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Abstract. We solve Gromov’s dimension comparison problem for Hausdorff and box counting di-
mension on Carnot groups equipped with a Carnot-Carathéodory metric and an adapted Euclidean
metric. The proofs use sharp covering theorems relating optimal mutual coverings of Euclidean and
Carnot-Carathéodory balls, and elements of sub-Riemannian fractal geometry associated to horizon-
tal self-similar iterated function systems on Carnot groups. Inspired by Falconer’s work on almost
sure dimensions of Euclidean self-affine fractals we show that Carnot-Carathéodory self-similar
fractals are almost surely horizontal. As a consequence we obtain explicit dimension formulae for
invariant sets of Euclidean iterated function systems of polynomial type. Jet space Carnot groups
provide a rich source of examples.
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1. Introduction

Carnot groups are simply connected nilpotent Lie groups with graded Lie algebra equipped with
a left invariant metric of sub-Riemannian type. They arise as ideal boundaries of noncompact
rank one symmetric spaces, and serve as both examples of, and local models at regular points for,
general sub-Riemannian (Carnot-Carathéodory) manifolds. The key role played by Carnot groups
became evident in the 1970’s in a series of influential papers and monographs (such as [52], [50] and
[25]) following the address by E. M. Stein at the 1970 International Congress of Mathematicians in
Nice. More recently, Carnot groups have played a significant role in motivating the development
of analysis in metric measure spaces, see particularly the work of Heinonen and Koskela [32], [33],
Cheeger [15] and Ambrosio and Kirchheim [1],[2]. In this respect Carnot groups serve as models for
non-Euclidean examples of spaces where the above cited results can be tested. On the other hand,
it is well known that tools of Carnot-Carathéodory analysis are also motivated by applications in
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control theory [47], [9],[36]. Recently, the rototranslation group (a sub-Riemannian manifold locally
modelled on the Heisenberg group) has emerged as a mathematical model for the neurogeometry
of the first layer of the mammalian visual cortex [16].

This paper develops a theory of self-similar fractal geometry in general Carnot groups. It contin-
ues our program in this area [5, 4, 7], which is one component in a worldwide endeavor investigating
sub-Riemannian geometric measure theory, including theories of rectifiability and perimeter [14],
[26], [27], [17], [41], [3], [38]; fractals and tilings [55], [56]; geometric analysis of nonsmooth domains
[28], [39], [49],[48], and many other topics.

A major impetus for these developments stems from Gromov’s comprehensive and inspired sur-
vey on intrinsic Carnot-Carathéodory metric geometry [30]. The following dimension comparison
problem of Gromov was the starting point for our investigations:

Problem 1.1. Let M be a manifold equipped with a horizontal distribution H ⊂ TM , a sub-
Riemannian (Carnot-Carathéodory) metric g0 on H, and a Riemannian metric g which extends g0.
Determine all pairs (α, β) which can occur as the Euclidean/sub-Riemannian Hausdorff dimensions
of smooth submanifolds of M , i.e., β = dimH

d0 N for some α-dimensional submanifold N ⊂M .

Here dimH
d0 , resp. dimH

d , denotes the Hausdorff dimension in the metric space (M,d0), resp.
(M,d), where d0 denotes the global sub-Riemannian distance function (Carnot-Carathéodory met-
ric) associated to g0 and d denotes the global Riemannian distance function associated to g.

Problem 1.1 is implicitly stated in section 0.6 of [30], see especially section 0.6.B for an explicit
formula for the Carnot-Carathéodory Hausdorff dimension of a submanifold of a (regular) sub-
Riemannian manifold.

As an illustration, we remark that the solution to Problem 1.1 in the first Heisenberg group H1

is the following set of pairs (α, β):

(1.1) {(0, 0), (1, 1), (1, 2), (2, 3), (3, 4)};
examples which realize each of these cases being (respectively): singletons, horizontal curves, non-
horizontal curves, 2-dimensional surfaces, and the entire space H1. The difficulty of Gromov’s
problem is indicated by the absence of the pair (2, 2) in this list: there is no smooth surface in the
first Heisenberg group which has dimension two with respect to the sub-Riemannian metric. This
feature of the geometry reflects the non-integrability of the horizontal distribution and the failure
of the Frobenius theorem in this context.

Consider the following variant of Gromov’s problem:

Problem 1.2. Let M be as in Problem 1.1. Determine all pairs (α, β) which can occur as the
Euclidean/sub-Riemannian Hausdorff dimensions of arbitrary subsets of M , i.e., α = dimH

d A and
β = dimH

d0 A for some A ⊂M .

Denoting by P(M) the power set of M and by S(M) the space of smooth submanifolds of M ,
we restate Problems 1.1 and 1.2 as follows:

Problem 1.3. Find

(1.2) ∆S(M) := {(α, β) : S(M)→ R2, (α, β)(N) = (dimN, dimH
d0 N)}

and

(1.3) ∆(M) := {(α, β) : P(M)→ R2, (α, β)(A) = (dimH
d A,dimH

d0 A)}.

Problem 1.2 is a foundational question in sub-Riemannian geometric measure theory which asks
for a measure-theoretic description of the discrepancy between the sub-Riemannian metric g0 and
any taming Riemannian metric g. We shall see that this problem asks which Riemannian α-
dimensional subsets of M are most nearly horizontal (β is smallest for fixed α) and which are most
non-horizontal (β is largest for fixed α). The intuitive meaning of the phrase “horizontal set”
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is a set which is tangent to the horizontal distribution in M . We emphasize, however, that our
framework is that of general geometric measure theory, and the examples which we will construct
are typically not smooth submanifolds from either the Euclidean or the sub-Riemannian viewpoint.

In this paper, we provide the complete solution to Problem 1.2 in the case when M is an arbitrary
Carnot group. See Theorems 2.4 and 2.6. The results of this paper extend our prior work [5, 7] on
the Heisenberg group H1. We recall from [5] and [7] that the solution to Problem 1.2 in the case
M = H1 is

(1.4) ∆(H1) = {(α, β) ∈ [0, 3]× [0, 4] : max{α, 2α− 2} ≤ β ≤ min{2α, α+ 1}};

see Figure 1(a) for an illustration of (1.1) and (1.4). In Figure 1(a) the set ∆(H1) is represented
by the shaded parallelogram while ∆S(H1) is represented by dots at the integer coordinates on the
edges and corners. Notice that the point (2, 2) is missing from ∆S(H1).

Figure 1. Solutions to Problems 1.2 and 1.1 in H1

The exact characterization of the range of the map in (1.3) for a general Carnot group G involves
two stages. In the first stage we determine a region ∆(G) ⊂ R2 where all possible dimension pairs
are contained. This stage utilizes precise mutual coverings of Euclidean, respectively Carnot-
Carathéodory, balls which generalize the well-known Ball-Box Theorem [30], [9]. In the second
stage we prove a sharpness result stating that for any (α, β) ∈ ∆(G) there exists a set A ⊂ G with
(dimH

d A,dimH
d0 A) = (α, β). To tackle the issue of sharpness we have to actually construct sets

of prescribed Euclidean dimension with the property that their Carnot-Carathéodory dimension is
either as small or as large as possible as allowed by the first part of our result. Constructing sets
of maximal Carnot-Carathéodory dimension is relatively straightforward while constructing sets
with minimal Carnot-Carathéodory dimension is considerably harder. The difficulty is due to the
non-integrability of the horizontal distribution.

We overcome this problem by developing a theory of fractal geometry in Carnot groups. We
shall consider self-similar iterated function systems and their invariant sets. The notion of self-
similarity is understood here in terms of the Carnot-Carathéodory (CC) metric. The associated
iterated function system will (typically) be a nonlinear, nonconformal system of polynomial type
in the underlying Euclidean space. One remarkable feature of our approach is that, as a byproduct
of our investigations of sub-Riemannian self-similar fractal geometry, we obtain exact formulas for
the dimensions of invariant sets for a class of nonlinear, nonconformal Euclidean iterated function
systems of polynomial type. These results are related to the ones in [20] and [22]. Example
2.10 (see also the discussion at the end of subsection 4.2) and section 7 indicate representative
examples. Our approach provides a dramatic simplification over existing methods for computing
such dimension (see Falconer [23] for an approach using a nonconformal subadditive thermodynamic
formalism). Our investigation of Carnot fractal geometry culminates in Theorem 2.8, which states,
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roughly speaking, that CC self-similar sets of prescribed sub-Riemannian dimension are almost
surely horizontal sets (in the sense described above).

Our main results (Theorems 2.4, 2.6 and 2.8) hold also for the box-counting dimensions, see the
discussion at the end of section 3 and Remarks 4.4 and 4.14. The discrepancy between box-counting
and Hausdorff dimension plays an important role in studies of the dimensions of Euclidean self-affine
sets and attractors for general nonlinear iterated function systems, see [23]. It is a long-standing
conjecture in dynamical systems that equality of Hausdorff and box-counting dimensions holds for
such attractors in great generality, see [24] or [34]. The fact that our results hold for both Hausdorff
and box-counting dimension, and that typically we obtain an equality of these two values, is an
essential feature of our approach with immediate applications to Euclidean fractal geometry.

The jet spaces Jk(Rm,Rn) provide a rich source of examples of Carnot groups. In section 6 we
illustrate our results by discussing in detail the form which they take in the jet space context. We
present a second Carnot group model for Jk(R,R) in which left translation is an affine map in the
underlying Euclidean geometry, whose linear part is given by a triangular matrix. In subsection 6.3
we relate our work to recent work of Falconer and Miao [18] on almost sure dimensions of invariant
sets of self-affine iterated function systems whose linear parts are given by upper triangular matrices.

The paper is structured as follows. In section 2 we recall basic definitions, set the notation and
formulate our main results as Theorems 2.4, 2.6 and 2.8. Sections 3 and 4 contain the proofs of
Theorems 2.4 and 2.6 respectively. In section 5 we extend Falconer’s almost sure dimension theory
to the setting of self-similar fractals in Carnot groups and prove Theorem 2.8. Section 6 contains
the discussion of jet spaces, while section 7 describes a more complicated example of a higher-step
Carnot group. A concluding section (section 8) presents open problems motivated by this work.

The results of this paper were announced in [8].

Acknowledgements. Research for this paper was initiated during visits of ZMB and JTT to the
School of Mathematics of the University of New South Wales in Fall 2006, and completed during a
visit of JTT and BW to the Department of Mathematics of the University of Bern in Summer 2007.
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topics. The figures and diagrams in the paper were produced using MAPLE.

2. Notation and statements of main results

2.1. Carnot groups. Let (G, ∗) be a Carnot group with stratified Lie algebra g = v1 ⊕ · · · ⊕ vs
such that [v1, vj ] = vj+1, j = 1, . . . , s − 1, and [v1, vs] = 0. The Euclidean space underlying G
has dimension N =

∑s
j=1mj while the homogeneous dimension of G is Q =

∑s
j=1 jmj , where

dim vj = mj , and the integer s is the step of the group. We denote by dE the Euclidean metric
in G.

The map on g which multiplies the elements of the j-th layer vj by j is a derivation. It generates
a group of automorphic anisotropic dilations {δr : r ∈ R+} of g defined by

δr(U1 + · · ·+ Us) = rU1 + · · ·+ rsUs, Uj ∈ vj ,

with the property that δrδt = δrt. We will also write δr for the corresponding automorphism
exp ◦δr ◦ log : G→ G; here exp denotes the (bijective) exponential map and log denotes its inverse.

The exponential map exp : g → G relates also to the group operation in G via the Baker–
Campbell–Hausdorff formula [51] as follows. For U and V in g

(2.1) exp(U) ∗ exp(V ) = exp(BCH(U, V )),

where

BCH(U, V ) = U + V +
1
2

[U, V ] +
1
12

([U, [U, V ]]− [V, [U, V ]]) + · · · .



DIMENSION COMPARISON IN CARNOT GROUPS 5

Since exp is a bijection we may parametrize G by g. Exponential coordinates in G are defined as
follows: denoting by {Ejk : j = 1, . . . , s; k = 1, . . . ,mj} a graded orthonormal basis for g (with
respect to some fixed inner product) and by {ejk : k = 1, . . . ,mj} the standard orthonormal basis
of Rmj , we identify x ∈ G with the point (x1, . . . , xs) ∈ Rm1 × · · · × Rms where

x = exp

 s∑
j=1

mj∑
k=1

〈xj , ejk〉Ejk

 .

We denote by πj : G→ Rmj the projection, given in exponential coordinates as πj(x1, . . . , xs) = xj .
The Haar measure on G, obtained by pushing forward the Lebesgue measure on g, is translation

invariant. In exponential coordinates, this is just the Lebesgue measure on RN . If we denote by
|E| the measure of a set E, then |δr(E)| = rQ|E|.

We can identify the Lie algebra g with the tangent space ToG of G at the neutral element o ∈ G.
For U ∈ g we have a unique left invariant vector field X = XU on G which agrees with U at o.
Vector fields corresponding to vectors in vj span a vector bundle Vj over G of dimension mj which
varies smoothly from point to point. The hypothesis on the Lie algebra stratification implies that
for all j = 1, . . . , s sections of Vj are obtained by taking linear combinations of commutators up to
order j of vector fields in the first layer V1 (called the horizontal distribution). We denote by HG
the horizontal distribution in G.

Example 2.1. We model the Heisenberg group Hn with the polynomial group law on R2n+1 given
by

p ∗ q =

x1 + y1, . . . , x2n + y2n, x2n+1 + y2n+1 +
1
2

n∑
j=1

(xjyn+j − xn+jyj)

 ,

where p = (x1, . . . , x2n+1) and q = (y1, . . . , y2n+1). This is a step two Carnot group of dimension
N = 2n + 1 with stratified Lie algebra g = v1 ⊕ v2, where v1 and v2 correspond to the vector
bundles V1 = span{X1, X2n} and V2 = span{X2n+1},

Xj =
∂

∂xj
− 1

2
xn+j

∂

∂x2n+1
and Xn+j =

∂

∂xn+j
+

1
2
xj

∂

∂x2n+1
for j = 1, . . . , n,

and

X2n+1 =
∂

∂x2n+1
.

The nontrivial commutation relations in g are [Xj , Xn+j ] = X2n+1 for each j = 1, . . . , n. The
homogeneous dimension of Hn is Q = 2n+ 2.

Example 2.2. We model the Engel group E with the polynomial group law on R4 given by

x ∗ y = (x1 + y1, x2 + y2, x3 + y3 + x2y1, x4 + y4 + x3y1 +
1
2
x2y

2
1),

where x = (x1, x2, x3, x4) and y = (y1, y2, y3, y4). This is a step three Carnot group of dimension
N = 4 with stratified Lie algebra g = v1 ⊕ v2 ⊕ v3, where v1, v2 and v3 correspond to the vector
bundles V1 = span{U1, U2}, V2 = span{V }, and V3 = span{W},

U1 =
∂

∂x1
, U2 =

∂

∂x2
+ x1

∂

∂x3
+

1
2
x2

1

∂

∂x4
, V =

∂

∂x3
+ x1

∂

∂x4
, and W =

∂

∂x4
.

The nontrivial commutation relations are [U1, U2] = V and [U1, V ] = W . The homogeneous
dimension of E can easily be calculated as Q = 2 + 1 · 2 + 1 · 3 = 7.
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2.2. Carnot-Carathéodory metric. We equip v1 with an inner product 〈·, ·〉 (for instance, by
restricting the above inner product on g) and extend it as a left invariant inner product on V1. The
Carnot-Carathéodory (CC) metric dcc is the standard sub-Riemannian metric defined using this
inner product. For x, y ∈ G, dcc(x, y) is the infimum of the lengths of all horizontal paths joining x
and y. Here an absolutely continuous path γ : [0, 1]→ G is said to be horizontal if its tangents lie
in the horizontal bundle V1 almost everywhere, i.e., γ′(t) ∈ (V1)γ(t) for almost every t ∈ [0, 1], and

the length of γ is
∫ 1

0 〈γ
′(t), γ′(t)〉1/2γ(t) dt. Note that because of the bracket generating property of V1,

and in view of Chow’s theorem [9], [30], every pair of points x, y ∈ G can be joined by a horizontal
path, whence dcc(x, y) is finite. The Carnot-Carathéodory metric is left invariant:

dcc(x ∗ y, x ∗ z) = dcc(y, z) for all x, y, z ∈ G,
and compatible with the dilations:

dcc(δr(x), δr(y)) = rdcc(x, y) for all x, y ∈ G and r > 0.

