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Abstract. We introduce a notion of Lagrangian representation for entropy solutions to scalar conservation
laws in several space dimension{

∂tu + divx(f(u)) = 0 (t, x) ∈ (0,+∞)× Rd,

u(0, x) = u0 t = 0.

The construction is based on the transport collapse method introduced by Brenier. As a first application
we show that if the solution u is continuous, then it is hypograph is given by the set{

(t, x, h) : h ≤ u0(x− f(h)t)
}
,

i.e. it is the translation of each level set of u0 by its characteristic speed.
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1. Introduction

In a series of papers [BM14, BY15, BM16], various notions of Lagrangian representation for the entropy
solution u to a scalar conservation law in one space dimension

∂tu+ ∂xf(u) = 0

have been introduced. The basic idea is to use the wavefront tracking and observe that the wavefronts
trajectories generates a flow X(t, y) which is Lipschitz in times and monotone in y: this compactness allows
to pass to the limit as the initial data is BV, and using the notion of admissible boundary, even for L∞ or
measure valued entropy solutions [BM17]. A series of works culminating in [BM15] extends the Lagrangian
representation also to systems of conservation laws.
An important application is the proof of the structure of L∞ solutions, and as a consequence the fact that
the entropy dissipation is concentrated (see [BM17]).

Aim of this note is to obtain a suitable notion of Lagrangian representation for the multidimensional
scalar equation,

∂tu+ divx f(u) = 0, f : R→ Rd smooth. (1.1)

The key step is always to find an a priori compactness estimate and an approximating scheme exploiting
this compactness: in this situation, the transport collapse method introduced by Brenier [Bre84].

This approximation method is based on the interpretation of the evolution of the solution as the action
of two operators:

Transport map: a translation of each level set of u by the transport map

hyp u(t) :=
{

(x, h) : h ≤ u(t, x)
}
7→ Tr(s,hyp u(t)) :=

{
(x, h) : h ≤ u(t, x− f(h)s)

}
;

Collapse operator: the monotone mapping of each x section of a generic set E ⊂ [0,+∞) × Rd into an
interval with the same measure,

(E, x, h) 7→ C(E, x, h) :=
(
x,H 1(({x} × [0, h]) ∩ E)

)
.

This interval is clearly an hypograph of a function.

The transport collapse method is then the standard operator splitting approximation applied to the two
operators Tr, C: the solution u(t) to (1.1) is the limit of the solutions

un(t) = Tr
(
t−[2nt]2−n,hyp un([2nt]2−n)

)
, Graphun([2nt]2−n) =

(
C(Tr(2−n, ·), ‖u‖∞)

)[2nt]
hyp u0, (1.2)

where [·] is the integer part of a real number. The composition C(Tr(2−n, ·), ‖u‖∞) means that given a set,
one first translates the level set according to the characteristic speed for a time 2−n, and then find the total
length on the vertical line at each pont x ∈ Rd. Observe indeed that the projection operator C assign the new
position of each point in a set E ⊂ Rd+1, and does not just yields a function. A more detailed description
is given in Section 3.3.

The natural compactness appears when interpreting the transport collapse method as a map acting
on the whole hypograph of a function, i.e. assigning to every initial point (x, h) ∈ hyp u0 a trajectory
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(γ1(t), γ2(t)) ∈ Rd+1. Indeed, by inspection of (1.2), the curve t 7→ γ1(t) is uniformly Lipschitz, with
Lipschitz constant bounded by ‖f ′‖∞, while the second trajectory t 7→ γ2(t) is decreasing in time.
The set of trajectories described above are clearly compact in the set of L1

loc([0,+∞),Rd+1) functions, so
that one can apply standard compactness results to prove that there exists a bounded measure ω such that

(1) it is concentrated on the the solutions to the ”characteristic” ODE

γ̇1 = f ′(γ2), γ̇2 ≤ 0,

(2) its push-forward p](L 1 × ω) is the measure L d+2x hyp u, where

p(t, γ1, γ2) = (t, γ1(t), γ2(t)). (1.3)

We can think the measure ω as a continuous version of the transport collapse operator splitting method,
and following the nomenclature used in the one dimensional case, we call the measure ω a Lagrangian
representation of the entropy solution u(t).

We now state the results and the structure of the note.
After introducing the notation (Section 1.1) and some preliminary results (Section 2), in Section 3 we

give the precise definition of Lagrangian representation we introduce in this note:

Definition (Definition 3.1). A Lagrangian representation of a solution u to (1.1) is a measure ω ∈M +(Γ)
such that:

(1) it holds

p](L
1 × ω) = L d+2xhyp u,

where we recall p is the projection map defined in (1.3);
(2) ω is concentrated on the set of curves γ = (γ1, γ2) ∈ Γ such that{

γ̇1(t) = f ′(γ2(t)) L 1-a.e. t ∈ [0,+∞),

γ̇2 ≤ 0 in the sense of distributions.

A not-so-surprising fact is that u is an entropy solution, as it can be surmised by the transport collapse
construction.

Proposition (Proposition 3.3). Let ω ∈ M+(Γ) be a non-negative measure on the space of curves and
assume there exists a non-negative, bounded function u : (0,+∞)×Rd → [0,+∞) such that Conditions (1),
(2) of the above definition hold. Then u is an entropy solution to (1.1).

Additional results yield that the measures γ̇2 are naturally associated to the dissipation, and they are
concentrated on the essential boundary of the hypograph, and that at any time t the ω-measure of the curves
γ2 which have a downward jump is 0.

Next, in Section 3.2 we show the natural compactness enjoyed by the notion of Lagrangian representation.

Proposition (Proposition 3.6). Let (ωn)n∈N ⊂ M+(Γ) be a sequence of bounded measures such that Con-
dition (2) in the above definition. Assume that

p](L
1 × ωn) = L d+2xUn

for some set Un ⊂ Rd+2 and assume that there exists M > 0 such that Un ⊂ (0,+∞)×Rd× [0,M ] for every
n ∈ N. Assume furthermore that

χUn → χU in L1(Rd+2),

for some set U ⊂ Rd+2. Then (ωn)n∈N is tight, every limit point ω satisfies Condition (2) in the above
definition and it holds

p]
(
L 1 × ω) = L d+2xU.

Using this compactness, first one shows the existence of a Lagrangian representation for a BV entropy
solution (Proposition 3.11), and then the general case:

Theorem (Theorem 3.12). Let u be the entropy solution to the initial value problem (1.1) with u(t = 0) =
u0 ∈ L∞(Rd). Then there exists a Lagrangian representation of u.

The note is concluded with a first application of the above construction (Section 4).

