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Abstract. In this work, we study a fourth order exponential equation, ut = ∆e−∆u, derived
from thin film growth on crystal surface in multiple space dimensions. We use the gradient
flow method in metric space to characterize the latent singularity in global strong solution,
which is intrinsic due to high degeneration. We define a suitable functional, which reveals where
the singularity happens, and then prove the variational inequality solution under very weak
assumptions for initial data. Moreover, the existence of global strong solution is established with
regular initial data.

1. Introduction4

1.1. Background. Thin film growth on crystal surface includes kinetic processes by which5

adatoms detach from above, diffuse on the substrate and then are absorbed at a new position.6

These processes drive the morphological changes of crystal surface, which is related to various7

nanoscale phenomena [11, 22]. Below the roughing temperature, crystal surfaces consist of facets8

and steps, which are interacting line defects. At the macroscopic scale, the evoluion of those9

interacting line defects is generally formulated as nonlinear PDEs using macroscopic variables;10

see [5, 7, 12, 18, 21, 24, 25]. Especially from rigorously mathematical level, [6, 10, 8, 9, 1, 17]11

focus on the existence, long time behavior, singularity and self-similarity of solutions to various12

dynamic models under different regimes.13

Let us first review the continuum model with respect to the surface height profile u(t, x).14

Consider the general surface energy,15

G(u) :=
∫

Ω
(β1|∇u|+

β2
p
|∇u|p) dx, (1)

where Ω is the “step locations area” we are concerned with. Then the chemical potential µ,
defined as the change per atom in the surface energy, can be expressed as

µ := δG

δu
= −∇ ·

(
β1
∇u
|∇u|

+ β2|∇u|p−2∇u
)
.
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Now by conservation of mass, we write down the evolution equation for surface height of a
solid film u(t, x):

ut +∇ · J = 0,

where
J = −M(∇u)∇ρs

is the adatom flux by Fick’s law [18], the mobility functionM(∇u) is a functional of the gradients
in u and ρs is the local equilibrium density of adatoms. By the Gibbs-Thomson relation [14, 20,
18], which is connected to the theory of molecular capillarity, the corresponding local equilibrium
density of adatoms is given by

ρs = ρ0e
µ
kT ,

where ρ0 is a constant reference density, T is the temperature and k is the Bolzmann constant.16

Notice those parameters can be absorbed in the scaling of the time or spatial variables. The17

evolution equation for u can be rewritten as18

ut = ∇ ·
(
M(∇u)∇e

δG
δu

)
. (2)

It should be pointed out that in past, the exponential of µ/kT is typically linearized under the
hypothesis that |µ| � kT ; see for instant [13, 15, 23] and most rigorous results in [6, 10, 8, 9, 1, 17]
are established for linearized Gibbs-Thomson relation. This simplification, eµ ≈ 1 +µ, yields the
linear Fick’s law for the flux J in terms of the chemical potential

J = −M(∇u)∇µ.

The resulting evolution equation is19

∂u

∂t
= ∇ ·

(
M(∇u)∇

(
δG

δu

))
, (3)

which is widely studied when the mobility function M(∇u) takes distinctive forms in different20

limiting regimes. For example, in the diffusion-limited (DL) regime, where the dynamics is21

dominated by the diffusion across the terraces and M is a constant M ≡ 1, Giga and Kohn22

[10] rigorously showed that with periodic boundary conditions on u, finite-time flattening occurs23

for β1 6= 0. A heuristic argument provided by Kohn [12] indicates that the flattening dynamics24

is linear in time. While in the attachment-detachment-limited (ADL) case, i.e. the dominant25

processes are the attachment and detachment of atoms at step edges and the mobility function26

[12] takes the form M(∇u) = |∇u|−1, we refer readers to [12, 1, 8, 9] for analytical results.27

Note that the simplifed version of PDE (3), which linearizes the Gibbs-Thomson relation,28

does not distinguish between convex and concave parts of surface profiles. However the convex29

and concave parts of surface profiles actually have very different dynamic processes due to the30

exponential effect, which is explained in Section 1.2 below; see also numerical simulations in [16].31
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Now we consider the original exponential model (2) in DL regime32

ut = ∇ ·
(
∇e

δG
δu

)
= ∆e

−∇·
(
|∇u|p−2∇u

)
,

(4)

with surface energy G :=
∫

Ω
1
p |∇u|

p dx, p ≥ 1. The physical explanation of the p-Laplacian33

surface energy can be found in [19]. From the atomistic scale of solid-on-solid (SOS) model, the34

transitions between atomistic configurations are determined by the number of bonds that each35

atom would be required to break in order to move. It worth noting for p = 1 [16] developed an36

explicit solution to characterize the dynamics of facet position in one dimensional, which is also37

verified by numerical simulation.38

In this work, we focus on the case p = 2 for high dimensional and use the gradient flow39

approach to study the strong solution with latent singularity to (4). We will see clearly the40

different performs between convex and concave parts of the surface. Explicitly, given T > 0 and41

an open, bounded, connected, spatial domain Ω ⊆ Rd with smooth boundary, we consider the42

evolution problem43 
ut = ∆e−∆u in Ω× [0, T ],

∇u · ν = ∇e−∆u · ν = 0 on ∂Ω× [0, T ],
u(x, 0) = u0(x) on Ω,

(5)

where ν denotes the outer unit normal vector to ∂Ω. The main results of this work is to prove44

the existence of variational inequality solution to (5) under weak assumptions for initial data and45

also the existence of strong solution to (5) under strong assumptions for initial data; see Theorem46

