map

$$
\text { End : } \begin{aligned}
L^{2}\left([0,1], V_{1}\right) & \rightarrow G \\
u & \mapsto
\end{aligned} \gamma_{u}(1), ~ \$
$$

where γ_{u} is the curve on G leaving from the identity $e \in G$ with $\dot{\gamma}_{u}(t)=\left(\mathrm{d} L_{\gamma_{u}(t)}\right)_{e} u(t)$, L_{g} denoting left translation by g. The abnormal set is the subset $\mathrm{Abn}_{G} \subseteq G$ of all singular values of the endpoint map. Equivalently, Abn_{G} is the union of all abnormal curves passing through the origin. If the abnormal set has measure 0 , then G is said to satisfy the Sard Property. Proving the Sard Property in the general context of sub-Riemannian manifolds is one of the major open problems in sub-Riemannian geometry, see the questions in [6, Sec. 10.2] and Problem III in [2]. See also [1], [3] and [7]. In [5], the authors of this note and others proved the Sard Property in a number of special cases, and they also obtained the following first result concerning the interesting problem of obtaining finer estimates on the size of the abnormal set.
Theorem ([5, Theorem 3.15]). In any free nilpotent group of step 2 the abnormal set is an algebraic subvariety of codimension 3.

In the present paper we discuss generalizations of the result above to some classes of step 2 Carnot groups that are not necessarily free. Our purpose is to present

[^0]different possible approaches to the problem. As our examples will show, going from the free to the general case does not seem to be a trivial step. Before summarizing our contributions in the following statement, it is worth recalling that a free-nilpotent group of step 2 and rank r has dimension $\frac{r^{2}+r}{2}$
Theorem. Let G be a step 2 Carnot group and let $\operatorname{dim} V_{1}=r$. The abnormal set Abn_{G} is contained in an algebraic subvariety of codimension three (or more) in the following cases:
(i) G has dimension $r+1$ or $r+2$;
(ii) G has dimension $\frac{r^{2}+r}{2}-1$ or $\frac{r^{2}+r}{2}-2$;
(iii) $r=4$ and G has dimension 7 .

After having established the notation and having recalled some known results in Section 2, we state and prove our contributions. In Section 3 we consider Carnot groups of step 2 and dimensions $r+1$ and $r+2$. This will be the content of Theorem 3.1 and Theorem 3.3. While the case $r+1$ is rather straightforward, in order to prove Theorem 3.3 we reason by induction on r and we need some fine observations on the bases of V_{1}. Already in dimension $r+3$ our technique apparently fails to being convenient. In Section 4, we consider dimensions $\frac{r^{2}+r}{2}-1$ and $\frac{r^{2}+r}{2}-2$ (Theorem 4.2 and Theorem 4.9). The idea here is to see the Carnot groups as quotients of freenilpotent groups of step 2 by 1 and 2 -dimensional ideals, respectively. Indeed, it turns out (see Proposition 2.16) that if $\pi: F \rightarrow G$ is a homomorphic projection of stratified groups, then the abnormal curves in G are the abnormal curves in F that remain abnormal under π. If the dimension of the kernel of π is 1 or 2 and F is free, we are able to study the abnormal curves of G using this method. However, when the dimension of the kernel is higher, the computations become more complicated. Finally, in Section 5 we prove Theorem 5.2, which concerns the case where $r=4$ and the dimension is 7 .

It can be easily checked that all stratified Lie groups up to dimension 7 fall in one of the cases $(i),(i i)$ or $(i i i)$ above. In particular, we have the following consequence.
Corollary. Let G be a step 2 Carnot group of topological dimension not greater than 7; then, the abnormal set Abn_{G} is contained in an algebraic subvariety of codimension at most three.

2. Preliminaries

In this section we establish the notation we are going to use and we recall some preliminary facts that were proved in [5].

A Carnot (or stratified) group G is a connected, simply connected and nilpotent Lie group whose Lie algebra \mathfrak{g} is stratified, i.e., it has a direct sum decomposition $\mathfrak{g}=V_{1} \oplus \cdots \oplus V_{s}$ such that

$$
V_{j+1}=\left[V_{j}, V_{1}\right] \forall j=1, \ldots, s-1, \quad V_{s} \neq\{0\} \quad \text { and } \quad\left[V_{s}, V_{1}\right]=\{0\}
$$

We refer to the integer s as the step of G and to $r:=\operatorname{dim} V_{1}$ as its rank. The group identity will be denoted by e. We will indifferently view \mathfrak{g} either as the tangent space to G at e or as the Lie algebra of left-invariant vector fields in G. Recall that in this case the exponential map $\exp : \mathfrak{g} \rightarrow G$ is a diffeomorphism; we write log for the inverse of exp. When we use \log to identify \mathfrak{g} with G, the group law on G becomes a polynomial map $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ with $0 \in \mathfrak{g}$ playing the role of the identity element $e \in G$. For all $g \in G$, denote by L_{g} and R_{g} the left and right multiplication by g, respectively. We write $\operatorname{Ad}_{g}:=\mathrm{d}\left(R_{g^{-1}} \circ L_{g}\right)_{e}: \mathfrak{g} \rightarrow \mathfrak{g}$. For $X \in \mathfrak{g}$ we define $\operatorname{ad}_{X}: \mathfrak{g} \rightarrow \mathfrak{g}$ by $\operatorname{ad}_{X}(Y):=[X, Y]$.

Fix $u \in L^{2}\left([0,1], V_{1}\right)$ and denote by γ_{u} the curve in G solving

$$
\begin{equation*}
\frac{\mathrm{d} \gamma}{\mathrm{~d} t}(t)=\left(\mathrm{d} L_{\gamma(t)}\right)_{e} u(t) \tag{2.1}
\end{equation*}
$$

with initial condition $\gamma(0)=e$. Vice versa, if $\gamma:[0,1] \rightarrow G$ is an absolutely continuous curve that solves (2.1) for some $u \in L^{2}\left([0,1], V_{1}\right)$, then we say that γ is horizontal and that u is its control. The endpoint map End is

$$
\begin{aligned}
\text { End : } L^{2}\left([0,1], V_{1}\right) & \rightarrow G \\
u & \mapsto
\end{aligned} \gamma_{u}(1) .
$$

We will sometimes write End ${ }^{G}$ to underline the group G we are working with.
Let $\gamma:[0,1] \rightarrow G$ be a horizontal curve with control u and such that $\gamma(0)=e$. If $\operatorname{Im}\left(\mathrm{dEnd}_{u}\right) \subsetneq T_{\gamma(1)} G$ we say that γ is abnormal. In other words, a horizontal curve $\gamma:[0,1] \rightarrow G$ is abnormal if and only if $\gamma(1)$ is a critical value of End. The main goal of this paper is the study of the abnormal set Abn_{G} of G defined by

$$
\begin{equation*}
\operatorname{Abn}_{G}:=\{\gamma(1): \gamma:[0,1] \rightarrow G \text { abnormal }, \gamma(0)=e\} . \tag{2.2}
\end{equation*}
$$

The following result is proved in [5, Proposition 2.3].
Proposition 2.3. If $\gamma:[0,1] \rightarrow G$ is a horizontal curve leaving from e with control u, then

$$
\begin{equation*}
\operatorname{Im}\left(\mathrm{dEnd}_{u}\right)=\left(\mathrm{d} R_{\gamma(1)}\right)_{e}\left(\operatorname{span}\left\{\operatorname{Ad}_{\gamma(t)} V_{1}: t \in[0,1]\right\}\right) \tag{2.4}
\end{equation*}
$$

It is clear from (2.4) that $\operatorname{Im}\left(\mathrm{dEnd}_{u}\right)$ depends only on γ and not on its parametrization (i.e., on the control u). Given a horizontal curve $\gamma:[0,1] \rightarrow G$ with $\gamma(0)=e$ we define

$$
\begin{equation*}
\mathscr{E}_{\gamma}:=\operatorname{span}\left\{\operatorname{Ad}_{\gamma(t)} V_{1}: t \in[0,1]\right\} \tag{2.5}
\end{equation*}
$$

By Proposition 2.3, γ is abnormal if and only if \mathscr{E}_{γ} is not the whole Lie algebra \mathfrak{g}. In fact, $\mathscr{E}_{\gamma} \subset T_{e} G \equiv \mathfrak{g}$ is the image under the diffeomorphism $\left(\mathrm{d} R_{\gamma(1)}\right)_{e}^{-1}$ of $\operatorname{Im}\left(\mathrm{dEnd}_{u}\right) \subset T_{\gamma(1)} G$ for any control u associated with γ. Evaluating (2.5) at $t=0$ and $t=1$ yields

$$
\begin{equation*}
V_{1}+\operatorname{Ad}_{\gamma(1)} V_{1} \subseteq \mathscr{E}_{\gamma} \tag{2.6}
\end{equation*}
$$

We will sometimes use the notation \mathscr{E}_{γ}^{G} if we need to stress the group under consideration.

Example 2.7. There are no abnormal curves in \mathbb{R}^{n} (seen as a step 1 Carnot group). Indeed, by (2.6), $\mathfrak{g}=V_{1}=\mathscr{E}_{\gamma}$ for any γ. In particular, $\mathrm{Abn}_{\mathbb{R}^{n}}=\emptyset$.

