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Abstract

We consider Monge’s optimal transportation in the case where the
transportation cost is the symmetric part of the Bregman distance
associated to some smooth and strictly convex function. We prove
existence, uniqueness and characterize the solutions.
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1 Introduction

Given two probability measures µ and ν on R
n, and a transportation cost

function c on R
n×R

n, the Monge-Kantorovich optimal transportation prob-
lem (introduced in [13]) consists in finding a probability measure γ on
R
n × R

n with marginals µ and ν (throughout, such a γ will be refered
to as a transport plan) minimizing the cost functional:

∫

Rn×Rn

c(x, y)dγ(x, y).

Before we go further, let us define some notation. Given a probability
space (Ω1,A1, µ1), a measurable space (Ω2,A2) and a measurable map f :
Ω1 → Ω2, the push-forward of µ1 through f , denoted f♯µ1 is the probability
measure on (Ω2,A2) defined by:

f♯µ1(F ) := µ1(f
−1(F ))

for every F ∈ A2. Denoting by

(π1(x, y), π2(x, y)) := (x, y), ∀(x, y) ∈ R
n × R

n

the canonical projections, the set of transport plans denoted Π(µ, ν) is then
by definition the set of probability measures γ on R

n×R
n such that π1♯γ = µ

and π2♯γ = ν.

The Monge-Kantorovich problem appears as a natural (linear) relaxation
of the Monge’s problem (see [14]) which consists in finding a transportation
map, i.e., a measurable map s that pushes µ forward to ν (meaning that
s♯µ = ν) minimizing:

∫

Rn

c(x, s(x))dµ(x).

The problem of finding an optimal s has been solved first by Y. Brenier in
[4] for a cost which is the square of the Euclidean distance. Other costs have
also been studied later in the literature (see [10], [6], [12] and [7].) Optimal
transportation problems have been the subject of an intensive stream of
research since Brenier’s paper [4]. We refer to the books [15] and [16] for a
modern account of the theory, its applications and complete references.

In the present paper, we are interested in transportation costs based on
Bregman distances. Given a strictly convex and differentiable function φ on
R
n, the Bregman distance associated to φ is:

Bφ(x, y) := φ(x)− φ(y)− 〈∇φ(y), x− y〉 , ∀(x, y) ∈ R
n × R

n. (1)

For a general convex function φ (neither smooth nor even everywhere finite),
such functions (which are not symmetric in general hence not distances
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in the usual sense) have been extensively used in optimization. Indeed,
Bregman distances are closely related to relative entropy functions, they
are well designed to modelling dissimilarity features in imaging, statistics
and decision sciences. Since their systematic introduction by Bregman [3],
Bregman distances have been the focus of an active stream of research in
optimization and convex programming due to their use in general proximal
schemes and interior point methods (see for instance [8], [2], [1] and the
references therein).

If we take Bφ as transportation cost, we can remark that for any trans-
port plan γ, one has:

∫

Rn×Rn

Bφdγ =

∫

Rn

φd(µ − ν) +

∫

Rn

〈y,∇φ(y)〉 dν(y)

−

∫

Rn×Rn

〈x,∇φ(y)〉 dγ(x, y).

Since only the last term depends on γ, the correspondingMonge-Kantorovich
problem amounts to maximizing

∫

Rn×Rn
〈x,∇φ(y)〉 dγ(x, y) over Π(µ, ν). Up

to a change of variables, the previous problem has been solved by Brenier in
[4] and is very well-known nowadays. We shall therefore not insist on this
case.

If we consider now as transportation cost, the symmetric part of the
Bregman distance Bφ:

2cφ(x, y) := 〈∇φ(x)−∇φ(y), x− y〉 ,

dropping as previously the terms that depend only on x or y we see that the
Monge-Kantorovich problem with cost cφ amounts to:

(MK) sup
γ∈Π(µ,ν)

∫

Rn×Rn

Hφ(x, y) dγ(x, y).

Here Hφ is defined by:

Hφ(x, y) = 〈∇φ(x), y〉+ 〈∇φ(y), x〉 , ∀(x, y) ∈ R
n × R

n. (2)

Note that (MK) is the relaxation of the Monge’s problem:

(M) sup
s∈∆(µ,ν)

∫

Rn

Hφ(x, s(x)) dµ(x)

where ∆(µ, ν) stands for the set of transport maps, i.e., the set of Borel
maps s such that s♯µ = ν. Our aim is to prove existence of an optimal
transportation map (i.e. a solution to (M)) and to characterize it. More
precisely, we shall prove under some regularity assumptions, that (M) ad-
mits a unique solution (up to µ-a.e. equivalence of course) s that is of the
form:

s(x) = ∇(φ+
1

2
d2xφ)

⋆(∇f(x)) (3)
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for some φ-convex potential f (see definition 1). Conversely, if s has the
form (3) and is a transport map then s actually solves (M).

