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Abstract

The B1RevTilted is a uniformly smectic tilted columnar phase in which the
macroscopic polarization can be reorientated via electric field. To study the
effects on the reorientation mechanism of the various physical parameters, we
analyze a local, and a non-local Landau-de Gennes-type energy functional. For
the case of large columnar samples, we show that both energies give the same
qualitative behavior, with a relevant role played by the terms that describe
the interaction between polarization and nematic directors. We also obtain
existence of the L2-gradient flow in metric spaces for the full local energy.
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1 Introduction

The characteristic banana shape of bent-core molecule liquid crystals (BLCs) al-
lows for spontaneous polar order of the shorter molecular axis, which translates in
the possibility of obtaining ferroelectric phases in achiral materials. Achiral fer-
roelectric liquid crystals are of substantial application interest, which explains the
concentration of efforts, seen in recent years, to better understand theoretically and
experimentally the many phases of bent-core materials, [12, 2013].

The B1RevTilted is a columnar phase proper of BLCs in which is possible to
reorient the spontaneous polarization by applying an electric field, [17, 2005]. Be-
cause of the bow shape of the molecules, the reorientation of the polarization can be
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achieved either by a rotation around the smectic cone or by a rotation around the
molecular axis, or by a combination of both. Vaupotič and Čopič in [26, 2005] pro-
pose a Landau-de Gennes-type free energy density to study polarization-modulated
layer-undulated phases of BLCs. The key feature of their model is the coupling term
between the polarization splay, and the tilt of the molecules with the respect to the
normal vector of the smectic layers. In [14, 2015], we prove existence of minimiz-
ers for the associated energy functional, and study via Γ-convergence a simplified
version, considered by Gorecka et al. in [17, 2005] to model experimental results of
switching via electric field in the B1RevTilted phase. Without deriving a closed form
for the limiting functional, in [14] we obtain a sufficient condition under which the
global minimizers of the limiting functional indicate switching by rotation around
the molecular axis, confirming experiments and numerical computations presented
in [17]. In here, we improve upon these results, first by finding the explicit expres-
sion of the limiting functional, then by using it to infer an estimate that confirms
our numerical computations. In particular, while in [17] it is noted that the degree
of the tilt, the intensity of the applied electric field and the relative size of the
elastic coefficients have a role in determining the type of switching, our analytical
and numerical results indicate that switching by rotation around the molecular axis
might still not be present, if the magnitude of the coefficient of the term coupling
the polarization, the nematic director, and the layer normal is small.

In [17], the authors argue that both Dirichlet and Neumann boundary conditions
are of interest, since they correspond to different but relevant physical situations. In
this work, we consider Dirichlet boundary conditions. For this choice the coupling
term between polarization splay and tilt, whose role is central in [26], integrates
to zero. It is then natural to ask if conclusions analogous to the ones we find
would still hold for a different model. Very few mathematical papers discuss energy
functionals for BCLs, an exception is the non-local energy introduced in [5, 2007]
to study BCLs fibers, and rigorously analyzed in [6, 2012]. According to [12, 2013],
this energy can be adapted to include the B1RevTilted phase, and since it also true
that a non-local description for the electric self-interactions, as the one used in [6],
is in general considered more accurate than a local one, in this work we also analyze
the appropriate modification of the energy in [6]. As expected, the non-local term
requires some modification in the proofs, but the new limiting functional is only
slightly different, and analogous conclusions can be drawn.

The study of the gradient flow of the full local energy, due to the nonlinear
constraints, can not be performed in the classical Banach framework, and we need
to turn to the more abstract setting provided by the Ambrosio, Gigli and Savaré’s
theory of gradient flows in metric spaces [2]. Using this approach, we are able to
derive in Theorem 6.3 existence of a curve of maximal slope in the weak-L2 topology.

The paper is organized as follows. In Section 2, we introduce an angular descrip-
tion of the BLCs molecules. In Section 3, we recall the model used in Gorecka et al.
[17], and derive a close form for the Γ-limit, using a construction based on classical
results contained in [22, 4, 3]. In Section 4, we derive conditions under which the
global minimizer of the Γ-limit in Section 3 indicates rotation around the cone, and
we present numerical results supporting our claim. In Section 5, we consider the
non-local energy in [6], and show that a similar result ensuite. Finally, in Section 6
we prove existence of gradient flow for the full local energy.
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2 Background

Bent-core molecules have a peculiar bow-like shape that can be described by two
orthogonal unit vectors: the nematic director n along the direction of the axis of the
molecule, and the polarization director p in the direction of the bow of the molecule,
which is the same as the direction of the spontaneous polarization P = P p.

A representation of the two directors and of the layer normal, that contains
implicitly the constraints |n| = |p| = 1 and n · p = 0, can be given in terms of four
angles: the tilt angle θ, the azimuthal angle φ, the layer tilt angle ∆, and the polar
angle α, [26, 6]. Specifically, we denote by ν the layer normal, and take the layer
tilt angle ∆ to be defined modulo 2π as the angle from the z-axis toward the x-axis
about the positive y-axis. The tilt angle θ is the angle between n and ν, that is
n · ν = cos θ, and has values 0 ≤ θ ≤ π. We define the azimuthal angle φ ∈ [0, 2π)
as the angle from t toward s about ν, where t is the unit vector in the x-z plane
perpendicular to ν, and such that t× ν is in the negative y direction; while s is a
unit vector in the ν-n plane, perpendicular to ν and such that s× ν is in the same
direction as n× ν. Finally, the polar angle α is the angle obtained from n× ν to p
about n, with α ∈ (−π, π]. Note that α and φ are not well-defined if n and ν are
parallel, therefore this representation needs to be used with care if the tilt angle is
allowed to take the values 0 and/or π, unless the tilt is constant. (See Figure 1)

 

Figure 1: Angular representation of the polar and nematic directors

The angular representation of the layer normal, and directors is given by the
equations below:

ν =< sin ∆, 0, cos ∆ >;

n =< sin ∆ cos θ + sin θ cosφ cos ∆,

sin θ sinφ, cos θ cos ∆− sin θ sin ∆ cosφ >;

p =< − sinα sin θ sin ∆ + sinα cos θ cos ∆ cosφ+ sinφ cos ∆ cosα, (1)

sinα cos θ sinφ− cosφ cosα,

− sinα sin θ cos ∆− sinα cos θ cosφ sin ∆− sinφ sin ∆ cosα > .
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3 Local Model

To model experiments exploring the mechanism that guides the reorientation due
to an applied electric field of the spontaneous polarization in the B1RevTilted phase,
Gorecka et al., [17], use the free energy density:

f(n,p) =
1

2
Kn

[
(∇ · n)2 + |∇ × n|2

]
+

1

2
Kp (∇ · p− c0)

2

+
1

2
Knp |p× (n× ν)|2 +

P 2
0

2ε̄ε0
p2

1 − P0 p ·E. (2)

The energy density (2) is built from the one proposed in [26], by adding an
interaction term between the polarization and the external field E, and making
the following assumptions derived from experimental evidences: the phenomenon
is essentially one dimensional in space, the magnitude of the polarization and the
tilt angle are constants, that is P = P0p and θ = θB ∈ (0, π), and the smectic layer
normal and density are also constants.

