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Abstract. A class of damped wave equations with superlinear source term is consid-
ered. It is shown that every global solution is uniformly bounded in the natural phase
space. Global existence of solutions with initial data in the potential well is obtained.
Finally, not only finite time blow up for solutions starting in the unstable set is proved,
but also high energy initial data for which the solution blows up are constructed.

1. Introduction

We study the behavior of local solutions of the following superlinear hyperbolic equa-
tion with (possibly strong) linear damping

(1.1)





utt −∆u− ω∆ut + µut = |u|p−2u in [0, T ]× Ω

u(0, x) = u0(x) in Ω

ut(0, x) = u1(x) in Ω

u(t, x) = 0 on [0, T ]× ∂Ω

where Ω is an open bounded Lipschitz subset of Rn (n ≥ 1), T > 0,

(1.2) u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω),

(1.3) ω ≥ 0, µ > −ωλ1,

λ1 being the first eigenvalue of the operator −∆ under homogeneous Dirichlet boundary
conditions, and

(1.4) 2 < p ≤
{

2n
n−2

for ω > 0

2n−2
n−2

for ω = 0
if n ≥ 3, 2 < p < ∞ if n = 1, 2.

We study the behavior of solutions to (1.1) in the phase space H1
0 (Ω). Since stationary

solutions play a crucial role in the description of the evolution of (1.1), several tools
from critical point theory turn out to be quite useful for our purposes. In particular, we
consider the mountain pass energy level d (see e.g. [1]), the Nehari manifold N (see [18])
of the stationary problem associated to (1.1) and the two unbounded sets N+ (inside
N ) and N− (outside N ). All these tools are defined in detail in Section 2. A first
attempt to tackle (1.1) with these tools was made by Sattinger [25] (see also [22, 27])
who developed the so-called potential well theory in order to study the problem with no
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damping (that is ω = µ = 0). Subsequently, equations with damping terms have been
considered by many authors. For equations with (possibly nonlinear) weak damping we
refer to [9, 13, 14, 17, 23, 28]. Much less is known for equations with strong damping;
as far as we are aware, only Ono [20] and Ohta [19] have considered this equation and
still many problems remain unsolved. It is our purpose to shed some further light on
damped wave equations of the kind of (1.1) in both cases of weak (ω = 0) and strong
(ω > 0) damping. To this end, as recently done by the first author in [7, 8] for parabolic
equations, we will exploit further the properties of the Nehari manifold. In particular,
this will enable us to obtain blow up results in correspondence of initial data (u0, u1)
having arbitrarily large initial energy. As far as we are aware, this is the first blow up
result for (1.1) with E(0) > d (initial energy above the mountain pass level).

Let us explain in some detail which are our main results. We first make clear for which
exponents p problem (1.1) is (locally) well posed. Since the sublinear case p ∈ (1, 2] is
well understood, we restrict our attention to the superlinear case p > 2. When ω = 0
and µ > 0, it is proved in [11] that (1.1)-(1.2) admits a unique local weak solution for any
p > 2 if n = 1, 2 and for 2 < p ≤ 2n−2

n−2
if n ≥ 3; note that 2n−2

n−2
is the critical exponent r

for the trace embedding H1(Ω) ⊂ Lr(∂Ω). We wish to stress that, leaving aside the well
posedness of (1.1), the constraint p ≤ 2n−2

n−2
for ω = 0 and initial data (1.2) is up to now

unavoidable for the energy identity to make sense, i.e. it is not known if formula (4.13)
holds for p > 2n−2

n−2
: we refer to [2] for further comments. In Theorem 3.1 we show

that in presence of a strong damping (ω > 0) this upper bound for p can be enlarged
to p ≤ 2n

n−2
, which is the “natural” constraint since 2∗ = 2n

n−2
is the critical Sobolev

exponent q for the embedding H1
0 (Ω) ↪→ Lq(Ω). Our result restates [20, Theorem 1]

for a wider class of initial data but for a smaller range of exponents p. When dealing
with critical point theory, the correct phase space for the solutions of (1.1) is necessarily
H1

0 (Ω) and, therefore, the natural regularity for the initial data is precisely that of (1.2).
Cazenave [4] proved boundedness of global solutions to (1.1) for ω = µ = 0 while

Esquivel-Avila [5] recovered the same result for ω = 0 and µ > 0 and showed that this
property may fail in presence of a nonlinear dissipation term (cf. [6, Theorem 3.4]). In
Theorems 3.4 and 3.6, by exploiting an argument different from the one devised in [4, 5],
we prove that any global solution of (1.1) is bounded whenever ω and µ fulfill (1.3).
The proof relies on a delicate analysis of the behavior of several norms of the solution
as t → ∞. Moreover, we obtain convergence up to a subsequence of solutions of (1.1)
towards a steady-state φ. Since in general the source nonlinearity {u 7→ |u|p−2u} in (1.1)
is not an analytic function, counterexamples of Jendoubi-Poláčik [15] show that we
cannot expect that all global solutions u = u(t) stabilize, that is

(1.5) lim
t→∞

‖ut(t)‖2 + ‖∇u(t)− φ‖2 = 0.

Only under more restrictive assumptions on n and p, one may guarantee that (1.5)
indeed occurs, see Remark 3.7.

Once boundedness of global solutions is established, one is interested to find out for
which initial data (1.2) problem (1.1) does have a global solution. For the undamped
equation (ω = µ = 0) Sattinger [25] showed that local solutions of (1.1) are in fact
global whenever E(0) < d and u0 ∈ N+. This statement may be improved in presence
of dissipation; for the weakly damped equation (ω = 0, µ > 0) Ikehata-Suzuki [14] prove
that under the same assumptions on the initial data, not only the solution is global but
it also converges to the equilibrium φ ≡ 0 as t → ∞. In Theorem 3.8 we extend this
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result to the case ω > 0. Our result improves [20, Theorem 3] where E(0) ≤ d/2
2

p−2 and
only the case µ = 0 is considered.

Not all local solutions of (1.1) are global in time. Blow up in finite time is usually
obtained for low initial energy E(0) and for u0 ∈ N−. For the undamped equation
(ω = µ = 0) Tsutsumi [27] showed that local solutions of (1.1) cannot be continued
to the whole [0,∞) provided that u0 ∈ N− and E(0) < d. For equations with weak
damping (ω = 0 and µ > 0), Levine-Serrin [17] proved nonexistence of global solutions
when E(0) < 0, a condition which automatically implies that u0 ∈ N−. Subsequently,
Ikehata-Suzuki [13, 14] proved the same result when u0 ∈ N− and E(0) < d − ε for a
suitable ε ∈ (0, d) depending on the damping coefficient µ. Finally, Pucci-Serrin [23]
successfully handled the case when E(0) < d and Vitillaro [28] showed that also for
E(0) = d the solution blows up in finite time. When ω > 0 and µ = 0, Ono [20,
Theorem 7] shows that the solution of (1.1) blows up in finite time if E(0) < 0. For
the same problem, Ohta [19] improves this result by allowing E(0) < d, provided that
u0 ∈ N−. In Theorem 3.10, by refining and simplifying the concavity method introduced
by Levine [16], we extend this result to the case where µ 6= 0 and E(0) ≤ d. Last but
not least, in Theorems 3.11 and 3.12 we show the finite time blow up of some solutions
of (1.1) whose initial data have arbitrarily high initial energy. The proof is inspired by
previous work in [8] and uses the weak antidissipativity of the flow in N−.

This paper is organized as follows.

– in Section 2 we recall some preliminary tools and definitions;

– in Section 3 we present the main results of the paper and we list some open problems;

– from Sections 4 to 10 we provide the proofs of the results. We point out that the
proofs are not in the same order as the statements.