We write |x|cc = dcc(x, o) and |x|E = dE(x, o). Observe that

(2.2) |x|E ≤ |x|cc for all x ∈ G,
with equality if x = (x1, 0, . . . , 0) in exponential coordinates (since in this case γ : [0, 1] → G,
γ(t) = δt(x), is horizontal). An immediate consequence of (2.2) and (2.1) is the following fact:

(2.3) π1 : (G, dcc)→ (Rm1 , dE) is 1-Lipschitz.

Note that πj is never Lipschitz from (G, dcc) to (Rmj , dE) when j ≥ 2, see [9] or [30].
The topology generated by the Carnot-Carathéodory metric is the same as that defined by

the Euclidean metric on the underlying space. However the two metrics are never bi-Lipschitz
equivalent if s > 1. If we denote by Bcc(p, r) the CC ball centered at p ∈ G of radius r > 0 we see
that |Bcc(p, r)| = rQ|Bcc(0, 1)| which implies that the Hausdorff dimension of G with respect to the
CC metric is equal to Q. Evidently, Q > N when G is nonabelian, i.e., s > 1. For example,

Q = 2n+ 2 = dimcc Hn > dimE Hn = 2n+ 1 = N.

In the case of the Engel group E the difference is even more dramatic:

Q = 7 = dimcc E > dimE E = 4 = N.

One of the main goals of this paper is to compare the Hausdorff dimensions of arbitrary subsets of
arbitrary Carnot groups as measured with the Euclidean versus the CC metric.

2.3. Hausdorff and box-counting dimensions. In order to state our main results let us quickly
recall for the sake of completeness the definitions of Hausdorff measure and Hausdorff and box-
counting dimension in the general setting of a metric space (X, d). (For more information see [21],
[37], [44].) Given A ⊂ X, the diameter of A is

diam(X,d)(A) = sup{d(x, y) : x, y ∈ A}.
We write diam = diam(X,d) when there is no risk of confusion, and abbreviate diamE = diam(G,dE)

and diamcc = diam(G,dcc).
For 0 ≤ t <∞, 0 < δ ≤ ∞ and A ⊂ X, the t-dimensional Hausdorff premeasure of A is

Ht(X,d),δ(A) = inf
∞∑
i=1

diam(Ai)t,

where the infimum is taken over all coverings of A by sets {Ai} with diameter at most δ. For fixed
t and A, the quantity Ht(X,d),δ(A) is non-decreasing in δ; the quantity

Ht(X,d)(A) = Ht(X,d),0(A) := sup
δ>0
Ht(X,d),δ(A)
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is the t-dimensional Hausdorff measure of A. The Hausdorff dimension of A is

dimH
(X,d)A := inf{t ≥ 0 : Ht(X,d)(A) = 0}.

As before we abbreviate Ht(G,dE),δ = HtE,δ and Ht(G,dcc),δ = Htcc,δ and write dimH
E ,dimH

cc for the
corresponding Hausdorff dimensions.

Let us turn now to the definition of the box-counting dimension. For ε > 0 and a bounded set
A ⊂ X we let N(X,d)(A, ε) be the minimum number of sets of diameter ε needed to cover A. The
lower (resp. upper) box-counting dimension of A is

dimB
(X,d)A := lim inf

ε→0

logN(X,d)(A, ε)
log 1/ε

resp.

dimB
(X,d)A := lim sup

ε→0

logN(X,d)(A, ε)
log 1/ε

and the box-counting dimension of A is

dimB
(X,d)A = lim

ε→0

logN(X,d)(A, ε)
log 1/ε

if the limit exists; we abbreviate N(G,dE)(A, ε) = NE(A, ε), N(G,dcc)(A, ε) = Ncc(A, ε) and write

dimB
E , dimB

cc, dimB
E ,dimB

cc,dimB
E , dimB

cc for the corresponding dimensions.
We record the basic estimates which relate Hausdorff and box counting dimensions in arbitrary

metric spaces:

dimH
(X,d)A ≤ dimB

(X,d)A ≤ dimB
(X,d)A

for arbitrary bounded sets A ⊂ X. See, e.g., [21, (3.17)] for the case X = Rn.
The bulk of this paper concerns Hausdorff dimension. To soften the notation we write dimE =

dimH
E , dimcc = dimH

cc.

2.4. Statements of the main results and discussion. We define two functions β± which quan-
tify the solution to Problem 1.2.

Definition 2.3. Let G be a step s Carnot group with stratified Lie algebra g = v1⊕· · ·⊕vs. Denote
by mj the dimension of vj , and by N (resp. Q) the topological (resp. homogeneous) dimension
of G. Let m0 = ms+1 = 0. The lower dimension comparison function for G is the function
β− = βG

− : [0, N ]→ [0, Q] defined by

(2.4) β−(α) =
`−∑
j=0

jmj + (1 + `−)(α−
`−∑
j=0

mj),

where `− = `−(α) ∈ {0, . . . , s− 1} is the unique integer satisfying

(2.5)
`−∑
j=0

mj < α ≤
1+`−∑
j=0

mj .

The upper dimension comparison function for G is the function β+ = βG
+ : [0, N ] → [0, Q] defined

by

(2.6) β+(α) =
s+1∑
j=`+

jmj + (−1 + `+)(α−
s+1∑
j=`+

mj),
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where `+ = `+(α) ∈ {1, . . . , s} is the unique integer satisfying

(2.7)
s+1∑
j=`+

mj < α ≤
s+1∑

j=−1+`+

mj .

With this notation in place, our first result is the following.

Theorem 2.4. In any Carnot group G, we have

(2.8) β−(dimE A) ≤ dimccA ≤ β+(dimE A)

for every A ⊂ G. For bounded A, the inequalities in (2.8) hold also if Hausdorff dimension is
replaced by either upper or lower box-counting dimension.

Let us comment on the formulae in (2.4) and (2.6). The first component
∑`−

j=0 jmj in (2.4) can
be interpreted as a weighted integer part of α with respect to the lowest possible strata in the
stratification of the Lie algebra of G. The second component (1+`−)(α−

∑`−
j=0mj) is the weighted

fractional part of α with weight 1 + `−. The upper dimension comparison function β+ has a dual
interpretation starting from the highest possible strata.

Remark 2.5. In the case when M = G is a Carnot group, the formula in [30, §0.6.B] for the CC
Hausdorff dimension of a generic k-dimensional submanifold of a regular sub-Riemannian manifold
M precisely coincides with βM+ (k).

The proof of Theorem 2.4 relies on certain optimal covering lemmas relating mutual coverings of
Euclidean balls by Carnot-Carathéodory balls and vice versa. Such covering lemmas can be viewed
as extensions and generalizations of the Ball-Box theorem (Theorem 3.4).

The sharpness of Theorem 2.4 is demonstrated in our next statement.

Theorem 2.6. For all 0 ≤ α ≤ N and β−(α) ≤ β ≤ β+(α) there exists a bounded set Aα,β ⊂ G
with

(α, β) = (dimE Aα,β, dimccAα,β) = (dimB
E Aα,β, dimB

ccAα,β).

In Carnot groups, the underlying Euclidean metric plays the role of taming Riemannian metric.
Gromov’s problem (1.3) thus admits the solution

∆(G) = {(α, β) ∈ [0, N ]× [0, Q] : β−(α) ≤ β ≤ β+(α)}.
Note that ∆(G) is a convex polygon since β± are monotone increasing piecewise linear. Further-
more, β−(α) ≤ β+(α) and β+(α) = Q− β−(N − α) for all α ∈ [0, N ].

The solution to Problem 1.2 in Carnot groups depends only on the dimensions of the Lie algebra
strata, and not on the algebraic relations which hold therein. By way of contrast, the solution to
Problem 1.1 (in currently known cases) depends on these algebraic relations. See subsection 8.1 for
further discussion.

Figure 2 shows the solutions to Problem 1.2 in the Heisenberg and Engel groups: ∆(Hn) is
the convex domain in R2 bounded by the graphs of the functions β+(α) = min{2α, α + 1} and
β−(α) = max{α, 2α − 2n}, while ∆(E) is the domain bounded by the graphs of the functions
β+(α) = min{3α, 2α+ 1, α+ 3} and β−(α) = max{α, 2α− 2, 3α− 5}.

To prove Theorem 2.6 we note that it suffices to construct such sets Aα,β in case β = β±(α) and
α ∈ [0, N ]. This follows from the monotonicity of Hausdorff dimension and the monotonicity of the
functions β±. Indeed, assuming that such sets have been constructed in this case, for an arbitrary
(α, β) ∈ ∆(G), the set

Aα,β := Aα,β−(α) ∪A(β+)−1(β),β

satisfies dimE Aα,β = dimB
E Aα,β = α and dimccAα,β = dimB

ccAα,β = β.
Intuitively a set A with dimccA = β+(dimE A) tends to be as vertical as possible in that it lies

in the direction of higher strata in the Lie algebra. In contrast, dimccA = β−(dimE A) means that
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Figure 2. Dimension comparison plot in (a) the Heisenberg group Hn; (b) the
Engel group E

A is as horizontal as possible; A lies in the direction of lower strata. Vertical sets are relatively
easy to find, while horizontal sets are considerably more challenging. The difficulty stems from
the non-integrability of the horizontal distribution V1. Horizontal sets in two step groups were
first constructed by Strichartz [55, 56] as L∞ graphs. Our approach realizes such sets via fractal
geometry. We consider invariant sets for iterated function systems (IFS) comprised of CC self-
similarities. Such sets are naturally tangent to lower strata. In the construction of horizontal sets
our starting point is the following proposition.

Proposition 2.7. Let F1, . . . , FM be contracting similarities of G in the form Fi(p) = pi∗δri(p) for
some pi ∈ G and ri < 1. Let fi be the first layer projection of Fi, fi(p1) = pi1+rip1, and assume that
the IFS {f1, . . . , fM} on Rm1 satisfies the open set condition (see subsection 4.2 for the definition).
Let α ∈ (0,m1] be the similarity dimension for the system {f1, . . . , fM} and {F1, . . . , FM}, e.g., α
is the unique solution to the equation

∑M
i=1 r

α
i = 1. Then

0 < HαE(K) and Hαcc(K) <∞,

where K denotes the invariant set for the IFS {F1, . . . , FM}. In particular, dimEK = dimccK = α.

Proposition 2.7 generates horizontal sets in the lowest stratum (0 ≤ α ≤ m1). Note that in this
range β−(α) = α. To obtain horizontal sets in higher strata (m1 ≤ α ≤ N) as required by Theorem
2.6 we perform an iterative construction starting from a horizontal set Am1 of dimension m1 and
taking successive extensions of the IFS to higher strata. The precise statements in this direction
are Theorem 4.6 and Proposition 4.11 in section 4.2 where we also review some basic results from
the theory of iterated function systems that are needed for the proofs.

Proposition 2.7 also motivates our next result, on the almost sure horizontal nature of CC self-
similar sets. While it is not true that arbitrary CC self-similar IFS in G satisfying the open set
condition generate horizontal sets (as can be seen, for example, by considering Cantor sets along
the vertical axis in H1), it is nevertheless true in a certain sense that generic IFS of this type have
horizontal invariant sets. This claim is made more precise in the following theorem.

We consider CC self-similar IFS {F1, . . . , FM} on G consisting of maps of the form

Fi(p) = pi ∗ δri(p), i = 1, . . . ,M,

and denote by r = (r1, . . . , rM ) ∈ (0, 1)M and P = (p1, . . . , pM ) ∈ GM the vectors of contraction
ratios and translation parameters. We associate two numbers α = α(r) and β = β(r) as follows:

(2.9) β(r) = min{Q, t},
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where t is the unique nonnegative value satisfying
∑M

i=1 r
t
i = 1, and

(2.10) α(r) = (β−)−1(β(r)).

We write K(P) for the invariant set of the IFS {F1, . . . , FM}. Theorem 2.8 gives precise dimension
formulas for K(P) for almost every P ∈ GM with respect to the M -fold product Haar measure
on GM .

Theorem 2.8. Let G and r be as above, and let α = α(r) and β = β(r) be specified as in (2.10)
and (2.9). If ri < 1

2 for all i = 1, . . . ,M , then the following statements hold:

(a) dimccK(P) ≤ β for all P ∈ GM ,
(b) dimEK(P) ≤ α for all P ∈ GM ,
(c) dimccK(P) = β for a.e. P ∈ GM ,
(d) dimEK(P) = α for a.e. P ∈ GM .

In particular, dimccK(P) = β−(dimEK(P)) for a.e. P ∈ GM . The same results hold if Haus-
dorff dimension is replaced by either upper or lower box-counting dimension, and the box-counting
dimension exists for almost every P.

In informal terms, Theorem 2.8 asserts that generic self-similar sets of a fixed Euclidean Haus-
dorff dimension in a Carnot group, are horizontal sets. One can contrast this with Remark 2.5,
according to which generic submanifolds of fixed dimension are maximally nonhorizontal sets. Con-
sider the collection of all subsets of a fixed Euclidean Hausdorff dimension in a Carnot group (or
sub-Riemannian manifold). It would be interesting to understand the prevalence of horizontal or
maximally nonhorizontal sets within this collection.

Note the close relation between Theorems 2.4 and 2.8. Inequality (a) follows from the gen-
eral theory of iterated function systems on metric spaces, and (b) follows directly from (a) and
Theorem 2.4:

dimEK(P) ≤ (β−)−1(dimccK(P)) ≤ (β−)−1(β) = α

for every P. Moreover, (c) follows directly from (d) and Theorem 2.4:

dimccK(P) ≥ β−(dimEK(P)) ≥ β−(α) = β

for almost every P. It thus suffices to prove (d), more precisely, to show that

dimEK(P) ≥ α

for almost every P ∈ GM . The (difficult) potential theoretic argument for this inequality is pre-
sented in section 5.2; it utilizes ideas and techniques from the corresponding theory of almost sure
dimensions of self-affine sets due to Falconer [20, 22]. We note also that Theorem 2.8 provides
another (albeit nonconstructive) alternative approach to Theorem 4.6 and Proposition 4.11 for
proving the existence of horizontal sets for each value of α ∈ [0, N ].

Example 2.9. We illustrate Proposition 2.7 by describing the b-adic Heisenberg cube. Fix a positive
integer b ≥ 2 and consider the following collection of b2 contractive similarities:

Fk1k2 : H1 → H1, Fk1k2(p) = pk1k2 ∗ δ1/b(p
−1
k1k2
∗ p),

where kj ∈ {0, . . . , b−1} and pk1k2 = (k1, k2, 0). Each such map is a similarity of H1 with contraction
ratio b−1, hence the collection {Fk1k2}k1,k2=0,...,b−1 defines a unique nonempty compact invariant
set Qb ⊂ H1 characterized by the identity

Qb =
⋃

k1,k2=0,...,b−1

Fk1k2(Qb).

Then dimE Qb = dimccQb = 2. Figure 3 shows the 2-adic Heisenberg square. Further analytical
properties of the Heisenberg square and related fractals have been studied in detail in [4].
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Figure 3. The 2-adic Heisenberg square Q2 ⊂ H1

In a similar fashion we may consider the following collection of b4 contractive similarities:

Fk1k2k3 : H1 → H1, Fk1k2k3(p) = pk1k2k3 ∗ δ1/b(p
−1
k1k2k3

∗ p),

where k1, k2 ∈ {0, . . . , b−1}, k3 ∈ {0, . . . , b2−1} and pk1k2k3 = (k1, k2, k3). Again, each such map is
a similarity of H1 with contraction ratio b−1 and the collection of these maps generates an invariant
set Tb ⊂ H1 characterized by the identity

(2.11) Tb =
⋃

k1,k2=0,...,b−1
k3=0,...,b2−1

Fk1k2k3(Tb).

Then

(2.12) dimE Tb = 3

and

(2.13) dimcc Tb = 4.

Equation 2.11 shows H1 may be tiled with congruent copies of Tb (we emphasize that congruence
here refers to isometric copies in the sub-Riemannian metric). Note that this tiling is a self-affine
fractal tiling in the underlying Euclidean geometry. Strichartz [55], [56] was the first to consider
tilings of this type in general two-step nilpotent Lie groups; see also Gelbrich [29].