We denote by L the column width, and following Gorecka et al., we rescale
length by L, take the applied electric field to be parallel to the columnar axis, that
is E = E e2, and consider a reference frame with the y-axis parallel to the columnar
axis, so that ν = e3 ≡< 0, 0, 1 >. In terms of the angles in (1), we are assuming
θ = θB and ∆ = 0, which imply

ν =< 0, 0, 1 >;

n =< sin θB cosφ, sin θB sinφ, cos θB >;

p =< sinα cos θB cosφ+ sinφ cosα, sinα cos θB sinφ− cosφ cosα,

− sinα sin θB > .

After some calculations, we have the non-dimensionalized energy functional:

2ε̄ε0
P 2

0 L

∫ L

0

f(n,p) dx =

∫ 1

0

g(n,p) dx,

where

g(n,p) =
1

2
kn
[
(n′1)2 + (n′2)2

]
+

1

2
kp (p′1 − c0L)

2
+

1

2
knp p

2
3 + p2

1 − kE p2,

with

kn =
2ε̄ε0
P 2

0 L
2
Kn; kp =

2ε̄ε0
P 2

0 L
2
Kp; knp =

2ε̄ε0
P 2

0

Knp; kE =
2ε̄ε0
P0

E. (3)

We consider boundary conditions, which reflect the alternating behavior of con-
tiguous columns, see [17, 14]:

p(0) = p(1) =< 0,−1, 0 > and n(0) = n(1) =< sin θB , 0, cos θB > . (4)

All the constants in (3) are positive except kE , which can be positive or negative
depending on the direction of the electric field. We assume kE > 0, since we are
interested in forcing the spontaneous polarization inside the domain to point in the
direction opposite to the one at the boundary.
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We expand the term containing p′1, and add the full gradient p. Up to multi-
plicative and additive constants, we then arrive to the energy functional:∫ 1

0

k1/2
p

[
kn
kp
|∇n|2 + |∇p|2

]
+

1

k
1/2
p

[
knp p

2
3 + 2 p2

1 + 2kE(1− p2)
]
dx, (5)

In the numerical experiments, rotation of the molecules around the cone is seen
when the elastic coefficients kp, kn are comparable in size but small with respect
to the coefficient knp of the coupling term, this is equivalent to considering large

columnar samples. Therefore, for kn
kp

fixed, we set Ω = (0, 1) and ε = k
1/2
p , and

consider the energy functional:

Gε(u) =

∫
Ω

(
ε |∇u|2 +

1

ε
W (u)

)
dx, (6)

with u(x) ∈M a.e. where

M = {u ∈ R5 s.t. u2
1 + u2

2 =
kn
kp

sin2 θB ;

u2
3 + u2

4 + u2
5 = 1; u1 u3 + u2 u4 +

√
kn
kp

cos θB u5 = 0}, (7)

and

W (u) = 2u2
3 + knp u

2
5 + 2 |kE | (1− u4). (8)

One can easily verify, that because of the orthogonality constraint, W is a double-
well potential on M , with Z = {u ∈M s.t. W (u) = 0} given by

Z =

{
u± ≡

(
±

√
kn
kp

sin θB , 0, 0, 1, 0

)}
. (9)

If we define

ub =

(√
kn
kp

sin θB , 0, 0,−1, 0

)
, (10)

we can reframe the problem as the study of the behavior for ε→ 0 of the minimizers
of the energy functional:

Fε(u) =


Gε(u) u ∈ H1(Ω,M), u|∂Ω = ub

∞ otherwise

(11)

To derive the limiting behavior of the energy functional Fε we employ Γ-convergence.
In particular, we refer to Owen et al. [22] to deal with the boundary conditions,
and Baldo [4] and Anzellotti et al. [3] to treat the non-linear constraints.

Compactness of Fε in L1 can be proven as in [14]. In particular, we have the
following proposition.

5



Proposition 3.1 (Compactness). If Fεj (uj) is bounded, then there exists a subse-
quence ujk such that as εjk → 0 it holds ujk → u in L1(Ω,R5), where u(x) ∈ Z a.e.
and u1 ∈ BV (Ω, {±

√
kn
kp

sin θB}).

The results in [3] are in a general manifold set-up, which we can adapt to our
case thanks to the next corollary.

Corollary 3.2. M is a two-dimensional closed, regular submanifold of R5.

Proof. The function F : R5 → R3 defined as

F (u1, u2, u3, u4, u5) = (u2
1 + u2

2 −
kn
kp

sin2 θB ,

u2
3 + u2

4 + u2
5 − 1, u1 u3 + u2 u4 +

√
kn
kp

cos θB u5),

is such that M = F−1(0, 0, 0), and the Jacobian of F :

DF =

2u1 2u2 0 0 0
0 0 2u3 2u4 2u5

u3 u4 u1 u2

√
kn
kp

cos θB


has rank 2 at every point of M . The claim follows by Corollary 5.9 pg. 80 in [8].

As in [4] and [3], an important role is played by the geodesic distance associated
with a degenerate Riemannian metric on M that depends on W :

d(u,v) = inf
{∫ 1

0

√
W (γ(t)) |γ′(t)| dt : γ ∈ C1([0, 1],R5), (12)

γ(t) ∈M,γ(0) = u, γ(1) = v
}
.

For a fixed v ∈M , we let Φv(u) be the function defined for u of M to be:

Φv(u) = d(u,v). (13)

Regardless of the choice of v ∈ M , the function Φv verifies some interesting and
useful properties:

Lemma 3.3. For any fixed v ∈ M , the function Φv(u) is Lipschitz continuos on
M with respect to the Euclidean distance. Additionally, if I is a bounded interval
and u ∈ H1(I,M) then the function wv(x) = Φv(u(x)) is in H1(I), and

|w′v(x)| ≤W 1/2(u(x)) |∇u(x)| for almost any x ∈ I.

Proof. Thanks to Corollary 3.2, since M is bounded, these properties can be proven
just as equation (4.8) and Lemma 4.2 in [3].

Given u ∈ BV (Ω, {±
√

kn
kp

sin θB}), it is well-known, see [16], that u has a finite

number of discontinuities, which we will denote by N(u). We also define for a
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generic function f defined on Ω, scalar or vector valued, its trace on the boundary,
as f̃(1) ≡ f−(1) and f̃(0) ≡ f+(0), where

f−(1) = lim
ρ→0+

1

ρ

∫ 1

1−ρ
f(s) ds, and f+(0) = lim

ρ→0+

1

ρ

∫ 0+ρ

0

f(s) ds,

if the limits exist. Note that the trace on the boundary for u ∈ BV (Ω, {±
√

kn
kp

sin θB})
is well-defined, see [16], and also that if u ∈ H1(Ω,M), with u|∂Ω = ub, then
ũ(0) = ũ(1) = ub, see Theorem 8.8 in [9].