10 and Theorem 13 separately.47

1.2. Formal observations. We first show some a-priori estimates to see the mathematical struc-48

tures of (5).49

On one hand, formally define the energy F (u) :=
∫

Ω e
−∆u dx, so we can rewrite the original50

equation as a gradient flow51

ut = −δF
δu

= ∆e−∆u (6)

and
F (T ) +

∫ T

0

∫
Ω

∣∣δF
δu

∣∣2 dx dt = F (0)

for any T > 0.52

Notice boundary condition ∇u · ν = 0. We have∫
Ω

∆u dx = 0,

which gives53

‖(∆u)+‖L1(Ω) = ‖(∆u)−‖L1(Ω) =
‖∆u‖L1(Ω)

2 , (7)
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where (∆u)+ := max{0,∆u} is the positive part of ∆u and (∆u)− := −min{0,∆u} is the
negative part of ∆u. Since

‖(∆u)−‖L1 =
∫

Ω
(∆u)− dx ≤

∫
Ω
e(∆u)− dx ≤

∫
Ω
e
−(∆u)+

‖ +(∆u)− dx = F (u) ≤ F (u0) < +∞,

we know ‖∆u‖L1(Ω) ≤ 2F (u0) < +∞. However, since L1 is non-reflexive Banach space, the54

uniform bound of L1 norm for ∆u dose not prevent it being a Radon measure. In fact, from55

F (u) =
∫

Ω e
−∆u dx and (6), we can see a positive singularity in ∆u should be allowed for the56

dynamic model; also see an example in [17, p.6] for a stationary solution with singularity. We57

will introduce the latent singularity in (∆u)+ officially in Section 2.1.58

On the other hand, since
d
dt

∫
Ω
u2
t dx =

∫
Ω
ut(∆e−∆u)t dx =

∫
Ω

∆ut(e−∆u)t dx =
∫

Ω
−(∆ut)2e−∆u dx ≤ 0,

we have high order a-priori estimate∫
Ω
u2
t dx =

∫
Ω

(∆e−∆u)2 dx ≤ C(u0),

where C(u0) is a constant depending only on u0; see also [17]. Notice that59 ∫
Ω
|e−∆u|2 dx ≤

∫
Ω
|∇e−∆u|2 dx ≤ 1

2

∫
Ω
|e−∆u|2 dx+ c

∫
Ω
|∆e−∆u|2 dx. (8)

Then by [17, Lemma 1], we have∫
Ω
|D2e−∆u|2 dx ≤

∫
Ω

(∆e−∆u)2 dx ≤ C(u0).

This, together with (8), implies
‖e−∆u‖H2(Ω) ≤ C1(u0).

Although these are formal observations for now, we will prove them rigorously later.60

1.3. Overview of our method and related method. Although from formal observations in61

Section 1.2 the original problem can be recast as a standard gradient flow, the main difficulty is62

how to characterize the latent singularity in (∆u)+ and choose a natural working space.63

As we explained before, the possible existence of singular part for ∆u is intrinsic, so the best64

regularity we can expect for ∆u is Radon measure space. To get the uniform bound of ‖∆u‖M(Ω),65

we need to first construct an invariant ball, which is the indicator functional ψ defined in (12), then66

get rid of ψ after we obtain the variational inequality solution; see Theorem 10 and Corollary67

11. After we choose the working space M(Ω) for ∆u, we can define the energy functional φ68

rigorously in (11) using Lebesgue decomposition. To avoid the extra technical difficulties brought69

by non-reflexive Banach space, we first ignore the Banach space structure and use the gradient70

flow approach in metric space introduced by [2]. We consider a curve of maximal slope of the71

energy functional φ + ψ and try to gain the variational inequality solution defined in Definition72

2 under weak assumptions for the initial data following [2, Theorem 4.0.4]. However, since the73
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functional φ is defined only on the absolutely continuous part of ∆u, it is not easy to verify74

the lower semi-continuity and convexity of φ, which is developed in Section 2.3 and Section 2.4.75

Finally, when the initial data have enough regularities, we prove the variational inequality solution76

has higher regularities and is also strong solution to (5) defined in Definition 12.77

Recently, [17] also studies the same problem (5) using the method of approximating solutions.78

Their method based on carefully chosen regularization, which is delicate but the construction is79

subtle to reveal the mathematical structure of our problem. Instead, our method using gradient80

flow structure is natural and more general, which is flexible to wide classes of dynamic systems81

with latent singularity. When proving the variational inequality solution to (5), we also provide82

an additional understanding for the evolution of thin film growth, i.e., the solution u is a curve83

of maximal slope of the well-defined energy functional φ+ ψ; see Definition 9.84

The rest of this work is devoted to first introduce the abstract setup of our problem in Section85

2.1 and Section 2.2. Then in Section 2.3, 2.4 and Section 2.5, we prove the variational inequality86

solution following [2, Theorem 4.0.4]. In Section 3, under more assumptions on initial data, we87

finally obtain the strong solution to (5).88

2. Gradient flow approach and variational inequality solution89

2.1. Preliminaries. We first introduce the spaces we will work in. Since we are not expecting90

classical solution to (5), the boundary condition in (5) can not be recovered exactly. Instead, we91

equip the boundary condition in the space H, Ṽ defined blow.92

Let

H :=
{
u ∈ L2(Ω) :