2. Setup and Notations

We denote by ‖ · ‖q the Lq(Ω) norm for 1 ≤ q ≤ ∞ and by ‖∇ · ‖2 the Dirichlet norm
in H1

0 (Ω). Moreover, for later use we denote by 〈·, ·〉 the duality pairing between H−1(Ω)
and H1

0 (Ω). When ω > 0 (resp. ω = 0) for all v, w ∈ H1
0 (Ω) (resp. for all v, w ∈ L2(Ω)),

we put

(v, w)∗ = ω

∫

Ω

∇v · ∇w + µ

∫

Ω

vw , ‖v‖∗ = (v, v)1/2
∗ ;

by (1.3), ‖ · ‖∗ is an equivalent norm over H1
0 (Ω) (resp. L2(Ω)).

By (1.4), we may consider the C1 functionals I, J : H1
0 (Ω) → R defined by

I(u) = ‖∇u‖2
2 − ‖u‖p

p and J(u) = 1
2
‖∇u‖2

2 − 1
p
‖u‖p

p.

The mountain pass value of J (also known as potential well depth) is defined as

(2.1) d = inf
u∈H1

0 (Ω)\{0}
max
λ≥0

J(λu).

Consider the best Sobolev constant for the embedding H1
0 (Ω) ↪→ Lp(Ω),

(2.2) Sp = inf
u∈H1

0 (Ω)\{0}
‖∇u‖2

2

‖u‖2
p

.

If (n − 2)p < 2n, the embedding is compact and the infimum in (2.2) (and in (2.1)) is
attained. In such case (see, e.g. [22, Section 3]), any mountain pass solution u of the



4 FILIPPO GAZZOLA AND MARCO SQUASSINA

stationary problem is a minimizer for (2.2) (i.e. it satisfies ‖∇u‖2
2 = Sp‖u‖2

p) and Sp is
related to its energy

d = p−2
2p

S
p/(p−2)
p .

All nontrivial stationary solutions belong to the so-called Nehari manifold (see [18] and
also [30]) defined by

N =
{
u ∈ H1

0 (Ω) \ {0} : I(u) = 0
}
.

It is easy to show that each half line starting from the origin of H1
0 (Ω) intersects exactly

once the manifold N and that N separates the two unbounded sets

N+ =
{
u ∈ H1

0 (Ω) : I(u) > 0
} ∪ {0} and N− =

{
u ∈ H1

0 (Ω) : I(u) < 0
}
.

We also consider the (closed) sublevels of J

Ja =
{
u ∈ H1

0 (Ω) : J(u) ≤ a
}

(a ∈ R)

and we introduce the stable set W and the unstable set U defined by

W = Jd ∩N+ and U = Jd ∩N−.

It is readily seen (see [30, Theorem 4.2]) that the mountain pass level d defined in (2.1)
may also be characterized as

(2.3) d = inf
u∈N

J(u).

This alternative characterization of d shows that

(2.4) β = dist(0,N ) = inf
u∈N

‖∇u‖2 =
√

2dp
p−2

> 0

and that, for every a > d, we have

Na = N ∩ Ja ≡
{

u ∈ N : ‖∇u‖2 ≤
√

2ap
p−2

}
6= ∅.

Therefore, for every a > d, we may define

Λa = sup
{‖u‖2 : u ∈ Na

}
.

By Poincaré inequality, we have Λa < ∞ for every a > d. We introduce the sets

S =
{
φ ∈ H1

0 (Ω) : φ is a stationary solution of (1.1)
}
,

S` =
{
φ ∈ S : J(φ) = `

}
(` ∈ R+).

Finally, we consider the energy functional E : H1
0 (Ω)× L2(Ω) → R defined by

E (v, w) = J(v) +
1

2
‖w‖2

2

and the Lyapunov function E(t) = E (u(t), ut(t)), defined for any solution u(t) to (1.1).
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3. The Main Results

By solution of (1.1)-(1.2) over [0, T ] we mean a function

u ∈ C0([0, T ], H1
0 (Ω)) ∩ C1([0, T ], L2(Ω)) ∩ C2([0, T ], H−1(Ω)) ,

with ut ∈ L2([0, T ], H1
0 (Ω)) whenever ω > 0, such that u(0) = u0, ut(0) = u1 and

〈utt(t), η〉+

∫

Ω

∇u(t) · ∇η + ω

∫

Ω

∇ut(t) · ∇η + µ

∫

Ω

ut(t)η =

∫

Ω

|u(t)|p−2u(t)η

for all η ∈ H1
0 (Ω) and a.e. t ∈ [0, T ].

We first establish local existence and uniqueness for solutions of (1.1)-(1.2).

Theorem 3.1. Assume that (1.3) and (1.4) hold. Then there exist T > 0 and a unique
solution of (1.1)-(1.2) over [0, T ]. Moreover, if

Tmax = sup
{
T > 0 : u = u(t) exists on [0, T ]

}
< ∞

then

(3.1) lim
t→Tmax

‖u(t)‖q = ∞ for all q ≥ 1 such that q > n(p−2)
2

;

if n ≥ 3 and p = 2∗ (so that ω > 0), then (3.1) also holds for q = n(p−2)
2

= 2∗.

Definition 3.2. If Tmax < ∞, we say that the solution of (1.1)-(1.2) blows up and that
Tmax is the blow up time. If Tmax = ∞, we say that the solution is global. The property
of continuing (in time) a bounded solution will be referred throughout the paper as the
Continuation Principle.

Remark 3.3. As it should be expected, from the proof of Theorem 3.1 it follows that,
for fixed initial data, we have Tmax →∞ as ω →∞, that is to say, the more the equation
gets damped, the larger becomes the life span of the solution.

Next, we prove the boundedness of global solutions u, namely

(3.2) u ∈ L∞(R+, H1
0 (Ω)) ∩W 1,∞(R+, L2(Ω)).

In the strongly damped case we have the following

Theorem 3.4. Assume that ω > 0 and that (1.3) and (1.4) hold. Then, every global
solution u(t) to (1.1)-(1.2) satisfies (3.2). Moreover, if n = 1, 2 or if

(3.3) n ≥ 3 and 2 < p < 2∗,

then there exists ` ∈ R+ such that S` 6= ∅,
(3.4) lim

t→∞
E(t) = `, lim

t→∞
distH1

0
(u(t),S`) = 0 and lim

t→∞
‖ut(t)‖2 = 0,

and there exist {tj} ⊂ R+ with tj →∞ and φ ∈ S` such that

(3.5) lim
j→∞

‖∇u(tj)−∇φ‖2 = 0.

Remark 3.5. Assume that n ≥ 3 and that Ω is star shaped. Then, in the limiting case
p = 2∗, the well known Pohǒzaev identity (see e.g. [30, Theorem B.1]) combined with
the unique continuation property for elliptic equations yields S = {0}. Then, arguing
as in the proof of Theorem 3.4, it is possible to show that from every global solution
u = u(t) we may extract a subsequence {u(tj)} such that u(tj) ⇀ 0 weakly in H1

0 (Ω),
while the strong convergence u(tj) → 0 seems to be out of reach.
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In order to prove the boundedness of global solutions (cf. (3.2)) we make use of a
delicate analysis of all the terms involved in (1.1), see Section 7.1. The corresponding
statement for the weakly damped case (ω = 0) has recently been obtained by Esquivel-
Avila [5]. Based on the just mentioned delicate analysis, in Section 7.2 we give a different
proof of the following

Theorem 3.6 ([5]). Assume that ω = 0 and that

(3.6) 2 < p ≤
{

2n−2
n−2

for n ≥ 3

6 for n = 2
, 2 < p < ∞ for n = 1.

Then, every global solution u(t) to (1.1)-(1.2) satisfies (3.2). Moreover, if n = 1, 2 or if

(3.7) 2 < p < 2n−2
n−2

for n ≥ 3,

then there exists ` ∈ R+ such that S` 6= ∅, (3.4) holds and there exist {tj} ⊂ R+ with
tj →∞ and φ ∈ S` such that (3.5) holds.