We will show that the limiting functional is given by the formula:

F0(u) =


2N(u1) d(u+,u−) + 2 d(ub, ũ(0)) + 2 d(ub, ũ(1))

if u(x) ∈ Z a.e. and u1 ∈ BV (Ω, {±
√

kn
kp

sin θB})

∞ otherwise,

(14)

where N(u1) is the number of discontinuities of the first component of u.

For the Γ-convergence study, we use the following characterization [11]:

Theorem 3.4. Let (X, T ) be a topological space, and let Fh a family of functionals
parameterized by h. A functional F0 is the Γ-limit of Fh as h→ 0 in T iff the two
following conditions are satisfied:

(i) If uh → u0 in T , then lim infh→0 Fh(uh) ≥ F0(u0).

(ii) For all u0 ∈ X, there exists a sequence uh ∈ X such that uh → u0 in T , and
limh→0 Fh(uh) = F0(u0).

We start by proving the liminf inequality.

Proposition 3.5. For every sequence {uj , εj} such that uj → u0 in L1(Ω,R5) and
εj → 0 as j →∞, it holds

lim inf
j→∞

Fεj (uj) ≥ F0(u0).

Proof. If lim infj→∞ Fεj (uj) = ∞ then the inequality is trivially true. If not, we
can consider a subsequence jk such that

lim
jk→∞

Fεjk (ujk) = lim inf
j→∞

Fεj (uj) <∞,

and applying Proposition 3.1 to this subsequence we obtain that u0(x) ∈ Z a.e. and

(u0)1 ∈ BV (Ω, {±
√

kn
kp

sin θB}). By possibly passing to a further subsequence, we

can assume {ujk} ⊂ H1(Ω,M), and ujk → u0 also a.e..
Since (u0)1 has a finite number of jump discontinuities, we pick δ small enough

so that in the intervals (−δ, δ) and (1−δ, 1+δ) there are none of such discontinuities,
and consider the following extension functions defined on Ωδ = (−δ, 1 + δ):

ûjk(x) =


ub in (−δ, 0),

ujk(x) in Ω,

ub in(1, 1 + δ)

û0(x) =


ub in (−δ, 0),

u0(x) in Ω,

ub in(1, 1 + δ)
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But Ω is a finite interval, hence the compact embedding of H1(Ω) in C(Ω̄))
implies that ûjk ∈ H1(Ωδ,M) and converges to û0 in L1(Ωδ,R5), again by passing to
a further subsequence we can also assume convergence a.e.. Finally, ûjk is constant
in Ωδ \ Ω, therefore, [15, Lemma 7.7], we see that

|∇ûjk(x)| =


0 a.e. in (−δ, 0),

|∇ujk(x)| a.e. in Ω,

0 a.e. in(1, 1 + δ),

(15)

In what follows we combine arguments in [20, 22, 3], we start by using (15), and
Lemma 3.3 for suitable intervals, to derive

Fεjk (ujk) ≥
∫
Ω

2 |∇ujk | W 1/2(ujk) dx =

∫
Ωδ

2 |∇ûjk | W 1/2(ûjk) dx

=

δ∫
−δ

2 |∇ûjk | W 1/2(ûjk) dx+

1−δ∫
δ

2 |∇ujk | W 1/2(ujk) dx

+

1+δ∫
1−δ

2 |∇ûjk | W 1/2(ûjk) dx

≥
δ∫
−δ

2 |(ŵjkub)
′| dx+

1−δ∫
δ

2 |(wjku−
)′| dx+

1−δ∫
1−δ

2 |(ŵjkub)
′| dx

where wjku−
(x) := Φu−(ujk(x)) and ŵjkub(x) := Φub(ûjk(x)), note that by Lemma 3.3

these are H1 functions in their domains of definition. From our construction, it
follows that wjku−

→ w0
u−

:= Φu−(u0) in L1(Ω,R5) and ŵjkub → ŵ0
ub

:= Φub(û0) in

L1(Ωδ,R5), and by standard arguments (see for example [16, 1.9 Theorem]), we
gather

lim inf
jk→∞

Fεjk (ujk) ≥
δ∫
−δ

2 |(ŵ0
ub

)′| dx+

1−δ∫
δ

2 |(w0
u−

)′| dx+

1−δ∫
1−δ

2 |(ŵ0
ub

)′| dx.

Recalling the definition of δ and using the coarea formula [16], we arrive at

lim inf
jk→∞

Fεjk (ujk) ≥ 2 d(ub, ũ(0)) + 2 d(u+,u−)H0(∂Aδu−
∩ (δ, 1− δ)) + 2 d(ub, ũ(1)),

where
Aδu−

= {x ∈ (δ, 1− δ) : u0(x) = u−} , (16)

but the value of H0(∂Aδu−
∩ (δ, 1 − δ)) is equal to the number of discontinuities of

the first component of u0 contained in (δ, 1 − δ), which by definition of δ are the
same as the ones in Ω, and the proposition follows.

Proposition 3.6. For any u0 ∈ L1(Ω,R5), there exists a sequence {uj , εj} such
that uj → u0 in L1(Ω,R5) and εj → 0 as j →∞, for which

lim sup
j→∞

Fεj (uj) ≤ F0(u0).
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Proof. As for the previous proposition, the proof combines arguments from [20, 22,
3], in here we will provide only the essential modifications and refer the reader to
the cited works for details.

If F0(u0) =∞ we take uj = u0 and the conclusion follows, if not then u0(x) ∈
Z a.e., and (u0)1 ∈ BV (Ω, {±

√
kn
kp

sin θB}), hence as function in L1(Ω,R5) we have

that u0 has a finite number of jump discontinuity, and as in the previous proposition
we can pick δ0 > 0 small enough so that for any δ < δ0 in the intervals (0, 2δ) and
(1− 2δ, 1) there are none of such discontinuities.

For a δ < δ0 fixed we consider Aδu−
as defined in (16), we will prove the theorem

for functions u0 such that H0(∂Aδu−
∩ ∂(δ, 1 − δ)) = 0. This is sufficient since, by

Lemma 4.3 in [3], for a given u0, we can consider a sequence of functions uh with

uh(x) ∈ Z a.e., (uh)1 ∈ BV ((δ, 1−δ), {±
√

kn
kp

sin θB}), H0(∂Aδ
uh

−
∩∂(δ, 1−δ)) = 0,

and such that uh → u0 in L1((δ, 1−δ),R5) and H0(∂Aδ
uh

−
∩(δ, 1−δ))→ H0(∂Aδu−

∩
(δ, 1− δ)), which is enough to obtain the result for u0 using a diagonal argument.

We next assume that there exist geodesics paths γl, γr, γ of the distance (12),
which connect along M the point ub to ũ(0), ub to ũ(1), and ũ(0) to ũ(1), respec-
tively. If geodesic paths do not exist, one can use sequences of approximating paths
and a diagonal argument as suggested in [3]. We then consider a sequence {εj} → 0

as j → ∞, such that ε
1/2
j length γl < δ, ε

1/2
j length γr < δ, and ε

1/2
j length γ < δ.