We restrict our analysis to a Carnot group G associated with a stratified Lie algebra $\mathfrak{g}=V_{1} \oplus V_{2}$ of step 2. Denote by $\pi_{V_{1}}: \mathfrak{g} \rightarrow V_{1}$ the canonical projection; for any fixed $X \in \mathfrak{g}$ we recall the formula $\operatorname{Ad}_{\exp (X)}=e^{\operatorname{ad} X}$ to get

$$
\begin{equation*}
\operatorname{Ad}_{\exp (X)}(Y)=Y+[X, Y]=Y+\left[\pi_{V_{1}}(X), Y\right] \quad \forall Y \in \mathfrak{g} . \tag{2.8}
\end{equation*}
$$

We use this formula to compute more efficiently the linear space \mathscr{E}_{γ} defined in (2.5).
Proposition 2.9. Let G be a Carnot group associated with a stratified Lie algebra $\mathfrak{g}=V_{1} \oplus V_{2}$ of step 2. Let γ be a horizontal curve in G with $\gamma(0)=e$ and define the linear space $P_{\gamma} \subseteq \mathfrak{g}$ by

$$
\begin{equation*}
P_{\gamma}:=\operatorname{span}\left\{\pi_{V_{1}}(\log \gamma(t)): t \in[0,1]\right\}, \tag{2.10}
\end{equation*}
$$

where $\log : G \rightarrow \mathfrak{g}$ is the inverse of exp. Then

$$
\mathscr{E}_{\gamma}=V_{1} \oplus\left[P_{\gamma}, V_{1}\right]
$$

and, in particular, γ is abnormal if and only if $\left[P_{\gamma}, V_{1}\right] \neq V_{2}$.
Proof. Using (2.8) and the fact that $V_{1} \subseteq \mathscr{E}_{\gamma}$ (see (2.6)), we obtain

$$
\begin{aligned}
\mathscr{E}_{\gamma} & =\operatorname{span}\left\{Y+\left[\pi_{V_{1}}(\log \gamma(t)), Y\right]: t \in[0,1], Y \in V_{1}\right\} \\
& =V_{1} \oplus \operatorname{span}\left\{\left[\pi_{V_{1}}(\log \gamma(t)), Y\right]: t \in[0,1], Y \in V_{1}\right\} \\
& =V_{1} \oplus\left[P_{\gamma}, V_{1}\right]
\end{aligned}
$$

as stated.
Example 2.11. Given an integer $n \geq 1$, the n-th Heisenberg group H^{n} is the Carnot group associated with the $(2 n+1)$-dimensional stratified Lie algebra $V_{1} \oplus V_{2}$ of step 2 where

$$
V_{1}:=\operatorname{span}\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\}, \quad V_{2}:=\operatorname{span}\{T\}
$$

and the only non-zero commutation relations between the generators are given by

$$
\left[X_{i}, Y_{i}\right]=T \quad \text { for any } i=1, \ldots, n
$$

In particular, for any horizontal curve γ with $\gamma(0)=e$ we have $\left[P_{\gamma}, V_{1}\right]=V_{2}$ unless $P_{\gamma}=\{0\}$. It follows that the only abnormal curve in H^{n} is the constant curve $\bar{\gamma}(t) \equiv e$ and, in particular, $\operatorname{Abn}_{H^{n}}=\{e\}$. We note here for future reference that $\mathscr{E}_{\bar{\gamma}}=V_{1}$.

Proposition 2.9 allows to give a completely algebraic description of Abn_{G}. Consider an abnormal curve γ in G leaving from the identity e and let P_{γ} be as in (2.10). Then

Im γ is contained in the subgroup of G associated to the Lie algebra generated by P_{γ}, i.e.,

$$
\operatorname{Im} \gamma \subseteq \exp \left(P_{\gamma} \oplus\left[P_{\gamma}, P_{\gamma}\right]\right)
$$

Assume for a moment that $\operatorname{dim} P_{\gamma} \in\{r, r-1\}$, i.e., that P_{γ} is either the whole horizontal layer V_{1} or a hyperplane of V_{1}; in both cases one would have $\left[P_{\gamma}, V_{1}\right]=V_{2}$ and, by Proposition 2.9, γ would not be abnormal. This proves that
$\mathrm{Abn}_{G} \subseteq \bigcup\left\{\exp (P \oplus[P, P]): P\right.$ linear subspace of $\left.\mathfrak{g}, \operatorname{dim} P \leq r-2,[P, P] \neq V_{2}\right\}$.
The reverse inclusion holds as well. Indeed, if P is a linear subspace of \mathfrak{g} such that $\operatorname{dim} P \leq r-2$ and $[P, P] \neq V_{2}$, then by Chow connectivity theorem any point in the subgroup $H:=\exp (P \oplus[P, P])$ can be connected to e by a horizontal curve γ entirely contained in H, and such a γ must be abnormal by Proposition 2.9. We have therefore proved the following result (see also [5, Section 3.1]).
Proposition 2.12. Let G be a Carnot group associated with a Lie algebra $\mathfrak{g}=V_{1} \oplus V_{2}$ of step 2; then
$\operatorname{Abn}_{G}=\bigcup\left\{\exp (P \oplus[P, P]): P\right.$ linear subspace of $\left.\mathfrak{g}, \operatorname{dim} P \leq r-2,[P, P] \neq V_{2}\right\}$.
An immediate consequence of Proposition 2.12, proved in [5, Theorem 1.4], is the following result.

Theorem 2.13. Let G be a Carnot group associated with a free Lie algebra of step 2; then Abn_{G} is contained in an affine algebraic subvariety of codimension 3.

We conclude this section by proving two simple results that hold in general Carnot groups.

Proposition 2.14. Let G and H be Carnot groups associated with stratified Lie algebras \mathfrak{g} and \mathfrak{h} (respectively). Let γ be a horizontal curve in the Carnot group $G \times H$ and write $\gamma=(\alpha, \beta)$ for unique horizontal curves α and β in G and H, respectively. Then, γ is abnormal in $G \times H$ if and only if either α is abnormal in G or β is abnormal in H; in particular

$$
\operatorname{Abn}_{G \times H}=\left(\operatorname{Abn}_{G} \times H\right) \cup\left(G \times \operatorname{Abn}_{H}\right)
$$

Proof. Let V_{1} and W_{1} be the first layers in the stratifications of \mathfrak{g} and \mathfrak{h} respectively. If $u \in L^{2}\left([0,1], V_{1}\right)$ and $w \in L^{2}\left([0,1], W_{1}\right)$ are the controls associated to α and β respectively, then $(u, v) \in L^{2}\left([0,1], V_{1} \times W_{1}\right)$ is a control of γ and

$$
\operatorname{dEnd}_{(u, v)}^{G \times H}=\operatorname{dEnd}_{u}^{G} \otimes \operatorname{dEnd}_{v}^{H} .
$$

In particular, $\operatorname{dEnd}_{(u, v)}^{G \times H}$ is surjective if and only if both $\operatorname{dEnd}_{u}^{G}$ and $\operatorname{dEnd}_{v}^{H}$ are, and this is enough to conclude.

We need some terminology before stating our next result. Assume that $\mathfrak{f}=V_{1} \oplus$ $\cdots \oplus V_{s}$ is a nilpotent stratified Lie algebra and that $\mathfrak{I} \subset V_{2} \oplus \cdots \oplus V_{s}$ is an ideal of \mathfrak{f}; consider the quotient Lie algebra $\mathfrak{g}=\mathfrak{f} / \mathfrak{I}$. Let $\pi: \mathfrak{f} \rightarrow \mathfrak{g}$ be the associated canonical projection and let F, G be the Carnot groups associated with $\mathfrak{f}, \mathfrak{g}$ respectively; we use the same symbol $\pi: F \rightarrow G$ to denote the canonical projection at the group level. It is well-known that any horizontal curve γ in G leaving from the identity (of G) admits a unique lift to F, i.e., a unique horizontal curve $\bar{\gamma}$ in F leaving from the identity (of F) and such that $\gamma=\pi \circ \bar{\gamma}$. Moreover, essentially by definition (see (2.5)) we have that for any horizontal curve c in F

$$
\begin{equation*}
\mathscr{E}_{\pi \circ c}=\pi\left(\mathscr{E}_{c}\right) \tag{2.15}
\end{equation*}
$$

This proves the following result.
Proposition 2.16. Let $\mathfrak{f}=V_{1} \oplus \cdots \oplus V_{s}$ be a nilpotent stratified Lie algebra, let $\mathfrak{I} \subset V_{2} \oplus \cdots \oplus V_{s}$ be an ideal of \mathfrak{f} and let $\mathfrak{g}=\mathfrak{f} / \mathfrak{I}$ be the quotient Lie algebra. Let $\pi: F \rightarrow G$ be the canonical projection between the Carnot groups F and G associated with \mathfrak{f} and \mathfrak{g}, respectively. Then, for any abnormal curve γ in G, the lift $\bar{\gamma}$ is an abnormal curve in F; in particular,

$$
\operatorname{Abn}_{G} \subset \pi\left(\mathrm{Abn}_{F}\right)
$$

3. Step 2, RANK r, Dimensions $r+1$ And $r+2$

In this section we show that if G is a Carnot group of step 2 such that $\operatorname{dim} V_{1}=r$ and $\operatorname{dim} V_{2}=1$ or 2 , then the abnormal set Abn has codimension at least 3. The case where $\operatorname{dim} V_{2}=1$ is somewhat elementary. Given an integer $\ell \geq 0$, we say that a vector $X \in V_{1}$ has rank ℓ if $\operatorname{rank}(\operatorname{ad} X)=\ell$. We denote by R_{ℓ} the set of vectors in V_{1} of rank at most ℓ; notice that $R_{0}=\mathfrak{z}(\mathfrak{g}) \cap V_{1}$.

Theorem 3.1. Let G be the Carnot group associated with a stratified Lie algebra $\mathfrak{g}=V_{1} \oplus V_{2}$ such that $\operatorname{dim} V_{1}=r$ and $\operatorname{dim} V_{2}=1$. Then $\operatorname{dim} \mathrm{Abn}_{G} \leq r-2$.

Proof. By Proposition 2.9, a curve γ is abnormal if and only if $\left[P_{\gamma}, V_{1}\right]=\{0\}$, i.e., $P_{\gamma} \subseteq \mathfrak{z}(\mathfrak{g})$, the center of \mathfrak{g}. So the abnormal curves are contained in $\exp R_{0}$, which is a subgroup of dimension at most $r-2$, for otherwise \mathfrak{g} would be abelian.