Remark 3.7. By combining the boundedness of global solutions that we obtained in
Theorems 3.4 and 3.6 with some well known convergence results one can prove stabi-
lization of the whole flow. In one space dimension, for any p > 2, under assumption
(1.3) one obtains (1.5) for some equilibrium φ, as a consequence of [10, Theorem 2.4];
follow step by step the arguments of section 5.4 therein, with the only difference that
the orbit precompactness is due to (3.5) and not as a byproduct of the existence of the
global attractor. In two space dimensions, the situation is different for weak and strong
damping; if ω = 0 one has (1.5) for p = 4, 6 (see [12, Theorem 1.2]), whereas if ω > 0
one has (1.5) for any even integer p ≥ 4 (see [12, Theorem 4.4.1 and Example 4.4.1]).

Let us turn to the global existence of solutions starting with suitable initial data.

Theorem 3.8. Assume that (1.3) and (1.4) hold and let u be the unique local solution
to (1.1)-(1.2). In addition, assume that there exists t̄ ∈ [0, Tmax) such that

(3.8) u(t̄) ∈ W and E (u(t̄), ut(t̄)) ≤ d.

Then Tmax = ∞ and, for every t > t̄,

(3.9) ‖∇u(t)‖2
2 + ‖ut(t)‖2

2 ≤ Θ(ω,µ)
t

where

(3.10) Θ(ω, µ) =

{
Cµ(1 + 1

ω
+ ω) for ω > 0

C(1 + 1
µ

+ µ) for ω = 0

and C is independent of µ, whereas Cµ only depends on µ.

Remark 3.9. Let ω > 0 and µ = 0. Although inequality (3.9) gives only a one-sided
control, since Θ(ω, 0) → ∞ both for ω → 0 and ω → ∞, the best dissipation rate for
the energy norm (with respect to the damping coefficient ω) seems to be achieved at the
minimum point of Θ(ω, 0), which occurs at ω = 1. Physically, as ω → 0 the dissipation
gets lost, whereas for ω →∞ the system tends to freeze since ω acts only on the velocity
ut. A similar phenomenon has been observed for a (different) class of strongly damped
wave equations in [21, Remarks 4 and 5], in discussing the size of the universal attractor
as ω varies.

We come to a blow up result for solutions starting in the unstable set.
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Theorem 3.10. Assume that (1.3) and (1.4) hold and let u be the unique local solution
to (1.1)-(1.2). Then Tmax < ∞ if and only if there exists t̄ ∈ [0, Tmax) such that

u(t̄) ∈ U and E (u(t̄), ut(t̄)) ≤ d.

Theorem 3.10 is already known for weakly damped equations (ω = 0), see [28]. In
Section 6 we give a general proof of this statement under the sole assumption (1.3). As a
byproduct of our proof it is clear that Tmax < ∞ if and only if E(t) → −∞ as t → Tmax.
In particular, the blow up has a full characterization in terms of (negative) energy blow
up.

In the weakly damped case we state the blow up of solutions to (1.1) with suitable
initial data having energy larger than the mountain pass level d.

Theorem 3.11. Assume that ω = 0 and µ ≥ 0 and that (1.4) holds. In addition,
assume that (u0, u1) ∈ N− × L2(Ω) are such that

E (u0, u1) > d, ‖u0‖2 ≥ ΛE (u0,u1),

∫

Ω

u0u1 ≥ 0.

Then Tmax < ∞ for the corresponding solution u of (1.1)-(1.2).

As a consequence of Theorem 3.11, we obtain arbitrarily high energy initial data for
which the solution of (1.1) blows up in finite time.

Theorem 3.12. Assume that ω = 0, µ ≥ 0 and that (1.4) holds. Then, for every
m > 0, there exist initial data

(um
0 , um

1 ) ∈ N− × L2(Ω)

such that E (um
0 , um

1 ) ≥ m and Tmax < ∞ for the corresponding solution of (1.1).

Theorems 3.11 and 3.12 also hold for the undamped wave equation, where ω = µ = 0.
They are new also in this context.

Some open problems. We collect here a few questions and open problems connected
with the statements of our results:
- Do Theorems 3.11 and 3.12 extend to the strongly damped case ω > 0? Also, do these
results extend to the case of nonlinear (weak) damping such as µ|ut|m−2ut with m > 2
in place of µut?
- Many authors have obtained both global existence and blow up results for equations
which present nonlinear damping terms such as |ut|m−2ut with m > 2 (often enlightening
the interaction that pops up with the corresponding power source |u|p−2u). We refer
the reader to [6, 9, 13, 23, 24, 28] and to the references therein. In analogy with these
extensions, one could wonder whether it is possible to obtain some results for a nonlinear
strong damping such as −∆mut (the m-Laplacian operator). We stress that our blow up
Theorems 3.10, 3.11 and 3.12, being based on a kind of concavity argument (for which
the linearity of the dissipation terms is particularly helpful in performing the reduction
to an ordinary differential inequality in time, see e.g. (6.5)) would become too much
involved. Moreover, testing the equation with u generates hard to manage terms which
may also lack of summability if m > 2.
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4. Proof of Theorem 3.1

We restrict ourselves to the case ω > 0, µ 6= 0 and n ≥ 3, the other cases being similar
(and simpler), see [3]; for the case ω = 0 and µ > 0, we also refer the reader to [11].

For a given T > 0, consider the space H = C([0, T ], H1
0 (Ω)) ∩ C1([0, T ], L2(Ω))

endowed with the norm

‖u‖2
H = max

t∈[0,T ]

(‖∇u(t)‖2
2 + ‖ut(t)‖2

2

)
.

We first prove the following

Lemma 4.1. For every T > 0, every u ∈ H and every initial data (u0, u1) satisfying
(1.2) there exists a unique

(4.1) v ∈ H ∩ C2([0, T ]; H−1(Ω)) such that vt ∈ L2([0, T ], H1
0 (Ω))

which solves the linear problem

(4.2)





vtt −∆v − ω∆vt + µvt = |u|p−2u in [0, T ]× Ω

v(0, x) = u0(x) in Ω

vt(0, x) = u1(x) in Ω

v(t, x) = 0 on [0, T ]× ∂Ω.

Proof. The assertion follows from an application of the Galerkin method. For every
h ≥ 1 let Wh = Span{w1, . . . , wh}, where {wj} is the orthogonal complete system of
eigenfunctions of −∆ in H1

0 (Ω) such that ‖wj‖2 = 1 for all j. Then, {wj} is orthogonal
and complete in L2(Ω) and in H1

0 (Ω); denote by {λj} the related eigenvalues repeated
according to their multiplicity. Let

uh
0 =

h∑
j=1

(∫

Ω

∇u0 · ∇wj

)
wj and uh

1 =
h∑

j=1

(∫

Ω

u1wj

)
wj

so that uh
0 ∈ Wh, uh

1 ∈ Wh, uh
0 → u0 in H1

0 (Ω) and uh
1 → u1 in L2(Ω) as h →∞. For all

h ≥ 1 we seek h functions γh
1 , ..., γh

h ∈ C2[0, T ] such that

(4.3) vh(t) =
h∑

j=1

γh
j (t)wj

solves the problem

(4.4)





∫

Ω

[
v̈h(t)−∆vh(t)− ω∆v̇h(t) + µv̇h(t)− |u(t)|p−2u(t)

]
η = 0

vh(0) = uh
0 , v̇h(0) = uh

1

for every η ∈ Wh and t ≥ 0. For j = 1, ..., h, taking η = wj in (4.4) yields the following
Cauchy problem for a linear ordinary differential equation with unknown γh

j :




γ̈h
j (t) + (ωλj + µ)γ̇h

j (t) + λjγ
h
j (t) = ψj(t)

γh
j (0) =

∫

Ω

u0wj , γ̇h
j (0) =

∫

Ω

u1wj

where ψj(t) =
∫

Ω
|u(t)|p−2u(t)wj ∈ C[0, T ]. For all j, the above Cauchy problem yields

a unique global solution γh
j ∈ C2[0, T ]. In turn, this gives a unique vh defined by (4.3)
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and satisfying (4.4). In particular, (4.3) implies that v̇h(t) ∈ H1
0 (Ω) for every t ∈ [0, T ]

so that Sobolev inequality entails

(4.5) ‖v̇h(t)‖2∗ ≤ c‖∇v̇h(t)‖2 for every t ∈ [0, T ].