Example 2.10. For further illustration, let us consider the following IFS generating an invariant
set in E which we call the Engel square. With x = (x1, x2, x3, x4) denoting a general element of E
we note first that the Engel dilations take the form δr(x) = (rx1, rx2, r

2x3, r
3x4), while the group

inverse of x is (−x1,−x2,−x3 + x1x2,−x4 + x1x3 − 1
2x

2
1x2). Consider the IFS F1(x) = δ1/2(x),

F2(x) = p1 ∗ δ1/2(p−1
1 ∗x), F3(x) = p2 ∗ δ1/2(p−1

2 ∗x), and F4(x) = p1 ∗ p2 ∗ δ1/2(p−1
2 ∗ p

−1
1 ∗x), where

p1 = (1, 0, 0, 0) and p2 = (0, 1, 0, 0). It is clear that projection to the lowest stratum R2 gives a
Euclidean IFS satisfying the open set condition whose invariant set is the unit square [0, 1]2. Let us
denote by Q the invariant set of {F1, F2, F3, F4} which we call the Engel square. Then Proposition
2.7 gives dimccQ = dimE Q = 2. Note that F3 and F4 are quadratic maps, see (4.29) and (4.30).
In Figure 4, we show the projections of Q in the hyperplanes x3 = 0, x2 = 0 and x1 = 0. The
projection of Q in the hyperplane x4 = 0 coincides with the 2-adic Heisenberg square; see section
6 for further details on the relation between the Heisenberg and Engel groups.

As demonstrated in Example 2.10, an interesting corollary of Proposition 2.7, its more general
cousin Proposition 4.11, and Theorem 2.8 is a formula for calculating the dimensions of invariant
sets in the underlying Euclidean space for a certain class of nonlinear IFS, which are not necessarily
even generated by Euclidean contractions. According to the Baker–Campbell–Hausdorff formula,
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Figure 4. 3-dimensional projections of the Engel square

self-similarities of a step s Carnot group are polynomial maps of degree s−1. This provides a novel
approach for calculating dimension for a class of polynomial Euclidean IFS. In the Heisenberg group
the relevant IFS are generated by affine maps. Dimension formulae for Euclidean self-affine sets
have been obtained by Falconer [20, 22], and for Heisenberg horizontal self-affine sets by the first
two authors [7].

3. Proof of Theorem 2.4

Denote by HαE , resp. Hβcc the α-, resp. β-dimensional Hausdorff measures with respect to the
Euclidean, resp. CC, metric. The Hausdorff dimension statements in Theorem 2.4 are a consequence
of the following inequalities relating these measures.

Proposition 3.1 (Hausdorff measure comparison). Let 0 ≤ α ≤ N and β±(α) be as in Definition
2.3 and let b > 0. There exists L = L(G, b) so that

(3.1) Hβ+(α)
cc (A)/L ≤ HαE(A) ≤ LHβ−(α)

cc (A)

for all A ⊂ Bcc(0, b), where Bcc(0, R) denotes the CC ball of radius R centered at the identity 0 ∈ G.

The inequalities in (3.1) immediately imply those in (2.8). Proposition 3.1 is established with
the aid of the following ball covering lemma (compare also the Exercise in section 0.6.C of [30]):

Lemma 3.2 (Covering Lemma). Let K ⊂ G be a bounded set.
(a) For each ` ∈ {2, . . . , s} there exists a constant M+ = M+(`,K) such that every Euclidean

ball with radius 0 < r < 1 can be covered by a collection of CC balls with radius r1/(`−1) of
cardinality no more than M+/r

λ+(`), where

λ+(`) :=
1

`− 1

s+1∑
j=`

jmj −
s+1∑
j=`

mj .

(b) For each ` ∈ {1, . . . , s− 1} there exists a constant M− = M−(`,K) such that every CC ball
with radius 0 < r < 1 can be covered by a collection of Euclidean balls with radius r`+1 of
cardinality no more than M−/r

λ−(`), where

λ−(`) := (`+ 1)
∑̀
j=0

mj −
∑̀
j=0

jmj .

For proving Lemma 3.2 we require some preliminary results. First we establish a Euclidean
distortion estimate for left translation in Carnot groups.
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Lemma 3.3 (Euclidean distortion). Let K1 and K2 be bounded subsets of G. Then there exists a
constant C1(K1,K2) so that

(3.2) dE(p ∗ q, p ∗ q0) ≤ C1(K1,K2)dE(q, q0)

whenever p ∈ K1 and q, q0 ∈ K2. In particular, if p and q are points in a compact set K ⊂ G, then

(3.3) dE(p−1 ∗ q, 0) ≤ C1(K)dE(q, p)

where C1(K) = C1(K−1,K), and

(3.4) p−1 ∗BE(p, r) ⊆ BE(0, C1(K)r).

Proof. Inequality (3.2) follows from the structure of the Baker–Campbell–Hausdorff formula, which
implies that for fixed p ∈ G, the coordinate expressions of the map h : G → G given by h(q) =
p ∗ q− p ∗ q0, are polynomials of degree at most s− 1 and h(q0) = 0. Inequality (3.3) and inclusion
(3.4) are easy consequences. �

In the proof of Lemma 3.2, we shall primarily work with boxes instead of balls. We recall below
the notion of boxes in the Euclidean and Carnot metrics and their relation to balls.

The Euclidean box with center 0 and radius r is the N -cube BoxE(0, r) = [−r, r]N and the
Euclidean box with center p ∈ G and radius r is the translated cube BoxE(p, r) = p+ BoxE(0, r).
We introduce the Carnot box with center 0 and radius r as the set

Boxcc(0, r) = [−r, r]m1 × [−r2, r2]m2 × · · · × [−rs, rs]ms ,

and the Carnot box with center p ∈ G and radius r as the translated box Boxcc(p, r) = p∗Boxcc(0, r).
Note that, for r � 1, the Carnot box is much flatter in nonhorizontal directions than its Euclidean

counterpart. In fact

Vol(Boxcc(0, r)) = 2NrQ � 2NrN = Vol(BoxE(0, r)).

Note also that that the Carnot box with center p 6= 0 is twisted and not a Cartesian product as is
the case for its Euclidean counterpart.

The fundamental result relating Carnot balls and Carnot boxes is the Ball-Box Theorem, see
Montgomery [47, Theorem 2.10] or Gromov [30, 0.5.A]. For future reference, we also record the
Ball-Box Theorem in the Euclidean setting.

Theorem 3.4 (Ball-Box Theorem). For all r > 0, we have

(3.5) BoxE(p, r/
√
N) ⊂ BE(p, r) ⊂ BoxE(p, r).

Moreover, there exists a constant CBB ≥ 1 so that

(3.6) Boxcc(p, r/CBB) ⊂ Bcc(p, r) ⊂ Boxcc(p, CBBr)

for all r > 0.

The following covering theorem, see [44], [31, Chapter 1] is a useful tool for constructing efficient
coverings with balls in metric spaces.

Theorem 3.5 (5r Covering Theorem for Balls). Every family F of closed balls with uniformly
bounded radius in a separable metric space X contains a pairwise disjoint subfamily G such that⋃

B∈F
B ⊂

⋃
B∈G

5B,

where 5B = B(p, 5r) when B = B(p, r) is the ball centered at p ∈ X with radius r > 0.

The proof of Lemma 3.2 uses the following covering theorem for Carnot boxes which is a straight-
forward consequence of the 5r Covering Theorem for balls and the Ball-Box Theorem.
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Lemma 3.6 (Covering Theorem for Boxes). Fix r > 0, then every subset A ⊂ G can be covered by a
family of boxes {Boxcc(p, r) : p ∈ A′}, where A′ ⊂ A, so that the family {Boxcc(p, r/5C2

BB) : p ∈ A′}
is pairwise disjoint.

Proof. Let F = {Bcc(p, r/CBB) : p ∈ A} and let G = {Bcc(p, r/5CBB) : p ∈ A′} be the pairwise
disjoint subfamily whose existence is guaranteed by Theorem 3.5 applied in the metric space (G, dcc).
Then it follows that

A ⊂
⋃
p∈A′

Bcc(p, r/CBB).

The Ball-Box Theorem, specifically (3.6), yields that {Boxcc(p, r) : p ∈ A′} is a covering of A, and
also that {Boxcc(p, r/5C2

BB) : p ∈ A′} is pairwise disjoint. This completes the proof. �

With these preparations at hand, we commence the proof of Lemma 3.2.

Proof of Lemma 3.2. We first prove (b) as (a) requires a more subtle argument due to the twisting
involved in the definition of Carnot boxes. The proof of (b) is accomplished in two stages. Let
Bcc(p, r) be a CC ball with radius 0 < r < 1. In the first stage we assume that p = 0 and
estimate the number of Euclidean boxes BoxE(q, r`+1) needed to cover the Carnot box Boxcc(0, r)
where the centers q lie in Boxcc(0, r). To do so, first observe that since Boxcc(0, r) is compact, we
may assume the centers of these boxes lie in a finite set I ⊂ Boxcc(0, r). Next observe that both
Boxcc(0, r) and BoxE(q, r`+1) have the structure of a Cartesian product of intervals. The sides of
BoxE(q, r`+1) all have length 2r`+1, while the lengths of the sides of Boxcc(0, r) vary according
to the strata dimensions of the Lie algebra of G. To estimate the cardinality #I of I, we simply
multiply together the number of intervals of length 2r`+1 needed to cover intervals of length 2r
(m1 times), 2r2 (m2 times), and so on. Note that since r < 1, it follows that 2rj ≤ 2r`+1 when
j ≥ `+ 1, and so we only require one interval of length 2r`+1 to cover each of the intervals coming
from the (j + 1)-st through s-th layers of Boxcc(0, r). Thus

#I =
s∏
j=0

([
rj

r`+1

]
+ 1
)mj

=
`+1∏
j=0

([
rj

r`+1

]
+ 1
)mj

≤
`+1∏
j=0

(
rj + r`+1

r`+1

)mj
≤

`+1∏
j=0

(
2rj

r`+1

)mj
=

2
P`+1
j=0mj

rλ−(`)
.

(3.7)

An application of the Ball-Box theorem completes the proof in the first stage.
In the second stage, we extend the above to general Carnot boxes Boxcc(p, r). First, we note

that (3.6), the statement from the first stage, (3.5), and Lemma 3.3 show that

Bcc(q, r/N
1

2(`+1)C1(K)
1
`+1CBB) ⊂

(
Boxcc(q, r/N

1
2(`+1)C1(K)

1
`+1 )

)
⊂ q ∗

⋃
p′∈I

BoxE(p′, r`+1/N
1
2C1(K))


⊂ q ∗

⋃
p′∈I

BE(p′, r`+1/C1(K))


⊂
⋃
p′∈I

BE(q ∗ p′, r`+1)).

Since Bcc(p, r) is compact, there is a finite subset J ⊂ Bcc(p, r) such that

Bcc(p, r) ⊂
⋃
q∈J

Bcc(q, r/2
1

2(`+1)C1(K)
1
`+1CBB) ⊂

⋃
q∈J

⋃
p′∈I

BE(q ∗ p′, r`+1).
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By the above 5r covering theorem in combination with a volume counting argument we see that
#J depends only on the constant 2

1
2(`+1)C1(K)

1
`+1CBB. Letting M− = (#J)2

P`+1
j=0mj and using

(3.7) completes the proof of (b).
We now turn to the proof of (a). Let BE(p, r) be a Euclidean ball with radius 0 < r < 1. In the

first stage of the proof we assume again that p = 0 and estimate the number of Carnot boxes of the
form Boxcc(q, r

1
`−1 ) that are required to cover the Euclidean box BoxE(0, r) = [−r, r]N . Since the

Carnot boxes Boxcc(q, r
1
`−1 ) are twisted and do not have a simple Cartesian structure, we cannot

employ the rectilinear covering argument used in the proof of (b). Instead we use volume estimates
arising from Lemma 3.6 in the following manner. First note that if 0 < r < 1 and ` ∈ {2, . . . , s},
then

Boxcc(0, r
1
`−1 ) ⊇ [−r, r]

P`−1
j=0mj × [−r

`
`−1 , r

`
`−1 ]m` × · · · × [−r

s
`−1 , r

s
`−1 ]ms .

It follows that if we are to cover BoxE(0, r) with Carnot boxes of the form of Boxcc(q, r
1
`−1 ), we

need only consider centers q for which the coordinates vanish up to the (`−1)-st layer, in particular

q ∈ B̂oxE(0, r) = {q ∈ BoxE(0, r) : q = (0, . . . , 0, x`, . . . , xs)},
where xk = (xk1, . . . , xkmk) ∈ Rmk . By compactness and Lemma 3.6, there is a finite set I ⊂
B̂oxE(0, r) so that

{Boxcc(p, r
1
`−1 ) : p ∈ I}(3.8)

covers BoxE(0, r) and the elements of

{Boxcc(p, r
1
`−1 /5C2

BB) : p ∈ I}(3.9)

are pairwise disjoint.
Let us note that the union of the elements in the family appearing in (3.8) is in general a larger

set than BoxE(0, r) and will be denoted by Ω.
If p ∈ B̂oxE(0, r) and q ∈ Boxcc(0, r

1
`−1 ), then the Baker–Campbell–Hausdorff formula and an

argument similar to the one in the proof of Lemma 3.3, show that there is a constant C2(K) such
that p ∗ q ∈ Ω̃ where

Ω̃ = [−r
1
`−1 , r

1
`−1 ]m1 × · · · × [−r

`−2
`−1 , r

`−2
`−1 ]m`−2

× [−r, r]m`−1 × [−C2(K)r, C2(K)r]
Ps+1
j=` mj .

It follows that BoxE(0, r) ⊂ Ω ⊂ Ω̃, and since the family appearing in (3.9) is pairwise disjoint, we
have

(#I)
2Nr

Q
`−1

(5C2
BB)Q

≤ Vol(Ω) ≤ Vol(Ω̃) = 2NC2(K)
Ps+1
j=` mj r

1
`−1

P`−2
j=0 jmj+

Ps+1
j=`−1mj ,

which implies

(3.10) #I ≤ (5C2
BB)QC2(K)

Ps+1
j=` mj

1
rλ+(`)

.

Since BE(0, r) ⊂ BoxE(0, r) the proof in the first stage is complete. Again, in the second stage of
the proof we extend to the case of general centers. To begin, let p be an arbitrary point in K; since
BE(p, r) is compact, there is a finite set J ⊂ BE(p, r) so that

BE(p, r) ⊂
⋃
q∈J

BE(q, r/C`−1
BB C1(K)),

where #J depends only on the constant C`−1
BB C1(K) as follows from the 5r covering theorem and

counting.
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Using Lemma 3.3, (3.5), the result from the first stage and (3.6), it follows that

q−1 ∗ (BE(q, r/C`−1
BB C1(K))) ⊂ BE(0, r/C`−1

BB ) ⊂ BoxE(0, r/C`−1
BB )

⊂
⋃
p′∈I

Boxcc(p′, r
1
`−1 /CBB)

⊂
⋃
p′∈I

Bcc(p′, r
1
`−1 ),

hence

BE(q, r/C`−1
BB C1(K)) ⊂

⋃
p′∈I

Bcc(q ∗ p′, r
1
`−1 )

and
BE(p, r) =

⋃
q∈J

⋃
p′∈I

Bcc(q ∗ p′, r
1
`−1 ).

Letting M+ = (#J)(5C2
BB)QC2(K)

Ps+1
j=` mj and using (3.10) completes the proof. �

Next we make preparations for the proof of Proposition 3.1. First we introduce the α-dimensional
spherical Hausdorff premeasure of A which is defined in a similar way to the Hausdorff premeasure.
It is given by

Sα(X,d),δ(A) = inf
∞∑
i=1

diam(B(pi, ri))α,

where the infimum is taken over all coverings of A by metric balls {B(pi, ri)} with diameter at most
δ. For fixed α and A, the quantity Sα(X,d),δ(A) is non-decreasing in δ and we let

Sα(X,d)(A) = Sα(X,d),0(A) := sup
δ>0
Sα(X,d),δ(A)

be the α-dimensional spherical Hausdorff measure of A. The relationship between Hausdorff mea-
sure and spherical Hausdorff measure is summarized in the following proposition, see [44].

Proposition 3.7. For each α, Hα(X,d) and Sα(X,d) are Borel regular (outer) measures on (X, d).
Moreover,

Hα(X,d)(A) ≤ Sα(X,d)(A) ≤ 2αHα(X,d)(A)
for all A ⊂ X.

Proposition 3.7 shows that up to a multiplicative constant, the same value is obtained if the
Hausdorff measure Hα(X,d) is replaced by its spherical counterpart Sα(X,d). In particular, the associ-
ated notions of Hausdorff dimension and spherical Hausdorff dimension coincide. We replace the
subscript (X, d) with E or cc when d is the Euclidean or Carnot-Carathéodory metric. We now
commence the proof of Proposition 3.1.