We also provide an alternative proof suggested to us by E. Le Donne.
Alternative proof of Theorem 3.1. It is an exercise left to the reader to show that G is isomorphic to the product $H^{k} \times \mathbb{R}^{h}$ for suitable integers $k \geq 1$ and $h \geq 0$. The conclusion follows from Proposition 2.14 and Examples 2.7 and 2.11 .

The proof of the case $\operatorname{dim} V_{2}=2$ is less straightforward, and it requires some preliminary results.

Lemma 3.2. Let $\mathfrak{g}=V_{1} \oplus V_{2}$ be a step two stratified Lie algebra with $\operatorname{dim} V_{1}=r \geq 3$ and $\operatorname{dim} V_{2}=2$. Then R_{1} has codimension at least 1 in V_{1}.

Proof. Let X_{1}, \ldots, X_{r} be a basis of V_{1} and Z_{1}, Z_{2} a basis of V_{2}; let $X=\sum_{i=1}^{r} x_{i} X_{i} \in V_{1}$. Asking X to have rank at most 1 amounts to an algebraic condition on x_{1}, \ldots, x_{r} : in fact, X has rank at most 1 if and only if all the 2×2 minors of the matrix $M \in \mathbb{R}^{2 \times r}$ defined by $\left[X_{j}, X\right]=M_{1 j} Z_{1}+M_{2 j} Z_{2}, j=1, \ldots, r$ have null determinant. We notice that the entries of M are linear in x_{1}, \ldots, x_{r}, hence all the determinants of the 2×2 minors are given by a (possibly zero) homogeneous second-order polynomial in x_{1}, \ldots, x_{r}. It follows that R_{1} is contained in an algebraic variety of V_{1}.

In order to show that this variety is not the whole V_{1} (and hence it has positive codimension, as desired) it is enough to find a vector in V_{1} of rank 2. This is trivial if $r=3$. For $r \geq 4$ we reason by contradiction and assume that all vectors have rank 0 or 1. Fix $X_{1}, X_{2} \in V_{1}$ such that $\left[X_{1}, X_{2}\right]=Z_{1} \neq 0$. We can choose ${ }^{1}$ a basis $\left\{X_{1}, X_{2}, X_{3}, \ldots, X_{r}\right\}$ of V_{1} so that $\left[X_{j}, X_{1}\right]=\left[X_{j}, X_{2}\right]=0$ for every $j=3, \ldots, r$. Since $\operatorname{dim} V_{2}=2$, we may assume that Z_{1} and $Z_{2}:=\left[X_{3}, X_{4}\right]$ are linearly independent. Then $X_{1}+X_{3}$ has rank 2, and the proof is accomplished.

Theorem 3.3. Let G be the Carnot group associated with a stratified Lie algebra $\mathfrak{g}=V_{1} \oplus V_{2}$ such that $\operatorname{dim} V_{1}=r$ and $\operatorname{dim} V_{2}=2$. Then $\operatorname{dim} \mathrm{Abn}_{G} \leq r-1$.

Proof. We argue by induction on r. Since $\operatorname{dim} V_{2}=2$, the smallest possible dimension for V_{1} is $r=3$. If this is the case, then for every (non-constant) abnormal curve γ the space P_{γ} has dimension one (otherwise $\left[P_{\gamma}, V_{1}\right]=V_{2}$ and γ would not be abnormal). Therefore γ is a horizontal line, and $P_{\gamma}=\operatorname{span}\left\{X^{\gamma}\right\}$ for some $X^{\gamma} \in V_{1}$; actually, $X^{\gamma} \in R_{1}$, for otherwise $\left[P_{\gamma}, V_{1}\right]=V_{2}$. It follows that $\operatorname{Abn}_{G} \subset \exp \left(R_{1}\right)$; by Lemma 3.2, this has dimension at most 2, as stated.

Assume now that the thesis is true for $\operatorname{dim} V_{1} \leq r-1$ and let γ be an abnormal curve. Notice that if $\operatorname{dim} P_{\gamma}=1$, then $\gamma \subseteq \exp \left(R_{1}\right)$. Therefore, if there is no abnormal curve γ such that $\operatorname{dim} P_{\gamma} \geq 2$, the conclusion follows from Lemma 3.2. Otherwise there is a curve γ which is abnormal (i.e., $\operatorname{dim}\left[P_{\gamma}, V_{1}\right] \leq 1$) and such that P_{γ} has dimension ≥ 2. If P_{γ} is abelian for every such γ, then the abnormal curves are all contained in the space $\exp \left(R_{1}\right)$, which has dimension at most $r-1$ by Lemma 3.2.

Otherwise, suppose there is an abnormal curve γ such that $\operatorname{dim} P_{\gamma} \geq 2, \operatorname{dim}\left[P_{\gamma}, V_{1}\right] \leq$ 1 , and $\left[P_{\gamma}, P_{\gamma}\right] \neq 0$, so that $\operatorname{dim}\left[P_{\gamma}, P_{\gamma}\right]=\operatorname{dim}\left[P_{\gamma}, V_{1}\right]=1$. Then there are $X_{1}, X_{2} \in P_{\gamma}$ such that $\left[X_{1}, X_{2}\right]=Z_{1} \neq 0$. We may complete ${ }^{2} X_{1}$ and X_{2} to a basis X_{1}, \ldots, X_{r} of V_{1} so that $\left[X_{j}, X_{1}\right]=\left[X_{j}, X_{2}\right]=0$ for every $j=3, \ldots, r$. Denoting by \mathfrak{g} the Lie algebra of G, we have two cases: either Z_{1} is in the Lie algebra generated by X_{3}, \ldots, X_{r}, or not. In the latter case, we may write $\mathfrak{g}=\mathfrak{h} \oplus \tilde{\mathfrak{g}}$, a Lie algebra direct sum where $\mathfrak{h}:=\operatorname{span}\left\{X_{1}, X_{2}, Z_{1}\right\}$ is the three dimensional Heisenberg Lie algebra,

[^1]$\tilde{\mathfrak{g}}:=\operatorname{span}\left\{X_{3}, \ldots, X_{r}, Z_{2}\right\}$ is a subalgebra of \mathfrak{g}, and Z_{2} is a vector in V_{2} linearly independent from Z_{1}. In particular, by Proposition 2.14 the abnormal set satisfies
$$
\operatorname{Abn}_{G} \subseteq\left(\operatorname{Abn}_{H} \times \tilde{G}\right) \cup\left(H \times \operatorname{Abn}_{\tilde{G}}\right)
$$
with H and \tilde{G} denoting the subgroups of G with Lie algebras \mathfrak{h} and $\tilde{\mathfrak{g}}$ respectively. One can then easily conclude using Theorem 3.1 (which applies to \tilde{G}) and Example 2.11.

We are left with the case where Z_{1} is in the Lie algebra generated by X_{3}, \ldots, X_{r}. In this case X_{3}, \ldots, X_{r} generate two independent vectors Z_{1} and Z_{2} in V_{2}. Define the Lie algebra $\mathfrak{g}^{\prime}:=\operatorname{span}\left\{X_{3}, \ldots, X_{r}, T, Z_{2}\right\}$ with Lie product given by declaring the $\operatorname{map} \phi: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime}$, defined by $\phi\left(Z_{1}\right)=T$ and by the identity on the other basis vectors, to be an isomorphism. Then we can write

$$
\mathfrak{g}=\left(\mathfrak{h} \oplus \mathfrak{g}^{\prime}\right) / \mathfrak{I},
$$

where $\mathfrak{I}:=\operatorname{span}\left\{T-Z_{1}\right\}$ and again $\mathfrak{h}:=\operatorname{span}\left\{X_{1}, X_{2}, Z_{1}\right\}$. The homomorphic surjective projection $\pi: \mathfrak{h} \oplus \mathfrak{g}^{\prime} \rightarrow \mathfrak{g}$ defines a natural projection (for which we use the same symbol π) at the Lie group level

$$
\pi: H \times G^{\prime} \rightarrow G
$$

where G^{\prime} denotes the exponential group of \mathfrak{g}^{\prime}. By Proposition 2.16 the abnormal curves γ in G are projections of abnormal curves (α, β) in $H \times G^{\prime}$, with α and β horizontal curves in H and G^{\prime} respectively. Namely, $\gamma=\pi(\alpha, \beta)$. By Proposition 2.14, (α, β) is abnormal in $H \times G^{\prime}$ if and only if at least one of α and β is abnormal in H and G^{\prime} respectively. So, the abnormal set Abn_{G} is contained in $\mathrm{A}_{H} \cup \mathrm{~A}_{G^{\prime}}$, where

$$
\mathrm{A}_{H}:=\{\gamma(1): \gamma=\pi(\alpha, \beta) \text { abnormal in } G, \gamma(0)=e, \alpha \text { abnormal in } H\}
$$

and

$$
\mathrm{A}_{G^{\prime}}:=\left\{\gamma(1): \gamma=\pi(\alpha, \beta) \text { abnormal in } G, \gamma(0)=e, \beta \text { abnormal in } G^{\prime}\right\}
$$

We first consider A_{H}. By Example 2.11, the only abnormal curves in H leaving from e is the constant curve $\bar{\alpha} \equiv e$; we claim that $\gamma=\pi(\bar{\alpha}, \beta)$ is abnormal in G if and only if β is abnormal in G^{\prime}. Indeed, if this was not the case, then $\mathscr{E}_{\beta}^{G^{\prime}}=\mathfrak{g}^{\prime}$ and $\mathscr{E}_{\bar{\alpha}}^{H}=V_{1}^{\mathfrak{h}}$, where $V_{1}^{\mathfrak{h}}=\operatorname{span}\left\{X_{1}, X_{2}\right\}$. Recalling (2.15) we would have $\mathscr{E}_{\gamma}^{G}=\pi\left(\mathscr{E}_{\bar{\alpha}}^{H} \oplus \mathscr{E}_{\beta}^{G^{\prime}}\right)=\mathfrak{g}$ and γ would not be abnormal in G. This proves that $A_{H} \subseteq \pi\left(\{e\} \times \mathrm{Abn}_{G^{\prime}}\right)$ and, in particular, that A_{H} has codimension at least 5 .