Here and in the sequel we denote by c > 0 a generic constant that may vary even from
line to line within the same formula. Taking η = v̇h(t) into (4.4), and integrating over
[0, t] ⊂ [0, T ], we obtain

(4.6)
‖∇vh(t)‖2

2 + ‖v̇h(t)‖2
2 + 2

∫ t

0

‖v̇h(τ)‖2
∗dτ

= ‖∇uh
0‖2

2 + ‖uh
1‖2

2 + 2

∫ t

0

∫

Ω

|u(τ)|p−2u(τ)v̇h(τ)dτ,

for every h ≥ 1. We estimate the last term in the right-hand side thanks to Hölder,
Sobolev and Young inequalities (recall p ≤ 2∗, (4.5) and u ∈ C([0, T ], H1

0 (Ω))):

(4.7) 2

∫ t

0

∫

Ω

|u(τ)|p−2u(τ)v̇h(τ)dτ ≤ cT +

∫ t

0

‖v̇h(τ)‖2
∗dτ.

Recalling that uh
0 and uh

1 converge, from (4.6) and (4.7) we obtain

‖vh‖2
H +

∫ T

0

‖v̇h(τ)‖2
∗dτ ≤ CT

for every h ≥ 1, where CT > 0 is independent of h. By this uniform estimate and using
(4.4), we have:

{vh} is bounded in L∞([0, T ], H1
0 (Ω)),

{v̇h} is bounded in L∞([0, T ], L2(Ω)) ∩ L2([0, T ], H1
0 (Ω)),

{v̈h} is bounded in L2([0, T ], H−1(Ω));

note that {v̇h} is bounded in L2([0, T ], H1
0 (Ω)) because we assumed ω > 0.

Therefore, up to a subsequence, we may pass to the limit in (4.4) and obtain a
weak solution v of (4.2) with the above regularity. Since v ∈ H1([0, T ], H1

0 (Ω)), we
get v ∈ C([0, T ], H1

0 (Ω)). Moreover, since v̇ ∈ L∞([0, T ], L2(Ω)) ∩ L2([0, T ], H1
0 (Ω)) and

v̈ ∈ L2([0, T ], H−1(Ω)), we have v̇ ∈ C([0, T ], L2(Ω)). Finally, from the equation (4.2)
we get v̈ ∈ C0([0, T ]; H−1(Ω)). The existence of v solving (4.2) and satisfying (4.1) is
so proved.

Uniqueness follows arguing for contradiction: if v and w were two solutions of (4.2)
which share the same initial data, by subtracting the equations and testing with vt−wt,
instead of (4.6) we would get

‖∇v(t)−∇w(t)‖2
2 + ‖vt(t)− wt(t)‖2

2 + 2

∫ t

0

‖vt(τ)− wt(τ)‖2
∗dτ = 0,

which immediately yields w ≡ v. The proof of the lemma is now complete. ¤
Take (u0, u1) satisfying (1.2), let R2 = 2(‖∇u0‖2

2 + ‖u1‖2
2) and for any T > 0 consider

MT =
{

u ∈ H : u(0) = u0, ut(0) = u1 and ‖u‖H ≤ R
}

.

By Lemma 4.1, for any u ∈ MT we may define v = Φ(u), being v the unique solution
to problem (4.2). We claim that, for a suitable T > 0, Φ is a contractive map satisfying
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Φ(MT ) ⊆ MT . Given u ∈ MT , the corresponding solution v = Φ(u) satisfies for all
t ∈ (0, T ] the energy identity (see (4.6)):

(4.8)
‖∇v(t)‖2

2 + ‖vt(t)‖2
2 + 2

∫ t

0

‖vt(τ)‖2
∗dτ

= ‖∇u0‖2
2 + ‖u1‖2

2 + 2

∫ t

0

∫

Ω

|u(τ)|p−2u(τ)vt(τ)dτ.

For the last term, we argue in the same spirit (although slightly differently) as for (4.7)
and we get (recall ω > 0)

(4.9)

2

∫ t

0

∫

Ω

|u(τ)|p−2u(τ)vt(τ)dτ ≤ c

∫ T

0

‖u(τ)‖p−1
2∗ ‖vt(τ)‖2∗dτ

≤ c

∫ T

0

‖u(τ)‖p−1
∗ ‖vt(τ)‖∗dτ ≤ cTR2(p−1) + 2

∫ T

0

‖vt(τ)‖2
∗dτ

for all t ∈ (0, T ]. Combining (4.8) with (4.9) and taking the maximum over [0, T ] gives

‖v‖2
H ≤ 1

2
R2 + cTR2(p−1).

Choosing T sufficiently small, we get ‖v‖H ≤ R, which shows that Φ(MT ) ⊆ MT .
Now, take w1 and w2 in MT ; subtracting the two equations (4.2) for v1 = Φ(w1) and
v2 = Φ(w2), and setting v = v1 − v2 we obtain for all η ∈ H1

0 (Ω) and a.e. t ∈ [0, T ]

(4.10)
〈vtt(t), η〉+

∫

Ω

∇v(t) · ∇η + ω

∫

Ω

∇vt(t) · ∇η + µ

∫

Ω

vt(t)η

=

∫

Ω

(|w1(t)|p−2w1(t)− |w2(t)|p−2w2(t)
)
η =

∫

Ω

ξ(t)(w1(t)− w2(t))η

where ξ = ξ(x, t) ≥ 0 is given by Lagrange Theorem so that ξ(t) ≤ (p − 1)(|w1(t)| +
|w2(t)|)p−2. Therefore, by taking η = vt in (4.10) and arguing as above, we obtain

‖Φ(w1)− Φ(w2)‖2
H = ‖v‖2

H ≤ cR2p−4T‖w1 − w2‖2
H ≤ δ‖w1 − w2‖2

H

for some δ < 1 provided T is sufficiently small. This proves the claim. By the Contrac-
tion Mapping Principle, there exists a unique (weak) solution to (1.1) defined on [0, T ].
The main statement of Theorem 3.1 is so proved.

Concerning the last assertion we observe that, by the construction above, once ω > 0
is fixed, the local existence time of u merely depends (through R) on the norms of
the initial data. Therefore, as long as ‖u(t)‖H remains bounded, the solution may be
continued, see also [20, p.158] for a similar argument. Hence, if Tmax < ∞, we have

(4.11) lim
t→Tmax

‖∇u(t)‖2
2 + ‖ut(t)‖2

2 = lim
t→Tmax

‖u(t)‖2
H = ∞.

Consider the energy function

(4.12) E(t) = 1
2
‖∇u(t)‖2

2 + 1
2
‖ut(t)‖2

2 − 1
p
‖u(t)‖p

p t ∈ [0, Tmax)

which satisfies

(4.13) E(t) +

∫ t

s

‖ut(τ)‖2
∗dτ = E(s) for every 0 ≤ s ≤ t < Tmax.
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Since ω > 0, this energy identity follows by testing (1.1) with ut and integrating with
respect to t. Note that (4.13) also holds in the case ω = 0, see [9, Proposition 2.1]. In
both cases, by (4.13), the map {t 7→ E(t)} is nonincreasing. As a consequence,

(4.14) 1
2
‖∇u(t)‖2

2 + 1
2
‖ut(t)‖2

2 ≤ 1
p
‖u(t)‖p

p + E(0) for all t ∈ [0, Tmax)

which, together with (4.11), implies

(4.15) lim
t→Tmax

‖u(t)‖p = ∞.

This proves at once the very last statement of Theorem 3.1 when p = 2∗ = q = n(p−2)
2

.
For the remaining cases, notice first that (4.15) implies

(4.16) lim
t→Tmax

‖∇u(t)‖2 = ∞.