Proof of Proposition 3.1. First we prove the existence of a constant L1 = L1(G, b) such that
Hβ+(α)
cc (A)/L1 ≤ HαE(A) for every A ⊂ Bcc(0, b). Let FE = {BE(pi, ri)}∞i=1 be an arbitrary covering

of A with Euclidean balls such that 0 < ri < δ/2 < 1 and let ` ∈ {2, . . . , s}; part (a) of Lemma 3.2
implies that

A ⊂
∞⋃
i=1

BE(pi, ri) ⊂
∞⋃
i=1

n⋃
j=1

Bcc(pij , r
1
`−1

i )

for a suitable family of CC balls {Bcc(pij , r
1
`−1

i ) : j = 1, . . . , n}, where

n ≤ M+(b)

r
λ+(`)
i

.
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It follows that

S(`−1)(α+λ+(`))
cc,δ (A) ≤

∞∑
i=1

n∑
j=1

(2r
1
`−1

i )(`−1)(α+λ+(`))

≤M+(b)2(`−1)(α+λ+(`))
∞∑
i=1

rαi

= M+(b)2(`−1)(α+λ+(`))−α
∞∑
i=1

(diamE BE(pi, ri))
α .

Since FE was arbitrary, we conclude that

S(`−1)(α+λ+(`))
cc,δ (A) ≤M+(b)2(`−1)(α+λ+(`))−αSαE,δ(A).

Letting δ → 0, it follows that

S(`−1)(α+λ+(`))
cc (A) ≤M+(b)2(`−1)(α+λ+(`))−αSαE(A),

and by Proposition 3.7 we have

(3.11) H(`−1)(α+λ+(`))
cc (A) ≤M+(b)2(`−1)(α+λ+(`))HαE(A).

When ` = `+ is the value in (2.7) we have

(3.12) β+(α) = (`− 1)(α+ λ+(`)),

and (3.11) becomes

(3.13) Hβ+(α)
cc (A) ≤M+(b)2β+(α)HαE(A) ≤ L1HαE(A)

where L1 = M+(b)2Q.
Next we prove the existence of a constant L2 = L2(G, b) such that HαE(A) ≤ L2Hβ−(α)

cc (A) for
every A ⊂ Bcc(0, b). Let Fcc = {Bcc(pi, ri)}∞i=1 be an arbitrary covering of A with Carnot balls
such that 0 < ri < δ/2 and let ` ∈ {1, . . . , s− 1}; Lemma 3.2 implies that

A ⊂
∞⋃
i=1

Bcc(pi, ri) ⊂
∞⋃
i=1

n⋃
j=1

BE(pij , r`+1
i )

for a suitable family of Euclidean balls {BE(pij , r`+1
i ) : j = 1, . . . , n}, where

n ≤ M−(b)

r
λ−(`)
i

.

Since G is connected, diamccBcc(p, r) ≥ r for every p ∈ G and r > 0, and

SαE,δ(A) ≤
∞∑
i=1

n∑
j=1

(2r`+1
i )α ≤ 2αM−(b)

∞∑
i=1

(diamccBcc(pi, ri))
(`+1)α−λ−(`) ,

and since Fcc was arbitrary, we have

SαE,δ(A) ≤ 2αM−(b)S(`+1)α−λ−(`)
cc,δ (A).

Letting δ → 0, it follows that

SαE(A) ≤ 2αM−(b)S(`+1)α−λ−(`)
cc (A),

and by Proposition 3.7 we have

(3.14) HαE(A) ≤ 2α+α(`+1)−λ−(`)M−(b)H(`+1)α−λ−(`)
cc (A).
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When ` = `− is the value in (2.5) we have

(3.15) β−(α) = (`+ 1)α− λ−(`),

and (3.14) becomes

HαE(A) ≤ 2α+β−(α)M−(b)Hβ−(α)
cc (A) ≤ L2Hβ−(α)

cc (A)(3.16)

where L2 = M−(b)2N+Q. Letting L = max{M+(b)2Q,M−(b)2N+Q} and combining (3.13) with
(3.16) completes the proof of Proposition 3.1. �

The proofs of the box-counting dimension statements in Theorem 2.4 also use the covering lemma
3.2. We shall briefly indicate below a sketch of the proof for the box-counting dimension. The first
step is to deduce from Lemma 3.2(a) the estimate

Ncc(A, ε
1
`−1 ) ≤ M+

ελ+(`)
NE(A, ε)

for any bounded set A ⊂ G, ε > 0 and ` ∈ {2, . . . , s− 1}.
Using the above estimate it is easy to compute the upper and lower logarithmic rates of growth:

1
`− 1

dimB
cc(A) ≤ dimB

E(A) + λ+(`)

and
1

`− 1
dimB

cc(A) ≤ dimB
E(A) + λ+(`).

The right hand inequality in (2.8) for upper/lower box counting dimension now follows by choosing
` = `+ and using (3.12) which gives

dimB
cc(A) ≤ β+(dimB

E(A))

and
dimB

cc(A) ≤ β+(dimB
E(A)).

The proof of the left hand inequality in (2.8) is similar, starting from the estimate

NE(A, ε`+1) ≤ M−

ελ−(`)
Ncc(A, ε).

We leave the details as an exercise to the reader.

4. Proof of Theorem 2.6

This section is divided into two parts. In the first part, we construct examples of vertical sets
demonstrating sharpness of the upper dimension comparison function, while in the second (more
complicated) part, we construct examples of horizontal sets demonstrating sharpness of the lower
dimension comparison function.

Throughout this section and the next we make extensive use of the precise form of the group law
in G as specified by the Baker–Campbell–Hausdorff formula. The key observation, which catalyzes
our computations, is that the j-th layer expression in the group law is Euclidean in the j-th layer
variable, sheared by polynomial maps in the lower strata variables. More precisely, p∗y = x, where

(4.1) xj = pj + yj + ϕj(p1, . . . , pj−1, y1, . . . , yj−1)

and ϕj is a homogeneous polynomial with respect to the natural weights on the coordinates coming
from the layer structure of g. Here we used the representation of points in G in exponential
coordinates: p = (p1, . . . , ps), pj ∈ Rmj . To simplify the numerous intricate expressions which
occur, we introduce the following cumulative notation for the lowest strata variables:

(4.2) Pj = (p1, . . . , pj) ∈ Rm1+···+mj ;
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thus p = Ps and (4.1) takes the form

(4.3) xj = pj + yj + ϕj(Pj−1, Yj−1).

4.1. Vertical sets. In this subsection we prove the following theorem.

Theorem 4.1. Let G be a Carnot group of step s with stratified Lie algebra g = v1 ⊕ · · · ⊕ vs. Let
mj = dim vj. For each ` = 1, . . . , s and each α ∈ [

∑s+1
j=`−1mj ,

∑s+1
j=` mj ] there exists S ⊂ G with

(4.4) HαE(S) <∞

and

(4.5) Hβ+(α)
cc (S) > 0.

Corollary 4.2. The set S in Theorem 4.1 satisfies dimE S = α and dimcc S = β+(α).

Proof of Corollary 4.2. (4.4) and (4.5) yield dimE S ≤ α and dimcc S ≥ β+(α). Now use (2.8) and
the strict monotonicity of β+. �

The main tool from geometric measure theory which we will use in the proof of Theorem 4.1 is
the Mass Distribution Principle, see Theorem 8.7 and Definition 8.3 in [44] or section 8.7 in [31].

Proposition 4.3 (Mass Distribution Principle). Let µ be a positive measure on a metric space
(X, d) so that µ(B(x, r)) ≤ Crβ for some constants C, β and all r > 0 and x ∈ X. Then Hβ(X) > 0.

For each m ∈ N and each 0 ≤ t ≤ m, define a compact set Cmt ⊂ Rm as follows:
(1) If t = 0, then Cm0 = {0} ⊂ Rm,
(2) If 0 < t < m, then Cmt is a regular self-similar Cantor set of dimension t in Rm,
(3) If t = m, then Cmm = [0, 1]m ⊂ Rm.

On each set Cmt we fix a probability measure Mt, as follows:
(1) on Cm0 we consider counting measure M0 := H0

(Rm,dE),
(2) on Cmt , 0 < t < m, we consider normalized Hausdorff measureMt := Ht(Rm,dE)/H

t
(Rm,dE)(C

m
t ),

(3) on Cmm we consider Lebesgue measure Mm := Lm.
(For the purposes of this proof, we emphasize the ambient metric space (Rm, dE) in the notation.)
Note that Mt(Cmt ) = 1 for every m and t. We observe that each set Cmt is Ahlfors t-regular when
equipped with the measure Mt, i.e., there exists a constant K <∞ so that

(4.6)
1
K
Rt ≤Mt(Cmt ∩ BoxE(p,R)) ≤ KRt

for all p ∈ Cmt and all 0 < R ≤ diamE C
m
t . The constant K may depend on m and t; this will have

no effect on the argument which follows and we will suppress such dependence in the notation.

Proof of Theorem 4.1. Intuitively, the statement of this theorem is obvious: a typical set S ⊂ G
which is oriented in the direction of the higher strata as much as possible and with Euclidean
dimension α should have CC dimension β+(α).

We give the example in the form of a Euclidean product set and use the Mass Distribution
Principle to establish (4.5). Without loss of generality we assume that α > ms. The example
S ⊂ G will be the following (Euclidean self-similar) product set:

S = Cm1
0 × · · · × Cm`−2

0 × Cm`−1

t × Cm`m`
× · · · × Cmsms ,

where t = α−
∑s+1

j=` mj , which we equip with the probability measure

µ = M0 × · · · ×M0 ×Mt ×Mm` × · · · ×Mms .
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Since products of Ahlfors regular spaces are Ahlfors regular, S is Ahlfors α-regular when equipped
with the measure µ, i.e., there exists a constant K1 <∞ so that

(4.7)
1
K1

Rα ≤ µ(S ∩ BoxE(p,R)) ≤ K1R
α

for all p ∈ S and all 0 < R ≤ diamE S. Any Ahlfors α-regular measure is comparable with the
Hausdorff α-measure, whence HαE(S) <∞. This proves (4.4).

We now turn to the proof of (4.5). By the Mass Distribution Principle, it suffices to prove the
volume growth estimate

(4.8) µ(S ∩Bcc(p, r)) ≤ Crβ+(α)

for all p and r, with some absolute constant C. By the Ball-Box theorem, (4.8) is equivalent with

(4.9) µ(S ∩ Boxcc(p, r)) ≤ Crβ+(α).

We expand the left hand side of (4.9) as an iterated integral of the characteristic function of
S ∩ Boxcc(p, r):

µ(S ∩ Boxcc(p, r)) =
∫
C
m1
0

dM0(x1) · · ·
∫
C
m`−2
0

dM0(x`−2)×

×
∫
C
m`−1
t

dMt(x`−1)
∫
C
m`
m`

dMm`(x`) · · ·
∫
Cmsms

dMms(xs)χS∩Boxcc(p,r)(x),
(4.10)

where x = (x1, . . . , xs), xj ∈ Rmj , is the representation of x ∈ G in exponential coordinates.
Next, we describe the structure of S ∩ Boxcc(p, r). It is clear that x ∈ Boxcc(p, r) if and only

if there exists y = (y1, . . . , ys) so that |yj | ≤ rj and (4.3) holds for all j = 1, . . . , s. On the other
hand, x ∈ S if and only if x1 = 0, . . . , x`−2 = 0, x`−1 ∈ C

m`−1

t , and x` ∈ [0, 1]m` , . . . , xs ∈ [0, 1]ms .
Consequently x ∈ S ∩ Boxcc(p, r) if and only if

x1 = p1 + y1 = 0, |y1| ≤ r,
x2 = p2 + y2 + ϕ2(p1, y1) = 0, |y2| ≤ r2,

...

x`−2 = p`−2 + y`−2 + ϕ`−2(P`−3, Y`−3) = 0, |y`−2| ≤ r`−2,

x`−1 = p`−1 + y`−1 + ϕ`−1(P`−2, Y`−2) ∈ Cm`−1

t , |y`−1| ≤ r`−1,

x` = p` + y` + ϕ`(P`−1, Y`−1) ∈ [0, 1]m` , |y`| ≤ r`,
...

xs = ps + ys + ϕs(Ps−1, Ys−1) ∈ [0, 1]ms , |ys| ≤ rs.

(4.11)

Using (4.11), we define functions Ψj , j = 1, . . . , s, inductively so that

(4.12) yj = Ψj(Pj , Yj−1).

Observe that the first ` − 2 identities in (4.11) imply that Y`−2 = (y1, . . . , y`−2) is the vector
consisting of the first ` − 2 coordinates of q := p−1, i.e., Ψj(Pj , Yj−1) = qj for j = 1, . . . , ` − 2.
Consequently, ϕ`−1(P`−2, Y`−2) = 0.

It follows that the characteristic function of the set S ∩Boxcc(p, r) is equal to the product of the
following characteristic functions:

h`−1(x`−1) := χ{x`−1∈p`−1+[−r`−1,r`−1]m`−1}(x`−1),

h`(x`−1, x`) := χ{x`∈p`+ϕ`(P`−1,Y`−1)+[−r`,r`]m`}(x`−1, x`),
...
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hs(x`−1, . . . , xs) := χ{xs∈ps+ϕs(Ps−1,Ys−1)+[−rs,rs]ms}(x`−1, . . . , xs),

where the expressions Y`−1, Y`, . . . , Ys−1 are given recursively by (4.12), and Yj = Qj for j =
1, . . . , `− 2.

We now return to (4.10) which we rewrite in the form∫
C
m`−1
t

h`−1(x`−1) dMt(x`−1)
∫
C
m`
m`

h`(x`−1, x`) dMm`(x`)× · · ·

×
∫
Cmsms

hs(x`−1, . . . , xs) dMms(xs).

Estimating each integral in turn by starting from the last one and using (4.6), we find∫
Cmsms

hs(x`−1, . . . , xs) dMms(xs) = Mms(C
ms
ms ∩ BoxE(ps + ϕs(Ps−1, Ys−1), rs)) ≤ Krsms ,

∫
C
ms−1
ms−1

hs−1(x`−1, . . . , xs−1) dMms−1(xs−1)

= Mms−1(Cms−1
ms−1

∩ BoxE(ps−1 + ϕs−1(Ps−2, Ys−2), rs−1)) ≤ Kr(s−1)ms−1 ,

and so on, through∫
C
m`
m`

h`(x`−1, x`) dMm`(x`) = Mm`(C
m`
m`
∩ BoxE(p` + ϕ`(P`−1, Y`−1), r`)) ≤ Kr`m`

and ∫
C
m`−1
t

h`−1(x`−1) dMt(x`−1) = Mt(C
m`−1

t ∩ BoxE(p`−1, r
`−1)) ≤ Kr(`−1)t.

Combining all of these estimates gives

µ(S ∩ BoxCC(p, r)) ≤ Ks−`+2r(`−1)t+
Ps+1
j=` jmj = Ks−`+2rβ+(α)

as desired. This completes the proof. �

Remark 4.4. The set S in Theorem 4.1 has well defined Euclidean and CC box-counting dimen-
sions, and dimB

cc S = β+(dimB
E S). Indeed, as a Euclidean self-similar set, S necessarily satisfies

dimB
E S = dimH

E S = α. Moreover,

dimB
ccS ≥ dimH

cc S = β+(α) = β+(dimB
E S) ≥ dimB

ccS

which shows that the CC box-counting dimension of S exists and equals β+(α).

Remark 4.5. By work of Magnani and Magnani–Vittone, additional examples of low codimension
vertical sets are given by certain smooth submanifolds of G. Note that β+(α) = Q − (N − α) in
case N−m1 ≤ α ≤ N . Let Σ be a bounded C1-smooth submanifold of G of dimension α. Theorem
2.16 of [42] asserts the (Q− (N −α))-negligibility of the horizontal subset C(Σ) of Σ, see Definition
2.10 in [42] for the definition of C(Σ). Then Theorem 1.2 of [43] yields, by standard theorems
on measure differentiation and estimates for the metric factor θ(τdΣ), that Σ has positive HQ−N+α

cc

measure. Since HαE(Σ) <∞, we see that such submanifolds Σ are also examples of vertical sets for
such values of α. See subsection 8.1 for further remarks.
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4.2. Horizontal sets. In this subsection we prove the following theorem.

Theorem 4.6. Let G be a Carnot group of step s with stratified Lie algebra g = v1 ⊕ · · · ⊕ vs. Let
mj = dim vj. For each ` = 0, . . . , s− 1 and each α ∈ [

∑`
j=0mj ,

∑`+1
j=0mj ] there exists S ⊂ G with

(4.13) HαE(S) > 0

and

(4.14) Hβ−(α)
cc (S) <∞.

Corollary 4.7. The set S in Theorem 4.6 satisfies dimE S = α and dimcc S = β−(α).