Next, we consider $\mathrm{A}_{G^{\prime}}$. If γ is abnormal in G and α is not constant, then $\mathscr{E}_{\alpha} H=\mathfrak{h}$ by Example 2.11. Hence, in order to have $\mathscr{E}_{\gamma}^{G} \neq \mathfrak{g}$, it must be that

$$
\mathscr{E}_{\beta}^{G^{\prime}} \subseteq V_{1}^{\mathfrak{g}^{\prime}} \oplus \mathbb{R} T
$$

with $V_{1}^{\mathfrak{q}^{\prime}}=\operatorname{span}\left\{X_{3}, \ldots, X_{r}\right\}$. If $\mathscr{E}_{\beta}^{G^{\prime}}=V_{1}^{\mathfrak{q}^{\prime}}$, then $\left[P_{\beta}, V_{1}^{\mathfrak{q}^{\prime}}\right]=\{0\}$. So $\beta \subseteq \exp \left(V_{1}^{\mathfrak{q}^{\prime}} \cap\right.$ $\mathfrak{z}\left(\mathfrak{g}^{\prime}\right)$), with $\mathfrak{z}\left(\mathfrak{g}^{\prime}\right)$ the center of \mathfrak{g}^{\prime}. But $V_{1}^{\mathfrak{g}^{\prime}} \cap \mathfrak{z}\left(\mathfrak{g}^{\prime}\right)$ has dimension at most $r-5$, so we
reach the conclusion in this case. Otherwise β is such that $\mathscr{E}_{\beta}^{G^{\prime}}=V_{1}^{\mathfrak{g}^{\prime}} \oplus \mathbb{R} T$, which implies that $\left[P_{\beta}, V_{1}^{\mathfrak{q}^{\prime}}\right]=\mathbb{R} T$. Namely, $\beta \subseteq \exp (M \oplus \mathbb{R} T)$, where

$$
M=\left\{X \in V_{1}^{\mathfrak{g}^{\prime}}: \operatorname{Im}(\operatorname{ad} X) \subseteq \mathbb{R} T\right\}
$$

Notice that M is a linear subspace of $V_{1}^{\mathrm{g}^{\prime}}$ and that $\operatorname{dim} M \leq r-4$. Using the fact that $\pi\left(T-Z_{1}\right)=0$ we obtain

$$
\pi(\alpha, \beta) \subseteq \pi(H \times \exp (M \times \mathbb{R}))=\pi(H \times \exp (M))
$$

and the set on the right hand side has dimension $r-1$. This concludes the proof.
4. Step 2, RANK r, DIMENSION $\frac{r^{2}+r}{2}-1$ AND $\frac{r^{2}+r}{2}-2$.

Let $\mathfrak{g}=V_{1} \oplus V_{2}$ be a step two Lie algebra with $\operatorname{dim} V_{1}=r$. Let $\mathfrak{f}_{r, 2}$ be the nilpotent free Lie algebra of rank r and step 2 and let $F_{r, 2}$ be the Carnot group with $\mathfrak{f}_{r, 2}$ as Lie algebra. Denote by $W_{1} \oplus W_{2}$ a stratification of $\mathfrak{f}_{r, 2}$, and recall that $\operatorname{dim} W_{2}=\frac{r(r-1)}{2}$. Then the Lie algebra \mathfrak{g} can be viewed as the quotient of $\mathfrak{f}_{r, 2}$ by a subspace W of W_{2}. One possible strategy for studying the abnormal set of G is to study those abnormal curves in $F_{r, 2}$ that project to abnormal curves on G. In the following two sections we use this idea to study the abnormal set of G when $\operatorname{dim} V_{2}=\frac{r(r-1)}{2}-1$ (i.e., $\operatorname{dim} W=1$) and $\operatorname{dim} V_{2}=\frac{r(r-1)}{2}-2$ (i.e., $\operatorname{dim} W=2$). As the dimension of the space W grows, the discussion becomes considerably more complicated and this strategy (apparently) ceases to be convenient. The following lemma will be useful for both cases

Lemma 4.1. The set $\mathscr{A} \subseteq F_{r, 2}$ defined by

$$
\mathscr{A}:=\bigcup\left\{\operatorname{Im} \gamma: \gamma \text { is a curve in } F_{r, 2} \text { and } \operatorname{dim} P_{\gamma} \leq r-3\right\}
$$

has dimension $\frac{r^{2}+r}{2}-6$.
Proof. Denoting by $G r\left(W_{1}, k\right)$ the Grassmannian of k-planes in W_{1}, we have

$$
\mathscr{A}=\bigcup_{h=3}^{r-1} \mathscr{A}_{h}, \quad \text { where } \quad \mathscr{A}_{h}:=\bigcup_{P \in G r\left(W_{1}, r-h\right)} \exp (P \oplus[P, P])
$$

Each set \mathscr{A}_{h} can (locally) be parametrized by a smooth map depending on a number of parameters equal to $\operatorname{dim} \operatorname{Gr}\left(\mathbb{R}^{r}, r-h\right)+\operatorname{dim} F_{r-h, 2}$, hence it has dimension

$$
h(r-h)+\frac{(r-h)(r-h+2)}{2}=\frac{r^{2}+r}{2}-\frac{h(h+1)}{2} \leq \frac{r^{2}+r}{2}-6
$$

because $h \geq 3$.
4.1. Dimension $\frac{r^{2}+r}{2}-1$. We prove the following.

Theorem 4.2. Let G be the Carnot group associated with a step two stratified Lie algebra $\mathfrak{g}=V_{1} \oplus V_{2}$ with $\operatorname{dim} V_{1}=r$ and $\operatorname{dim} V_{2}=\frac{r(r-1)}{2}-1$. Then Abn_{G} has codimension at least 3 .

Proof. As we said, the algebra \mathfrak{g} is isomorphic to the quotient of $\mathfrak{f}_{r, 2}$ by a one dimensional subspace of W_{2}, say $\mathbb{R} Z$. From Proposition 2.16, every abnormal curve in G lifts to an abnormal curve in $F_{r, 2}$. Denote by π the projection of $F_{r, 2}$ onto G, and let γ be an abnormal curve in $F_{r, 2}$. Then P_{γ} has dimension at most $r-2$ in W_{1} by Proposition 2.12; the set Abn_{G} is thus contained in the union $A \cup B$, where

$$
A:=\left\{\pi \circ \gamma(1): \gamma \text { abnormal in } F_{r, 2} \text { and } \operatorname{dim} P_{\gamma} \leq r-3\right\}
$$

and

$$
B:=\left\{\pi \circ \gamma(1): \gamma \text { abnormal in } F_{r, 2} \text { and } \operatorname{dim} P_{\gamma}=r-2\right\} .
$$

Since A coincides with the projection $\pi(\mathscr{A})$ of the set \mathscr{A} introduced in Lemma 4.1, A has codimension at least 5 in G. Next, we analyze the set B and consider an abnormal curve γ in $F_{r, 2}$ such that P_{γ} is $(r-2)$-dimensional; in particular, $\operatorname{dim}\left[P_{\gamma}, W_{1}\right]=$ $\frac{r(r-1)}{2}-1=\operatorname{dim} W_{2}-1$. It follows that the projection $\pi \circ \gamma$ is abnormal if and only if $Z \in\left[P_{\gamma}, W_{1}\right]$, which is an easy consequence of the equalities

$$
\mathscr{E}_{\pi \circ \gamma}=\pi\left(\mathscr{E}_{\gamma}\right)=\pi\left(W_{1} \oplus\left[P_{\gamma}, W_{1}\right]\right)
$$

where we denoted by π also the projection $\mathfrak{f}_{r, 2} \rightarrow \mathfrak{g}$. Let $\ell=\frac{r(r-1)}{2}$ and fix a basis Z_{1}, \ldots, Z_{ℓ} of W_{2}. Without loss of generality, we may assume $Z_{1}=Z$. Let $Z_{1}^{\prime}, \ldots, Z_{\ell-1}^{\prime}$ be independent vectors of $\left[P_{\gamma}, W_{1}\right]$, that we can write as $Z_{j}^{\prime}=\sum_{i=1}^{\ell} a_{i}^{j} Z_{i}, j=1, \ldots, \ell-$ 1. Then $Z \in\left[P_{\gamma}, W_{1}\right]$ if and only if the matrix

$$
\left(\begin{array}{llll}
Z & Z_{1}^{\prime} & \cdots & Z_{\ell-1}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
1 & a_{1}^{1} & \ldots & a_{\ell-1}^{\ell} \\
0 & \vdots & & \vdots \\
\vdots & \vdots & & \vdots \\
0 & a_{\ell}^{1} & \ldots & a_{\ell}^{\ell-1}
\end{array}\right)
$$

has determinant equal to zero. This gives a non-trivial algebraic condition on P_{γ}. Therefore, the space of all $(r-2)$-dimensional subspaces P_{γ} of W_{1} such that $Z \in$ $\left[P_{\gamma}, W_{1}\right]$ has dimension at most $\operatorname{dim} G r(r, r-2)-1=2(r-2)-1$. Now, every $(r-2)$-dimensional plane in W_{1} generates a Lie algebra of dimension $\frac{(r-2)(r-1)}{2}$. So B has dimension at most $2(r-2)-1+\frac{(r-2)(r-1)}{2}=\frac{r^{2}+r}{2}-4$, that is, B has codimension at least 3 in G. We then conclude that Abn_{G} has codimension at least 3, as stated.
4.2. Dimension $\frac{r^{2}+r}{2}-2$. Let G be a Carnot group of step 2 whose algebra $\mathfrak{g}=V_{1} \oplus V_{2}$ is such that $\operatorname{dim} V_{1}=r$ and $\operatorname{dim} V_{2}=\frac{r^{2}-r}{2}-2$. Let $F=F_{r, 2}$ be the free Carnot group of rank r and step 2 ; in this section it will be convenient to identify the Lie algebra \mathfrak{f} of F with $V_{1} \oplus \Lambda^{2} V_{1}$; accordingly, we will indifferently use the symbols $[X, Y]$ and $X \wedge Y$ to denote the Lie bracket of $X, Y \in V_{1}$. There exists a 2-dimensional subspace $W \subseteq \Lambda^{2} V_{1}$ such that

$$
\begin{equation*}
V_{2} \equiv \Lambda^{2} V_{1} / W \tag{4.3}
\end{equation*}
$$

We use the same symbol π to denote the canonical projections $\pi: \Lambda^{2} V_{1} \rightarrow V_{2}$ and $\pi: F \rightarrow G$.