∫
Ω
udx = 0

}
,

endowed with the standard scalar product 〈u, v〉H :=
∫

Ω uv dx.93

Since L1 is not reflexive Banach space and has no weak compactness, those a-priori estimates94

in Section 1.2 can not guarantee the W 2,1(Ω)-regularity of solutions to (5). Hence we define the95

space Ṽ as96

Ṽ := {u ∈ H; ∇u ∈ L2(Ω), ∆u ∈M(Ω),
∫

Ω
ϕ d(∆u) = −

∫
∇u∇ϕdx for any ϕ ∈ Cb(Ω)}, (9)

whereM is the space of finite signed Radon measures and Cb(Ω) is all the bounded continuous
functions on Ω. Endow Ṽ with the norm

‖v‖
Ṽ

:= ‖∇v‖L2(Ω) + ‖∆v‖M(Ω).

Here ‖ · ‖M(Ω) denotes the total mass of the measure.97

Next, since ∆u can be a Radon measure, we need to make those formal observations in Section98

1.2 rigorous. For any µ ∈M, from [4, p.42], we have the decomposition99

µ = µ‖ + µ⊥ (10)
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with respect to the Lebesgue measure, where µ‖ ∈ L1(Ω) is the absolutely continuous part of100

µ and µ⊥ is the singular part, i.e., the support of µ⊥ has Lebesgue measure zero. Define the101

function102

φ : H −→ [0,+∞], φ(u) :=


∫

Ω e
−(∆u)+

‖ +(∆u)− dx, if u ∈ Ṽ ,
+∞ otherwise,

(11)

where (∆u)‖ denotes the absolutely continuous part of ∆u, (∆u)− := −min{0,∆u} is the negative103

part of ∆u. We call the singular part (∆u)+
⊥ latent singularity in solution u.104

Remark 1. Although the singularity vanishes in the energy functional φ, it is not a removable105

singularity in the dynamics. Indeed, noticing the boundary condition, we can not recover a new106

solution v by removing the singularity such that ∆v = (∆u)+
‖ − (∆u)− and vt = ∆e−∆v. So the107

singularity in solution (∆u)+
⊥ actually have effect on ut and we refer it as latent singularity.108

In view of the a priori estimate on the mass of the measure ∆u, we introduce the indicator109

function110

ψ : H −→ {0,+∞}, ψ(u) :=

0 if u ∈ Ṽ , ‖∆u‖M(Ω) ≤ C,
+∞ otherwise.

(12)

Here C is a fixed constant, which is determined by the initial datum later. From Section 1.2 we111

know the bound for ‖∆u‖M(Ω) (12) is not artificial.112

2.2. Euler schemes. Even if (5) has a nice variational structure, and V has Banach space113

structure, the non-reflexivity of V imposes extra technical difficulties. Instead of arguing with114

maximal monotone operator like in [9], we try to use the result [2, Theorem 4.0.4] by Ambrosio,115

Gigli and Savaré. After defining the energy functional rigorously, we take the counterintuitive116

approach of ignoring the variational structure of (5) and the Banach space structure of W 2,1(Ω).117

In other words, we consider the gradient flow evolution in the metric space (H,dist), with distance118

dist(u, v) := ‖u− v‖H .119

Let u0 ∈ H be a given initial datum and 0 < τ � 1 be a given parameter. We consider a120

sequence {xτn} which satisfies the following unconditional-stable backward Euler scheme121  x
(τ)
n ∈ argminx′∈H

{
(φ+ ψ)(x′) + 1

2τ ‖x
′ − x(τ)

n−1‖2H
}

n ≥ 1,

x
(τ)
0 := u0 ∈ H.

(13)

The existence and uniqueness of the sequence {xτn} will proved later in Proposition 8. Thus we122

are considering the gradient descent with respect to φ+ ψ in the space (H,dist).123

Now for any 0 < τ � 1 we define the operator

Jτ [u] := argminv∈H
{

(φ+ ψ)(v) + 1
2τ ‖v − u‖

2
H

}
,
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then the variational approximation obtained by Euler scheme (13) is124

un := (Jt/n)n[u0]. (14)

The results for gradient flow in metric space [2, Theorem 4.0.4] establish the convergence of the125

variational approximation un to variational inequality solution to (5), which is defined below.126

Definition 2. Given initial data u0 ∈ H, we call u : [0,+∞) −→ H a variational inequality127

solution to (5) if u(t) is a locally absolutely continuous curve such that limt→0 u(t) = u0 in H128

and129
1
2

d
dt‖u(t)− v‖2 ≤ (φ+ ψ)(v)− (φ+ ψ)(u(t)), for a.e. t > 0, ∀v ∈ D(φ+ ψ). (15)

Before proving the existence of variational inequality solution to (5), we first study some130

properties of the functional φ+ ψ in Section 2.3 and Section 2.4.131

2.3. Weak-* lower semi-continuity for functional φ in Ṽ . For any µ ∈ M(Ω), we denote132

µ � Ld if µ is absolutely continuous with respect to Lebesgue measure and denote µ̄ := dµ
dLd as133

the density of µ. For notational simplification, denote µ‖ (resp. µ⊥) as the absolutely continuous134

part (resp. singular part) of µ with respect to Lebesgue measure.135

Let us first give the following proposition claiming weak-* lower semi-continuity for functional136

φ in Ṽ , which will be used in Lemma 6.137

Proposition 3. Let un, u ∈ Ṽ . If ∆un
∗
⇀∆u inM(Ω), we have138

lim inf
n→+∞

φ(un) ≥ φ(u). (16)