Proof of Corollary 4.7. (4.13) and (4.14) yield dimE S ≥ α and dimcc S ≤ β−(α). Now use (2.8)
and the strict monotonicity of β−. �

Before beginning the proof of Theorem 4.6, we recall some basic facts from the theory of iterated
function systems and self-similar fractal geometry. Let (X, d) be a complete metric space. A map
F : X → X is Lipschitz if there exists L <∞ so that

(4.15) d(F (x), F (y)) ≤ Ld(x, y)

for all x, y ∈ X. The infimum of all possible constants L which verify (4.15) is the Lipschitz
constant of F , denoted Lip(F ). (Subsequently we shall use the notation LipE(F )) or Lipcc(F ) for
the Lipschitz constant of a mapping F with respect to the Euclidean respectively CC metric.) We
say that F is contractive Lipschitz if Lip(F ) < 1. An iterated function system (IFS) on (X, d) is a
finite collection F of contractive Lipschitz maps. To any IFS F there corresponds an invariant set,
which is characterized as the unique nonempty compact set fully invariant under the action of F .
More precisely, the invariant set K for an IFS F satisfies

K =
⋃
f∈F

f(K)

The existence and uniqueness of K follow from an application of a suitable fixed point theorem on
the hyperspace of compact subsets of X equipped with the Hausdorff metric.

A map f : X → X is a similarity if there exists r > 0 (the contraction ratio) so that
d(f(x), f(y)) = rd(x, y) for all x, y ∈ X, and an IFS is self-similar if each of its elements is a
similarity. The similarity dimension of F = {f1, . . . , fM} is the unique nonnegative solution t to
the equation

(4.16)
M∑
i=1

rti = 1,

where ri denotes the contraction ratio for fi. An IFS F = {f1, . . . , fM} satisfies the open set
condition if there exists a nonempty bounded set O so that the sets fi(O) are pairwise disjoint
subsets of O. The following theorem is a standard tool in Euclidean self-similar fractal geometry,
see Hutchinson [35], Kigami [37], or Falconer [21]. In the setting of doubling metric spaces, see [6].

Theorem 4.8. Let (X, d) be a doubling metric space. Then the Hausdorff dimension of the in-
variant set K of any self-similar IFS in X is always less than or equal to the similarity dimension,
more precisely, Ht(K) is finite. Furthermore, equality between the Hausdorff, box-counting and
similarity dimensions hold in case the open set condition is satisfied. Indeed, if F is a self-similar
IFS satisfying the open set condition, then

0 < Ht(K) <∞
where t denotes the similarity dimension, and

dimH
(X,d)K = dimB

(X,d)K = t.
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For our purposes, it suffices to note that Carnot groups satisfy the doubling condition as we
consider (X, d) = (G, dcc) a Carnot group with CC metric. In our proofs it it will be crucial to
relate an IFS in G with a corresponding IFS in the Euclidean space Rm1 which represents the first
layer in the strafication of G. In this context we say that a map F : G → G lifts f : Rm1 → Rm1

if π1 ◦ F = f ◦ π1, where we recall that π1 : G→ Rm1 denotes projection to the first stratum. An
IFS F1, . . . , FM on G lifts an IFS f1, . . . , fM on Rm1 if Fi lifts fi for each i, i = 1, . . . ,M . A basic
relation between Euclidean Lipschitz maps and their lifts which we need in subsequent proofs is
the following:

Lemma 4.9. Let F : G→ G be a contractive Lipschitz map which lifts f : Rm1 → Rm1. Then f is
a contractive Lipschitz map, and LipE(f) ≤ Lipcc(F ). If F is a similarity with ratio r > 0 of the
form: F (p) = q ∗ δr(p) then f is a Euclidean similarity with the same ratio r > 0.

Proof of Lemma 4.9. The first statement follows directly from (2.2) (and the subsequent statement
regarding the case of equality) and (4.3). Let us note here that the inequality LipE(F ) ≤ Lipcc(F )
is not true in general. The second statement follows directly from the explicit formulae of F and f
for the case of similarities. �

A first step towards the proof of Theorem 4.6 is Proposition 2.7 which proves the Theorem in
the range 0 < α ≤ m1.

Proof of Proposition 2.7. Let {F1, . . . , FM} and {f1, . . . , fM} be as in the statement of the propo-
sition, and let K be the invariant set for {F1, . . . , FM}. Then π1(K) is the invariant set for the
(Euclidean self-similar) system {f1, . . . , fM} on Rm1 .

Since {f1, . . . , fM} satisfies the open set condition in Rm1 we have by Theorem 4.8

0 < HαE(π1(K)) <∞,

where α is the similarity dimension of {f1, . . . , fM}. By Lemma 4.9 it follows that the similarity
dimension of {F1, . . . , FM} is also α. By the first part of Theorem 4.8 we obtain

Hαcc(K) <∞.

Now Proposition 3.1, specifically, the right hand inequality in (3.1) implies

0 < HαE(π1(K)) ≤ HαE(K) ≤ LHαcc(K) <∞

This completes the proof. �

In order to prove a generalization of Proposition 2.7 to higher strata we will make essential use
the following integral estimate for the Hausdorff measures of level sets of a Lipschitz map. See
Theorem 7.7 in [44].

Proposition 4.10. Let K ⊂ Rn, let f : K → Rm be a Lipschitz map, and let m ≤ t ≤ n. If K is
Ht measurable with Hs(K) <∞, then

∫
Ht−m(K ∩ f−1{y}) dLm(y) exists and∫

Ht−m(K ∩ f−1{y}) dLm(y) ≤ CHt(K),

where C depends only on m and the Lipschitz constant of f .

We will deduce Theorem 4.6 from the following proposition. Here we denote by

Π` = π1 × · · · × π` : G→ R
P`
j=0mj

the cumulative projection to the lowest ` strata.
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Proposition 4.11. Let G and ` be as in Theorem 4.6, let b ≥ 2 be an integer, and let M ∈
{1, 2, . . . , b(`+1)m`+1}. Let

Aj = {0, . . . , bj − 1}mj ⊂ Rmj ,

pa1···ak = (a1, . . . , ak, 0, . . . , 0), aj ∈ Aj ,
and

Fa1···ak(p) = pa1···ak ∗ δ1/b(p
−1
a1···ak ∗ p).

Finally, let B be any subset of A`+1 of cardinality M , let

F = {Fa1···a`+1
: a1 ∈ A1, . . . , a` ∈ A`, a`+1 ∈ B},

and let K be the invariant set for the CC self-similar IFS F . Then

(4.17) H
P`
j=0 jmj+

logM
log b

cc (K) <∞

and

(4.18) H
P`
j=0mj+

logM

log b`+1

E (Π`+1(K)) > 0.

Moreover, if M = b(`+1)m`+1 then H
P`+1
j=0mj

E -a.e. point in Π`+1(K) has a unique symbolic represen-
tation

(4.19) lim
n→∞

Π` ◦ Fa1
1···a1

`+1
◦ · · · ◦ Fan1 ···an`+1

(o)

for some symbol sequence
{(

(a1
1, . . . , a

1
`+1), (a2

1, . . . , a
2
`+1), . . . ,

)}
∈ (A1 × · · · ×A`+1)N.

Observe that if

(4.20) α =
∑̀
j=0

mj +
logM

log b`+1
∈

∑̀
j=0

mj ,
`+1∑
j=0

mj

 ,
then

(4.21) β−(α) =
∑̀
j=0

jmj +
logM
log b

.

Proof of Theorem 4.6. Since Π`+1 : (G, dE) → (R
P`
j=0mj , dE) is Lipschitz, Proposition 4.11 guar-

antees the existence of the desired set S in case α is of the form (4.20). The set of all such values
α, as b ≥ 2 and M ∈ {1, 2, . . . , b(`+1)m`+1} vary, is dense in the interval [

∑`
j=0mj ,

∑`+1
j=0mj ]. The

case of general α follows from this and the monotonicity and countable stability of the Hausdorff
dimension. �

Proof of Proposition 4.11. The proof will be by induction on `.
Consider first the base case ` = 0. Let b ≥ 2 and M ∈ {1, . . . , bm1}, let

A1 = {0, . . . , b− 1}m1 ⊂ Rm1 ,

pa1 = (a1, 0, . . . , 0) ∈ G, a1 ∈ A1,

and consider the contractive similarity of (G, dcc) given by

Fa1(p) = pa1 ∗ δ1/b(p
−1
a1
∗ p).

Let B ⊂ A1 be any set of cardinality M . The CC self-similar IFS F = {Fa : a ∈ B} has similarity
dimension α = logM/ log b. Hence Hαcc(K) <∞ for the invariant set K. On the other hand,

HαE(K) ≥ HαE(π1(K))
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and π1(K) is the invariant set for the Euclidean self-similar IFS F1 = {fa : a ∈ B}, fa(x) =
a+ 1

b (x− a), on Rm1 , which satisfies the open set condition with open set O1 = (0, b− 1)m1 . Thus

HαE(K) > 0

as desired. If M = bm1 then Hm1
E -a.e. x1 ∈ Π1(K) = π1(K) has a unique symbolic representation

relative to the IFS F (this is a consequence of the open set condition). This completes the proof
in the case ` = 0.

Now assume that the statement in the proposition is true for some integer `− 1 and all integers
b0 ≥ 2 and M0 ∈ {1, 2, . . . , b`m`}; we will prove that it holds true for ` and any given pair of integers
b ≥ 2 and M ∈ {1, 2, . . . , b(`+1)m`+1}. Let b and M be given. According to the inductive hypothesis
in the (`− 1)-st step with b0 = b and M0 = b`m`0 , the invariant set K0 for the CC self-similar IFS

F0 = {Fa1···a` : a1 ∈ A1, . . . , a` ∈ A`},
satisfies the estimates

(4.22) H
P`
j=0 jmj

cc (K0) <∞
and

(4.23) H
P`
j=0mj

E (Πl(K0)) > 0,

furthermore, almost every point X` ∈ Π`(K0) has a unique symbolic representation.
Now let B be any subset of A`+1 of cardinality M , let F be the CC self-similar IFS comprised

of the mappings Fa1···a`+1
for a1 ∈ A1, . . . , a` ∈ A` and a`+1 ∈ B, and let K be the invariant set

for F . Note that

(4.24) Π`(K0) ⊆ Π`(K).

We will prove that (4.17) and (4.18) hold. The former follows immediately from the fact that F is
CC self-similar with similarity dimension

log(b
P`
j=0 jmjM)

log b
= β−(α);

see (4.21).
To prove the latter, we will apply Proposition 4.10 with t = α, m =

∑l
j=0 and f = Π`. We have

to show that there exists a constant c > 0 so that

(4.25) Hα−
P`
j=0mj

E (K ∩Π−1
` (X`)) ≥ c

for almost every Xl ∈ Πl(K).
In view of (4.23) and (4.24), Proposition 4.10 yields (4.14).
To proof of (4.25) will be achieved by the following lemma.

Lemma 4.12. Let πq : G → Rmq denote projection to the q-th layer, q = ` + 1. For every
X` ∈ Π`(K) which has a unique symbolic representation, the set πq(K ∩ Π−1

` (X`)) is a Euclidean
translate of the invariant set K ′ of the Euclidean self-similar IFS G = {gaq : aq ∈ B} in Rmq , where

ga(x) =
1
bq
x+

(
1− 1

bq

)
a.

In Lemma 4.12, the translation parameter depends on X` = (x1, . . . , x`), but the IFS G does
not. Let us note how the proof of the proposition is completed assuming the validity of the lemma.
The IFS G in Lemma 4.12 satisfies the open set condition (use the open set O = (0, bq − 1)mq) and
has similarity dimension t = logM/ log bq = α−

∑`
j=0mj , see (4.20). Thus

HtE(K ∩Π−1
` (X`)) ≥ HtE(πq(K ∩Π−1

` (X`))) = HlogM/ log bq

E (K ′) > 0
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for almost every X` ∈ Π`(K). This completes the proof of Proposition 4.11, modulo the statement
about almost everywhere unique symbolic representatives, which we postpone to Remark 4.13.

It remains to prove Lemma 4.12.

Proof of Lemma 4.12. Let us observe the following explicit representation for the self-similar con-
tractions Fa1···aq , which easily follows from (4.3):

πq(Fa1···aq(x)) = πq
(
pa1···aq ∗ δ1/b(p

−1
a1···aq ∗ x)

)
=

1
bq
xq +

(
1− 1

bq

)
aq + Φq(X`, A`)

= gaq(xq) + Φq(X`, A`)

for some polynomial Φq. By assumption, X` ∈ Π`(K) has a unique symbolic representation (4.19)
and therefore Φq in fact depends only on X`.

Iterating the above relation we conclude that x′q ∈ Rmq is in πq(K ∩Π−1
` (X`)) if and only if

(4.26) x′q = (1− 1
bq

)a1
q +

1
bq

(1− 1
bq

)a2
q +

1
b2q

(1− 1
bq

)a3
q + · · ·+R(X ′`),

for some sequence of points a1
q , a

2
q , . . .. Here the remainder R(X ′`) depends only on the lower strata

variables X ′`, and can be computed in terms of Φq. (See also (5.8) for a related statement.) Put
another way,

πq(K ∩Π−1
` (X ′`)) = R(X ′`) +K ′.

This completes the proof of the lemma. �

The proof of Proposition 4.11 is also completed. �

Remark 4.13. The identity in (4.26) also shows that each point in Π`+1(K ∩ Π−1
` (X ′`)) has a

unique symbolic representative, provided that X ′` and also x′q do. If M = b(`+1)m`+1 , H
P`+1
j=0mj

E -a.e.
point in Π`+1(K) is of this type, by Fubini’s theorem. This proves the final claim in Proposition
4.11.

Remark 4.14. The set S in Theorem 4.6 has well defined Euclidean and CC box-counting di-
mensions, and dimB

cc S = β−(dimB
E S). Indeed, as a CC self-similar set, S necessarily satisfies

dimB
cc S = dimH

cc S = β−(α). Moreover,

dimB
ES ≤ (β−)−1(dimB

cc S) = α = dimH
E S ≤ dimB

ES

which shows that the Euclidean box-counting dimension of S exists and equals α.

Remark 4.15. We reiterate the purely Euclidean consequences of Theorem 4.6. The CC self-
similar iterated function systems constructed in Proposition 4.11 can be viewed as iterated function
systems in the underlying Euclidean geometry; in view of the nilpotence of G and the Baker–
Campbell–Hausdorff formula the associated mappings are polynomial of an a priori high degree.
Thus, viewed in Euclidean terms, these IFS are nonlinear and nonconformal; it is typically quite
difficult to calculate explicitly the dimensions of such systems by traditional methods. Nevertheless,
by our approach we obtain an explicit formula for their Euclidean Hausdorff dimension. As an
illustration, we restate Example 2.10 in purely Euclidean terms. Consider the four maps of R4

given by

(4.27) F1(x) = (
1
2
x1,

1
2
x2,

1
4
x3,

1
8
x4),

(4.28) F2(x) = (
1
2
x1 +

1
2
,
1
2
x2,

1
4
x3,

1
8
x4),
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(4.29) F3(x) = (
1
2
x1,

1
2
x2 +

1
2
,
1
4
x3 +

1
4
x1,

1
8
x4 +

3
16
x2

1),

and

(4.30) F4(x) = (
1
2
x1 +

1
2
,
1
2
x2 +

1
2
,
1
4
x3 +

1
4

(x1 − 1),
1
8
x4 +

1
16

(x1 − 1)2),

where x = (x1, x2, x3, x4). These are evidently not global contractive maps of (R4, dE). However,
since they are precisely the contractive similarities of the Carnot Engel group specified in Example
2.2, we know that they generate a compact invariant set in R4 whose Euclidean Hausdorff dimension
is exactly equal to 2. (See section 2 for pictures of some three dimensional projections of this set.)

Remark 4.16. We conclude this section by discussing the implications of Theorems 2.4 and 2.6
for the theory of horizontal rectifiability in codimension one in the setting of Carnot groups as
developed by Franchi, Serapioni and Serra-Cassano, see e.g. [27],[26]. Let G be a Carnot group.
We recall the following definitions from [26]:

(i) u : G→ R is a C1
G function if Xu is continuous for all X ∈ V1,

(ii) the horizontal gradient of a C1
G function u : G → R is the unique map ∇Gu : G → V1

satisfying Xu = 〈X,∇Gu〉 for all X ∈ V1,
(ii) a codimension one hypersurface S is G-regular if it is locally the zero set of a C1

G function
with nonvanishing horizontal gradient,

(iii) a set A in G is called horizontally (Q−1)-rectifiable (or horizontally rectifiable in codimension
one) if A is the union of a countable family of G-regular hypersurfaces, together with a set
of HQ−1

cc -dimensional measure zero.
We say that A ⊂ G is k-rectifiable, 0 ≤ k ≤ N , if it is rectifiable in the classical Euclidean sense as
a subset of RN : A is the union of a countable family of Lipschitz images of subsets of Rk, together
with a set of HkE-dimensional measure zero.