Before stating the main result of this section, some preparatory work is in order. Let $a \in W \backslash\{0\}$ be a 2 -vector and let $k \geq 1$ be its rank; let $e_{1}, e_{2}, \ldots, e_{2 k} \in V_{1}$ be such that

$$
a=\left(e_{1} \wedge e_{2}\right)+\cdots+\left(e_{2 k-1} \wedge e_{2 k}\right)
$$

We complete $e_{1}, \ldots, e_{2 k}$ to a basis e_{1}, \ldots, e_{r} of V_{1} and we endow V_{1} of a scalar product making this basis orthonormal. This induces a canonical scalar product on $\Lambda^{2} V_{1}$ making $\left(e_{i} \wedge e_{j}\right)_{1 \leq i<j \leq r}$ an orthonormal basis. Finally, we choose $b \in W$ in such a way that a, b is a basis of W; writing $b=\sum_{1 \leq i<j \leq r} c_{i j} e_{i} \wedge e_{j}$, up to replacing b with $b-c_{12} a$ we can assume that

$$
\begin{equation*}
c_{12}=0 . \tag{4.4}
\end{equation*}
$$

Let us introduce the following skew-symmetric $r \times r$ matrices:

$$
\Omega:=\left(\begin{array}{cccccc|c}
0 & 1 & & & & & \\
-1 & 0 & & & & & \\
& & 0 & 1 & & & \\
& & -1 & 0 & & & \mathbf{0} \\
& & & & \ddots & & \\
& & & & & 0 & 1 \\
& & & & & -1 & 0
\end{array}\right)
$$

where k blocks of the form $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ appear, all not-shown entries are null and $\mathbf{0}$ denotes null matrices of proper sizes, and

$$
C:=\left(\begin{array}{ccccc}
0 & c_{12} & c_{13} & c_{14} & \cdots \\
-c_{12} & 0 & c_{23} & c_{24} & \cdots \\
-c_{13} & -c_{23} & 0 & c_{34} & \cdots \\
\vdots & \vdots & \vdots & \ddots & \cdots
\end{array}\right)
$$

These matrices have the following notable relations with a, b. If one considers $x, y \in V_{1}$ as column-vectors written in the basis e_{1}, \ldots, e_{r}, then

$$
\begin{equation*}
(x \wedge y) \cdot a=x \cdot(\Omega y)=x^{t} \Omega y \quad \text { and } \quad(x \wedge y) \cdot b=x \cdot(C y)=x^{t} C y \tag{4.5}
\end{equation*}
$$

where \cdot denotes scalar product (either in V_{1} or in $\Lambda^{2} V_{1}$) and t denotes transposition. Notice also that, by skew-symmetry,

$$
\begin{equation*}
x \cdot(\Omega y)=-(\Omega x) \cdot y \quad \text { and } \quad x \cdot(C y)=-(C x) \cdot y \tag{4.6}
\end{equation*}
$$

We will later need the following special form of the matrix C in the particular case in which Ω and C commute.

Lemma 4.7. Assume that $\Omega C=C \Omega$. Then, the basis e_{1}, \ldots, e_{r} of V_{1} can be chosen in such a way that

$$
a=\left(e_{1} \wedge e_{2}\right)+\cdots+\left(e_{2 k-1} \wedge e_{2 k}\right)
$$

and there exists a $(r-2 k) \times(r-2 k)$ skew-symmetric matrix D such that

$$
C=\left(\begin{array}{ccccccc|c}
0 & c_{12} & & & & & & \\
-c_{12} & 0 & & & & & & \\
& & 0 & c_{34} & & & & \mathbf{0} \\
& & -c_{34} & 0 & & & & \\
& & & & \ddots & & & \\
& & & & & 0 & c_{2 k-1, k} & \\
& & & & c_{2 k-1, k} & 0 & \\
\hline & \mathbf{0} & & & & D
\end{array}\right) .
$$

In particular, $c_{i j}=0$ whenever $i=1, \ldots, 2 k-1$ and $j \geq i+2$.
Proof. Since $-\Omega^{2}$ is the projection on span $\left\{e_{1}, \ldots, e_{2 k}\right\}$, for any i, j such that $i \leq$ $2 k<j$ we have by skew-symmetry

$$
\begin{aligned}
0 & =\Omega\left(e_{i}+e_{j}\right) \cdot C \Omega\left(e_{i}+e_{j}\right)=\Omega\left(e_{i}+e_{j}\right) \cdot \Omega C\left(e_{i}+e_{j}\right) \\
& =-\Omega^{2}\left(e_{i}+e_{j}\right) \cdot C\left(e_{i}+e_{j}\right)=e_{i} \cdot C\left(e_{i}+e_{j}\right)=c_{i j} .
\end{aligned}
$$

In particular, C takes the form

$$
C=\left(\begin{array}{c|c}
E & \mathbf{0} \\
\hline \mathbf{0} & D
\end{array}\right)
$$

for suitable $2 k \times 2 k$ and $(r-2 k) \times(r-2 k)$ matrices E, D.
Let now $i, j \in\{1, \ldots, 2 k\}$ be fixed with j odd. Upon agreeing that $c_{i i}=0$ and $c_{i j}=-c_{j i}$ if $i>j$, one has

$$
\begin{aligned}
c_{i j} & =e_{i} \cdot C e_{j}=e_{i} \cdot C \Omega e_{j+1} \\
& =e_{i} \cdot \Omega C e_{j+1}=-\Omega e_{i} \cdot C e_{j+1}= \begin{cases}-c_{i-1, j+1} & \text { if } i \text { is even } \\
-c_{i+1, j+1} & \text { if } i \text { is odd } .\end{cases}
\end{aligned}
$$

Hence the $2 k \times 2 k$ matrix E is composed of $k^{2}(2 \times 2)$-blocks of the form $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$, which in turn gives the following information: upon identifying $\mathbb{R}^{2 k} \equiv \mathbb{C}^{k}$ in the standard way

$$
\left(x_{1}, \ldots, x_{2 k}\right) \longleftrightarrow\left(x_{1}+i x_{2}, \ldots, x_{2 k-1}+i x_{2 k}\right),
$$

C can be identified with a \mathbb{C}-linear endomorphism of \mathbb{C}^{k} (notice that, with this identification, Ω is the scalar multiplication by $-i$ in \mathbb{C}^{k}). Since Ω and \mathbb{C} commute, each of them preserve the other's eigenspaces; since \mathbb{C} is algebraically closed, they can be simultaneously diagonalized in \mathbb{C}^{k}, which proves the Lemma.

We will also need the following simple result
Lemma 4.8. Let H be an hyperplane in V_{1}; then, the set $B \subseteq F$ defined by

$$
B:=\bigcup_{U \in G r(H, 2)} \exp \left(U^{\perp} \oplus\left[U^{\perp}, U^{\perp}\right]\right)
$$

has dimension at most $\frac{r^{2}+r}{2}-5$. In particular, the dimension of $\pi(B) \subseteq G$ is at most $\frac{r^{2}+r}{2}-5$.

Proof. Each set of the form $\exp \left(U^{\perp} \oplus\left[U^{\perp}, U^{\perp}\right]\right)$ is a subgroup of F isomorphic to $F_{r-2,2}$. Hence, the set B can (locally) be parametrized by a smooth map of a number of parameters equal to

$$
\operatorname{dim} G r(H, 2)+\operatorname{dim} F_{r-2,2}=2(\operatorname{dim} H-2)+\frac{(r-2)(r-1)}{2}=\frac{r^{2}+r}{2}-5
$$

We can now state the main result of this section.
Theorem 4.9. Let G be a Carnot group associated with a step two stratified Lie algebra $\mathfrak{g}=V_{1} \oplus V_{2}$ with $\operatorname{dim} V_{1}=r$ and $\operatorname{dim} V_{2}=\frac{r(r-1)}{2}-2$. Then Abn_{G} has codimension at least 3 , i.e., $\operatorname{dim} \mathrm{Abn}_{G} \leq \frac{r^{2}+r}{2}-5$.

Proof. As in the previous section, our strategy consists in studying the set of abnormal curves γ in F such that $\pi \circ \gamma$ is abnormal in G. By Lemma 4.1, if γ is such that $\operatorname{dim} P_{\gamma} \leq r-3$, then $\pi \circ \gamma$ is contained in a subset of G with codimension at least 4 . It is therefore enough to study those abnormal curves γ in F such that $\operatorname{dim} P_{\gamma}=r-2$ and $\pi \circ \gamma$ is abnormal in G.