Before proving Proposition 3, we first state some lemmas.139

From now on, we identify µn � Ld with its density µ̄n := dµn
dLd and do not distinguish them for140

brevity. Given N > 0 and a sequence of measures µn such that µn � Ld, observe that141

µn = min{µn, N}+ max{µn, N} −N. (17)

First we state a lemma about the limit of the truncated measure min{µn, N}.142

Lemma 4. Given a sequence of measures µn such that µn � Ld, we assume moreover that µn
∗
⇀µ143

and supn→+∞ φ(µn) < +∞. Then there exists a measure µdown � L
d such that N ≥ µdown144

and min{µn, N}
∗
⇀µdown.145

Proof. Since µn
∗
⇀µ, we know there exists µdown ∈M(Ω) such that min{µn, N}

∗
⇀µdown. From

N−min{µn, N} ≥ 0 we have N−µdown ≥ 0. Moreover we claim µdown � L
d. Indeed, if µdown

contained a negative singular measure, then supn ‖µn‖L2(Ω) = +∞. However, since µn ≤ N , this
forces

+∞ >

∫
{µn≤−1}

e−µn dx ≥
∫
{µn≤−1}

µ2
n dx→ +∞.

Hence we have µdown � L
d. �146
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We also need the following useful Lemma to clarify the relation between µdown and the weak-∗147

limit of µn.148

Lemma 5. Given a sequence of measures µn such that µn � Ld, we assume moreover that µn
∗
⇀µ149

and supn→+∞ φ(µn) < +∞. Then for any N > 0, there exist µdown, µup ∈M(Ω), such that150

min{µn, N}
∗
⇀µdown, µdown � L

d, µdown ≤ µ‖, (18)
151

max{µn, N}
∗
⇀µup, (µup)‖ ≥ N, (19)

where µ‖ (resp. µ⊥) is the absolutely continuous part (resp. singular part) of µ. Moreover,152 ∫
Ω
e−µ|| dx ≤

∫
Ω
e−µdown dx. (20)

Proof. From Lemma 4 we know, upon subsequence, min{µn, N}
∗
⇀µdown for some measure

µdown satisfying µdown � L
d and N ≥ µdown. By Lebesgue decomposition theorem, there

exist unique measures µ‖ � Ld and µ⊥⊥Ld such that µ = µ‖+µ⊥. The decomposition (17) then
gives

0 ≤ µn −min{µn, N} = max{µn, N} −N
∗
⇀µ− µdown.

Taking µup := µ−µdown+N , as the sequence max{µn, N}−N ≥ 0, we obtain max{µn, N}
∗
⇀µup153

and (µ − µdown)‖ = µup‖ − N ≥ 0. Besides, since e−µ‖ is decreasing with respect to µ‖ and154

µ‖ ≥ µdown, we obtain (20). �155

Now we can start to prove Proposition 3.156

Proof of Proposition 3. Assume ∆un
∗
⇀∆u inM. Denote fn := ∆un and f := ∆u. Without loss157

of generality we assume supn→+∞ φ(un) < +∞ so f−n , f− � Ld. This implies immediately that158

we only need to consider two cases: (i) there are some fn are positive measures, i.e. fn⊥ 6= 0,159

and fn‖
∗
⇀g1 � Ld, fn⊥

∗
⇀g2 ≥ 0 and g1 + g2 = f‖; or (ii) all fn are absolutely continuous and160

fn‖ = fn may weakly-* converge to a singular measure.161

For case (i), if we have fn‖
∗
⇀g1 � Ld, fn⊥

∗
⇀g2 ≥ 0 and g1 + g2 = f‖, then since e−f‖ is162

decreasing with respect to f‖, we have
∫

Ω e
−g1 dx ≥

∫
Ω e
−f‖ dx. On the other hand, we know163

ϕ(v) :=
∫

Ω e
−v dx is lower-semicontinuous on L1(Ω) with respect to the strong topology. Hence164

by the convexity of ϕ(v) :=
∫

Ω e
−v dx on L1(Ω) and [3, Corollary 3.9], we know ϕ(v) is l.s.c on165

L1(Ω) with respect to the weak topology. So fn‖
∗
⇀g1 � Ld gives fn‖ ⇀ g1 in L1(Ω) and166

lim inf
n

φ(un) = lim inf
n

∫
Ω
e−fn‖ dx ≥

∫
Ω
e−g1 dx ≥

∫
Ω
e−f‖ dx = φ(u) (21)

which ensure (16) holds.167

Now we only concern the case (ii): fn⊥ = 0 and fn‖ = fn may weakly-* converge to a singular
measure. For any N > 0 large enough, denote φN (un) :=

∫
Ω e
−min{fn,N} dx. Then the truncated
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measures min{fn, N} satisfy

φN (un) =
∫

Ω
e−min{fn,N} dx

=
∫
{fn≤N}

e−min{fn,N} dx+ e−NLd({fn > N})

≥
∫
{fn≤N}

e−fn dx+
∫
{fn>N}

e−fn dx = φ(un).

The second equality also shows

φN (un)− e−NLd({fn > N}) =
∫
{fn≤N}

e−min{fn,N} dx

≤
∫

Ω
e−fn dx = φ(un).