In section 2, we introduce some convexity tools related to the duality
theory for (MK). Section 3 is devoted to the existence, uniqueness and
announced characterization of optimal transportation maps.

2 Preliminaries

In the remainder of the paper, we will always assume the following:

(H)















(i) there is some closed ball B such that µ(B) = ν(B) = 1,
(ii) µ is absolutely continuous with respect to the

n-dimensional Lebesgue’s measure,
(iii) φ is a strictly convex function of class C2 on B.

Our focus is then on the Monge problem:

(M) sup
s∈∆(µ,ν)

∫

B×B

Hφ(x, s(x)) dµ(x)

where ∆(µ, ν) := {s Borel : B → B : s♯µ = ν} and Hφ is defined by (2).

2.1 Dual problem and φ-convex functions

By standard linear programming duality, (MK) is the dual problem of:

(D) inf

{
∫

B

fdµ+

∫

B

gdν : f(x) + g(y) ≥ Hφ(x, y), ∀(x, y) ∈ B2

}

,

where the infimum is taken over all pairs (f, g) ∈ C0(B,R)2. We are going
to establish the existence of solutions for (D) and:

inf(D) = max(M) = max(MK). (4)

The existence of a solution for (MK) can be easily obtained using a
direct compactness argument method. Note also that obviously:

sup(MK) ≥ sup(M) (5)

(this comes from the fact that if s is admissible for (M) then γ = µ⊗ δs(x)
is admissible for (MK)) and by the duality theorem (see [9]):

sup(MK) = min(D). (6)

Let us note that if (f, g) is admissible for (D) then the following holds:

g(y) ≥ sup
x∈B

{〈∇φ(x), y〉+ 〈∇φ(y), x〉 − f(x)}. (7)
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This leads us to introduce the φ-Fenchel transform of f :

fφ(x) = sup
y∈B

{〈∇φ(x), y〉+ 〈∇φ(y), x〉 − f(y)}.

Let us remark that (f, fφ) satisfies the Young inequality:

f(x) + fφ(y) ≥ Hφ(x, y), (8)

hence the pair (f, fφ) is admissible for (D). Let us also remark that due to
the regularity of φ there exists a constant C = C(φ,B) such that:

Hφ(x, y)−Hφ(x, y
′) ≤ C|y − y′|, ∀(x, y, y′) ∈ B3. (9)

Let us introduce some definitions related to φ-Fenchel transforms:

Definition 1 A function f is said to be φ-convex if there exists a nonempty
subset A of B × R such that:

f(x) = sup
(y,t)∈A

{Hφ(x, y) + t}.

If f is φ-convex, the φ−subdifferential, ∂φf(x) of f at x ∈ B is defined by:

∂φf(x) = {y ∈ B : f(x′)− f(x) ≥
〈

∇φ(y), x′ − x
〉

+
〈

∇φ(x′)−∇φ(x), y
〉

}.

We gather some useful results in the next proposition:

Proposition 1 For every f ∈ C0(B,R), then we have:

1. fφ and (fφ)φ are φ-convex and C-Lipschitz;

2. if f is φ-convex then f(x) + fφ(y) = Hφ(x, y) ⇔ x ∈ ∂φfφ(y);

3. f ≥ (fφ)φ and f is φ-convex if and only if f = (fφ)φ.

We refer to [7] for a proof of these basic properties. Existence of solutions
to (D) is now guaranteed by:

Lemma 1 The problem (D) admits a pair of solutions (f , g) satisfying:

f
φ
= g, gφ = f .

Proof. As we have already seen, if (f, g) is admissible for (D) , then (f, fφ)
is also admissible thanks to the Young inequality, and g ≥ fφ, hence:

∫

B

f(x) dµ(x) +

∫

B

g(y) dν(y) ≥

∫

B

f(x) dµ(x) +

∫

B

fφ(y) dν(y).