It is of interest to understand the difference between notions of Euclidean (N − 1)-rectifiability
and the horizontal codimension one rectifiability of subsets of G with underlying space RN . The
following corollary to Theorem 2.6 extends [5, Theorem 5.1] to the setting of general Carnot groups.

Corollary 4.17. Let G be a Carnot group of dimension N and homogeneous dimension Q. Then
every (N − 1)-rectifiable set in G is horizontally (Q − 1)-rectifiable. In every nonabelian Carnot
group, there exist horizontally (Q− 1)-rectifiable sets A ⊂ G which are not (N − 1)-rectifiable.

Proof. Let A ⊂ G = RN be (N − 1)-rectifiable. By standard Euclidean geometric measure theory,
A = Z ∪

⋃∞
i=1 Si, where Si is the zero set of a C1 function fi : RN → R and HN−1

E (Z) = 0. We
denote by C(Si) the characteristic set of the hypersurface Si, i.e., the set of points x ∈ Si for which
HxG ⊂ TxSi. The complement of C(Si) in Si is the subset of {fi = 0} on which ∇Gfi 6= 0. By [40,
Theorem 6.6.2], HQ−1

cc (C(Si)) = 0. By Proposition 3.1, HQ−1
cc (Z) = 0. We have

A =

(
Z ∪

∞⋃
i=1

C(Si)

)
∪
∞⋃
i=1

(Si \ C(Si)) = Z ′ ∪
∞⋃
i=1

S′i,

where HQ−1
cc (Z ′) = 0 and S′i is a G-regular hypersurface. Thus A is horizontally (Q− 1)-rectifiable.

To construct a set A in a nonabelian Carnot group G as in the second assertion, observe that
(β−)−1(Q − 1) = N − s−1, where s is the step of the group. Since G is nonabelian, s ≥ 2.
We may choose a pair of monotone increasing sequences (αν) and (βν) satisfying N − 1 < α1,
limν→∞ αν = N − s−1, and βν = β−(αν). With Aα,β the set constructed in Theorem 2.6, we have

A =
∞⋃
ν=1

Aαν ,βν
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satisfies HQ−1
cc (A) = 0 (so A is trivially horizontally (Q− 1)-rectifiable) but dimE A ≥ α1 > N − 1.

In fact we have that dimE A = N − s−1 and so A is not (N − 1)-rectifiable. �

Kirchheim and Serra-Cassano [38] have constructed an H1-regular hypersurface in H1 whose
Euclidean Hausdorff dimension is 2.5, even locally at every point. Note that 2.5 = (βH1

− )−1(3). It
would be interesting to perform a similar construction in a general Carnot group G: i.e. to give an
example of a G-regular hypersurface of Euclidean dimension N − s−1.

5. CC self-similar invariant sets in Carnot groups are almost surely horizontal

This section is devoted to the proof of Theorem 2.8, which establishes the equality

dimccK = β−(dimEK)

almost surely for generic members of certain finite-dimensional parameterized families of CC self-
similar sets K in a Carnot group G. Inspiration for this type of result comes from work of Falconer
[20], [22], which establishes similar results for generic members of certain families of self-affine
invariant sets in Euclidean space. In view of the fact that the group operation in G is given by
polynomial maps, our results return purely Euclidean dividends: we obtain almost sure dimension
statements for families of nonlinear, nonconformal Euclidean invariant sets. In the following section,
we illustrate this point in the jet space Carnot groups.

Let us begin by briefly recalling the work of Falconer [20]. The singular value function of a
contractive linear map A : Rn → Rn is defined as

ϕt(A) =


1, t = 0,
µ1µ2 · · ·µm−1µ

t−m+1
m , m− 1 < t ≤ m,

(µ1 · · ·µn)t/n, t ≥ n,

where 1 > µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0 denote the singular values of A, i.e., the positive square roots
of the eigenvalues of A∗A. The operator norm of A is the largest eigenvalue ||A|| = µ1.

Next, let A = {A1, . . . , AM} be a finite collection of contractive linear maps. Then for any t ≥ 0
the limit

(5.1) lim
m→∞

 ∑
w:|w|=k

ϕt(Aw)

1/m

exists, where the sum is taken over all words w = w1w2 · · ·wm of lengthm in the letters {1, 2, . . . ,M}
and Aw = Aw1 · · ·Awm . (For a more complete review of the symbolic dynamics of iterated function
systems, see subsection 5.1.) The expression in (5.1) is a strictly decreasing, continuous function
of t, and we let

(5.2) d(A) =
the unique nonnegative value of t such

that the quantity in (5.1) is equal to one.

Falconer [20] proved Theorem 5.1 with ||Ai|| < 1
3 for all i; the stated generalization is due to

Solomyak [54].

Theorem 5.1 (Falconer, Solomyak). Assume that ||Ai|| < 1
2 for all i = 1, . . . ,M . Then, for almost

every b = (b1, . . . , bM ) ∈ Rn×M , we have

dimEK(b) = min{d(A), n},

where K(b) denotes the invariant set for the affine IFS {F1, . . . , FM}, Fi(x) = Aix+ bi.
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Theorem 5.1 has been generalized to the setting of horizontal self-affine IFS in the first Heisenberg
group by the first two authors in [7] (see also [4]). The purpose of this section is to prove Theorem
2.8 which provides a far-reaching generalization of Falconer’s almost sure dimension result to the
setting of horizontal self-similar IFS in general Carnot groups. A further generalization to horizontal
self-affine Carnot IFS is presumably possible, but we do not address this here.

As will be explained in more detail in the following section, the transition formula

α = (β−)−1(β)

in (2.10), which arises from the lower dimension comparison statement in Theorem 2.4, encodes
the same information as Falconer’s formulas (5.1) and (5.2) in the setting of jet space groups.

5.1. Symbolic dynamics and iterated function systems. In this subsection, we recall the
formalism of symbolic dynamics in the context of iterated function systems. Our notation follows
[37]. Let F = {F1, . . . , FM} be a self-similar IFS on a complete metric space (X, d), and denote by
ri the contraction ratio associated to Fi. For k ≥ 1, define

Wk := {1, . . . ,M}k = {w1 · · ·wk : wm ∈ {1, . . . ,M}, 1 ≤ m ≤ k},

called the set of words of length k in the alphabet {1, . . . ,M}. For k = 0, set W0 = {∅} and call ∅
the empty word. Finally, define

W∗ =
∞⋃
k=0

Wk

to be the set of finite sequences and

Σ = {w1w2 · · · : wm ∈W1}

the set of infinite sequences.
We write vw for the concatenation of two words v, w ∈ W∗: vw = v1v2 · · · vkw1w2 · · ·wl if

v = v1 · · · vk ∈Wk and w = w1 · · ·wl ∈Wl. If w = vv′ for some word v′ we say that v is a subword
of w. The largest common subword of v and w will be denoted v ∧ w; this is characterized as
the unique common subword of v and w which is maximal with respect to length. We will abuse
notation slightly, denoting by w both finite and infinite words.

For S ⊂ X and w = w1 . . . wk ∈ W∗, define Fw = Fw1 ◦ · · · ◦ Fwk , rw = rw1 · · · rwk , and
Sw = Fw(S).

We equip Σ with the product topology induced by the discrete topology on the alphabet. Then
there exists a canonical continuous surjection π : Σ → K to the invariant set of F , characterized
by the relation {π(w)} =

⋂∞
k=1 Fw1···wk(K). Alternatively,

π(w) = lim
k→∞

Fw1···wk(x0)

for any fixed x0 ∈ X. The map π is called the canonical symbol map for the IFS {F1, . . . , FM}.
We record the commutation relation

(5.3) π ◦ σw = Fw ◦ π, w ∈W∗,

where σ : Σ→ Σ denotes the left shift,

σ(w1w2w3 · · · ) = w2w3 · · · ,

and σw : Σ→ Σ the map which prepends w to its argument,

σw(v) = wv.

The cylinder set over w ∈W∗ is Σw = σw(Σ); this set consists of all infinite words which begin with
w. By (5.3), π(Σw) = Kw. A partition of Σ is a disjoint collection of cylinder sets which covers Σ.
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5.2. Proof of Theorem 2.8. The proof of Theorem 2.8 uses energy estimates to obtain almost
sure lower bounds on Hausdorff dimension. We recall the following standard result, see, for example
Theorems 4.2 and 4.13 in [21] or Theorem 8.7 in [44].

Proposition 5.2. Let A be a subset of a complete metric space (X, d) and let µ be a positive and
finite Borel regular measure supported on A whose s-energy∫

X

∫
X
d(x, y)−sdµ(x) dµ(y)

is finite. Then the Hausdorff dimension of A is at least s.

Assume that F is a self-similar IFS as above, and let t ≥ 0 be the similarity dimension for F .
Following Kigami [37], we introduce a probability measure λ on the symbol space Σ as follows:

(5.4) λ(E) = lim
m→∞

inf
Λ

∑
w∈Λ

E∩Σw 6=∅

rtw,

where the infimum is taken over all partitions Λ of Σ into cylinder sets defined by words of length
at least m. Note that

(5.5) λ(Σw) = rtw

for cylinder sets Σw, indeed,
∑

v∈Λ:Σw∩Σv 6=∅ r
t
v = rtw if Λ is a partition by words of length at least

|w|.
Let us recall the notations for r,P, α(r), β(r) introduced before the statement of Theorem 2.8.

In our proofs below we shall consider the measure λ for the value t = β(r) and we emphasize on
the fact that λ depends only on r and not on P. We will use λ in this connection for invariant sets
K(P) where P varies but r is fixed. Furthermore, for P ∈ GM we denote the canonical symbol map
by πP : Σ→ K(P). An essential ingredient in the proof of Theorem 2.8 is the following statement.

Proposition 5.3. Let G and r be as in Theorem 2.8, and define α = α(r) and β = β(r) as before.
For each 0 < R <∞ and α′ < α,

(5.6)
∫
B(R)M

∫
Σ

∫
Σ
|πP(u)− πP(v)|−α′E dλ(u) dλ(v) dP <∞,

where B(R) denotes the (Euclidean) ball of radius R in G centered at o ∈ G, dP denotes the element
of integration with respect to the M -fold product of Haar measures on GM , and dλ is the measure
defined in (5.4) with t = β.

Proof of Theorem 2.8. As discussed in section 2, to prove the Hausdorff dimension statements in
Theorem 2.8 it suffices to prove the inequality

dimEK(P) ≥ α
for almost every P ∈ GM . For each 0 < R <∞, we obtain from (5.6) that∫

Σ

∫
Σ
|πP(u)− πP(v)|−α′E dλ(u) dλ(v) <∞

for almost every P ∈ B(R)M , hence∫
K(P)

∫
K(P)

|p− q|−α′E d((πP)#λ)(p) d((πP)#λ)(q) <∞

where the integration is with respect to the pushforward measure (πP)#λ. By Proposition 5.2,
dimEK(P) ≥ α′ for every such P. Letting α′ → α and R → ∞ completes the proof in the
Hausdorff dimension case. The box-counting dimension case follows once we observe that condition
(a) for upper box-counting dimension holds by the general theory of iterated function systems. �
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We derive Proposition 5.3 from the following technical lemma which is the heart of the matter
in our proof.

Lemma 5.4. Assume that γ := max{r1, . . . , rM} < 1
2 . For each R < ∞ and 0 ≤ s ≤ N , there

exists a constant C = C(R,G, α, γ) so that

(5.7)
∫
B(R)M

|πP(v)−1 ∗ πP(u)|−αE dP ≤ C

r
β−(α)
u∧v

for all u, v ∈ Σ.

Proof of Proposition 5.3. Let β′ = β−(α′). Recall that β is defined as in (2.9). By monotonicity
of β−, β > β′. Using Fubini’s theorem, (5.7), (3.3) and (5.5), we estimate the integral in (5.6) as
follows: ∫

B(R)M

∫
Σ

∫
Σ
|πP(u)− πP(v)|−α′E dλ(u) dλ(v) dP

≤
∫
B(R)M

|πP(v)−1 ∗ πP(u)|−αE dP

≤ C(R,G, α′)
∫

Σ

∫
Σ
r−β

′

u∧vdλ(u) dλ(v)

= C(R,G, α′)
∑
w∈W∗

∑
i 6=j

r−β
′

w λ(Σwi)λ(Σwj)

≤ C(R,G, α′)
∑
w∈W∗

rβ−β
′

w λ(Σw)

≤ C(R,G, α′)
∞∑
m=1

2−m(β−β′)
∑

w∈Wm

λ(Σw).

The latter expression is finite since
∑

w∈Wm
λ(Σw) = 1 and β > β′. �

In the proof of Lemma 5.4 we will make use of the following explicit representation for the
symbolic representation map πP : Σ→ K(P): if u = u1u2 · · ·um · · · ∈ Σ, then

πP(u) = lim
m→∞

Fu1 ◦ · · · ◦ Fum(o)

= lim
m→∞

pu1 ∗ δru1
(pu2 ∗ δru2

(pu3 ∗ · · · ∗ (pum ∗ δrum (o)) · · · ))

= pu1 ∗ δru1
pu2 ∗ δru1ru2

pu3 ∗ · · · ∗ δru1 ···rum−1
pum ∗ · · · .

(5.8)

Proof of Lemma 5.4. Let 0 < R <∞ and 0 ≤ s ≤ N . By the Ball-Box theorem, it suffices to verify
(5.7) with the region of integration replaced by the M -fold product of CC balls Bcc(R)M .

Using the notation |x|cc = dcc(x, 0) let us observe that if P ∈ Bcc(0, R), then (5.8) and iterations
of the triangle inequality for dcc imply that

|πP(u)|cc ≤ |pu1 |cc + ru1 |pu2 |cc + ru1ru2 |pu3 |cc + · · ·

≤ R+
1
2
R+

1
4
R+ · · · = 2R,

(5.9)

hence
πP(u) ∈ Bcc(0, 2R)

for all u ∈ Σ and P ∈ Bcc(R).
Now let u, v ∈ Σ, let w = u∧ v, and assume that |w| = k. Since the maps Fj are CC similarities,

dcc(πP(u), πP(v)) = rwdcc(πP(σku), πP(σkv)) ≤ 4Rrw



32 ZOLTÁN M. BALOGH, JEREMY T. TYSON, AND BEN WARHURST

by (5.9), so
πP(v)−1 ∗ πP(u) ∈ Bcc(0, 4Rrw).

By the Ball-Box theorem, we conclude that

(5.10) [πP(v)−1 ∗ πP(u)]j ∈ BoxmjE ((C ′rw)j),

where C ′ depends only on R and CBB and the Euclidean box in (5.10) is taken in Rmj .
Next, we record a useful explicit representation for the j-th layer stratum of πP(v)−1 ∗ πP(u).

Recall that P = (p1, . . . , pM ). We write each pi ∈ G in exponential coordinates as pi = (pi1, . . . , pis)
where pij ∈ Rmj for j = 1, . . . , s. Without loss of generality, we may assume that uk+1 = 1 and
vk+1 = 2.

From (5.8) and (4.3) we find

[πP(v)−1 ∗ πP(u)]j

= rjw

(
p1j − p2j +

∞∑
m=k+2

rj1r
j
uk+2
· · · rjum−1

pum,j − r
j
2r
j
vk+2
· · · rjvm−1

pvm,j

)
+ Θj(P1,j−1, . . . , PM,j−1)

= rjw

(
p1j − p2j +

M∑
i=1

Eij(pij)

)
+ Θj(P1,j−1, . . . , PM,j−1),

(5.11)

where Θj is a weighted homogeneous polynomial in the lower strata variables P1,j−1, . . . , PM,j−1

and E1j , . . . , EMj : Rmj → Rmj are linear maps. In fact, each Eij is just a standard Euclidean
dilation of Rmj . Here we have used the notation from (4.2) for the cumulative lower strata variables
Pij associated to pi ∈ G. An explicit computation using (5.11) shows that

(5.12) Eij(xj) = ρjxj , xj ∈ Rmj ,

where ρj is the sum over m ∈ N of terms of the form εm,1r
j
ηm,1 + εm,2r

j
ηm,2 with ηm,1, ηm,2 ∈ Wm

and (εm,1, εm,2) ∈ {(0, 0), (+1, 0), (0,−1), (+1,−1)}. Note that ηm,i and εm,i, i = 1, 2 (hence also
ρj and Eij) depend on u and v; see the middle expression in (5.11) for the explicit formula. For
simplicity, we omit mention of this dependence in the notation.