Hence we obtain168

|φ(un)− φN (un)| ≤ e−NLd({fn > N}) ≤ e−N |Ω|. (22)
From Lemma 5, we know the truncated sequence min{fn, N} satisfies169

min{fn, N}
∗
⇀fdown, fdown � L

d,

∫
Ω
e
−fdown dx ≥

∫
Ω
e−f‖ dx. (23)

Since min{fn, N}⇀ fdown in L1(Ω), using the same argument with (21), we obtain170

lim inf
n→+∞

∫
Ω
e−min{fn,N} dx ≥

∫
Ω
e−fdown dx ≥

∫
Ω
e−f‖ dx = φ(u). (24)

Combining this with (22), we obtain171

lim inf
n→+∞

φ(un) ≥ lim inf
n→+∞

φN (un)− e−N |Ω|

= lim inf
n→+∞

∫
Ω
e−min{fn,N} dx− e−N |Ω|

≥ φ(u)− e−N |Ω|,

(25)

and thus we complete the proof of Proposition 3 by the arbitrariness of N . �172

2.4. Convexity and lower semi continuity of functional φ+ ψ in H.173

Lemma 6. The sum φ + ψ : H −→ [0,+∞] is proper, convex, lower semicontinuous in H and174

satisfies coercivity defined in [2, (2.4.10)].175

Proof. Clearly since u ≡ 0 ∈ D(φ+ ψ), D(φ+ ψ) = {φ+ ψ < +∞} is non empty, hence φ+ ψ is176

proper. Due to the positivity of φ, ψ, coercivity [2, (2.4.10)] is trivial.177

Convexity. Note that since both φ, ψ ≥ 0, we have D(φ+ψ) = D(φ)∩D(ψ). Given u, v ∈ H,
t ∈ (0, 1), without loss of generality assume u, v ∈ D(φ + ψ), otherwise convexity inequality is
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trivial. Thus (1 − t)u + tv ∈ D(ψ), and the measure ∆[(1 − t)u + tv] has no negative singular
part, while its positive singular part satisfies

(∆[(1− t)u+ tv])+
⊥ = (1− t)(∆u)+

⊥ + t(∆v)+
⊥,

and its absolutely continuous part satisfies

(∆[(1− t)u+ tv])‖ = (1− t)(∆u)‖ + t(∆v)‖.

Thus

φ((1− t)u+ tv) =
∫

Ω
e−[(1−t)∆u+t∆v]‖ dx =

∫
Ω
e−[(1−t)(∆u)‖+t(∆v)‖] dx

≤
∫

Ω
[(1− t)e−(∆u)‖ + te−(∆v)‖ ] dx

= (1− t)φ(u) + tφ(v),

hence φ+ ψ is convex.178

Lower semicontinuity. Consider a sequence un → u in H. We need to check

(φ+ ψ)(u) ≤ lim inf
n

(φ+ ψ)(un).

If un /∈ D(φ+ ψ) for all large n, then lower semicontinuity is trivial. Without loss of generality,
we can assume un ∈ D(φ+ ψ) for all n, and also

lim inf
n

(φ+ ψ)(un) = lim
n

(φ+ ψ)(un).

Since un ∈ D(ψ), we have ‖∆un‖M(Ω) ≤ C, hence there exists v ∈ M(Ω) such that ∆un
∗
⇀v.

Since we also have un → u in H so v = ∆u and we know ‖∆u‖M(Ω) ≤ C. Then 0 = ψ(un) = ψ(u)
and by Proposition 3, we have

lim inf
n

φ(un) ≥ φ(u)

so the lower semicontinuity is proved. �179

Lemma 7 (τ−1-convexity). For any u, v0, v1 ∈ D(φ + ψ), there exists a curve v : [0, 1] −→180

D(φ+ ψ) such that v(0) = v0, v(1) = v1 and the functional181

Φ(τ, u; v) := (φ+ ψ)(v) + 1
2τ ‖u− v‖

2
H (26)

satisfies182

Φ(τ, u; v(t)) ≤ (1− t)Φ(τ, u; v0) + tΦ(τ, u; v1)− 1
2τ t(1− t)‖v0 − v1‖2H (27)

for all τ > 0.183

We remark that (27) is the so-called “τ−1-convexity” [2, Assumption 4.0.1].184
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Proof. Let v(t) := (1− t)v0 + tv1. The proof follows from the simple identity

‖(1− t)v0 + tv1 − u‖2H = (1− t)‖u− v0‖2H + t‖u− v1‖2H − t(1− t)‖v0 − v1‖2H .

The convexity of φ+ ψ then gives

Φ(τ, u; v(t)) = (φ+ ψ)((1− t)v0 + tv1) + 1
2τ ‖u− [(1− t)v0 + tv1]‖2H

≤ (1− t)(φ+ ψ)(v0) + t(φ+ ψ)(v1)

+ 1
2τ (1− t)‖u− v0‖2H + 1

2τ t‖u− v1‖2H −
1
2τ t(1− t)‖v0 − v1‖2H

= (1− t)Φ(τ, u; v0) + tΦ(τ, u; v1)− 1
2τ t(1− t)‖v0 − v1‖2H ,

and concludes the proof. �185

After above properties for functional φ+ψ, we state existence and uniqueness of the sequence186