Following a classical argument, we consider

ψlj(t) =

∫ t

0

εj |(γl(s))′|
(εj +W (γl(s)))1/2

ds, ψlj : [0, 1]→ R,

and its inverse function ζlj : [0, ηlj ] → [0, 1], where ηlj := ψlj(1). Note that ηlj <

ε
1/2
j length γl < δ, and

(ζlj)
′ =

(εj +W (γl(ζ
l
j)))

1/2

εj |(γl(ζlj))′|
. (17)

We finally define

χlj(t) =


ub if t < 0,

γl(ζ
l
j(t)) if 0 ≤ t ≤ ηlj ,

ũ(0) if t > ηlj .

In a similar manner we obtain ζrj and ζj , and define χrj and χj . For the set Aδu−
,

we consider the distance function

ρδ(x) =

{
− dist(x, ∂Aδu−

) if x ∈ Aδu−
,

dist(x, ∂Aδu−
) if x /∈ Aδu−

,

which by Lemma 4 in [20] is Lipschitz continuous and verifies |ρ′δ| = 1 a.e.
The elements of the candidate recovering sequence are as follows:

uj(x) =



χlj(x) if x ∈ (0, ηlj),

ũ(0) if x ∈ [ηlj , δ),

χj(ρδ(x)) if x ∈ [δ, 1− δ),
ũ(1) if x ∈ [1− δ, 1− ηrj ),
χrj(1− x) if x ∈ [1− ηrj , 1).
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The above uj ’s are continuos L1 functions, for which we have, using the area/coarea
formula as in [20, (30)], convergence in L1(Ω,R5) to u0, and the fact that M is

contain in the ball of radius
√

1 + kn
kp

sin2 θB :

∫
Ω

|uj(x)− u0(x)| dx ≤ 2 ηlj

√
1 +

kn
kp

sin2 θB

+

∫ 1−δ

δ

|χj(ρδ(x))− χ0(ρδ(x))| dx+ 2 ηrj

√
1 +

kn
kp

sin2 θB

≤ 2 ε
1/2
j

√
1 +

kn
kp

sin2 θB (length γl + length γr)

+

∫ 1−δ

δ

|χj(ρδ(x))− χ0(ρδ(x))| |ρ′δ(x)| dx

≤ C ε1/2j +

∫ ηj

0

|χj(t)− χ0(t)|H0
(
Sδt ∩ (δ, 1− δ)

)
dt

≤ C ε1/2j +

∫ ηj

0

|χj(t)− χ0(t)|H0
(
Sδt ∩ (δ, 1− δ)

)
dt

≤ C ε1/2j + ηj |u+ − u−| sup
|t|≤ηj

H0
(
Sδt ∩ (δ, 1− δ)

)
≤ C ε1/2j + ε

1/2
j length γ |u+ − u−| sup

|t|≤ηj
H0
(
Sδt ∩ (δ, 1− δ)

)
≤ C ε1/2j

1 + sup
|t|≤Cε1/2j

H0
(
Sδt ∩ (δ, 1− δ)

)→ 0 as j →∞,

in the above, C is a constant independent of j, Sδt = {x ∈ R : ρδ(x) = t}, and

χ0(t) =

{
u− if t ≤ 0,

u+ if t > 0.

Looking at the derivative of the elements of this sequence, by Lemma 4 in [20] and
equation (17), we find that

|u′j(x)| =



ε−1
j [εj +W (γl(ζ

l
j(x)))]1/2 if x ∈ (0, ηlj),

0 if x ∈ [ηlj , δ),

εj
−1 [εj +W (γ(ζj(ρδ(x))))]1/2 if x ∈ [δ, 1− δ),

0 if x ∈ [1− δ, 1− ηrj ),
ε−1
j [εj +W (γr(ζ

r
j (1− x)))]1/2 if x ∈ [1− ηrj , 1).

(18)

We split |u′j(x)|2 in |u′j(x)| |u′j(x)| and use (18) for one of the two terms, we also

use (17), when W (γl(ζ
l
j)) 6= 0 to rewrite

1

εj
W (γl(ζ

l
j)) = εj |(γl(ζlj))′|2 |(ζlj)′|2 − 1 = εj |u′j | |(γl(ζlj))′| |(ζlj)′| − 1,

and similarly for the term involving γr, and, recalling that |ρ′δ| = 1 a.e., for the one

10



involving γ, to gather

Fεj (uj) ≤ 2

∫ ηlj

0

[εj +W (γl(ζ
l
j(x)))]1/2|(γl(ζlj(x)))′| |(ζlj(x))′| dx

+2

∫ 1−δ

δ

[εj +W (γ(ζj(ρδ(x))))]1/2|(γ(ζj(ρδ(x))))′| |(ζj(ρδ(x)))′||ρ′δ(x)| dx

+2

∫ 1

1−ηrj
[εj +W (γr(ζ

r
j (1− x)))]1/2|(γr(ζrj (1− x)))′| |(ζrj (1− x))′| dx

≤ 2

∫ 1

0

[εj +W (γl(t))]
1/2|(γ′l(t)| dt+ 2

∫ 1

0

[εj +W (γr(t))]
1/2|(γ′r(t)| dt

+2 sup
|t|≤ηj

H0(Sδt ∩ (δ, 1− δ))
∫ ηj

0

[εj +W (γ(ζj(t)))]
1/2|(γ(ζj(t))

′| |ζ ′j(t)| dt

≤ 2

∫ 1

0

[εj +W (γl(t))]
1/2|(γ′l(t)| dt+ 2

∫ 1

0

[εj +W (γr(t))]
1/2|(γ′r(t)| dt

+2 sup
|t|≤ηj

H0(Sδt ∩ (δ, 1− δ))
∫ 1

0

[εj +W (γ(t))]1/2|γ′(t)| dt

where we used the fact that u+ and u− are zeros of W , and that the derivatives
of ζlj , ζj and ζrj are nonnegative according to (17). Taking the limsup of the above
inequality, Lemma 4 in [20] gives for any δ < δ0:

lim sup
j→∞

Fεj (uj) ≤ 2 d(ub, ũ(0)) + 2 d(ub, ũ(1))

+2H0(∂Aδu−
∩ (δ, 1− δ)) d(u+,u−),

but by definition of δ0, if δ < δ0 we have that H0(∂Aδu−
∩(δ, 1−δ)) = N((u0)1).

4 Global Minimizers of the Limiting Functional

Looking at the formula for the Γ−limit F0(u), we quickly realize that a global
minimizer has no discontinuities in u1, i. e. N(u1) = 0, thus it is either u+ or u−,
and it is determined by the relative size of the quantities d(ub,u−) and d(ub,u+).
In particular, the global minimizer is unique unless d(ub,u−) = d(ub,u+).