The following argument is inspired by Falconer [20]. Our goal is to show that for each 0 ≤ l ≤ s−1
the change of variables P→ P defined by

p1j 7→

{
qj := [πP(v)−1 ∗ πP(u)]j , j = 1, . . . , l + 1,
p1j , j = l + 2, . . . , s,

pij 7→ pij , i = 2, . . . ,M, j = 1, . . . , s,

(5.13)

is invertible.
Since ri ≤ γ < 1

2 for all i and j ≥ 1, (5.12) yields

||Eij || = |ρj | ≤
∞∑
m=1

max{|εm,1|, |εm,2|}γjm ≤
∞∑
m=1

γjm =
γj

1− γj
< 1

for each i, thus Eij is a strict contraction and I + E1j is invertible with

(5.14) ||(I + E1j)−1|| ≤ 1− γj

1− 2γj
.

Using the lower triangular form of (5.11) it follows that the change of variables (5.13) is invertible.
We compute its Jacobian determinant as:

(5.15) dqj = r
jmj
w det(I + E1j) dp1j
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and observe that

(5.16) det((I + E1j)−1) ≤ ||(I + E1j)−1||mj ≤
(

1− γj

1− 2γj

)mj
by Hadamard’s inequality and (5.14).

Finally, we estimate

(5.17) I :=
∫
Bcc(R)M

|πP(v)−1 ∗ πP(u)|−αE dP.

We fix ` = `(α) ∈ {0, . . . , s−1} as in the statement of Theorem 2.4: l is the unique integer satisfying

∑̀
j=0

mj < α ≤
`+1∑
j=0

mj .

We bound the integrand in (5.17) from above by

|([πP(v)−1 ∗ πP(u)]1, . . . , [πP(v)−1 ∗ πP(u)]`+1)|−αE .

Making the preceding change of variables and using (5.10), (5.15) and (5.16), we conclude that

I ≤ C(R,G, γ)r
−

P`+1
j=0 jmj

w ×
∫

Box
m1
E (C′rw)

· · ·
∫

Box
m`+1
E ((C′rw)l+1)

|(q1, . . . , q`+1)|−αE dq`+1 · · · dq1

or more simply,

I ≤ C(R,G, γ)r
−

P`+1
j=0 jmj

w

∫
Π`+1 Boxcc(C′rw)

|Q`+1|−αE dQ`+1.

To conclude the proof, we write

Π`+1 Boxcc(C ′rw) =
⋃
σ⊂S

Aσ,

where the union is taken over all subsets σ of S = {1, . . . , `+ 1} and Aσ denotes the set of points
Q`+1 = (q1, . . . , q`+1) in Π`+1 Boxcc(C ′rw) for which |qj | ≤ (C ′rw)`+1 for all j ∈ σ. Then∫

AS

|Q`+1|−αE dQ`+1 ≤
∫
B

P`+1
j=0

mj

E (
√
N (C′rw)`+1)

|Q`+1|−αE dQ`+1

and ∫
Aσ

|Q`+1|−αE dQ`+1 ≤ r
P
j∈S\σ jmj

w

∫
R

P
j∈σ mj \B

P
j∈σ mj

E ((C′rw)`+1)
|Qσ|−αE dQσ

for σ = {σ1, . . . , σ#σ} ( S (with obvious notation Qσ = (qσ1 , . . . , qσ#σ
)). In either case we obtain∫

Aσ

|Q`+1|−αE dQ`+1 ≤ C(R,G, α)r
(`+1)(

P`+1
j=1mj−α)

w ;

summing over all subsets of S yields

I ≤ C(R,G, α, γ)r
−

P`+1
j=0 jmj

w r
(`+1)(

P`+1
j=0mj−α)

w = C(R,G, α, γ)r−β−(α)
w .

This completes the proof of Lemma 5.4. �
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6. Jet spaces

Our goal in this section is twofold. First, we will illustrate the main results of this paper in the
context of a well-known explicit class of Carnot groups: the jet spaces Jk(R,R). In the standard
Carnot group presentation of Jk(R,R), similarity maps are polynomial in the underlying Euclidean
geometry.

In the second part of the section will describe an alternate Carnot group presentation of Jk(R,R)
for which similarities are affine maps in the Euclidean geometry and indeed, for which the con-
stituent linear maps are given by triangular matrices. We will then relate our work to that of
Falconer and Miao in [18].

6.1. Jet spaces as Carnot groups: the classical model. References for this material include
section 6.4 in [47, §6.4], [58] and [59]. General discussions of the geometry of jet spaces and jet
bundles can be found in [51] and [53].

The k-th order Taylor polynomial of a Ck function f : R→ R at a point x0 ∈ R is

(T kx0
f)(ξ) =

k∑
i=0

f (i)(x0)
(ξ − x0)i

i!
.

Two functions f1, f2 ∈ Ck(R) are defined to be equivalent at x0, written f1 ∼x0 f2, if T kx0
f1 = T kx0

f2.
The equivalence class of f is the k-jet of f at x0, denoted jetkx0

(f). The k-th order jet space is

Jk(R,R) :=
⋃
x0∈R

Ck(R)/ ∼x0 ,

We identify Jk(R,R) with the Euclidean space Rk+2 by introducing coordinates x : Jk(R,R)→ R
and uj : Jk(R,R) → R, 0 ≤ j ≤ k, where x(jetkx0

(f)) = x0 and uj(jetkx0
(f)) = f (j)(x0). In this

coordinate system we will write elements of Jk(R,R) as (k + 2)-tuples

p = (x, u(k)) = (x, uk, . . . , u0).

Contact and horizontal structures in Jk(R,R). The k-jet of a map f ∈ Ck(R) is the section
x0 7→ jetkx0

(f) of the bundle x : Jk(R,R)→ R. A contact form θ on Jk(R,R) is a 1-form satisfying
(jetk•(f))∗θ = 0 for all k-jets jetk•(f). By the chain rule, the cotangent space is framed by the
collection of 1-forms dx, ωk = duk, and ωj = duj − uj+1dx where j = 0, . . . , k − 1.

The horizontal tangent bundle H is defined pointwise by

Hp = {V ∈ TpJk(R,R) : ωj(V ) = 0 for all j = 0, . . . , k − 1}

In coordinates,
V = dx(V )X + ωk(V )Uk,

where X = ∂
∂x + uk

∂
∂uk−1

+ · · · + u1
∂
∂u0

and Uj = ∂
∂uj

for j = 0, . . . , k. We note the nontrivial
commutation relations

(6.1) [Uj , X] = Uj−1, j = 1, . . . , k.

Setting V1 = H = span{X,Uk} and Vj = span{Uk−j+1} = [V1, Vj−1] for j = 2, . . . , k + 1, we obtain
a (k+1)-step nilpotent Lie algebra jk = jk(R,R) = v1⊕· · ·⊕vk+1 which gives Jk(R,R) the structure
of a (k + 1)-step Carnot group.

The homogeneous dimension of Jk(R,R) is Q = 1 +
(
k+2

2

)
while the underlying Euclidean space

is Rk+2. The bases {X,Uk, . . . , U0} and {dx, ωk, . . . , ω0} are dual. Note that it is the vector fields
X and Uk which define the horizontal directions in this presentation.
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Remark 6.1. j1 is isomorphic to the Lie algebra of the first Heisenberg group, and j2 is isomorphic
to the Lie algebra of the Engel group. In general, jk is known as the kth Goursat algebra or model
filiform algebra. It arises naturally in control theory as the configuration space for optimal path
planning in the kinematics of multi-stage trailers, cf. [45].

The group law, dilations and similarities in Jk(R,R). Using the above introduced, so- called
second kind coordinates, the group law reads as follows:

(x, u(k))� (y, v(k)) = (z, w(k)),

where z = x+ y and

(6.2) wj = vj +
k∑
l=j

ul
yl−j

(l − j)!
, 0 ≤ j ≤ k.

The dilation of Jk(R,R) by scaling factor r is

(6.3) δr(x, u(k)) = (rx, ruk, r2uk−1, . . . , r
k+1u0).

From (6.2) it follows that similarities in Jk(R,R) are given by polynomials of degree k + 1 in this
model.

Theorem 2.4 and Theorem 2.6 applied to the case of the jet space Jk(R,R) read as follows.

Theorem 6.2. Let A ⊆ Jk(R,R) be an arbitrary subset of the jet space Jk(R,R) with the underlying
space Rk+2. Then the following sharp dimension inequality holds:

β−(dimE(A)) ≤ dimcc(A) ≤ β+(dimE(A).

The upper dimension comparison function for Jk(R,R) is

(6.4) β+(α) =

{
(l + 1)α+

(
k−l+1

2

)
, α ∈ [k − l, k + 1− l], l = 1, . . . , k,

α+
(
k+1

2

)
, α ∈ [k, k + 2].

The lower dimension comparison function for Jk(R,R) is

(6.5) β−(α) =

{
α, α ∈ [0, 2]
(l + 1)α+ 1−

(
l+2
2

)
, α ∈ [l + 1, l + 2], l = 1, . . . , k.

6.2. Jet spaces as Carnot groups: an alternate model. We now describe another Carnot
group model for the jet space Jk(R,R). The principal advantage of this model, in the context of
this paper, is that left translation is given by affine maps in the underlying Euclidean geometry.
Thus CC self-similar IFS’s are Euclidean self-affine. This gives us the posibility to compare our
results with the recent work of Falconer and Miao in [18].

In this model, we identify Jk(R,R) with Rk+2 by introducing a different set of coordinates:
x : Jk(R,R)→ R and ũj : Jk(R,R)→ R, 0 ≤ j ≤ k, where x(jetkx0

(f)) = x0 and

ũj(jetkx0
(f)) =

∂

∂ξj
(T kx0

f)(ξ)
∣∣∣
ξ=0

=
k∑
i=j

f (i)(x0)
(−x0)i−j

(i− j)!
.(6.6)

In these coordinates we will write elements of Jk(R,R) as (k+2)-tuples p = (x, ũ(k)) = (x, ũk, . . . , ũ0).
We obtain from (6.6) the coordinate transformation φ(x, u(k)) = (x, ũ(k)), where

ũj =
k∑
i=j

ui
(−x)i

i!
,
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which converts between the two models. Indeed, we define the group law so that φ becomes an
isomorphism, setting

(x, ũ(k)) ∗ (y, ṽ(k)) = φ
(
φ−1(x, ũ(k))� φ−1(y, ṽ(k))

)
= (x+ y, w̃(k))

and

w̃j = ũj +
k∑
l=j

ṽl
(−x)l−j

(l − j)!
, 0 ≤ j ≤ k.

It now follows that the left invariant vector fields are given by

X̃ =
∂

∂x
and Ũj =

∂

∂ũj
− x ∂

∂ũj−1
+ · · ·+ 1

j!
(−x)j

∂

∂ũ0
,

where 0 ≤ j ≤ k, and we observe that these vector fields satisfy the nontrivial commutation
relations

(6.7)
[
Ũj , X̃

]
= Ũj−1, j = 1, . . . , k.

Thus jk(R,R) = v1⊕· · ·⊕vk+1 where v1, . . . , vk+1 correspond to the vector bundles V1 = span{X̃, Ũk}
and Vj = span{Ũk−j+1} for j = 2, . . . , k. The dual forms are dx, dũk, ω̃k−1, . . . , ω̃0 where

ω̃j =
k∑
`=j

x`−j

(`− j)!
dũ`

for j = 0, . . . , k − 1. In this model the dilation by scaling factor r is

(6.8) δr(x, ũ(k)) = (rx, rũk, r2ũk−1, . . . , r
k+1ũ0).

We emphasize again the crucial feature of this model: left translation (y, ṽ(k))→ (x, ũ(k))∗(y, ṽ(k))
is an affine map of the underlying Euclidean space Rk+2. With dilations δr defined as in (6.8), we
see that the CC similarity

(z, w̃(k)) = F (x, ũ(k)) = (a, b̃(k)) ∗ δr(x, ũ(k)),

for fixed p0 = (a, b̃(k)) ∈ Jk(R,R), takes the form z = rx+ a and

w̃j =
k∑
l=j

rk+1−lũl
(−a)l−j

(l − j)!
+ b̃j

for 0 ≤ j ≤ k. Observe that F is a Euclidean affine map of the form

(6.9)


z
w̃k
...
w̃1

w̃0

 =



r
0 r
0 −ra r2

...
...

. . . . . .

0 r(−a)k−1

(k−1)! · · · −rk−1a rk

0 r(−a)k

k! · · · rk−1a2

2 −rka rk+1




x
ũk
...
ũ1

ũ0

+


a

b̃k
...
b̃1
b̃0

 .

6.3. A relation between self-similar sub-Riemannian fractal geometry and self-affine
Euclidean fractal geometry in jet spaces. Let us recall that Theorem 5.1 of Falconer gives
an explicit expression for the almost sure dimension of the invariant sets of Euclidean self-affine
iterated function systems which involves taking a limit of an average of the singular value functions
of iterated products of the constituent linear maps A1, . . . , AM . Formula (5.2) is in many cases
difficult to use in practice due to the presence of the limit, and further work has been done to
identify specific situations where the calculation can be streamlined. In [18], Falconer and Miao
provide a simple closed-form expression for the critical exponent d(A) in case the matrices Ai
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are upper triangular. According to Corollary 2.6 in [18], for a collection A of contractive upper
triangular matrices A1, . . . , AM on Rn, the critical exponent d(A) defined in (5.2) can be recovered
as follows: Let aijj′ denote the (j, j′)-th entry in the matrix Ai. For 0 < t ≤ n define D(t) piecewise
on the subintervals m− 1 < t ≤ m, m ∈ {1, . . . , n}, as follows: for m = 1 set

(6.10) D(t) = max
j′1

M∑
i=1

∣∣∣aij′1j′1∣∣∣t ,
and for 2 ≤ m set

(6.11) D(t) = max
{j1,...,jm−1}
{j′1,...,j′m}

M∑
i=1

∣∣∣∣∣
m−1∏
`=1

aij`j`

∣∣∣∣∣
m−t ∣∣∣∣∣

m∏
`=1

aij′`j
′
`

∣∣∣∣∣
t−m+1

,

where the maximum is taken over all (m− 1)-tuples {j1, . . . , jm−1} and m-tuples {j′1, . . . , j′m} with
distinct entries in {1, . . . , n}. The critical exponent d(A) is the unique t such that D(t) = 1.

It is worth emphasizing the fact that the above expression for the critical exponent depends only
on the diagonal entries of the matrices Ai. This will be important for us later on in this section.

The fact that the matrix part of F is lower triangular is a feature of our presentation of Jk(R,R);
this minor discrepancy with the Falconer–Miao formalism is immaterial. One can either permute
the coordinates in Jk(R,R) so that the matrix part becomes upper triangular, or restate the results
of [18] for lower triangular matrices.

The following statement makes the connection between Theorem 2.8 and the Falconer–Miao
result.

Proposition 6.3. Fix r1, . . . , rM < 1 so that
∑M

i=1 r
β
i = 1 and let A1 = A1(r1, a1), . . . , AM =

AM (rM , am) be matrices in the form which occur in (6.9). Then the equality

(6.12) β = β−(d(A))

holds, where d(A) is the Falconer–Miao critical exponent defined above by the relations (6.10),
(6.11) and the condition D(d(A)) = 1.

Proof. Fix r1, . . . , rM < 1 so that
∑M

i=1 r
β
i = 1 and let A1 = A1(r1, a1), . . . , AM = AM (rM , am) be

matrices in the form which occur in (6.9). We observe that the j-th diagonal entry of Ai(ri, ai) is

r
max{j−1,1}
i ,

where 1 ≤ j ≤ k + 2.
We consider the expressions in (6.10) and (6.11). For m = 1, the maximum in (6.10) occurs

when j′1 = 1 and we have

D(t) =
M∑
i=1

rti =
M∑
i=1

r
β−(t)
i ,

where 0 < t ≤ 1. For 2 ≤ m, the maximum in (6.11) occurs when j` = j′` = `. Furthermore the
parameter l from Theorem 2.4 is given by l = m− 2, and

D(t) =
M∑
i=1

r
(1+1+2+···+(m−2))(m−t)+(1+1+2+···+(m−1))(t−m+1)
i

=
M∑
i=1

r
(m−1)t+1−(m2 )
i =

M∑
i=1

r
(l+1)t+1−(l+2

2 )
i =

M∑
i=1

r
β−(t)
i ,

where m− 1 < t ≤ m. (See (6.5).) Thus D(t) =
∑M

i=1 r
β−(t)
i for all t ∈ [0, k + 2] and we conclude

that β−(d(A)) coincides with the similarity dimension of any CC self-similar IFS in Jk(R,R) whose
matrix parts are the given matrices A1, . . . , AM . �
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As a corollary to Theorem 2.8, we observe that the dimension of the invariant set in Rk+2 for a
self-affine IFS consisisting of maps of the form (6.9) is equal to d(A) almost surely. We must point
out an important caveat. Falconer and Miao treat the case when the linear parts are fixed upper
triangular matrices and the translation parameters vary. However, as is emphasized in [18], the
expression for D(t) in (6.10) and (6.11) depends only on the diagonal entries of the matrices Ai. It
is therefore reasonable to expect that the value of d(A) continues to provide the correct almost sure
dimension even if variation is allowed in the linear parts, provided it only occurs in off-diagonal
entries. In (6.9), we see that the matrices which arise in CC similarities of Jk(R,R) have precisely
this dependence on the translation parameters and this expectation is confirmed by Theorem 2.8.