{xτn} chosen by Euler scheme (13).187

Proposition 8. Given parameter τ > 0, u0 ∈ H, then for any n ≥ 1, there exists unique xτn188

satisfying (13).189

Proof. Given n ≥ 1, we will prove this proposition by the direct method in calculus of variation.
Let Φ(τ, xn−1;x) defined in (26) and A := infx∈H Φ(τ, xn−1;x). Then there exist {xni} ⊆ D(Φ)
such that Φ(τ, xn−1;xni) → A as i → +∞ and Φ(τ, xn−1;xni) are uniformly bounded. Hence
upon a subsequence, there exists xn ∈ H such that xni ⇀ xn in H. This, together with the
uniform boundedness of ‖∆xni‖M(Ω) shows that ∆xni

∗
⇀v = ∆xn inM(Ω). Then by Proposition

3 we have
A = lim inf

i→+∞
Φ(τ, xn−1;xni) ≥ Φ(τ, xn−1;xn) ≥ A,

which gives the existence of xn satisfying (13).190

The uniqueness of xn follows obviously by the convexity of φ and the strong convexity of ‖·‖H .191

�192

2.5. Existence of variational inequality solution. After those preparations in Section 2.3
and Section 2.4, in this section we apply the convergence result in [2, Theorem 4.0.4] to derive
that the discrete solution un obtained by Euler scheme 13 converges to the variational inequality
solution defined in Definition 2. Denote

|∂φ|(v) := lim sup
w→v

max{φ(v)− φ(w), 0}
dist(v, w)

the local slope. By Lemma 7 and [2, Theorem 2.4.9] for λ = 0, the local slope coincides with the
global slope

ιφ(v) := sup
v 6=w

max{φ(v)− φ(w), 0}
‖v − w‖H

,
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i.e.193

|∂φ|(v) = ιφ(v). (28)
We point out that with Lemma 6 and [2, Theorem 1.2.5], we also know the global slope ιφ is194

a strong upper gradient for φ. Hence for ιφ, we recall [2, Definition 1.3.2] for curves of maximal195

slope.196

Definition 9. Given a functional φ : D(φ) → R and the global slope ιφ, we say that a locally197

absolutely continuous map u : (0, T ) → H is a curve of maximal slope for the functional φ with198

respect to ιφ if199

(φ(u(t)))′ ≤ −1
2 |ut|

2 − 1
2 ιφ(u)2 for a.e. t ∈ (0, T ). (29)

Now the hypotheses of [2, Theorem 4.0.4] are all satisfied: Lemma 6 gives convexity, lower200

semicontinuity and coercivity of φ + ψ [2, (4.0.1)], while Lemma 7 gives τ−1-convexity of φ + ψ201

with λ = 0 [2, Assumption 4.0.1]. Thus we have:202

Theorem 10. Given u0 ∈ D(φ+ ψ)‖·‖H ,203

(i) (convergence and error estimate) for any t > 0, t = nτ , let un in (14) be the solution204

obtained by Euler scheme (13), then there exists a local Lipschitz curve u(t) : [0,+∞)→ H205

such that206

un → u(t) in L2(Ω) (30)
and if further u0 ∈ D(φ+ ψ), we have the error estimate207

‖u(t)− un‖H ≤
τ√
2
|∂(φ+ ψ)|(u0); (31)

(ii) u : [0,+∞) −→ H is the unique variational inequality solution to (5), i.e., u is unique208

among all the locally absolutely continuous curves such that limt→0 u(t) = u0 in H and209

1
2

d
dt‖u(t)− v‖2 ≤ (φ+ ψ)(v)− (φ+ ψ)(u(t)), for a.e. t > 0, ∀v ∈ D(φ+ ψ); (32)

(iii) u(t) is a locally Lipschitz curve of maximal slope of φ for t > 0 in the sense210 (
(φ+ ψ)(u(t))

)′ ≤ −1
2 |ut|

2 − 1
2 ιφ(u)2; (33)

(iv) moreover, we have the following regularities

(φ+ ψ)(u(t)) ≤ (φ+ ψ)(v) + 1
2t‖v − u

0‖2H ∀v ∈ D(φ+ ψ), (34)

|∂(φ+ ψ)|2(u(t)) ≤ |∂(φ+ ψ)|2(v) + 1
t2
‖v − u0‖2H ∀v ∈ D(|∂(φ+ ψ)|), (35)

211

|∂(φ+ ψ)|(u(t)) ≤ ‖u
0 − ū‖H
t

, (φ+ ψ)(u(t))− (φ+ ψ)(ū) ≤ ‖u
0 − ū‖2H

2t , (36)
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and t 7→ ‖u(t)− ū‖H is non-increasing, where ū is a minimum point for φ+ ψ and

|∂φ|(v) = lim sup
w→v

(φ(v)− φ(w))+

dist(v, w) = ιφ(v)

is the local slope;212

(v) (L2-contraction) let u0, v0 ∈ D(φ+ ψ)‖·‖H and u(t), v(t) be solutions to the variational213

inequality (32), then214

‖u(t)− v(t)‖H ≤ ‖u0 − v0‖H . (37)

Proof. Since from Lemma 6 and Lemma 7, we are under the hypotheses of [2, Theorem 4.0.4],215

we apply it with energy functional φ + ψ, and metric space (H,dist), dist(u, v) = ‖u − v‖H to216

obtain (30).217

Therefore the convergence result (i) comes from [2, (4.0.11),(4.0.15)]. The variational inequality218

(32) follows from [2, (4.0.13)]. [2, Theorem 4.0.4 (ii)] shows the result (iii) and (33) follows219

Definition 9 of maximal slope.220

Regularities (34) and (35) follow from [2, (4.0.12)]. Asymptotic behavior (36) and monotonicity221

of t 7→ ‖u(t) − ū‖H follow from [2, Corollary 4.0.6], which requires the same hypotheses of [2,222