Theorem (Theorem 4.3). Let u be a continuous bounded entropy solution in [0, T )×Rd to (1.1). Then for
every (t, x) ∈ [0, T )× Rd, it holds

u(t, x) = u0(x− f ′(u(t, x))t).

Moreover for every η : R→ R, q : R→ Rd Lipschitz such that q′ = η′f ′ a.e. with respect to L 1, it holds

η(u)t + divx q(u) = 0

in the sense of distributions.
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This is a corollary of the fact that the Lagrangian representation in this case is unique beacuse it satisfies
γ̇2 = 0 (Proposition 4.2). In particular its graph is a bundle of characteristic curves as in the one dimensional
case.

1.1. Notations. In the following, if f : X → [0,+∞) is a non-negative function defined on some set X, we
will denote its hypograph by

hyp f := {(x, h) ∈ X × [0,+∞) : 0 ≤ h ≤ f(x)}.

Conversely, if U ⊂ X × [0,+∞) we will use the notation

hyp−1(U) = f (1.4)

to indicate that the set U is the hypograph of the function f . The power set of X will be denoted by P(X).
If X is a measurable space, the space of finite measures over X will be written as M (X) and as usual the

total variation is defined for every measurable E ⊂ X as

|µ|(E) := sup

{ k∑
i=1

|µ(Ei)| : Ei ∩ Ej = ∅ for i 6= j,

k⋃
i=1

Ei = E

}
.

The norm of a measure µ ∈M (X) will be written as ‖µ‖M := |µ|(X). The space of non-negative measures
over X will be written as M +(X).

Often we will consider X to be the d-dimensional Euclidean space Rd or a suitable space of curves that will
be denoted by Γ. In the former case, L d will be the Lebesgue measure and H d−1 the (d− 1)-dimensional
Hausdorff measure; in the latter, elements of the space and measures will be generically denoted by greek
letters, namely we will use γ for a generic curve and ω for a measure on the space of curves. Recall also that
there are natural “projection” operators defined on the space of curves, namely the evaluation map at time
t > 0

et : Γ→ Rd

γ 7→ γ(t)
(1.5)

and

p : (0,+∞)× Γ→ (0,+∞)× Rd+1

(t, γ) 7→
(
t, γ(t)

)
.

(1.6)

Usually, the curves we will consider are not necessarily continuous, but they enjoy BV regularity. Accordingly,
we will use the symbols γ(t±) for the right/left limits at t; for the derivative we will write

Dtγ = D̃tγ +Dj
tγ (1.7)

where D̃tγ is the continuous (or diffuse) part and Dj
tγ is the jump part.

Finally, we will use the standard language of measure theory. In particular, a.e. (if not otherwise stated)
refers to the Lebesgue measure. The Lebesgue spaces are denoted in the usual way Lp and the notation Lp+
will be used for the space of non-negative functions with integrable p-power. The essential interior of a set
Ω ⊂ Rd, ess Int(Ω), is the set of points x ∈ Rd for which there exists a Lebesgue negligible set N such that
x ∈ Int (Ω ∪N), being Int the standard topological interior.

2. Preliminaries

Lemma 2.1. Let I = [a, b] ⊂ R be a closed interval in R. Let (Dn)n be an increasing sequence of finite sets
D1 ⊂ D2 ⊂ . . . ⊂ I such that their union

D :=
⋃
n

Dn

is dense in I. Let moreover (fn)n∈N be a sequence of maps fn : I → X where (X, d) is a complete metric
space. Assume that:

(1) a ∈ D1;
(2) there exists a compact set K ⊂ X such that for every n,m ∈ N with n ≤ m and for every q ∈ Dn,

fm(q) ∈ K;
(3) there exists a constant C > 0 such that for every n,m ∈ N with n ≤ m, for every q ∈ Dn and for

every x ∈ I with q < x it holds

d
(
fm(q), fm(x)

)
≤ C(x− q).

Then there exist a subsequence (nk)k and a C-Lipschitz function f : I → X such that

fnk
→ f uniformly on I as k → +∞.
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Proof. By condition (2) and the standard diagonal argument there exists a subsequence fnk
, that we will

denote by fk, which converges pointwise in D. Therefore, for every q ∈ D, the sequence (fk(q))k∈N is a
Cauchy sequence in X. Since Dn is finite for every n ∈ N, the convergence is uniform on each Dn. In
particular for every n ∈ N, there exists Nn : [0,+∞)→ N such that for every ε > 0, for every l,m ≥ Nn(ε)
and for every q ∈ Dn, it holds d(fl(q), fm(q)) ≤ ε.

Now we prove that actually the sequence (fk)k∈N is a Cauchy sequence with respect to the sup-norm.
Fix ε > 0. Then by Condition (1), the monotonicity of the sequence (Dn)n∈N and the density of D ⊂ I
there exists n̄ such that for every x ∈ I there exists q ∈ Dn̄ such that 0 < x − q < ε. Then for every
l,m ≥ n̄ ∨Nn̄(ε), it holds

d(fl(x), fm(x)) ≤ d(fl(x), fl(q)) + d(fl(q), fm(q)) + d(fm(q), fm(x))

≤ C(x− q) + ε+ C(x− q)
≤ (2C + 1)ε.

Therefore the sequence fk converges uniformly to a function f . Now we check that f is C-Lipschitz. For
every x, y ∈ I with x < y and for every q ∈ D with q < x, it holds

d(f(x), f(y)) ≤ d(f(x), f(q)) + d(f(q), f(y))

≤ C(x− q + y − q).

Letting q → x from below we get that f is C-Lipschitz and this concludes the proof. �

We will also need the following standard result in the theory of sets of finite perimeter.

Lemma 2.2. Let E ⊂ Rd be a set of finite measure and of finite perimeter and let v ∈ Rd with |v| = 1.
Then for every t̄ ≥ 0 if Et̄v := {x+ t̄v : x ∈ E} it holds

L d(E∆Et̄v) ≤ 2t̄Per(E).

Proof. By Anzellotti-Giaquinta Theorem [AFP00, Theorem 3.9] there exists a sequence (un)n∈N ⊂ C∞ ∩
W 1,1(Rd) such that un → χE in L1(Rd) and Dun ⇀ DχE in duality with continuous, bounded functions
over Rd and ‖Dun‖ → ‖DχE‖. We want to compute

L d(E∆Etv) = 2

ˆ
Rd

(1− χE(x))χEtv
(x) dx.

Now we set

gn(t) :=

ˆ
Ec

un(x− tv) dx, g(t) :=

ˆ
Ec

χEtv
(x) dx.

For φ ∈ C∞c ((0,+∞)) we have

−〈Dtgn, φ〉 =

ˆ +∞

0

ˆ
Ec

un(x− tv)φ′(t) dx dt =

ˆ
Ec

ˆ +∞

0

∇un(x− tv) · v φ(t) dt dx.