Let then such a γ be fixed; since $\operatorname{dim}\left[P_{\gamma}, V_{1}\right]=\frac{r^{2}-r}{2}-1$, we have $\operatorname{codim} \mathscr{E}_{\gamma}^{F}=1$ and, in particular,

$$
\operatorname{codim} \mathscr{E}_{\pi \circ \gamma}^{G}=\operatorname{codim} \pi\left(\mathscr{E}_{\gamma}^{F}\right) \leq 1
$$

Since $\pi \circ \gamma$ is abnormal in G, we have therefore $\operatorname{codim} \pi\left(\mathscr{E}_{\gamma}^{F}\right)=1$, which is equivalent to $W \subseteq \mathscr{E}_{\gamma}^{F}=V_{1} \oplus\left[P_{\gamma}, V_{1}\right]$ (recall that W was introduced in (4.3)) and, in turn, to

$$
\begin{equation*}
W \subseteq\left[P_{\gamma}, V_{1}\right]=\left[P_{\gamma}^{\perp}, P_{\gamma}^{\perp}\right]^{\perp} \tag{4.10}
\end{equation*}
$$

We have therefore to study those planes $U:=P_{\gamma}^{\perp} \in G r\left(V_{1}, 2\right)$ such that $W \perp[U, U]$. By Lemma 4.8 it is enough to study the case in which $U \nsubseteq e_{1}^{\perp}$. Since U is 2 dimensional, there exists a unique (up to a sign) unit vector $x \in U \cap e_{1}^{\perp}$. Writing $x=\left(x_{1}, \ldots, x_{r}\right)$ with respect to the basis e_{1}, \ldots, e_{r}, we have $x_{1}^{2}+\cdots+x_{r}^{2}=1$ and $x_{1}=0$. Let then $y \in U$ be the unique (up to a sign) unit vector such that $x \cdot y=0$; notice that $y_{1} \neq 0$, otherwise $U=\operatorname{span}\{x, y\} \subseteq e_{1}^{\perp}$. Setting

$$
\widetilde{M}:=\left\{(x, y) \in \mathbb{R}^{r} \times \mathbb{R}^{r}:\|x\|^{2}=\|y\|^{2}=1, x_{1}=0, x \cdot y=0, y_{1} \neq 0\right\}
$$

the map

$$
\widetilde{M} \ni(x, y) \longmapsto U_{x, y}:=\operatorname{span}\{x, y\} \in G r\left(V_{1}, 2\right) \backslash G r\left(e_{1}^{\perp}, 2\right)
$$

is smooth, locally injective and surjective (actually, it is 4-to-1); moreover, $\left[U_{x, y}, U_{x, y}\right]=$ span $\{x \wedge y\}$. Therefore, the analysis of those planes $U \nsubseteq e_{1}^{\perp}$ such that $W \perp[U, U]$ can be reduced to the analysis of the couples $(x, y) \in \widetilde{M}$ such that $W=\operatorname{span}\{a, b\} \perp x \wedge y$, or equivalently (recall (4.5)) such that

$$
x \cdot \Omega y=x \cdot C y=0 .
$$

We divide our study in two cases according to whether Ω and C commute or not.
Case 1: $\Omega C \neq C \Omega$. In this case we have $\operatorname{ker}(\Omega C-C \Omega) \neq V_{1}$, hence ker $(\Omega C-C \Omega)$ is contained in some hyperplane $H \subseteq V_{1}$. By Lemma 4.8 it is enough to consider those couples (x, y) such that $U_{x, y} \nsubseteq H$; notice that this condition implies that either $x \notin$ $\operatorname{ker}(\Omega C-C \Omega)$ or $y \notin \operatorname{ker}(\Omega C-C \Omega)$. We will show that the set

$$
M:=\left\{\begin{array}{ll}
& \|x\|^{2}=\|y\|^{2}=1, x_{1}=0, x \cdot y=0, y_{1} \neq 0 \tag{4.11}\\
(x, y) \in \mathbb{R}^{r} \times \mathbb{R}^{r}: & x \cdot \Omega y=x \cdot C y=0 \\
& \|(\Omega C-C \Omega) x\|^{2}+\|(\Omega C-C \Omega) y\|^{2}>0
\end{array}\right\}
$$

is the union of two smooth manifolds M_{1}, M_{2} of dimension $2 r-6$, and we claim that this will be enough to prove Theorem 4.9 in Case 1. Indeed, by the discussion above, in order to prove that Abn_{G} has dimension at most $\frac{r^{2}+r}{2}-5$ it is enough to show that (the projection on G of) the set

$$
\begin{equation*}
\bigcup_{(x, y) \in M} \exp \left(U_{x, y}^{\perp} \oplus\left[U_{x, y}^{\perp}, U_{x, y}^{\perp}\right]\right) \cup \bigcup_{U \in \operatorname{Gr}\left(e_{1}^{\perp}, 2\right) \cup G r(H, 2)} \exp \left(U^{\perp} \oplus\left[U^{\perp}, U^{\perp}\right]\right) \tag{4.12}
\end{equation*}
$$

has dimension at most $\frac{r^{2}+r}{2}-5$. This would be true because the second set in the right hand side has dimension at most $\frac{r^{2}+r}{2}-5$ by Lemma 4.8 , while (provided $M=M_{1} \cup M_{2}$ as claimed above) the first set can (locally) be parametrized by two smooth maps of $(2 r-6)+\operatorname{dim} F_{r-2,2}=\frac{r^{2}+r}{2}-5$ parameters.

We start by showing that

$$
M_{1}:=M \cap\left\{(x, y) \in \mathbb{R}^{r} \times \mathbb{R}^{r}: y \cdot(\Omega C-C \Omega) x \neq 0\right\}
$$

is a smooth submanifold of dimension $2 r-6$. Defining the open set

$$
\mathcal{O}_{1}:=\left\{(x, y) \in \mathbb{R}^{r} \times \mathbb{R}^{r}: y_{1} \neq 0,\|(\Omega C-C \Omega) x\|^{2}+\|(\Omega C-C \Omega) y\|^{2}>0, y \cdot(\Omega C-C \Omega) x \neq 0\right\}
$$

we have

$$
M_{1}=\mathcal{O}_{1} \cap\left\{(x, y) \in \mathbb{R}^{r} \times \mathbb{R}^{r}: F(x, y)=(1,1,0,0,0,0)\right\}
$$

where $F(x, y):=\left(\|x\|^{2},\|y\|^{2}, x \cdot y, x_{1}, x \cdot \Omega y, x \cdot C y\right)$. We have to show that the rank of ∇F is 6 at all points of M_{1}; using (4.6) one can compute

$$
\nabla F(x, y)=\left(\begin{array}{c|c|c|c|c|c}
2 x & \mathbf{0} & y & \varepsilon_{1} & \Omega y & C y \\
\hline \mathbf{0} & 2 y & x & \mathbf{0} & -\Omega x & -C x
\end{array}\right)
$$

where $\varepsilon_{1}=(1,0, \ldots, 0)^{t} \in \mathbb{R}^{r}$ and $\mathbf{0}$ is the null (column) vector in \mathbb{R}^{r}. Assume by contradiction that there exists $(x, y) \in M_{1}$ such that the six columns are linearly dependent, i.e., there exists $\lambda \in \mathbb{R}^{6} \backslash\{0\}$ such that

$$
\left\{\begin{array}{l}
\lambda_{1} x+\lambda_{3} y+\lambda_{4} \varepsilon_{1}+\lambda_{5} \Omega y+\lambda_{6} C y=\mathbf{0} \tag{4.13}\\
\lambda_{2} y+\lambda_{3} x-\lambda_{5} \Omega x-\lambda_{6} C x=\mathbf{0}
\end{array}\right.
$$

Taking into account (4.6) and the fact that $(x, y) \in M$, by scalar multiplying by x and y the two equalities in (4.13) one obtains

$$
\left\{\begin{array}{l}
\lambda_{1}+\lambda_{4} x_{1}=0 \\
\lambda_{3}=0 \\
\lambda_{3}+\lambda_{4} y_{1}=0 \\
\lambda_{2}=0
\end{array}\right.
$$

i.e., $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=0$, because $x_{1}=0$ and $y_{1} \neq 0$. Therefore $\left(\lambda_{5}, \lambda_{6}\right) \neq(0,0)$ are such that

$$
\left\{\begin{array}{l}
\lambda_{5} \Omega y+\lambda_{6} C y=\mathbf{0} \\
\lambda_{5} \Omega x+\lambda_{6} C x=\mathbf{0}
\end{array}\right.
$$

i.e., $(\Omega x, \Omega y)$ and $(C x, C y)$ are linearly dependent, hence

$$
0=-\Omega y \cdot C x+C y \cdot \Omega x=y \cdot(\Omega C-C \Omega) x
$$

a contradiction.
We now show that $M_{2}:=M \backslash M_{1}$ is a $(2 r-6)$-dimensional smooth manifold. Defining the open set

$$
\mathcal{O}_{2}:=\left\{(x, y) \in \mathbb{R}^{r} \times \mathbb{R}^{r}: y_{1} \neq 0,\|(\Omega C-C \Omega) x\|^{2}+\|(\Omega C-C \Omega) y\|^{2}>0\right\}
$$

we have

$$
M_{2}=\mathcal{O}_{2} \cap\left\{(x, y) \in \mathbb{R}^{r} \times \mathbb{R}^{r}: G(x, y)=(1,1,0,0,0,0,0)\right\}
$$

where $G(x, y):=\left(\|x\|^{2},\|y\|^{2}, x \cdot y, x_{1}, x \cdot \Omega y, x \cdot C y, y \cdot(\Omega C-C \Omega) x\right)$. We have to show that the rank of ∇G is 6 at all points of M_{2}; using $y \cdot(\Omega C-C \Omega) x=-x \cdot(\Omega C-C \Omega) y$ one can compute

$$
\nabla G(x, y)=\left(\begin{array}{c|c|c|c|c|c|c}
2 x & \mathbf{0} & y & \varepsilon_{1} & \Omega y & C y & -(\Omega C-C \Omega) y \\
\hline \mathbf{0} & 2 y & x & \mathbf{0} & -\Omega x & -C x & (\Omega C-C \Omega) x
\end{array}\right)
$$