As pointed out in [14, Remark 2], if the global minimizers is u+, thinking of ub
as the value at the boundary, its first component would be continuous across the
boundary, hence representing rotation around the axis, vice versa u− would imply
a discontinuous first component, hence suggesting rotation around the cone.

A numerical approximation done using gradient flow equations of the original
model written in terms of the tilt and polar angles, and performed to duplicate the
numerics presented in [17], suggests that keeping all the values of the parameters
as in [17], but varying knp, rotation around the cone is preferred only if knp > 2,
see Figure 2, with rotation around the axis favored when knp ≤ 2, see Figure 3. We
note that in [17] all the numerical data provided is for knp > 2.

In [14], we show that under some conditions on the other parameters, for knp
large enough the global minimizers is indeed u−, but in our estimates the value of
knp for which this happens depends on kE , that is the larger is kE the larger knp

11
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needs to be, a restriction not seen in numerical computations. In fact, our numerical
approximations indicate that for the values of the parameters given in [17], for kE
large enough, if knp > 2 then u− is the global minimizer, while for knp < 2 the
global minimizer is u+.

An upper bound for d(ub,u+) can be found by choosing the test function:

γ(t) =

(√
kn
kp

sin θB , 0, sinπt cos θB ,− cosπt,− sinπt sin θB

)
,

namely,

d(ub,u+) ≤
∫ 1

0

√
(2 cos2 θB + knp sin2 θB) sin2 πt+ 2 |kE | (1 + cosπt) π dt,

which gives

d(ub,u+) ≤
√

max{2, knp}
∫ 1

0

√
sin2 πt+ |kE | (1 + cosπt) π dt

≤
√

max{2, knp}
∫ π

0

√
sin2 x+ |kE | (1 + cosx) dx

≤
√

max{2, knp}
∫ π

0

(
| sinx|+

√
|kE | (1 + cosx)

)
dx,

that is

d(ub,u+) ≤ 2
√

max{2, knp}
(

1 +
√

2
√
|kE |

)
. (19)

It is also possible to find a lower bound for d(ub,u−), which allows us to obtain
the following lemma.

Lemma 4.1. If knp < 2 and |kE | ≥ 1, there exists a constant kθB depending only
on θB such that if kn

kp
> kθB then u+ is the global minimizer of F0.

Proof. We rewrite the potential W (u) as

W (u) = 2u2
3 + knp u

2
5 + |kE |

(
A(u)− kp

kn

u2
1

sin2(θB)

)
,

where

A(u) =
kp
kn

u2
1

sin2(θB)
+ 2 (1− u4),

and notice that for u ∈M , it holds

inf
u∈M

A(u) = inf
v∈M0

A0(v),

where

M0 = {v ∈ R5 s.t. v2
1 + v2

2 = 1;

v2
3 + v2

4 + v2
5 = 1; v1 v3 + v2 v4 + cot θB v5 = 0},

and
A0(v) = v2

1 + 2 (1− v4).

13



Hence, infu∈M A(u) depends only on θB , also by continuity of A0 and compactness
of M0 the infimum is attained, that is L(θB) := infv∈M0

A0(v) = A0(v0) ≥ 0. It’s
easy to see that L(θB) ≤ 1 (in fact, a direct computation gives strictly less than
one), but more importantly L(θB) > 0. This can be seen by noticing that A0(u) 6= 0
for any v ∈ M0, as A0(v) = 0 implies v1 = 0 and v4 = 1. But, v4 = 1 implies
v3 = v5 = 0, and v1 = 0 gives v2 = 1, thus v1 v3 + v2 v4 + cot θB v5 = 1 6= 0.

In conclusion, we have that

0 < inf
u∈M

A(u) = L(θB) < 1.

If we now consider a path γ ∈ C1([0, 1],R5), with γ(t) ∈M,γ(0) = ub, and γ(1) =
u−, we have that∫ 1

0

√
W (γ(t)) |γ′(t)| dt ≥

∫ 1

0

√
W (γ(t))

(
|γ′1(t)|√

2
+
|γ′4(t)|√

2

)
dt

≥
√
|kE |√
2

∫{
t : γ2

1(t) ≤ L(θB)
kn
kp

sin2 θB

} √L(θB)− kp
kn

γ2
1(t)

sin2(θB)
|γ′1(t)| dt

+
1√
2

∫ 1

0

√
2 |kE | (1− γ4(t)) |γ′4(t)| dt

≥
√
|kE |√
2

√
kn
kp

sin θB

∫ √L(θB)

−
√
L(θB)

√
L(θB)− s2 ds +

∫ 1

−1

√
|kE | (1− s) ds

=
√
|kE |

(
π

2
√

2

√
kn
kp

sin θB L(θB) +
4

3

√
2

)
.

In the above, we use the fact that γ1(t) and γ4(t) are continuous functions on

[0, 1], with γ1(0) =
√

kn
kp

sin θB , γ4(0) = −1, and γ1(1) = −
√

kn
kp

sin θB , γ4(1) = 1.

We then can claim that

d(ub,u−) ≥
√
|kE |

(
C(θB)√

2

√
kn
kp

sin θB +
4

3

√
2

)
,

and from this equation (19) implies the lemma.

5 Non-Local Model

Following the classification presented in [12], the model proposed by Vaupotič and
Čopič [26] deals with a material which in the bulk prefers a SmCP phase, while
the one in Bauman and Phillips [6] assumes a SmCLP ground state (also known as
SmCG). In a SmCLP structure both the molecular plane and the nematic director
are tilted with respect to the layer normal, with fix tilt θ0 and polar α0 angles. On
the other hand, again according to [12], a SmCP structure can be also described by
a double-tilt with fix angle θ0 and polar angle α0 equal to either 0 or π.

In our situation, using the definition of α proposed in the previous sections, the
ground state has fixed 0 < θ0 = θB < π

2 and α = π, and since (2) is a suitable
modified version of the energy density proposed in[26], it seems reasonable to explore
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if an analogous adaptation of the model in [6], (see also [5, 2007] and [7, 2015]) in
the case θ0 = θB , α0 = π would lead to similar conclusions.

If we add the interaction term between polarization and external field adopted
in (2), assuming constant smectic density and with ∇ω denoting the smectic layer
normal, we have that the energy density in [6] reads

1

2
K|∇n|2 +

1

2
v|∇p|2 +

1

2
jq8
(
(∇ω × n · p)2 (∇ω · n)2 − χ2

0 |∇ω|4
)2

+cp∇ · p− P0 p ·E +
ε0 ε̄

2
|∇φ|2 + P0 p · ∇φ,

with v, j > 0, χ2
0 = sin2 θ0 cos2 θ0 cos2 α0, cp = c′ + c′′ P0 > 0, and{
ε0 ε̄∇ · ∇φ = P0∇ · p inside sample,

φ = 0 on boundary of sample.