This shows that

Dtgn = −
ˆ
Ec

∇un(x− tv) · v dx.

In particular,

|Dtgn| ≤
ˆ
Ec

|∇un(x− tv) · v| dx ≤ ‖Dun‖.

We thus have

gn(t̄)− gn(0) ≤
ˆ t̄

0

‖Dun‖dt = t̄‖Dun‖.

By observing that gn → g pointwise and using that ‖Dun‖ → ‖DχE‖ = PerE we conclude the proof. �

3. Lagrangian representation

We consider scalar multidimensional conservation laws, i.e. first order partial differential equations of the
form

∂tu+ divx (f(u)) = 0 in (0,+∞)× Rd, (3.1)

where u : (0,+∞)× Rd → R is a scalar function and f : R→ Rd is a smooth map, called the flux function.
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3.1. Definition and properties of the Lagrangian representation. Since we only consider L∞ solu-
tions, up to a translation in the flux f , we can assume u ≥ 0. We denote by

Γ :=

{
γ = (γ1, γ2) : (0,+∞)→ Rd × [0,+∞) : γ1 is continuous and γ2 is decreasing

}
equipped with the product of the uniform convergence on compact sets topology and of the L1

loc-topology.

Definition 3.1. A Lagrangian representation of a solution u to (3.1) is a measure ω ∈M +(Γ) such that:

(1) it holds

p](L
1 × ω) = L d+2x hyp u, (3.2)

where we recall p is the projection map defined in (1.6);
(2) ω is concentrated on the set of curves γ = (γ1, γ2) ∈ Γ such that{

γ̇1(t) = f ′(γ2(t)) L 1-a.e. t ∈ [0,+∞),

γ̇2 ≤ 0 in the sense of distributions.
(3.3)

The following lemma shows that the condition expressed in (3.2) is equivalent to its pointwise version.

Lemma 3.2. Assume that t 7→ u(t) is strongly continuous in L1. Then in Definition 3.1, Condition (1) can
be replaced with the following:

(1’) for every t > 0, it holds

et]ω = L d+1x hyp u(t), (3.4)

where we recall et is the evaluation map defined in (1.5).

Proof. Condition (1’) clearly implies (1). On the other hand, by Fubini, condition (1) gives that (3.4) for
L 1-a.e. t. By exploiting the L1-continuity in time of entropy solutions u, we now show that (3.4) holds
indeed for every t ∈ [0,+∞). To do this, we write γ(t) = (γ1(t), γ2(t)) and we fix t̄; we take as test function
the following

ϕ(t, x, h) = φ(x, h)ψδ(t)

where φ : Rd+1 → R is arbitrary, ψδ : [0,+∞)→ R is a non negative smooth function, with suppψδ ⊂ (t̄, t̄+δ)
and
´
R+ ψδ = 1. Taking the limit as δ → 0+ of (3.2) tested against ϕ, we haveˆ

Rd+1

φ(x, h) dL d+1xhyp u(t̄) =

ˆ
Γ

φ(γ(t̄+)) dω

where γ(t̄+) denotes the right limit (which exists because γ1 is continuous and γ2 is decreasing). Similarly,
on the left side, we get ˆ

Rd+1

φ(x, h)dL d+1xhyp u(t̄) =

ˆ
Γ

φ(γ(t̄−)) dω

thus, in particular,

0 =

ˆ
Γ

φ
(
γ1(t̄), γ2(t̄−)

)
− φ

(
γ1(t̄), γ2(t̄+)

)
dω.

Let us fix a compact set K ⊂ Rd and choose φ ∈ C∞c (Rd+1) such that ∂hφ ≥ 1 in K× (0, ‖u‖∞) and ∂hφ ≥ 0
in Rd × (0, ‖u‖∞): being γ2 decreasing, we have

0 =

ˆ
Γ

φ
(
γ1(t̄), γ2(t̄−)

)
− φ

(
γ1(t̄), γ2(t̄+)

)
dω

≥
ˆ

Γ\ΓK

φ
(
γ1(t̄), γ2(t̄−)

)
− φ

(
γ1(t̄), γ2(t̄+)

)
dω +

ˆ
ΓK

(
γ2(t̄−)− γ2(t̄+)

)
dω

≥
ˆ

ΓK

|γ2(t̄−)− γ2(t̄+)| dω,

where ΓK ⊂ Γ is the set of curves such that γ1(t̄) ∈ K. This shows that for every t ∈ (0,+∞), ω-a.e. γ is
continuous in t: in particular, we have (et)]ω = L d+1x hyp u(t) for every t. �

We now present the following proposition, which says that Conditions (1), (2) in Definition (3.1) imply
that u is an entropy solution to (3.1).

Proposition 3.3. Let ω ∈M+(Γ) be a non-negative measure on the space of curves and assume there exists
a non-negative, bounded function u : (0,+∞)×Rd → [0,+∞) such that Conditions (1), (2) of Definition 3.1
hold. Then u is an entropy solution to (3.1).
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Proof. Let (η,q) be an entropy-entropy flux pair with η convex (w.l.o.g. η(0) = 0,q(0) = 0). Using the
elementary identities

u(t, x) =

ˆ +∞

0

χ[0,u(t,x)](h) dh

and

η(u(t, x)) =

ˆ +∞

0

χ[0,u(t,x)](h)η′(h) dh, q(u(t, x)) =

ˆ +∞

0

χ[0,u(t,x)](h)q′(h) dh

and recalling that q′ = η′f ′, we can write, for any non-negative test function φ ∈ C1
c ([0,+∞)× Rd),

−〈η(u)t + divx(q(u)), φ〉 =

ˆ
Rd

ˆ +∞

0

η(u(t, x))φt(t, x) + q(u(t, x)) · ∇xφ(t, x) dt dx

=

ˆ
Rd

ˆ +∞

0

[ ˆ +∞

0

χ[0,u(t,x)](h)η′(h)φt(t, x) + q′(h) · ∇xφ(t, x) dh

]
dt dx

=

ˆ
Rd

ˆ +∞

0

ˆ +∞

0

χ[0,u(t,x)](h)η′(h)
(
φt(t, x) + f ′(h) · ∇xφ(t, x)

)
dh dt dx

=

ˆ
Rd+2

η′(h)
(
φt(t, x) + f ′(h) · ∇xφ(t, x)

)
d
(
L d+2xhyp u

)
.

By Condition (1) we have p](L 1 × ω) = L d+2xhyp u, so that

−〈η(u)t + divx(q(u)), φ〉 =

ˆ
Rd+2

η′(h)
(
φt(t, x) + f ′(h) · ∇xφ(t, x)

)
d
(
L d+2xhyp u

)
=

ˆ
Γ

ˆ +∞

0

η′(γ2(t))
(
φt(t, γ

1(t)) + f ′(γ2(t)) · ∇xφ(t, γ1(t)
)
dt dω.