Moreover, by (4.14) we obtain

‖∇u(t)‖2
2 ≤ 2E(0) + 2

p
‖u(t)‖p

p t ∈ [0, Tmax)

which, combined with the Gagliardo-Nirenberg inequality, yields:

c‖∇u(t)‖2
2 − c ≤ ‖u(t)‖p

p ≤ c‖u(t)‖p(1−σ)
q ‖∇u(t)‖pσ

2 for σ = 2n(p−q)
p(2n+2q−nq)

.

Since n(p− 2)/2 < q < p implies σ ∈ (0, 1) and pσ < 2, the above inequality combined
with (4.16) immediately yields (3.1). This completes the proof of Theorem 3.1. ¤

5. Proof of Theorem 3.8

Throughout the proof we denote by c > 0 a generic constant, independent of ω,
possibly dependent on µ and on the initial data (u0, u1), that may vary even from line
to line within the same formula.

Consider the case ω > 0 and µ > −λ1ω. Without loss of generality, we may assume that
t̄ = 0. By (4.13) we know that the energy map E is decreasing. Then, if condition (3.8)
holds true, we have

(5.1) u(t) ∈ W and E(t) < d for every t ∈ (0, Tmax).

Indeed, if it was not the case, there would exist t∗ > 0 such that u(t∗) ∈ N . By the
variational characterization (2.3) of d,

d ≤ J(u(t∗)) ≤ E(t∗) < d,

a contradiction to (5.1). As a further consequence of (5.1), a simple computation entails

(5.2) J(u(t)) ≥ p−2
2p
‖∇u(t)‖2

2 for every t ∈ [0, Tmax).

For all t ∈ [0, Tmax), by (4.13) we obtain

1
2
‖ut(t)‖2

2 + J(u(t)) +

∫ t

0

‖ut(τ)‖2
∗ dτ = E(0) ≤ d.

Therefore, by virtue of (5.2) the Continuation Principle yields Tmax = ∞ and

(5.3) ‖∇u(t)‖2
2 + ‖ut(t)‖2

2 ≤ c for every t ∈ [0,∞)
∫ t

0

‖∇ut(τ)‖2
2 dτ ≤ c

ω
for every t ∈ [0,∞).
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Hence, by Poincaré inequality, we get

(5.4)

∫ t

0

‖ut(τ)‖2
2 dτ ≤ c

ω
for every t ∈ [0,∞).

Now, as in [13], we integrate over [0, t] the trivial inequality

d

dt

(
(1 + t)E(t)

) ≤ E(t),

and recalling that by [14, Lemma 5.2] there holds

J(u(t)) ≤ cI(u(t)) for every t ∈ [0,∞),

we reach the inequality

(5.5) (1 + t)E(t) ≤ d + 1
2

∫ t

0

‖ut(τ)‖2
2dτ + c

∫ t

0

I(u(τ))dτ

for every t ∈ [0,∞). Observe also that, by direct computation, there holds

(5.6) 〈utt(t), u(t)〉 =
d

dt

∫

Ω

ut(t)u(t)− ‖ut(t)‖2
2 for a.e. t ∈ [0,∞).

Moreover, by testing the equation with u, we obtain

〈utt(t), u(t)〉+ ‖∇u(t)‖2
2 + (u(t), ut(t))∗ = ‖u(t)‖p

p for a.e. t ∈ [0,∞).

Using (5.6), this yields

(5.7)
d

dt

( ∫

Ω

uut + 1
2
‖u‖2

∗
)

= ‖ut‖2
2 − I(u).

By integrating (5.7) on [0, t] and by (5.3) and (5.4), we have

∫ t

0

I(u(τ))dτ ≤
∫ t

0

‖ut(τ)‖2
2dτ + ‖u1‖2‖u0‖2 + ‖ut(t)‖2‖u(t)‖2 + 1

2
(‖u0‖2

∗ − ‖u(t)‖2
∗)

≤ c +
c

ω
+ cω(5.8)

for every t ∈ [0,∞). Then, by combining the above inequalities, from (5.5) we get

E(t) ≤ c
(
1 + 1

ω
+ ω

)
1
t

for every t ∈ (0,∞). Consequently, by (5.2) we immediately obtain

(5.9) ‖∇u(t)‖2
2 + ‖ut(t)‖2

2 ≤ Θ(ω,µ)
t

,

for every t ∈ (0,∞), where Θ is the map defined in (3.10). The proof in the case
ω = 0 (and µ > 0) is similar and follows by obvious modifications of inequalities (5.4)
and (5.8). ¤
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6. Proof of Theorem 3.10

Assume first that there exists t̄ ≥ 0 such that u(t̄) ∈ U and E (u(t̄), ut(t̄)) ≤ d. Without
loss of generality, we may assume that t̄ = 0 so that (u(t̄), ut(t̄)) = (u0, u1). By (4.13)
we know that E(t) < d for all t > 0 and therefore u(t) 6∈ N . This shows that u(t) ∈ U
for all t ∈ [0, Tmax). Hence, by (2.4) we obtain

(6.1) ‖∇u(t)‖2
2 > 2dp

p−2
for every t ∈ [0, Tmax).

Assume by contradiction that the solution u is global. Then, for any T > 0 we may
consider θ : [0, T ] → R+ defined by

θ(t) = ‖u(t)‖2
2 +

∫ t

0

‖u(τ)‖2
∗dτ + (T − t)‖u0‖2

∗.

Notice θ(t) > 0 for all t ∈ [0, T ]; hence, since θ is continuous, there exists ρ > 0
(independent of the choice of T ) such that

(6.2) θ(t) ≥ ρ for all t ∈ [0, T ];

furthermore,

θ′(t) = 2

∫

Ω

u(t)ut(t) + ‖u(t)‖2
∗ − ‖u0‖2

∗ = 2

∫

Ω

u(t)ut(t) + 2

∫ t

0

(u(τ), ut(τ))∗dτ

and, consequently, using (5.6)

θ′′(t) = 2〈utt(t), u(t)〉+ 2‖ut(t)‖2
2 + 2(u(t), ut(t))∗ for a.e. t ∈ [0, T ].

Testing the equation in (1.1) with u and plugging the result into the expression of θ′′

we obtain

θ′′(t) = 2
(‖ut(t)‖2

2 − ‖∇u(t)‖2
2 + ‖u(t)‖p

p

)
for a.e. t ∈ [0, T ].

Therefore, we get

θ(t)θ′′(t)− p+2
4

θ′(t)2 = 2θ(t)
{‖ut(t)‖2

2 − ‖∇u(t)‖2
2 + ‖u(t)‖p

p

}
+

+ (p + 2)
{

η(t)− {
θ(t)− (T − t)‖u0‖2

∗
}(
‖ut(t)‖2

2 +

∫ t

0

‖ut(τ)‖2
∗dτ

)}
,

where η : [0, T ] → R+ is the function defined by

η(t) =
(
‖u(t)‖2

2 +

∫ t

0

‖u(τ)‖2
∗dτ

)(
‖ut(t)‖2

2 +

∫ t

0

‖ut(τ)‖2
∗dτ

)

−
( ∫

Ω

u(t)ut(t) +

∫ t

0

(u(τ), ut(τ))∗dτ
)2

.

Notice that, using Schwarz inequality, we obtain

‖u(t)‖2
2‖ut(t)‖2

2 ≥
(∫

Ω

u(t)ut(t)

)2

,

∫ t

0

‖u(τ)‖2
∗dτ

∫ t

0

‖ut(τ)‖2
∗dτ ≥

(∫ t

0

(u(τ), ut(τ))∗dτ

)2

,
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and ∫

Ω

u(t)ut(t)

∫ t

0

(u(τ), ut(τ))∗dτ

≤ ‖u(t)‖2

( ∫ t

0

‖ut(τ)‖2
∗dτ

)1/2

‖ut(t)‖2

( ∫ t

0

‖u(τ)‖2
∗dτ

)1/2

.