Hence, under the same assumptions stated in section 3, the energy becomes:∫ L

0

(1

2
K|∇n|2 +

1

2
v|∇p|2 +

1

2
jq8
(
(e3 × n · p)2 (e3 · n)2 − χ2

0

)2
+cp p

′
1 − P0E p2 +

3

2
ε0 ε̄ |φ′|2

)
dx,

where χ2
0 = sin2 θB cos2 θB , and{

ε0 ε̄ φ
′′ = P0 p

′
1 in [0, L],

φ(0) = φ(L) = 0
(20)

The last term in the energy is a non-local term representing the electric self-

interactions, which in (2) are approximated by the local simpler term
P 2

0

2εε0
p2

1.

Using the fact that under our hypotheses n2
1 + n2

2 = sin2 θB , n2
3 = cos2 θB ,

|p| = 1, and n · p = 0, we obtain(
(e3 × n · p)2 (e3 · n)2 − χ2

0

)2
= ((n1p2 − n2p1)2n2

3 − sin2 θB cos2 θB)2

= cos4 θB (n2
1p

2
2 + n2

2p
2
1 − 2n1p2n2p1 − sin2 θB)2

= cos4 θB (n2
1 − n2

1p
2
1 − n2

1p
2
3 + n2

2 − n2
2p

2
2 − n2

2p
2
3 − 2n1p2n2p1 − sin2 θB)2

= cos4 θB (sin2 θB − (n1p1 + n2p2)2 − sin2 θB p
2
3 − sin2 θB)2

= cos4 θB (−n2
3 p

2
3 − sin2 θB p

2
3)2 = cos4 θB (− cos2 θB p

2
3 − sin2 θB p

2
3)2,

that is
(e3 × n · p)2 (e3 · n)2 = cos4 θB p

4
3.

A combination of (20), and the boundary conditions (4), allow us to simplify further
the electric self-interaction term:

ε0 ε̄ φ
′(x) = P0 p1(x)− P0

1

L

∫ L

0

p1(x) dx.
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We next non-dimensionalize length by L and multiply by the factor
2ε̄ε0
P 2

0 L
, to

arrive at the functional:∫ 1

0

(
1

2
k∗n|∇n|2 +

1

2
k∗p|∇p|2 +

1

2
k∗np p

4
3 − kE p2 + 3

(
p1 −

∫ 1

0

p1 ds

)2
)
dx,

with

k∗n =
2ε̄ε0
P 2

0 L
2
K; k∗p =

2ε̄ε0
P 2

0 L
2
v; k∗np =

2ε̄ε0
P 2

0

jq8 cos4 θB ; kE =
2ε̄ε0
P0

E. (21)

Finally, using the elementary fact that∫ 1

0

(
p1 −

∫ 1

0

p1 ds

)2

dx =

∫ 1

0

(
p2

1 −
(∫ 1

0

p1 ds

)2
)
dx, (22)

again denoting Ω = [0, 1], and proceeding as in Section 3, we are led to the energy
functional

G∗ε (u) =

∫
Ω

(
ε |∇u|2 +

1

ε
W ∗(u) − 6

ε

(∫
Ω

u3 ds

)2
)
dx, (23)

with u(x) ∈M∗ a.e. where

M∗ = {u ∈ R5 s.t. u2
1 + u2

2 =
k∗n
k∗p

sin2 θB ;

u2
3 + u2

4 + u2
5 = 1; u1 u3 + u2 u4 +

√
k∗n
k∗p

cos θB u5 = 0}, (24)

and

W ∗(u) = 6u2
3 + k∗np u

4
5 + 2 |kE | (1− u4). (25)

W ∗ is a double-well potential on M∗, with set of zeros given by

Z∗ =

{
u∗± ≡

(
±
√
k∗n
k∗p

sin θB , 0, 0, 1, 0

)}
. (26)

Letting

u∗b =

(√
k∗n
k∗p

sin θB , 0, 0,−1, 0

)
(27)

we are now looking at the behavior for ε → 0 of the minimizers of the energy
functional:

F∗ε (u) =


G∗ε (u) u ∈ H1(Ω,M), u|∂Ω = u∗b

∞ otherwise

(28)
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Thanks to (22), and the following simple inequality, which holds for u ∈M∗:∫ 1

0

u2
3 dx =

∫ 1

0

(
1− u2

4 − u2
5

)
dx ≤ 2

∫ 1

0

(1− u4) dx,

we still have a compactness result:

Proposition 5.1 (Compactness). If F∗εj (uj) is bounded, then there exists a subse-

quence ujk such that as εjk → 0 it holds ujk → u in L1(Ω,R5) where u(x) ∈ Z∗ a.e.
and u1 ∈ BV (Ω, {±

√
k∗n
k∗p

sin θB}).

We believe that the behavior of the functional (23) is qualitatively the same as
the one of (2), in particular we would like to show that its limiting functional is
given by

F∗0 (u) =


2N(u1) d∗(u+,u−) + 2 d∗(ub, ũ(0)) + 2 d∗(ub, ũ(1))

if u(x) ∈ Z∗ a.e. and u1 ∈ BV (Ω, {±
√

k∗n
k∗p

sin θB})

∞ otherwise,

(29)

where N(u1) is the number of discontinuities of the first component of u, and

d∗(u,v) = inf
{∫ 1

0

√
W ∗(γ(t)) |γ′(t)| dt : γ ∈ C1([0, 1],R5), (30)

γ(t) ∈M∗, γ(0) = u, γ(1) = v
}
,

which as before is a geodesic distance associated with a degenerate Riemann metric
on a manifold M∗ that depends on W ∗.

An analogous of Proposition 3.6 can be proven in exactly the same way, since in

here we are subtracting from a double-well potential the positive term
6

ε

(∫
Ω

u3 ds

)2

:

Proposition 5.2. For any u0 ∈ L1(Ω,R5), there exists a sequence {uj , εj} such
that uj → u0 in L1(Ω,R5) and εj → 0 as j →∞, for which

lim sup
j→∞

F∗εj (uj) ≤ F
∗
0 (u0).

It’s instead less clear, if it’s possible to derive an analogous of Proposition 3.5.
Given a sequence {c(ε)}, such that c(ε)→ 0 as ε→ 0, for u ∈M∗ we consider

W ∗ε (u) = 6 (u3 − c(ε))2 + k∗np u
4
5 + 2 |kE | (1− u4), (31)

and introduce

d∗ε (u,v) = inf
{∫ 1

0

√
W ∗ε (γ(t)) |γ′(t)| dt : γ ∈ C1([0, 1],R5), (32)

γ(t) ∈M∗, γ(0) = u, γ(1) = v
}
.
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Remark 1. Following [3, pg 183-185], since W ∗ε is never zero in M∗ when c(ε) 6= 0,
while if c(ε) = 0 then d∗ε ≡ d∗, using the fact that for ε small enough, it holds

sup
M∗

√
W ∗ε < C∗ with C∗ independent of ε, we have the following properties:

(1) d∗ε is a metric on M∗;

(2) d∗ε (u,v)→ d∗(u,v) as ε→ 0;