It would be interesting to prove the Falconer–Miao almost sure dimension formula in the more
general case when the off-diagonal entries depend on the parameters in a more general manner than
in (6.9).

Remark 6.4. The general jet space Carnot groups Jk(Rm,Rn) (see [59]) also admit a presentation
in which left translation is a Euclidean affine map. Analogs of the above results continue to hold
in this setting. It would be interesting to characterize the class of Carnot groups which admit a
presentation in which left translations are affine maps in the underlying Euclidean geometry, and
to relate Theorem (2.8) to the results of Falconer–Miao in that case.

7. Another example

To further illustrate the principal application of our theory to the computation of dimensions of
nonlinear Euclidean fractals, we describe another example of a three-dimensional horizontal fractal
in a six-dimensional Carnot group of step four.

We consider the three-step nilpotent Lie algebra g modeled by strictly upper triangular matrices
of the form

A =


0 x1 x3 x4 x6

0 0 x2 −x3 x5

0 0 0 x1 x3

0 0 0 0 x2

0 0 0 0 0

 ,

and let G be the associated nilpotent Lie group. We identify g with R6 via the correspondence
A ↔ (x1, x2, x3, x4, x5, x6). We denote by ei the ith standard basis element in R6, and will use
the same notation to refer to the corresponding element of g. This Lie algebra admits a stratified
vector space decomposition g = v1 ⊕ v2 ⊕ v3 ⊕ v4, where v1 = span{e1, e2}, v2 = span{e3},
v3 = span{e4, e5} and v4 = span{e6}. We observe the relations [e1, e2] = e3, [e1, e3] = −2e4,
[e2, e3] = 2e5, [e1, e5] = [e4, e2] = e6, all other brackets being equal to zero. Upon introducing an
inner product on g so that the subspaces vi are orthogonal, we equip G with the structure of a
four-step Carnot group of dimension N = 6 with strata dimensions m1 = 2, m2 = 1, m3 = 2 and
m4 = 1. The homogeneous dimension is Q = 14. The upper and lower dimension comparison
functions for this group are easily computed to be

β+(α) = min{4α, 3α+ 1, 2α+ 4, α+ 8}
and

β−(α) = max{α, 2α− 2, 3α− 5, 4α− 10}.
The Carnot group multiplication is given in second kind coordinates by the operation x � y = z,
where z1 = x1 + y1, z2 = x2 + y2, z3 = x3 + y3 − x2y1, z4 = x4 + y4 + 2x3y1 − x2y

2
1,

z5 = x5 + y5 + 2x2y1y2 − 2x3y2 + x2
2y1,

and
z6 = x6 + y6 − x5y1 + x4y2 − x2y

2
1y2 + 2x3y1y2 −

1
2
x2

2y
2
1.
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Observe that left translation is given by cubic maps in the underlying Euclidean geometry. Di-
lations in this group are of the form δr(x) = (rx1, rx2, r

2x3, r
3x4, r

3x5, r
4x6). The projection

Π3 : R6 → R3 given by x 7→ (x1, x2, x3) functions as a sub-Riemannian projection (in particular, as
a contractive Lipschitz map) from G = R6 to the first jet space J1(R,R) = R3 equipped with the
CC metrics.

Proposition 7.1. Let {Fi}1≤i≤16 be the Carnot-Carathéodory self-similar iterated function system
in G consisting of the maps Fi(x) = pi � δ1/2(p−1

i � x), where the points pi enumerate the set

{(i, j, k, 0, 0, 0) : i ∈ {0, 1}, j ∈ {0, 1}, k ∈ {0, 1, 2, 3}},
and let S be the invariant set for this IFS. Then dimcc S = 4 and dimE S = 3.

Proof. The projection of this IFS into J1(R,R) (as described in the paragraph preceding the state-
ment of the proposition) coincides with the IFS defining the Strichartz tile T2 ⊂ H1, under the
identification of J1(R,R) with H1 discussed in section 6. Thus Π3(S) = T2 and so

dimcc S ≥ 4 and dimE S ≥ 3

by (2.12) and (2.13). On the other hand, since 4 is the similarity dimension of the defining IFS
{Fi}, we also have dimcc S ≤ 4 by Theorem 4.8. Hence dimcc S = 4, and then also dimE S = 3 by
Theorem 2.4. �

Figure 5 shows projections of S into various three-dimensional subspaces of R6. Curiously, these
pictures suggest that all of these coordinate projections appear to have dimension strictly less than
three. Note that generic three-dimensional projections of a set S ⊂ R6 of Hausdorff dimension
three should again have Hausdorff dimension three, see, e.g., Corollary 9.4 in [44].

Figure 5. Three dimensional projections of S in the 2121 Carnot group G: (a) into
x1x2x4-space, (b) into x1x2x6-space, (c) into x1x3x6-space, (d) into x2x4x5-space,
(e) into x2x4x6-space, (f) into x4x5x6-space
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8. Open problems and questions

We conclude with remarks, problems and questions motivated by these investigations.

8.1. Dimension comparison for submanifolds. Solve Problem 1.1 on general Carnot groups.
The original formulation of Gromov’s problem concerns dimension comparison for smooth subman-
ifolds. The solution (1.1) to this problem in H1 hints at the inherent difficulties, which exceed
those involved in our solution to Problem 1.2. Indeed, while the solution to Problem 1.2 involves
only the strata dimensions, the solution to Problem 1.1 involves the structure of the Lie algebra,
specifically, the commutation relations. We indicate in Figure 6 the solution to Problem 1.1 in the
Heisenberg groups Hn and the Engel group E, superimposed on the regions ∆(Hn) and ∆(E).

Figure 6. Solution to Problems 1.1 and 1.2 in (a) Hn, (b) E

Note that certain points with integral coordinates in ∆(E) are omitted in Figure 6(b). In fact, E
contains no surfaces with CC dimension 2, nor any 3-dimensional hypersurfaces with CC dimension
4 or 5. A more precise version of the latter assertion can be found in [30, §2.1]: HQ−1

cc (S) > 0 for
every hypersurface S in a Carnot group G. To see that E contains no surfaces with CC dimension
2, we note that the projection Π2 : E = J2(R,R) → J1(R,R) is 1-Lipschitz when domain and
target are equipped with their CC metric. Let S ⊂ E be a surface. We distinguish two cases. If
the projection Π2(S) ⊂ J1(R,R) is also a surface, then dimcc S ≥ dimcc Π2(S) = 3 by (1.1). On
the other hand, if Π2(S) is a curve, then S contains a nontrivial line segment L in the direction of
the highest stratum, and again dimcc S ≥ dimcc L = 3.

We provide further illustration through a list of the CC Hausdorff dimensions of the coordinate
subspaces of E. Using the presentation of E from Example 2.2, we have that the coordinate axes
have dimensions

dimcc exp spanU1 = dimcc exp spanU2 = 1,
dimcc exp spanV = 2, and dimcc exp spanW = 3. Among coordinate 2-dimensional subspaces we
have

dimcc exp span{U2, V } = 3,(8.1)

dimcc exp span{X,Y } = 4 if {X,Y } = {U1, U2}, {U1, V }, {U1,W} or {U2,W},(8.2)

and

dimcc exp span{V,W} = 5,(8.3)

while all coordinate hyperplanes have CC Hausdorff dimension 6. A more complete discussion of
the Hausdorff dimensions of submanifolds of E can be found in section 4 of [43]. The values in
(8.1)—(8.3) may be verified as a straightforward application of [43, (1.4), (1.5) and (4.2)].
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8.2. Hausdorff measure sharpness in the dimension comparison theorem. Establish the
sharpness theorem 2.6 for the dimension comparison problem on the level of the Hausdorff measure.
More precisely, for each α and β with β−(α) ≤ β ≤ β+(α), find a set A ⊂ G with 0 < HαE(A) <∞
and 0 < Hβcc(A) <∞. Our approach in section 4 only provides examples of such sets for a countable
family of dimension value pairs (α, β−(α)). The almost sure dimension formulae stated in Theorem
2.8 hold for all possible dimension pairs but Theorem 2.8 does not provide any informaion on the
absolute continuity of the appropriate Hausdorff measures.

8.3. Topological structure of Carnot fractals. There are several natural topological questions
which arise in connection with fractals in Carnot groups. For example, every iterated function
system in R2 satisfying the open set condition lifts to iterated function systems in H1 which also
satisfy the open set condition. This fact simplifies greatly the computation of the dimensions of such
Heisenberg fractals as it permits the use of Theorem 4.8. The proof of the preceding observation
relies on the fact that the group law in H1 (or any two-step Carnot group) involves Euclidean affine
maps. We do not know when a Euclidean IFS satisfying the open set condition in the first layer of
a Carnot group G lift to IFS in G which again satisfy the open set condition. Similarly, in [4] we
showed that if the invariant set of an IFS in R2 is connected, then some lift to H1 is again connected,
provided the contraction ratios of the defining maps were sufficiently small, and conversely, that
lifts of IFS in R2 satisfying the technical post-critical finiteness condition are generically totally
disconnected. Analogs of such results in more general groups remain to be established.

8.4. Exceptional sets. Estimate the size of the set of translation parameter vectors P for which
dimccK(P) exceeds β−(dimEK(P)) by a definite amount. It should be possible to use potential-
theoretic arguments as in this paper to estimate the Hausdorff dimension (in either of the product
metrics (dE)M or (dcc)M on GM ) of the set of vectors P for which dimccK(P) ≥ β−(dimEK(P))+ε,
for fixed ε > 0. A similar result in the context of the almost sure dimension theory for Euclidean
self-affine sets has recently been established by Falconer and Miao [19]. It may even be the case
that the exceptional set

(8.4) E = {P ∈ GM : dimccK(P) > β−(dimEK(P))}

lies in a hypersurface. This is true, for instance, when G = H1 and M = 2, as we now demonstrate.

Example 8.1. Let r = (r1, r2) ∈ (0, 1)2 with r1 + r2 < 1. Consider the invariant set K(P) for
{F1, F2}, Fi(p) = pi ∗ δri(p) as P = (p1, p2) varies in H1 × H1. When π1(p1) = π1(p2), K(P) is a
Cantor set lying along a translate of the x3-axis, and satisfies dimccK(P) = 2 dimEK(P). Other-
wise, K(P) is a horizontal set (in fact, a subset of a horizontal curve), and satisfies dimccK(P) =
dimEK(P). Thus in this case E = {(p1, p2) : π1(p1) = π1(p2)}, a hyperplane in H1 ×H1.

8.5. Carnot-Carathéodory manifolds. Extend the results of this paper to equiregular Carnot-
Carathéodory manifolds. One approach to this question would be to reduce to the Carnot group
situation by studying the regularity of the exponential map which provides local parameterizations
of charts on the manifold M by Mitchell’s approximating Carnot group [46]. If one could show
that such map is locally bi-Lipschitz at regular points, the dimension comparison problem for M
could be related to the corresponding problem for the approximating group. Unfortunately, such
parameterizations are in general only known to be bi-Hölder continuous with exponent given by
the reciprocal of the step, which is too weak to provide any nontrivial information about dimension
comparison on M . Compare the discussion in section 7.6 of [9].

These difficulties can be overcome in some situations. We indicate the solution to Problems 1.2
and 1.1 in the Martinet space M [47, §2.3, Chapter 3].

Example 8.2. We recall that M is the Carnot-Carathéodory manifold whose underlying space is
R3 (we use coordinates p̃ = (x̃, ỹ, z̃)) with horizontal distribution HM given as the span of the vector
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fields X̃ = ∂
∂x̃ and Ỹ = ∂

∂ỹ + x̃2 ∂
∂z̃ , or equivalently as the kernel of the defining form ω̃ = dz̃− x̃2 dỹ.

We note the existence of a singular locus Σ = {p̃ : x̃ = 0} in M; the number of brackets required to
span the full tangent space is equal to 2 at all points in M \Σ, but is equal to 3 at all points in Σ.

The CC metric on M is defined as for Carnot groups: dcc(p̃, q̃) is the infimum of the lengths of all
horizontal paths joining p̃ and q̃, where an absolutely continuous path γ : [a, b] → M is horizontal
if γ′(t) lies in Hγ(t)M for almost every t, and the length is computed with respect to the fiberwise
inner product on HM for which X̃ and Ỹ are an orthonormal basis.

Comparing Hausdorff dimensions of subsets A with respect to the sub-Riemannian and Euclidean
dimensions on M = R3, we find

(8.5) βM
− (dimE A) ≤ dimccA ≤ βM

+ (dimE A),

where βM
− (α) = max{α, 2α− 2} and βM

+ (α) = min{3α, α+ 2, 4}, see Figure 7.

Figure 7. Solutions to Problems 1.2 and 1.1 in M

To verify (8.5), we write M = Ω+ ∪ Σ ∪ Ω−, where Ω+ = {p̃ : x̃ > 0} and Ω− = {p̃ : x̃ < 0}.
Equipped with the CC metric, each of the regions Ω± is locally bi-Lipschitz equivalent with a
domain in H1 (alternatively, J1(R,R)), in fact, the map p = (x, y, z) 7→ (

√
x, y, z) is locally bi-

Lipschitz from the domain {p ∈ J1(R,R) : x > 0} to Ω+ ⊂ M. A simple computation shows that
the CC metric in the singular locus Σ satisfies an estimate of the form

dcc((0, ỹ1, z̃1), (0, ỹ2, z̃2)) ' |y1 − y2|+ |z1 − z2|1/3.
In effect, the solutions to Problems 1.2 and 1.1 in M can be obtained by combining the solutions in
H1 and Σ. Using product sets and Fubini-type theorems for Hausdorff measure in R2, we obtain

βS−(dimE A) ≤ dimccA ≤ βS+(dimE A), ∀A ⊂ Σ,

where βS−(α) = max{α, 3α − 2} and βS+(α) = min{3α, α + 2}. Since any set A ⊂ M can be
decomposed in the form

A = (A ∩ Ω+) ∪ (A ∩ Σ) ∪ (A ∩ Ω−),
we easily obtain (8.5). Unions of suitable examples in Ω± and Σ show that the bounds βM

± are
sharp. Summarizing,

∆(M) = co(∆(H1) ∪∆(Σ)),
where co(S) denotes the convex hull of S. Figure 7 also shows the corresponding solution to
Problem 1.1; we leave to the reader the identification of the relevant examples.

The preceding argument demonstrates the subtleties which arise for this problem in the singular
locus, where the higher commutator relations are counterbalanced by the fact that such loci are
typically of a smaller (Euclidean) dimension.
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8.6. Other metric spaces. Our theme in this paper has been the study of measure and dimension
comparison for two compatible metrics on a common space with the aim of quantifying the degree
to which sub-Riemannian metrics are non-Riemannian. It would be interesting to identify other
situations where similar considerations arise. Analysis on postcritically finite self-similar fractals
presents itself as a natural candidate. We refer to [37] and [57] for introductions to this fascinating
subject. A sharp dimension comparison theorem relating the resistance metric associated to a
Dirichlet form on a postcritically finite self-similar Euclidean fractal and the underlying Euclidean
metric on such a fractal would quantify the well-known philosophy which asserts the essentially
non-Euclidean character of the resistance metric. Other examples to consider could include the
boundaries of various Gromov hyperbolic spaces equipped with their visual metrics. The Gromov
boundaries of certain hyperbolic buildings Ipq, introduced by Bourdon [10], [11], and later studied
by Bourdon and Pajot [12], [13], provide another source of metric measure spaces with good first-
order analytic properties. Note that each of these spaces is homeomorphic with the Menger curve.
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