Theorem 4.0.4]. Finally, the contraction result (v) follows from [2, (4.0.14)]. �223

3. Strong solution224

We will prove the variational inequality solution obtain in Theorem 10 is actually a strong225

solution in this section.226

Now we assume u : [0,+∞) −→ H is the unique solution of the variational inequality (32), i.e.,227

1
2

d
dt‖u(t)− v‖2 ≤ (φ+ ψ)(v)− (φ+ ψ)(u(t)), for a.e. t > 0, ∀v ∈ D(φ+ ψ). (38)

3.1. Regularity of variational inequality solution. First we state the variational inequality228

solution has further regularities.229

Corollary 11. Given T > 0 and initial datum u0 ∈ D(|∂φ|), the solution obtained in Theorem
10 has the following regularities

u ∈ L∞([0, T ]; Ṽ ) ∩ C0([0, T ];H), ut ∈ L∞([0, T ];H),

(∆u)− � Ld for a.e. t ∈ [0, T ],

where (∆u)− := −min{0,∆u} is the negative part of ∆u. Besides, we can rewrite the variational230

inequality (32) as231

〈ut(t), u(t)− v〉H′,H ≤ φ(v)− φ(u(t)) for a.e. t > 0, ∀v ∈ D(φ). (39)
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Proof. First, we claim the functional ψ can be taken off. Indeed, from (34) we have232

(φ+ ψ)(u(t)) ≤ (φ+ ψ)(v) + 1
2t‖v − u

0‖2H ∀v ∈ D(φ). (40)

Then taking v = u0 gives233

(φ+ ψ)(u(t)) ≤ (φ+ ψ)(u0) < +∞, (41)

which also implies234

φ(u(t)) ≤ φ(u0) < +∞ for a.e. t ∈ [0, T ]. (42)

To make Section 1.2 rigorous, notice u ∈ Ṽ we have∫
Ω
ϕ d(∆u) = −

∫
∇u∇ϕ dx for any ϕ ∈ Cb(Ω).

Particularly, taking ϕ ≡ 1 gives
∫

Ω d(∆u) = 0, so we have

‖(∆u)+‖M(Ω) = ‖(∆u)−‖M(Ω) = 1
2‖∆u‖M(Ω).

Since

‖(∆u)−‖L1(Ω) =
∫

Ω
(∆u)− dx ≤

∫
Ω
e(∆u)− dx ≤

∫
Ω
e
−(∆u)+

‖ +(∆u)− dx = φ(u) ≤ φ(u0)

we know
(∆u)− � Ld for a.e. t ∈ [0, T ], ‖∆u‖M(Ω) ≤ 2φ(u0),

so we can choose C := 2φ(u0) + 1 in Definition (12) and235

ψ(u(t)) ≡ 0 ≡ ∂ψ(u(t)). (43)

Noticing also that if v /∈ D(ψ) (38) still holds, we can rewrite (38) as
1
2

d
dt‖u(t)− v‖2 ≤ φ(v)− φ(u(t)), for a.e. t > 0, ∀v ∈ D(φ).

Next, we need to show that ut ∈ L∞(0, T ;L2(Ω)). From Theorem 10 we know that t 7→ u(t) is
locally Lipschitz in (0, T ), i.e. for any t0 > 0 there exists L = L(t0) > 0 such that

‖u(t0 + ε)− u(t0)‖L2(Ω) ≤ L(t0)ε for all t ∈ [t0, T ].

The key point is to obtain a uniform bound for L(t0) for arbitrary t0 ≥ 0. Since u(t) is the
variational solution satisfying (32), taking v = u(t0) in (32) gives

1
2

d
dt‖u(t0)− u(t)‖2L2(Ω) ≤ φ(u(t0))− φ(u(t)) ≤ 〈ξ, u(t0)− u(t)〉H′,H

for any ξ ∈ ∂φ(u(t0)). In particular, by [2, Proposition 1.4.4], we have

|∂φ|(u(t0)) = min{‖ξ‖H′ ; ξ ∈ ∂φ(u(t0))}.
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Hence taking ξ as the elements of minimal dual norm in ∂φ(u(t0)) implies
1
2

d
dt‖u(t0)− u(t)‖2L2(Ω) ≤ φ(u(t0))− φ(u(t))

≤ ‖ξ‖L2(Ω)′‖u(t0)− u(t)‖L2(Ω)

≤ |∂φ|(u(t0))‖u(t0)− u(t)‖L2(Ω).

Furthermore, since t 7→ ‖u(t0)− u(t)‖L2(Ω) is locally Lipschitz, hence differentiable for a.e. t, we236

have237
d
dt‖u(t0)− u(t)‖L2(Ω) ≤ |∂φ|(u(t0)) ≤ |∂φ|(u0) for a.e. t > 0, (44)

where we have used (35) in the last inequality. Thus the function t 7→ ‖u(t0) − u(t)‖L2(Ω) is
globally Lipschitz with Lipschitz constant less than |∂φ|(u0), which is independent of t0. Hence
we know

‖u(t0)− u(t0 + ε)‖L2(Ω) ≤ ε|∂φ|(u0)
Thus for a.e. t we have

uε := u(t+ ε)− u(t)
ε

∈ L2(Ω), ‖uε‖L2(Ω) ≤ |∂φ|(u0),

and the sequence of difference quotients (uε)ε is uniformly bounded in L2(Ω). Consequently,
there exists v ∈ L2(Ω), ‖v‖L2(Ω) ≤ |∂φ|(u0), such that (upon subsequence)

uε → v strongly in L2(Ω)

as ε→ 0. Thus v = ut(t), and238

‖ut‖L∞(0,T ;L2(Ω)) ≤ |∂φ|(u0). (45)