(3) For v ∈ M∗ fixed, if uε → u as ε → 0, then d∗ε (uε,v) → d∗(u,v), since (see
[3, (4.9) & (4.10)])

|d∗ε (uε,v)− d∗(u,v)| ≤ |d∗ε (uε,v)− d∗ε (u,v)|+ |d∗ε (u,v)− d∗(u,v)|
≤ |d∗ε (uε,u)|+ |d∗ε (u,v)− d∗(u,v)| ≤ C1C

∗|uε − u|+ |d∗ε (u,v)− d∗(u,v)|;

(4) If we define

Φ∗v(u) = d∗(u,v) and Φ∗ε,v(u) = d∗ε (u,v), (33)

the analogous of Lemma 3.3 holds for both Φ∗v and Φ∗ε,v with M∗, and

w∗v(x) = Φ∗v(u(x)) and w∗ε,v(x) = Φ∗ε,v(u(x)); (34)

(5) For v ∈M∗ fixed and uε ∈ L1(Ω,M∗), if uε(x)→ u(x) a.e. as ε→ 0, and

w∗,εε,v(x) := Φ∗ε,v(uε(x)),

then
w∗,εε,v(x)→ w∗v(x) a.e.,

as can be seen by applying (1) and (2) above, since

|w∗,εε,v(x)− w∗v(x)|
≤ |d∗ε (uε(x),v)− d∗ε (u(x),v)|+ |d∗ε (u(x),v)− d∗(u(x),v)|;

(6) LetO ⊂ R be an open bounded set. For v ∈M∗ fixed, if uε ⊂ H1(O,M∗), and

uε → u in L1(O,R5) and a.e., with u(x) ∈ Z∗ a.e. and u1 ∈ BV (Ω, {±
√

k∗n
k∗p

sin θB}),
then

w∗,εε,v → w∗v in L1(O),

and by [16, 1.9 Theorem]

lim inf
ε→0

∫
O

|(w∗,εε,v)′| dx ≥
∫
O

|(w∗v)′| dx.

Convergence of w∗,εε,v to w∗v in L1(O) is a consequence of (5), O bounded, M∗

contained in the ball of radius
√

1 +
k∗n
k∗p

sin2 θB , and the fact that under our

assumptions for ε small enough, we have

|(w∗,εε,v)(x)| ≤ C1 C
∗ |uε(x)− v| ≤ 2C1 C

∗

√
1 +

k∗n
k∗p

sin2 θB ,

so that we can apply the Lebesgue dominated convergence theorem.
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Proposition 5.3. For every sequence {uj , εj} such that uj → u0 in L1(Ω,R5) and
εj → 0 as j →∞, it holds

lim inf
j→∞

F∗εj (uj) ≥ F
∗
0 (u0).

Proof. If lim infj→∞ F∗εj (uj) =∞ then the inequality is true. If not, we can consider
a subsequence jk such that

lim
jk→∞

F∗εjk (ujk) = lim inf
j→∞

F∗εj (uj) <∞,

and applying Proposition 5.1 to this subsequence we obtain that u0(x) ∈ Z∗ a.e.
and (u0)1 ∈ BV (Ω, {±

√
k∗n
k∗p

sin θB}). By possibly passing to a further subsequence,

we can assume {ujk} ⊂ H1(Ω,M∗), and ujk → u0 also a.e..
On the other hand, u0(x) ∈ Z∗ a.e. implies (u0)3(x) = 0 a.e., and by L1 con-

vergence we have

c(εjk) :=

∫
Ω

(ujk)3 dx→ 0. (35)

Noticing that the elements of this subsequence verify

F∗εjk (ujk) =

∫
Ω

(
ε |∇u|2 +

1

ε
W ∗εjk

(u)

)
dx,

we conclude that thanks to Remark 1, the theorem follows as in the proof of Propo-
sition 3.5.

6 Gradient Flow

To conclude our study, we address the question of existence of the gradient flow
relative to the local energy (5). In what follows, to simplify notations and without
loss of generality, we set all the physical constants to be equal to one.

We define the functional space

M := {(p,n) ∈W 1,2(Ω;R3)×W 1,2(Ω;R3) : |p| = |n| = 1, n3 = cos θB , p ·n = 0},

and study the gradient flow for the energy, G :M−→ R,

G(p,n) :=

∫
Ω

[
|∇p|2 + |∇n|2 +W(p)

]
dx,

subject to the boundary conditions (4), with Ω = [0, 1], and

W(p) = 2 p2
1 + p2

3 + 2 (1− p2).

Since the set

V := {(p,n) ∈M : p(0) = p(1) = (0,−1, 0),n(0) = n(1) = (sin θB , 0, cos θB)}

is not a Banach space with respect to any norm (the norm constraint makes im-
possible to multiply by constants other than ±1), we consider V as a metric space,
endowed with the distance dG induced by ‖ · ‖L2(Ω;R3), i.e.

dG((p,n), (q,m)) := ‖p− q‖L2(Ω;R3) + ‖n−m‖L2(Ω;R3), (36)
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and use Ambrosio, Gigli and Savaré’s theory of gradient flows in metric spaces. In
particular, we show that [2, Theorem 2.3.1], which deals with the existence of curves
of maximal slope in metric spaces, can be applied to our problem.

We introduce below some of the relevant definitions, and refer the reader to [2]
for complete details, and proofs.

The essential ingredients in the theory for metric spaces presented in [2] are a
complete metric space (S, d), a functional φ : S → (−∞,+∞], with proper effective
domain

D(φ) : = {v ∈ S : φ(v) < +∞} 6= ∅},

and a (possibly) weaker topology σ on S. The topology σ is also assumed to be a
Hausdorff topology compatible with d, that is σ is weaker than the topology induced
by d, and d is sequentially σ-lower semicontinuous, i.e.

(uk, vk)
σ→ (u, v) =⇒ d(u, v) ≤ lim inf

k→+∞
d(uk, vk).

We define the relaxed slope, |∂−φ|, of φ (see [2, (2.3.1)]) as

|∂−φ|(v) := inf

{
lim inf
k→+∞

|∂φ(vk)| : vk
σ→ v, sup

k
{d(vk, v), φ(vn)} < +∞

}
,

where |∂φ|(v) is the local slope (see [2, Definition 1.2.4]):

|∂φ|(v) := lim sup
w→v

max{φ(v)− φ(w), 0}
d(w, v)

.

Note that if φ is smooth, one has |∂φ|(v) = |∂−φ|(v), and if in addition φ
is Frechet differentiable, |∂−φ| is actually a strong upper gradient (see [2, Defini-
tion 1.2.1]) for φ, that is for every absolutely continuous curve v : [a, b] −→ S the
function |∂−φ| ◦ v is Borel, and it holds

|φ(v(t))− φ(v(s))| ≤
∫ t

s

|∂−φ|(v(r))|vt(r)| dr for any a < s ≤ t < b,

with |vt| denoting the metric speed (see [2, (1.1.3)]):

|vt(r)| := lim
s→r

d(v(s), v(r))

|s− r|
.