Moreover, let us define for a.e. t ∈ (0,+∞) and for ω-a.e. γ the function

gγ(t) := η′
(
γ2(t)

)
. (3.5)

Recall that η is convex and that for ω-a.e. γ the function γ2 is decreasing by Condition (2); thus we have
that gγ is decreasing for ω-a.e. γ. Hence it holds g′γ ≤ 0 in the sense of distributions. By Fubini Theorem,
we finally have

−〈η(u)t + divx(q(u)), φ〉 =

ˆ
Γ

ˆ +∞

0

η′(γ2(t))
(
φt
(
t, γ1(t)

)
+ f ′

(
γ2(t)

)
· ∇xφ

(
t, γ1(t)

))
dt dω

=

ˆ
Γ

ˆ +∞

0

η′(γ2(t))
(
φt
(
t, γ1(t)

)
+ γ̇1(t) · ∇xφ

(
t, γ1(t)

))
dt dω

=

ˆ
Γ

ˆ +∞

0

η′(γ2(t))
d

dt
φ(t, γ1(t)) dt dω

=

ˆ
Γ

ˆ +∞

0

gγ(t)φ′γ(t) dt dω ≥ 0

(3.6)

where the last inequality comes from the distributional definition of derivative for the function gγ , being
φγ(t) := φ(t, γ1(t)) an admisible, non-negative test function. Thus we have established that, for any convex
entropy η, it holds in the sense of distributions

η(u)t + divx(q(u)) ≤ 0. (3.7)

In particular, by taking η(s) = ±s and repeating the computation above, we get

ut + divx(f(u)) = 0. (3.8)

Having established the two conditions (3.7) and (3.8), we have that u is by definition an entropy solution to
(3.1), hence the proof is complete. �

This proof shows also how the dissipation measure can be decomposed along the characteristic curves.
Since this fact will be useful, we fix some notation and explicit this decomposition.

Let η be a convex entropy and set

µηγ = (I, γ)]

((
η′ ◦ γ2

)
D̃γ2

)
+ η′′(w)H 1x{(t, x, w) : γ1(t) = x,w ∈ (γ2(t+), γ2(t−))}.

Accordingly define

νη :=

ˆ
Γ

µηγ dω. (3.9)
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Lemma 3.4. It holds
(πt,x)]ν

η = µη,

where the map πt,x : Rd × [0,+∞)× [0,+∞) 3 (t, x, h) 7→ (t, x) ∈ Rd × [0,+∞) is the projection on the t, x
variables.

Proof. By definition we immediately get

(πt,x)](µγ) = (I, γ1)](Dtgγ), (3.10)

where gγ is defined in (3.5). Including (3.10) in (3.6) we get

〈η(u)t + divx(q(u)), φ〉 = −
ˆ

Γ

ˆ +∞

0

gγ(t)φ′γ(t) dt dω

=

ˆ
Γ

ˆ
[0,+∞)×Rd

φd((πt,x)]µγ)dω

=

ˆ
[0,+∞)×Rd

φd((πt,x)]ν
η),

where in the last inequality we used the definition of ν (3.9) and the relationˆ
Γ

(πt,x)]µ
η
γ dω = (πt,x)]

(ˆ
Γ

µηγ dω

)
. �

Proposition 3.5. The dissipation ν in the essential interior of hyp u is zero.

Proof. Let ψ : Rd × [0,+∞) → [0,+∞) such that for every t ∈ (t1, t2), suppψ ⊂ ess Int(hyp u(t),Rd ×
[0,+∞)), then

t 7→
ˆ
ψ(x,w) d(et)]ω

is constant. Take (t̄, x̄, w̄) in the essential interior of hyp u. Take ψ(x,w) = ψ1(x)ψ2(w), where

ψ1(x) = σ(|x− x̄|), ∂wψ2 < 0 in [0, w̄) and ψ2(w) = 0 for w > w̄,

where σ is smooth and nonnegative and σ > 0 in [0, r), where r � 1. For every φ ∈ C1
c ((t1, t2)), it holds

0 = −
ˆ t2

t1

ˆ
φ′(t)ψ(x,w)d(et)]ωdt

=

ˆ ˆ
φ(t)d(Dt(ψ ◦ γ))dω

=

ˆ
Γ

ˆ
(t1,t2)

φ(t)∇ψ(γ(t))d(D̃tγ) +

ˆ
Γ

∑
i

φ(ti)
(
ψ(γ(t+i ))− ψ(γ(t−i ))

)
dω,

by Volpert chain rule, where D̃tγ is the continuous part of the derivative defined in (1.7). For every φ ≥ 0,
and using the assumptions on ψˆ

Γ

ˆ
(t1,t2)

φ(t)∇ψ(γ(t))d(D̃tγ) =

ˆ
Γ

ˆ t2

t1

φ(t)∇xψ(γ(t)) · f ′(γ2(t))dtdω

+

ˆ
Γ

ˆ t2

t1

φ(t)∂wψ(γ(t))d(D̃tγ
2).

by splitting horizontal and vertical components. We prove that the horizontal contribution is zero.ˆ
Γ

ˆ t2

t1

φ(t)∇xψ(γ(t)) · f ′(γ2(t))dtdω =

ˆ
Rd+1

ˆ t2

t1

φ(t)∇xψ(x,w) · f ′(w)dtdL d+1x(hyp u(t))

=

ˆ t2

t1

φ(t)

ˆ +∞

0

f ′(w) ·
ˆ
Br(x̄)

∇xψ(x,w)dL ddwdt

= 0.

We conclude that

0 = −
ˆ t2

t1

ˆ
φ′(t)ψ(x,w) d(et)]ω dt

=

ˆ
Γ

ˆ t2

t1

φ(t)∂wψ(γ(t)) d(D̃tγ
2) +

ˆ
Γ

∑
i

φ(ti)
(
ψ(γ(t+i ))− ψ(γ(t−i ))

)
dω

=

ˆ
Rd+2

φ(t)∂wψ dν.

By arbitrariness of φ, ψ or by using ν ≤ 0 we get ν = 0 in the interior of the hypograph. �
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3.2. Compactness and stability of Lagrangian representations. We now turn to analyze stability
properties that, in particular, will be useful in the construction of Lagrangian representations. In the
following proposition, we show how the compactness of approximate solutions translates into tightness of
the corresponding Lagrangian measures and how conditions (1) and (2) pass to the limit.

Actually, we present the result in the more general framework in which the push forward of the measure
L 1 × ω through the evaluation map p is merely the Lebesgue measure L d+2 restricted to a set U , and
not necessarily an hypograph. This allows more freedom in the construction of approximate solutions (e.g.
Brenier’s Transport-Collapse scheme will fit in this setting).