Finally, from
1
2

d
dt‖u(t)− v‖2L2(Ω) = 〈ut(t), u(t)− v〉H′,H ,

we obtain (39). �239

3.2. Existence of strong solution. After establishing the regularity of variational inequality240

solution in Section 3.1, we start to prove the variational inequality solution is also a strong241

solution. We first clarify the definition of strong solution, which has a latent singularity.242

Definition 12. Given u0 ∈ D(|∂φ|), we call function

u ∈ L∞([0, T ]; Ṽ ) ∩ C0([0, T ];H), ut ∈ L∞([0, T ];H)

a strong solution to (5) if u satisfies243

ut = ∆(e−(∆u)‖) (46)

for a.e. (t, h) ∈ [0, T ]× Ω, where (∆u)‖ is the absolutely continuous part of ∆u in the decompo-244

sition (10).245
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Let ϕ ∈ C∞c (Ω) be given. We prove the sub-differential of functional φ is single-valued. The246

idea of proof is to test (39) with v := u± εϕ and then take limit as ε→ 0. Let us state existence247

result for strong solution as follows.248

Theorem 13. Given T > 0, initial datum u0 ∈ D(|∂φ|), then the variational inequality solution249

u obtained in Theorem 10 is also a strong solution to (5), i.e.,250

ut = ∆(e−(∆u)‖) (47)

for a.e. (t, h) ∈ [0, T ]× Ω. Besides, we have

∆(e−(∆u)‖) ∈ L∞([0, T ];H)

and the dissipation inequality251

E(u(t)) := 1
2

∫
Ω

[
∆(e−(∆u)‖)

]2 dx ≤ E(u0), (48)

where (∆u)‖ is the absolutely continuous part of ∆u in the decomposition (10).252

Proof. Step 1. Integrability results.253

First from (42), we know254

e−(∆u(t))‖ ∈ L1(Ω). (49)
Since ϕ ∈ C∞c (Ω) we also know255

e−(∆u(t))‖−ε∆ϕ ∈ L1(Ω) (50)
for all sufficiently small ε.256

Step 2. Testing with v = u(t)± εϕ.257

Plugging v = u(t) + εϕ in (39) gives258

〈ut(t), εϕ〉+ φ(u(t) + εϕ)− φ(u(t)) ≥ 0. (51)

Direct computation shows that

φ(u(t) + εϕ)− φ(u(t)) =
∫

Ω

[
e−(∆u(t))‖−ε∆ϕ − e−(∆u(t))‖

]
dx

=
∫

Ω
e−(∆u(t))‖−ε∆ϕ

(
1− eε∆ϕ

)
dx

≤ −
∫

Ω
e−(∆u(t))‖−ε∆ϕ

(
ε∆ϕ

)
dx

This, together with (51), gives259

〈ut(t), εϕ〉 −
∫

Ω
e−(∆u(t))‖−ε∆ϕ

(
ε∆ϕ

)
dx ≥ 0. (52)

To take limit in (52), we claim

lim
ε→0

∫
Ω
e−(∆u(t))‖−ε∆ϕ∆ϕdx =

∫
Ω
e−(∆u(t))‖∆ϕdx. (53)
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Proof of (53). First we have

e−(∆u(t))‖−ε∆ϕ∆ϕ→ e−(∆u(t))‖∆ϕ a.e. on Ω.

Then by (50) we can see ∫
Ω
e−(∆u(t))‖−ε∆ϕ∆ϕ dx < +∞.

Thus by dominated convergence theorem we infer (53).260

Now we can divide by ε > 0 in (52) and take the limit ε→ 0+ to obtain

〈ut(t), ϕ〉 − lim
ε→0+

∫
Ω
e−(∆u(t))‖−ε∆ϕ∆ϕ dx

= 〈ut(t), ϕ〉 −
∫

Ω
e−(∆u(t))‖∆ϕ dx ≥ 0.

Repeating the above arguments with v = u(t)− εϕ gives

〈ut(t), ϕ〉 −
∫

Ω
e−(∆u(t))‖∆ϕ dx ≤ 0.

Thus we finally have261 ∫
Ω

[
ut(t)ϕ− e−(∆u(t))‖∆ϕ

]
dx = 0 ∀ϕ ∈ C∞c (Ω). (54)

Therefore ut(t) −∆e−(∆u(t))‖ ∈ C∞c (Ω)′, and ‖ut(t) −∆e−(∆u(t))‖‖C∞c (Ω)′ = 0. The only zero262

element of C∞c (Ω)′ is the zero function. Thus ut = ∆e−(∆u(t))‖ for a.e. (t, x) ∈ [0, T ]× Ω.263

Finally, we turn to verify (48). Combining (47) and (45), we have the dissipation law264

E(u(t)) = 1
2‖ut(t)‖

2
H = 1

2‖∆e
−(∆u(t))‖‖2H ≤

1
2 |∂φ|(u

0), (55)

where E(u(t)) = 1
2
∫
Ω
[
∆e−(∆u(t))‖

]2 dx defined in (48). Hence the dissipation inequality (48)265

holds and we completes the proof of Theorem 13. �266
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