Assume by contradiction that there exists $(x, y) \in M_{2}$ such that the rank of $\nabla G(x, y)$ is not 6 ; then, the first six columns are linearly dependent and, reasoning as above, one can show the existence of $\left(\lambda_{5}, \lambda_{6}\right) \neq(0,0)$ such that

$$
\lambda_{5}(\Omega x, \Omega y)+\lambda_{6}(C x, C y)=0
$$

Since $y_{1} \neq 0$ we have $\Omega y \neq 0$, hence $\lambda_{6} \neq 0$; in particular

$$
\begin{equation*}
(C x, C y)=\lambda(\Omega x, \Omega y) \quad \text { for } \lambda:=-\frac{\lambda_{5}}{\lambda_{6}} . \tag{4.14}
\end{equation*}
$$

Since also the columns $1-5$ and 7 of ∇G are linearly dependent, there exists $\mu \in$ $\mathbb{R}^{6} \backslash\{0\}$ such that

$$
\left\{\begin{array}{l}
\mu_{1} x+\mu_{3} y+\mu_{4} \varepsilon_{1}+\mu_{5} \Omega y-\mu_{6}(\Omega C-C \Omega) y=\mathbf{0} \\
\mu_{2} y+\mu_{3} x-\mu_{5} \Omega x+\mu_{6}(\Omega C-C \Omega) x=\mathbf{0}
\end{array}\right.
$$

After scalar multiplication by x and y, and taking into account that $v \cdot(\Omega C-C \Omega) v=0$ for any $v \in V_{1}$, one gets

$$
\left\{\begin{array}{l}
\mu_{1}+\mu_{4} x_{1}=0 \\
\mu_{3}=0 \\
\mu_{3}+\mu_{4} y_{1}=0 \\
\mu_{2}=0
\end{array}\right.
$$

and, as before, $\mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=0$. We deduce that there exist $\left(\mu_{5}, \mu_{6}\right) \neq(0,0)$ such that $\mu_{5} \Omega y-\mu_{6}(\Omega C-C \Omega) y=\mathbf{0}$. We scalar multiply this equation by Ωy (which is not null because $y_{1} \neq 0$) to get

$$
\begin{aligned}
0 & =\mu_{5}\|\Omega y\|^{2}-\mu_{6} \Omega y \cdot(\Omega C-C \Omega) y \\
\stackrel{(4.14)}{=} & \mu_{5}\|\Omega y\|^{2}-\mu_{6}(\Omega y \cdot \lambda \Omega \Omega y-\Omega y \cdot C \Omega y)=\mu_{5}\|\Omega y\|^{2},
\end{aligned}
$$

which contradicts the fact that $\Omega y \neq 0$. This concludes Case 1.
Case 2: $\Omega C=C \Omega$. Let C be as in Lemma 4.7; we can also assume (4.4). Reasoning as before (and, in particular, using Lemma 4.8 and the fact that $C \neq 0$, i.e., that ker C is contained in some hyperplane of \mathbb{R}^{r}), it will be enough to show that the variety

$$
\begin{aligned}
N & :=\left\{(x, y) \in \mathbb{R}^{r} \times \mathbb{R}^{r}: \begin{array}{l}
\|x\|^{2}=\|y\|^{2}=1, x_{1}=0, x \cdot y=0, y_{1} \neq 0 \\
x \cdot(\Omega y)=x \cdot(C y)=0 \text { and } x, y \notin \operatorname{ker} C
\end{array}\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{r} \times \mathbb{R}^{r}: y_{1} \neq 0, x, y \notin \operatorname{ker} C \text { and } F(x, y)=(1,1,0,0,0,0)\right\}
\end{aligned}
$$

(where F is as above) is $(2 r-6)$-dimensional, i.e., that for any $(x, y) \in N$ the columns of $\nabla F(x, y)$ are linearly independent. If this were not the case, reasoning as in Case 1 one would find $(x, y) \in N$ and $\left(\lambda_{5}, \lambda_{6}\right) \neq(0,0)$ such that

$$
\lambda_{5} \Omega x+\lambda_{6} C x=\mathbf{0} \quad \text { and } \quad \lambda_{5} \Omega y+\lambda_{6} C y=\mathbf{0} .
$$

By the particular forms of the matrices Ω and C one has

$$
0=\left(\lambda_{5} \Omega y+\lambda_{6} C y\right) \cdot(0,1,0, \ldots, 0)=-\lambda_{5} y_{1}
$$

and, since $y_{1} \neq 0$, we get $\lambda_{5}=0$ and $\lambda_{6} \neq 0$. This implies that $x, y \in \operatorname{ker} C \neq \mathbb{R}^{r}$, a contradiction.

5. Step 2, RANK 4, dimension 7

The cases discussed in the previous sections cover all Carnot groups of dimension up to 6 and, among Carnot groups of dimension 7, only those with rank 4 are left out. We discuss them in the following Theorem 5.2

Lemma 5.1. Let $\mathfrak{g}=V_{1} \oplus V_{2}$ be a step two stratified Lie algebra with $\operatorname{dim} V_{1}=4$ and $\operatorname{dim} V_{2}=3$; assume that there exists a linear subspace $P \subset V_{1}$ such that

$$
\operatorname{dim} P=2, \quad \operatorname{dim}\left[P, V_{1}\right]=2 \quad \text { and } \quad \operatorname{dim}[P, P]=1
$$

Then, there exist $\lambda \in \mathbb{R}$ and bases X_{1}, \ldots, X_{4} of V_{1} and X_{21}, X_{31}, X_{32} of V_{2} such that

$$
\begin{aligned}
& {\left[X_{2}, X_{1}\right]=X_{21}, \quad\left[X_{3}, X_{1}\right]=X_{31}, \quad\left[X_{4}, X_{3}\right]=X_{43}, \quad\left[X_{4}, X_{2}\right]=\lambda X_{31},} \\
& {\left[X_{4}, X_{1}\right]=\left[X_{3}, X_{2}\right]=0 .}
\end{aligned}
$$

Proof. We can first fix a basis X_{1}, X_{2} of P and a vector $X_{3} \in V_{1} \backslash P$ such that $X_{21}:=\left[X_{2}, X_{1}\right]$ and $X_{31}:=\left[X_{3}, X_{1}\right]$ are linearly independent. By assumption we will have

$$
\left[X_{3}, X_{2}\right]=a X_{21}+b X_{31}
$$

and, up to replacing X_{3}, X_{2} with (respectively) $X_{3}+a X_{1}, X_{2}-b X_{1}$, we can assume $a=b=0$. Complete X_{1}, X_{2}, X_{3} to a basis of V_{1} by choosing some $X_{4} \in V_{1}$; we will have

$$
\left[X_{4}, X_{1}\right]=c X_{21}+d X_{31}
$$

and we can assume $c=d=0$ up to replacing X_{4} with $X_{4}-c X_{2}-d X_{3}$. At this point, we have

$$
\left[X_{4}, X_{2}\right]=e X_{21}+\lambda X_{31}
$$

and we can assume $e=0$ up to replacing X_{4} with $X_{4}+e X_{1}$. The choice of $X_{43}:=$ [X_{4}, X_{3}], which must necessarily be independent from X_{21}, X_{31}, completes the proof.

Theorem 5.2. Let G be a Carnot group associated to a step two stratified Lie algebra $\mathfrak{g}=V_{1} \oplus V_{2}$ with $\operatorname{dim} V_{1}=4$ and $\operatorname{dim} V_{2}=3$. Then Abn_{G} has codimension at least 3 , i.e., $\operatorname{dim} \mathrm{Abn}_{G} \leq 4$.

Proof. By Proposition 2.12, $\operatorname{dim} P_{\gamma} \leq 2$ for any abnormal curve γ in G. The union

$$
\bigcup\left\{\operatorname{Im} \gamma: \gamma \text { abnormal in } G \text { and } \operatorname{dim} P_{\gamma}=1\right\}
$$

is contained in $\exp \left(V_{1}\right)$, whose codimension is 3 . Similarly, if P_{γ} has dimension 2 but it is Abelian, then is contained in $\exp \left(V_{1}\right)$.