Proposition 3.6 (Compactness and stability). Let (ωn)n∈N ⊂ M+(Γ) be a sequence of bounded measures
such that Condition (2) in Definition 3.1 holds. Assume that

p](L
1 × ωn) = L d+2xUn

for some set Un ⊂ Rd+2 and assume that there exists M > 0 such that Un ⊂ (0,+∞)×Rd× [0,M ] for every
n ∈ N. Assume furthermore that

χUn → χU in L1(Rd+2),

for some set U ⊂ Rd+2. Then (ωn)n∈N is tight, every limit point ω satisfies Condition (2) in Definition 3.1
and it holds

p]
(
L 1 × ω) = L d+2xU.

Proof. Since ωn satisfies Condition (2) in Definition 3.1, we have that

suppωn ⊂ Lip((0,+∞),Rd)×D
with local uniform bounds, hence (ωn)n is locally tight. Using a diagonal argument, we construct a measure
ω which is the limit of ωn. We now show that

p](L
1 × ω) = L d+2xU.

where p is the evaluation map defined in (1.6). Indeed, let ϕ = ϕ(t, x, h) be a test function; we getˆ
R+×Rd+1

ϕ(t, x, h) dp](L
1 × ω)(t, x, h) =

ˆ
Γ

ˆ
R+

ϕ(t, γ(t)) dt dω

=

ˆ
Γ

Φ(γ)dω(γ)

= lim
n

ˆ
Γ

Φ(γ)dωn(γ)

= lim
n

ˆ
Γ

ˆ
R+

ϕ(t, γ(t)) dt dωn

= lim
n

ˆ
R+×Rd+1

ϕ(t, x, h) dp](L
1 × ωn)

= lim
n

ˆ
R+×Rd+1

ϕ(t, x, h) d(L d+2xUn)

=

ˆ
R+×Rd+1

ϕ(t, x, h) d(L d+2xU),

where we have used in the second line the continuous function

Φ(γ) :=

ˆ +∞

0

φ(t, γ(t)) dt. �

We conclude this paragraph by pointing out the following corollary, whose proof can be obtained partic-
ularizing Proposition 3.6 in the case where Un are hypographs of entropy solutions.

Corollary 3.7. Let (un)n∈N be a sequence of uniformly bounded entropy solutions to (3.1) and assume it
is given a sequence (ωn)n∈N of corresponding Lagrangian representations. If un → u locally in L1, then
(ωn)n∈N is tight and every limit point ω is a Lagrangian representation of u.

3.3. Existence of Lagrangian representations for initial data in L∞. The compactness properties
stated in Corollary 3.7 and standard approximation results imply that, in order to prove the existence of
Lagrangian representations for solutions with initial data in L∞, it is enough to construct them for solutions
with bounded variation. In order to do this, we exploit a numerical scheme which was proposed by Brenier
in [Bre84] and is called “transport-collapse”. We consider the initial value problem{

∂tu+ divx (f(u)) = 0 in (0,+∞)× Rd,
u(0, ·) = u0(·)

(3.11)



A LAGRANGIAN APPROACH FOR SCALAR MULTI-D CONSERVATION LAWS 9

u

Tr(t, ·)

C(Tr(t, hyp u), ·)

Tr(t,hyp u)

T(t)u

x

Figure 1. Picture of the transport collapse scheme.

with u0 ∈ L∞ ∩ BVloc(Rd) and we denote by u the entropy solution to (3.11). As before, we assume that
u ≥ 0.

We define the following transport map

Tr : [0,+∞)× Rd × [0,+∞)→ Rd × [0,+∞)

(t, x, h) 7→ (x+ tf ′(h), h)

which moves a point in Rd × [0,+∞) with the characteristic speed. Observe that, in general, if v = v(x) is
a function of x then, for t > 0, the image

Tr(t,hyp v) :=
⋃

(x,h)∈hyp v

Tr(t, x, h) ⊂ Rd × [0,+∞)

is not necessarily an hypograph.
Then we introduce the collapse operator: we first define the set

X :=
{

(E, x, h) ⊂ P(Rd × [0,+∞))× Rd × [0,+∞) : (x, h) ∈ E
}
,

where we recall P denotes the power set and then

C : X 7→ Rd × [0,+∞)

(E, x, h) 7→
(
x,H 1(({x} × [0, h]) ∩ E)

)
where H1 is the (outer) 1-dimensional Hausdorff measure. The collapse operator moves points vertically in
the negative direction. Moreover the image of a set is always an hypograph (possibly taking value +∞) and
C(E, ·, ·) is the identity if and only if E is an hypograph.

We now set

Y :=
{

(v, x, h) ∈ L∞+ (Rd)× Rd × [0,+∞) : (x, h) ∈ hyp v
}
.

We define the transport-collapse map at time t > 0 in the following way:

TCt : Y → Rd × [0,+∞)

(v, x, h) 7→ C(Tr(t, hyp v),Tr(t, x, h))

Remark 3.8. The contruction above is only a Lagrangian rephrase of the Transport-Collapse scheme pro-
posed by Brenier in [Bre84]. There, the author defines the Transport-Collapse operator as the family of
operators {T(t)}t>0 on L1(Rd) whose restriction to the space of non-negative, integrable functions L1

+(Rd)
is

T(t) : L1
+(Rd)→ L1

+(Rd)

v 7→ (T(t)v)(x) :=

ˆ
R
jv(x− tf ′(h), h) dh

where

jv(x, h) := χhyp v(x, h) =

{
1 if 0 < h < v(x),

0 else.

The link between the two formulations is the following:

hyp (T(t)v) = TCt(v,hyp v).

On the other hand, the map TCt chooses the image of each point in the hypograph and not only the
image of the whole hypograph (see Figure 1) .
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We are now in position to define an approximating sequence (TCnt ) of the Kruzkov semigroup. We define
first them inductively for t ∈ 2−nN:{

TCn0 (v, x, h) = (x, h)

TCn(k+1)·2−n(v, x, h) = TC2−n

(
hyp −1(TCnk·2−n(v,hyp v)),TCnk·2−n(v, x, h)

)
where hyp−1(·) is defined in (1.4).

For the intermediate times t = s+ k · 2−n, with s ∈ (0, 2−n), we set

TCnt := Tr(s) ◦
(
TCnk·2−n

)
.

Taking now u0 ∈ L∞(Rd) ∩ BV(Rd), we define accordingly for every (x, h) ∈ hyp u0 and for every t > 0,

γn(x,h)(t) := TCnt (u0, x, h)

and we set

ωn :=

ˆ
hyp u0

δγn
(x,h)

dx dh. (3.12)

Since the transport collapse scheme is measure preserving, there exists Un ⊂ [0,+∞)×Rd× [0,+∞) such
that

(et)]ω
n = L dxUn(t), (3.13)

where
Un(t) :=

{
(x, h) ∈ Rd × [0,+∞) : (t, x, h) ∈ U

}
.