These facts shows (f, fφ) is a better candidate for (D). With the same
arguments we get ((fφ)φ, fφ) is even better.
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Let (fn, gn)n be a minimizing sequence for (D). Since (f̃n, g̃n) = ((fφ
n )φ, f

φ
n )

is a better candidate than (fn, gn), without loss of generality, we may replace
(fn, gn) by (f̃n, g̃n). As µ and ν have the same total mass, for any a ∈ R we
have:
∫

B

f̃n(x) dµ(x)+

∫

B

g̃n(y) dν(y) =

∫

B

(f̃n(x)−a) dµ(x)+

∫

B

(g̃n(y)+a) dν(y)

so we may assume minB g̃n = 0. Since f̃n = g̃
φ
n, using the fact that Hφ

is bounded on B, we easily get that (g̃n) and (f̃n) are uniformly bounded.
Since those families are also equi-Lipschitz by Proposition 1, according to
Ascoli theorem, we may assume (up to a subsequence) that they converge
uniformly respectively to some limits g and f . It is immediate to check that

g = f
φ
, f = gφ and that (f , g) solves (D).

Lemma 2 If f is φ-convex and finite, then ∂φf(x) 6= ∅ for all x ∈ B.
Moreover f is differentiable almost everywhere and at every point of dif-
ferentiability x of f one has ∂φf(x) = {sf (x)} where sf is the Borel map
defined by

sf (x) = ∇(φ+
1

2
d2xφ)

⋆(∇f(x))

(d2xφ denoting the quadratic form d2xφ(y) := φ′′(x)(y, y)).

Proof. As f is φ-convex, there exists a subset C of B × R such that:

f(x) = sup
(y,t)∈C

{Hφ(x, y) + t}, ∀x ∈ B.

Let x ∈ B and let (yn, tn) be a maximizing sequence for f(x). Up to a
subsequence, we may assume that yn admits a limit y, hence tn converges
to t = f(x)−Hφ(x, y). We then have:

f(x′)− f(x) ≥
〈

∇φ(y), x′ − x
〉

+
〈

∇φ(x′)−∇φ(x), y
〉

for all x′ ∈ B so that y belongs to ∂φf(x). By (9), one also gets that for all
x′ in B:

f(x)− f(x′) ≤ Hφ(x, y) + t−Hφ(x
′, y)− t ≤ C|x− x′|.

This proves that f is Lipschitz hence, by Rademacher theorem, differentiable
almost everywhere.

Let x be a point (in the interior of B) of differentiability of f and let
y ∈ ∂φf(x). For all k ∈ R

n and t sufficiently small, x + tk is in B and we
have:

〈∇φ(y), tk〉+〈∇φ(x+ tk)−∇φ(x), y〉 ≤ f(x+tk)−f(x) = t 〈∇f(x), k〉+o(t)
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which yields, after dividing by t and letting t → 0+

〈∇f(x), k〉 ≥ 〈∇φ(y), k〉 + φ′′(x)(y, k).

Since k ∈ R
n is arbitrary, we then get:

∇f(x) = ∇φ(y) + φ′′(x)(y) = ∇(φ+
1

2
d2xφ)(y).

By assumption ∇(φ+ 1
2d

2
xφ) is injective so that the previous leads to:

y = sf (x) := ∇(φ+
1

2
d2xφ)

⋆(∇f(x)). (10)

2.2 Getting back to (M)

We shall prove that if a pair of φ-convex functions (f, g) solves (D) then
the map defined by s(x) = sf = ∇(φ + 1

2d
2
xφ)

⋆(∇f(x)) pushes forward µ

and actually solves (M). First, we state the following result (for the sake of
completeness, we give the proof of this result which can be also found in [7]
and is based on a key idea of [11]):

Lemma 3 Let g be φ−convex and h ∈ C0(B,R). Let

f0 := gφ and for all t ∈ R, ft := (g + th)φ.

Then for any point x where f0 is differentiable, and for sf0 given by (10),
we have:

lim
t→0+

1

t
[ft(x)− f0(x)] = −h(sf0(x)).

Proof. We know that:

f0(x) = Hφ(x, sf0(x))− g(sf0(x)). (11)

For t > 0 let yt ∈ B be such that

ft(x) = Hφ(x, yt)− g(yt)− th(yt). (12)

Since f0 = gφ and ft = (g + th)φ we have:

−h(sf0(x)) ≤
1

t
[ft(x)− f0(x)] ≤ −h(yt). (13)

If we prove that yt converges to sf0(x) as t goes to 0+, the desired result will
then follow. Assume that for some sequence tn tending to 0+, ytn converges
to some y ∈ B, then passing to the limit in (12) yields

f0(x) = Hφ(x, y)− g(y) = Hφ(x, y) − (f0)
φ(y)

so that y ∈ ∂φf0(x) = {sf0(x)}. By compactness of B this implies that yt
converges to sf0(x) as t goes to 0+.
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We then deduce the following:

Proposition 2 Let (f , g) be a solution of (D) and define for point of dif-
ferentiability x of f :

s(x) := ∇(φ+
1

2
d2xφ)

⋆(∇f(x)).