Finally, we say that a locally absolutely continuous map u : (a, b)→ S is a curve
of maximal slope (see [2, Definition 1.3.2]), for the functional φ with respect to its
upper gradient g, if φ ◦ u is L1-a.e. equal to a non-increasing map ϕ, and

ϕt(r) ≤ −
1

2
|ut(r)|2 −

1

2
g2(u(r)) L1-a.e. in (a, b).

As per [2, Remark 1.3.3], if g is a strong upper gradient g, then φ(u(r)) ≡ ϕ(r)
is a locally absolutely continuous map in (a, b), and the energy identity

1

2

∫ t

s

|ut(r)|2 dr +
1

2

∫ t

s

g2(u(r)) dr = φ(u(s))− φ(u(t))

holds in each interval [s, t] ⊂ (a, b).
In here, we pick
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(i) S = V ∩ {G ≤ G(p0,n0) + 1} (with (p0,n0) denoting the initial datum);

(ii) d = dG;

(iii) φ = G;

(iv) σ = topology induced on V by the weak topology of L2(Ω;R3) × L2(Ω;R3).
As required, this is a Hausdorff topology on V compatible with dG.

Completeness with respect to the distance dG is proven in the following lemma.

Lemma 6.1. For any c > 0, the metric space (V ∩ {G ≤ c}, dG) is complete.

Proof. Consider an arbitrary Cauchy sequence (pk,nk)k ⊆ V ∩ {G ≤ c}, since(
W 1,2(Ω;R3)×W 1,2(Ω;R3), ‖ · ‖W 1,2×W 1,2

)
is a complete metric space, there exists

(p,n) ∈W 1,2(Ω;R3)×W 1,2(Ω;R3) such that pk → p, nk → n in W 1,2(Ω;R3). By
Sobolev embedding we have convergence a.e., hence from (pk,nk) ∈ V we derive

|pk| ≡ |nk| ≡ 1 =⇒ |p| = |n| = 1,

pk · nk ≡ 0 =⇒ p · n = 0,

while the boundary conditions

pk(0) ≡ pk(1) ≡ (0,−1, 0) =⇒ p(0) = p(1) = (0,−1, 0),

nk(0) ≡ nk(1) ≡ (sin θB , 0, cos θB) =⇒ n(0) = n(1) = (sin θB , 0, cos θB).

follow from the trace theorem. In other words, we have (p,n) ∈ V . To prove that
(p,n) ∈ {G ≤ c} we note that G is a sum of the convex function

∫
Ω

(|∇p|2 + |∇n|2 +
2 p2

1 +p2
3) dx plus the linear function

∫
Ω

2(1−p2) dx, and since convex (respectively,
linear) functions are weakly lower-semicontinuous (respectively, continuous), we in-
fer G(p,n) ≤ c.

To apply [2, Theorem 2.3.1] to our problem, we also need to check some topo-
logical assumptions, which are included in Lemma 6.2 below.

Lemma 6.2. The functional G satisfies the following properties:

(A1) σ-lower semicontinuity: for any sequence (pk,nk) ⊆ V σ-converging to some
(p,n) ∈ V we have

G(p,n) ≤ lim inf
k→+∞

G(pk,nk).

(A2) Coercivity: G ≥ 0 in V .

(A3) Compactness: given a sequence (pk,nk)k ⊆ V with

sup
k
G(pk,nk) < +∞, sup

k,h
d((pk,nk), (ph,nh)) < +∞,

then we can extract a σ-converging sequence (pkj ,nkj )j.
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Proof. To show σ-lower semicontinuity, given a sequence (pk,nk)k σ-converging to
(p,n), we need to check that

lim inf
k→+∞

G(pk,nk) ≥ G(p,n).

If lim infk→+∞G(pk,nk) = +∞ then the thesis is trivial. Hence, without loss of
generality we may assume

lim inf
k→+∞

G(pk,nk) = lim
k→+∞

G(pk,nk) < +∞,

and find N such that for all k > N it holds G(pk,nk) ≤ C < +∞. In particular,
since

G(pk,nk) ≥ (‖∇p‖2L2(Ω;R3) + ‖∇n‖2L2(Ω;R3)),

we have, upon removing the first N terms of the sequence,

sup
k

{
‖p‖2W 1,2(Ω;R3) + ‖n‖2W 1,2(Ω;R3)

}
≤ C1 < +∞,

which implies that there exists (p′,n′) such that (pk,nk) converges to (p′,n′) in the
weak topology of W 1,2(Ω;R3)×W 1,2(Ω;R3). Next, again using the fact that con-
vex (respectively, linear) functions are weakly lower semicontinuous (respectively,
continuous), we infer as done at the end of the previous lemma that

G(p′,n′) ≤ lim inf
k→+∞

G(pk,nk).

Finally, remembering that (pk,nk)k σ-converges to (p,n), we obtain (p,n) =
(p′,n′), and G is σ-lower semicontinuous.

The coercivity condition (A2) follows from the definition of G.
To prove the compactness (A3), we use the fact that supkG(pk,nk) < +∞ and

G(pk,nk) ≥ (‖∇pk‖2L2(Ω;R3) + ‖∇nk‖2L2(Ω;R3)),

give (pk,nk)k uniformly bounded in W 1,2(Ω;R3)×W 1,2(Ω;R3), which implies that
(up to subsequences) there exists (p,n) ∈ W 1,2(Ω;R3) × W 1,2(Ω;R3) such that
pk → p, nk → n weakly in W 1,2(Ω;R3) × W 1,2(Ω;R3), strongly in L2(Ω′R3) ×
L2(Ω′R3), and a.e. in Ω. We conclude (p,n) ∈ V and G(p,n) < supkG(pk,nk), as
in Lemma 6.1.

Theorem 6.3. For any T > 0 and initial datum (p0,n0) ∈ V , there exists a curve

(p(t),n(t)) : [0, T ] −→ V, (p(0),n(0)) = (p0,n0)

of maximal slope solution of |ut(t)| = −|∂G|(t) for a.e. t ∈ [0, T ].

Proof. Thanks to Lemmas 6.1 and 6.2, we are able to apply Theorem 2.3.1 in [2] with
S = V ∩{G ≤ G(p0,n0)+1}, φ = G, d = dG and σ the topology induced on V by the
weak topology of L2(Ω;R3)×L2(Ω;R3). Additionally, since G is smooth and Frechet
differentiable, we have that |∂−G| = |∂G|, and |∂G| is a strong upper gradient.
Therefore, we can conclude that every curve (p(t),n(t)) ∈ GMM((p0,n0)) is a
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curve of maximal slope for G with respect to |∂G|, and that the following energy
identity holds

1

2

∫ T

0

|(pt(r),nt(r))|2 dr+
1

2

∫ T

0

|∂G|2(p(r),n(r)) dr = G(p0,n0)−G(p(T ),n(T )).

Here GMM((p0,n0)) denotes the set of generalized minimizing movements (see [2,
Definition 2.0.6]) of G starting at the initial datum (p0,n0) ∈ V .

Our theorem is then proven by noticing that [2, Proposition 2.2.3] implies that
the set GMM((p0,n0)) is non-empty.
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