3.3.1. Total variation along transport-collapse. A crucial property in [Bre84] is that the total variation de-
creases along the transport-collapse scheme. This is indeed stated and proved in the following lemma and
we present the proof for the sake of completeness.

Lemma 3.9. For every t ≥ 0 and u ∈ L1
+(Rd) it holds

Tot.Var.(T(t)u) ≤ Tot.Var.(u).

Proof. For every t ≥ 0, for any test vector field Φ ∈ C1
c (Rd;Rd), with ‖Φ‖∞ ≤ 1, we haveˆ

Rd

(T(t)u)(x) div Φ(x) dx =

ˆ
Rd

ˆ +∞

0

ju(x− tf ′(h), h) div Φ(x) dh dx

=

ˆ
Rd

ˆ +∞

0

ju(x, h) div Ψh(x) dh dx

≤
ˆ +∞

0

Tot.Var.(ju(·, h)) dh

where we have set Ψh(x) = Φ(x+tf ′(h)) and the last inequality holds by definition of total variation (together
with the trivial fact that ‖Ψh‖∞ ≤ 1). Finally, by Coarea formula, we haveˆ +∞

0

Tot.Var.(ju(·, h))dh = Tot.Var.(u).

Being Φ arbitrary, the proof is complete. �

3.3.2. Passage to the limit of transport-collapse. In this section we give an alternative proof of the fact
that the iterated Transport-Collapse scheme converges to the Kruzkov semigroup, based on the Lagrangian
representation. As a byproduct, we obtain the existence of Lagrangian representations for BV initial data
and, as already noticed, this suffices for the general L∞ case.

Let us also fix Dn := { k2n : k ∈ N≥0} so that for every t̄ ∈ Dn there exists un(t̄) ∈ L∞(Rd) such that

Un(t̄) = hyp un(t̄).

The key point to prove the compactness of the family (Un)n∈N is contained in the following lemma.

Lemma 3.10. Let n̄ ∈ N and t̄ ∈ Dn̄. Then for every t > t̄ and for every n ≥ n̄ it holds

‖(et)]ωn − (et̄)]ω
n‖M = L d+1

(
Un(t) ∆Un(t̄)

)
≤ 2‖f ′‖∞

(
t− t̄

)
Tot.Var.(u0). (3.14)

Proof. Let us now write t− t̄ = k · 2−n + s for s ∈ [0, 2−n). For j = 0, . . . , k − 1 set

Ij := [tj,n, tj+1,n], where tj,n := t̄+ j2−n.

Observe that it holds

L d+1
(
Un(t) ∆Un(t̄)

)
= 2ωn ({γ : γ(t̄) ∈ Un(t̄), γ(t) /∈ Un(t̄)})

Being U(t̄) the hypograph of un(t̄), for every j = 0, . . . , k − 1 and γ ∈ suppωn

γ(tj,n−) ∈ Un(t̄) =⇒ γ(tj,n+) ∈ Un(t̄). (3.15)
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Un(t̄, h)

Un(t̄, h)−2−nf ′(h)

f ′(h)

Figure 2. The set in grey is Un(t̄, h) ∩
(
Un(t̄, h)−2−nf ′(h)

)c
.

For any j = 0, . . . , k − 1 we set

Gj,n :=
{
γ ∈ suppωn : γ(tj,n+) ∈ Un(t̄), γ(tj+1,n−) /∈ Un(t̄)

}
.

Finally, if s = 0 we set Gk = ∅ and if s > 0,

Gk,n :=
{
γ ∈ suppωn : γ(tk,n+) ∈ Un(t̄), γ(t) /∈ Un(t̄)

}
.

By (3.15), it holds {
γ : γ(t̄) ∈ Un(t̄), γ(t) /∈ Un(t̄)

}
⊂

k⋃
j=0

Gj,n.

Let us fix j = 0, . . . , k − 1. By (3.13) and definition of ωn,

ωn (Gj,n) = L d+1
({

(x, h) ∈ Un(t̄) ∩ Un(tj,n) : (x+ f ′(h)2−n, h) /∈ Un(t̄)
})

=

ˆ ‖u0‖∞

0

L d
({
x ∈ Un(t̄, h) ∩ Un(tj,n, h) : x+ f ′(h)2−n /∈ Un(t̄, h)

})
dh,

(3.16)

where we have set U(t, h) := {x : (t, x, h) ∈ U} and used Fubini theorem. Now we observe that{
x ∈ Un(t̄, h) ∩ Un(tj,n, h) : x+ f ′(h)2−n /∈ Un(t̄, h)

}
⊂ Un(t̄, h) ∩ (Un(t̄, h)−2−nf ′(h))

c,

where we recall that Ev := E + v (see Figure 2). Since

L d
(
Un(t̄, h) ∩ (Un(t̄, h)−2−nf ′(h))

c
)

=
1

2
L d
(
Un(t̄, h)∆(Un(t̄, h)−2−nf ′(h))

)
,

by applying Lemma 2.2, we have

L d
(
Un(t̄, h)∆(Un(t̄, h)−2−nf ′(h))

)
≤ 2‖f ′‖∞2−n Per(Un(t̄, h)).

Taking into account (3.16), by coarea formula for functions of bounded variation

ωn (Gj,n) ≤
ˆ ‖u0‖∞

0

‖f ′‖∞2−n Per(Un(t̄, h)) dh

= 2−n‖f ′‖∞Tot.Var.(un(t̄))

≤ 2−n‖f ′‖∞Tot.Var.(u0),

where the last inequality follows by Lemma 3.9. Similarly we can prove that

ωn (Gk,n) ≤ s‖f ′‖∞Tot.Var.(u0),

therefore summing over j = 0, . . . , k we get

L d+1
(
Un(t) ∆Un(t̄)

)
≤ 2

k∑
j=0

ωn (Gj,n)

≤ 2((2−nk + s)‖f ′‖∞Tot.Var.(u0)

= 2(t− t̄)‖f ′‖∞Tot.Var.(u0).
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�

We now combine the estimate (3.14) together with Lemma 2.1 to deduce the existence of a Lagrangian
representation for BV solutions.

Proposition 3.11. The sequence (ωn)n∈N constructed in (3.12) is tight and every limit point ω is a La-
grangian representation of the entropy solution to (3.11).

Proof. As in the proof of Proposition 3.6, the tightness of the family follows from Condition (2) in Definition
3.1 together with uniform bounds. Let ω be any limit point.