These three inequalities entail η(t) ≥ 0 for every t ∈ [0, T ]. As a consequence, we reach
the following differential inequality

(6.3) θ(t)θ′′(t)− p+2
4

θ′(t)2 ≥ θ(t)ξ(t) for a.e. t ∈ [0, T ],

where ξ : [0, T ] → R+ is the map defined by

ξ(t) = −2pE(t) + (p− 2)‖∇u(t)‖2
2 − (p + 2)

∫ t

0

‖ut(τ)‖2
∗dτ.

By (4.13), for all t ∈ [0, T ] we may also write

ξ(t) = −2pE(0) + (p− 2)‖∇u(t)‖2
2 + (p− 2)

∫ t

0

‖ut(τ)‖2
∗dτ

and therefore, by (6.1), we obtain

ξ(t) = ξ(0) + (p− 2)‖∇u(t)‖2
2 − (p− 2)‖∇u0‖2

2 + (p− 2)

∫ t

0

‖ut(τ)‖2
∗dτ

> 2p(d− E(0)) + (p− 2)

∫ t

0

‖ut(τ)‖2
∗dτ ≥ (p− 2)

∫ t

0

‖ut(τ)‖2
∗dτ ≥ 0

since E(0) ≤ d. Hence, there exists δ > 0 (independent of T ) such that

(6.4) ξ(t) ≥ δ for all t ≥ 0.

By (6.2), (6.3) and (6.4) it follows that

(6.5) θ(t)θ′′(t)− p+2
4

θ′(t)2 ≥ ρδ for a.e. t ∈ [0, T ].

Setting y(t) = θ(t)−
p−2
4 , this inequality becomes

y′′(t) ≤ −p−2
4

ρδy(t) for a.e. t ∈ [0, T ].

This proves that y(t) reaches 0 in finite time, say as t → T ∗. Since T ∗ is independent of
the initial choice of T , we may assume that T ∗ < T . This tells us that

lim
t→T ∗

θ(t) = ∞.

In turn, this implies that

(6.6) lim
t→T ∗

‖∇u(t)‖2
2 = ∞.

Indeed, if ‖u(t)‖2 → ∞ as t → T ∗, then (6.6) immediately follows. On the contrary, if
‖u(t)‖2 remains bounded on [0, T ∗), then

lim
t→T ∗

∫ t

0

‖u(τ)‖2
∗dτ = ∞

so that again (6.6) is satisfied.
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Conversely, assume now that Tmax < ∞. Notice first that, for every t > 0, there holds
∫ t

0

‖ut(τ)‖2
∗dτ ≥ 1

t

(∫ t

0

‖ut(τ)‖∗dτ

)2

≥ 1

t
(‖u(t)‖∗ − ‖u0‖∗)2.

Hence, by (4.13), we obtain

1

2
I(u(t)) ≤ E(t) ≤ E(0)− 1

t
(‖u(t)‖∗ − ‖u0‖∗)2.

Since ‖u(t)‖∗ →∞ as t → Tmax, we conclude that

(6.7) lim
t→Tmax

I(u(t)) = lim
t→Tmax

E(t) = −∞.

Then, the desired assertion immediately follows. ¤

7. Proof of Theorems 3.4 and 3.6

Assume that u = u(t) is a global solution to (1.1)-(1.2) and let E : R+ → R be its
energy as defined in (4.12). Without loss of generality, we may assume that

(7.1) d ≤ E(t) ≤ E(0) for every t ∈ R+.

Indeed, the right-hand side inequality holds true since the map {t 7→ E(t)} is nonincreas-
ing in view of (4.13). On the other hand, if it was E(t0) < d for some t0 > 0, taking into
account Theorem 3.8 and Theorem 3.10 (proved above!), either ‖∇u(t)‖2

2 +‖ut(t)‖2
2 → 0

as t → ∞ if u(t0) ∈ W (in which case Theorems 3.4 and 3.6 would automatically hold
true) or u is not global if u(t0) ∈ U , against the assumption.

Before starting the proof of Theorems 3.4 and 3.6, some preliminary facts are in order.
Firstly we prove a global summability property for ut. For simplicity we assume that
ω > 0, the case ω = 0 being similar. Taking into account that ut(τ) ∈ H1

0 (Ω) for a.e.
τ ≥ 0, we combine Poincaré inequality with (4.13) and (7.1) to show that, for every
t > 0 we have ∫ t

0

‖ut(τ)‖2
2dτ ≤ c

∫ t

0

‖ut(τ)‖2
∗dτ ≤ c(E(0)− d).

Letting t →∞, we conclude that

(7.2)

∫ ∞

0

‖ut(τ)‖2
2dτ < ∞ if ω ≥ 0 ,

∫ ∞

0

‖∇ut(τ)‖2
2dτ < ∞ if ω > 0.

Furthermore, observe that by the definition of E(t) and (7.1), we obtain

‖u(t)‖p
p ≥ p

2
‖∇u(t)‖2

2 − pE(0) for every t ∈ R+.

Then, plugging this inequality into identity (5.7) yields

(7.3)
d

dt

(∫

Ω

u(t)ut(t) + 1
2
‖u(t)‖2

∗

)
≥ p−2

2
‖∇u(t)‖2

2 − pE(0).

Inspired by [8] we now prove a crucial stability result.

Lemma 7.1. Under the assumptions of Theorems 3.4 and 3.6, for every κ > 0 we have

lim
t→∞

‖∇u(t)−∇u(t + κ)‖2 = 0 for ω > 0,

lim
t→∞

‖u(t)− u(t + κ)‖2 = 0 for ω = 0.
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Proof. Let ω > 0. Fixed κ > 0, by (4.13), for every t > 0 we have
∫

Ω

|∇u(t)−∇u(t + κ)|2 =

∫

Ω

∣∣∣∣
∫ t+κ

t

∇ut(τ)dτ

∣∣∣∣
2

≤ κ

∫

Ω

∫ t+κ

t

|∇ut(τ)|2dτ

≤ κc

∫ t+κ

t

‖ut(τ)‖2
∗dτ = κc(E(t)− E(t + κ)).

Since E(t) is nonincreasing and lower bounded by (7.1), E(t) admits finite limit as
t → ∞. This immediately yields the assertion by letting t → ∞ in the previous
inequality. The proof in the case ω = 0 is similar. ¤

7.1. Proof of Theorem 3.4. Assume by contradiction that (3.2) fails, namely that
there exists a diverging sequence {tj} ⊂ R+ such that

(7.4) ‖ut(tj)‖2
2 + ‖∇u(tj)‖2

2 →∞ as j →∞.

Then, by (7.1) we have ‖u(tj)‖p →∞ so that by Sobolev inequality

(7.5) ‖∇u(tj)‖2 →∞ as j →∞.

By (7.5) and continuity, we can select a diverging sequence {t̄m} ⊂ R+ such that
‖u(t̄m)‖2

∗ = m2 + 1. Moreover, since Lemma 7.1 with ω > 0 rephrases as

lim
τ→∞

sup
{

κ > 0 : ‖u(t)− u(t + κ)‖∗ < 1, ∀t ≥ τ
}

= ∞,

we find a second diverging sequence {τm} ⊂ R+ such that

(7.6) m2 ≤ ‖u(t)‖2
∗ ≤ m2 + 2 for every t ∈ [t̄m, t̄m + τm].

In view of (7.2), for all m sufficiently large,

(7.7) there exists tm ∈ [t̄m, t̄m + 1] such that ‖ut(tm)‖2
2 < 2d.

Clearly, up to renaming τm into (τm − 1) we now have

(7.8) m2 ≤ ‖u(t)‖2
∗ ≤ m2 + 2 for every t ∈ [tm, tm + τm].

Also, for m large enough, there holds

(7.9)

∫

Ω

u(tm)ut(tm) + 1
2
‖u(tm)‖2

∗ ≥ 0.