Then s pushes forward µ to ν and:

∫

B

Hφ(x, s(x))dµ(x) = max(MK) = max(M). (14)

Proof. Let h ∈ C0(B,R), and define for t ∈ R (ft, gt) := ((g+th)φ, g+th).
Then (ft, gt) is admissible for (D) by Young inequality, hence, for any t > 0:

∫

B

ft − f

t
dµ +

∫

B

hdν ≥ 0.

Using Lemma 3, and the dominated convergence theorem we get

∫

B

h(s(x))dµ(x) ≤

∫

B

hdν,

and since h is arbitrary in the previous, we get s♯µ = ν. To prove that s

solves (M), recall that ∂φf(x) = {s(x)} for µ-a.e. x, hence Hφ(x, s(x)) =
f(x) + (f)φ(s(x)). Integrating with respect to µ and using s♯µ = ν, we get,
according to (6) and (5):

∫

B

Hφ(x, s(x))dµ(x) =

∫

B

fdµ+

∫

B

f
φ
dν = min(D)

= max(MK) ≥ max(M).

3 Characterization of optimal transportation maps

We are now in position to prove:

Theorem 1 Under the general assumptions (H), one has:

1. (MK) and (M) have the same value,

2. (M) admits a unique solution s (up to µ-a.e. equivalence),
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3. this solution is the unique map s such that s♯µ = ν and

s(x) = ∇(φ+
1

2
d2xφ)

⋆(∇f(x))

for some φ-convex function f .

Proof. 1. follows from Proposition 2.

2. Let (f , f
φ
) be a pair of φ-convex potentials solving (D) and let s := sf

be defined as in Proposition 2. We know from Proposition 2 that s solves
(M). Assuming σ solves (M), we then have:

∫

B

Hφ(x, σ(x))dµ(x) = inf(D) =

∫

B

(f(x) + f
φ
(σ(x))dµ(x),

from Young’s inequality, we then have Hφ(x, σ(x)) = f(x)+ f
φ
(σ(x)) µ-a.e.

hence σ(x) ∈ ∂φf(x) = {s(x)} µ-a.e.

3. Assume s♯µ = ν and s(x) = ∇(φ+ 1
2d

2
xφ)

⋆(∇f(x)) for some φ-convex
function f . Then s(x) ∈ ∂φf(x) for µ-a.e. x and

∫

B

Hφ(x, s(x))dµ(x) =

∫

B

(f(x) + fφ(s(x))dµ(x) ≥ inf(D) = sup(M),

which implies that s = s (in the µ-a.e. sense) the unique solution of (M).

We can reformulate the previous result in terms of the cost cφ, which is
the symmetric part of the Bregman distance Bφ:

2cφ(x, y) := 〈∇φ(x)−∇φ(y), x− y〉 .

Indeed, we have seen in the introduction that (M) is equivalent to the
minimization problem:

inf
s∈∆(µ,ν)

∫

B

cφ(x, s(x))dµ(x). (15)

Hence, Theorem 1 means that (15) admits a unique solution s, which is
characterized by s♯µ = ν and s = sf for some φ-convex function f .

Let us conclude the paper with a few remarks.

• When µ = ν, the optimal transportation is of course the identity
map. In this straightforward case the infimum in the dual problem is
attained for f(x) = g(x) = 〈x,∇φ(x)〉.
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• The optimal transport map s (or equivalently the optimal φ-convex po-
tential f) is formally characterized by the equation of Monge-Ampère
type:

|det(Dsf (x))|ν(sf (x)) = µ(x) with f φ-convex.

• In the present paper, we made strong assumptions on the data φ (as-
sumed to be smooth and strictly convex) and the measures µ and ν

(assumed to have compact support). Although it is possible to con-
sider more general measures (satisfying some integrability conditions
related to φ say) or less regular functions φ, it seems, to the best of our
knowledge, very difficult to treat the case of a general convex function
φ. The case where φ is not strictly convex for instance leads to the
same difficulties as for the transportation cost |x− y| (see for instance
[10] or [6] for this delicate problem).

Acknowledgements: The idea of this paper originated with a stimu-
lating discussion with Hedy Attouch on Bregman distances, the authors are
therefore particularly grateful to him.
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