We now want to apply Lemma 2.1: set I = [0, T ] and let Dn := { k2n : k = 0, . . . , 2nT}. Let then

X := L1(Rd+1) and accordingly define

fn : I → L1(Rd+1)

t 7→ χsupp (et)]ω
n(·)

Condition (1) is trivially satisfied; let us verify assumption (2). For any n ∈ N, for every t ∈ Dn and
every m > n we have (et)]ω

m is concentrated on the hypograph of some function um(t). By Lemma 3.9

the functions (um(t))m≥n have uniformly bounded total variation, hence they are compact in L1(Rd) and
therefore the hypographs are compact in L1(Rd+1). To verify condition (3), it is enough to apply Lemma
3.10.

Thus we obtain a Lipschitz function f : I → L1(Rd+1); since f(t) is the characteristic function of an
hypograph for every t ∈ D, by continuity, there exists u ∈ Lip([0, T ]; BV(Rd)) such that

f(t) = χhyp u(t)

for every t ∈ [0, T ].
Thanks to Proposition 3.6 we obtain that

(et)]ω = L d+1xhyp u(t)

for every t ≥ 0. Finally, a direct application of Proposition 3.3 shows that the function u is the entropy
solution to (3.11) and concludes the proof. �

The compactness and stability properties of Lagrangian representations stated in Corollary 3.7, together
with standard approximation results, yield immediately the following

Theorem 3.12. Let u be the entropy solution to the initial value problem (3.11) with u0 ∈ L∞(Rd). Then
there exists a Lagrangian representation of u.

4. The case of continuous solutions

In this section we prove that if u is a continuous entropy solution of (3.1) then for every entropy-entropy
flux pair (η,q) with η ∈ C1(R), the dissipation measure

µ = η(u)t + div(q(u)) = 0.

Denote by ν̄ the measure defined by (3.9) with η(u) = u2/2 and consider its jump part defined by

νj :=

ˆ
Γ

µjγdω, where µjγ = H 1x{(t, x, h) : γ1(t) = x, h ∈ (γ2(t+), γ2(t−))}.

As an intermediate step we prove that νj = 0, which is equivalent, by definition, to the fact that ω is
concentrated on continuous curves.

Lemma 4.1. Let u : [0, T )×Rd → R be a continuous solution of (3.1) and let ω be a Lagrangian represen-
tation of u. Then ω is concentrated on continuous characteristic curves.

Proof. Since the solution u is continuous, for every (t, x, h) ∈ [0,+∞)×Rd × (0,+∞) such that h < u(t, x),
it holds (t, x, h) ∈ Int(hyp u). Hence for every γ ∈ suppω,

µjγ = µjγxInt(hyp u).

Therefore

νj = νjxInt(hyp u) = 0,

by Proposition 3.5. This concludes the proof of this lemma. �

In the following proposition we show that in the continuous solutions the hypograph at time t is the
translation of hyp u0 along segments with characteristic speed.
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Proposition 4.2. Let u : [0, T )× Rd → R be a continuous entropy solution of (3.1). Then

ω̄ =

ˆ
hyp u0

δγ̄x,h
dx dh,

where

γ̄x,h(t) = (x+ tf ′(h), h), t ∈ [0, T )

is a Lagrangian representation of u.

Proof. To begin we notice that there exists a set E with L d+2(hyp u \ E) = 0 such that for every z =
(t, x, h) ∈ E there exists a curve γz : [0, t̄]→ Rd × [0,+∞) with the following properties:

(1) γz(t) = (x,w);
(2) γz is a continuous characteristic curve;
(3) γz

(
[0, t̄]

)
⊂ hyp u;

(4) γ2
z is constant on the connected components of γ−1

z (Int(hyp u)).

In fact, (1) follows from the definition of Lagrangian representation and (2) follows from Lemma 4.1. From
the definition of Lagrangian representation ω is concentrated on curves that lie in hyp u for L 1-a.e. t ∈ [0, T ].
By continuity of u, we thus get (3). Finally (4) follows by Proposition 3.5.

Let t̄ > 0 and for every (x, h) ∈ hyp u(t̄) we consider the function

σ(x,h) : [0, t̄]→ Rd × [0,+∞)

t 7→
(
x− (t̄− t)f ′(h), h

)
We first prove that for every (x, h) ∈ hyp u(t̄) the segments

σ(x,h)

(
[0, t̄]

)
⊂ hyp u.

Fix ε > 0 and let us construct by iteration a curve contained in the hypograph which approximates the
segment. By uniform continuity of u there exists δ ∈ (0, 1) such that

|(t, x)− (t′, x′)| ≤ δ ⇒ |u(t, x)− u(t′, x′)| ≤ ε.
Let ε′ < δε and fix (t1, x1) ∈ [0,+∞) × R and h̄ > 0 such that (t1, x1, h̄) ∈ hyp u. For k ≥ 1 we define by
recursion the points z̃k, tk and xk in the following way:

z̃k = (t̃k, x̃k, h̃k) ∈ Bε′((tk, xk, h̄− ε)) ∩ E (4.1)

with t̃k < tk and

tk+1 := inf{t ∈ [0, t̃k] : γz̃k(t) < h̄+ ε}, xk+1 := γ1
z̃k

(tk+1+).

The procedure ends when tk+1 = 0. The existence of points z̃k is ensured by the fact that E has full measure.
We now prove that the procedure ends in finitely many steps. Since for every k ≥ 0, γ2

z̃k
is constant on each

connected component of γ−1
z̃k

(Int(hyp u)) and γ2
z̃k

(t̃k) < u(t̃k, x̃k)− ε, by the uniform continuity of u

t̃k − tk+1 ≥
δ

‖f ′‖∞
∧ t̃k,

therefore the number of steps N after which the procedure ends is bounded by

N ≤ 1 +
‖f ′‖∞t̄
δ

. (4.2)

We now prove the following claim, which states that γz̃k approximates σ(x̄,h̄) in (tk+1, t̃k).