Indeed, by (7.6), (7.7), Young, Hölder, and Poincaré inequalities,∫

Ω

u(tm)ut(tm) + 1
2
‖u(tm)‖2

∗ ≥ 1
2
‖u(tm)‖2

∗ − ‖u(tm)‖2‖ut(tm)‖2

≥ 1
4
‖u(tm)‖2

∗ − c‖ut(tm)‖2
2 ≥ m2

4
− 2cd ≥ 0

for every m large enough.
By (7.9) and integrating (7.3) on the time interval [tm, t] for t ∈ (tm, tm + τm] entails

∫

Ω

u(t)ut(t) + 1
2
‖u(t)‖2

∗ ≥
∫ t

tm

(
p−2
2
‖∇u(τ)‖2

2 − pE(0)
)
dτ ≥ c

∫ t

tm

‖u(τ)‖2
∗dτ

provided m is sufficiently large. On the other hand, by Hölder, Young and Poincaré
inequalities,∫

Ω

u(t)ut(t) + 1
2
‖u(t)‖2

∗ ≤ ‖u(t)‖2‖ut(t)‖2 + 1
2
‖u(t)‖2

∗ ≤ 1
2
‖ut(t)‖2

2 + c‖u(t)‖2
∗.
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Summarizing, if we set

Υm(t) =

∫ t

tm

‖u(τ)‖2
∗dτ for every t ∈ (tm, tm + τm],

then the following differential inequality is satisfied

Υ′
m(t) ≥ γΥm(t)− C‖ut(t)‖2

2 for every t ∈ (tm, tm + τm],

for some γ > 0 and C > 0; hence,

(7.10)
Υ′

m(t)

Υm(t)
≥ γ − C

‖ut(t)‖2
2

Υm(t)
for every t ∈ (tm, tm + τm].

Notice that, since by (7.8) we have

(7.11) Υm(t) ≥ m2(t− tm) ≥ m2τm

2
for every t ∈ [tm + τm

2
, tm + τm],

the differential inequality (7.10) yields

(7.12)
Υ′

m(t)

Υm(t)
≥ γ − 2C

‖ut(t)‖2
2

m2τm

for every t ∈ [tm + τm

2
, tm + τm].

Integrating (7.12) over [tm + τm

2
, tm + τm] and taking into account (7.2) we find

log Υm(tm + τm) ≥ log Υm(tm + τm

2
) + γ τm

2
− 2Cα

m2τm

where we have set α =
∫∞
0
‖ut(τ)‖2

2dτ . Hence, up to enlarging m, we may take the
exponential and we finally conclude that

(7.13)

∫ tm+τm

tm

‖u(τ)‖2
∗dτ = Υm(tm + τm) ≥ 1

2
Υm(tm + τm

2
) eγτm/2 ≥ m2τm

4
eγτm/2

where we also used (7.11). On the other hand, by inequality (7.8), it turns out that
∫ tm+τm

tm

‖u(τ)‖2
∗dτ ≤ (m2 + 2)τm

which contradicts (7.13), since τm →∞. Therefore, (7.4) is false and {u(t)} is bounded,
namely there exists c > 0 such that

(7.14) ‖ut(t)‖2
2 + ‖∇u(t)‖2

2 ≤ c for all t ≥ 0.

We now turn to the proof of the second part of Theorem 3.4 for n = 1, 2 or under
assumption (3.3). Since ut ∈ C0(R+, L2(Ω)), by (7.2) there exist a diverging sequence
{tj} ⊂ R+, ε ∈ (0, 1) and a sequence {εj} ⊂ [ε, 1] such that

(7.15) lim
j→∞

∫ tj+εj

tj

‖ut(τ)‖2
∗dτ = 0 , lim

j→∞
‖ut(tj)‖2 + ‖ut(tj + εj)‖2 = 0.

In particular, from (7.15), for every η ∈ H1
0 (Ω) there holds

∫ tj+εj

tj

〈utt(τ), η〉dτ =

∫

Ω

ut(tj + ε)η −
∫

Ω

ut(tj)η = o(1) as j →∞.
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Integrating equation (1.1) over [tj, tj + εj] and using again (7.15) yields
∫ tj+εj

tj

(∫

Ω

(∇u(τ) · ∇η − |u(τ)|p−2u(τ)η
))

dτ

= −
∫ tj+εj

tj

〈utt(τ), η〉dτ −
∫ tj+εj

tj

(ut(τ), η)∗dτ = o(1) as j →∞

for every η ∈ H1
0 (Ω). Consequently, recalling that u ∈ C0(R+, H1

0 (Ω)), for any such η
and for any j we may find tηj ∈ [tj, tj + εj] such that

lim
j→∞

∫

Ω

(∇u(tηj ) · ∇η − |u(tηj )|p−2u(tηj )η
)

= 0;

in fact, by (7.14) and Lemma 7.1 we may take tηj = tj for any η, namely

lim
j→∞

∫

Ω

(∇u(tj) · ∇η − |u(tj)|p−2u(tj)η
)

= 0 for all η ∈ H1
0 (Ω).

Using again (7.14), this tells us that (up to a subsequence)

(7.16) u(tj) ⇀ φ for some φ ∈ S .

Next, we test the equation (1.1) with u and integrate over [tj, tj + εj] for all j. By using
(5.6), (7.15) and arguing as above we obtain

lim
j→∞

∫ tj+εj

tj

∫

Ω

(
|∇u(τ)|2 − |u(τ)|p

)
dτ = 0

Therefore, we can find a new sequence t̃j ∈ [tj, tj + εj] such that

lim
j→∞

‖∇u(t̃j)‖2
2 − ‖u(t̃j)‖p

p = 0.

By Lemma 7.1 we may take t̃j = tj so that Rellich Theorem yields

lim
j→∞

‖∇u(tj)‖2
2 = lim

j→∞
‖u(tj)‖p

p = ‖φ‖p
p = ‖∇φ‖2

2,

which, combined with (7.16), shows that u(tj) → φ strongly in H1
0 (Ω).

Concerning the proof of (3.4), since the energy functional E is decreasing and bounded
below, there exists ` ∈ [d,E(0)) such that E(t) → ` as t → ∞. The fact that S` 6= ∅
and

(7.17) lim
t→∞

distH1
0
(u(t),S`) = 0

follows immediately by [11, Corollaire 2.1.9] once we observe that E is a strict Lyapunov
function for the dynamical system associated with (1.1). Notice that, as a consequence
of (7.17), the stationary solution φ defined through (7.16) belongs to S`, being

distH1
0
(φ, S`) = lim

j→∞
distH1

0
(u(tj), S`) = 0.

Finally, again in light of (7.17), it is readily seen that

lim
t→∞

J(u(t)) = `,

which, by the definition of E(t), immediately yields ‖ut(t)‖2 → 0.

The proof of Theorem 3.4 is now complete. ¤
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7.2. Proof of Theorem 3.6. We provide a new proof of the boundedness of global
solutions that parallels the one we performed in the case ω > 0. According to Esquivel-
Avila [5, Theorems 2.8 and 3.1], the difficult part of the statement is the L2-boundedness
of the global solution.

Assume by contradiction that there exists a diverging sequence {tj} ⊂ R+ such that
‖u(tj)‖2 → ∞. Then, by continuity, we can find a diverging sequence {t̄m} ⊂ R+ such
that ‖u(t̄m)‖2

2 = m2 + 1. Moreover, since Lemma 7.1 with ω = 0 reads as

lim
τ→∞

sup
{

κ > 0 : ‖u(t)− u(t + κ)‖2 < 1, ∀t ≥ τ
}

= ∞,

we find a second diverging sequence {τm} ⊂ R+ such that

(7.18) m2 ≤ ‖u(t)‖2
2 ≤ m2 + 2 for every t ∈ [t̄m, t̄m + τm].

Notice that, by (7.2), as in the case ω > 0, inequality (7.7) holds true for some tm ∈
[t̄m, t̄m + 1]. By inequality (7.3) with ω = 0 and Poincaré inequality we deduce that

(7.19)
d

dt

(∫

Ω

u(t)ut(t) + µ
2
‖u(t)‖2

2

)
≥ p−2

2
λ1‖u(t)‖2

2 − pE(0).