We then have to consider only those abnormal curves γ such that $\operatorname{dim} P_{\gamma}=2$, $\left[P_{\gamma}, V_{1}\right] \neq V_{2}$ and $\operatorname{dim}\left[P_{\gamma}, P_{\gamma}\right]=1$. If there existed one such γ with $\operatorname{dim}\left[P_{\gamma}, V_{1}\right]=1$, one could choose a basis X_{1}, \ldots, X_{4} of V_{1} with $X_{1}, X_{2} \in P_{\gamma}$ such that

$$
\left[X_{i}, X_{j}\right]= \begin{cases}X_{21} \neq 0 & \text { if }(i, j)=(2,1) \\ \in \mathbb{R} X_{21} & \text { for } i=1,2 \text { and } j=3,4\end{cases}
$$

which would contradict the fact that $\operatorname{dim} V_{2}=3$. Therefore all abnormal curves γ we have to consider satisfy

$$
\begin{equation*}
\operatorname{dim} P_{\gamma}=2, \quad \operatorname{dim}\left[P_{\gamma}, V_{1}\right]=2 \quad \text { and } \quad \operatorname{dim}\left[P_{\gamma}, P_{\gamma}\right]=1 \tag{5.3}
\end{equation*}
$$

Assuming that one such γ exists (otherwise the proof would be concluded) we can use Lemma 5.1 to find bases X_{1}, \ldots, X_{4} of V_{1} and X_{21}, X_{31}, X_{32} of V_{2} such that

$$
\begin{aligned}
& {\left[X_{2}, X_{1}\right]=X_{21}, \quad\left[X_{3}, X_{1}\right]=X_{31}, \quad\left[X_{4}, X_{3}\right]=X_{43}, \quad\left[X_{4}, X_{2}\right]=\lambda X_{31},} \\
& {\left[X_{4}, X_{1}\right]=\left[X_{3}, X_{2}\right]=0}
\end{aligned}
$$

for a suitable $\lambda \in \mathbb{R}$. Let γ be an abnormal curve as in (5.3); the end point of γ will be the $\operatorname{exponential} \exp (U)$ of a vector

$$
U=X+Z=\sum_{i=1}^{4} x_{i} X_{i}+x_{21} X_{21}+x_{31} X_{31}+x_{43} X_{43}
$$

with $X=\sum_{i=1}^{4} x_{i} X_{i} \in P_{\gamma}$. We can safely assume that $X \neq 0$, for otherwise the endpoint $\exp (U)$ of γ would be contained in a variety of dimension 3. Since $\operatorname{dim}\left[X, V_{1}\right] \leq 2$, we have to require that the matrix

$$
M(X):=\left(\begin{array}{cccc}
x_{2} & -x_{1} & 0 & 0 \\
x_{3} & \lambda x_{4} & -x_{1} & -\lambda x_{2} \\
0 & 0 & x_{4} & -x_{3}
\end{array}\right)
$$

has rank not greater than 2, where the columns of $M(X)$ represent (in the basis X_{21}, X_{31}, X_{43}) the vectors [X, X_{i}] for $i=1,2,3,4$. On computing the determinants of the four 3×3 minors we obtain

$$
x_{i}\left(x_{1} x_{3}+\lambda x_{2} x_{4}\right)=0 \quad \forall i=1, \ldots, 4
$$

and, since $X \neq 0$, we deduce that

$$
\begin{equation*}
x_{1} x_{3}+\lambda x_{2} x_{4}=0 \tag{5.4}
\end{equation*}
$$

We also notice that, since $Z \in\left[P_{\gamma}, P_{\gamma}\right] \subset \operatorname{Imad}_{X}, Z$ must be a linear combination of the columns of $M(X)$.

From now on we use exponential coordinates adapted to the basis X_{1}, \ldots, X_{43} of \mathfrak{g}, i.e., we identify G and \mathbb{R}^{7} by

$$
\begin{aligned}
& \mathbb{R}^{7} \ni\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{21}, x_{31}, x_{43}\right) \\
& \quad \longleftrightarrow \exp \left(x_{1} X_{1}+x_{2} X_{2}+x_{3} X_{3}+x_{4} X_{4}+x_{21} X_{21}+x_{31} X_{31}+x_{43} X_{43}\right) \in G
\end{aligned}
$$

Assume first that either $x_{2}=x_{3}=0$ or $x_{1}=x_{4}=0$; then the endpoint $\exp (U)$ of γ belongs to the variety $A \cup B$, where

$$
A:=\left\{\left(x_{1}, 0,0, x_{4}, x_{21}, x_{31}, x_{43}\right):\left(x_{21}, x_{31}, x_{43}\right)=a\left(-x_{1}, \lambda x_{4}, 0\right)+b\left(0,-x_{1}, x_{4}\right), x_{1}, x_{4}, a, b \in \mathbb{R}\right\}
$$

and
$B=\left\{\left(0, x_{2}, x_{3}, 0, x_{21}, x_{31}, x_{43}\right):\left(x_{21}, x_{31}, x_{43}\right)=a\left(x_{2}, x_{3}, 0\right)+b\left(0,-\lambda x_{2},-x_{3}\right), x_{2}, x_{3}, a, b \in \mathbb{R}\right\}$.
This easily follows from the fact that Z is a linear combination of the columns of $M(X)$. The variety $A \cup B$ has dimension 4 .

We can now assume that

$$
\begin{equation*}
\left(x_{1}, x_{4}\right) \neq(0,0) \quad \text { and } \quad\left(x_{2}, x_{3}\right) \neq(0,0) . \tag{5.5}
\end{equation*}
$$

Consider $Y=\sum_{i=1}^{4} y_{i} X_{i} \in P_{\gamma}$ linearly independent from X : without loss of generality, we can also assume ${ }^{3}$ that if $x_{i} \neq 0$ then $y_{i} \neq 0$. We consider three cases to conclude the proof.
(i) Suppose that $x_{2} \neq 0$ and $x_{4} \neq 0$. Then Imad_{X} contains the linearly independent vectors $\left(x_{2}, x_{3}, 0\right)$ and $\left(0,-x_{1}, x_{4}\right)$. Since $\left[P_{\gamma}, V_{1}\right]$ has dimension two, $\operatorname{Im} \operatorname{ad}_{Y}$ is also linearly generated by $\left(x_{2}, x_{3}, 0\right)$ and $\left(0,-x_{1}, x_{4}\right)$. In particular, our choice of Y yields

$$
\left(y_{2}, y_{3}, 0\right)=a\left(x_{2}, x_{3}, 0\right) \quad \text { and } \quad\left(0,-y_{1}, y_{4}\right)=b\left(0,-x_{1}, x_{4}\right),
$$

for $a, b \in \mathbb{R} \backslash\{0\}$. Since Z is a multiple of

$$
\begin{aligned}
{[X, Y] } & =(b-a)\left(x_{1} x_{2} X_{21}+\left(x_{1} x_{3}-\lambda x_{2} x_{4}\right) X_{31}-x_{3} x_{4} X_{43}\right) \\
& =(b-a)\left(x_{1} x_{2} X_{21}+2 x_{1} x_{3} X_{31}-x_{3} x_{4} X_{43}\right)
\end{aligned}
$$

by (5.4), the endpoint $\exp (U)$ of γ is in the four dimensional variety

$$
\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, t x_{1} x_{2}, 2 t x_{1} x_{3},-t x_{3} x_{4}\right): x_{1}, x_{2}, x_{3}, x_{4}, t \in \mathbb{R}, x_{1} x_{3}+\lambda x_{2} x_{4}=0\right\}
$$

(ii) Suppose that $x_{2}=0$. By (5.5), $x_{3} \neq 0$ and $M(x)$ has two linear independent columns $\left(0, x_{3}, 0\right)$ and $\left(0,0, x_{3}\right)$, which therefore generate $\operatorname{Im~ad}_{X}$. By (5.4), $x_{1}=0$. Then the endpoint $\exp (U)$ of γ is in the four dimensional variety

$$
\left\{\left(0,0, x_{3}, x_{4}, 0, x_{31}, x_{43}\right): x_{3}, x_{4}, x_{31}, x_{43} \in \mathbb{R}\right\}
$$

because $\left(x_{21}, x_{31}, x_{43}\right) \in \operatorname{Imad}_{X}$.
(iii) Suppose that $x_{4}=0$. By (5.5), $x_{1} \neq 0$ and the vectors $(1,0,0)$ and $(0,1,0)$ generate the column space of $M(x)$. By (5.4), $x_{3}=0$. As before, we conclude that the endpoint $\exp (U)$ of γ is in

$$
\left\{\left(x_{1}, x_{2}, 0,0, x_{21}, x_{31}, 0\right): x_{1}, x_{2}, x_{21}, x_{31} \in \mathbb{R}\right\}
$$

that has dimension 4.
The proof is accomplished.

[^2]
References

[1] A. A. Agrachev, Any sub-Riemannian metric has points of smoothness. Dokl. Akad. Nauk 424 (3) (2009) 295-298.
[2] A. A. Agrachev, Some open problems. In Geometric Control Theory and Sub-Riemannian Geometry, Springer INdAM Series 5 (2014), 1-14.
[3] A. Agrachev, A. Gentile, and A. Lerario, Geodesics and horizontal-path spaces in Carnot groups. Geom. Topol. 19 (2015), no. 3, 15691630.
[4] M. Gromov, Carnot-Carathéodory spaces seen from within. In Sub-Riemannian geometry, 79323, Progr. Math., 144, Birkhuser, Basel, 1996.
[5] E. Le Donne, R. Montgomery, A. Ottazzi, P. Pansu \& D. Vittone, Sard Property for the endpoint map on some Carnot groups. Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 6, 1639-1666.
[6] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs, 91. American Mathematical Society, Providence, RI, 2002.
[7] L. Rifford and E. Trélat, Morse-Sard type results in sub-Riemannian geometry. Math. Ann. 332 (2005), no. 1, 145-159.
(Ottazzi) School of Mathematics and Statistics, UNSW Kensington campus, 2052 NSW SYdNEY.

E-mail address: a.ottazzi@unsw.edu.au
(Vittone) Dipartimento di Matematica, via Trieste 63, 35121 Padova, Italy.
E-mail address: vittone@math.unipd.it

[^0]: 2010 Mathematics Subject Classification. 53C17, 22E25, 14M17.
 Key words and phrases. Sard property, endpoint map, abnormal curves, Carnot groups, subRiemannian geometry.
 D.V. is supported by University of Padova, Project Networking, and GNAMPA of INdAM (Italy), project Campi vettoriali, superfici e perimetri in geometrie singolari.
 A.O. was partially supported by the Australian Research Councils Discovery Projects funding scheme, projects no. DP140100531 and DP170103025.

[^1]: ${ }^{1}$ Otherwise $\left[X_{j}, X_{1}\right]=a Z_{1}$ and $\left[X_{j}, X_{2}\right]=b Z_{1}$ and one could replace X_{j} with $X_{j}-b X_{1}+a X_{2}$.
 ${ }^{2}$ See footnote 1.

[^2]: ${ }^{3}$ Up to replacing Y with $Y+c X$ for a proper $c \in \mathbb{R}$.