Claim. There exists C > 0 independent of ε such that for every t ∈ [0, t̄] there exists k = 1, . . . , N and

s ∈ (tk+1, t̃k) for which

|(s, γz̃k(s))− (t, σ(x̄,h̄)(t))| < Cε. (4.3)

First we observe that for every k = 1, . . . , N and for every s ∈ (tk+1, t̃k) it holds

|γ2
z̃k

(s)− h̄| < 2ε. (4.4)

The estimate for the first components follows by (4.4) and (3.3): for every k = 1, . . . , N ,

|γ1
z̃k

(tk+1)− σ1
(x̄,h̄)(tk+1)| =

∣∣∣∣∣γ1
z̃k

(t̃k)− σ1
(x̄,h̄)(t̃k)−

ˆ t̃k

tk+1

(
γ̇1
z̃k

(t)− f ′(h̄)
)
dt

∣∣∣∣∣
≤ |γ1

z̃k
(t̃k)− σ1

(x̄,h̄)(t̃k)|+ 2ε(t̃k − tk+1)‖f ′′‖∞.
(4.5)

Moreover, by (4.1),

|γ1
z̃k

(t̃k)− σ1
(x̄,h̄)(t̃k)| ≤ |γ1

z̃k
(t̃k)− γ1

z̃k
(tk)|+ |γ1

z̃k
(tk)− σ1

(x̄,h̄)(tk)|+ |σ1
(x̄,h̄)(tk)− σ1

(x̄,h̄)(t̃k)|

≤ 2‖f ′‖∞ε′ + |γ1
z̃k

(tk)− σ1
(x̄,h̄)(tk)|.

(4.6)
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By (4.5) and (4.6), it follows that for every k = 1, . . . , N − 1 it holds

|γ1
z̃k

(tk+1)− σ1
(x̄,h̄)(tk+1)| ≤ |γ1

z̃k
(tk)− σ1

(x̄,h̄)(tk)|+ 2ε(t̃k − tk+1)‖f ′′‖∞ + 2‖f ′‖∞ε′. (4.7)

For every t ∈ [0, t̄] let k̄ = 1, . . . , N − 1 and s ∈ (tk̄+1, t̃k̄) be such that |s− t| < ε′. Then, iterating (4.7)

for k = k̄, . . . , N − 1 and by (4.2), we have

|γ1
z̃k

(s)− σ1
z̄(t)| ≤ |γ1

z̃k
(s)− σ1

z̄(s)|+ |σ1
z̄(s)− σ1

z̄(t)|
≤ 2ε‖f ′′‖∞(t̄− s) + 2(N − k̄)ε′‖f ′‖∞ + ‖f ′‖∞|t− s|
≤ 2ε‖f ′′‖∞T + 2ε′‖f ′‖∞ + 2ε‖f ′‖2∞t̄+ ‖f ′‖∞ε′

≤ Cε,

(4.8)

where C = 2‖f ′′‖∞T + 2‖f ′‖∞ + 2‖f ′‖2∞T + ‖f ′‖∞. The estimates (4.4) and (4.8) prove (4.3).
Since hyp u is closed, letting ε→ 0 we obtain that for every (x̄, h̄) ∈ hyp u(t̄), the segment

σ(x̄,h̄)([0, t̄]) ⊂ hyp u.

Let

ω̃ =

ˆ
hyp u(t̄)

δσx,h
dxdh.

Since the translations are area-preserving, for every t ∈ [0, t̄], there exists U(t) ⊂ [0,+∞)× Rd such that

(et)]ω̃ = L d+1xU(t)

and

L d+1(U(t)) =

ˆ
Rd

u(t̄, x)dx. (4.9)

Since we proved that for every t ∈ [0, t̄] it holds U(t) ⊂ hyp u(t), (4.9) implies that U(t) = hyp u(t). This
proves that ω̃ = ω̄ and it is a Lagrangian representation of u. �

Theorem 4.3. Let u be a continuous bounded entropy solution in [0, T ) × Rd to (3.1). Then for every
(t, x) ∈ [0, T )× Rd, it holds

u(t, x) = u0(x− f ′(u(t, x))t). (4.10)

Moreover for every η : R→ R, q : R→ Rd Lipschitz such that q′ = η′f ′ a.e. with respect to L 1, it holds

η(u)t + divx q(u) = 0 (4.11)

in the sense of distributions.

Proof. The validity of (4.10) is an immediate consequence of Proposition (4.2). Concerning the second claim,
if η is a convex C2 entropy, then (4.11) follows by Lemma 3.4 and Proposition 4.2, since µηγ = 0 for every

γ ∈ suppω. If η is C2, then there exist η1, η2 of class C2 and convex such that η = η1 − η2 and thus it is
enough to apply the previous result to both η1 and η2. Finally, in order to prove (4.11) holds for Lipschitz
(η,q), we consider a sequence (ηn)n∈N such that ηn → η uniformly on R and (ηn)′ → η′ in L1

loc(R) with the
associated qn such that qn(0) = q(0). We have that qn → q in L1

loc(Rd) and hence, for every test function
φ ∈ C∞c ([0, T )× Rd),

−〈η(u)t + divx q(u), φ〉 =

ˆ T

0

ˆ
Rd

φtη(u) + q(u) · ∇φdx dt

= lim
n→+∞

ˆ T

0

ˆ
Rd

φtη
n(u) + qn(u) · ∇φdx dt = 0,

and this completes the proof. �

References

[AFP00] L. Ambrosio, N. Fusco, and D. Pallara. Functions of Bounded Variation and Free Discontinuity Problems. Oxford
Science Publications. Clarendon Press, 2000.

[BM14] Stefano Bianchini and Stefano Modena. On a quadratic functional for scalar conservation laws. J. Hyperbolic Differ.

Equ., 11(2):355–435, 2014.
[BM15] Stefano Bianchini and Stefano Modena. Quadratic interaction functional for general systems of conservation laws.

Comm. Math. Phys., 338(3):1075–1152, 2015.

[BM16] Stefano Bianchini and Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete Contin.
Dyn. Syst. Ser. S, 9(1):73–88, 2016.

[BM17] S. Bianchini and E. Marconi. On the structure of l∞ entropy solutions to scalar conservation laws in one-space

dimension. Archive for Rational Mechanics and Analysis, June 2017.
[Bre84] Yann Brenier. Averaged multivalued solutions for scalar conservation laws. SIAM Journal on Numerical Analysis,

21(6):1013–1037, 1984.
[BY15] Stefano Bianchini and Lei Yu. Structure of entropy solutions to general scalar conservation laws in one space dimension.

J. Math. Anal. Appl., 428(1):356–386, 2015.



A LAGRANGIAN APPROACH FOR SCALAR MULTI-D CONSERVATION LAWS 15

S. Bianchini: S.I.S.S.A., via Bonomea 265, 34136 Trieste, Italy
E-mail address: bianchin@sissa.it

P. Bonicatto: S.I.S.S.A., via Bonomea 265, 34136 Trieste, Italy

E-mail address: paolo.bonicatto@sissa.it

E. Marconi: S.I.S.S.A., via Bonomea 265, 34136 Trieste, Italy

E-mail address: elio.marconi@sissa.it


	1. Introduction
	1.1. Notations

	2. Preliminaries
	3. Lagrangian representation
	3.1. Definition and properties of the Lagrangian representation
	3.2. Compactness and stability of Lagrangian representations
	3.3. Existence of Lagrangian representations for initial data in L

	4. The case of continuous solutions
	References