Notice that

(7.20)

∫

Ω

u(tm)ut(tm) + µ
2
‖u(tm)‖2

2 ≥ 0

for m large enough. Indeed, by (7.7), (7.18) and by Young and Hölder inequalities,
∫

Ω

u(tm)ut(tm) + µ
2
‖u(tm)‖2

2 ≥ µ
2
‖u(tm)‖2

2 − ‖u(tm)‖2‖ut(tm)‖2

≥ µ
4
‖u(tm)‖2

2 − Cµ‖ut(tm)‖2
2 ≥ µ

4
m2 − 2Cµd ≥ 0

for some Cµ > 0, provided that m is large enough. Let us fix m ≥ 1 so large that

m2 ≥ 4p
p−2

E(0)
λ1

and inequalities (7.7), (7.18) and (7.20) hold true. By (7.18) and (7.20),

integrating (7.19) on the time interval [tm, t] for t ∈ (tm, tm + τm] entails
∫

Ω

u(t)ut(t) + µ
2
‖u(t)‖2

2 ≥
∫ t

tm

(
p−2
2

λ1‖u(τ)‖2
2 − pE(0)

)
dτ ≥ p−2

4
λ1

∫ t

tm

‖u(τ)‖2
2dτ.

On the other hand, by Hölder and Young inequalities,
∫

Ω

u(t)ut(t) + µ
2
‖u(t)‖2

2 ≤ 1
2
‖ut(t)‖2

2 + Cµ‖u(t)‖2
2

for some Cµ > 0. In conclusion, if we set

Ῡm(t) =

∫ t

tm

‖u(τ)‖2
2dτ for t ∈ (tm, tm + τm],

then the following differential inequality is satisfied

Ῡ′
m(t) ≥ γ̄Ῡm(t)− C̄‖ut(t)‖2

2 for every t ∈ (tm, tm + τm]

for some γ̄ > 0 and C̄ > 0. At this point, taking into account (7.18), the desired
contradiction pops up exactly as in the proof of Theorem 3.4. The other assertions in
the statement of Theorem 3.6 follow arguing as in the case ω > 0. ¤
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Remark 7.2. A general criterion to establish the precompactness of bounded trajecto-
ries of a dynamical system was issued in a celebrated paper due to Webb [29]. In fact,
in the proof of Theorems 3.4 and 3.6, the strong convergence of {u(tj)} for a suitable
diverging sequence {tj} could also be obtained as a byproduct of [29, Proposition 3.1] by
splitting the solution semigroup S(t) into the sum of an exponentially decaying linear
semigroup S1(t) and of a completely continuous nonlinear mapping S2(t). On the other
hand, in our proof, once the weak limit of {u(tj)} is identified as a stationary solution
φ ∈ S , taking into account the crucial stabilization property given by Lemma 7.1, the
strong convergence is recovered at once by a simple variational argument.

8. Proof of Theorem 3.11

We start with the following elementary statement.

Lemma 8.1. Let δ ≥ 0, T > 0 and let h be a Lipschitzian function over [0, T ). Assume
that h(0) ≥ 0 and h′(t)+δh(t) > 0 for a.e. t ∈ (0, Tmax). Then h(t) > 0 for all t ∈ (0, T ).

If u solves (1.1), by [22, Lemma 4.1] we know that the map
{
t 7→ d2

dt2
‖u(t)‖2

2

}
is

defined for a.e. t. Hence, if ω = 0 and µ ≥ 0, the identity (5.7) reads as

(8.1)
d2

dt2
‖u(t)‖2

2 + µ
d

dt
‖u(t)‖2

2 = 2
[‖ut(t)‖2

2 − I(u(t))
]

for a.e. t ∈ [0, Tmax).

We may now prove the weak antidissipativity of the flow whenever u(t) ∈ N−.

Lemma 8.2. Assume that (1.4) hold and that ω = 0 and µ ≥ 0. In addition, assume
that u0 ∈ N− and u1 ∈ L2(Ω) are such that∫

Ω

u0u1 ≥ 0.

Let u be the solution of (1.1) with initial data (u0, u1). Then the map {t 7→ ‖u(t)‖2} is
strictly increasing as long as u(t) ∈ N−.

Proof. Let F (t) = ‖u(t)‖2
2 and G(t) = F ′(t) = 2

∫
Ω

uut. By [22, Lemma 4.1], the
function G is Lipschitzian. Note also that G(0) = 2

∫
Ω

u0u1 ≥ 0 and that G satisfies

G′(t) + µG(t) > 0 for a.e. t ∈ [0, Tmax)

in view of (8.1) and of the fact that u(t) ∈ N− (so that I(u(t)) < 0). Therefore, Lemma
8.1 applies and hence F is strictly increasing as long as u(t) ∈ N−. ¤

In order to prove Theorem 3.11, we first claim that the solution u satisfies

(8.2) u(t) ∈ N− for every t ∈ [0, Tmax).

If this was not the case, then there would exist a first time T ∈ (0, Tmax) where u(t)
exits N−, that is, u(T ) ∈ N . By Lemma 8.2, we infer that

(8.3) ‖u(T )‖2 > ‖u0‖2 ≥ ΛE(0).

Moreover, by (4.13) (notice that E is constant if ω = µ = 0) we get

J(u(T )) ≤ E(T ) ≤ E(0).

This shows that u(T ) ∈ N ∩ JE(0) = NE(0). Together with (8.3) and the definition of
ΛE(0), this leads to a contradiction and proves (8.2).

By contradiction, assume now that u is global, namely Tmax = ∞. Then, by energy
arguments analogous to those in the proof of Theorem 3.4, there exist φ ∈ NE(0) and
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a diverging sequence {tj} such that u(tj) ⇀ φ in H1
0 (Ω), so that ‖φ‖2 ≤ ΛE(0). But

Lemma 8.2 and (8.2) give
‖φ‖2 > ‖u0‖2 ≥ ΛE(0),

a contradiction. Theorem 3.11 is so proved.

9. Proof of Theorem 3.12

We first recall a simple property of N (see also [8, Theorem 15]).

Lemma 9.1. Let β be as in (2.4). Then, for any σ ≥ β and for any k ≥ 1 there exists

u ∈ N such that supp(u) = Ω/k and ‖∇u‖2 = σ, where supp(u) is the support of u.

Proof. Since N is unbounded and connected, for k = 1 and any σ ≥ β there exists a
function u with the required properties. In the case k > 1 it is sufficient to rescale u as

uk(x) =

{
k

2
p−1 u(kx) for x ∈ supp(u)

k

0 for x 6∈ supp(u)
k

,

to get a function u ∈ N . ¤
We will construct (um

0 , um
1 ) as in the statement of Theorem 3.12 by using Theorem

3.11. Fix m > 0 sufficiently large and take um
1 ≡ 0. Take any v ∈ H1

0 (Ω) \ {0} such that
supp(v) ⊂ (Ω \ Ω

2
). Then, take αm > 0 sufficiently large so that

(9.1) αm‖v‖2 ≥ Λm, J(αmv) < 0 .

By Lemma 9.1, we may find wm ∈ N such that supp(wm) ⊂ Ω/2 and

(9.2) J(wm) = p−2
2p
‖∇wm‖2

2 = m− J(αmv) > m.

Finally, let um
0 = wm + αmv. Then, since wm and v have disjoint supports, by (9.1)

and (9.2) we have

‖um
0 ‖2 = ‖wm‖2 + αm‖v‖2 > Λm,

J(um
0 ) = J(wm) + J(αmv) = m,

I(um
0 ) = I(wm) + I(αmv) = I(αmv) < 0,

the latter inequality following from (9.1) and the fact that J is nonnegative in N+∪N .
Moreover, E (um

0 , um
1 ) = J(um

0 ) = m. Hence, (um
0 , um

1 ) satisfies all the assumptions of
Theorem 3.11 and the proof of Theorem 3.12 is complete. ¤
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